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Abstract 30 

Coral reefs exhibit consistent patterns in biodiversity across multiple spatial scales, from 31 

local to global clines in species richness, abundance and community structure. Knowledge of 32 

fundamental processes driving these patterns is largely derived from studies of shallow, 33 

emergent and nearshore reefs. Although research efforts are expanding to deeper mesophotic 34 

coral reef ecology, distinct and isolated reef morphologies like submerged pinnacles or 35 

seamounts have received scant attention. Despite being potentially important for connectivity 36 

and as refugia, the extent to which established patterns and processes in coral reef ecology 37 

apply to these systems is unknown. Here we examine the fish and benthic communities 38 

associated with coral reefs found on submerged pinnacles in Kimbe Bay, Papua New Guinea. 39 

Community structure and diversity metrics are compared with emergent reefs at the same 40 

depth in both near and offshore settings. We then explicitly test whether benthic complexity 41 

variables known to influence reef fish communities exhibit similar patterns at each reef type. 42 

Pinnacles were characterised by 3.70 times the mean fish abundance and 1.98 times the 43 

species richness recorded at the same depths on emergent reefs. Fish community structure 44 

showed distinct separation across reef morphologies, with pinnacles most similar to offshore 45 

reefs. Benthic habitat complexity did not vary across reef types while fish assemblages were 46 

weakly related to benthic habitat variables, with reef morphology the most consistent 47 

predictor of fish community metrics. The pinnacles in our study support high coral reef fish 48 

biodiversity despite their small habitat area and relative isolation by depth and offshore 49 

setting. Our results suggest that habitat-specific environmental conditions are generated by 50 

the distinct geomorphology of pinnacles.  As coastal reefs become more increasingly 51 

disturbed, understanding ecological patterns on deep patch reef habitats like pinnacles will be 52 

useful to provide a more holistic understanding of coral reef seascapes and their resilience. 53 

 54 
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Introduction 55 

Coral reefs encompass a range of diverse and complex habitat structures, including fringing 56 

reefs, barrier reefs, atolls and isolated patch reefs (Stoddart 1969; Hopley 2011). These 57 

recognisable reef types form under different environmental conditions of depth, distance 58 

offshore and exposure, and ecological patterns and processes vary in predictable ways along 59 

these environmental gradients (Hopley et al. 2007; Malcolm et al. 2010; Williams et al. 2015; 60 

Samoilys et al. 2019).  The stability of different reef structures also varies, and predicting 61 

how these patterns and processes may respond to environmental change is now central to 62 

much coral reef science (Harvey et al. 2018; Williams et al. 2019). However, most research 63 

has been restricted to near-sea-surface, nearshore continuous reef systems, where 64 

accessibility has facilitated extensive global studies (Spalding and Grenfell 1997; Bellwood 65 

and Hughes 2001; Connolly et al. 2003; Hinderstein et al. 2010). There are significant areas 66 

of submerged habitat available for coral reef formation which have historically been 67 

overlooked, unexplored and remain understudied (Venn et al. 2009; Harris et al. 2013; Moura 68 

et al. 2016; Moore et al. 2017). Interest in these kinds of habitats has accelerated because of 69 

the potential for deep reefs to function as a refuge for species being adversely affected by reef 70 

degradation in shallow coastal waters (Bridge et al. 2013; Laverick et al. 2016; Macdonald et 71 

al. 2018). 72 

 73 

Both the deep-sea and continental shelves possess a variety of distinct bathymetric features 74 

that can support rich and diverse coral reef ecosystems where the summits reach the euphotic 75 

zone (~0-150m) (Bridge et al. 2011b; Du Preez et al. 2016; Linklater et al. 2019). Global 76 

bathymetric mapping reveals large areas (1000’s of km2) of deep habitat available for coral 77 

reef formation (Vora and Almeida 1990; Bridge et al. 2012; Harris et al. 2013).  Submerged 78 

reefs can be defined as “isolated elevations of the seafloor, over which the depth of water is 79 
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relatively shallow but sufficient for navigation (IHO 2008) and have their shallowest points 80 

below 10-20m (Thomas et al. 2015). They can support extensive, diverse coral and fish 81 

communities, which span both altiphotic (<30m) and mesophotic zones (30-150m) (Bridge et 82 

al. 2011a; Roberts et al. 2015; Moore et al. 2017; Cooper et al. 2019). Many deep reefs are 83 

likely to be more isolated from physical disturbances (e.g. storms, wave action), fishing 84 

pressure and thermally induced bleaching events than emergent near-sea-surface counterparts 85 

(Slattery et al. 2011; Lindfield et al. 2016; Baird et al. 2018; Crosbie et al. 2019). 86 

 87 

 Although most of the studies investigating the ecology and distribution of submerged coral 88 

reef ecosystems have occurred on Australia’s Great Barrier Reef, submerged reefs constitute 89 

extensive areas of coral reef habitat across most low-latitude continental shelves (Locker et 90 

al. 2010; Abbey and Webster 2011; Pinheiro et al. 2015; Heyward et al. 2019). Pinnacle coral 91 

reefs are perhaps the most distinct submerged form and we define these as abrupt, conical 92 

structures, either isolated or at the summit of a larger bathymetric feature such as ridges or 93 

banks that reach the euphotic zone, but do not breach the sea surface. We make a distinction 94 

from seamounts, where pinnacles are more closely associated with continental shelves and 95 

slopes as opposed to oceanic sea-floor settings. Pinnacles tend to be comparatively smaller 96 

structures and unlike seamounts, are not usually formed directly by volcanic activity but 97 

instead are often a part of larger bathymetric features. In ecological terms however, pinnacles 98 

and seamounts both provide a hard substratum for coral recruitment, forming isolated patch 99 

reefs in otherwise open pelagic systems (Veron and Done 1979; Rogers 2004; Koslow et al. 100 

2016).   101 

 102 

The geomorphological structure of coral reefs on small seamounts and pinnacles diverges 103 

from classical zonation models derived from emergent reefs (Roberts et al. 2015). Summits 104 
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are usually small in area with steep slopes and walls descending to considerable depths 105 

(>500m). They are comprised of only exposed crests surrounded by open waters, with no 106 

sheltered reef-flat or lagoon. Currents are often complex and strong as water passes around 107 

abrupt topographies (Genin et al. 1986; Boehlert 1988; Lavelle and Mohn 2010). For 108 

example, on seamounts interactions between topography and hydrodynamics are suggested to 109 

enhance productivity within these habitats (Genin and Dower 2007; Richert et al. 2017). 110 

