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Abstract 

It has been postulated that the neuropeptide, oxytocin, is involved in human-dog bonding. This may 

explain why dogs, compared to wolves, are such good performers on object choice tasks which test 

their ability to attend to, and use, human social cues in order to find hidden food treats.  The 

objective of this study was to investigate the effect of intranasal oxytocin administration, which is 

known to increase social cognition in humans, on domestic dogs’ ability to perform such a task. We 

hypothesized that dogs would perform better on the task after an intranasal treatment of oxytocin. 

Sixty-two (31 male; 31 female) pet dogs completed the experiment over two different testing 

sessions, five to fifteen days apart. Intranasal oxytocin or a saline control was administered forty-five 

minutes before each session. All dogs received both treatments in a pseudo-randomised, 

counterbalanced order. Data were collected as scores out of ten for each of the four blocks of trials 

in each session. Two blocks of trials were conducted using a momentary distal pointing cue and two 

using a gazing cue, given by the experimenter. Oxytocin enhanced performance using momentary 

distal pointing cues and this enhanced level of performance was maintained over 5-15 days time in 

the absence of oxytocin. Oxytocin also decreased aversion to gazing cues, in that performance was 

below chance levels after saline administration but at chance levels after oxytocin administration.  

Keywords: Cognition, Cues, Dog, Oxytocin, Social 
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Introduction 

Domestic dogs seem to have evolved specialised abilities to communicate with humans in a 

way that their progenitor, the wolf, cannot. Social cognitive intelligence has been postulated to 

underpin human evolution (Whiten & Erdal, 2012), and in relation to using human social cues, it may 

also have been important in the domestic dog’s evolution from the wolf. The ‘Object Choice Task’ 

(OCT) was first applied to dogs by Miklósi et al. (1998) in an attempt to investigate dogs’ ability to 

use human social cues, and has since been utilised in numerous studies of domestic dogs and various 

other canids. The OCT involves a human experimenter using non-verbal, social cues to indicate the 

location of a hidden piece of food, located in one of two objects, usually bowls, located to the right 

and to the left of them. The subject’s task is to correctly use these cues in order to obtain the hidden 

reward. The cues can involve replica cards, marker placement, pointing, tapping, orienting to and/or 

gazing at the object for various lengths of time and from various distances.  

Of all the pointing cues used, the momentary distal point is potentially the most informative 

with respect to canines’ ability to use human communication signals, as it is the most challenging. 

This is because the distance from the experimenter’s finger to the bowl is relatively large and the 

cue relatively brief. Indeed, the cue is delivered before the dog is released and allowed to make its 

choice and is only given for 1-2 seconds. As such, the dog has to rely not only on the cue itself, but 

also on its memory of the cue. Whilst domesticated dogs (Hegedüs, Bálint, Miklósi, & Pongrácz, 

2013; Miklósi, et al., 2005; Schmidjell, Range, Huber, & Virányi, 2012; Soproni, et al., 2002; Virányi, 

et al., 2008) and socialized dingoes (Smith & Litchfield, 2010) generally perform above chance on the 

OCT when given the momentary distal point cue, young, hand-reared wolves that have been highly 

socialised to levels comparable with pet dogs do not (Miklósi, et al., 2003; Virányi, et al., 2008), or at 

least not without extensive training (Virányi, et al., 2008). An additonal study where domestic dogs 

were tested in the same outdoor conditions as wolves (as opposed to being tested indoors as in 

Miklósi, et al. (2003) and Virányi, et al. (2008)) suggests that the fact the wolves in these studies 

were tested outdoors may have handicaped them (Udell, et al., 2008a). However, this is somewhat 

contradictory, as in Udell, et al.’s study mature wolves with a high level of socialisation and 

involvement in public education programs were able to demonstrate above-chance performance on 

this task when tested outdoors. Indeed, the authors claim that the wolves even out-performed dogs 

tested in the same outdoor conditions, though their methodology has been criticised (for responses 

see, Hare, et al., 2010; Udell & Wynne, 2010a).  

