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Abstract: While coral reef ecosystems hold immense biological, ecological, and economic value,
frequent anthropogenic and environmental disturbances have caused these ecosystems to decline
globally. Current coral reef monitoring methods include in situ surveys and analyzing remotely
sensed data from satellites. However, in situ methods are often expensive and inconsistent in
terms of time and space. High-resolution satellite imagery can also be expensive to acquire and
subject to environmental conditions that conceal target features. High-resolution imagery gathered
from remotely piloted aircraft systems (RPAS or drones) is an inexpensive alternative; however,
processing drone imagery for analysis is time-consuming and complex. This study presents the first
semi-automatic workflow for drone image processing with Google Earth Engine (GEE) and free and
open source software (FOSS). With this workflow, we processed 230 drone images of Heron Reef,
Australia and classified coral, sand, and rock/dead coral substrates with the Random Forest classifier.
Our classification achieved an overall accuracy of 86% and mapped live coral cover with 92% accuracy.
The presented methods enable efficient processing of drone imagery of any environment and can be
useful when processing drone imagery for calibrating and validating satellite imagery.

Keywords: drone mapping; coral reefs; random forest; google earth engine; remote sensing; RPAS;
heron reef; drone imagery

1. Introduction

When the Great Barrier Reef Marine Park Authority released its 2019 Outlook Report, the Authority
reported the greatest threat to the Great Barrier Reef was climate change [1]. Dynamical and statistical
models and projections demonstrate that climate change is likely to increase the intensity of extreme
weather events including tropical cyclones [2], contribute to sea level rise, and increase sea surface
temperatures [3]. Each of these aspects pose significant challenges for coral reef environments, and the
increasing frequency of mass bleaching events brought on by warmer water temperatures alone
threatens the resiliency and survival of reefs worldwide [4,5]. As coral reefs hold immense biological,
ecological, and economic value in the services they provide [6], there is a need for cost-effective and
efficient practices to map, monitor, and manage coral reef habitats.

Over the last two decades, technological advances have made remote sensing a cost-effective
approach when compared to other monitoring methods. Coral reef monitoring programs frequently
use in situ field surveys, but they are expensive and often inconsistent in terms of time, space,
and scale [7]. These surveys are also limited to areas easily accessible by boat. Remotely sensed
imagery collected by satellites and airborne platforms can be used in combination with in situ data to
address inconsistencies and enable a higher frequency of consistent observations to effectively observe
spatial and temporal changes across reefs [8,9]. To date, multiple characteristics of coral reefs including
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benthic composition [10], habitat complexity [11], and coral reef state [12,13] have been mapped using
remotely sensed imagery. While remotely sensed imagery from satellites has increased the capacity to
map coral reefs, obstacles in image spatial resolution and frequency of image acquisition still need to
be overcome [14].

Broad scale benthic composition maps over entire reefs with Landsat 8 satellite imagery are
promising monitoring resources for researchers and managers [15]. However, the pixel size of moderate
spatial resolution satellite imagery is a limiting factor when creating accurate substrate classification
models [7]. Large pixel sizes result in lower mapping accuracies of dominant benthic cover types in
images, where target substrates are smaller than a single pixel [10]. The authors of [16,17] observed
mixed levels of accuracy for substrate classifications due to the inability of the method to differentiate
the spatial heterogeneity of reef substrates from the spectral information within pixels. This limitation
highlights the need to incorporate higher-resolution imagery in substrate classification models as
smaller pixel sizes increase classification accuracies.

High-resolution satellite imagery (i.e., pixel size < 10 m) from Ikonos, WorldView-2, and Quickbird
enable higher accuracy when classifying benthic cover types over finer spatial scales [16]. However,
these commercially sourced images are expensive to acquire. In general, satellite imagery is also subject
to environmental conditions such as cloud cover, sun glint, tidal height, and surface roughness that can
obscure or conceal target features. These factors hinder spatial analyses as target features in imagery
can be masked and unidentifiable [18,19]. The portable nature of drone platforms enables managers to
reduce the influence of these conditions on imagery by capturing data with flexible timing.

