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Type 2 diabetes (T2D) is a major health problem and is considered one of the top 10
diseases leading to death globally. T2D has been widely associated with systemic and
local inflammatory responses and with alterations in the gut microbiota. Microorganisms,
including parasitic worms and gut microbes have exquisitely co-evolved with their hosts to
establish an immunological interaction that is essential for the formation and maintenance
of a balanced immune system, including suppression of excessive inflammation. Herein
we show that both prophylactic and therapeutic infection of mice with the parasitic
hookworm-like nematode, Nippostrongylus brasiliensis, significantly reduced fasting
blood glucose, oral glucose tolerance and body weight gain in two different diet-
induced mouse models of T2D. Helminth infection was associated with elevated type 2
immune responses including increased eosinophil numbers in the mesenteric lymph
nodes, liver and adipose tissues, as well as increased expression of IL-4 and alternatively
activated macrophage marker genes in adipose tissue, liver and gut. N. brasiliensis
infection was also associated with significant compositional changes in the gut microbiota
at both the phylum and order levels. Our findings show that N. brasiliensis infection drives
changes in local and systemic immune cell populations, and that these changes are
associated with a reduction in systemic and local inflammation and compositional
changes in the gut microbiota which cumulatively might be responsible for the
improved insulin sensitivity observed in infected mice. Our findings indicate that
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carefully controlled therapeutic hookworm infection in humans could be a novel approach
for treating metabolic syndrome and thereby preventing T2D.
Keywords: type 2 diabetes, Nippostrongylus brasiliensis, helminth, eosinophils, M2 macrophages, high glycemic
index diet, high fat diet, microbiota
INTRODUCTION

Diabetes is a metabolic disease resulting from the absence of,
or deficiency in, insulin secretion, insulin action or both,
leading to an abnormal metabolism of carbohydrates and
elevated levels of glucose in the blood (1). The main types of
diabetes are type 1 (T1D), which represents around 10% of all
diabetes cases, and type 2 (T2D), which represents around
90% of all diabetes globally. Diabetes is a fast-growing
health problem worldwide. According to the International
Diabetes Federation there were 424.9 million people living
with diabetes, and a further 352.1 million with impaired
glucose tolerance in 2017 (1). Diabetes caused 4 million
deaths and accounted for 10.7% of global all-cause mortality
and cost USD 727 billion in healthcare spending in 2017
alone (1).

Cumulative evidence suggests that T2D is associated with
inflammation. Induction of T helper 1 (Th1) immune responses,
in particular activation of M1 macrophages (MACs) and
increased production of pro-inflammatory cytokines such as
IL-1b, IFN-g, TNF-a, and IL-6 play a crucial role in the
destruction of pancreatic b-cells, and insulin resistance in
adipose tissue (AT), liver and muscle (2). In contrast, cells
such as type 2 innate lymphoid cells (ILC2s), eosinophils, and
M2 MACs, as well as increased levels of Th2 cytokines such as
IL-5, IL-4, and IL-13 have been found to regulate adipose tissue
homeostasis (3, 4), liver regeneration (5), and gastrointestinal
homeostasis (6), leading to whole body metabolic homeostasis.
Moreover, regulation of metabolic homeostasis and
inflammation in obesity, metabolic syndrome and T2D has
been increasingly connected with the gut microbiota (7).
Disturbance of the intestinal microbial community leads to
altered immune responses that can result in various
inflammatory disorders (8).

Environmental changes such as altered dietary habits,
improved sanitation, vaccination and excessive use of
antibiotics has reduced our exposure to various infectious
agents and symbiotic microorganisms that had a co-
evolutionary relationship with humans (9). This relationship
has established an immunological interaction with highly
developed regulatory pathways that serve to dampen
inappropriate immune responses, which are considered the key
drivers in many immune-mediated disorders, including T1D
(10). Helminth infections induce Th2 immune responses by
expansion of innate immune cells such as eosinophils, M2
MACs, ILCs, and upregulation of cytokines such as IL-4, IL-5,
and IL-13. Furthermore, it has been widely shown that helminth
infections promote expansion and/or recruitment of regulatory T
cells (Tregs) that play an important role in regulating
n.org 2
inflammation (11). Recent experimental evidence in animal
models has highlighted the therapeutic role of helminth-
mediated induction of Th2- and Treg-mediated immune
responses in many inflammatory diseases such as
inflammatory bowel disease (IBD), multiple sclerosis (MS),
rheumatoid arthritis, asthma and T1D (12). Likewise, helminth
infections have shown promising results as a therapeutic strategy
in human subjects with IBD, celiac disease and MS (13–16).

In the context of diabetes, epidemiological studies from
helminth-endemic areas such as Indonesia, rural China, India
and Aboriginal communities from North-West Australia found
an inverse relationship between helminth infection and
incidence of T2D (17–20). Additionally, it has been shown that
infections of mice with different species of parasitic helminths are
associated with significant increases in ILC2s, eosinophils, M2
MACs, and Th2 cytokines that result in restoration of glucose
levels and improved insulin sensitivity in mouse models of
obesity (3, 4, 21–24).

Diabetes has been found to associate with alterations in the
composition of the gut microbiota. Helminth infection in
humans has also been shown to modulate the composition of
the gut microbiota (25–27). For example, celiac disease patients
infected with the hookworm Necator americanus and challenged
with gluten showed improved oral tolerance to gluten and
displayed an increased species richness in intestinal microbial
species, notably the Bacteroidetes (27–29). A protective role for
helminth-microbiota interaction in mice has been demonstrated
against many inflammatory diseases such as allergy (30), IBD
(31) and obesity (32). Human studies as well as studies in animal
models of obesity and T2D revealed a shift in the abundance of
the dominant gut phyla Bacteroidetes and Firmicutes (7). Shifts
in the abundance of these phyla has also been observed after
infection with the gastrointestinal nematodes Nippostrongylus
brasiliensis, Trichuris muris, and Heligmosomoides polygyrus
(33–36), suggesting that helminth infections might have a
positive role in maintaining gut homeostasis and preventing
the development of T2D via modulation of the gut microbiota
and short chain fatty acids (SCFAs) (32, 37).