Of all the cues that have been used on domestic dogs, only one has yielded OCT 

performance not above-chance level: gaze (Soproni, Miklósi, Topál, & Csányi, 2001). These authors 
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demonstrated that domestic dogs did respond to gazing cues, but paradoxically avoided the bowl at 

which the experimenter gazed, rather than approaching it. This may reflect a behaviour learned 

from communicating with conspecifics. However, domestic dogs do demonstrate an ability to learn 

to use this cue correctly to solve the task over time (Miklósi, et al., 1998). With the exception of the 

gaze cue, most studies on the OCT in domestic dogs reveal no learning (Hare, et al., 2002; Miklósi, et 

al., 2005; Riedel, et al., 2006; Schmidjell, et al., 2012; Wobber, et al., 2009), even in 6, 8, 16 and 24 

week old puppies (Riedel, et al., 2008). Although Riedel, et al’s analysis has been criticised and upon 

independent re-analysis of the data, learning was found in to be present in the very young 6 week 

old puppies (Wynne, et al., 2008). Nonetheless, taken together, these findings suggest that dogs may 

have an inherent ability to perform at above chance level on tasks that require understanding of 

human cues, without training. 

The superior ability of domestic dogs (in comparison with wolves) to perform OCTs may be 

due to the fact that they gaze significantly more at the humans than do wolves. This notion has been 

supported by the shorter latency to make eye-contact with an experimenter in both pet dog puppies 

(separated from their mothers at 6-9 weeks to live with a human family) and hand-reared dog 

puppies (separated from their mothers at 4-10 days and hand raised by humans who either kept 

them as pets or re-homed them) than in hand-reared wolf pups (separated from their mothers at 4-

7 days and hand raised by humans who re-homed them to a wolf farm at 2-4 months) (Virányi, et al., 

2008). More gazing has also been observed in pet dogs than in hand-reared wolves performing other 

problem-solving tasks (Miklósi, et al., 2003). Furthermore, similar findings have been obtained in 

anthropomorphically-viewed and treated companion dogs that glance more at their owners and 

perform less well on a problem-solving task than less anthropomorphically-viewed and treated 

working dogs (Topál, Miklósi, & Csányi, 1997). This suggests that companion dogs not only have the 

ability to use human cues to solve tasks and find food, but that they have become dependent on 

them. Only with extensive hand-rearing and training do wolves demonstrate an increase in gazing 

and in task execution that takes their performance to the level of naïve domestic dogs (Virányi, et 

al., 2008). Interestingly, gazing was also less frequent in domestic cats than in domestic dogs 

(Miklósi, et al., 2005), supporting the idea that the human-dog bond transcends the effects of 

domestication. This suggests that there is an inherent ability in dogs to communicate with humans in 

humans’ own way, because gazing is a common phenomenon in human communication (Dickstein, 

et al., 1984; Striano, et al., 2006). 

A link has been found between dogs that gaze at their owners for long durations and higher 

urinary oxytocin concentrations in the owner (Nagasawa, et al., 2009). Given that oxytocin is 
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implicated in mammalian bonding (Lim & Young, 2006), this suggests that a dog’s gaze, imperative 

for the successful completion of the OCT, may be more prominent in more strongly bonded human-

dog dyads. Oxytocin increases have been observed in both humans and dogs after human-dog 

interactions (Handlin, et al., 2011; Miller, et al., 2009; Odendaal & Meintjes, 2003) and are thought 

to be associated with human-dog bonding. Indeed, a new or enhanced role of oxytocin and/or its 

receptors in the domestic dog brain, compared to the wolf brain, may explain why dogs gaze at their 

owners more than hand-reared wolves do, and, in turn, do better than wolves in tasks involving 

human communicative signals. In humans, intranasal oxytocin administration: (a) enhances 

detection of human biological motion (Keri & Benedek, 2009), (b) increases the understanding of 

social cues and improves social memory (see reviews by, Bartz, et al., 2011; Guastella & MacLeod, 

2012), (c) increases trust (Kosfeld, et al., 2005) and (d) increases a subject’s gazing towards the eye 

region of other human faces (Guastella, et al., 2008), a phenomenon also observed in monkeys (Dal 

Monte, et al., 2014).  

