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Continuous and automatic 
mortality risk prediction using vital 
signs in the intensive care unit: 
a hybrid neural network approach
Stephanie Baker1*, Wei Xiang2 & Ian Atkinson1

Mortality risk prediction can greatly improve the utilization of resources in intensive care units (ICUs). 
Existing schemes in ICUs today require laborious manual input of many complex parameters. In this 
work, we present a scheme that uses variations in vital signs over a 24-h period to make mortality risk 
assessments for 3-day, 7-day, and 14-day windows. We develop a hybrid neural network model that 
combines convolutional (CNN) layers with bidirectional long short-term memory (BiLSTM) to predict 
mortality from statistics describing the variation of heart rate, blood pressure, respiratory rate, blood 
oxygen levels, and temperature. Our scheme performs strongly compared to state-of-the-art schemes 
in the literature for mortality prediction, with our highest-performing model achieving an area under 
the receiver-operator curve of 0.884. We conclude that the use of a hybrid CNN-BiLSTM network is 
highly effective in determining mortality risk for the 3, 7, and 14 day windows from vital signs. As vital 
signs are routinely recorded, in many cases automatically, our scheme could be implemented such 
that highly accurate mortality risk could be predicted continuously and automatically, reducing the 
burden on healthcare providers and improving patient outcomes.

Intensive care units (ICUs) treat the most critically ill patients, and as a result are known to have the highest 
mortality rate of hospital  units1. In 2001–2012, mortality rates across several ICUs in the United States (US) 
ranged from 11.3 to 12.6%2. As such, typical ICUs have high staff-to-patient ratios, and it has been found that 
outcomes are improved where there are a higher number of nurses and consultants per  bed3. However, provid-
ing a high standard of critical care comes at a cost, with $108 billion spent on critical care medicine in the US 
in 2010, accounting for 0.72% of gross domestic product (GDP)4. The use of mortality risk assessment tools can 
aid in resource allocation and treatment decisions, potentially reducing costs while continuing to provide a high 
standard of care to critically ill patients.

There are several points-based schemes currently used to quantify mortality risk in ICUs today, including 
multiple iterations of the Acute Physiology and Chronic Health Evaluation (APACHE) score and Simplified Acute 
Physiology Score (SAPS). While newer versions exist, APACHE-II5 and SAPS-II6 remain the most commonly 
used mortality risk assessment tools  worldwide7. Another commonly used tool is the Sequential Organ Failure 
Assessment (SOFA)  score8, which was developed to assess sepsis risk but has since been found to be a relatively 
good predictor of mortality. Unfortunately, there are several limitations associated with these tools. Firstly, it has 
been found that their performance decreases fairly rapidly over time, with  Kramer9 indicating that SAPS II was 
out of calibration by 2005. Several subsequent studies have also identified calibration problems with APACHE, 
SOFA, and  SAPS10–12. Calibration can be lost over time due to changing patient populations and medical treat-
ments, and typically results in overestimation of  mortality9. Aside from the effect of time, Sakr et al.10 and Lew 
et al.12 noted that the schemes performed poorly for European and Singaporean cohorts, respectively. This 
indicates that insufficient consideration of diverse patient cohorts has also affected performance. Aside from 
calibration issues, these schemes rely on variables that can be time-consuming and difficult to obtain, such as 
pathological laboratory test results and patient medical history.

The limitations of existing scoring systems have lead to a rise in researchers exploring machine learning 
techniques for mortality  prediction13–20, as well as the related issues of predicting the onset of various interven-
tion  methods21,22 detecting the risk of  sepsis23–26 and other clinical deterioration  events27,28. Machine learning 
approaches have the advantage of being relatively easy to continuously update and recalibrate, with algorithms 
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able to be configured in a way that enables continuous training based on new data obtained while it is being used 
in clinical environments. This in turn enables machine learning techniques to better generalise to current local 
or global populations, even as treatments and outcomes change with time. A recurring theme in these papers 
is a dependence on features including complex laboratory results, existing health conditions, and other patient 
history. Of the aforementioned studies that consider mortality risk prediction, the majority depend heavily 
upon laboratory  results14–19, which include values obtained from extensive blood, urine, breath, and other clini-
cal analysis, and are often complex and time-consuming to obtain and then enter in patient’s medical records.

A common metric for assessing the discrimination performance of diagnostic tools is the area under the 
receiver-operator curve (AUROC). In terms of this metric, the highest performing mortality prediction systems 
were presented by Johnson et al.17 and Delehanty et al.18 with AUROCs of 0.927 and 0.94, respectively. However, 
the system presented by Johnson et al.17 is dependent on 148 features comprised predominantly of complex 
laboratory results. This limits the usefulness of the system, as medical staff would need to measure and enter a 
massive number of variables to receive an accurate prediction.

Meanwhile, in the work presented by Delahanty et al.18, only 17 variables were used—however, over 50% of 
the decision made by their system is based on All Patients Refined Diagnosis Related Groups (APR-DRG) risk 
of mortality and severity of illness, as well as Glasgow Coma Score (GCS), and the cost-weight index based on 
Medicare Diagnosis Risk Groups (MS-DRG). In short, this system depends heavily on diagnoses being made 
manually by doctors based on data available close to the time of ICU admission. This introduces potentially 
heavy human bias, and would not be functional for hospitals where the APR-DRG and MS-DRG diagnosis 
coding schemes aren’t used.

