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Abstract: Asian seabass (or commonly known as barramundi), Lates calcarifer, is a bony euryhaline
teleost from the Family Latidae, inhabiting nearshore, estuarine, and marine connected freshwaters
throughout the tropical Indo-West Pacific region. The species is catadromous, whereby adults spawn
in salinities between 28 and 34 ppt at the mouth of estuaries, with resultant juveniles usually moving
into brackish and freshwater systems to mature, before returning to the sea to spawn again as adults.
The species lives in both marine and freshwater habitats and can move quickly between the two;
thus, the species’ ability to tolerate changes in salinity makes it a good candidate for studying the
salinity acclimation response in teleosts. In this study, the transcriptome of two major osmoregulatory
organs (gills and kidneys) of young juvenile Asian seabass reared in freshwater and seawater were
compared. The euryhaline nature of Asian seabass was found to be highly pliable and the moldability
of the trait was further confirmed by histological analyses of gills and kidneys. Differences in
major expression pathways were observed, with differentially expressed genes including those
related to osmoregulation, tissue/organ morphogenesis, and cell volume regulation as central to the
osmo-adaptive response. Additionally, genes coding for mucins were upregulated specifically under
saline conditions, whereas several genes important for growth and development, as well as circadian
entrainment were specifically enriched in fish reared in freshwater. Routing of the circadian rhythm
mediated by salinity changes could be the initial step in salinity acclimation and possibly migration
in euryhaline fish species such as the Asian seabass.

Keywords: euryhalinity; Asian seabass; fish; osmoregulation; acclimation; transcriptome; pliable
trait; freshwater transcriptome; marine transcriptome

1. Introduction

Fishes are the most speciose amongst the vertebrates, represented by more than 33,000 species [1].
The water environment of fishes is usually defined in terms of salinity as either freshwater (<0.5 parts
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per thousand (ppt)), brackish 0.5–30 ppt, or marine (30–40 ppt) [2]. The large majority of teleosts
are stenohaline and only able to survive in habitats with relatively stable salinity. Thus, such fishes
can live either exclusively in freshwater (e.g., goldfish, guppies, and channel catfish), or in marine
environments (e.g., pufferfish, tuna, swordfish) [2]. However, there are also a minority of fish species
(2–3%) that are euryhaline (eurys: broad; halinos: salinity) and capable of tolerating broad fluctuations
in salinities. Euryhaline fishes typically inhabit estuaries, where salinity changes are frequent, or are
often migratory and capable of staying both in fresh and seawater during different stages of the
life-cycle. The migration can be either towards the freshwater to breed (anadromous, e.g., Salmo salar,
Gasterosteus aculeatus, Acipenser medirostris, Petromyzon marinus), or the ocean (catadromous, e.g.,
Anguilla rostrata, Anguilla japonica, L. calcarifer). The existence of diadromy (movement of fish between
fresh and marine environment to complete their lifecycle) is phylogenetically primitive, indicating
that this life-history represents an evolutionarily ancient strategy [2]. Further, in spite of the obvious
evolutionary advantage of euryhalinity (in terms of fish survival in the face of salinity fluctuations),
the infrequent occurrence of euryhaline fishes indicates the considerably high costs associated with the
physiological plasticity [2,3] and the trait would have been lost, if not for strong selection pressure.

Euryhaline fish are adapted to deal with the osmoregulatory consequences of disparate saline
environments, although the exact physiological and gene expression mechanisms allowing them to
maintain homeostasis and tolerate salinity fluctuations are not completely understood. Osmolarity of
fish blood plasma usually ranges between 300 and 400 mOsmL−1, while dependent on the salinity of
the water in which they live, osmotic pressures in the external medium may be as low as 0 mOsmL−1

in fresh water (hyposmotic) to 1100 mOsmL−1 in seawater (hyperosmotic) [4]. In the hyperosmotic
marine environment, fishes tend to gain salts and lose water by passive diffusion, while the opposite
happens in freshwater with fishes gaining water and losing salts [5]. Therefore, in the hyposmotic
freshwater environment, homeostasis is achieved by restricting the water influx through the body
surface and by expelling water excessively through the kidneys [6]. The gills and skin in freshwater
fishes actively uptake ions from the water to make up for the unavoidable loss of ions excreted with the
water. For example, freshwater fishes have specialized epithelial cells termed ionocytes in the gill and
skin which actively maintain osmotic homeostasis by absorbing salt from the external environment.
Conversely, in the marine environment, acclimation of fish includes drinking large amounts of water,
expelling excess salts, and increased water absorption through the gut. Therefore, central to the
acclimation in euryhaline fishes is the ability to reverse the drinking rate, as well as ion fluxes, to
survive in different salinities [2,7].

In order to be euryhaline, fish osmoregulatory organs such as gills and kidneys are required to
alter the relevance of cell types together with the intracellular landscape to adapt to changing ionic
and osmotic environments. This versatility enables the fish to move from freshwater to seawater and
vice-versa [8]. In fishes, gills play an important role in maintaining osmolarity in the organism, serving
to passage the ions and water molecules to-and-from the fish body and its environment. The gill
epithelium is mainly comprised of non-differentiated, neuroepithelial, chloride, mucous, and pavement
cells. The chloride cells, also called ionocytes, are specialized cells which are rich in mitochondria and
have ion transporters and channels embedded in the plasma membrane. These cells play a key role in
maintaining the iono-osmotic balance by essentially serving to counter the effect of the environment;
absorbing (sequestering) ions in freshwater and flushing (secreting) ions in the ‘high salt’ marine
environment. Another important osmoregulatory organ is the kidney which also plays an important
role in keeping the water–salt balance in fishes [9].