If dogs’ ability to perform well on OCTs is dependent on their ability to look at humans and 

use human gestures, which is dependent on their central oxytocin function (as demonstrated in 

humans), increasing central oxytocin availability should improve their performance on OCTs. The aim 

of this study was to test the effect of intranasal oxytocin administration on dogs’ performance on an 

OCT, using two different cues, momentary distal pointing and gazing (without head-turn). It was 

hypothesized that: (1) dogs would perform better on the OCT after an intranasal treatment with 

oxytocin than after a control saline administration when momentary distal pointing cues were given, 

and (2) oxytocin would both increase dogs’ gazing toward the experimenter’s eyes and their trust of 

the gaze cue, which would therefore improve their performance when gaze cues were offered as 

well. However, as Bartz, et al. (2011) highlight in their review of the pro-social effects of oxytocin in 

humans, increases in trust do not occur in situations with prior trust violations, out-groups or clinical 

populations who are rejection-sensitive. In these groups of people, trust was actually decreased by 

oxytocin administration. Therefore, whilst we did not expect the dogs in our study to fall into any of 

the categories mentioned above, we could not rule out the possibility that they would interpret the 

gazing cue negatively, and that this negative interpretation would be enhanced by oxytocin, thereby 

decreasing performance after oxytocin administration.   

Method 

Subjects. Seventy-five pet dogs (33 males, 42 females) were recruited for the study. Owners 

with healthy dogs over 12 months old were invited to participate, but owner-reported pregnant, 

lactating or visually-impaired dogs were excluded. Owners were recruited through poster 
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advertisements at Monash University Caulfield and Clayton campuses, as well as through university 

e-newsletters and social media websites. Dogs were randomly allocated into two separate groups: 

those that received oxytocin first and saline second (oxy-sal) and those that received saline first and 

oxytocin second (sal-oxy). Of the 75 dogs recruited, two males and 11 females did not complete the 

study; two dogs failed the pre-training, five dogs failed the test of motivation, three dogs passed the 

test of motivation but refused to continue when the more difficult cues were introduced, one dog 

was too excitable, and two dogs were withdrawn from the study by their owners. Partial data could, 

however, be used for two of the female dogs with incomplete records, leaving a total of 31 males 

and 31-33 females in the analysis. This study was approved by the Monash University School of 

Biological Sciences Animal Ethics Committee (BSCI/2013/07). 

Materials. Twenty-four international units (equivalent to 50μg) of oxytocin (Auspep, 

Melbourne, AU) diluted in 0.5 ml of 0.09% saline, or 0.5 ml of 0.09% saline only (acting as a control) 

were administered to the nostrils of each dog, with a half-dose in each nostril. Treatments were 

delivered using a Mucosal Atomizer Device (MAD 300, Wolfe Tory Medical Inc., Salt Lake City, UT) 

connected to a 1mL syringe, while the dogs were maintained in a head-up position. When it could 

not be determined whether a dose was successfully administered, a second administration (half-

dose) was delivered in the nostril concerned.  

Two identical, opaque spaniel bowls (19cm base diameter, 11cm rim diameter, 12cm high, 

8cm deep) were used to conceal the food treats. Spaniel bowls were selected for their height and 

ability to conceal the treat from the dogs’ vision. Two additional and identical spaniel bowls were 

placed underneath the two testing bowls and treats identical to those used in the experiment were 

hidden in the space between them. This method was used by Udell, Giglio and Wynne (2008b) to 

ensure that both bowls smelled of the treats and the dog was consequently not able to rely on 

olfaction when making its choice between the bowls. Treats were also hidden around the testing 

room so that the entire room smelled of treats. The treats used were lamb puff cubes: light, low fat 

cubes of lamb lung, puffed with air. Scores were recorded by the experimenter using a pen and 

paper and the same experimenter conducted all testing of dogs in the investigation. 

Procedure. On the day of the testing session, owners were asked not to feed their dog prior 

to participation so that motivation to perform the task was high. In cases where testing occurred in 

the afternoon, some dogs were fed a small snack in the morning at the owner’s discretion. Owners 

and their dogs came to the testing location on two separate occasions, five to fifteen days apart. 

When they arrived for their first testing session, the dog received one of two intranasal treatments, 
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oxytocin or saline. When they arrived for their second session, the dog received the other intranasal 

treatment. Tubes containing the treatments were labelled ‘A’ or ‘B’, so that both the experimenter 

and the owner were ‘blind’ as to which treatment the dog received on which day. Order of 

treatment administration was pseudo-randomised and counterbalanced. The dog was restrained by 

its owner while the experimenter administered the intranasal spray. The owner was then required to 

fill out a few questionnaires to be used in an associated study while the dog was free to roam the 

testing room and interact with its owner or the experimenter. The owner and dog could then leave 

the room to wander outside or remain inside. Forty-five minutes after the treatment was 

administered, the first pre-training session commenced. A forty-five minute window was selected in 

accordance with the majority of previous human (MacDonald et al., 2011) and a recent pig (Rault, 

2013) study and can be accepted as a sufficient time period in which neuropeptides can reach the 

brain (Born, et al., 2002; Rault, 2013).    