Conversely, Deliberato et al.13 investigated the use of features extracted from only vital signs, achieving 
a relatively low AUROC of 0.65, indicating low ability to distinguish between mortality and non-mortality 
cases. The authors also considered using vital signs in combination with other parameters, achieving a much 
higher AUROC of 0.84 when vitals data was combined with the GCS, SAPS-II score, patient demographics and 
information obtained about the patient during their hospital stay prior to ICU admission. This is certainly an 
improved performance; however it depends upon significant lab results and data from pre-admission. It would 
be preferable to use only vital signs and basic demographics, but with much higher performance than the 0.65 
AUROC achieved by this work.

Another common theme in the literature is that of mortality prediction at admission. While there are advan-
tages of early mortality risk prediction, this method is inflexible and does not consider how a patient might 
respond to treatments after ICU admission. This was identified in a recent work by K. Yu et al.20, where a 
bidirectional long short-term memory network was trained on multiple windows to identify mortality risk at 
any given time. This scheme uses the same features such as the SAPS-II score, which includes many laboratory 
values, GCS, demographic information, admission type, and comorbidities. As such, laboratory measurements 
would need to be repeated regularly for the system to predict effectively. Additionally, it requires 48 h of data to 
predict future mortality risk effectively.

In the literature, there are many machine learning (ML) techniques considered for prediction of mortality. 
However, there have been relatively few that investigate the use of neural networks (NNs) specifically. Early 
works investigating NNs for mortality prediction focused on simple feed-forward neural  networks29–31, achieving 
comparable performance to scoring schemes such as APACHE. Works in recent years have begun to focus on 
NNs that are more advanced, such as long short-term memory (LSTM) NNs and convolutional NNs (CNNs). 
Several  works14,20,32 have identified long short-term memory (LSTM) networks as candidates for mortality predic-
tion. LSTM has also proven successful in predicting septic  shock24 and other clinical deterioration  events28. The 
primary advantage of LSTM is that it has the ability to ‘remember’ information that it has already seen, allowing 
it to identify relationships between different variables within the sequence.

Meanwhile, convolutional neural networks (CNNs) have also proven powerful in solving many medical 
problems such as detecting heart  anomalies33–35, identifying variations in Korotkoff  sounds36 and gait  detection37. 
CNNs are exceptional at identifying the importance of certain features with respect to one another, and thus add-
ing CNN layers prior to LSTM layers can greatly improve the predictive ability compared to pure LSTM. This was 
attempted by Alvis et al.15, with their scheme achieving an AUROC of 0.836 when predicting ICU mortality from 
a 48-h window of features including vital signs and laboratory values. This strongly suggests that a well-designed 
CNN-LSTM network would be a good candidate for mortality prediction, combining the benefits of both network 
types for a resultant network that can identify important variables and any relationships that exist between them.

Aside from the model itself, another critical factor in the success of a neural network is the selection of fea-
tures. To develop a system that could automatically update mortality risk throughout a patient’s stay, it is essential 
to choose features that are both meaningful and easy to measure, ideally without any manual measurement. One 
recent work by Giannini et al.23 considered hundreds of features for predicting septic shock, a strong risk factor 
for mortality. In a retrospective analysis, the authors found that 10 out of 20 of the most important features were 
derived from vital signs, while another was age. This finding is significant but largely unsurprising, given vital 
signs measure the most critical functions of the human  body38. Fortunately, vital signs are regularly recorded, 
either through automatic measurements or regular manual measurements. These advantages mean that vital 
signs and statistics derived from them are ideal features for use in mortality prediction.

Another important factor in the real-world success of a NN for medical prediction problems is the adoption 
of clinicians. In recent years, many studies have identified the need for artificial intelligence to be interpretable, 
especially for healthcare  applications39–42. Primarily, interpretability involves making the system easier to under-
stand and therefore to trust. There are many ways to achieve this, including selecting features that are simple to 
understand from the perspective of domain  experts41.

As such, this paper aims to develop a neural network approach for mortality using straightforward features 
with clear ties to patient health. Our work contributes to the literature through the development of the novel 
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Artificial Intelligence Mortality Score (AIMS) scheme, a mortality risk classifier based on a hybridized CNN-
LSTM network that uses only age, gender, and statistical parameters derived from a 24-h window of vital sign 
measurements as features. AIMS is capable of continuously-updating prediction of the risk of mortality within 
3-day, 7-day, and 14-day windows. Much of the previous literature focuses on predicting mortality events within 
the entire  stay15–18, however the average length of stay in ICU in America is only 3.8  days4. Our analysis of the 
patients from the MIMIC-III database who met our selection criteria revealed that 65% of patients stayed in 
ICU for ≤ 3 days, 87% for ≤ 7 days, and 95% for ≤ 14 days. The models in the literature that focus on the entire 
stay would likely form a bias towards data obtained from shorter stays, given that these form the majority of 
cases. This in turn introduces the risk that models would not perform as well on longer-term patients. However, 
mortality risk assessment needs to be reliable for even the longest staying patients to ensure that they receive 
the appropriate care should they begin to stabilize or deteriorate. As our selection of 3-day, 7-day and 14-day 
windows encompasses the entire stay for the majority of patients, it enables fair comparison to the literature. 
In clinical practice, it offers the clear advantage of predicting risk within a clear time frame, with the score able 
to be easily and continuously recalculated continuously throughout the stay so that mortality risk is able to be 
quantified for all patients at all times, including for those with longer stays in ICU.