Small-scale studies have reported various aspects of fish euryhalinity, including expression
analyses of a set of targeted key genes, such as genes involved in iono-osmoregulation (European
eel Anguilla anguilla, Japanese eel Anguilla japonica, and killifish Fundulus heteroclitus) [10–14].
Understandably, as only a small subset of possible genes involved in iono-osmoregulation were targeted,
these have provided limited insights into the response of the transcriptome of euryhaline fish when
exposed to different salinities. However, recently, studies have focused on obtaining a global view of the
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euryhaline fish transcriptome. These include microarray-based transcriptome profiling in the euryhaline
longjaw mudsucker (Gillichthys mirabilis) and killifish (Fundulus majalis and F. heteroclitus), as well as Next
Generation Sequencing (NGS)-based studies in amphidromous ayu (Plecoglossus altivelis), Mozambique
tilapia (Oreochromis mossambicus), threespine stickleback (G. aculeatus), Alewife (Alosa pseudoharengus),
and Sacramento splittail (Pogonichthys macrolepidotus), [8,15–20]. Both small-scale and large-scale
studies have shown that major responses to salinity occur at the transcriptome level, coupled with
extensive cellular remodeling, and have identified differential expression of ion transporters as the key
step instrumental in restoring homeostasis. In addition, compensatory acclimation includes changes in
pathways related to hormones, energy metabolism, alteration of cell structure and function, as well as
other genes important for restoring osmotic homeostasis [8,21–29].

Due to their ability to adapt to varying salinities, euryhaline fishes provide an excellent model to
understand the genetic basis of salt acclimation in the aquatic environment [30–33]. Asian seabass
(L. calcarifer; Bloch, 1790), also known as barramundi or giant perch, is an euryhaline, carnivorous
teleost, popular as a food fish in southeast Asia, Australia, and most of the Indian subcontinent [34–39].
Asian seabass is catadromous (fish that spend most of their life in freshwater, but spawn in seawater),
although Asian seabass do not necessarily always migrate [39]. The species as adults spawn in near
marine conditions (28–34 ppt) at the mouth of estuaries and rocky headlands, with resultant larvae
usually entering brackish estuaries to metamorphose into juveniles in seagrass beds or coastal swamps.
Juveniles then spend the majority of their life in fresh and/or brackish waters, before migrating to
the marine environment to breed [40]. Thus, under natural conditions, the life cycle of this species is
complex including freshwater, estuarine, and marine phases [40–43]. Asian seabass can also rapidly
acclimate to different salinities, including from freshwater to full marine and vice versa in a few hours,
and in aquaculture often juveniles bred and held in saltwater are rapidly acclimated to freshwater for
farming (or vice-versa depending on nursery stage and production system) [39,44].

The aim of this study was to decipher the molecular basis of salinity acclimation in this euryhaline
species. Gills and kidneys, the two major osmoregulatory (as well as excretory) organs which help the
fish to adapt to varying salinities were the focus of this study. Therefore, we obtained the global gill and
kidney transcriptome of juvenile Asian seabass reared in either freshwater (0 ppt), marine conditions
(32 ppt), or reared initially in freshwater and then transferred into seawater (as occurs regularly in
aquaculture production; [39]). We also performed a histological analysis in order to ascertain the effect
of changed salinity conditions in these two tissues of juvenile Asian seabass.

2. Materials and Methods

2.1. Ethics Statement

All experiments were approved by Agri-food and Veterinary Authority (AVA) Institutional
Animal Care and Use Committee (IACUC) (approval ID: AVA-MAC-2012-02), Temasek Life Sciences
Laboratory (TLL) Institutional Animal Care and Use Committee (IACUC) (approval ID: TLL (F)-14-003)
and performed according to guidelines set by the National Advisory Committee on Laboratory Animal
Research (NACLAR) for the care and use of animals for scientific research in Singapore.

2.2. Experimental Setup and Sampling

Fish used for this experiment resulted from a regular mass-spawning event. Each such episode
typically comprised of 5–10 males and females each and was conducted at the Marine Aquaculture
Centre (MAC), St John’s Island, Singapore. Such mass-spawns commonly result in the creation of
numerous full- and half-sib families, meaning that the cohort of fish analyzed was likely of mixed
family status [45,46]. Briefly, fertilized eggs were incubated at a stocking density of 1000 eggs L−1 in
32 ppt seawater, where after upon hatching larvae were then placed into 10 L canvas tanks at a stocking
density of 100 larvae L−1 (1000 larvae per canvas tank) where they were raised to 40 days post-hatch
(dph). At 40 dph, ≈300 individuals of very similar size (≈< 0.2 g) were selected and transferred to
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the fish facility at the Temasek Life Sciences Laboratory, Singapore and were fed daily with TOMBOY
Micro 80 (Skretting, Nutreco, Norway) feed. The fish were kept at 30–32 ppt for four days (44 dph) in
order to acclimate, after which, the fish were randomly divided and transferred immediately into six
separate tanks; three replicates for (i) freshwater (0 ppt) and three replicates for (ii) seawater (30–32 ppt)
treatments. Each of the six tanks held ≈ 50 fish. At 65 dph (i.e., after 3 weeks of maintenance under
the same salinity conditions), three individuals per tank were sacrificed and gill and kidney tissue
samples collected from seawater-reared (gills: SG1; kidneys: SK1) and freshwater-reared (gills: FG1;
kidneys: FK1) groups for histological and transcriptomic analyses. At this time point, a subset of
fishes which had been reared in freshwater were transferred immediately into 32 ppt and grown for an
additional 3 weeks and then sampled (gills: RSG2; kidneys: RSK2) (at 86 dph), whereas the rest from
the seawater tanks were maintained there and sampled at the end (gills: SG2; kidneys: SK2; see Figure 1
for the experimental setup). Over the 42 days of the trial, no significant growth differences were
found among seabass in the freshwater or saltwater treatments. In summary, for each sampling point,
nine representative individuals each were collected (three from each replicate tank) for histology and
RNA-seq analyses, respectively. Thus, in total, samples were collected from 72 individuals (RNAseq,
36; histology, 36). For sampling, the fishes were sacrificed by immersion in 2% tricaine, then dissected
and kidney and gill samples collected. Samples for RNA-seq were snap-frozen in liquid nitrogen and
stored at−80 ◦C prior to use. Samples collected for histology were stored in 10% buffered formaldehyde
at 4 ◦C for at least 72 h.
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Figure 1. Flow chart outlining the experimental design for assessing the Asian seabass transcriptome
under different salinity conditions. Abbreviations: dph: days post hatch; gills (SG1) and kidneys (SK1)
from seawater grown fishes at 65 dph; gills (FG1) and kidneys (FK1) from freshwater grown fishes at
65 dph; gills (SG2) and kidneys (SK2) from seawater grown fishes at 86 dph; gills (RSG2) and kidneys
(RSK2) from fishes returned to seawater at 86 dph.

