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A B S T R A C T

Acoustic monitoring provides opportunities for scaling up bioacoustic study of vocal animals to greater temporal
and spatial scales. However, the large amounts of audio that can be easily and efficiently collected necessitates
automated methods of analysis to extract useful ecological data. Acoustic indices have been used in spectro-
graphic visualisation of long environmental recordings to successfully identify many biological sounds from their
acoustic patterns and features. In particular, the choruses of several frog species are conspicuous in these
spectrogram images which suggests that acoustic indices may be useful for detecting species in automated sound
classification algorithms. The aim of this study was to investigate the use of acoustic indices as predictors in
classification models for automated identification of frog species in environmental sound recordings from
breeding habitats in north Queensland, Australia. Three types of classification models (random forests, support
vector machines and gradient boosting) were trained and validated on a data set of 3274 1-minute audio seg-
ments labelled for the presence or absence of calling of 12 target frog species, and a feature set of 11 acoustic
indices calculated on frequency bins of bandwidth 43.1 Hz. Classification performance was high for all 12 target
species on the validation data set held out from the labelled training data (precision range 0.90–1.00 and recall
range 0.83–0.99). However, performance declined for most target species when predicting frog calling on a
further test data set taken from unseen recordings from the same sites. Best prediction results on the test data
were achieved for species with the most training data, indicating accuracy may be improved by increasing
training data, and this method is best suited to predicting chorusing of common species.

1. Introduction

Monitoring of animal populations and communities is fundamental
for management and conservation of biodiversity. Monitoring threa-
tened species is necessary to assess if recovery and management efforts
are effective, and monitoring ecological communities provides baseline
data that enables detection of changes in populations and ecosystem
health. However, there is significant cost in collecting data for species
monitoring programs, which take considerable time and effort. Surveys
must be repeated over sufficient time and locations, so that changes in
species abundance, distribution or behaviour patterns can be detected
(Field et al., 2007). Automated sensor technologies, such as GPS
tracking devices, motion-sensor cameras and sound recorders that can
continuously record data on animal presence, movement and behaviour
allow researchers and conservation practitioners to increase the tem-
poral and spatial scale of monitoring animal species. However, the in-
crease in data collection brings new challenges in analysing big data

sets to answer ecological questions.
Environmental monitoring using sound recorders has become a

common method of monitoring vocal species (e.g. Aide et al., 2013;
Hagens et al., 2018). Automated sound recording technology allows
sampling over increased spatial and temporal scales, which can provide
information to ecologists about species distributions, movement and
migration patterns, and breeding phenology (Acevedo and Villanueva-
Rivera, 2006; Campos-Cerqueira and Aide, 2016; Sanders and Mennill,
2014). As recording technology has improved, the amount of acoustic
data that can be collected is less constrained by data storage or power
limitations. Portable recorders can record continuously for weeks or
even months, and permanent acoustic monitoring networks providing
continuous, long term acoustic data are now feasible (Australian
Acoustic Observatory, 2019). Long term acoustic monitoring can pro-
vide valuable data on common species distributions and behaviour
patterns, which is necessary for detecting changes in populations
(Frommolt and Tauchert, 2014). Because of the sheer volume of data,
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effective analytical tools are required to automate the extraction of
useful ecological data from long-duration sound recordings.
Automated animal call recognition and species identification from

sound recordings is an active and ongoing field of research. The con-
ceptual approach to automated species call recognition is to develop
computer algorithms that scan sound files, accurately detect target
calls, and measure some features of the calls that can then be used as
criteria to classify the calls to species. Many studies have demonstrated
the feasibility of automated call recognisers achieving high classifica-
tion performance on test data, but these studies are often aimed at
testing the discriminative power of different classification methods or
call features using libraries of short recording clips (e.g. Bedoya et al.,
2014; Ganchev and Potamitis, 2007; Knight et al., 2019; Noda et al.,
2016). The limitations of call recognisers have been highlighted in their
failure to effectively scale to long-duration recordings that include
higher levels of environmental noise (Crump and Houlahan, 2017;
Priyadarshani et al., 2018; Waddle et al, 2009). The main technical
difficulty limiting automated call recognition is that species diversity,
call variability and noise all increase in longer duration recordings,
which leads to loss of accuracy of call identification (Gibb et al., 2019;
Priyadarshani et al., 2018). Additionally, while accurate call detection
and identification is the fundamental goal underpinning automated
recognisers, there are few study objectives for which identification of
each and every vocalisation is necessary, but the level of correct iden-
tification required may be difficult to specify, or may be dependent on
the goals of the monitoring.
The problem of finding useful and effective analytical methods for