Previous studies have focused on the prophylactic effects of
gastrointestinal nematode infection on high-fat diet-induced
metabolic syndrome. To better reflect the current pandemic of
human T2D, we infected mice fed on both high-fat (HF)
and high-glycaemic index (HGI) diets before and after the
onset of metabolic syndrome. We showed that infection
with N. brasiliensis maintains glucose homeostasis both
prophylactically and therapeutically, probably via induction of
Th2 immune responses in lymphoid and non-lymphoid tissues
in mice. Infection with N. brasiliensis was also associated with
changes in some phyla and orders of the gut microbiota.
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MATERIALS AND METHODS

Ethics Statement
All procedures were approved by the James Cook University
Animal Ethics Committee, ethics application number A2244.
The study protocols were in accordance with the 2007 Australian
Code of Practice for the Care and Use of Animals for Scientific
Purposes and the 2001 Queensland Animal Care and Protection
Act. N. brasiliensis was maintained in Sprague–Dawley rats
(Animal Resources Centre, Perth, WA, Australia) as described
elsewhere (38) (Ethics application number A2300).

Animals and Diet
Male C57BL/6 wild-type (WT) (JCU Townsville) mice were used
for all experiments (10 mice per group). At 5 weeks of age mice
were divided into three groups: (i) normal chow (NC); High
Glycaemic Index (HGI) diet with a glycaemic index of close to
100 (SF03-30; Speciality Feeds, Western Australia); High Fat
(HF) diet where 61% of total energy is from lipids (SF07-066;
Speciality Feeds, Western Australia). Table S1 describes the
composition of each diet.

Helminth Infection
N. brasiliensis life cycle was maintained in our laboratory at
James Cook University in a specified pathogen free environment.
Briefly, feces from N. brasiliensis-infected rats were collected
from days 5–9 post-infection. Egg-containing feces were mixed
with an equal amount of water and charcoal, distributed into
Petri dish plates and incubated at 26°C. One week after
incubation, L3 were collected from the fecal/charcoal culture
plate, washed three times with PBS, then all infections with N.
brasiliensis were performed by inoculating subcutaneously 500
third-stage larvae of N. brasiliensis (NbL3) into the skin over the
interscapular region. N. brasiliensis is immunologically cleared
from mice within a few weeks, so we reinoculated mice once
every month with 500 NbL3 starting at 6 weeks of age for mice
receiving prophylactic infections or 24 weeks of age for mice
receiving therapeutic infections.

Fasting Blood Glucose and Oral Glucose
Tolerance Test
Food was withdrawn for 6 h then fasting blood glucose (FBG)
was measured in the unfed mice. Blood sampling was performed
by tail bleeding. Mice were screened for blood glucose levels
every 2 weeks using Accu-Check® Performa (Roche). Mice were
considered diabetic when glucose levels reached >12.0 mmol/L.
For the oral glucose tolerance test (OGTT), after initial blood
collection (time 0) in the 6-h unfed mice, mice were administered
D-glucose orally (2 g/kg body weight) by gavage. Blood sampling
was performed by tail bleeding at 15, 30, 60, 90, and 120 min
after administration of glucose.

Isolation of Mesenteric Lymph Nodes,
Adipose Tissue, and Liver
In brief, epididymal fat pads or liver from male mice fed with
NC, HGI, or HF diets were removed and minced into small
pieces. Minced tissues were then transferred to a 50 ml conical
Frontiers in Endocrinology | www.frontiersin.org 3
tube containing 1 ml DPBS (0.5% BSA) (Sigma) and 3 ml
collagenase type II (Life Technologies), and incubated in a
rotating shaker (200 rpm) at 37°C for 35 min. The
homogenates were filtered through a 70 mm tissue strainer into
a new tube and centrifuged at 500 g for 10 min. at 4°C. Following
centrifugation, the supernatant was discarded and the pellet was
resuspended in 1× red blood cell lysis buffer (Sigma) followed by
a washing step with 5 ml FACS buffer, and a final centrifugation
at 500 g for 10 min at 4°C.

Mesenteric lymph nodes (MLN) were collected and
transferred to a 5 ml tube containing 1 ml of RPMI media
(Gibco), then filtered through a 70 mm tissue strainer. Cell
viability was assessed by Trypan Blue and cells were blocked
using FcR blocking reagent (BD biosciences) for FACS analysis.

Flow Cytometry
Cell surface marker analysis was performed using flow
cytometry. Single-cell suspensions prepared from MLN,
adipose tissue (AT) and liver were collected from mice at the
times indicated. Cell surface markers were stained for 30 min at
4°C with rat anti-mouse CD3/CD19-CF594 (Clone:145-
2C11,1D3) F4/80-APC (Clone: T45-2342), CD11c-FITC
(Clone: HL3), CD301-pecy7 (Clone: LOM-14), CD64-PerCp-
Cy5.5 (Clone: X45-5/7.1), CD11b-BV650 (Clone: M1/70), Ly6G-
efluor700 (Clone: 1A8) and Siglec-F-PE (Clone: E50-2440) (BD
Bioscience). All antibody incubations were performed at 4°C for
30 min (isotype controls were included). Data were acquired
using a BD FACS Aria and analyzed using FlowJo software (Tree
Star, Inc).

Quantitative Real-Time PCR
A small piece (<0.5 cm) of AT, liver and small intestine (SI)
(jejunum) was collected in a 2 ml Eppendorf tube containing 1 ml
TRIzol-reagent (Sigma) and homogenized using a TissueLyzer
(QIAGEN). Tissues were homogenized and RNA was extracted
using TRIzol-reagent (Sigma) following the manufacturer’s
protocol. RNA samples were reverse transcribed to cDNA as
follows. After RNA quantification, 50–70 ng of each sample was
transferred to a 0.2-ml tube and 1 ml of each of oligo(dT) (Qiagen)
and 10 mM dNTPs were added, followed by incubation at 65°C
for 5 min in a Veriti 96-well thermal cycler (Applied Biosystems)
followed by incubation on ice for 2 min. Four (4) ml of first strand
buffer (Thermo Fischer), 1 ml of each of 0.1 M DTT (Thermo
Fischer), RNAse out and 0.5 ml of Superscript III (Thermo
Fischer) were added to the sample. The sample was incubated
for 60 min at 55°C, then 15 min at 70°C. Finally, cDNA was
quantified on a Nanodrop 2000 (Thermo Scientific).