Imagery acquired by drones offers several other advantages over satellite imagery. Technological
advances increasing battery life, decreases in payload, and decreasing costs make drones a low-cost,
valuable resource for marine monitoring over fine spatial scales [20]. The portable nature of drones
not only facilitates image acquisition during prime environmental conditions determined by the
user, but also at finer temporal resolution than satellites can provide. Unlike drones, revisit times
of satellites are not user controlled [21] and multiple drone flights can be made in a single day.
Lastly, drones capture imagery at higher spatial resolutions (down to centimeters) when compared to
spaceborne platforms, facilitating mapping at greater descriptive resolutions [18], which may lead to
more accurate benthic classifications.

Many studies demonstrate the usefulness of drones in terms of marine benthic mapping [13,22,23].
High-resolution drone imagery allows for mapping of seagrass meadows and other habitat types
in great detail [22,23]. Information on coral reef state and health can be derived from drones with
RGB cameras [13]. However, using drones to create benthic maps of coral reefs is in its infancy [24],
and current methods of image analysis are complex and difficult to reproduce [25]. This is because
widely used commercial software to analyze drone imagery are not easily accessible to scientists
and managers as they often require expensive subscriptions, specialized knowledge, and capable
computing hardware to perform analyses on large image collections [26]. Therefore, despite the drone
platforms themselves being cheap, readily available, and easily accessible, analyzing their data is not
necessarily as simple.

Cloud based infrastructures such as Google Earth Engine (GEE) mitigate the issues identified
above by providing sharable, user-friendly platforms to perform sophisticated spatial analysis.
GEE promotes user created and training algorithm and classifiers [27], supplies wide collections of
available satellite datasets, and uses Google Cloud resources for processing. This increases the ability of
researchers to process large datasets using well-known, and cutting-edge algorithms [28]. Using GEE
for environmental monitoring has increased since its development in 2010 [29] and several studies use
GEE for satellite imagery analysis of terrestrial systems [30–32]. However, only a few examples in the
peer-reviewed literature use GEE in the marine realm [33–35] and these studies have exclusively used
satellite imagery. As drone usage is on the rise and more researchers turn to cloud-based platforms
for image analysis, we need to create drone imagery analysis workflows that are easily distributable
and reproducible.
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The objective of this study is to present a distributable, semi-automated workflow using GEE to
classify coral reef substrates in drone imagery. We present the steps for drone image pre-processing,
substrate classification, and classification accuracy assessment using GEE and free and open source
software (FOSS).

2. Methods

2.1. Study Site

Heron Reef is a coral cay within the Capricorn Bunker Group located near the Tropic of Capricorn
in the southern Great Barrier Reef (23.4423◦S, 151.9148◦ E) (Figure 1a). Heron Reef was chosen as
the study site because it is a lagoonal platform reef [36] whose shallow reef flats are well suited to
effective capture of reef substrate imagery by drone-based cameras. Furthermore, the availability of
the University of Queensland Research Station on Heron Island and data from Reef Check Australia’s
annual monitoring missions of Heron Reef will enable efficient support for subsequent studies.
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Figure 1. (a) Heron Reef study site, in the southern Great Barrier Reef, Australia. (b) Drone image with
examples showing benthic cover for classification: (c) live coral, (d) rock/dead coral, and (e) sand.