long-term recordings of the natural environment has led to recent work
investigating the use of acoustic indices for detecting and identifying
the vocal activity of species. Acoustic indices are numeric summaries of
the energy distribution in a recording based on amplitude and spectral
content (Sueur et al., 2014). Indices, such as the acoustic entropy index
(Sueur et al., 2008) and the acoustic complexity index (Pieretti et al.,
2011) were initially conceived and developed as summary metrics to
very broadly characterise biodiversity and assess human disturbance at
community and landscape scales. More recent work has used acoustic
indices calculated on short time segments to develop a method of vi-
sualising the acoustic content of long-duration sound recordings
(Towsey et al., 2014b). This visualisation tool combined three acoustic
indices to generate a compressed ‘false-colour’ spectrogram of long-
duration (up to 24 h) continuous recordings which highlighted the main
acoustic features and events. Some features in the false-colour spec-
trograms highlighted the vocal activity of some species, in particular
birds and frogs (Towsey et al., 2018b). The utility of this visualisation
method in highlighting the calls of some species suggests that combi-
nations of acoustic indices may be useful as predictive features for
automated detection of those species. Several recent studies have de-
monstrated that acoustic indices can be used to detect single bird spe-
cies in continuous recordings with high accuracy (Gan et al., 2018;
Dema et al., 2018; Towsey et al., 2018b). Frog choruses are particularly
conspicuous in the long-duration spectrograms, since acoustic indices
effectively capture the acoustic patterns of the consistent and repetitive
calls of chorusing frogs (Fig. 1), but the use of acoustic indices for au-
tomated detection of frog species in sound recordings has not been
tested. Indraswari et al. (2018) showed values of the acoustic com-
plexity index and the temporal entropy index could distinguish the calls
of three frog species in 30-second recordings using ordination. The
usefulness of acoustic indices as features in a classification model is
therefore worthy of consideration for automation of frog species iden-
tification in environmental sound recordings.
The aim of this study was to investigate the potential use of acoustic

indices as predictors in classification models for automated identifica-
tion of frog species in environmental sound recordings. Specifically, we
wanted to test if acoustic indices could be used to detect which species
of frogs were calling in each minute of audio recorded in a tropical
savanna environment where multiple species often call simultaneously

in large choruses, generating large amounts of noise and call overlap.
Data at this resolution on the calling of patterns of multiple frog species
would be useful for studies of the temporal patterns of chorusing of frog
populations, but also to study broad-scale acoustic interactions among
species (i.e. nightly or seasonally). An accurate automated method of
detecting species in environmental recordings would provide invalu-
able data for long-term monitoring of species, animal communities and
biodiversity (Towsey et al., 2014a).

2. Materials and methods

2.1. Environmental recordings

Sound recordings were made at eight frog breeding sites in northern
Queensland, Australia, from October 2012 to April 2014, as part of a
study monitoring frog communities in this region. The study sites were
waterbodies (artificial dams or natural creek empondments) at
Townsville (19.332° S, 146.761° E) and Hervey Range (19.357° S,
146.454° E). Recordings were made in MP3 file format (128 kbps bit
rate; 22.05 kHz sampling rate). Frogs in this region are typically only
vocally active at night, and so recorders were set to record continuously
from 1800 h each night to 0700 h the following morning. In total, 3965
continuous sound recordings of up to 13 h duration each were made for
the monitoring study.

2.2. Audio processing and calculation of acoustic indices

Pre-processing of the audio files and generation of acoustic indices
followed that described in Towsey (2017) and were performed using
the QUT Ecoacoustics Audio Analysis Software v17.06.000.34 (Towsey
and Truskinger, 2017). Recordings were processed into non-over-
lapping frames of 512 samples per frame (~23.2 ms per frame). Each
recording was divided into one-minute segments consisting of 2584
frames. Eleven acoustic indices (Table 1) were calculated for each
minute in each of 256 frequency bins from 0 to 11025 Hz (the fre-
quency range of each bin was approximately 43.1 Hz).