Pre-training. The experimental set-up was similar to that of Virányi, et al. (2008). The two 

spaniel bowls were placed 1.5 m apart and the experimenter kneeled 30 cm behind the mid-point 

between the bowls. The dog, restrained by its owner, faced the experimenter at a distance of 2.5 m. 

The experimenter first got the dog’s attention by calling its name or an affirmatory epithet (“good 

girl/good boy”; no address was used if the dog was already looking and calling the dog’s name 

proved distracting to the dog). The dog was then shown a treat before it was placed in one of the 

bowls. The experimenter then said the release word “ok” (in some cases a different release word, 

more familiar to the dog, was used, such as “okay”, “free”, “take” , “go on”, “(go) get it”. The owner 

then released the dog and allowed it to approach one of the food bowls. If the dog approached the 

bowl containing the treat, it was allowed to eat the treat before both bowls were collected by the 

experimenter; if the dog approached the empty bowl or the experimenter, both bowls were 

collected by the experimenter and the dog did not receive a treat. The dog had to select the correct 

bowl four times in a row to move on to the testing session proper. A 10-minute cut off time was 

applied to the pre-training; if the dog was unable to pass the pre-training within this time, it was 

excluded from the study. Most pre-training sessions required only four trials and the maximum 

number required was 25 trials for one dog in one of its pre-training sessions. 

Testing. The experimental set-up was the same as in pre-training. Each testing session 

contained four blocks of fifteen trials (10 where a cue was provided and five in which no cue to the 

treat’s whereabouts was provided). The control condition was used to verify that the dogs were not 

relying on scent to find the hidden food. Numerous studies have found that performance is at 
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chance level when a control condition is employed (Hare, et al., 2002; Riedel, et al., 2008; Soproni, et 

al., 2002; Udell, et al., 2008b; Wobber, et al., 2009). 

The first test block (B1) comprised, in sequence: three control trials, five trials with the 

momentary distal point cue, two control trials and then another five trials with the momentary distal 

point cue. The second test block (B2) comprised, in sequence: three control trials, five trials with the 

gaze cue, two control trials and then another five trials with the gaze cue. 

The third test block (B3) was the same as the first (B1), and the fourth block (B4) was the same as 

the second (B2). The ordering of the blocks was such that the easier point cue was delivered first so 

as not to discourage the dogs from participating by delivering a difficult gaze cue straight away. 

Having only 10 trials per block was also strategically designed to keep the dogs motivated. Position 

of the correct bowl (left or right) was predetermined according to a pseudo-randomised chart that 

did not allow more than two consecutive trials where food could be obtained on the same side. Each 

test block was preceded by a pre-training session to maintain motivation to approach the baited 

bowl. The dog was allowed approximately five minutes of free play with its owner between testing 

blocks to avoid burnout.     

Momentary distal point cue. The experimenter was kneeling, propped up on her toes, with 

her arms by her side. She got the dog’s attention and then raised her ipsilateral arm and pointed 

(using her index finger) towards the correct bowl for 1-2 seconds, keeping her head straight, before 

lowering her arm back down to her side and saying “ok” (or an alternative release word). The 

approximate distance between the experimenter’s index finger and the rim of the baited bowl was 

42cm and 50cm to the treat inside. The dog was then released and allowed to make a choice 

between the bowls. 

Gaze cue. The experimenter was kneeling with her arms by her side, the tops of her feet flat 

on the floor to achieve better eye-level with the dog. She got the dog’s attention and then gazed 

towards the correct bowl for 1-2 seconds, keeping her head straight.  She then said “ok” (or an 

alternative release word) and the dog was then released and allowed to make a choice. 

Control condition. The kneeling experimenter, propped up on her toes, got the dog’s 

attention, then kept her head straight for 1-2 seconds, then said “ok” (or an alternative release 

word) before the dog was released by its owner and allowed to make a choice in the absence of any 

cue.   