For qPCR reactions, 100 ng of cDNA was mixed with 12.5 ml
of SYBR Green and 2.5 ml of each primer of the selected genes in
a total volume of 25 ml per sample. A Rotor-Gene Q (QIAGEN)
was used for real time thermal cycling. All genes were normalized
for levels of transcription relative to the housekeeping gene
b-actin.

Staining and Quantification of Eosinophils
A 1-cm piece of small intestine (SI) (jejunum) was fixed in 4%
paraformaldehyde. The samples were processed in a Histocore
February 2021 | Volume 11 | Article 606530
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Pearl automatic tissue processer, embedded in paraffin and cut in
5 µm sections with a rotary microtome. The slides were first
dewaxed with Xylene (2–6) min, absolute ethanol for 2–6 min,
70% ethanol for 1 min and DI water for 1 min. Slides were then
stained with Congo Red solution (Sigma) for 1 h as per the
manufacturer’s instructions, followed by DI water for 2 min,
Harris hematoxylin for 30 s, DI water for 2 min, Scotts tap water
for 1 min, DI water for 1 min, 95% ethanol for 1–2 min, absolute
ethanol for 1–2 min and xylene for 1–2 min. Cover slips were
then placed on slides before scanning with an Aperio CS2
scanner (Leica). Quantification of eosinophils was performed
by counting the eosinophils in 15 fields of view (magnification
x40) in 2 sections per group.

Data Analysis
Data were tested for statistical significance using GraphPad
Prism software (version 8). A Mann-Whitney U test was
applied to test statistically significant differences between two
unpaired groups with non-parametric distribution. Data that
were normally distributed were tested for statistical significance
using the unpaired t test for comparisons of two groups or the
ANOVA test followed by the Holm-Sidack multiple-comparison
test to compare more than two groups. Values of p < 0.05 were
considered statistically significant. Results are expressed as SEM
or means ± SD. Significance values are indicated as *p < 0.05;
**p < 0.01.

DNA Extraction and Bacterial 16S rRNA
Illumina Sequencing
After mice were sacrificed, jejunum samples were collected and
stored immediately at −80°C for further analysis. DNA
extraction and 16s rRNA sequencing were performed by the
Australian Centre for Ecogenomics, University of Queensland,
Brisbane. In brief, a total of 50 to 100 mg of tissue sample was
disrupted mechanically using a Powerlyzer 24 at 2,000 g for
5 min. A QIAamp 96 PowerFaecal QIAcube HT Kit (Qiagen)
was used to process the resulting lysate as per the manufacturer’s
instructions, and a Qubit assay (Life Technologies) was used for
measuring DNA concentration, which was then adjusted to a
concentration of 5 ng/ml. The 16S rRNA gene was targeted, using
the 803 forward primer (5′-TTAGAKACCCB NGTAGTC-3′)
and 1392 reverse primer (5′- ACGGGCGGTGWGTRC-3′) to
cover the V6-V8 regions. Preparation of the 16S library was
performed following the protocol outlined in the Illumina guide.
In the first stage, 466 bp of the PCR products were amplified. The
resulting PCR amplicons were then purified using Agencourt
AMPure XP beads (Beckman Coulter). The purified DNA was
indexed with unique 8cbp barcodes using the Illumina Nextera
XT 384 sample Index Kit A-D (Illumina FC-131-1002). The
QIAquick Gel Extraction Kit (Qiagen) was used for the isolation
of the indexed amplicons as per the manufacturer’s instructions
for the specific band at 450 bp (running at 610 bp with the
adaptor sequence). Then, the resulting purified indexed
amplicons were pooled together in equimolar concentrations
and sequenced on a MiSeq Sequencing System (Illumina) using
paired end (2 x 300 bp) sequencing with V3 chemistry in the
Frontiers in Endocrinology | www.frontiersin.org 4
Australian Centre for Ecogenomics according to the
manufacturer’s protocol. Passing quality control of resulting
sequence was determined as 10,000 raw reads per sample prior
to data processing and passing quality control metrics in line
with Illumina supplied reagent metrics of overall Q30 for 600cbp
reads of >70%.

Bioinformatics and Statistical Analysis
Sequence data were analyzed using a modified version of
MetaGalaxyDE (39). Briefly, raw reads were run through fastqc
for quality control, Trimmomatic (40) for adapter trimming and
low quality base removal, QIIME (41) for Operational
Taxonomic Units (OTUs) generation, and BLAST (42) for
OTU identification. Within QIIME, low-quality reads are
filtered with all remaining sequences de-multiplexed and
chimeric sequences removed using UCHIME (43). Sequences
were subsequently clustered into OTUs on the basis of similarity
to known bacterial sequences in the Greengenes database (44)
(cut-off: 97% sequence similarity) using the UCLUST
software (45).

For each biom file, the taxonomic observation and metadata
was added using biom API (46) which was next loaded into the R
package phyloseq (47). Within phyloseq, the DESeq2 (48) API
was called and a list of most differentially expressed bacteria
generated for all possible pairings of conditions (NC and NC
infected with N. brasiliensis, T2D mice fed HGI and T2D mice
fed HGI infected with N. brasiliensis or T2D mice fed HF and
T2D mice fed HF infected with N. brasiliensis). All subsequent
plots were generated using ggplot2 and Calypso online software
(version 8.84) (http://cgenome.net/calypso/) (49). Within
Calypso, data were normalized by total sum normalization
(TSS) combined with square root transformation. Multivariate
redundancy analysis to overall differences in the microbial profile
between groups and Adonis based on the Bray-Curtis
dissimilarity and spearman’ index was used. Differences in
bacterial alpha diversity (Shannon diversity) and richness
between groups were used. Values of p < 0.05 were considered
statistically significant following false discovery rate (FDR)
correction. Differences in the bacterial taxa abundance between
groups were assessed using ANOVA-like differential expression
analysis (ALDEx2) and quantitative visualization of
phyla abundance.