2.3. Labelled data set

A labelled data set for training classification models was compiled

Fig. 1. Example false-colour spectrogram of a 7-hour recording used in this
study. Horizontal dotted lines delineate 1000 Hz frequency intervals
(0–11025 Hz). 1 pixel represents 1 min of audio and approximately 43 Hz
frequency range. Colours derive from 3 acoustic indices mapped to the 3 colour
channels (ACI – red; ENT – green; EVN – blue; refer Table 1). Biotic noises
featured in this image are: Cane toad (Rhinella marina), pink < 1000 Hz;
Northern laughing tree frog (Litoria rothii), pink/yellow 1000–2500 Hz; Eastern
sedge frog (Litoria fallax), indigo/green/pink > 2000 Hz; and insects
~5000 Hz, 8000 Hz and 10000 Hz.
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by listening to sampled audio segments along with their spectrograms
and labelling the presence or absence of 12 target species (Table 2).
Playback and spectrogram analysis of the audio segments was done
using Audacity sound analysis software (version 2.2.1, http://www.
audacityteam.org). Segments of audio were chosen so that the labelled
data set would capture variability in acoustic content of the recordings
and contained minute segments with and without each species calling,
in combination with and without other frog species’ calls, other noise,
and silence. The number of calling frog species identified in each
minute segment ranged from 0 to 7 species (Table 3). The labelled data
set comprised a total of 3274 labelled minutes from 125 different nights
across all eight sites. The number of labelled minutes varied per night
(2–391) to capture enough species presences on active calling nights.
The protocol for labelling a minute with a positive instance of a

target frog species was: if there were two or more vocalisations (i.e.,
single calls can easily be mistaken for other animal sounds, one call was
disregarded and labelled as a negative instance). The calls of Rhinella
marina (cane toad) are continuous trills of up to 12 s in duration, but
they also emit short ‘release’ calls, so R. marina was counted as ‘present’
if the vocalisation was at least one second in duration, and could be
confidently identified to this species. Low-quality or distant calls were
counted if they could be confidently identified to a species either au-
rally or visually on the spectrogram, or both.
As multiple frog species often call together within the same minute,

a large proportion of presences for one species may coincide with
presences for another. To reduce the chance the classifiers would learn
features related to non-target species, the frequency range of the indices

used for each species’ classifier was restricted to the respective fre-
quency range of their calls (Table 2). Therefore, the final labelled data
set for each species consisted of 3274 binary labels indicating species
presence or absence for each minute of audio analysed, with a corre-
sponding feature set comprised of acoustic index values. The size of the
feature sets ranged from 220 to 781 values, depending on the frequency
range used (11 acoustic indices over a predetermined range of fre-
quency bins, Table 2).

2.4. Classification models

Three different classification models were trained for each species:
random forest, extreme gradient boosting, and a support vector ma-
chine. These three methods were chosen because they can handle high-
dimensional data sets with many predictor variables. All analyses were
performed using RStudio (RStudio Team, 2019) running R version 3.6.0
(R Core Team, 2019) and packages randomForest (Liaw and Wiener,
2018), xgboost (Chen et al., 2019), kernlab (Karatzoglou et al., 2019)
and caret (Kuhn et al., 2019). The labelled dataset was randomly split
into a training (70%) and validation set (30%), resulting in a training
set of 2293 min and a held-out validation set of 981 min which were
unseen by the model training process. All species retained the same
prevalence in both the training and validation sets.
Tuning of parameters and selection of the best model for each

species was performed using 3 × 10-fold cross-validation on the
training set (i.e 10-fold cross-validation was repeated 3 times using a
different random split of the training data each repeat). Model perfor-
mance was assessed using the mean Cohen’s Kappa statistic of the 30
cross-validation folds. The Kappa statistic, where Kappa = (observed
accuracy − expected accuracy)/(1 − expected accuracy), was used
rather than accuracy because of the imbalance between presences and
absences in the labelled data set (Kuhn and Johnson, 2013). The final
model for each species was then trained on the complete training set.
Using data sets with unbalanced classes can cause problems when

fitting classification models (Chawla et al., 2004). Therefore, three
different methods of subsampling were used for the four species with
the lowest prevalence in the training data set (prevalence < 0.15;
Table 4) and compared with results using the full unbalanced training
set. Subsampling was performed using down-sampling of the most
prevalent class (here absences), as well as SMOTE and ROSE algo-
rithms, two methods that both down-sample the most prevalent class
and synthetically synthesize new data points for the least prevalent
class (Chawla et al., 2002; Lunardon et al., 2015; Menardi and Torelli,
2014; Torgo, 2015). Model performance was greatest using the un-
balanced training set for all four species and was therefore used for
predictions.
The predictive performance of the best performing classification

model for each species was assessed on the held-out validation set
(n = 981). As the minutes in the validation set came from the same
nights and segments of recordings as the training set, judging model
performance based on the validation set alone may produce over-

Table 1
Descriptions of acoustic indices used as predictors in classification models.