Scoring. Scores were recorded as correct responses out of 10 trials per block (20 per cue) for 

each testing session. If the dog did not move within five seconds of being released, the cue was 
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given again, as in Virányi, et al. (2008), and the dog could be prompted to move by its owner. If no 

choice was made, the experimenter decided subjectively whether this was due to a distraction. If it 

was clearly due to a distraction, the trial was repeated. In cases where the experimenter was unsure 

why the dog did not make a decision, the test of motivation used by Udell, et al. (2008a) (two pre-

training trials, one to each side) was conducted. If the dog was found to be unmotivated, the trial 

was discontinued; if the dog was found to be motivated, the trial continued and the experimenter 

assumed that the ‘no choice’ outcome of the previous trial was probably due to the dog not 

understanding the task, so that the score for that trial was ‘incorrect choice’. The vast majority of 

dogs were found to be motivated (i.e. did not need to be tested for motivation) throughout the 

entire testing session, or were excluded from the study. Choices were also considered incorrect if 

the dog approached the incorrect bowl or the experimenter. 

Statistical analysis. The raw scores for each testing block of the OCT performed after 

oxytocin and saline administration were entered into IBM SPSS Statistics version 22 (SPSS IBM, New 

York, U.S.A, 2013). Blocks one and three were also combined to give a total score for the pointing 

cues and blocks two and four were combined to give a total score for the gazing cues. One sample t-

tests were used to investigate whether performance on the task was different from what would be 

expected by chance. To test for learning within each session, we compared the mean of the first 10 

point and gaze cue trials (B1 and B2, respectively) with the last 10 point and gaze cue trials (B3 and 

B4, respectively) using paired samples t-tests. To test the effect of treatment, an independent 

samples t-test was run on session 1 only. The effect sizes of all significant t-tests were measured 

using Cohen’s d. The effect of treatment (oxytocin, saline), gender (male, female) and group (oxy-sal, 

sal-oxy) on difference scores (score after oxytocin – score after saline) was evaluated using mixed 

model analyses of variance (ANOVA). The effect size of all significant F-tests was measured using 

partial eta squared. The assumption of homogeneity of covariances was tested using Box’s M and 

was not violated for any test. Likewise, the assumption of homogeneity of variances was tested 

using Fmax and the Levene’s test and was met for all measures. Šidák-corrected pairwise comparisons 

(Abdi, 2007) were employed post-hoc to test for the effect of treatment in the oxy-sal group and sal-

oxy group dogs separately, and to test the effect of treatment in male and female dogs separately.  

Results 

Performance different from chance. Control trials where the dog chose the left bowl, right 

bowl and correct bowl were scored out of a possible 20 choices per session and the means and 

standard deviations are given in Table 2.1.  
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Table 2.1. Mean (± standard deviation) object choices out of 20 and sample size for control trials. 

 M SD N 

Left after oxytocin 9.32 4.98 62 

Right after oxytocin 10.08 5.16 62 

Correct after oxytocin 9.35 2.04 62 

Left after saline 9.22 5.27 63 

Right after saline 10.14 4.99 63 

Correct after saline 8.87 1.96 63 

 

The dogs performed significantly below chance levels (score of 10) during both testing 

sessions, which demonstrates that they were not relying on olfactory cues to find the hidden food 

treat for the session after oxytocin administration (t61 = -2.49, P=.016, d = -0.32), and for the session 

after saline administration (t62 = -4.58, P<.0001, d = -0.58). There were no biases for the left bowl 

after oxytocin administration (t61 = -1.07, P=.29), the right bowl after oxytocin administration (t61 = 

0.12, P=.90), the left bowl after saline administration (t62 = -1.17, P=.25) or the right bowl after saline 

administration (t62 = 0.23, P=.82).  

Mean scores and standard deviations for each block(s) are given in Table 2.2.  

Table2. 2. Mean (± standard deviation) correct object choices out of 20 for all dogs combined, 

according to treatment. 