2.2. Data Acquisition

True color (RGB) aerial imagery over Heron Reef was collected using a DJI Phantom 4 Pro drone
with its camera angled at nadir (FOV = 73.73 deg, pixel array = 5472 × 3648) (Figure 1b). The DJI
Phantom 4 Pro was chosen because of its long flight time (~20 minutes), three-axis gimbal that enables
smooth flight patterns to capture imagery and 20-megapixel RGB sensor. The drone was oriented
south and flown at 20 m altitude resulting in a ground sample distance (GSD) equaling 0.5 cm and
individual photo footprints of approximately 20.1 × 16.7 m. The GSD enabled identification of major
substrate types for classification (Figure 1c–e). Flight paths were programmed through the Litchi
mission planning desktop and mobile application and captured photos every 40 m along the flight
paths. Images were collected from 14:30 to 17:00 on February 20, 2019, to coincide with low tide and
reduce the effects of sun glint and surface roughness. Depths of the study area during low tide ranged
from exposed coral to 40 cm of depth. After data collection, it was evident the drone camera failed to
take photos at some points along the flight path (Figure 1a). However, the large sample size of drone
imagery collected (n = 230) still enabled a thorough representation and assessment of the selected
substrates on Heron Reef.

Drone flight paths are usually designed following the standard aerial survey pattern, where the
drone flies up and down adjacent flight paths to create a geometric area of coverage. However,
we decided not to use this flight pattern. We programmed the drone path as shown in Figure 1a for
two main reasons: (1) to cover a greater variety of habitats in more areas around Heron Reef and (2) for
later use to calibrate and validate satellite imagery of Heron Reef.
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2.3. Data Processing

We divided the workflow in this study into three phases: (a) drone image pre-processing, (b) image
classification, (c) accuracy assessment (Figure 2).
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Figure 2. Workflow using classification and accuracy assessment tools in Google Earth Engine (GEE).

2.4. Image Pre-Processing

Google Earth Engine currently requires imagery to be in a GeoTIFF format before it can be ingested
into the system. Drone images were therefore converted from their native JPEG format to GeoTIFF
files using the Python programming language (Figure 2a). First, images were rotated 180◦ to the left
for correct orientation. Latitude and longitude co-ordinates were extracted from each image through
ExifTool, a free and open source software program for editing image, audio, video, and PDF metadata.
These co-ordinates were then converted into Easting and Northing values (EPSG: 32,756 [WGS 84/UTM
zone 56S]) in QGIS. Image rasters were also projected to EPSG: 32,756 in QGIS. TIFF word files (TFW)
were created for each TIFF. They are plain text files that store X and Y pixel size, image rotational
information, and co-ordinates for images stored as TIFF files. TFW header files created for each
GeoTIFF recognize the Easting and Northing values as the upper left corner of the images instead of
the image centers, which is where the images are typically tagged. Therefore, to ensure images were in
the correct locations, 12.5541 m (half the image width) was subtracted from each Easting value and
8.3694 m (half of the image height) was subtracted from each Northing value.
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2.5. Image Classification

After pre-processing, all drone images of Heron Reef were uploaded as an image collection
asset in GEE (Figure 2b). We chose rock/dead coral, sand, and live coral for substrate classification,
as these substrates were most easily recognizable in the drone imagery. It should be noted that the
rock/dead coral class includes epilithic algae matrix and dead hard coral. We also created a sun glint
class to account for the impacts of sun glint classifying substrates and subsequently determining their
areal coverage.

The GSD of the drone images enables visual identification of major substrate types, which is
acceptable to use as reference data for training the classifier and accuracy assessment [37]. Traditional
methods of collecting in situ data for calibrating and validating satellite data [38] have positional
accuracies far lower than the scale of drone observation, particularly when attempting to co-register
with drone imagery that also has its own positional inaccuracy. Areas that best represent each class
were visually identified in the drone imagery in GEE. We then used the geometry tool to manually
create 30 representative polygons per class (n = 120) (Figure 3a).
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Figure 3. (a) Drone image in GEE with class polygons. (b) Classification result from Random Forest
in GEE.

To ensure an even sampling of training and validation pixels across the classes, we selected
8000 random points (pixels) per class (n = 32,000 points) from within the training polygons. We merged
these points into a feature collection to be mapped across the images to extract digital number statistics
for each category. We then split the points into 70% training and 30% validation data.