Acoustic index Description Reference

Acoustic complexity Index (ACI) the amount of relative change in sound amplitude from one frame to the next Towsey (2017)
Background Noise (BGN) the modal decibel value of background noise in each frequency bin Towsey (2017)
Cover (CVR) the fraction of spectrogram cells in a given frequency bin where the acoustic energy

exceeds 2 dB (dB)
Towsey et al. (2014b)

Entropy (ENT) a measure of temporal concentration of acoustic energy in a frequency bin. Towsey (2017)
Event Count (EVN) the number of acoustic events (exceeding 3 dB) per minute in each frequency bin. Towsey (2017)
Power minus noise (PMN) the maximum decibel value in each frequency bin minus the decibel value of the

background noise
Towsey (2017)

Ridge Indices - Horizontal (RHZ), Negative (RNG), Positive
(RPS), and Vertical (RVT)

average decibel value of ridge cells in one of the four directions identified in the
frequency bin, representing presence of harmonics

Towsey (2017)

Spectral peak tracks (SPT) a measure of spectral peak tracks, or local maxima of amplitude, in a frequency bin Towsey (2017)

Table 2
Target frog species and the frequency range of typical calls.

Species Call Frequency Range (Hz)

Litoria rubella 1400 – 3800
Rhinella marina 300 – 1400
Litoria fallax 2300 – 4800
Litoria nasuta 1000 – 4000
Platyplectrum ornatum 400 – 1500
Litoria caerulea 300 – 1500
Litoria rothii 1000 – 3300
Cyclorana novaehollandiae 400 – 1200
Crinia deserticola 3000 – 5000
Cyclorana alboguttata 400 – 2300
Limnodynastes convexiusculus 800 – 2400
Uperoleia mimula 1200–3000

Table 3
Number of minutes in the labelled data (n = 3274) with each level of species
richness (0–7 species calling in the same minute).

Species count 0 1 2 3 4 5 6 7

No. of minutes 527 750 464 468 661 271 105 28
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optimistic results. Therefore, model performance was also measured on
an additional ‘test’ set of 1173 min randomly selected from nights not
used in the initial training and validation stage. This should allow a
more realistic estimate of how well each species’ classifier performs
when exposed to novel acoustic patterns.
The predictive performance of the classification models was eval-

uated using three measures:

(i) Kappa statistic – agreement of predicted and observed classes
above that expected by chance, as defined above in this section
(Kuhn and Johnson, 2013).

(ii) Precision – the proportion of positive classifications made by the
model which were correct (True Positives/(True Positives + False
positives)).

(iii) Recall – the proportion of minutes containing the species’ calls
which were detected by the classifier (True Positives/(True
Positives + False Negatives)).

3. Results

3.1. Classifier performance

The support vector machine and extreme gradient boosting classi-
fication models outperformed random forest for all species on the cross-
validated training data (Table 4; Appendix A Fig. A1). Model perfor-
mance was very high on the validation data for all species (Kappa
0.83–0.97, Table 4), and varied little across a wide range of probability
threshold values suggesting the acoustic indices used allowed a strong
separation between presence and absence of calls (Appendix A Fig. A2).
Precision was 90% or higher for all species, and recall ranged from 83%
to 98% (Table 4). False-positive classifications were low relative to
false-negative classifications for all species except P. ornatum, for which
these were similar, and C. deserticola, for which there were more false-
negatives than false-positives (Appendix A Table A1).
Model performance varied greatly on the test data set (Kappa

0–0.84) but was highest for species with the highest prevalence in the
training set (Table 5). Best performance was achieved for R. marina
(precision 82%; recall 96%), and for L. fallax (precision 85%; recall
76%). The model for L. rubella achieved good recall of 82%, and pre-
cision of 60%. Classification performance was moderate for L. nasuta
(precision 62%; recall 63%) and L. rothii (precision 50%; recall 53%)
despite having sufficient training and test cases. Our method of ran-
domly selecting test case minutes affected our ability to measure model
accuracy for all species, as the prevalence of positive instances of some
species in the test set was very low (Table 5; Appendix A Table A2).