Other studies have shown that upwellings in particular are an important component of bio-111 

physical coupling at seamounts, supporting high diversity and abundance of fishes, often 112 

from higher trophic levels (White et al. 2007;  Letessier et al. 2019). Given the similarities in 113 

structure between seamounts and pinnacles, pinnacles are also likely influenced by 114 

upwellings and strong hydrodynamics. The extent of these effetcs and the potnetial for 115 

enahnced biophysical-coupling on pinnacles depends on numerous factors including pinancle 116 

size, depth, regional circulation patterns,and exposure to large-scale oceanographic processes. 117 

 118 

Despite their widespread occurrence in many coral reef regions, studies specifically focussed 119 

on coral reef pinnacles are scarce. In their absence, and given the similarities in physical 120 

structure, paradigms from seamount ecology provide useful parallels to inform our ecological 121 

understanding of submerged pinnacles. Both shallow seamounts and pinnacles frequently 122 

host large aggregations of pelagic fish alongside demersal and reef-associated species (Genin 123 

2004; Morato and Clark 2007; Jorgensen et al. 2016) generating hotspots of diversity in open 124 

ocean settings (Morato et al. 2010). Schooling mesopredators, highly-mobile apex predators 125 

and migrating megafauna also use seamounts as navigational way-points (Garrigue et al. 126 

2015; Gargan et al. 2017), and they are significant habitats for feeding (Holland and Grubbs 127 

2007), breeding (Litvinov 2007) and refuge (Letessier et al. 2019). For corals, clear, 128 

oligotrophic oceanic waters surrounding offshore reefs can enable complex coral habitat to 129 
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extend to mesophotic depths (Baker et al. 2016; Roberts et al. 2019) concurrently expanding 130 

the range of suitable habitat for fishes (Thresher and Colin 1986; Kane and Tissot 2017). 131 

 132 

Explanations of observed spatial variation in patterns of abundance, diversity and richness of 133 

reef fish communities often involve habitat variables, including substrate diversity, rugosity, 134 

vertical relief and live coral cover (Roberts and Ormond 1987; Hixon and Beets 1993; 135 

Munday 2000; Almany 2004; Gratwicke and Speight 2005). Although the nature of these 136 

fish-habitat relationships vary spatially, temporally and differ between trophic groups, live 137 

coral and habitat complexity remain fundamental drivers of reef fish abundance, richness and 138 

diversity (Caley and John 1996; Jones et al. 2004; Pratchett et al. 2008; Coker et al. 2014; 139 

Kerry and Bellwood 2015). However, depth associated physical gradients can lead to altered 140 

patterns in benthic community composition and habitat complexity (e.g., light, temperature) 141 

(Brokovich et al. 2006; Lesser et al. 2009; Roberts et al. 2015). For example, spatial 142 

heterogeneity is reduced at depth where coral morphologies tend be simpler in comparison to 143 

shallower depths (Kahng et al. 2012). Other benthic taxa, like sponges, macroalgae and 144 

octocorals can be more prominent at greater depths (>30m) (García-Hernández et al. 2018; 145 

Lesser and Slattery 2018) and complex morphologies may provide additional or alternative 146 

habitat for fishes in these deep habitats (Knudby et al. 2013; Kahng et al. 2017; Spalding et 147 

al. 2019). These differences in benthic community composition have been shown to strongly 148 

influence patterns of fish abundance and functional composition on submerged reefs 149 

(Brokovich et al. 2008; Pereira-Filho et al. 2011; Kane and Tissot 2017; Cooper et al. 2019).  150 

 151 

The high diversity and productivity of pinnacles and shallow seamounts may enhance their 152 

potential to act as refuges from disturbance for some reef species (Bak et al. 2005; Bongaerts 153 

et al. 2017). In addition, the physical structures of pinnacles may generate further habitat-154 
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specific environmental conditions that confer resilience, however this is speculative because 155 

the ecological connections between deep and shallow reefs are largely unstudied (Slattery et 156 

al. 2011; Bongaerts and Smith 2019). Coral reefs on offshore pinnacles therefore represent 157 

physically and potentially ecologically distinct tropical habitats that are relatively accessible 158 

for scientific study. Although research is now expanding significantly into submerged and 159 

mesophotic coral ecosystems, few studies aim to resolve fine-scale ecological patterns on 160 

distinct bathymetric features. Characterising ecological communities on unexplored, deeper 161 

forms of coral reef will be critical to understanding their contribution to the maintenance of 162 

biodiversity within the wider seascape. Most coral reef systems are composed of mosaics of 163 

varied reef morphologies, but baseline knowledge is still required to understand ecological 164 

similarities and connectivity between varied forms of emergent and submerged reefs, as well 165 

as to inform effective spatial conservation planning. 166 

 167 

Here we provide the first detailed assessment of fish and benthic communities on a series of 168 

submerged coral pinnacles in Kimbe Bay, Papua New Guinea, an area renowned in the 169 

diving industry for pinnacle diving.  To determine whether pinnacles are hotspots for 170 

biodiversity we compare fish and benthic communities on pinnacles to emergent reefs in both 171 

nearshore and offshore locations. We then examine whether typical drivers of fish diversity, 172 

abundance, species richness and community structure apply to pinnacles. Kimbe Bay lies in 173 

the Coral Triangle, one of the world’s most diverse coral reef regions, but the distribution and 174 

abundance of species inhabiting coral reef pinnacles in this area are currently unquantified. 175 

Specifically, the aims of this study were to: 1. Describe benthic communities and quantify 176 

habitat complexity based on total hard coral cover, benthic cover type richness and benthic 177 

diversity across reef morphologies. We predicted that pinnacles and offshore reefs would 178 

have highest percentage cover of hard coral at the depths surveyed (20-30m), due to clearer 179 
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offshore waters and lower terrestrial influence. These factors may also enhance benthic 180 

richness and diversity at offshore sites. 2. Characterise fish communities found on offshore 181 

submerged pinnacle reefs and compare them to emergent reef morphologies. We expected 182 

that abundance would be high given the aggregating properties of physical structures for 183 

fishes, but that diversity and species richness may be lower given the relative isolation of 184 

pinnacles as small patch habitats. 3. Examine how fish-benthic relationships differ between 185 

reef morphologies, specifically the effect of total hard coral cover and benthic diversity on 186 

fish diversity, abundance, richness and species evenness. We hypothesised that established 187 

relationships between benthic habitats would be evident at all reef habitats, especially where 188 

coral cover is highest at offshore locations. 189 

 190 

Methods 191 

Study site and survey design 192 

This study took place during October 2018 in Kimbe Bay (5°30′S, 150°05′E, Fig.1), Papua 193 

New Guinea, an area with a diverse bathymetry including emergent reefs and submerged 194 

pinnacles. The study incorporated 12 reef sites: 4 nearshore emergent reefs, 4 offshore 195 

emergent reefs and 4 offshore submerged pinnacle reefs. Nearshore reefs were defined as 196 

those <5km from nearest main landmass and offshore reefs were all between 9-25km from 197 

nearest main landmass. The distinction between emergent and submerged morphology was 198 

made based on crest depth; crests above 10m were considered emergent and those below 10m 199 

submerged since reefs deeper than 10 m are unlikely to ever experience breaking waves 200 