Short Chain Fatty Acid Analysis by NMR
Fresh fecal pellets were collected at different time points of the
experiment and stored at −80°C for metabolite extraction and
analysis. Once thawed, fecal pellets were mixed with 600 ml of
PBS and stored at room temperature for 20 min before manual
disruption with a pipette tip and vortexing and centrifugation at
15,000 g at 4°C for 10 min. The supernatant was then transferred
into a new microfuge tube and 50 ml of deuterated water
(Cambridge Isotope Laboratories, Inc., USA) and 10 ml of 4,4-
dimethyl-4-silapentane-1-sulfonic acid (DSS) were added, with
the latter being a chemical shift reference. The samples were
centrifuged again at 15,000 g at 4°C for 10 min and 550 ml of each
sample was transferred into a 5 mm NMR tube. NMR spectra
were acquired on a Bruker Avance III 600 MHz spectrometer
February 2021 | Volume 11 | Article 606530
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(Bruker, Karlsruhe, Germany) and recorded at 600 MHz at 298 K
equipped with a cryoprobe, using automated data collection via
IconNMR software and the standard Bruker 1H cpmgpr1d pulse
sequence (128 scans) to collect one-dimensional spectra. The
NMR spectra were referenced to DSS. The software
Metaboanalyst (v 4.0) was used for metabolites analysis and we
focused specifically on detecting and comparing fecal SCFAs.
The SCFA peaks were identified based on standard samples. The
chemical shift region containing the water resonance (d 4.68–
4.89) was removed from the analysis. The calculated regions were
normalized to the total sum and Pareto scaling for overall
concentration differences prior to statistical data analysis with
t-tests.
RESULTS

Infection With N. brasiliensis Maintained
Glucose Homeostasis and Reduced Body
Weight Gain
In order to address the prophylactic and therapeutic effects of
infection with N. brasiliensis on the outcome of T2D, we used
two different models of diet (HGI and HF) to induce T2D in
C57BL/6 mice. At 6 weeks of age, male C57BL/6 mice were either
Frontiers in Endocrinology | www.frontiersin.org 5
kept on a normal control diet (NC) or fed either HGI or HF diets
for up to 31 weeks to induce T2D (Figure 1A). To ascertain the
prophylactic effect of the infection on T2D, mice were infected at
week 6 and re-infected once every month until the end of the
experiment (week 31) to ensure continuous parasite infection. To
ascertain the therapeutic effect, infection with N. brasiliensis
started at week 24 and continued once every 3 weeks for a
total of three infections until the end of the experiment (week 31)
(Figure 1B).

As predicted, mice on either HGI or HF diets had a significant
increase in the level of FBG compared to those on NC diet
(Figures 2A, B). Prophylactic infection as well as therapeutic
infection with N. brasiliensis significantly decreased the FBG
levels in the diabetic groups fed on HGI and HF diets, compared
to their respective uninfected groups fed on othose same diets
(Figures 2A, B). A significant reduction in FBG was also noted in
the NC group infected with N. brasiliensis when compared with
their uninfected littermates, both prophylactically and
therapeutically. A similar result was also observed for the
OGTT test. HGI and HF diet infected mice had significantly
lower levels of blood glucose than their respective control
(uninfected) groups at all time points, both prophylactically
and therapeutically (Figures 2C–F). Moreover, the NC group
infected with N. brasiliensis had significantly lower levels of
A

B

FIGURE 1 | Experimental design (A) and timeline for infection of mice with Nippostrongylus brasiliensis third stage larvae (L3) (B). NC, Normal Control diet; HGI,
High Glycemic Index diet; HF, High Fat diet.
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blood glucose than their respective control at all time points. Of
note, the blood glucose levels of the HGI and HF diet infected
groups were also comparable to those mice on a NC diet that
were infected with N. brasiliensis (Figures 2C–F).

N. brasiliensis Infection Slowed Weight
Gain in HGI and HF Diet Models of T2D
Reduction in the rate of body weight gain was also observed as a
result of infection. As expected, mice on either HGI or HF diets
Frontiers in Endocrinology | www.frontiersin.org 6
gained significantly more weight compared to mice on a NC diet
(Figure 3); however, either prophylactic (Figures 3A, C) or
therapeutic (Figures 3B, D) infection with N. brasiliensis
significantly reduced the body weight gain in the diabetic
groups fed on HGI and HF diets compared to their uninfected
counterparts. Of note, significant reduction in body weight was
also observed in the NC diet group infected with N. brasiliensis
compared with the uninfected NC group, both prophylactically
and therapeutically. When food weight was calculated on a
A B

D

E F

G H

C

FIGURE 2 | Nippostrongylus brasiliensis infection decreased fasting blood glucose (FBG) and improved glucose metabolism in high glycaemic index (HGI) and high
fat (HF) diet models of type 2 diabetes. C57BL/6 mice were fed normal control (NC), HF or HGI diet and infected once monthly with 500 infective larvae of N.
brasiliensis commencing at 6 weeks of age for prophylactic infections and 24 weeks of age for therapeutic infections. (A) FBG in mice fed on different diets and
administered prophylactic infection with N. brasiliensis. (B) FBG in mice fed on different diets and administered therapeutic infection with N. brasiliensis. Oral glucose
tolerance test (OGTT) in mice fed on NC or HGI diets and administered prophylactic (C) or therapeutic (D) infection with N. brasiliensis. Oral glucose tolerance test
(OGTT) in mice fed on NC or HF diets and administered prophylactic (E) or therapeutic (F) infection with N. brasiliensis. Area under the curve (AUC) in mice fed on
different diets and administered prophylactic (G) or therapeutic (H) infection with N. brasiliensis. Statistical significance was determined with Student’s t test or Two-
way analysis of variance (ANOVA). Data are expressed as means ± SEM or means ± SD are representative of two experiments where n = 5/group. *p < 0.05; **p <
0.01; ***p < 0.001; ****p < 0.0001.
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weekly basis for each cage, no differences in food consumption
were detected at any time between these two groups (data
not shown).

These data indicate that in response to N. brasiliensis
infection, HGI and HF diet groups maintained low levels of
FBG and displayed improved glucose metabolism compared to
uninfected controls.