Details of the experimental set-up are summarized as in Figure 1.

2.3. RNA Extraction, Library Construction, and Sequencing

Total RNA was extracted from organ samples collected using a RNeasy Mini kit with Dnase
treatment (Cat No. 74106; Qiagen Singapore Pte. Ltd., Singapore), following the manufacturer’s
protocol (three fish from each replicate tank). RNA concentration was determined using a NanoDrop
1000 (NanoDrop Technologies, USA). The RNA integrity number (RIN) of extracted total RNA was
determined by running samples on an Agilent 2100 Bioanalyzer (Agilent Technologies, Nærum,
Denmark). Total RNA was used to prepare libraries for sequencing using a TruSeq® Stranded Total
RNA Sample Preparation kit. The RNA-seq libraries were then sequenced with a read length of
75 nucleotides on the Illumina Nextseq 500 system. The average number of reads generated per sample
was 46,169,877.
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2.4. Mapping of Reads and Differential Expression Analyses

The amount of reads generated per sample along with percentage of reads were mapped to the
Asian seabass reference genome [37] using Tophat v2.0.13, as summarized in Supplementary Table S1.
Cuffdiff v2.2.0 was used for abundance calculation (represented as Fragments Per Kilobase of transcript
per Million mapped reads (FPKM)) and identification of differentially expressed genes (DEGs). Criteria
of at least two-fold difference, p-value <0.05 and false discovery rate (FDR) <0.1 was applied to identify
the DEGs. The bioinformatics analyses reported here was performed as a paid service by DNA Link,
Inc. (Seoul, South Korea).

2.5. Gene Ontology and Pathway Enrichment Analyses

GO annotation results of differentially expressed genes under different conditions were plotted
using the Web Gene Ontology Annotation Plot (WEGO) (http://wego.genomics.org.cn). The gene
names and the corresponding GO identities in the WEGO native format were used as input to the
WEGO tool for GO classification and plots [47].

The web server, KEGG Orthology Based Annotation System (KOBAS 2.0) was used for identifying
enriched pathways amongst the genes differentially expressed between kidneys and gills. This tool
performed analyses in two steps: (1) annotation of the set of input genes with KO terms; (2) identification
of statistical significance for each pathway. Fisher’s exact test and Benjamini–Hochberg FDR correction
were used as parameters and a corrected p-value of <0.05 was used to identify the enriched pathways.

2.6. Histology

Kidney and gill samples fixed for 72 h in 10% chilled formalin were removed from the formalin and
dehydrated in increasing gradients of ethanol (50%, 60%, 70%, 85%, 95%, and 100%). The dehydrated
tissue was embedded in hydroxyethyl methacrylate (Historesin, Leica, Germany) and sectioned into a
series of ≈8–10 sections per sample (section thickness: ≈5 µm), mounted on slides and colored using
Hematoxylin-eosin (H/E). The gill sections were stained with Periodic Acid Schiff (PAS) [48], for the
identification of mucus cells. The Von Kossa staining method [49] was used for the identification of
chloride cells with calcium in the gill sections. Sections were stained with 1% silver nitrate for 20 min
under the UV light, washed in water, immersed in 5% thiosulphate for 5 min to remove excess silver
nitrate on the slide, washed in water, and stained with Hematoxylin for 5 min. Microscopic analyses
were done using a Zeiss Axioplan 2 microscope mounted with a Nikon digital camera DXM 1200F
(Oberkochen, Germany). In each case, nine representative fish per treatment were examined.

2.7. Counting Gill Chloride Cell Numbers and Kidney Glomerular Size

Chloride cell numbers were determined by counting the cells in a 0.075 mm2 gill surface area: five
representative fishes were examined per treatment. Significant differences in the number of chloride
cells and glomerular size between each group were determined by one-way ANOVA, followed by a
Tukey HSD multiple pairwise comparison test using R™ version 3.4.1 [50]. Differences were considered
significant only if their adjusted p-value (Padj) was <0.05 with 95% family-wise confidence level.
The measurements of glomerular diameter were done using the Fiji software [51] (Supplementary
Table S2).