3.2. Analysis of misclassifications

Analysis of a sample of misclassified cases in the test data set re-
vealed that the majority of false-positive detections occurred for min-
utes in which other frogs were calling (Table 6). Passing vehicles or
aircraft, noise caused by audio distortion, birds, insects, wind and rain
were also factors causing misclassification. Most false-negative detec-
tions also included other frog species, wind or rain. However, several
false-negative detections were cases observed as having ‘low-quality
calls’, i.e., these were minutes in which the target species was calling
but distant to the microphone, and there was no other dominant source

Table 4
Species prevalence (number of minutes with presence/absence) in the training data set (n = 2293) used to tune and select the optimal classification model for each
species, and the held-out validation set (n = 981), and performance on the validation set. Species are listed in order of prevalence of minutes with species presence.
Best model abbreviations are: svm - support vector machine; xgboost - gradient boosting model.

Species Training (no. minutes) Validation (no. minutes) Prevalence in training set Best model Performance on validation set

Presence Absence Presence Absence Kappa Precision Recall

L. rubella 1045 1248 442 539 0.46 svm 0.88 0.95 0.92
R. marina 738 1555 304 677 0.32 xgboost 0.85 0.90 0.89
L. fallax 669 1624 288 693 0.29 xgboost 0.85 0.94 0.86
L. nasuta 612 1681 265 716 0.27 svm 0.83 0.91 0.84
P. ornatum 501 1792 214 767 0.22 svm 0.92 0.94 0.94
L. caerulea 451 1842 192 789 0.20 svm 0.87 0.93 0.85
L. rothii 437 1856 186 795 0.19 svm 0.85 0.93 0.83
C. novaehollandiae 358 1935 144 837 0.16 xgboost 0.90 0.93 0.89
C. deserticola 231 2062 116 865 0.10 svm 0.96 0.95 0.98
C. alboguttata 149 2144 66 915 0.06 svm 0.97 0.98 0.95
L. convexiusculus 132 2161 64 917 0.06 svm 0.96 1.00 0.92
U. mimula 75 2218 27 954 0.03 svm 0.90 0.96 0.85

Table 5
Best model performance measures on the test data set and number of minutes
each species is present or absent in the test data (n = 1173).

Species No. minutes Model performance on test set

Presence Absence Kappa Precision Recall

L. rubella 121 1052 0.65 0.60 0.82
R. marina 279 894 0.84 0.82 0.96
L. fallax 345 828 0.72 0.85 0.76
L. nasuta 138 1035 0.57 0.62 0.63
P. ornatum 2 1171 0 0 0
L. caerulea 3 1170 0 0 0
L. rothii 119 1054 0.46 0.50 0.53
C. novaehollandiae 19 1154 0.29 0.24 0.42
C. deserticola 29 1144 0.15 0.21 0.14
C. alboguttata 12 1161 0.43 0.45 0.42
L. convexiusculus 76 1097 0.12 0.55 0.08
U. mimula 3 1170 0 0 0

Table 6
Categories of noise features in a sample of 119 instances of misclassifications
from the test data. Observations were made of noise features in the frequency
band of the target frog call that may have contributed to the misclassification.

Category False positives (species
incorrectly predicted)

False negatives (species
presence missed)

Other frog species 29 32
Birds or insects 6 0
Wind or Rain 4 2
Vehicles or Aircraft 16 0
Audio distortion 13 0
Unidentified noise 3 3
Short calling bout of target

species
na 2

Low quality/distant call of
target species

na 9

Totals 71 48
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of noise in that bandwidth. Two of the missed detections contained
short calling bouts (i.e. short sequence of only a few individual voca-
lisations).

3.3. Times to conduct different aspects of the analysis

It took four observers on average 2.2 min to manually analyse and
label each minute segment and record species presence in a spreadsheet
to compile the training and test data, which comprised data on a total of
4447 one-minute segments of audio. Some recordings were more time
consuming than others to label, because more species called simulta-
neously and had to be replayed more than once. Other recording seg-
ments with few or no species calling could be analysed visually on the
spectrogram, and in these cases analysis of the minute segment took
only a few seconds.
Calculation of the acoustic indices was the most time consuming

and computer-intensive component of this method. With a 16-core
computer processor, each recording (of up to 13 h) took 13–17 min to
process, and with batch parallel processing it took approximately
2 weeks to process the entire set of 3965 recordings. This process in-
cluded generation of false-colour spectrogram images in addition to
calculation of acoustic indices.
The number of tuning variables for each classification model varied,

and therefore influenced the time required for model training.
Parameter tuning and fitting of the final classification models on the
training data took an average of 127 min for each species using random
forest (17 tuning values), 55 min using extreme gradient boosting (40
tuning values), and 16 min using support vector machine (12 tuning
values) using the caret package on a personal computer with 16 GB
RAM and 2.6 GHz processor.