 Oxytocin  Saline  

 M SD N M SD N 

Point B1  

Point B3 

Point total 

Gaze B2 

Gaze B4 

Gaze total 

7.41 

8.32 

15.73 

4.68 

4.82 

9.52 

1.86 

1.64 

3.01 

1.67 

1.49 

2.17 

63 

63 

63 

63 

62 

62 

7.41 

8.05 

15.45 

4.59 

4.92 

9.51 

2.29 

1.74 

3.63 

1.49 

1.49 

2.09 

64 

64 

64 

64 

63 

63 
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Dogs performed significantly better than chance (score of 5) on point B1 after oxytocin (t62 = 

10.28, P<.0001, d = 1.30), point B3 after oxytocin (t62 = 16.01, P<.0001, d = 2.02), point B1 after saline 

(t63 = 8.39, P<.0001, d = 1.05) and point B3 after saline (t63 = 14.00, P<.0001, d = 1.75). However, dogs 

performed no differently from chance on gaze B2 after oxytocin (t62 = -1.51, P=.14), gaze B4 after 

oxytocin (t61 = -0.94, P=.35) and gaze B4 after saline (t62 = -0.46, P=.65), and significantly worse than 

chance on gaze B2 after saline (t62 = -2.19, P=.033, d = -0.28).  

The influence of cue type of the effectiveness of treatment. A repeated measures ANOVA 

was run using total scores for each cue (point and gaze) to test whether performance using either 

one was more affected by the treatment than the other.  There was a main effect of cue, (F1, 61 = 

232.74, P<.0001, partial  ŋ² = .79). There was no main effect of treatment, (F1,61 = .20, P = .66) and 

no interaction between cue and treatment (F1, 61 = .30, P = .59). 

Learning within sessions. Paired samples t-tests revealed that learning occurred within each 

session using the point cue, as the subjects performed better on B3 than B1 after oxytocin, (t62 = -

3.95, P<.0001, d = -0.52) and after saline, (t63 = -2.79, P=.007, d = -0.32). No learning was 

demonstrated within each session using the gaze cue, as dogs performed no differently on B4 than 

B2 after oxytocin (t61 = -0.44, P=.66) or saline (t62 = -1.35, P=.18). 

As learning appeared to be taking place between the pointing trial blocks, only data relating 

to the second block using point cues (B3) were used in the following analysis. As no differences were 

observed between the gaze trial blocks, they were combined in the analysis to follow.  

The effect of oxytocin on performance. Mean correct choices for the second point block 

(B3) of trials and the gazing blocks combined for session 1 are shown in Table 2.3.  

Table 2.3. Means (± standard deviation) correct choices out of 10 (point) and 20 (gaze) for dogs that 

received oxytocin and dogs that received saline on their first testing session. 

 Oxytocin  Saline  

 M SD N M SD N 

Point B3 

Gaze total 

8.38 

9.52 

1.70 

2.19 

32 

31 

7.41 

9.19 

1.60 

1.75 

32 

32 
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Independent samples t-tests were used to compare means between the dogs that received 

oxytocin and dogs that received saline in this session. The t-test revealed that dogs that received 

oxytocin on their first testing session performed significantly better than dogs that received saline on 

their first testing session for B3 (t62 = 2.35, P=.022, d=0.47). No significant difference was observed 

between the two groups of dogs for the gazing cues (t61 = 0.66, P=.51). 

The effect of gender, group and treatment on performance. Examination of Figure 2.1 

indicates that dogs in both groups performed similarly with the pointing signal in B3 after oxytocin 

but differently after saline, in that the oxy-sal dogs’ performance improved after saline and the sal-

oxy dogs’ performance declined.  

Figure 2.1. Mean point B3 scores (out of 10) for oxy-sal group and sal-oxy group dogs, according to 

treatment  

 

There is a similar pattern in Figure 2.2 for males and females, in that  males and females 

perform similarly after oxytocin, but male dogs’ performance slightly improves after saline, whereas 

female dogs’ performance after saline declines.  
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Figure 2.2. Mean point B3 scores (out of 10) for male and female dogs, according to treatment  

 

A mixed model ANOVA revealed a significant interaction between treatment × group (F1, 59 = 

6.40, P=.014, partial ŋ²= .10) and treatment × gender (F1, 59 = 5.01, P=.029, partial ŋ²= .08), but not 

among treatment × group × gender (F1, 59 = 0.77, P=.013). There were no significant main effects of 

treatment (F1, 59 = 1.36, P=.25), or gender (F1, 59 = 1.75, P=.19), but there was a significant main effect 

of group (F1, 59 = 4.35, P=.041, partial ŋ²= .07). Dogs that were administered oxytocin first performed 

more poorly after oxytocin than saline (mean difference = -0.31, SD = 1.87), whilst dogs that were 

administered saline first performed better after oxytocin than after saline administration (mean 

difference = 0.87, SD = 1.88). Male dogs performed worse after oxytocin administration (mean 

difference = -0.26, SD =1.81), but female dogs performed better (mean difference = 0.78, SD =1.98). 