The remainder of this paper is structured as follows; Section II describes the methodology used for extract-
ing and processing data from the MIMIC III database, as well as the structure of the AIMS network. Section III 
presents results and discussion, including comparison to currently used schemes and other novel schemes in the 
literature. Finally, Section IV concludes the paper and presents recommendations for future work.

Methodology
Selection of data. The large amount of data used in this work was obtained from the Medical Information 
Mart for Intensive Care (MIMIC III) clinical  database43. The MIMIC III database is comprised of deidentified 
data from over 60,000 ICU stays, including both adult and neonatal patients.

This study focuses on adult patients admitted to ICU for any reason, and thus the only criterion when select-
ing patient records was that the patient must be ≥ 18 years old. To be able to extract data for 3-day, 7-day, and 
14-day mortality risk prediction, we obtained a 14-day window for each patient. Our method for selecting data 
is outlined as follows:

• Where the patient survived their ICU stay, and their stay exceeded 14 days, the first 14 days of data after ICU 
admission were obtained;

• Where the patient died during their ICU stay, and their stay exceeded 14 days in length, the 14 days of data 
prior to their death time were obtained;

• Where the patient stay was shorter than 14 days, all data from ICU admission to discharge from ICU were 
obtained.

For all patients, some fundamental information was recorded during the data selection process—namely their 
age, gender, and time of death where applicable.

The events that were obtained from the database for our AIMS scheme were the heart rate (HR), systolic BP 
(SBP), diastolic BP (DBP), mean arterial pressure (MAP), respiratory rate (RR), blood oxygen levels ( SpO2 ), and 
temperature. All events matching this description were obtained, as our AIMS scheme depends upon statistical 
analysis of the variation of events such as HR and temperature. Vital signs were chosen as features for two main 
reasons: interpretability, and ease of measurement in the ICU. Vital signs are the most fundamental indicator 
of health, and are readily understood by all healthcare professionals. Most vital signs are easily measured using 
non-invasive equipment, enabling continuous measurement and thus data streams rich with information. Per-
haps the most challenging to measure are BP and RR, with continuous methods currently either invasive or 
uncomfortable. However, recent research in measuring these parameters has focused on non-invasive, continuous 
 methods44, and as such it is likely that data streams for BP and RR measurement will become increasingly data 
rich as this technology is adopted into clinical practice. Richer data streams enable better quantification of the 
variability of vital signs, and thus would further improve the predictive performance of our network.

Feature selection. For the development of our AIMS scheme, features were selected or derived from the 
commonly recorded parameters in the ICU. The first two features selected are those that provide basic informa-
tion about the patient: their age and gender. Age is recorded in years as an integer, while gender is recorded as a 
binary value where ‘1’ and ‘0’ represent female and male patients, respectively.

All other features selected were chosen to represent the vital signs of interest—HR, SBP, DBP, MAP, RR, SpO2 
and temperature. These parameters were regularly recorded in the MIMIC III database, however the recording 
was often inconsistent with the frequency of measurement varying throughout the patient’s stay. This resulted 
in highly variant quantities of data available for different patients. However, it has previously been shown that 
trends in vital signs can assist in identification of clinical deterioration in hospital  settings45. As such, we apply 
statistical analysis to quantify the variability of each vital sign over the 24-h window. This has the benefit of rep-
resenting the inconsistent data within the database in a consistent manner, and also has the secondary benefit 
of improved computational efficiency.

We limit the acquisition window to 24 h to ensure that the network is considering the patient’s current health 
status. In our own experimentation, narrower windows reduced performance, while broader windows of 48 h 
did not significantly improve performance. Additionally, if a wider window were used then the network may 
be prone to under- or over-estimating the severity of the patient’s current condition based on their previous 
condition. For example, if all data from admission onward were used, then the patient might remain relatively 
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stable for the first 9 days of their stay before showing signs of deterioration on the 10th day. If a risk window 
from admission onward was used, then overall the variation in the patients health would appear low, and thus 
the deterioration may not be noticed. Similarly, a patient who is highly unstable at the start of the admission 
but stabilises as a result of treatment might incorrectly be identified as a mortality risk. Considering a 24-h risk 
window avoids this problem, as AIMS could be regularly and automatically recalculated throughout the entire 
stay, and thus would be more capable of identifying deterioration or stabilisation during long stays.