N. brasiliensis Infection Induces Local
Eosinophilia and Th2 Immune Responses
To determine whether N. brasiliensis infection induced a potent
Th2 cytokine response accompanied by eosinophilia and
alternative activation of MACs, mice fed a NC, HGI or HF diet
were infected with 500 N. brasiliensis L3 and sacrificed at week
31 of the experiment (Figure 1B). qPCR analysis was performed
on AT, liver and SI to assess M2 MAC expression markers. In
response to both prophylactic and therapeutic N. brasiliensis
infection, there was a significant increase in the total number of
eosinophils in the MLN, AT and liver of the diabetic groups as
well as the NC group compared to their uninfected littermates
(Figures 4A, B). Moreover, quantification of eosinophil numbers
in the gut revealed a significant increase of these cells in the NC,
HGI and HF diet groups infected with N. brasiliensis compared
to their respective uninfected groups (Figures 4C, D). Both
prophylactic and therapeutic N. brasiliensis infection
Frontiers in Endocrinology | www.frontiersin.org 7
significantly upregulated expression of genes encoding major
Th2 cytokines and associated MAC proteins in all tissues
assessed (Figure 5). In response to infection, elevated
expression of IL-4 was detected in the AT, liver and SI of mice
on all three diets compared to their respective uninfected groups
(Figures 5A, B). Infection also resulted in increased expression
of Retnla (encoding the resistin-like alpha protein) and Chil3
(chitinase-like protein 3) markers of M2 macrophages and a Th2
environment in these same tissues (Figures 6A, B).
Infection With N. brasiliensis Resulted
in Altered Alpha Diversity and Microbial
Richness in Mice Fed on NC, HGI,
and HF Diets
We wanted to address the effect of infection with N. brasiliensis
on the composition of the gut microbiota in mice fed NC, HGI
and HF diets. SI samples were collected at termination (week 31)
to determine the differences in the composition of gut microbiota
between infected and uninfected groups. Multivariate
redundancy analysis on OTU level showed a different
clustering in the microbial profiles of the infected groups
compared to the uninfected control groups for all diets (NC,
HGI and HF) (Figure 7A). Adonis analysis revealed significant
differences between infected and uninfected groups on all diets
A B

DC

FIGURE 3 | Nippostrongylus brasiliensis infection reduced weight gain in high glycemic index (HGI) and high fat (HF) diet models of T2D. C57BL/6 mice were fed
normal control (NC), HF, or HGI diet and infected once monthly with 500 infective larvae of N. brasiliensis commencing at 6 weeks of age for prophylactic infections
and 24 weeks of age for therapeutic infections. (A) Body weight of mice fed on HGI diet and administered prophylactic infection with N. brasiliensis (Nb). (B) Body
weight of mice fed on HGI diet and administered therapeutic infection with Nb. (C) Body weight of mice fed on HF diet and administered prophylactic infection with
Nb. (D) Body weight of mice fed on HF diet and administered therapeutic infection with Nb. Statistical significance was determined with Two-way analysis of
variance (ANOVA). Data are expressed as mean ± SD and are representative of two experiments where n = 5/group. *p < 0.05; **p < 0.01.
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using at least one of the two indices (Bray-Curtis or spearman)
(Supplementary Table 2). No significant differences in the
Shannon index and species richness were observed in N.
brasiliensis infected groups on all three diets compared to their
respective uninfected groups (Figure S1).

In general differences were detected in the abundance of some
bacterial taxa between uninfected groups fed on diabetic diets
(HF or HGI) and those fed NC diet, as well as between infected
and uninfected groups fed on all diets used in this study (Figures
7B–E). At the phylum level, mice fed either HF or HGI diets had
a significant decrease in the abundance of Bacteroidetes and
significant increase in Firmicutes compared to the NC group
(Figure 7B). However, infection status had no impact on the
abundance of these phyla (Figure 7B). Moreover, Actinobacteria
Frontiers in Endocrinology | www.frontiersin.org 8
was significantly decreased in the uninfected HGI group
compared to the uninfected NC group, however no such
changes were detected between the HF and NC groups (Figure
7B). On the other hand, the NC group infected with N.
brasiliensis had a significant decrease in the abundance of
Actinobacteria compared to their uninfected littermates
(Figure 7D). Also the abundance of Actinobacteria was not
different between HF infected and uninfected groups (Figure
7B). The uninfected HF diet group displayed decreased
abundance of TM7 and Verrucomicrobia compared to the
uninfected NC group, whereas the uninfected HGI group
displayed increased abundance of both phyla when compared
to the uninfected NC group (Figure 7B). On the other hand, a
significant increase in the abundance of Proteobacteria and a
A

B

DC

FIGURE 4 | Increase in the frequency of eosinophils in the mesenteric lymph nodes (MLN), adipose tissue (AT), liver, and duodenum in mice fed on different diets
and infected or not with Nippostrongylus brasiliensis. C57BL/6 mice were fed normal control (NC), high fat (HF), or high glycemic index (HGI) diet and infected once
monthly with 500 N. brasiliensis infective larvae from 6 weeks of age [prophylactic, panel (A)] or 24 weeks of age [therapeutic, panel (B)]. Eosinophil frequency and
total numbers in MLN, AT, and liver are shown. Eosinophil numbers per high power field (HPF) (magnification x40) in the gut are shown in panel (C) (prophylactic)
and panel (D) (therapeutic). Statistical significance was determined with Student’s t test. Data are expressed as mean ± SEM and are representative of two
experiments where n = 5/group. **p < 0.01.
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A

B

FIGURE 5 | Increased expression of Il4 in adipose tissue (AT), liver and gut of mice fed on different diets and infected with Nippostrongylus brasiliensis compared to
uninfected mice. C57BL/6 mice were fed normal control (NC), high fat (HF), or high glycemic index (HGI) diet and infected once monthly with 500 N. brasiliensis
infective larvae from 6 weeks of age [prophylactic, panel (A)] or 24 weeks of age [therapeutic, panel (B)]. Statistical significance was determined with Student’s t test.
Data are expressed as mean ± SEM and are representative of two experiments where n = 5/group. *p < 0.05; **p < 0.01.
A

B

FIGURE 6 | Increased expression of Retnla and Chil3 genes in adipose tissue (AT), liver, and duodenum of mice fed on different diets and infected with
Nippostrongylus brasiliensis compared to uninfected mice. C57BL/6 mice were fed normal control (NC), high fat (HF), or high glycemic index (HGI) diet and infected
once monthly with 500 N. brasiliensis infective larvae from 6 weeks of age [prophylactic, panel (A)] or 24 weeks of age [therapeutic, panel (B)]. Data are expressed
as mean ± SEM and are representative of two experiments where n = 5/group. *p < 0.05; **p < 0.01.
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significant decrease in the abundance Verrucomicrobia and TM7
were detected in the infected HGI group compared to the
uninfected HGI group (Figure 7D). However these changes
were not detected between infected and uninfected NC or HF
groups (Figure 7B). No significant differences were detected in
any phyla between infected and uninfected groups fed HF diet
(Figure 7B).