4. Discussion

We found that acoustic indices can be used as predictive features for
automated detection of frog chorus activity to species level in en-
vironmental recordings. High levels of predictive performance were
obtained for all species on the held-out validation data set, demon-
strating that acoustic indices were effective at capturing the acoustic
characteristics of frog calls in minute segments of audio. Good perfor-
mance was also achieved on the additional test data set for the most
prevalent species in the training data (R. marina, L. fallax and L. rubella,
Table 5). Therefore, this method is suited to detection of commonly
calling species for which sufficient training examples can be obtained.
The method shown here demonstrates reliable automated detection of
frog species using acoustic indices can be achieved at a one-minute
scale. At this resolution, data on the vocal activity of multiple frog
species can be obtained to monitor species presence and absence, and to
investigate temporal patterns of within-night chorus behaviour as well
as to describe seasonal breeding patterns.
This study has demonstrated an approach to automated species

identification in acoustic monitoring studies where individual call re-
cognisers may not be suitable. For the most prevalent species, we
achieved precision and recall rates greater than 80%. This is compar-
able to reported results of tests of individual call recognition on long
field recordings, reflecting the real scenarios encountered in acoustic
monitoring of wildlife in natural habitats. Typically successful auto-
mated recognition of bird and frog calls is greater than 80% precision or
recall (e.g. Bardeli et al., 2010; Corrada Bravo et al., 2017; Potamitis
et al., 2014). Other studies have demonstrated that, while high detec-
tion accuracy can be achieved when the target calls are high in quality,
accuracy declines with decreasing signal-to-noise ratio (Bardeli et al.s,
2010; Digby et al.s, 2013). The lack of scalability of individual call
recognisers to field recordings with high noise levels and species rich-
ness means automated detection methods for species which call in
choruses remains a challenge. Our results support the efficacy of
acoustic indices as predictive features for identifying chorusing frog

species in sound recordings where multiple species and many in-
dividuals overlap in their calls.
The majority of classification errors made by our models on the test

data were for minutes in which other noise (i.e., other frog species,
vehicles or distortion) was present, or the target species calls were of
low quality (Table 6). The training data were systematically chosen to
challenge the classifiers and provide a range of difficult cases that
would occur in most long-duration environmental recordings. Audio
segments were selected for labelling that included varying levels of frog
chorus activity and call overlap with many individual frogs from mul-
tiple species calling. These cases will present a challenge to any de-
tection method - it is difficult even for an experienced human observer
to distinguish species in the background in high intensity chorus ac-
tivity of multiple species. Including additional labelled minutes with
non-target noise in the training data could conceivably improve the
predictive performance of the models. Likewise, including more ex-
amples of low-quality calls (i.e. the calls of target species are low in
amplitude because individuals are distant from the microphone) may
decrease false-negative detections.
When applied to a larger set of recordings, higher variability in the

acoustic content is likely to be encountered than is present in the
training data, and lower classification performance could be expected.
This is supported by our results where classifier performance was
higher on the validation set than on the test set. This suggests the la-
belled training data must capture as much of the variability in the
acoustic environment as possible. This requires some familiarity with
the study habitats and knowledge of the range of vocal species and
environmental noises which occur. The classification model could be
iteratively improved in this way, by sampling results to inspect mis-
classified cases, and including additional training data to better capture
the variety of sounds present in the recordings.
Like all machine learning applications, the question arises as to