From the 24-h window, the first and last values were taken to indicate how the vital sign changed from the 
beginning to the end of the window, while the minimum and maximum values were recorded to show the most 
extreme events during the window. Mean and median were both chosen to provide an accurate representation 
of the average event for the vital sign—the use of both helps to reduce the risk of unusual data distribution skew-
ing the result. Finally, the standard deviation (STD) is used to quantify the variability of the events for that vital 
sign. Where any result was NaN, it was replaced with a ‘numerical NaN’ chosen to be the extremely negative 
value of − 999. If more than two vital signs were completely absent from a patient’s records, then that record was 
discarded and not used for training or testing of the AIMS model.

After extracting the relevant data, the final feature array included the fundamental patient information, as 
well as the variability statistics for each vital sign. This resulted in a total of 51 features, including age, gender, 
and 7 statistical features for each of the 7 vital signs.

Our model was trained to predict three different cases; risks of mortality within 3 days, 7 days, and 14 days 
respectively. These models are hereafter referred to as AIMS-3, AIMS-7 and AIMS-14 respectively. These windows 
were selected to consider both immediate mortality risk, and longer term mortality risk. The feature vectors for 
risk of mortality within 3-day, 7-day and 14-day, risk windows considered the same features, however they were 
calculated from varying 24-h windows in each case.

Where the patient survived their ICU stay, the relevant 24-h window used for training and testing the model 
was always the first 24 h after admission. Where the patient did die, the 24-h window selected was dependent 
on the length of their stay. Where the patient died within less than the 3-day, 7-day, or 14-day risk period, the 
first 24 h of data post-admission were used. Where their death occurred after a longer stay than the risk window, 
then their time of death was set as the end time, and the 24-h prediction window was chosen to start from (end 
time—size of the risk window). For example, where 3-day mortality risk was considered, the death time would 
be set as ‘72 h’. Then, 72 h prior to death would be chosen as relative 0, with the prediction window thereafter 
being data recorded between hours 0 to 24.

After data and feature selection, there were 3 distinct cohorts. This was largely as a result of inconsistencies 
in data richness, with certain variables not recorded for some patients in different windows. This lead to some 
patients having data available for one or two risk windows, but not the remainder. The cohorts for AIMS-3, 
AIMS-7, and AIMS-14 are illustrated in Tables 1, 2 and 3. Ages have been clustered by ranges, as ages exceeding 
89 in the MIMIC-III database were set to values exceeding 300 for de-identification  purposes43.

Neural network structure. Hybrid NNs offer the advantages of multiple standard NN types. In this appli-
cation, we develop a hybridized CNN-LSTM network, as shown in Fig. 1. CNNs are widely used to identify 
patterns and important features, while LSTM networks are known for their “memory”, which enables them 
to remember which information in a sequence is the most important. Combining the two network structures 

Table 1.  Characteristics of patient cohort for AIMS-3.

Characteristic All patients (n = 51,279) Survived (n = 45,863) Died (n = 5416)

Female 22,415 (43.71%) 19,888 (43.36%) 2527 (46.66%)

Age (years)

18–39 4896 (9.55%) 4687 (10.22%) 209 (3.86%)

40–59 14,204 (27.70%) 13,147 (28.67%) 1057 (19.52%)

60–79 21,230 (41.40%) 19,040 (41.51%) 2190 (40.44%)

≥ 80 10,949 (21.35%) 8989 (19.60%) 1960 (36.19%)

Table 2.  Characteristics of patient cohort for AIMS-7.

Characteristic All patients (n = 51,455) Survived (n = 45,863) Died (n = 5592)

Female 22,483 (43.69%) 19,888 (43.36%) 2595 (46.41%)

Age (years)

18–39 4906 (9.53%) 4687 (10.22%) 219 (3.92%)

40–59 14,244 (27.68%) 13,147 (28.67%) 1097 (19.62%)

60–79 21,305 (41.41%) 19,040 (41.51%) 2265 (40.50%)

≥ 80 11,000 (21.38%) 8989 (19.60%) 2011 (35.96%)
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results in a powerful hybrid NN with strong pattern and sequence recognition abilities, which is highly beneficial 
in an application where patterns and feature importances are not easily identified.

As shown in Fig. 1, our network includes two temporal (one-dimensional) CNN layers with 128 hidden units 
each. Both CNN layers utilize rectified linear unit (ReLU) activation, described mathematically as

The CNN layers can thereafter be mathematically described as follows:

where yij represents the output jth feature map of the ith layer. Convolution is indicated by the ∗ symbol. Weights 
are denoted using the term wi

jn , which describes the nth weight of the jth feature map from the (i − 1) th layer, 
where n = 1, . . . ,N . The parameter x(i−1)

m  represents the outputs of the (i − 1) th layer, and finally bj is the jth bias 
term of the ith layer. Weight and bias terms are all initialized to zero and updated using the Adam optimization 
 algorithm46 throughout training.

Temporal average pooling layers with a pool size of 2 and a stride size of 2 follow each of the CNN layers. This 
operation sweeps through the output of the CNN layers, taking the average of each pool it sees and outputting 
that value. Effectively, this downsamples the data by a factor of 2, helping prevent overfitting of the network. 
Average pooling layers are denoted in Fig. 1 as AvgPool-1 and AvgPool-2, respectively.