3. Results and Discussion

The euryhaline nature of Asian seabass, a popular food fish in southeast Asia, Australia, and
the Indian subcontinent, provides a useful model to study acclimation to varying environmental
niches [37,38]. Under natural conditions, the Asian seabass are only between 12 dph to 12 weeks
post-hatch (wph) when they have to first acclimatize to dramatic decreases in water salinity (marine to
brackish/freshwater salinities) [40]; thus, young juveniles formed the basis of the study.

http://wego.genomics.org.cn
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3.1. Changes in Gills and Kidney Histology Accompanied the Acclimation Response to Different Salinities

We performed a histological analysis of the gills and kidneys in order to ascertain the effect of
changed salinity conditions in Asian seabass. Histology showed a large number of chloride cells on the
gill lamellae and filaments in seabass kept in seawater in the two control groups (SG1 and SG2), as well
as the seabass returned to seawater from freshwater (RSG2). In contrast, the numbers of chloride cells
in seabass exposed to freshwater (FG1) was significantly reduced in comparison to those reared in
seawater (Figure 2E; p < 0.05). This demonstrates that Asian seabass gill tissue undergoes substantive
remodeling when exposed to a saline environment, resulting in increased proliferation of ionocytes as
an acclimation requirement to excrete excess ions. When in freshwater these cells are required less and
consequently their numbers reduce in the epithelial tissue.
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Figure 2. Histological analysis of Asian seabass gills showed a highly plastic phenotype with fishes
transferred to freshwater showing a distinct decrease in chloride cell numbers which was regained
upon being transferred back to seawater. Transverse section of the gills of Asian seabass (A) SG1,
(B) FG1, (C) SG2, (D) RSG2. The sections were stained with Von Kossa staining. The scale bar is 20 µm.
A multiple pairwise comparison test of chloride cell numbers between the four different groups showed
that each group was significantly different (p < 0.05) from the other (E). Abbreviations: PL: primary
lamella; SL: secondary lamella; CC: chloride cells; CVS: central venous sinus; MC: mucus cells; gills
(SG1) from sea water grown fishes at 65 dph; gills (FG1) from fresh water grown fishes at 65 dph; gills
(SG2) from sea water grown fishes at 86 dph; gills (RSG2) from fishes returned to seawater at 86 dph.

This remodeling in Asian seabass is similar to that seen in two species of killifish, Fundulus majalis
(a species which retains the ancestral salt tolerant phenotype) and F. heteroclitus (a species which
exhibits osmotic plasticity) [20]. In this study, it was shown that the ability of the euryhaline killifish
(F. heteroclitus) to acclimate to salinity changes is largely attributed to its dynamic capacity to remodel
the morphology of the gill epithelium. This involved, similar to our observations, a drastic reduction
in the chloride cell numbers in the gills of freshwater grown fishes which were regained upon transfer
of fish back into seawater [20].
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Histological analyses of Asian seabass kidney revealed collecting tubules of varying shapes
and sizes located throughout the kidneys as well as glomeruli surrounded by Bowman’s space with
interspersed hematopoietic regions (Figure 3). Kidneys of seabass individuals adapted to freshwater
had well developed glomeruli (≈25 µm), whereas, glomerulus size was visibly reduced in the kidneys
of the seawater controls (≈13 µm; SG1 and SG2), as well as the group which had been returned to
seawater after being grown for 3 weeks in freshwater (RSG2). Due to the shrunken glomeruli in
these fishes, the Bowman’s space was also more evident. These features were more distinct in fish
kept in seawater for longer duration (SG2 vs. SG1) (Figure 3). In addition, structures within the
kidneys such as the collecting tubule and glomeruli were compact and well developed in seabass
acclimated to freshwater. Fish grown in a hypotonic environment need to pass large volumes of urine
in order to maintain homeostasis, hence typically have well developed glomeruli [52,53]. Further, it has
been reported that decreasing the size and number of glomeruli (i.e., Trisopterus luscus), or secondary
elimination of glomeruli in certain fish species (i.e., Syngathidae, Batrachoididae) serves as a protective
mechanism to limit fluid loss in the marine environment [9]. This reduction/elimination of glomerular
surface area possibly decreases fluid motion which in turn allows more time for passive diffusion of
water back into the blood [5,9,52,53].
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Figure 3. Histological analysis of Asian seabass grown in seawater shows structural changes in the
Bowman’s capsule, glomerulus, and papillary ducts of the kidney upon being transferred and grown
in freshwater. Transverse section of the Asian seabass kidney (A) SK1, (B) FK1, (C) SK2, (D) RSK2.
The sections were stained with H&E. The scale bar is 20 µm. Multiple pairwise comparison test of
glomerular size between the four different groups (E). The letters above each bar (a: SK1; b: FK1;
c: SK2; d: RSK2) indicates the groups from which it is significantly different (p < 0.05). Abbreviations:
BS: Bowman’s space; G: glomerulus; DT: distal tubules; kidneys (SK1) from seawater grown fishes at
65 dph; kidneys (FK1) from freshwater grown fishes at 65 dph; kidneys (SK2) from seawater grown
fishes at 86 dph; kidneys (RSK2) from fishes returned to seawater at 86 dph.
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3.2. RNA-Seq Analyses

