

This is the author-created version of the following work:

Rehn, Emma, Rowe, Cassandra, Ulm, Sean, Woodward, Craig, and Bird, Michael (2021) *A late-Holocene multiproxy fire record from a tropical savanna, eastern Arnhem Land, Northern Territory, Australia.* The Holocene, 31 (5) pp. 870-883.

Access to this file is available from: <u>https://researchonline.jcu.edu.au/65777/</u>

© The Author(s) 2021. In accordance with the publisher's policies, the Author Accepted Manuscript of this article is Open Access from ResearchOnline@JCU, and is restricted to non-commercial and no derivative uses. For the Version of Record, please follow the DOI link.

Please refer to the original source for the final version of this work: <u>https://doi.org/10.1177/0959683620988030</u>

This is the author-created version of the following work:

Rehn, Emma, Rowe, Cassandra, Ulm, Sean, Woodward, Craig, and Bird, Michael (2021) *A late-Holocene multiproxy fire record from a tropical savanna, eastern Arnhem Land, Northern Territory, Australia.* The Holocene, 31 (5) pp. 870-883.

Access to this file is available from: https://researchonline.jcu.edu.au/65777/

© The Author(s) 2021. In accordance with the publisher's policies, the Author Accepted Manuscript of this article is Open Access from ResearchOnline@JCU, and is restricted to non-commercial and no derivative uses.

Please refer to the original source for the final version of this work: <u>https://doi.org/10.1177/0959683620988030</u>

Supplementary Material

The following is a description of the method used to prepare samples for lead-210 by alpha spectrometry, following the ANSTO Environmental Radioactivity Measurement Centre (ERMC) Lead-210 dating sample preparation method. Approximately 0.2 g of ²⁰⁹Po tracer was added to ~2 g of dried, homogenized sediment sample prior to the addition of 25 mL concentrated HNO₃ to digest organics, heated until evaporating close to dryness. ~20 mL of 30% H₂O₂ was added slowly and samples again heated until evaporated close to dryness. After cooling, 40 mL aqua-regia (10 mL conc. HNO₃ and 30 mL conc. HCl) was added and samples were placed on a hot plate under a watch glass to reflux overnight at ~60°C. Supernatant was separated from residue via centrifuge, using 6M HCl as a rinse, and the residue discarded. ~5 mL conc. HCl was added to the supernatant and heated to evaporate close to dryness, completing the digestion phase.

This was followed by application of the ERMC Polonium chemical isolation method (De Oliceria Goday 1983). 80 mL 0.04 M HCl was added to each sample while on a stirring hot plate, followed by 1 mL of 20 % ascorbic acid to reduce Fe(III) to Fe(II). 100 μ L 1 M citric acid was added to complex trace iron and chromium, followed by 10 mg of Bi³⁺ holdback carrier to inhibit autodeposition of bismuth. The pH of each sample was adjusted to 1.5 with the addition of cresol red indicator and NH₄OH. 1 g of hydroxylammonium chloride was added and a silver disk holder floated in the solution for polonium deposition over at least 4 hours. Silver disks were removed and rinsed in distilled water and ethanol prior to polonium counting by alpha spectrometry.

Next the ERMC Radium chemical isolation procedure was applied to the samples (Golding 1961; Lim & Dave 1981; Lim, Dave & Cloutier 1989). Samples were added to 800 mL molecular filtered water and 20 mL conc. H₂SO₄ was added. 10 Ml 10mg/mL Pb²⁺ carrier was

added slowly via burette while the sample was stirred. Samples were covered and left overnight to allow Pb/Ba/Ra sulphate precipitate to flocculate. Supernatant was discarded, and 5 mL 0.2 M Na₅DTPA was added to the remaining residue along with thymol blue indicator to verify a sample pH of >9. Samples were mixed via vortex mixer and placed in a sonicator bath for 30 minutes. After the addition of two drops of methyl red indicator, samples were passed through a 0.45 μ m disposable membrane filter. 2 mL of 1:1 acetic acid/water and 1 mL BaSO₄ seeding suspension (sonicated for 15 minutes prior) were simultaneously added to each sample before samples were refrigerated for at least 30 minutes. Refrigerated samples were poured through a smooth-surfaced Millipore "VV" membrane filter in a lock-seal Gelman filter apparatus and allowed to drain. Membrane filters were removed for radium counting by alpha spectrometry.

Table	S1:	Marura	lead-210	dates,	including	modelled	ages	using	а	Constant	Initial
Conce	ntrati	on (CIC)	model.								

ANSTO Code	ID	Unsupported ²¹⁰ Pb decay corrected to 3-Oct-17	Calculated CIC ages (years before collection in 2015)	Mean calculated age from age-depth model (years cal BP)
U526	MAR2 0- 1m 0- 1cm	25 ± 7		-50
U527	MAR2 0- 1m 2- 3cm	31 ± 5		-43
U528	MAR2 0- 1m 6- 7cm	31 ± 5		-27
U087	MAR2 0- 1m 10- 11cm	35 ± 5	47 ± 14	-12

U088	MAR2 0- 1m 15- 16cm	24 ± 4	69 ± 21	13
U089	MAR2 0- 1m 20- 21cm	9 ± 5	91 ± 28	55

 Table S2: Marura AMS radiocarbon dates.

ANSTO Code	ID	δ(¹³ C) per mil	% modern carbon	Conventional radiocarbon age	Mean calculated age from age- depth model	
			pMC 1σ error	yrs BP	yrs cal BP	
OZW494	MAR2 0- 1m 44- 45cm	-23.7 ± 0.1	87.13 ± 0.31	1,105 ± 30	904	
OZW495	MAR2 0- 1m 72- 73cm	-21.0 ± 0.1	84.42 ± 0.36	1,360 ± 35	1248	
OZW496	MAR2 1- 1.95m 44- 45cm	-24.0 ± 0.2	77.41 ± 0.30	2,055 ± 35	1975	
OZW497	MAR2 1- 1.95m 84- 85cm	-24.1 ± 0.1	72.77 ± 0.36	$2,555 \pm 40$	2633	
OZW498	MAR2 1.95-2.9m 44-45cm	-25.2 ± 0.1	64.40 ± 0.26	3,535 ± 35	3751	
OZW499	MAR2 1.95-2.9m 84-85cm	-25.8 ± 0.3	59.63 ± 0.36	4,155 ± 50	4615	

Figure S1: Morphotype data for Marura >250 μm charcoal (morphotype symbols after Enache and Cumming 2006, p.285). PartChar: partially charred particles, UnID: unidentified charcoal particles.

Figure S2: Morphotype data for Marura 250-125 μm charcoal (morphotype symbols after Enache and Cumming 2006, p.285). PartChar: partially charred particles, UnID: unidentified charcoal particles..

Figure S3: Morphotype data for Marura 125-63 μm charcoal (morphotype symbols after Enache and Cumming 2006, p.285). PartChar: partially charred particles, UnID: unidentified charcoal particles.