A bidirectional LSTM layer with 128 hidden units follows the final temporal average pooling layer. Bidirec-
tional LSTMs (BiLSTMs) have the same mathematical structure as unidirectional LSTMs, but data is passed 
through the network in both the original and reversed orders. This allows for learning from both past and future 
values in the sequence. The results of both the forward and reversed passes are then concatenated to form the 
final output. The mathematical theory of LSTM networks is described by Hochreiter et al.47.

The final layer of our AIMS network is a simple densely-connected unit utilizing sigmoid activation, which 
outputs a value between 0 and 1. If the result is < 0.5, the network predicts that the patient will survive. Con-
versely, if the result is ≥ 0.5, the network predicts that the patient will die. The further away from 0.5 the output 

(1)relu(z) = max(0, z)

(2)yij = relu

(

N
∑

n=1

wi
jn ∗ x

(i−1)
m + bij

)

Table 3.  Characteristics of patient cohort for AIMS-14.

Characteristic All patients (n = 51,639) Survived (n = 45,863) Died (n = 5776)

Female 22,560 (43.69%) 19,888 (43.36%) 2672 (46.41%)

Age (years)

18–39 4916 (9.52%) 4687 (10.22%) 229 (3.96%)

40–59 14,282 (27.66%) 13,147 (28.67%) 1135 (19.65%)

60–79 21,397 (41.44%) 19,040 (41.51%) 2357 (40.81%)

≥ 80 11,044 (21.39%) 8989 (19.60%) 2055 (35.58%)

Figure 1.  AIMS network structure.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21282  | https://doi.org/10.1038/s41598-020-78184-7

www.nature.com/scientificreports/

is, the more confident the network is in its prediction, and higher confidence typically corresponds with higher 
accuracy.

For the purposes of training and testing the performance of AIMS, thresholds are used to predict either 
‘mortality’ or ‘no mortality’. However, in terms of interpreting this result in a clinical sense, the overall predic-
tion of ‘mortality’ or ‘no mortality’ could be provided alongside a confidence metric that indicates how certain 
the neural network was of its prediction. The raw 0-1 value outputted by the final layer of the network indicates 
the level of confidence the network has in its prediction. This confidence metric could be modified for easier 
understanding by the clinicians using the following equation:

Using this equation, a score of 0.14 would be interpreted as ‘no mortality—72% confident’ while a score of 
0.78 would be interpreted as ‘mortality—56% confident’. This easy-to-understand strategy would further increase 
the likelihood that clinicians would trust the model, as they would be able to better understand the severity 
of the patient’s condition and it would be clearer that AIMS is not simply making binary decisions with full 
confidence. This metric would also give clinicians more insight into the path of treatment that would be most 
appropriate. For example, a patient who was predicted as ‘mortality—96% confident’ may require more rapid 
and extreme treatment than a patient who was predicted as ‘mortality—2% confident’; effectively on the cusp 
of the two prediction classes.

Training and testing the algorithms. To train and test the proposed AIMS network, we used stratified 
k-fold cross-validation with 10 folds. Using this method, the data is split in 10 different ways, with all data being 
used as the testing set during one fold. Stratification ensures that each class is represented roughly equally in all 
splits. Cross-validation using k-fold gives a more realistic idea of the performance of a network.

After preprocessing, records from 51,279 unique patient stays were available for use in training and testing 
AIMS-3. There were slightly higher record numbers of 51,455 and 51,639 for AIMS-7 and AIMS-14 respectively. 
The slight differences in record numbers are caused by a higher degree of missingness in some windows, leading 
to more data that was excluded in those cases. As we were using 10 folds for cross validation, 10% of the data 
was used for testing purposes and thus was unseen to the model for that fold. A further 80% of the data was 
used as the training set for AIMS, while the final 10% was used for validation, which improves fine-tuning of 
hyperparameters and allows for assessment of the “best” model during training.

The data available for this task was highly unbalanced, with mortality events only occurring in up to 11.19% 
of cases. To ensure that the model did not achieve high accuracy simply by overfitting to the majority class, 
a weighting of 9 was placed on the importance of learning the minority case. This value is reflective of the 
mortality rate within the ICUs included in the MIMIC-III database; it was chosen based on the fact that there 
were approximately 9 non-mortality cases to each mortality case within each cohort. This weighting ensured 
that the network considered the two classes to be equally important, and placed approximately equal emphasis 
on accurately predicting both mortality and survival. If the network is to be trained on an ongoing basis in the 
future, this weighting may need to be adjusted based on the mortality rates within the training set of data, but 
this could be done programmatically.

For each fold, the AIMS model was trained over 100 epochs with a batch size of 1024. These values were found 
to be optimal for ensuring that the model is capable of generalizing well, rather than overfitting to the training 
data. Binary crossentropy was used as the loss function, due to its clear suitability for this binary classification 
problem. For each fold, the “best” model weights were determined to be those that resulted in the lowest valida-
tion set loss during the 100 epochs of training; these weights were saved and used to test the model. The loss 
function used was binary cross-entropy, due to the binary classification nature of the model.