RNA-Seq of gill and kidney tissues were performed to investigate gene regulation in these two
osmoregulatory tissues under different salinities. A large number of differentially expressed (DE)
transcripts were observed in the two major osmoregulatory organs: kidneys (4110) and gills (3809) of
fishes adapted to freshwater compared to seawater-grown fishes (FG1 vs. SG1; FK1 vs. SK1). For both
gills and kidneys, freshwater fish in comparison to saltwater samples exhibited a larger proportion of
upregulated transcripts (2552: gills; 2529: kidneys), compared to downregulated transcripts (1257: gills;
1581: kidneys). Conversely, gills of seabass reared in seawater (SG2) when compared to gills of fish
grown in freshwater (RSG2) before transfer to seawater for 3 weeks showed the least number of
differentially expressed transcripts (RSG2 vs. SG2 (1018); up: 397, down: 621). An intermediate
number of differentially expressed transcripts could be identified on comparing the gills of seabass
adapted to freshwater at 65 dph and gills of fishes which had been returned to seawater and grown for
an additional 3 weeks (RSG2 vs. FG1 (2254); up: 825, down: 1429) (Figure 4).
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Figure 4. Summary of differentially expressed genes in the gills and kidneys of Asian seabass acclimated
to different salinity conditions. (A) The graph shows the number of differentially expressed genes (up-
and downregulated) under different conditions—FG1 vs. SG1, FK1 vs. SK1, RSG2 vs. SG2, and RSG2
vs. FG1. (B,C) Venn diagrams showing the unique differentially expressed genes as well as genes
shared between the different salinity conditions or organs. Abbreviations: Refer to Figure 1.

In addition, we identified transcripts which were unique to, or showed overlap between, different
salinity conditions. Amongst the upregulated transcripts identified in the four pairwise comparisons,
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a larger percentage of transcripts were unique to a specific set of comparisons (FG1 vs. SG1: 27.8%,
FK1 vs. SK1: 27%, and RSG2 vs. FG1: 24.8%). This trend was also observed within the downregulated
dataset, with the majority differentially expressed transcripts unique to RSG2 vs. FG1: 45.9%, FK1
vs. SK1: 19.2%, and FG1 vs. SG1: 16.1%. The least number of unique differentially expressed
transcripts were seen in RSG2 vs. SG2 (unique upregulated: 2.3%; downregulated: 3.4%; Figure 4).
Additionally, the largest common set of differentially expressed transcripts was shared between the gills
and kidneys—FG1 vs. SG1 and FK1 vs. SK1; Totally—1095; 809 upregulated and 286 downregulated
(Supplementary Table S3).

3.3. The Euryhaline Trait is Pliable

In order to assess the flexibility of the euryhaline trait, the transcriptome of seabass which had
been returned to seawater after having adapted to freshwater was compared to the transcriptome of
seabass which had been raised in seawater throughout the trial (both groups were of 86 dph age at the
time of sampling). This pairwise comparison (i.e., SG2 vs. RSG2) had the least number of differentially
expressed genes (both up- and downregulated), indicating that the fishes quickly reverted to the
seawater-adapted gene regulatory state upon being transferred back to seawater. A closer look at
the upregulated genes further made it apparent that the gene expression profile of the seabass in the
RSG2 group was reinstating itself to the physiological state required by fishes for survival under saline
conditions. This was evident upon comparing the top 25 differentially expressed transcripts in the
FG1 vs. SG1 to the differentially expressed transcripts identified in the RSG2 vs. SG2 comparison.
All these transcripts were expressed at a higher level in the FG1 vs. SG1 comparison compared
to saline re-acclimated vs. continually seawater-maintained seabass. Additionally, eight of the top
25 transcripts could be identified on the list of top 100 upregulated transcripts in the RSG2 vs. SG2
comparison. This included thyroglobulin (Tg) which was the most upregulated transcript across both
the comparisons; however, it was ≈ 445-fold upregulated in FG1 vs. SG1 and only 50-fold upregulated
in RSG2 vs. SG2 (Figure 5). Thus, when the fishes were returned to seawater, the transcriptome of
fishes was pliable enough to transform quickly back from the freshwater to seawater state.Genes 2020, 11, x FOR PEER REVIEW  10 of 21 
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Figure 5. The euryhaline trait is pliable and involves the differential expression of a core set of genes.
The top 25 differentially expressed genes in the FG1 vs. SG1 comparison (blue diamonds; 1–25) were
checked for in RSG2 comparison vs. SG2 (orange circles; 1–25). The majority of these transcripts were
still upregulated in RSG2 compared to SG2 and all of them were expressed to a much lesser extent
compared to the FG1 vs. SG1. Thus, the top 25 upregulated genes (FG1 vs. SG1) seem to be reinstating
themselves to the saline conditions in the RSG2 group of fishes. Abbreviations: Refer to Figure 1.
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4. GO and Pathway Analyses

Differentially expressed genes were assigned Gene Ontology (GO) terms under the following
categories: Biological process, Molecular function, and Cellular component. The following comparisons
were made: FG1 vs. SG1-upregulated, FG1 vs. SG1-downregulated, FK1 vs. SK1-upregulated and
FK1 vs. SK1-downregulated. Notably, for all the differential gene expression comparisons, the same
set of GO terms was enriched both for upregulated and downregulated transcripts and for each of
the three categories, albeit to a different extent in each case. The most enriched biological processes
for the differentially expressed genes in both the kidney and gill transcriptomes under changed
salinity conditions were cellular process, metabolic process, biological regulation, and pigmentation.
Amongst the molecular functions, the most enriched were ‘Binding and catalytic activity’, while ‘Cell
and cell part’ were most represented amongst the cellular component ontologies (Figure 6). All the
GO terms identified for the three categories in our study were also identified as important (with
the exception of ‘Growth’) by a previous NGS-based transcriptomic comparison of freshwater- and
brackish water-grown P. altivelis larvae [24].