We employed the Random Forest algorithm with 50 trees for classification in GEE (Figure 3b).
Preliminary tests to fine tune the classifier concluded 50 trees as the optimum number of trees to use,
as this resulted in the highest training accuracy (90%) and lowest out of bag error (14%). The Random
Forest classifier is not sensitive to noise or outliers and has been used with high accuracy to map
benthic habitats of coral reefs [39] and tidal flats [40]. This classifier was applied to the image collection,
and the total area (m2) per substrate per drone image was calculated to create substrate cover maps.

2.6. Accuracy Assessment

An accuracy assessment was employed to assess the accuracy of the final classification result over
the entire image collection of drone imagery (Figure 2c). Validation points (n = 9522 from the 30%
validation data) were applied over the classification result to extract pixel classification information
at each point. An error matrix was generated to compare how the classifier classified the validation
points with our reference classification. The error matrix was used to compute the overall accuracy
of the classification by dividing the total number of correctly classified pixels by the total number of
reference pixels sampled. Producer and user accuracy metrics were calculated by class. Producer
accuracy (precision) was calculated by dividing the number of correctly classified pixels in a class
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by the total number of reference pixels sampled for that class. This displays how well the classifier
identified classes in the training data set [41]. User accuracy (recall) was computed by taking the total
number of correctly classified pixels for a class and dividing it by the total number of pixels classified
as that class by the algorithm. User accuracy represents the chance that the class classified on the map
represents that class in the field [41].

2.7. Code and Data Access

The code for image pre-processing, classification (including additional parameters set for Random
Forest), and accuracy assessment is available online, as both a live version (https://github.com/bennkat/
Drone_Image_Processing_GEE/tree/v1.0) and a static release as per this paper (https://doi.org/10.5281/

zenodo.3986067).

3. Results

3.1. Image Classification

Using our semi-automated workflow, we classified 230 drone images of Heron Reef, representing
a total area of 96,664 m2. A visual assessment of the classification results revealed that this workflow is
able to distinguish between live coral, rock/dead coral, and sand substrates present in drone imagery
(Figure 4). Our workflow classified a total area of 15,240 m2 of Heron Reef as live coral, 23,795 m2 as
sand, and 38,148 m2 as rock/dead coral substrate. Predicted live coral cover percentages of Heron Reef
range from less than 1% to 60% (Figure 4a). The highest estimated coral cover was observed along the
reef slope and the lowest coral cover observed in reef flats (Figure 4b,c).
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coral cover; and (c) represents an area of low estimated coral cover.
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3.2. Accuracy Assessment

Comparison of validation pixels with substrate class assignments made by the model, showed
an overall mapping accuracy of 86%. Accuracy calculations and the error matrix (Tables 1 and 2)
demonstrate differences between the model classification and substrate classes assigned manually.
The producer and user accuracies for live coral indicate that Random Forest classified 92% of reference
live coral pixels correctly and correctly classifies live coral in unseen data 86% of the time (Table 1).
The model also displayed high accuracy in mapping sand (Table 1). The rock/dead coral class displayed
the lowest mapping accuracy with an accuracy of 71% (Table 1). This accuracy results from the
misclassification of rock/dead coral as live coral. While the model was able to classify 92% of the live
coral reference pixels correctly, it classified 14% of the rock/dead coral reference pixels as live coral,
leading the model to overpredict live coral cover (Table 2).

Table 1. User and producer accuracies calculated for classes from the error matrix in Table 2.

Overall Map Accuracy 0.86

Class User Producer

Live Coral 0.86 0.92
Rock/dead coral 0.85 0.71

Sand 0.87 0.90
Sun Glint 0.86 0.91

Table 2. Comparison of class assignments by the classifier (rows) with class assignments of reference
points (columns). Values shown are numbers of pixels, with bold numbers representing correctly
classified pixels.