Four Šidák-corrected pairwise comparisons were conducted using an adjusted alpha of .013 (1-

tailed). Difference scores between treatments were significant in sal-oxy group dogs (t30 = 2.59, 

P=.0075, d = 0.54), but not oxy-sal group dogs (t31 = -2.40, P=.18), female dogs (t31 = 2.23, P=.0165) or 

male dogs (t30 = -0.80, P=.22).  

For the gaze total scores, a mixed model ANOVA revealed no significant interaction effects 

between treatment × group (F1, 58 = .50, P=.48), treatment × gender (F1, 58 = .61, P=.44) and among 

treatment × gender × group (F1, 58 = .57, P=.45). Nor were there any significant main effects of 

treatment (F1, 58 = .01, P=.96), gender (F1, 58 = .001, P=.98) or group (F1, 58 = 0.73, P=.40). 

Discussion 

The ability of dogs to use momentary distal pointing cues, and the effect of oxytocin. 

Consistent with previous research, this study demonstrated an ability of domestic dogs to use 
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momentary distal pointing cues to find hidden food in an OCT (Hegedüs, et al., 2013; Miklósi, et al., 

2005; Schmidjell, et al., 2012; Soproni, et al., 2002; Virányi, et al., 2008). In addition, consistent with 

our first hypothesis, a treatment effect was observed in that dogs performed significantly better 

after oxytocin than saline administration in session 1. This is consistent with findings for humans 

demonstrating that oxytocin increases perception of biologically relevant human motion (Kéri & 

Benedek 2009) which is imperative for social cognitive processing and communication, and supports 

the notion that oxytocin increases social cognition (see reviews by Bartz, et al., 2011; Guastella & 

MacLeod 2012). In addition, when examining difference scores between testing sessions, we 

observed performance improvements from session 1 to session 2 for point B3 scores in sal-oxy 

group dogs. Inspection of Figure 2.1 shows that their performance in session 2 was only bought up 

to the level of performance demonstrated by the oxy-sal group dogs in session 1, after oxytocin 

administration. The absence of a significant difference between sessions for the oxy-sal group dogs 

indicates that this group of dogs was able to maintain their performance at this level 5-15 days later, 

after saline administration. Thus oxytocin not only enhanced performance on the OCT, but the 

enhanced level of performance was maintained over time.  

The effect of gender on the efficacy of oxytocin. The enhancing effect of oxytocin seems to 

have been driven by the female subjects in this study who performed better after oxytocin and more 

poorly after saline administration (see Figure 2.2). The reason why males were possibly not as 

influenced by oxytocin as females (whose performance was able to be brought up to the level of the 

males after oxytocin administration) may simply be ceiling effects, as they performed similarly after 

both treatments and significantly better than females after saline administration. The reason for the 

superior performance of male dogs compared to females after saline administration is unknown and 

somewhat surprising; in humans, females have shown greater social cognitive abilities than males, as 

demonstrated by their better perception of others’ emotions (Brabec, Gfeller, & Ross, 2012; Donges, 

Kersting, & Suslow, 2012). However, the OCT differs in that it tests an ability to solve a task using 

human communicative cues, not human emotions. Estrogen is known to enhance the production of 

oxytocin and its receptor (Rissman, 2008) and this may explain why the female dogs in this study did 

not did not perform as well as human female subjects in other tests of social cognition, as the 

majority (88%) had been spayed, thereby reducing the volume of estrogen their bodies would be 

producing. However this does not explain why the male dogs (the majority of whom had also been 

neutered, 97%) performed so much better than the females dogs following saline. 

The ability of dogs to use gazing cues, and the effect of oxytocin. Contrary to our second 

hypothesis, no treatment effect was observed for gazing cues. We did find some support, however, 
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for the negative interpretation of the gaze cue being dampened by oxytocin.  For example, in gaze 

B2 after saline administration we obtained the same findings as Soproni, et al. (2001), who reported 

that dogs interpreted the gaze cue negatively, avoiding the bowl to which the experimenter gazed. 