(Harris et al. 2013; Thomas et al. 2015). The pinnacles in our study rise to within 15-30m of 201 

the sea surface from a deep (c.300m, GEBCO 2019) submerged ring central to the bay. The 202 

centre of this ring descends to around 600m in the middle of the bay but on the seaward side 203 

drops to >1000m on the shelf of the South Bismarck Plate (Fig.1a and b). Offshore emergent 204 



   
 

9 

reefs in Kimbe Bay are also extensions of this submerged central system but reach the upper 205 

0-10m. Many take the form of shallow flat-topped guyots, which also have steep sides and 206 

ridges descending to considerable depths. Nearshore emergent sites are gently sloping with 207 

hard coral cover down to around 70m (author pers. obs; Longenecker et al. 2019). All 208 

surveys were carried out within a 20-30m depth band. For emergent reefs, sites with 209 

substantial deep horizontal ridges or low gradient slopes were selected for the study to 210 

account for reef slope aspect. Surveys on walls or steep slopes were avoided. Although we 211 

control for slope aspect as much as feasibly possible, ecological assemblages vary 212 

considerably between reef zones. How these changes manifest between zones on different 213 

reef morphologies at different depths is beyond the scope of this current study but is under 214 

investigation by this group. 215 

 216 

Data collection 217 

Fish and benthic video surveys 218 

Fish and benthic surveys were conducted along 30m x 5m high-definition (HD) video 219 

transects within a depth band of 20-30m. Five transects at least 5m apart were conducted at 220 

each site which was primarily dictated by the small size of the pinnacles. A diver-operated 221 

stereo-video bar (SeaGIS)  housing two GoPro Hero-4 cameras was held horizontally to the 222 

benthos, facing forwards as the diver swam the transect maintaining a depth of 0.5m above 223 

the reef. A second diver followed with a tape reel and indicated to the first diver when 30m 224 

was reached. Both divers returned along the tape conducting a video point-intercept transect 225 

using another GoPro Hero-4 camera held at 0.5m above the reef pointing directly downward . 226 

 227 

Benthic video PIT analysis 228 
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Transect tapes were marked with two random points per meter. The HD-video footage was 229 

replayed at a low frame rate and the benthos immediately underneath each point (60 230 

points/30m) identified and placed into one of 47 categories groups (Table S11). These 47 231 

groups were used to calculate three metrics of benthic complexity; benthic diversity  (H’), 232 

benthic richness and total hard coral cover, all of which have been previously shown to be 233 

useful characterisations of community composition and correlate with the community 234 

structure of coral reef fishes (Bell and Galzin 1984; Messmer et al. 2011; Komyakova et al. 235 

2013).  236 

 237 

Fourteen broader categories of benthic cover type were derived from the 47 original fine 238 

scale categories. These measures have been previously shown to correlate with aspects of fish 239 

diversity and abundance (Table S11). These 14 groups were: massive and sub-massive coral, 240 

encrusting coral, laminar coral, complex coral, algae, coraline crustose algae (CCA), soft 241 

corals and octocorals, encrusting porifera, complex porifera, other hexacorals, coral rubble, 242 

sand and silt, rock and reef matrix. We chose these groups based on similar submerged reef 243 

studies on the GBR  (Macdonald et al. 2016; Cooper et al. 2019), but as reefs in Kimbe Bay 244 

possess a conspicuous abundance of morphologically distinct sponges and other forms of 245 

hexacorallia and octocorallia (Horowitz et al. 2020) we also included these groups.  246 

 247 

Fish video transect analysis 248 

Fish transect videos were analysed in the stereo-video software Eventmeasure (SeaGIS) 249 

which uses camera calibration to provide a known field-of-view (2.5m either side of the 250 

transect). Every individual fish that entered the lower two thirds of the screen was counted 251 

and identified to species based on Allen et al. (2003). Only individuals that were readily 252 

observable within these parameters were recorded i.e. not obscured by the benthos or within 253 
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crevices.  This means the surveys represent the relative abundance of non-cryptic species 254 

(Brock 1982 ; Caldwell et al. 2016). 255 

 256 

Statistical analysis 257 

All analysis was performed in R (R Core Development Team 2020) and plots produced using 258 

the packages ggplot2 (Wickham 2016) and ggvegan (Simpson 2019). 259 

 260 

Fish and benthic assemblages 261 

To test for differences in fish and benthic assemblages between reef morphologies, a one-way 262 

permutation-based multivariate ANOVA (PERMANOVA) was performed with Hellinger 263 

transformed species abundance data (Anderson 2001:Lengendre and Galagher 2001) using 264 

the function “adonis” in vegan. Post-hoc tests were then conducted to identify significant 265 

between-group differences identified by the PERMANOVA using “emmeans” (Lenth 2019). 266 

For each analysis 999 permutations were performed to calculate p-values. Although generally 267 

considered robust to heterogeneity in data sets, PERMANOVA tests between-group variation 268 

where a significant result can either suggest differences in location of centroids between 269 

groups or, that average within-group dispersion is not equal (Anderson and Walsh 2013). 270 

PERMDISP is a resemblance-based permutation test focused strictly on the null hypothesis 271 

of homogeneity of multivariate dispersions (Anderson 2006) and was used to test the 272 

hypothesis of equal within group dispersion. This test can additionally provide insights into 273 

within group variation. The function “betadisp” in vegan was used to perform the 274 

PERMDISP test. The SIMPER routine (Clarke and Warwick 2001) was then used to identify 275 

species and benthic variables contributing the most dissimilarity among reef types using the 276 

“simper” function in vegan. 277 

 278 
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Fish biodiversity and benthic complexity 279 

Differences in mean fish species richness, total fish abundance (individuals/150m2), fish 280 

diversity (Simpson’s Index), evenness (Pielou’s J’), benthic richness and benthic diversity 281 

(H’) were identified using Generalised Linear Mixed Effects Models (GLMMs) with “reef 282 

type’” as the categorical main effect and “site” nested within reef type as a random factor 283 

using the package “lme4”. Standard exploratory techniques were used to assess appropriate 284 

error structures to apply to each GLMM (See Tables S1,S2 and S6). Differences between reef 285 

types of mean percentage cover of the 14 benthic cover categories were also tested using 286 

GLMMs fitted in the same way.  For all GLMMs, model fits were evaluated using residual 287 

plots and performed using the packages “lme4” and “MASS” (Venables and Ripley 2002; 288 