Class Live Coral Rock/Dead Coral Sand Sun Glint Row Total

Live Coral 2213 330 14 9 2566
Rock/dead

coral 156 1664 54 84 1958

Sand 28 170 2160 119 2477
Sun Glint 10 186 168 2157 2521

Column Total 2407 2350 2396 2369 9522

After visual inspection of the classification result, the model was unable to differentiate spectral
information between rock/dead coral, sand, and sun glint classes in some areas around Heron Reef.
Within our classification, seven percent of sand and eight percent of rock/dead coral reference pixels
were classified as sun glint (Table 2). Additionally, 11% of the drone images had greater than 40%
of the image area classified as sun glint, therefore excluding actual rock/dead coral, sand, and live
coral assignments. However, the model successfully distinguished sun glint from the live coral class,
with less than one percent of sun glint reference pixels classified as live coral (Table 2).

4. Discussion

4.1. Image Classification Accuracy

We produced a substrate classification of Heron Reef, Australia, with an overall mapping accuracy
of 86%, which maps coral cover with 92% accuracy. Coral cover substrate percentages produced from
this classification workflow are within substrate cover ranges for Heron Reef published by Reef Check
Australia (RCA) in 2018. The Reef Check Australia 2018 Heron Island Reef Health Report reported an
average of 42% hard coral cover observed across 15 monitoring sites, with coverage ranging from absent
to 73% [42]. The greatest coral coverage was observed in reef slope habitats, with less coral coverage
found amongst sandy reef flats. These spatial patterns of coral cover published in the Reef Check
Australia 2018 Heron Island Reef Health Report were also observed within our classification result.
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Discrepancies between the estimated coral coverage found from our study and the coral coverage
observed by RCA could be attributed to monitoring site location. Out of eight reef slope sites monitored
by RCA, three sites showed greater than 70% hard coral cover. The other five sites ranged from 53% to
67%. Our drone imagery may have overlapped portions of the reef slope that exhibited coral cover
with in the 53–67% range, therefore not matching the highest coverage percentages observed by RCA.
We recognize that areas of Heron Reef may exhibit higher coral coverage than estimated in this study,
but those areas may have not been represented in our drone imagery.

The presented methods provide steps for image preprocessing, so drone imagery is formatted
for other classification techniques and algorithms in GEE that can be used to classify coral cover.
Since the appropriateness of a classifier is dependent on the characteristics of the dataset being classified,
users who want to implement this workflow can test the accuracies of other algorithms on their data
and decide which one is best suited to provide the most accurate classification results. GEE offers
tools for Object-Based Image Analysis (OBIA) techniques, which have been used to map coral cover in
satellite imagery with resolutions of 2–30 m [35,43]. However, the authors of [43] also incorporated
bathymetry data to develop segmentation rules for classification. As live corals exist in a variety
of shapes, textures, and sizes in drone imagery, users may need to include additional datasets such
as bathymetry to successfully apply OBIA to this workflow. Other classification algorithms such as
support vector machine, and classification and regression trees are also available in GEE and can be
used to classify coral reef habitats [39].

While the algorithm used will impact classification accuracy, environmental conditions such as
sun glint can obscure classification targets and thus affect the final result [44]. Although steps were
taken to minimize the presence of sun glint in the imagery used in this study, sun glint that was present
in the images had to be accounted for. The creation of a sun glint class resulted in slight inaccuracies
as the classifier misclassified sun glint, rock/dead coral, and sand substrates. Currently, GEE offers
masking functions for atmospheric corrections of satellite data [29] and sun glint correction algorithms
have been developed and used on high-resolution imagery of marine environments outside of the GEE
platform [45]. However, these algorithms use near infrared (NIR) bands to identify sun glint affected
pixels. As the imagery for this study was collected with a consumer-grade RGB camera, these sun glint
correction algorithms would not be applicable. An alternative solution for future iterations of this
workflow includes applying a mask that filters for pixels close to saturation (RGB = 255, 255, 255) or
include a subset from within a spatially defined window of the image during image preprocessing.
This would remove sun glint from the imagery and may decrease misclassifications between sun glint,
rock/dead coral, and sand classes.