A large number of pathways (15) were exclusively enriched in the seabass gills under varied
salinity conditions. These included pathways related to ‘Amino acid metabolism’, ‘Organismal
systems’ (endocrine, digestive and excretory system), ‘cAMP signaling pathway’, and ‘Human disease’
(hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy, amoebiasis, and pathways in cancer).
Only two pathways overlapped between the gills and kidneys: ‘ECM receptor interaction’ and
‘Protein digestion and absorption’. In addition to ‘Human disease’ and ‘Organismal systems’, several
pathways representing environmental information processing such as ‘cGMP-PKG signaling pathway’,
‘P13-Akt signaling pathway’, and ‘Cell Adhesion Molecules (CAM)’, as well as ‘Cellular Processes’
(focal adhesion) were exclusive to the kidneys. Transcriptome profiling of Oreochromis niloticus
hepatopancreas at different salinities, for example, identified 1852 differentially expressed genes related
to ‘Metabolism’ (lipid, energy, protein), ‘Immune system’, ‘Cell-activity’, and ‘Signaling pathways’ [28].

4.1. Genes Involved in Osmoregulation, Tissue/organ Morphogenesis and Regulation of Cell Volume Are
Important for Salinity Acclimation

Ion transporters are central to osmoregulation in fishes [22,23]. Profiling the euryhaline
transcriptome of Mozambique tilapia identified a large number of transcripts (>100) related to inorganic
ion channels and transporters expressed both in fresh and saltwater exposed gills [8]. Additionally,
a study on the euryhaline killifish reported drastic changes in the osmoregulatory organs at the
morphological level, as well as differential expression of genes involved in osmotic stress signaling,
ion transport, and regulation of cell volume [20]. Similarly, in our study, several genes important
for ion re-adsorption and electrolyte homeostasis, including sodium/hydrogen exchangers and ion
transporters (e.g., Na+/K+-ATPases) were represented in the set of differentially expressed genes in the
gills and kidneys.

In addition, several genes coding for the collagen family of proteins were amongst the most
differentially expressed transcripts in the gills, as well as kidneys (Supplementary Table S4). These
together with several other genes represented the ‘ECM (extracellular matrix)–receptor interaction’
pathway; one of the significantly enriched pathways both in the gills as well as the kidneys
transcriptomes (Figure 7). The extracellular matrix plays a pivotal role in tissue and organ morphogenesis
and the differential expression of the genes belonging to this pathway would probably be needed for
the rapid remodeling of the gills and kidneys as part of the osmo-adaptive response.

An interesting pathway significantly enriched exclusively in seabass kidneys was linked to
the excretory system: ‘Proximal tubule bicarbonate reclamation’. A dominant function of the
kidney proximal tubule is to secrete acid in the tube lumen, this helps in reabsorbing the majority
of bicarbonate ions (HCO3(-)) and regulating the blood pH. This pathway was represented by
several sodium/potassium-transporting ATPases (ATP1A1, ATP1A3, ATP1B1, ATP1B2, and ATP1B3).
Na+/K+-ATPase are membrane proteins which function as pumps, playing a key role in maintaining a



Genes 2020, 11, 733 11 of 20

Na+ and K+ ion electrochemical gradient across the plasma membrane, necessary for osmoregulation.
The enzyme is composed of a large catalytic Alpha subunit (encoded by numerous genes) and a smaller
glycoprotein beta subunit [54–56]. In addition, solute carrier proteins such as SLC9A3 known to have a
role in balancing pH [57] were also found to be upregulated in the kidneys of fish growing in seawater
conditions and were also represented in this pathway. The proximal tubule bicarbonate reclamation
genes were more highly expressed in the kidneys of saltwater grown fish compared to freshwater
reared, reflecting the necessity to excrete excessive ions and osmoregulate under saline conditions.Genes 2020, 11, x FOR PEER REVIEW  11 of 21 

 

 

Figure  6. Gene  ontology  analyses  of  (A)  Biological  processes,  (B) molecular  Functions,  and  (C) 

Cellular components using the Web Gene Ontology Annotation Plot (WEGO) of the Asian seabass 

gill and kidney transcriptomes under different salinity conditions. Only categories with 15 or more 

protein associations are shown. Blue: upregulated in FG1 vs. SG1; Yellow: downregulated in FG1 vs. 

SG1; Purple: upregulated in FK1 vs. SK1; Green: downregulated in FK1 vs. SK1. Abbreviations: Refer 

to Figure 1. 

4.1 Genes Involved in Osmoregulation, Tissue/organ Morphogenesis and Regulation of Cell Volume are 

Important for Salinity Acclimation 

Ion  transporters  are  central  to  osmoregulation  in  fishes  [22,23].  Profiling  the  euryhaline 

transcriptome  of Mozambique  tilapia  identified  a  large  number  of  transcripts  (>  100)  related  to 

inorganic  ion  channels  and  transporters  expressed both  in  fresh  and  saltwater  exposed gills  [8]. 

Additionally,  a  study on  the  euryhaline killifish  reported drastic  changes  in  the osmoregulatory 

organs at  the morphological  level, as well as differential expression of genes  involved  in osmotic 

stress signaling,  ion  transport, and regulation of cell volume  [20]. Similarly,  in our study, several 