Results and discussions
Following the training and testing of AIMS-3, AIMS-7 and AIMS-14 with 10-fold cross-validation, an extensive 
statistical analysis was conducted to assess the performance. The most commonly used metric in assessing the 
performance of a diagnostic tool is AUROC, which plots the true positive rate against the false positive rate. 
Figure 2a,b illustrate the receiver-operator curves (ROCs) for each of the trained networks. It is clear from these 
figures that the ROC curve is highly consistent across all 10 folds, with none deviating far from the calculated 
average. This cross-validation confirms that the results obtained from the AIMS-3, AIMS-7, and AIMS-14 models 
are a realistic representation of how the network would perform in reality.

Figure 3 further illustrates the differences between the ROC curves for the three networks. As can be observed 
from this figure, the AIMS-3 model achieves the highest AUROC, followed by AIMS-7 and then AIMS-14. 
This is a largely unsurprising result as AIMS-3 predicts the risk of death within the shortest window of 3 days. 
However, this figure also clearly demonstrates that all three models have high AUROC, meaning that they are 
able to distinguish between mortality and non-mortality cases very well.

A numerical summary of the AUROC results obtained across the 10-fold cross-validation of each model is 
presented in Table 4. This table highlights the minimum, maximum, and average AUROC obtained across the 
10 folds when training each of the three models. These values again indicate the strong consistency across all 10 
folds of cross-validation, further suggesting that this model is realistic and suitable for use as a diagnostic tool. 
The highest variance in AUROCs across folds is seen in AIMS-14, which is to be expected given that accurate 
prediction becomes more challenging across longer windows. However, the variance is still very low and all folds 
achieved strong AUROC values.

(3)Confidence Percentage =
|0.5− output|

0.5
× 100
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An alternative metric to the AUROC considered by some works in previous literature is the area under the 
precision-recall curve (AUPRC). This metric can be useful where data is imbalanced, as it was within our chosen 
database. Fig. 4 illustrates the precision-recall curves (PRCs) for each of the AIMS schemes. As is evident in Fig. 4, 
each of the AIMS models performs strongly and is well above the baseline. Once again, we see that AIMS-3 has 
the best curve, achieving an average AUPRC of 0.5973 across 10 folds. Meanwhile AIMS-7 and AIMS-14 achieve 
AUPRCs of 0.5529 and 0.5487, respectively. This again indicates that there is more certainty regarding mortality 
risk prediction for smaller windows of time.

Other features that are important for any classification problem are accuracy (ACC), specificity or true nega-
tive rate (TNR), and sensitivity or true positive rate (TPR). ACC, TNR and TPR provide insight into the overall 
accuracy, the accuracy for the negative class, and the accuracy for the positive class, respectively. We summarise 
these parameters, as well as those of AUROC and AUPRC, in Table 5. Each of the presented value is the average, 
taken across the 10 folds of cross-validation.

Table 5 clearly shows that each of the networks achieves high accuracy. High accuracy alone cannot be used to 
assess the results where data is so heavily imbalanced, so sensitivity (TPR) and specificity (TNR) are also consid-
ered. Both of these parameters are measured between 0 and 1. High sensitivity and specificity indicate the ability 
of the network to correctly predict the mortality and non-mortality events, respectively. For each of the AIMS 
models, TPR and TNR are nearly equal, indicating that they can predict both the mortality and non-mortality 
cases with similar accuracy. Once again, AIMS-3 performs best in all categories, but AIMS-7 and AIMS-14 still 
show strong performance despite their longer prediction window.

Comparison to previous works. After performing thorough statistical analysis on AIMS-3, AIMS-7 and 
AIMS-14, we now consider how these networks perform compared to other state-of-the-art systems presented 
in the literature. The comprehensive Table 6 compares our three AIMS schemes to schemes presented by several 
recent papers. Unfortunately, many papers only presented AUROC, but where other metrics were available we 
have included these for comparison also. Accuracy and TNR have not been included, as these have unfortunately 
not been presented in any of the works we consider.

Figure 2.  Average ROC and ROC of each fold for 10-fold cross validation.

Figure 3.  Comparison of ROCs for all AIMS schemes.
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Figure 4.  Comparison of PRCs for all AIMS schemes.

Table 4.  AUROC statistics over 10 folds.

Model

AUROC

Minimum Average Maximum

AIMS-3 0.8741 0.8835 0.8926

AIMS-7 0.8587 0.8619 0.8676

AIMS-14 0.8399 0.8577 0.8826

Table 5.  Results obtained by AIMS.

Model ACC (%) TNR TPR AUROC AUPRC

AIMS-3 80.07 0.802 0.792 0.884 0.597

AIMS-7 77.07 0.770 0.780 0.862 0.553

AIMS-14 76.22 0.765 0.779 0.858 0.549

Table 6.  Performance of AIMS-3, AIMS-7, AIMS-14 and other schemes from the literature.