Bates et al. 2015). Differences between means at each reef habitat type were tested using 289 

likelihood ratio tests (negative binomial models), conditional F-tests (gaussian models) and 290 

adjusted Tukey’s HSD post-hoc pair-wise tests using the packages “car” (Fox and Weisberg 291 

2019), “pbkrtest” (Halekoh, 2014) and “emmeans” (Lenth 2019). Contrast estimates and 95% 292 

confidence intervals are presented in Tables S1,S2 and S6. 293 

 294 

Fish-benthic relationships  295 

To explicitly examine the nature and strength of relationships between fish and two metrics 296 

of benthic habitat complexity (benthic diversity and total hard coral) we used GLMMs . Only 297 

these two habitat complexity metrics were examined as benthic richness was found to be 298 

highly correlated with benthic diversity and several other benthic cover categories. The effect 299 

of total percentage hard coral and benthic diversity on fish richness, diversity, evenness and 300 

abundance were tested in 8 separate models with either Negative Binomial (abundance and 301 

richness) or Gaussian (diversity and evenness) error distribution. For all models the main 302 

effect was either total hard coral percentage or benthic diversity, with “reef type” as a fixed 303 
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effect. An interaction term between the main effect and “reef type” was included in each 304 

model to test whether the nature of any relationship varied between reef morphologies. “Site” 305 

was included as a random factor nested within “reef type”.  Likelihood-ratio tests with a null 306 

model were used to determine model fit and overall goodness-of-fit of all models was 307 

assessed via standard techniques of Q-Q plots (normality), residuals plotted against predicted 308 

values against all explanatory variables (homogeneity of variance) and calculations of 309 

dispersion.  Pseudo-R-Square estimates (Nakagawa and Schielzeth 2013; Nakagawa et al. 310 

2017) were obtained for all mixed-effects models using r.squaredGLMM from the “MuMIn” 311 

package (Bartoń 2019). This produces a marginal R2GLMM(m) (an approximation variance 312 

explained by fixed effects) and a conditional R2 GLMM(c) (an approximation of variance 313 

explained by the entire model including fixed and random effects). Estimates and 95% 314 

confidence intervals for each models’ effects were calculated where the evidence does not 315 

support a significant effect at the 0.05 level if the confidence interval contains zero. Tests of 316 

fixed factor main effects were conducted using likelihood-ratio tests for GLMMs and 317 

conditional F-tests with Kenward-Roger correction for GLMMs with gaussian error family. 318 

Correlation analysis and simple slopes tests using “emmeans” were performed to further 319 

explore these relationships. 320 

 321 

Finally, distance based multiple linear modeling was used to examine the multivariate 322 

relationship between differences in fish communities and benthic habitat to find the 323 

combination of benthic variables that best explained the greatest variation in fish community 324 

structure. Benthic variables included all 14 benthic categories, benthic diversity and benthic 325 

richness. Multicollinearity was explored between all benthic variables using Spearman’s rank 326 

correlation. Benthic richness was highly corelated with benthic diversity (Spearman’s rho, ρ 327 
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= 0.78, p < 0.001) and complex hexacorals (ρ = 0.48, p = 0.001) so was removed prior to 328 

model fitting. 329 

 330 

The function “ordiR2step” in vegan was then used to conduct stepwise forward selection 331 

based on the Aikaike Information Criterion (Akaike et al. 1973) of variables from all 14 332 

benthic categories as well as benthic diversity. The stepwise routine was run using 9999 333 

permutations and adjusted R2 as the selection criterion (Blanchet, Legendre and Borcard 334 

2008).  Each model proposed by “ordiR2step” was tested for significance using vegan’s 335 

permutational ANOVA function (Monte Carlo permutation test) and only constraints with p 336 

< 0.05 after adjustment for multiple testing selected for the final model. The most suitable 337 

model to explain the relationship between benthic cover types and variation in fish 338 

assemblages between reef habitat types was visualized by constrained ordination using 339 

distance-based redundancy analysis (db-RDA) (Anderson et al. 2008). db-RDA can be used 340 

when the response data are available as a dissimilarity matrix and provides an opportunity to 341 

use ecological distances in constrained ordination analysis (Paliy and Shankar 2016). Benthic 342 

variables from the final model were overlaid as a vector, together with fish species that were 343 

most correlated with assemblage variation.  344 

 345 

Results  346 

Benthic communities show similar complexity between reef types 347 

We found no significant difference in any of the benthic complexity metrics between reef 348 

morphologies; benthic diversity (F-test, F = 2.25, p = 0.33), benthic richness (F-test, F  = 349 

4.01, p = 0.11) or total hard coral (F-test, F = 2.01, p = 0.37) (Figure 2, Table S2). Pinnacle 350 

reefs however, showed the greatest range in both benthic diversity (1.94 – 2.52) and benthic 351 

richness (12.20 - 17.41) compared to offshore (benthic diversity = 2.12 - 2.23, benthic 352 
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richness = 12.40 - 13.80) and nearshore emergent reefs (benthic diversity = 2.03-2.31, 353 

benthic richness = 12.60 - 14.00) suggesting high variability between individual pinnacle 354 

sites (Table S5). 355 

 356 
Of the 14 benthic cover types, 8 showed significant differences in mean percentage cover 357 

between reef morphologies (Fig.3, Table S6). Pinnacle reefs were characterised by highest 358 

mean percent cover of complex hard corals, massive and sub-massive hard corals, encrusting 359 

hexacorals and octocorals. Offshore reefs had the lowest mean percent cover of complex hard 360 

corals, but high proportions of laminar hard corals and encrusting porifera. Nearshore reefs 361 

were notably high in algae. Benthic communities were similar to each other ranging between 362 

34-40% dissimilarity (Table 1).Highest overall dissimilarity was between pinnacle and 363 

nearshore reefs (40%). Benthic cover types contributing the most to overall dissimilarity were 364 

algae, complex hard coral, encrusting hexacoral, rubble and massive hard coral (Table 1).  365 

Although PERMANOVA indicated significant differences in benthic community 366 

assemblages among reef types (Pseudo-F = 4.74, 999 permutations, p(perm) = 0.001) the 367 

PERMDISP test also yielded a significant result (F = 4.16, p = 0.02). This further suggests 368 

unequal within-group dispersion which was also apparent in exploratory multivariate plots 369 

(Fig.S1). 370 

 371 

Reef fish biodiversity and assemblages differ between reef types 372 

A total of 11,460 individual fishes representing 230 species and 87 genera were recorded 373 

across all transects from the 12 reefs. Pinnacles had the highest total number of species (172) 374 

and also the highest number of unique species (75) (Fig.4). The numerous unique species 375 

included many larger predatory species including Pinjalo lewisi, Caranx melampygus, 376 