Other environmental factors like water quality, wind, and sea state, that create ripples or waves
and differ in extent on other coral reefs, may impact drone image quality [19,46] and hinder substrate
classifications. These factors should be considered during flight planning, and steps should be taken to
mitigate the impacts of these factors on imagery, if possible. Completing flight missions during low
tide and optimum weather conditions with low wind would reduce effects of ripples and waves on
obscuring target features. However, shallow reef environments are optimal for aerial mapping [19].

Combining spectral information procured from optical sensors with bathymetric data can make
this workflow applicable to other coral reef ecosystems with varying depths. In this study, depth is not
a limiting factor, as drone imagery was collected over the reef flat at low tide to minimize the impacts
of water depth on classification results. As spectral reflectance of substrates becomes more similar
with increasing depth [7,14], combining bathymetric data with spectral information may increase the
applicability of this workflow. The authors of [47] observed the greatest overall mapping accuracies in
supervised and unsupervised benthic classifications (71% and 70%, respectively) of Glover’s Atoll,
Belize, after combining layers of acoustic roughness, hardness, and depth, with depth corrected optical
layers from IKONOS imagery. The authors of [47] do note a limitation with the extensive field surveys
required to calibrate acoustic data on an image by image basis. Furthermore, acoustic data can only
be acquired in areas accessible by boat [18]. Bathymetric data acquired through light detection and
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ranging (LiDAR) sensors mounted on drones can overcome these limitations. Datasets from such
methods have been used in combination with RGB drone imagery to assess coral reef bathymetry and
have the potential to aid coral reef benthic classifications [48].

Assessing the accuracy of thematic maps is essential as it informs users on the reliability of the
map product and impacts what the map can be used for. However, recommended and widely used
techniques of assessment, such as comparing classification results to ground-truthing data through a
confusion matrix, pose many challenges [49]. Issues with scale [50], site accessibility, and funding [7]
often result in ground-truthing data that might not be available or suitable to use. Field data was
available for ground-truthing assessment in this study but could not be used due to scale issues and
potential GPS location errors, which would not allow for direct comparisons to classifications of sub
centimeter pixels. Future field data acquisition campaigns for calibrating and validating classifications
of drone imagery include georeferenced quadrat sampling [23,51] in combination with underwater
imagery of substrate, to reduce GPS location errors. In lieu of comparisons with field data, accuracy
assessments that use the same initial source information for reference and validation data have proven a
credible alternative [52]. These accuracy assessments also avoid errors that result from the mislocation
of reference data and points in the classification result [53].

As the classification of substrates for training data in this study was completed manually, over
and under-estimates of substrate cover percentages may also be the result of misidentification of
classes due to human error when training polygons were created during the training stage. The
current spatial resolution of the GEE base map (where the scale bar equals 2 m) prevents observing
drone imagery at native resolution. Since mislabeling of classes by the interpreter during classifier
training can decrease the accuracy of map products [54], efforts were taken to minimize substrate
misinterpretation. Live coral, rock/dead coral, and sand substrates were chosen because they were the
most easily identifiable substrates. As a result, the classifier classified substrates such as algae and
rubble under the classes chosen, affecting classification accuracy. Since the main goal was to automate
a workflow with FOSS to enable mapping of coral reef substrates in drone imagery, the number of
substrate classes used was enough to achieve this goal.

4.2. Workflow Assessment

We created a straightforward and efficient semi-automatic workflow that processes drone imagery
for analysis and uses the Random Forest algorithm for benthic mapping of reef ecosystems. Steps for
image pre-processing were created by the authors. Prior to this workflow, coding examples in GEE
and published research that classified imagery using GEE use satellite imagery. The presented image
classification steps consist of code previously used for classifying satellite imagery but have been
modified and adapted for drone imagery collections. The accuracy assessment phase uses previously
established code in GEE for accuracy assessment but is modified for this study’s data. Our workflow
pieces together image processing with image classification in GEE to make classifications of drone
imagery with greater descriptive resolutions than satellite imagery possible. While drone imagery
has been used to evaluate benthic characteristics of marine environments [13,22,23], this is the first
study to present a semi-automatic process that formats and classifies drone imagery to map coral reef
substrates using FOSS and GEE.