At the order level, both diabetic groups showed significantly
lower abundance of Bacteroidales (Bacteroidetes phylum)
Frontiers in Endocrinology | www.frontiersin.org 10
compared to the NC group (Figure 7C). However, no
differences were detected in any of the three diet groups
infected with N. brasiliensis compared to their uninfected naïve
groups (Figure 7C). As a result of the diets, significant decrease
in the abundance of Bifidobacteriales (Actinobacteria phylum)
and Burkholderiales (Proteobacteria phylum) were detected in
the uninfected HGI group, but not in the uninfected HF group
when compared with the NC group (Figure 7C). On the other
hand, the NC group infected with N. brasiliensis showed a
A

B

D E

C

FIGURE 7 | Multivariate analysis of differences in the microbial profiles in the small intestine of Nippostrongylus brasiliensis (Nb) infected and uninfected (naïve, N)
C57BL/6 mice fed on normal control (NC), high fat (HF), or high glycaemic index (HGI) diet (A). Relative abundance of bacterial phyla in the small intestine of Nb and
N mice fed on NC, HF, or HGI diet (B) Relative abundance of bacterial orders in the small intestine of Nb and N mice fed on NC, HF, or HGI diets (C), and
abundance of defined taxa where significant differences between infected and uninfected groups were detected (D, E). Mice were infected once monthly from 6
weeks of age with Nb infective larvae. P values are based on ANOVA-like differential expression analysis and are representative of two experiments where n = 5/
group. *p < 0.05; **p < 0.01.
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significant decrease in the abundance of Bifidobacteriales (but
not Burkholderiales) compared to the uninfected naïve group
(Figures 7C, E). However, HGI mice infected with N. brasiliensis
had significantly higher abundance of Burkholderiales and
showed no changes in the abundance of Bifidobacteriales when
compared to their uninfected naïve group (Figures 7C, E). HF
mice that were infected withN. brasiliensis showed no differences
in the abundance of both Bifidobacteriales and Burkholderiales
compared to their uninfected group (Figure 7C). Moreover, the
uninfected HGI group had significantly higher abundance of
Clostridiales (Firmicutes phylum) compared to the NC group,
but no changes were detected between HF and NC groups
(Figure 7C). N. brasiliensis infection significantly increased the
abundance of Clostridiales in both the NC and HF groups
infected with N. brasiliensis compared to their respective
uninfected diet-matched groups (Figure 7E). Furthermore, the
abundance of both the CW040 order (TM7 phylum) and
Desulfovibrionales (Proteobacteria phylum) was significantly
decreased in the HF diet group compared to the NC diet
group. While those on the HGI diet had increase in the
abundance of CW040 and decrease in the abundance of
Desulfovibrionales compared to the NC diet, but this was not
significant (Figure 7C). N. brasiliensis infection caused a
significant elevation in the abundance of Desulfovibrionales
and trend toward increased abundance of CW040 in the HF
diet group infected with N. brasiliensis compared to their
uninfected group (Figure 7E). N. brasiliensis infection
significantly decreased the abundance of CW040 and showed a
trend toward increased abundance of Desulfovibrionales in the
infected HGI group compared to their uninfected diet-matched
group (Figures 7C, E). As a result of the diets, the abundance of
Verrucomicrobiales order (Verrucomicrobia phylum) was
significantly increased in the HGI but not HF groups
compared to the NC group (Figure 7C). On the other hand,
the abundance of the Verrucomicrobiales was significantly
decreased in the infected HGI group compared to the
uninfected group (Figure 7E).

To summarize, the impact of N. brasiliensis infection on the
microbiome at the phylum level was most notable in mice on the
HGI diet, with reduced abundance of Verrucomicrobia and TM7
phyla in infected mice and increased abundance of
Proteobacteria in HGI infected mice. At the order level,
infection with N. brasiliensis resulted in increased abundance
of Clostridiales and Desufovibrionales in mice on the HF diet
and Burkholderiales in mice on the HGI diet.
Infection With N. brasiliensis Alters Fecal
Short Chain Fatty Acid Content in Mice
Fed on Different Diets
Metabolic profiling of fecal extracts from infected and uninfected
mice fed on the three different diets was carried out using NMR
spectroscopy. We compared the SCFAs acetate, butyrate and
propionate between the uninfected and N. brasiliensis infected
groups by t-test. For each diet at least one of the SCFAs was
present in higher quantities (p < 0.05) in infected versus
uninfected mice (Table 1; Figure S2).
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DISCUSSION

Diabetes is recognized as the world’s fastest growing chronic
condition (1). Helminth infections have been associated with a
lower prevalence of T2D due to their ability to induce type 2
immune responses (17–20). We therefore set out to investigate
the role of helminth-induced type 2 immunity and the potential
mechanisms underlying protection against the development of
T2D-induced insulin resistance. C57BL/6 mice were fed a HGI
or HF diet and infected frequently withN. brasiliensis. This strain
of mice is genetically susceptible to obesity, glucose intolerance,
hyperglycaemia and T2D when fed a HF or HGI diet (50, 51).
We demonstrated that infection with N. brasiliensis had a
beneficial effect, both prophylactically and therapeutically
against T2D in two different diabetes-inducing diets. Our
findings are consistent with a role for helminth infection in
promoting type 2 immune responses by eliciting eosinophil
accumulation in MLN, AT, liver and SI, with increased
expression of genes encoding for key Th2 cytokines and M2
MACs in AT, liver and SI. We did not quantify levels of
regulatory cells and cytokines, such as regulatory T cells, IL-10
and TGF-b, but a role for such a response in protecting against
T2D in this model is plausible and should be addressed in
the future.