Caranx sexfasicatus, Carcharhinus amblyrhynchos and Caracharinus melanopterus that 377 

were not observed on emergent reefs (Table S3). Offshore emergent reefs had the lowest total 378 
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number of species recorded (87) and also only 3 unique species. Of the total 230 species 379 

observed across all reef types, only 47 (20.5%) were shared by all three (Fig.4). 380 

 381 

The pinnacles in our study supported almost twice the mean number of fish species per unit 382 

area (32.45) as near (16.35) and offshore reefs (16.50) (Fig.5; LRT, 2 = 62.10, p < 0.001). 383 

We also found a clear increasing trend in fish abundance from nearshore to offshore reefs, 384 

culminating in 6.57 times observed total abundance on the pinnacles compared to nearshore 385 

reefs (LRT, 2 = 68.74, p < 0.001). High variation in abundance on pinnacles was due to 386 

large schools of Sphraena qeini and Acanthurus thompsoni recorded in several transects at 387 

multiple sites, similarly, large schools of Caesio sp. drove higher abundance on offshore sites 388 

compared to nearshore reefs. Consequently, species evenness showed significant differences 389 

across reef morphologies (F-test, F = 31.52, p < 0.001). Simpson’s diversity was highest on 390 

nearshore reefs (0.80) and lowest on offshore reefs (0.72) but differences were not significant 391 

between the reef morphologies (F-test, F = 5.10, p = 0.07). (Fig.5, Table S1). 392 

  393 

The local structure of fish assemblages was clearly distinct between reef types 394 

(PERMANOVA; pseudo-F = 8.67, 999 permutations, p (perm) = 0.001). Unlike benthic 395 

communities, fish communities showed high dissimilarity between all reef types ranging 396 

between 74.5-87.8% (Table 1). The combination of species contributing most to these 397 

differences consistently included Pseudanthias tuka, Caesio cuning, A. thompsoni. P. 398 

nigromanus and Ctenochaetus tominiensis. The only different species to appear in the top 399 

five overall contributors to community dissimilarity between nearshore and offshore reefs 400 

was C. anarzae (Table 1). Species composition of pinnacles was most similar to offshore 401 

emergent reefs and most distinct from Inshore emergent reefs (Table 1, Fig.S2). Again, 402 

although the result of the PERMANOVA indicated distinct fish assemblages among reef 403 
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types, the result of the PERMDISP test (F = 3.97, p = 0.02, Table S2a) suggests that there is 404 

also unequal within-group dispersion. Notably, nearshore reefs showed more variable 405 

assemblage structure than offshore or pinnacle reefs (Fig.S2a). 406 

 407 
 408 

Fish-habitat relationships – weak associations at all reef types 409 

“Reef type” had a significant effect on fish abundance and richness in models for total hard 410 

coral cover (LRT abundance; p = 0.002, richness; p = 0.002) and benthic diversity 411 

(abundance p =  0.003, richness; p = <0.001), but had no effect on fish diversity or evenness 412 

in any model (Table 2). Neither benthic diversity nor total hard coral cover had a significant 413 

effect on any fish metric across all 8 models, and there was also no significant interactions 414 

between independent variables (Fig. 6, Table 2). Table S9 for estimate coefficients and 415 

confidence intervals. Offshore reef showed moderate positive correlation between benthic 416 

diversity and fish diversity (ρ = 0.30, p =0.20), whereas pinnacle and nearshore reefs showed 417 

weak negative relationships (pinnacles; ρ = -0.07, p =0.76; nearshore (ρ = -0.13, p =0.57). 418 

None of the relationships however, were significant (p<0.05). Other contrasting patterns 419 

included a negative relationship between abundance and hard coral cover on pinnacle reefs (ρ 420 

= -0.42, p = 0.07), whereas nearshore reefs showed a weak positive trend (ρ = 0.32,  p = 0.16) 421 

and there was no correlation between fish abundance and hard coral cover on offshore reefs 422 

(ρ = -0.03, p = 0.89). Benthic diversity and fish diversity showed a moderate negative 423 

association on offshore reefs (ρ = -0.29, p = 0.22), but was moderately positive on pinnacles 424 

(ρ = 0.07 , p = 0.78 and nearshore reefs (ρ = 0.29, p = 0.22). Again, none of these contrasting 425 

relationships were found to be significant. Benthic diversity and hard coral cover had 426 

reasonable explanatory power in respective models for fish richness and abundance with 427 

R2(m) ranging between 52-54%.  Fish diversity and evenness however were poorly explained 428 
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by benthic diversity or hard coral cover in combination with reef type with R2(m) ranging 429 

between 7-13% (SI Table S8 and S9). 430 

 431 

The full distance based linear model containing all 14 benthic habitat variables (Table S11) 432 

together with benthic diversity explained 21.98% of variation in fish communities. After 433 

adjusting for multiple testing, the final model indicated 3 variables were significant in 434 

explaining variability in fish communities (cumulative Adj.R2 = 0.2198; Algae (5.84%), 435 

encrusting octocorals (3.90%) and encrusting porifera (3.25%) (Table S7). When visualized 436 

in the db-RDA plot, the first two axes represented together 74.06% of fitted variation and 437 

15.32% of total variation (Fig.7a). Species most correlated with increasing algal cover 438 

included C. tominiensis, P. nigromanus and C. rollandi. P. tuka showed strongest correlation 439 

with octocorals, whereas Naso vlamingii and  A. thompsoni were more associated with higher 440 

cover of encrusting Porifera more prevalent on offshore and pinnacle reefs (Fig.7b). 441 

 442 

Discussion 443 

Benthic assemblages – similar complexity but varied composition 444 

Our study presents the first baseline assessment of fish and benthic communities on 445 

submerged pinnacles in the Coral Triangle. The benthic habitat structure on pinnacles did not 446 

differ markedly from emergent reefs, although there were differences in coral growth forms 447 

and proportional cover. Although we accounted for the effect of reef slope aspect through site 448 

selection across morphologies, the flat tops of pinnacle summits in clear, offshore locations 449 

experience greater irradiance at the same depth than emergent reefs (Lesser et al. 2009). This 450 

perhaps explains higher complex and massive coral morphologies on pinnacles at these 451 

depths, which strongly influence the abundance and distribution of many coral-associated 452 

fishes (Jones et al. 2004; Coker et al. 2014; Pratchett 2014). Cooper et al. (2019) suggest that 453 
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submerged reefs on the Great Barrier Reef support higher numbers of individual fishes than 454 

inshore sites as a result of clearer waters allowing greater light penetration for photosynthetic 455 

processes, resulting in increased feeding opportunities across a range of functional groups. In 456 

our study the four species of obligate-coral feeding butterflyfish observed were  all were 457 

recorded on pinnacles, where complex coral cover was highest, but not on nearshore or 458 

offshore reefs. This follows established patterns for coral obligates and suggests that fine-459 

scale differences in benthic communities are more important for some fish species than 460 

broader, simple measures of overall complexity.  461 

 462 

Although situated in similarly remote positions in the bay, benthic communities on offshore 463 

emergent reefs had the lowest proportion of complex hard coral and were dominated by 464 

laminar coral and encrusting porifera. Corals adapting to lower light at greater depths also 465 

often display flatter, low relief morphologies. Shading by steep walls and emergent shallow 466 

crests reduces light irradiance on the lower reef slopes of emergent reefs (Lesser et al. 2009). 467 