No. features Description of features Measurement window (h) TPR AUROC AUPRC

Alves15 37 Vital Signs, Laboratory Results 48 (from admission) – 0.836 –

Delahanty18 17 APR-DRG Codes, MS-DRG Cost Index, GCS, 
Vital Signs, Laboratory Results 48 (24 h pre- and post-ICU admission) – 0.94 –

Deliberato13 (Best Model) 14 Vital Signs, Demographics, GCS Varies—1 h from admission, plus pre-admission 
data and SAPS-II – 0.84 –

Deliberato13 (Vitals Model) 6 Vital Signs 1 (from admission) – 0.65 –

Johnson17 148 Vital Signs, GCS Laboratory Results 24 (from admission) – 0.927 –

Thorsen-Meyer32 44
SAPS-III features (Vital Signs, GCS, Laboratory 
Values, Comorbidities, Demographics, Patient 
History)

Various (from admission) – 0.73–0.88 –

Miao19 32 Demographics, Comorbidities, Laboratory 
Values, Medications N/A—used first measurements after admission – 0.821 –

Yu20 Varies Bag-of-words representation 48 (any window) – 0.8854 0.3184

Yu14 15 Vital Signs, GCS, Laboratory Results 24 (from admission) 0.503 – 0.520

Zahid16 79 Vital Signs, Laboratory Results, Demographics, 
GCS 24 (from admission) – 0.86 –

AIMS-3 51 Age, Gender, Vital Signs 24 (any window) 0.792 0.884 0.597

AIMS-7 51 Age, Gender, Vital Signs 24 (any window) 0.780 0.862 0.553

AIMS-14 51 Age, Gender, Vital Signs 24 (any window) 0.779 0.858 0.549
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We include columns presenting the number of features, measurement window, and description of features. 
The description of features column is used to broadly explain what types of features were used by each network. 
‘Vital signs’ refers to raw vital signs and any statistics derived from them, ‘GCS’ is the manually determined 
Glasgow Coma Score, ‘demographics’ refers to information about the patient’s background, ‘comorbidities’ are 
existing diagnosed conditions, and ‘medications’ are those administered during the ICU stay. ‘Laboratory results’ 
refers to results obtained from blood, urine, and other laboratory analysis, including but not limited to: bilirubin, 
creatinine, hematocrit, blood urea nitrogen, white blood cell count, and many more.

Our AIMS-3 and AIMS-7 networks exceed the performance of all other schemes except those presented by 
Johnson et al.17, Delahanty et al.18, Thorsen-Meyer et al.32, and K. Yu et al.20 in all measured metrics. Compared 
to the scheme presented by K. Yu et al.20, our AIMS-3 scheme achieves an AUROC that is less than 0.002 lower, 
while AIMS-7 and AIMS-14 achieve slightly lower AUROCs. However, our models perform much more strongly 
in terms of the AUPRC. This indicates that our models have far stronger precision and recall, which in turn 
indicates a higher accuracy, and stronger performance on the mortality event class. Additionally, our scheme 
depends on far simpler features that are easily interpreted by the user.

The model proposed by Thorsen-Meyer et al.32 for 90-day mortality from admission time was based on itera-
tive improvement to the measurement throughout the hospital stay. It is based on the same features as SAPS-
III, with these features recalculated every hour and used to update the model’s prediction. At admission, the 
AUROC was at its lowest − 0.73. This then steadily increased throughout the stay, with AUROC reaching 0.82 
after 24 h, then 0.85 after 72 h, and finally 0.88 at the time of discharge from ICU. This is an interesting approach 
for long-term mortality prediction, however it differs from our own scheme in several ways. Firstly, our scheme 
provides mortality risk prediction within shorter windows, which is more suitable for supporting immediate 
treatment decisions. Accurate prediction of 90-day mortality is certainly commendable, but the width of the 
window would limit the usefulness in making treatment decisions during a patient’s stay. Secondly, the depend-
ence of the Thorsen-Meyer et al.  model32 on SAPS-III parameters introduces a higher burden on healthcare 
workers, with a number of pathological tests needing to be constantly re-run to keep this information up-to-date. 
Our scheme uses only vital signs, which are simple to record even without automatic equipment. As such, our 
scheme would place less additional burden on healthcare providers and would be more suitable for low-resource 
hospitals. Finally, the Thorsen-Meyer et al.  model32 has substantially lower AUROC during the early stages of 
admission, reaching only 0.82 with 24 h of data. All three of our AIMS schemes achieve a higher AUROC using 
24 h of data. Furthermore, within 24 h our AIMS-3 scheme achieves a marginally better AUROC than that of 
the Thorsen-Meyer et al.  model32 at time of discharge. Overall, the AIMS scheme would be more suitable for 
short-term mortality prediction in ICU environments.

The AUROC of our strongest network, AIMS-3, also compares favourably to the high-performing scheme 
presented by Johnson et al.17. Unfortunately there are no other metrics presented in this paper to which we can 
compare. However, it is clear that this model depends on a feature vector nearly three times larger than our 
own. Additionally, the feature vector used by Johnson et al.17 depended heavily upon laboratory values. Of the 
148 variables considered, only 20 were vital signs—the rest were the results of laboratory tests and the GCS. As 
such, it would be extremely difficult to implement this scheme in reality, and even more challenging to update it 
regularly during the stay, as medical professionals would have to undertake the laborious task of extensive data 
entry. Meanwhile, our scheme depends primarily on vital signs that are either automatically recorded or manu-
ally measured simply and regularly, greatly reducing the demand on healthcare workers.