In line with our results, a number of studies have shown
improved glucose tolerance in mouse models of diabetes induced
by a range of parasitic nematodes with distinct tissue niches. For
example, studies utilizing the HF diet model of obesity showed
improvements in glucose tolerance of obese mice after infection
with the filarial nematode Litomosoides sigmodontis or
administration of soluble adult worm extract (21). Infection
with H. polygyrus also resulted in decreased body weight gain
and improved glucose and lipid metabolism, and an associated
increase in Th2/Treg immune responses in the MLNs, AT and SI.
Moreover, infected mice on a HF diet displayed dysregulated
expression of genes and proteins involved in energy expenditure
and lipid metabolism in AT and liver (23, 24). Infection with
parasitic platyhelminth flatworms (distinct phylum from the
Nematoda) has also been shown to protect against metabolic
syndrome. Chronic Schistosoma mansoni infection and
administration of schistosome soluble egg antigens resulted in
increased numbers of AT eosinophils, M2 MACs and Th2
TABLE 1 | Effect of Nippostrongylus brasiliensis on fecal short chain fatty acid
levels in mice fed different diets.

Diet SCFA p-value Change upon infection

Normal
Acetate ns
Butyrate 0.04 increase
Propionate 0.03 increase

High glycemic index
Acetate ns
Butyrate 0.007 increase
Propionate ns

High fat
Acetate ns
Butyrate ns
Propionate 0.046 increase
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cytokines, and a corresponding decrease in body weight gain and
improved insulin sensitivity in obese mice (52).

Recently, eosinophils in particular have been implicated in
glucose homeostasis and energy expenditure. These cells play an
unexpected role in metabolic homeostasis through maintenance
of adipose M2 MACs. Absence of eosinophils resulted in
increased body weight gain and impaired glucose tolerance in
mice (3, 4, 53). Moreover, in the absence of eosinophils, mice
exhibit a defect in lipid metabolism in the liver and SI, an
increase in the expression of pro-inflammatory IFN-g and a
decrease in the expression of IL-4 and IL-13 in AT (54).

In our work, N. brasiliensis induced MLN, AT, liver and SI
eosinophilia, and increased gene expression of M2 MAC markers
in AT, liver and SI. This was consistent with other studies which
showed that infection with N. brasiliensis induced adipose
eosinophilia and M2 MACs, enhanced glucose tolerance and
lipid metabolism and ameliorated body weight gain in different
mouse models of obesity (3, 4, 22). These studies have proposed
mechanisms by which these cells might influence AT homeostasis.
Eosinophils in bone marrow and their recruitment into white AT
are largely controlled by IL-5. Mechanistically, the increase in
eosinophil numbers in our mice fed a HGI or HF diet followingN.
brasiliensis infection may be the result of local and systemic
increases in eosinophils and Th2 cytokines, as well as increases
in M2 MAC numbers that regulate many key events involved in
the control of metabolic homeostasis. It is not yet clear whether
the eosinophil-mediated regulation of obesity-induced insulin
resistance and AT inflammation is due to the direct and
primary effects of eosinophils on insulin resistance or due to
secondary effects of eosinophils on changes in body weight and
adiposity. Further studies are required to elucidate the functions of
helminth-induced eosinophils in terms of their beneficial and
detrimental effects in driving metabolic reprogramming, and the
therapeutic utility of this phenomenon for treating the global
epidemic of metabolic disorders. On the other hand, changes in
environmental and behavioral factors, such as diet, can modulate
bacterial composition and metabolic activity (55), which can
trigger an inflammatory immune response leading to the
development of T2D (7, 55). Indeed, there is growing evidence
that helminth infection alters the composition of the gut microbial
community, conferring protection against immune mediated
diseases such as allergic inflammation (30), IBD (31), and
obesity (32). We therefore aimed to address the effect of
infection with N. brasiliensis on the composition of the gut
microbiota in mice fed on different diets. No significant changes
were observed in a-diversity in response to N. brasiliensis
infection in all diets studied (NC, HF and HGI); however, we
still found a significant shift in the microbiota composition at the
community level. This was in agreement with other studies with
N. brasiliensis and Hymenolepis diminuta that also found no
significant differences in a-diversity between infected and
uninfected groups (33, 56), and suggests that inter-individual
variation occurs in the microbiota composition as a result of
infection (33).

In our study, N. brasiliensis infection resulted in a decrease in
the abundance of Bifidobacteriales on the NC diet. In agreement
Frontiers in Endocrinology | www.frontiersin.org 12
with our findings, in human studies individuals with different
helminth infections (i.e. Trichuris spp., Ascaris spp. and
hookworm) had lower abundance of the Bifidobacteriales
compared to uninfected individuals (26). Many linked the
latter group with health benefits in T2D (57); however, others
have reported them to cause infections (58). In HF diet induced
obesity in rats, administration of four Bifidobacteria strains had
different responses on energy and fat metabolism and showed no
differences on serum insulin and glucose levels (59). Moreover,
administration of Bifidobacterium breve to preterm infants,
increased weight gain (60).

We found an increase in the abundance of Clostridiales in the
NC and HF diet groups infected with N. brasiliensis. Infection
with H. polygyrus attenuated allergic airway inflammation in
mice inoculated with house dust mite allergen, which was
associated with an increase in the abundance of Clostridiales
(30). An increase in the abundance of Clostridiales was also
reported after infection with T. muris which protected against
colitis in NOD2-/- deficient mice via a mechanism involving type
2 immunity (31). Moreover, oral administration of a mixture of
Clostridia strains known to induce CD4+ Foxp3+Tregs cells
attenuated experimental colitis and allergic diarrhea (61, 62). It
has also been reported that reduction in the abundance of
Clostridia was associated with T2D in humans (63–66), and an
increase in this group was associated with an improvement in
glucose and lipid metabolism (67). Moreover, in two separate
studies, oral administration of probiotic Clostridium butyricum
also improved diabetic markers (fasting glucose, glucose
tolerance, insulin tolerance, glucagonlike peptide and insulin
secretion), decreased blood and liver lipids and restored colonic
homeostasis of treated groups in two different models of T2D in
mice (HF diet and leptindb/db) (68, 69). Of note, Clostridiales are
abundant producers of the SCFAs that regulate colonic Treg cell
homeostasis and strongly involved in the maintenance of overall
gut function (70, 71).