The semi-automation of drone imagery pre-processing, substrate classification, and accuracy
assessment phases makes drone imagery analysis more widely available and reproducible. Datasets
acquired from drones are often informationally dense [18] and require complicated processing.
This workflow demonstrates straightforward image processing steps that can be applied to any
drone acquired image collection. Furthermore, FOSS enables drone imagery analysis to users and
organizations who lack the resources to pay for licenses of commercial products. Anyone with an
internet connection and a computer can apply this workflow to their own drone imagery and share
their code and datasets. This is a significant advancement, as reproducibility in remote sensing studies,
especially regarding classification calibration and validation, is an obstacle [37,55].
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The main limitation of this workflow is the number of programs used to convert drone images
into GeoTIFF files. While these programs are FOSS, further automating this phase through Jupyter
notebook and Python API for GEE would reduce the amount of time and effort needed for image
preprocessing as well as the total amount of time needed for image classification and analysis.

5. Future Applications

This study presents a tool that can be used to process drone imagery of any environment for
image classification and analysis. Drones and consumer grade cameras are used to monitor land
use/cover [56], survey forest canopies, biodiversity, and assess deforestation [57,58], as well as map
mangrove forests [59]. Lengthy processing times in addition to the processing power needed to analyze
high-resolution imagery are common obstacles that often detract from time savings and effort gained by
using drones to collect field data [60,61]. The presented methods drastically reduce image processing
time through FOSS to enable analysis of drone imagery of any ecosystem, not only coral reefs.

Other applications include using this workflow to process drone imagery to calibrate and validate
satellite imagery and establish baselines for temporal variation. Monitoring coral reefs from Earth
observation data address many of the shortcomings of current in situ monitoring programs [7]. Imagery
from drones can work collaboratively with in situ data to more accurately inform calibrations and
validations of satellite imagery. Imagery from drones is proving to be highly effective in training and
validating classifications made by satellite imagery [61] and studies note the usability of their drone
derived datasets for calibrating satellite imagery [48]. This workflow provides accessible methods
for rapid drone image processing to enable use of drone imagery as first-order ground truthing for
satellite data. Additionally, imagery from drones can be used to evaluate temporal variation on coral
reefs [62]. Effective ecosystem assessment and monitoring is dependent on the ability to monitor
area changes over time. This workflow can provide more descriptive spatial layers to projects like
the Allen Coral Atlas Project (in addition to using this workflow to calibrate and validate satellite
data) [35]. Furthermore, using this workflow to process remotely sensed data to monitor shallow
reef flats and crests will benefit existing monitoring programs, like the Australian Institute of Marine
Science Long-term Monitoring Program and Marine Monitoring Program, that focus on reef depths
greater than 2 m.

6. Conclusions

Although the use of remotely sensed imagery from drones for ecosystem monitoring has increased,
methods for drone imagery processing are still time consuming and complex. This is the first study to
present a widely accessible and reproducible semi-automatic workflow that enables rapid processing
of drone imagery for image analysis using FOSS and GEE. Under this workflow, we processed and
classified 230 drone images of Heron Reef, Australia and produced a substrate classification with an
overall accuracy of 86%, which mapped coral cover with 92% accuracy. The accessible and reproducible
nature of this workflow opens drone image processing and assessment to anyone with an internet
connection. Drone imagery of any environment, marine or terrestrial, can be processed, classified,
and assessed for accuracy. Further applications of this methodology include processing drone imagery
for the purpose of calibrating and validating satellite imagery. This study provides cheap and efficient
methods to process and assess drone imagery that will benefit monitoring efforts worldwide.
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