Minimal statistics were presented by Delahanty et al.18, but they do achieve the highest AUROC of the papers 
we consider. Unfortunately, it has many limitations. While it depends on 17 features directly, three of those fea-
tures are based on manual diagnosis. As previously discussed, the APR-DRG Risk of Mortality and APR-DRG 
Severity of Illness are determined based on the diagnosis of the patient, which requires that all diagnoses are 
known, and also that the hospital uses this particular coding scheme. The scheme also demonstrated strong 
dependency on MS-DRG codes to determine the Medicare cost-weight index, and these codes are certainly 
not used in all hospitals. Despite depending on 17 features directly, the dependency of the scheme presented by 
Delahanty et al.18 on these 3 diagnoses-based features means that there is a much greater true dependence based 
on the many parameters that are used to determine the diagnosis. Additionally, the scheme presented Delahanty 
et al.18 depends on a 48-h window including 24 h pre-ICU admission and 24 h following admission. Therefore, 
it could not be used in any window other than at ICU admission, and would likely not perform well where the 
patient is admitted directly to ICU without having first stayed elsewhere in the hospital. Conversely, our AIMS 
schemes depend on just 24 h of data, and can be easily and automatically updated throughout the patient’s stay.

Overall, our AIMS schemes—particularly AIMS-3—perform strongly as opposed to the comparative schemes 
in the literature. Two papers—those by Johnosn et al.17 and Delahanty et al.18 achieved higher AUROC, but pre-
sented no other statistics. Additionally, there are strong limiting factors that would prevent their adoption into 
healthcare environments. Meanwhile, our AIMS networks depend solely upon statistics derived from vital signs 
and two simple demographics—age and gender. These parameters are regularly recorded in ICUs, often auto-
matically. Additionally, the selection of vital signs as parameters would ensure that even low-resource healthcare 
environments would be able to utilise our scheme. The ease of measurement would also be extremely valuable 
in times of crises where a high number of patients may be admitted to intensive care, such as following a natural 
disaster or during a pandemic like COVID-19. Other schemes in the literature that rely on time-consuming and 
laborious collection of pathology results and/or patient histories would place high burden on an already strained 
system, making them challenging and impractical to use in such situations.

Our AIMS models also have the advantage of being easy to calculate in any 24-h window due to the regular 
and often continuous recording of vital signs. This is a significant advantage over other schemes that have only 
considered calculation of mortality during a single window immediately following admission. We therefore 
conclude that our scheme is a strong candidate for predicting real-time mortality in ICU environments, however 
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we acknowledge that this study has been conducted retrospectively on a single popular ICU database. We aim to 
further verify the performance of AIMS through clinical trials, with the aim of ensuring that it will perform as 
strongly on other patient populations. Further improvements will be made as necessary to ensure that the AIMS 
scheme performs equally well across all populations.

Conclusion
In this paper, we have presented AIMS, a hybrid neural network structure that combines temporal convolution 
layers with long short-term memory layers. We have then trained and tested three instances of AIMS: AIMS-
3, AIMS-7, and AIMS-14, which predict the risk of a mortality event within the following 3, 7, and 14 days, 
respectively.

AIMS-3 was the highest performing instance of the network, however AIMS-7 and AIMS-14 also perform 
strongly and compare well to other schemes in the literature. All three schemes could be used simultaneously 
in hospitals, giving healthcare workers a clear picture of both short-term and longer-term mortality risk to the 
patient.

The AIMS scheme is dependent only on age, gender, and statistics derived from vital signs. These features are 
all readily and regularly recorded in ICU environments, with minimal effort required by healthcare workers. The 
simplicity of the features chosen also ensures that AIMS could be recalculated on a continuous and automatic 
basis during a patient’s stay. This would provide invaluable information about whether a patient is responding 
to treatment or not, thus allowing medical professionals to modify their treatment plan more readily. Further-
more, the simplicity of both inputs and outputs to AIMS improves the interpretability of the overall model, thus 
improving the likelihood that healthcare providers would place their trust in its predictions.

One limiting factor for this work was that the MIMIC-III records for individual patients are not equally 
data-rich for all windows considered. This leads to some patients being included in the cohort for one or two 
schemes, but not the remainder. In turn, this prevented robust analysis of stability between the systems—that 
is, analysis of how similar the predictions of AIMS-3, AIMS-7, and AIMS-14 were for a single patient. We aim 
to address this in the clinical trial phase, where we will be able to ensure that data is recorded with consistent 
frequency throughout trials.

Overall, AIMS is an easy-to-interpret and powerful tool for mortality risk prediction in the ICU. The results 
presented in this paper indicate that the three AIMS networks may be suitable for clinical implementation. In 
our own future works, we aim to conduct clinical trials using the AIMS networks to further analyse and improve 
upon its performance. We will also seek to assess the interpretability of the system during the clinical trial process, 
improving upon it as necessary.
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