what extent our learned models will be accurate on acoustic recordings
obtained from other environments. The acoustic composition of the
environment can vary greatly across time and space. Different habitats
with different sources of biotic sounds (i.e., species), and abiotic sounds
(e.g., vegetation structure, land features, and urbanisation) will vary in
their acoustic composition. These factors may affect the value of
acoustic indices and therefore training data from recordings in parti-
cular environments may not be suitable for use in detecting the same
species at other locations. Other factors that could possibly affect the
calculation of acoustic indices are the type of recording unit, recording
settings and methods of audio pre-processing. For example, recording
quality and the method of noise removal employed will affect the ab-
solute signal values used in the calculation of many acoustic indices.
Furthermore, Towsey et al. (2015) noted that sound files in compressed
format, such as MP3, produced artefacts in spectrograms which affected
the values of some acoustic indices. However, the degree to which these
factors influence the values of acoustic indices has not been tested. To
accurately detect target species in environmental recordings using
acoustic indices, training data should be sampled from recordings in the
same or similar habitats and using standardised methods of recording
and pre-processing.
The few studies that have investigated the use of acoustic indices as

predictive features for automated detection of animal calls reported
success in detecting the calls of target species, but these have so far
been limited to rare or threatened bird species. Towsey et al. (2018b)
achieved performance of 90% precision and 67% recall in identifying
the calls of Lewin’s Rail (Lewinia pectoralis brachipus) using a set of 5
acoustic indices. Gan et al. (2018) reported more modest success in
detecting calls of the little spotted kiwi (Apteryx owenii) using a suite of
acoustic indices (precision 85% and recall 53.3%), but their experi-
mental study may have lacked sufficient training data. Dema et al.
(2018) achieved classification precision of 97.6% and recall 96.1% on
training data in detecting the calls of the endangered white-bellied
heron (Ardea insignis) in Bhutan, and also tested predictive performance
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on a larger data set, where precision and recall were reduced to 65.5%
and 80.7% respectively. While these detection methods were all tested
on recordings from the natural environments of the target bird species,
these species have relatively low calling rates and few competing noise
sources in the bandwidth of their calls. The results presented here are
the first demonstrating the use of acoustic indices to accurately detect
frog calls in environmental recordings, and to target the calls of mul-
tiple, commonly calling species with calls overlapping in time and
frequency. We achieved best prediction results on the target frog spe-
cies which were vocally dominant in our study system, that is those
species calling in loud choruses of many individual persisting over
many hours. Researchers interested in applying this method to other
target species would need to determine the merits of such an approach
over other call recognition methods. For some study objectives it may
be more suitable to develop call recognisers, for example for detecting
rare species or species that call only occasionally.
The main challenges in developing automated animal call recogni-

tion software are noise reduction, call detection, call segmentation, and
feature extraction. Using acoustic indices as features sidesteps some of
the technical challenges of building call recognisers and treats all seg-
ments of the recording as regions of interest. In our approach, the
acoustic indices were calculated on the audio segments (i.e., minutes
and frequency bins) rather than relying on accurate detection and
segmentation of individual animal calls. As we have shown, this ap-
proach provides a possible solution to detecting species calling in
choruses in which many similar calls are overlapping and difficult to
distinguish. As this method detects the presence of vocalisations rather
than the vocalisations themselves, there is no requirement other than
the ability to identify species’ calls in a recording in order to create a
labelled data set. This contrasts with traditional call recognisers which
require detailed analysis of species-specific call features, as well as
expertise in sound analysis.
The software used to calculate the acoustic indices for this study is

open-source (Towsey et al., 2018a), performs audio pre-processing and
calculates a suite of acoustic indices using the methods of Towsey
(2017). Other open-source software such as R packages ‘seewave’
(Sueur et al., 2008) and ‘soundecology’ (Villanueva-Rivera and
Pijanowski, 2018) are available which take raw sound files as input and
compute various acoustic indices. Although processing and analysing
very large sets of sound recordings is computationally intensive, the
calculation of acoustic indices using available sound analysis software
is straightforward in comparison to developing call recognition algo-
rithms. In addition, once calculated, the acoustic indices can be re-
tained as permanent-feature data sets and used for multiple analyses.
The method demonstrated here is a straightforward implementation

of a frog call species classifier using open-source software to calculate
acoustic indices on minute segments environmental sound recordings,
and fit a classification model. The set of predictor acoustic indices was
not optimised, that is, 11 indices output by the Ecosounds Audio
Analysis program across a wide frequency range were used as classifi-
cation features. In this sense the classifiers were treated as black-box
models to find the optimum criteria from a large set of candidate
variables on which to classify recordings. Further work to examine the
particular influence that animal call characteristics, and environmental
sounds in general, have on the values of acoustic indices is required to
find indices most useful for distinguishing target species.
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