In response to N. brasiliensis infection we also found a
significant increase in the abundance of Desulfovibrionales and
Burkholderiales (Proteobacteria) in the HF and HGI diet groups,
respectively. In one study, the abundance of Proteobacteria also
increased in H. polygyrus-infected mice fed a NC or a HF diet
compared to naïve littermates (72). This phylum is, in part,
responsible for regulating weight gain in HF diet fed mice (72).
Abundance of the Desulfovibrionales was increased in mouse
fecal samples as a result of infection with Schistosoma
haematobium (73), Ascaris lumbricoides, and Trichuris
trichiura (74). Moreover, the abundance of Desulfovibrionales
and Burkholderiales was lower in obese mice (75). Cold exposure
attenuated diet-induced obesity in mice, which was associated
with an increase in the abundance of Desulfovibrionaceae (76).
Desulfovibrionales are sulfate-reducing bacteria that use
hydrogen or other compounds such as lactate, pyruvate and
ethanol as electron donors to produce hydrogen sulfide (H2S)
(77). H2S has been found to improve insulin secretion, improve
glucose tolerance and reduce food intake via direct stimulation of
glucagon-like peptide-1 (GLP-1) secretion in gut L-cells and
indirectly via treatment with prebiotic chondroitin sulfate that
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enhanced the level of Desulfovibrio piger in the feces and colon of
the treated group (78).

Levels of Verrucomicrobiales (Verrucomicrobia phylum) and
CW040 (TM7 phylum) were significantly lower in the HGI
group infected with N. brasiliensis in comparison with HGI-fed
uninfected littermates. In agreement with our data,
Verrucomicrobia were enriched in mice fed both HF and high
sugar diets, but was not detected in mice fed NC diet (79). In
another study, the abundance of Verrucomicrobia was
significantly elevated when mice switched from NC to high
sugar diet (80). Moreover, mice with leptin deficiency (db/db)-
induced T2D showed an increase in the abundance of
Verrucomicrobia (81). However, these mice exhibited a
decrease in the abundance of Verrucomicrobia when subjected
to an intermittent fasting regime which protected against
diabetic retinopathy (82). The TM7 phylum is a recently
identified bacterial group, composed of uncultivable and highly
ubiquitous bacteria (83) and has been associated with
inflammatory mucosal diseases, periodontitis, IBD and
vaginosis in humans (84–86).

Many factors may play a role in modulating the abundance
of microbial species in the gut. The variability in the microbiota
community composition among different diets and as a
result of infection might be due to differences in dietary
substrates. Different microbial species might drive different
effects on energy recruitment pathways. We also should
consider the pathways for the metabolism of these substrates
as well as the inter-individual variation in metabolism and its
implications on the abundance of different microbial species in
the gut (87).

Acetate, propionate and butyrate are the major SCFAs known
to play important roles in gastrointestinal physiology and
maintenance of gut integrity, metabolism and immune
homeostasis (88). A complex interplay of multiple factors
including, diet, gut microbiota, gut environment (eg. pH, and
gas concentrations) can affect the formation of SCFAs and
determine the amounts and types of SCFA that are produced
(89). Changes in the concentrations of SCFAs have been
implicated in modulating inflammatory pathology in distinct
tissues in diseases such as IBD, cancer and T2D (88).

Interestingly, in addition to the impact of helminth
infection in modifying host microbiome, several studies have
also reported shifts in metabolites during helminth infection
(90). We found that fecal SCFA levels were significantly
elevated in N. brasiliensis-infected mice compared to
uninfected mice for all diets tested, and this may have had a
therapeutic benefit in modulating inflammation and
suppressing insulin resistance.

Many studies have highlighted the roles of SCFAs in the
regulation of appetite, weight gain, glucose and lipid metabolism
(91). For instance, in overweight and obese individuals, colonic
administration of SCFAs increased fat oxidation, energy
expenditure and circulating levels of the satiety-stimulating
hormones peptide YY (PYY) and GLP-1 concentration (92).
Propionate administration stimulated the release of PYY and
GLP-1 from colonic cells and increased their concentration in
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the circulation, reduced energy intake, intra-abdominal adipose
tissue distribution, intrahepatocellular lipid content and
prevented weight gain (93, 94). In mouse studies ,
administration of butyrate improved lipid and glucose
metabolism which prevented HFD-induced obesity, insulin
resistance, hypertriglyceridemia and hepatic steatosis. The
effect was due to an increase in peroxisome proliferator–
activated receptor-g coactivator-1a expression that increased
mitochondrial function and biogenesis in skeletal muscle and
AT (95). The role of butyrate in regulation of the immune
response has also been highlighted. Butyrate can regulate
intestinal macrophage function to decrease the production of
proinflammatory mediators such as nitric oxide (NO), IL-6 and
IL-12 (96). Butyrate and propionate attenuated the activation of
nuclear factor kB by LPS- stimulated neutrophils and inhibited
the production of proinflammatory cytokines and NO (97).
Butyrate and propionate have also bene shown to increase the
numbers of Treg cells expressing Foxp3 in the colon, spleen and
lymph nodes (98, 99).

Correlations between helminth presence and changes in the
microbial composition have already been mentioned elsewhere
throughout, but it is pertinent to note that many studies reported
changes in the composition of the gut microbiota as a result of
helminth infection and subsequent improvement in the outcome
of immune mediated diseases. Whether the microbial
composition changes we found in our study are a direct effect
of helminth infection or a consequence of the host’s immune
response to the infection, and whether these changes are essential
to confer protection against T2D are yet to be investigated. A
deeper understanding of the interplay between the host-
microbiota-helminth triad and other variables may represent a
new therapeutic strategy to prevent or even reverse the
pathological effects of T2D.
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Supplementary Figure 1 | Shannon index and richness in the small intestine of
Nippostrongylus brasiliensis (Nb) infected and uninfected (naïve, N) C57BL/6 mice
fed on normal control (NC), high fat (HF) or high glycaemic index (HGI) diet. Mice
were infected once monthly from 6 weeks of age with Nb infective larvae. P values
are based on multiple linear regression and are representative of 2 experiments
where n = 5/group.

Supplementary Figure 2 | Example 1H NMR spectra of acetate, propionate and
butyrate faecal extract used in this study.
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