Our lack of a similar finding for B2 after oxytocin administration supports our hypothesis that 

oxytocin increases trust in the dog, as it does in humans (Kosfeld, et al., 2005), despite the fact that 

the dogs were unable to use the cue, performing no better than chance after oxytocin 

administration. That this below-chance level performance was lacking in gaze B4 after saline 

administration may reflect the dogs learning that no aversive consequences would occur when they 

went to the bowl containing the treat, so they no longer used the gaze cue to complete the task, and 

just guessed. 

The Clever Hans phenomenon. Whilst mean performance on the majority of the gaze cue 

blocks was at chance level, it is intriguing that mean control trial performance (where no cue was 

given) was below chance levels, as shown in Table 2.1. The so called ‘Clever Hans’ phenomenon 

(Pfungst, 1911), involving some form of unintentional or subconscious cueing from the owner, has 

been independently tested for in dogs subjected to an OCT with momentary distal pointing cues, and 

yielded negative findings (Hegedüs, et al., 2013; Schmidjell, et al., 2012), but we cannot completely 

rule this out as the reason for these unexpected  results. The above-mentioned studies only tested 

for possible unintentional, subconscious cueing by the owner, not by the experimenter. In the 

current study it is conceivable that the experimenter was subconsciously ‘hoping’ that the dogs were 

not using scent to find the food in the control trials and may have been unintentionally cueing the 

dogs to go to the empty bowl in order to validate the experimental design. This highlights the critical 

importance of blind treatment testing for both the owner and experimenter, which was a strength of 

the current study. Nonetheless, the effect of the experimenter on the Clever Hans phenomenon 

warrants further study. 

Learning within sessions. Another unexpected finding in the study was that of the learning 

observed within sessions for the pointing cues. Despite the pre-training that took place before B1, it 

appears that dogs were still learning to use the point cues to do the task in B1 compared to B3, 

where they performed better. This finding contrasts with those of previous studies, which did not 

report performance differences within sessions (Hare, et al., 2002; Miklósi, et al., 2005; Riedel, et al., 

2006; Riedel, et al., 2008; Schmidjell, et al., 2012; Wobber, et al., 2009). As learning was observed 

within both treatment sessions, we do not believe this is a consequence of the oxytocin 

administration unique to our study. One possibility is that this ‘learning’ is a reflection of the dogs 

being less anxious about the novel environment in B3 compared to B1, and therefore less inhibited 
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in performing the task. However, it is still interesting that this was observed in our study but not in 

previous studies which employed similar testing methods and less habituation time to the testing 

environment. This disparity may be due to the fact that testing in the current study was carried out 

in a room that was not well insulated against distracting external sound disturbances, and therefore 

may have required more habituation time than the testing locations employed in other studies.  

Limitations and future directions. The above-mentioned external sound disturbances may 

have varied on different testing days, which was an unavoidable limitation of our study. Other 

limitations of the present investigation included possible variation in the dog’s hunger levels among 

sessions. Although efforts were made to test a particular dog at the same time of day in each 

session, this was not always possible. Owners were also instructed to keep the dog’s day as similar 

as possible between sessions, but this could not be fully controlled either. Given the gender 

differences we observed, future studies should consider the effect that spaying and neutering has on 

oxytocin function, as our findings, compared to those of human studies on social cognition, may 

suggest this has particular influence in females. Lastly, although efforts were made to be as 

consistent as possible with the majority of previous studies’ dosages and behavioural testing 

timeframes, it is currently unknown what constitutes the optimal behavioural testing time after 

administration of oxytocin in dogs, and how long the behavioural effects last. Extrapolating from the 

findings of a human study investigating the intranasal application of 40IU and 80IU of a very similar 

peptide, vasopressin (Born, et al., 2002), and a recent pig study investigating the intranasal 

application of 24IU of oxytocin (Rault 2013), we can reasonably assume that oxytocin is still active in 

the brain 100-120 minutes after administration, and potentially longer.  Therefore the behavioural 

effects in the current study were likely to have been maintained for the entire testing session, which 

normally lasted between 90 and 120 min.  

Conclusion 

Administration of oxytocin was effective in aiding dogs’ performance on the OCT using 

momentary distal pointing cues. Moreover, this enhancing effect persisted at least 5-15 days later, in 

the absence of further oxytocin administration. Oxytocin also appeared to decrease dogs’ aversion 

to gazing cues, with performance being at chance level after oxytocin administration but below 

chance level after saline administration.  
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