Flatter coral morphologies have been shown to influence fish-habitat associations, 468 

constraining the depth distribution of some species (Brokovich et al. 2008; Lesser et al. 2009; 469 

Smallhorn-West et al. 2017), which may partly explain low fish diversity on offshore reefs 470 

despite their offshore position. 471 

 472 

The high algal cover on nearshore reefs is likely due to close proximity to large-scale 473 

terrestrial agricultural activity, including high levels of deforestation and associated high 474 

inputs of allochthonous run-off (Munday 2004; Green et al. 2009). High algal cover tends to 475 

be a characteristic of degraded coastal reefs (Hughes 1994; Graham et al. 2006; Roth et al. 476 

2018) and altered fish communities (Jones et al. 2004; Chong-Seng et al. 2012; Ainsworth 477 



   
 

20 

and Mumby 2015). This may be driving lower fish diversity and abundance at nearshore sites 478 

than would naturally be found without chronic land-based disturbances.   479 

 480 

Fish assemblages - unique fish communities found on pinnacles 481 

We found that submerged pinnacles support highly diverse, abundant and distinct fish 482 

assemblages, with many unique species not found at the equivalent depth on emergent reefs 483 

in either nearshore or offshore locations. Our findings confirm our expectation that distinct 484 

submerged physical structures possess high abundance of fishes, in this case driven by large 485 

schools of S. qeni, Caranx sp. and A. thompsoni. Associative behaviour between fish and 486 

physical structures is well known (Fréon and Dagorn 2000) and explanations for this 487 

behaviour are thought to include resting, spawning, seeking shelter from predators and access 488 

to cleaning stations and feeding opportunities (Paterson 1998; Barreiros et al. 2002) however 489 

these paradigms are untested for the pinnacles in our study.  490 

 491 

Contrary to our expectations there was no difference in diversity across the three reef 492 

morphologies. Pinnacles however, did have the highest species richness and number of 493 

unique species. Although we did not directly measure habitat area or isolation by distance, 494 

Kimbe Bay’s nearshore reefs are larger reefs, closely situated to each other and also to 495 

coastal nursery habitats (Green et al. 2009). Nearshore reefs may therefore be expected to 496 

receive higher numbers of juveniles and recruits (sources of immigration) and support higher 497 

absolute numbers of individuals and species, over a larger overall area of available habitat 498 

(MacArthur and Wilson 1967). Although these patterns are less established than in terrestrial 499 

ecology, biogeographic factors are known to influence marine habitats and reef fish 500 

communities (Mora et al. 2003; Kulbicki et al. 2013; Bennett et al. 2018; Quimbayo et al. 501 

2018), albeit with contrasting results. Sandin et al. (2008) found classical relationships 502 
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between reef fish abundance and isolation (negative) and habitat area (positive), but others 503 

have shown that increasing isolation from land-based disturbance and associated 504 

geographical environmental gradients leads to increased biomass and abundance, (DeMartini 505 

et al. 2008; Stallings 2009; Williams et al. 2011; Brewer et al. 2012; Kattan et al. 2017).  506 

 507 

Given the relatively small area of Kimbe Bay (15x25km) and the strong dispersal capabilities 508 

of many fishes (Mora et al. 2003; Almany et al. 2017; Bode et al. 2019) it is unlikely that 509 

horizontal dispersal ability limits offshore recruitment and may explain the weak 510 

biogeographic patterns in diversity observed (Hobbs et al. 2012). Nevertheless, the offshore 511 

emergent reefs and pinnacles are similarly isolated from nearshore habitats, yet there is still 512 

an anomaly between abundance and richness on these two morphologies. This may be 513 

attributable to high temporal variability in species abundances as some evidence suggests that 514 

small isolated reefs are subject to greater demographic and environmental stochasticity 515 

(Mellin et al. 2010). The persistence of the patterns observed in this study should therefore be 516 

assessed by replicated surveys to identify longer-term trends in biodiversity metrics. 517 

 518 

The pinnacles in Kimbe Bay appear to provide sufficient habitat to support high fish 519 

diversity, abundance and richness, despite their small size and relative isolation from other 520 

reefs by both depth and distance. As small, island-like habitats in offshore, reefs on 521 

submerged pinnacles represent patchy habitats with high perimeter-to-area ratios. The 522 

interface of the coral reef and pelagic environment represents the edges of both these distinct 523 

marine habitats. The term “edge effect” is used to describe the influence of the mixed 524 

environment created at the boundaries of conjoining habitats on ecological community 525 

structure and processes (Fahrig 2003; Fonseca, 2008). Here, species associated with adjacent 526 

habitats are brought into contact which may lead to novel interactions, the formation of 527 
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dispersal barriers or the creation of spatial subsidies (Fagan et al. 1999). Edge effects, 528 

however, are generally not well known in marine environments as the theoretical base is 529 

rooted in terrestrial ecology (but see Smith et al. 2007; Sambrook et al. 2016). Yet, given 530 

their small size and typical isolated position within seascapes, it seems plausible that coral 531 

reefs on submerged pinnacles experience some of form of edge effect. The combination of 532 

coral reef and pelagic habitat theoretically increases habitat heterogeneity; not necessarily in 533 

terms of structural complexity but by increasing the breadth of resources available to a wider 534 

range of species and individuals. This could explain the presence of both highly reef-535 

associated and mobile pelagic species observed at pinnacle sites, leading to high species 536 

richness, distinct community structures and the highest number of unique species. 537 

 538 

Weak fish-habitat relationships 539 

Species richness, abundance and composition on pinnacles was only weakly related to habitat 540 

structure and is most likely driven by other aspects of the unique morphology of pinnacle 541 

habitats.  Empirical studies examining linear correlations between reef fish and simple habitat 542 

variables have similarly shown contrasting and or surprisingly weak relationships (reviewed 543 

in Jones and Syms 1998), but most have been conducted at shallow depths (<20m). Our 544 

surveys were conducted at 20-30m and it is known that some fish-habitat links can decline 545 

with increasing depth on emergent reefs, usually attributable to declining complex and 546 

branching coral cover and the changing influence of other abiotic factors (Brokovich et al. 547 

2008). This may explain the lack of strong fish-benthic relationships at all reef morphologies.   548 