Figure 6. Gene ontology analyses of (A) Biological processes, (B) molecular Functions, and (C) Cellular
components using the Web Gene Ontology Annotation Plot (WEGO) of the Asian seabass gill and
kidney transcriptomes under different salinity conditions. Only categories with 15 or more protein
associations are shown. Blue: upregulated in FG1 vs. SG1; Yellow: downregulated in FG1 vs. SG1;
Purple: upregulated in FK1 vs. SK1; Green: downregulated in FK1 vs. SK1. Abbreviations: Refer to
Figure 1.
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A pathway linked to amino acid metabolism, ‘Glycine, serine, and threonine metabolism’, was also
uniquely enriched in seabass kidneys. Amino acids have been previously shown to be of significance
for salinity acclimation, either as an energy source, or as osmolytes for regulating cell volume [58].
Alterations in amino acid levels in response to salinity have been described earlier for several animals
such as mussels [59], crabs [60,61], insect larvae [62], and fish [63,64]. Increased salinity coincides with
an increase in amino acid levels and has been observed also in the euryhaline Senegalese sole and
other teleost fishes [65]. In our study too, the genes coding for several enzymes in the amino acid
metabolism pathway were upregulated in the kidneys of fishes reared in seawater vis-à-vis freshwater.
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Figure 7. Pathways significantly (p < 0.05) enriched amongst the differentially expressed transcripts in
the osmoregulatory organs. The pathway is indicated on the Y-axis and the proportion of genes in the
pathway is indicated on the X-axis. Statistical significance was determined as Benjamini–Hochberg
adjusted p-value < 0.05. Abbreviations: M: Metabolism; OS: Organismal system; EIP: Environmental
information processing; HD: Human disease; CP: Cellular processes. Additional information can be
found in Supplementary Table S5.
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4.2. Ion Loss under Freshwater Conditions Seems to Be Restricted by Upregulation of Several Tight
Junction Proteins

A number of organismal system pathways were also observed to be enriched, of which one pathway
was linked to environmental acclimation; ‘Focal adhesions’. Focal adhesions are cell-matrix adhesions
wherein actin bundles are secured to transmembrane receptors from the integrin family [66–68].
This pathway was represented by several genes coding for collagen and myosin families of proteins
and were amongst the top upregulated transcripts in the gills of freshwater grown seabass compared to
seawater. Another pathway specifically enriched in the gills was the ‘Cell adhesion molecule’ (CAM)
pathway. CAMs are glycoproteins present on the cell’s surface and are implicated in a wide array of
biological functions such as cell proliferation, differentiation, motility, trafficking, apoptosis, and tissue
architecture [69,70]. A large number of diverse cell adhesion molecules were represented in the CAM
pathway which included several members from the integrin, cadherin, and claudin family of proteins
(Supplementary Table S6). An important physio-regulatory mechanism operational in freshwater is to
limit ion loss instead of actively taking up the ions from the surrounding environment. Claudins are
tight junction proteins which can form these ion-selective pathways. Differential expression of claudins
has been shown to be important for permeability changes associated with acclimation to the freshwater
environment. For example, hypo-osmotic acclimation in Fundulus (killifish) involves the upregulation
of at least two claudins, CLDN4 and CLDN7, along with tight junction proteins, e.g., desmocollin 1
(DSC1), connexin-32.2 (cx32.2), occludin (OCLN), and periplakin (PP) [20]. The absence of a reference
genome for Fundulus along with incomplete representation of the full claudin family on the microarray
used for the study indicate that there could be more claudins involved in the osmotic acclimation of
this euryhaline species [20]. In our study, 14 claudins were identified as differentially expressed in
comparisons of fresh and saltwater gill transcriptomes. Of these, 11 (including cldn7) were upregulated
in gills of seabass adapted to freshwater conditions. The majority of the claudins were represented in
the CAM pathway.

4.3. Genes Rrequired for Growth and Development Were Upregulated under Freshwater Conditions

Salinity, a critical environmental factor, is known to affect growth rate in teleosts, chiefly by
altering metabolic rate and hormonal stimulation [71–74]. Indeed, a large number of migratory fishes
experience drastic changes in body functions, such as smoltification in salmonids, or silvering in
eels, preceding the migration into a dramatically different osmotic environment. Thus, the ontogenic
change in euryhaline fishes during early life stages and during maturation is an important aspect
to consider in studying euryhalinity [7]. Genes coding for proteins required for bone (osteocalcin)
and teeth (fibulin-7) development were amongst the topmost DEGs upon exposure of Asian seabass
juveniles to freshwater [75]. Possibly, the freshwater serves as a cue for growth and development since
in the wild, older juveniles commonly migrate to the freshwater where they grow and mature. Indeed,
it has been observed that Asian seabass grown in freshwater do well and are less prone to disease
outbreaks compared to their seawater-grown counterparts (Susan Queh, personal communication).

4.4. Genes Coding for Mucins Were Upregulated under Saline Conditions

The gills also have mucous cells which are large modified, mucous-secreting, columnar epithelium
cells [76]. Several genes coding for mucins were found to be upregulated in gills of fishes growing
in seawater compared to freshwater. Previous studies have similarly shown an increase in mucous
production in response to salinity [77], disease [78], as well as pollutants [79,80], air exposure,
and desiccation stress [81–87]. Increase in mucous cell numbers and mucous secretion has been
reported to be a protective mechanism against changes in ionic homeostasis and by possibly reducing
water loss at the gill surface [78,88,89]. The mucous also serves as an important protective mechanism
against possible injuries, disease causing bacteria, viruses, and pollutants [77,78,90,91].
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4.5. Hormones Play an Important Role in Regulating Euryhalinity

Hormones play an important role in maintaining the osmotic and ionic balance in euryhaline
fishes. Several hormones have been implicated in euryhaline acclimation such as adrenocorticotrophic
hormone (ACTH), prolactin, growth hormone, insulin-like growth factor-1 (IGF-1), cortisol, thyroxine,
triiodothyronine, and angiotensins [7,92]. Prolactin and growth hormone/insulin-like growth factor-1
can be categorized as slow acting hormones which help to acclimatize the body for a long-term response
by altering the numbers of ion transporters, ionocytes and other osmoregulatory cells [7]. On the other
hand, angiotensin (AGT) is a fast-acting hormone which helps by regulating the drinking rate and the
activity of ion transporters in the fish osmoregulatory organs [7]. AGT was represented in one of the
significantly enriched pathways; ‘Renin secretion’. Renin is central to regulation of extracellular fluid
volume and maintenance of blood pressure. Typically in response to lowering of blood pressure or
decreased sodium levels, renin secretion is stimulated, upon which it cleaves angiotensinogen (AGT)
to yield angiotensin I, this is further converted to angiotensin II by angiotensin I converting enzyme
(ACE). Prolactin receptor (PRLR), growth hormone receptor (GHR), and insulin-like growth factor-1
(IGF1) were represented in the ‘PI3K-Akt signaling’ pathway, an environmental information processing
pathway regulating core cellular processes such as transcription/translation, proliferation, growth,
and survival. Both the Renin secretion and PI3K-Akt signaling pathways were enriched among the
upregulated transcripts in the gills of Asian seabass reared in freshwater compared to those grown in
saltwater (FG1 vs. SG1 comparison).