 549 

Although live coral cover is consistently the most important habitat variable affecting the 550 

distribution of many coral-associated fishes (Coker et al. 2014), the generalisation of simple 551 

linear patterns in fish-habitat relationships is further complicated by the huge variety of ways 552 
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different species utilise coral reefs (Jones and Syms 1998). For example, some species will 553 

alter habitat associations during ontogeny (Bonin et al. 2011; Komyakova et al. 2018) and 554 

positive effects of habitat complexity on fish abundance can depend on numerous predator-555 

prey and conspecific interactions (Beukers and Jones 1998; Almany 2004).  The different 556 

proportions of certain benthic cover types and morphologies may also reflect the distinct fish 557 

communities, where certain morphologies or benthic organisms provide more or less 558 

favourable habitat for certain fishes. A detailed investigation of trophic assemblage 559 

composition and potential differences in condition (e.g. body size, growth rates) would help 560 

to further understand how different types of reef habitat could confer benefits to particular 561 

functional groups and individuals. 562 

 563 

Many fish species have less direct relationships with biogenic micro-habitats in general, 564 

instead, being attracted to physical structure and associated abiotic conditions (Auster 2007). 565 

In our study, the negative relationship between fish abundance and hard coral cover on the 566 

pinnacles (Fig.8g) was largely a result of the high percentage cover of encrusting 567 

corallimorph colonies (Hexacorallia) combined with the presence of large schools of S. qeni 568 

and A. thompsoni. Mobile mesopredators tend to use coral reefs less directly than highly site-569 

attached fishes, hunting and foraging in other adjacent connected habitats during different 570 

diurnal periods (Papastamatiou et al. 2015) while high abundances of planktivores like A. 571 

thompsoni at reef edges and greater depths is likely driven by proximity to higher plankton 572 

availability brought by strong currents (Thresher and Colin 1986; Hobson 1991; Quimpo et 573 

al. 2018). Stronger currents on reefs can be a product of both offshore positions receiving 574 

higher exposure to wind-generated water motion and waves but also interactions between 575 

reef topography and oceanographic processes (Hearn 2011). Fish species on abrupt physical 576 

structures may therefore have less direct relationships with biogenic habitat, but instead rely 577 
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on favourable feeding and abiotic conditions generated at dynamic all-surrounding 578 

boundaries between reef and pelagic habitats.  579 

 580 

Hydrodynamics and pelagic influence as drivers of fish communities on pinnacles 581 

We propose that both habitat-specific physical processes and high pelagic influences are 582 

plausible mechanisms which explain distinct and highly abundant fish communities on small 583 

offshore submerged pinnacle reefs. On shallow emergent reefs, the crest is the most diverse 584 

and productive zone (Done 1983; Russ 1984, 2003) where reef fish communities benefit 585 

significantly from oceanic production (Wyatt et al. 2012; Fisher et al. 2018; Le Bourg et al. 586 

2018). Pinnacle reefs diverge from classical models of spatial reef zonation where, as the 587 

summits are small in area, lacking any significant area of back-reef or flat; they are composed 588 

almost entirely of reef crest. Furthermore, the pelagic environment surrounds not only the 589 

circumference of reef but also constitutes a significant water column of pelagic habitat above 590 

the benthos. Thus, on a pinnacle the majority of the reef may experience high pelagic 591 

energetic inputs via multidirectional currents, not just at the seaward edge as on emergent 592 

reefs. For example, high abundances of planktivores found at reef edges fix important 593 

allochthonous inputs (Wyatt et al. 2012) and exposed zones on emergent reefs have been 594 

shown to receive significant pelagic energetic subsidies through this mechanism, explaining 595 

exceptional levels of productivity even on low coral-cover reefs (Morais and Bellwood 596 

2019). 597 

 598 

Hydrology on coral reefs can therefore shape reef-fish assemblages (Fulton and Bellwood 599 

2005; Eggertsen et al. 2016) and submerged topographies can generate distinct hydrodynamic 600 

environments, upwellings and currents, which are important mechanisms for nutrient and 601 

plankton retention (Genin et al. 1986; Lueck and Mudge 1997; Fulton et al. 2005; Morato et 602 
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al. 2009; Lavelle and Mohn 2010; Mosquera Giménez et al. 2019). This extension of the 603 

species-energy hypothesis (Wright 1983) has been proposed as a mechanism that allows 604 

these habitats to support abundant communities, often composed of species from high trophic 605 

levels (Pitcher and Bulman 2007; Jorgensen et al. 2016; Richert et al. 2017). The presence of 606 

diverse and abundant fish communities on pinnacles rich with large populations of 607 

planktivores and piscivores perhaps reflects strong bio-physical coupling analogous to  608 

seamounts (Genin 2004; Morato et al. 2010). Although the small scale of this study does not 609 

fully capture the abundance and distribution of large mobile predators, sharks were only 610 

observed in transects at pinnacle reefs. This could suggest that these habitats support higher 611 

trophic levels and more complex food-webs than nearshore reefs at the same depth, which 612 

may be lower-energy environments. Greater sampling effort and additional studies, however, 613 

are needed to ascertain an accurate reflection of habitat use on pinnacle reefs by large 614 

predatory fishes. 615 

 616 

The hydrological-energy mechanisms we suggest as drivers of high diversity on pinnacles do 617 

occur on emergent reefs but are largely focused on the shallow crests by surface waves and 618 

upwellings travelling up the slope. As such, productivity, nutrient concentrations and larval 619 

supply are again focused in this zone rather than the lower slopes (Wolanski and Delesalle 620 

1995; Sponaugle et al. 2002; Leichter et al. 2005; James et al. 2020).  Interactions between 621 

hydrodynamics and reef topography clearly differ between reef zones but there have been 622 

few comparisons between emergent reefs and submerged reefs.  Despite the difference in 623 

absolute crest depth between emergent and submerged reefs, the culmination of 624 

hydrodynamics on the crest may lead to greater assemblage similarities in this zone between 625 

reef morphologies, regardless of depth. Additionally, in terms of habitat, emergent reefs 626 

typically have large areas of high coral cover on the crest, which is likely to concentrate the 627 
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majority of reef-associated individuals and species in shallower depths.  It was notable in our 628 

study how many species usually associated with shallow crests on emergent reefs were also 629 

observed on the crests of submerged pinnacles, most likely a result of aspect and clear 630 

offshore waters. A similar pattern was reported for corals on submerged reefs in the central 631 

GBR, where similar reef crest/upper slope assemblages on emergent reefs are found at 632 

greater depths on the crests of submerged pinnacles (Roberts et al. 2015). Comparative 633 

investigations of patterns in reef zonation along depth gradients will help further explain how 634 

communities change across the full range of available habitat on both emergent and 635 

submerged reefs. Disentangling the relative effects of reef zone, depth and hydrodynamics on 636 

submerged pinnacles will require fine-scale in-situ measurements of currents and associated 637 

abiotic factors to reveal new information about these unusual habitats rather than relying on 638 

generalised trends from shallow and mesophotic coral reef literature (Pearson and Stevens 639 

2015).  640 

 641 

As isolated but ubiquitous patch habitats, submerged pinnacles also present significant 642 

opportunities to assess connectivity between emergent and deep reefs as well as the wider 643 

pelagic environment. Just as seamounts are thought to act as steppingstones for dispersal in 644 

the deep sea, pinnacles may play a significant role in connectivity across large scale coral 645 

reef systems. The differing hydrodynamics on submerged pinnacles (e.g. lack of a reef flat to 646 

dissipate currents and wave energy) likely result in a greater proportion of larvae being 647 

exported to adjacent reefs than on emergent reefs, suggesting they may represent important 648 

sources of propagules (Thomas et al. 2015). Multiple forms of submerged reef supporting 649 

diverse marine ecosystems are widely distributed across the continental shelf of both north-650 

east and north-west Australia (Bridge et al. 2012, 2019; Roberts et al. 2015; Moore et al. 651 

2017; Heyward and Radford 2019), but have largely been excluded from management and 652 
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monitoring efforts. Results from this study and others demonstrate that submerged reefs 653 

warrant greater consideration in management plans. Although the locations of submerged 654 

reefs in many regions may be poorly understood, precautionary management principles that 655 

explicitly account for uncertainty regarding the locations of ecologically significant features 656 

such as submerged reefs can be effective in protecting these types of features ‘incidentally’ 657 

(Bridge et al. 2015). 658 

 659 

Our baseline assessment indicates that pinnacles represent a distinct form of submerged coral 660 

reef that supports highly species rich and abundant fish communities. Assemblages here are 661 

likely shaped by complex interactions of hydrology, physical structure and high levels of 662 

pelagic influence, resulting from greater crest depth and offshore locations. These processes 663 

are present on emergent, nearshore reefs, but largely only at shallow seaward edges, and their 664 

effects may attenuate with depth as the reef structure changes. Further studies are required to 665 

assess how the combination of pelagic and reef habitats on small submerged pinnacles 666 

generate distinct abiotic and physical conditions and how they might enhance productivity 667 

and the variety of available resources. Isolation by depth and offshore setting may also confer 668 

aspects of natural resilience in addition to beneficial hydrodynamics. In a rapidly changing 669 

marine environment, it is important to establish how distinct reef morphologies may respond 670 

to climate change and the extent to which they may provide refuge to degrading shallow reef 671 

organisms. As ubiquitous features across all low-latitude coastal shelves, deep and distinct 672 

coral habitats are becoming increasingly important components of the future global coral reef 673 

biome. Further work is warranted to quantify the spatial extent of these unique coral reef 674 

habitats, characterise their ecological communities and understand their role in coral reef 675 

ecosystems. 676 

 677 
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 1145 

Figure 1. Study area locations, Kimbe Bay, Papua New Guinea. (a) Papua New Guinea and 1146 

Kimbe Bay (b) Kimbe Bay bathymetry with location of pinnacle (green), offshore (blue) and 1147 

nearshore (yellow) reefs (c) Schools of Caranx sexfasciatus at Joelles Reef (pinnacle) (d) 1148 

Sphyraena qenie at Bradford Shoals (pinnacle) (e) Schematic of reef morphologies surveyed 1149 
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 1151 

Figure 2. Mean ± SE of three benthic complexity metrics for each reef morphologies (a) total 1152 

hard coral cover % (b) richness of benthic cover types (c) diversity of benthic cover types. 1153 

Full LMM results Table T2 1154 

 1155 

 1156 
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 1157 

Figure 3. Differences in mean percent cover per transect ± SE of 14 benthic cover types 1158 

across the three reef habitat types (n=20 per reef morphology). Significant differences are 1159 

represented by * and letters indicate statistically similar pairwise means (p <0.05, Tukey 1160 

HSD). Full GLMM results Table S6 1161 

 1162 

 1163 

 1164 
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 1165 

Figure 4. Alpha and beta diversity for each reef morphology. Number of unique species at 1166 

each reef type are located in sectors of circles with no overlap 1167 

 1168 

 1169 

Figure 5. Differences in fish community metrics between reef morphologies. Mean per 1170 

150m2 transect ± SE bars (a) fish species richness  (b) Total abundance of individuals (c) 1171 

Simpson’s diversity (d) Community evenness Pielou’s J’.  Significant pair-wise differences 1172 

(p < 0.05, Tukey HSD) are indicated by grouping lines above. Full GLMM results Tables S1 1173 

and S5 1174 
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 1175 

Figure 6. Relationships between fish community metrics and benthic complexity variables 1176 

for each reef type.  Shaded areas depict 95 % confidence intervals from mixed effects 1177 

models. Full summary of coefficients in models a-h in Table S9 1178 
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 1181 

Figure 7. (a) Distance-based redundancy analysis (db-RDA) plot of the ordiR2step model 1182 

based on benthic variables that better explained variability among fish communities across 1183 

reef habitat types (n=20 for each reef type). Significant benthic variables are overlaid as a 1184 

vector and fish species most correlated with each axis are presented to the right of the main 1185 

plot (b) Vector length and direction of the arrow represents the size and direction of the 1186 

relationships 1187 

 1188 
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 1190 

 1191 

 1192 

 1193 
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 1195 
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Table 1. Summary of SIMPER results showing top five fish species and benthic cover 1197 

categories that contributed most to overall dissimilarity between assemblages for pair-wise 1198 

comparisons between reef types 1199 

 1200 
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 1204 

 1205 

 1206 

 1207 

 1208 

 1209 
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Table 2. Analysis of deviance or variance tables for main effects in all fish-benthic mixed 1212 

effects models. For GLMMs (total fish abundance and species richness), Likelihood-ratio 1213 

tests were used to test main effects. For LMMs (diversity and evenness) Wald-F tests with 1214 

Kenward-Rogers df were used. All main effects and interactions (“:”) are shown. Significant 1215 

results (p < 0.05) in bold 1216 

 1217 

 1218 

Supplementary Information Figures 1219 

 1220 

Figure S1. (a) nMDS of benthic communities aggregated by reef morphology (b) Vector plot 1221 

showing strength and direction of relationship between benthic category and nMDS axes 1222 
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 1224 

Figure S2. (a) nMDS of fish communities aggregated by reef morphology (b) Vector plot 1225 

showing the strength and direction of relationship between fish species and nMDS axes 1226 

 1227 

 1228 

 1229 

 1230 

 1231 

 1232 

 1233 

 1234 