4.6. Circadian Entrainment Could Be Important for Establishing Euryhalinity

Temporal adaptations in animals rely on an internal physiological clock that is constantly reset
with light and other stimuli to synchronize them with their environment. Secretion of melatonin in the
night by the pineal gland, a neuroendocrine organ in vertebrates, is a major output from the clock gene
network [93]. The fish pineal organ is mainly regulated by light, however, environmental variables
such as temperature and salinity have been shown to affect melatonin levels in fishes [94–96]. In turn,
melatonin has been suggested to have a role in osmoregulation, appetite regulation, and smolting time
in fishes [95,97–99]. Besides this, there is a pathway called ‘Circadian entrainment’ which is represented
by genes involved in routing the internal biological clock in response to environmental cues [100,101].
Gills of Asian seabass adapted to freshwater showed an enrichment of genes belonging to this pathway.
Apart from light, melatonin plays an important role in entrainment by inhibiting the effect of light
via adenylate cyclase inhibition. The various entrainment pathways act through regulating CAMP
responsive element binding protein (CREB), the phosphorylated CREB in turn activates the expression
of clock genes [102–104]. This included three members of the Period family of genes (PER1, PER2,
and PER3) and Melatonin Receptor 1A (MTNR1A), one of the two receptors for melatonin. The genes
belonging to the PER family, as well as the melatonin receptor family, are important for maintaining
circadian rhythms associated with movement, metabolism and behavior. In freshwater reared Asian
seabass, CREB1, PER1, PER2, PER3, MTNR1A, and all the other genes representing the circadian
entrainment pathway were specifically upregulated in gills.

The effect of salinity on melatonin levels have been previously described for fishes such as
gilthead sea bream (Spaurus aurata), European seabass (Dicentrarchus labrax), and rainbow trout
(Oncorhynchus mykiss) [95,97,105]. In the first two species, melatonin levels decreased in seawater
compared to freshwater (similar to what we observed for Asian seabass in our study), whereas the
converse was seen in rainbow trout; melatonin levels increased under saline conditions. The association
of melatonin levels with salinity changes seems to have been observed exclusively for euryhaline
fish species. This indicates an important role for circadian entrainment not only for mediating the
salinity response, but also for fish migration which is an inherent feature of these fishes. This could
additionally explain why the effect of salinity varied depending upon the fish species in question, with
rainbow trout being an anadromous fish, whereas seabream, Asian seabass, and European seabass are
catadromous fishes.
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5. Conclusions

Euryhalinity is manifested as a plastic trait in Asian seabass, orchestrated by complex physiological
processes which are apparent at all levels of biological organization from behavior to molecules. Thus,
when salinity is low, juvenile Asian seabass physio-regulate more like freshwater fishes, and when
salinity is high, they physio-regulate like marine fishes. This was evidenced in Asian seabass in the
various salinity treatments reported in the present study, both at the transcriptome level, as well
as through the extensive cellular remodeling visualized at the histological level. A large number
of transcripts representing osmo-adaptive pathways were differentially expressed. The interesting
additional aspect of the study, however, was the finding of an association of growth as well as circadian
entrainment with fishes grown in freshwater. Euryhaline fishes such as the Asian seabass are typically
migratory. Therefore, this finding presents the possibility that this could well be a feature of these
fishes, with freshwater serving as a cue to route the biological clock both for growth, as well as for
migration necessary for accomplishing this phase of the species’ lifecycle. However, these findings
are only the first step in the identification of putative genes of interest which could play an important
role in mediating euryhalinity response in Asian seabass and further studies are needed to ascertain
the exact role of these genes and pathways in salinity acclimation. In addition, it may be useful to
examine consistency of this acclimation response in other genetic populations of seabass to detect if
the response is uniform despite the genetic background. Furthermore, it is important to note that there
are a large number of different tools for both mapping as well as differential gene expression analyses.
Use of these tools in different pipelines are expected to give somewhat different results. For instance,
some pipelines may be permissive and give a high rate of false positives whereas others might be more
stringent and may miss out on potentially useful genes. In our study, Cuffdiff2 was used for identifying
the DEGs. A study on the comparison of edgeR, DESeq, and Cuffdiff2 showed a high degree of overlap
between the DEGs identified by the three tools [106]. It was also observed that edgeR performed better
than the other two tools in terms of its ability to identify true positives. However, upon data simulation,
the higher number of identified DEGs coincided with the most number of false positives detected using
edgeR (108) in comparison to Cuffdiff2 (77) and DeSeq (8) [106]. Nevertheless, few studies have shown
that cuffdiff is generally more conservative in comparison to other bioinformatics pipelines used for
identifying DEGs [106,107]. It is, therefore, possible that our analysis may have failed to capture some
of the changes in gene expression. However, notwithstanding the expected variations in the usage of
different tools, the data generated in this study does provide useful inventory of the Asian seabass
transcriptome in response to salinity changes.
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