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Spatial patterns of microbial communities across
surface waters of the Great Barrier Reef
Pedro R. Frade 1,2✉, Bettina Glasl2,3, Samuel A. Matthews3,4, Camille Mellin 5,6, Ester A. Serrão 1,

Kennedy Wolfe7,8, Peter J. Mumby7,8, Nicole S. Webster 3,9 & David G. Bourne2,3

Microorganisms are fundamental drivers of biogeochemical cycling, though their contribution

to coral reef ecosystem functioning is poorly understood. Here, we infer predictors of bac-

terioplankton community dynamics across surface-waters of the Great Barrier Reef (GBR)

through a meta-analysis, combining microbial with environmental data from the eReefs

platform. Nutrient dynamics and temperature explained 41.4% of inter-seasonal and cross-

shelf variation in bacterial assemblages. Bacterial families OCS155, Cryomorphaceae, Flavo-

bacteriaceae, Synechococcaceae and Rhodobacteraceae dominated inshore reefs and their

relative abundances positively correlated with nutrient loads. In contrast, Prochlorococcaceae

negatively correlated with nutrients and became increasingly dominant towards outershelf

reefs. Cyanobacteria in Prochlorococcaceae and Synechococcaceae families occupy com-

plementary cross-shelf biogeochemical niches; their abundance ratios representing a

potential indicator of GBR nutrient levels. One Flavobacteriaceae-affiliated taxa was putatively

identified as diagnostic for ecosystem degradation. Establishing microbial observatories along

GBR environmental gradients will facilitate robust assessments of microbial contributions to

reef health and inform tipping-points in reef condition.
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Coral reef ecosystems are under increasing anthropogenic
pressure leading to widespread global degradation1. A
combination of global disturbances, such as rising sea-

water temperatures2, and local pressures including overfishing,
declining water quality, disease and outbreaks of coral predating
crown-of-thorns starfish3, are driving declines in coral condition.
Despite being considered among the best-managed marine areas,
parts of the Great Barrier Reef (GBR) are threatened by nutrient
and sediment inputs from land-based sources4,5. The GBR was
also impacted by back-to-back bleaching events in 2016–2017,
resulting in the mortality of one-third of all its shallow-water
corals6 and dramatic impairment of recruitment capacity of the
surviving coral7. Another mass bleaching was reported in early
2020, representing three events in just 5 years, each with extensive
spatial impacts on the ecosystem values of the GBR8. There is
currently an urgent requirement to better understand the func-
tioning of coral reefs and identify the factors underpinning their
resilience or susceptibility, to determine how the socio-economic
and ecological value of these ecosystems will change.

Microorganisms are fundamental drivers of biogeochemical
cycling in coral reef waters9,10 and a crucial component of the
coral holobiont11. However, their contribution to the functioning
and resilience of reefs is not well understood12–14. Shifts in the
compositional and functional diversity of both coral-
associated15,16 and free-living planktonic12,17 microbial commu-
nities have been linked to varying levels of anthropogenic impact,
including changes in seawater nutrient levels18. For example,
chronic nutrient exposure has been correlated with increased
prevalence of coral disease in Caribbean reef systems19. Protec-
tion from fishing has led to improved reef health through the
promotion of microbial diversity as opposed to the growth and
rapid development of opportunistic microbial pathogens in reefs
open to fishing pressures20. These findings were validated in a
field experiment simulating overfishing and nutrient pollution,
which interacted with sea surface temperatures to drive changes
in coral microbiomes and an increase in coral mortality21. The
health and condition of corals, and resilience of reefs to envir-
onmental stressors more broadly, is inherently linked to microbial
functioning in these ecosystems.

Pressures such as overfishing and nutrient pollution can ulti-
mately contribute to the top down and bottom up processes that
drive phase-shifts from coral-dominated to macroalgal-
dominated reef ecosystems22,23. These phase-shifts are rein-
forced by the positive feedback loop proposed in the DDAM
model (DOC, disease, algae, microorganism), through which
macroalgae-derived labile dissolved organic carbon supports
copiotrophic and potentially pathogenic bacterioplankton com-
munities that harm corals, therefore promoting algal competitive
dominance24,25. The concomitant increase in microbial abun-
dances on algal-dominated reefs worldwide results in a switch
from autotrophic to heterotrophic microbial processes and a shift
in trophic structure towards higher microbial biomass and energy
use, a phenomenon coined microbialization26,27. An additional
hypothesis considers the self-reinforcement of macroalgal dom-
inance through microbial pathways. Specifically, positive micro-
bial responses to the photosynthates leached from algae may
increase the vertical attenuation of light, thereby suppressing
coral calcification and elevating stress on the coral28.

Shifts in free-living microbial lineages in response to seawater
nutrient gradients and benthic composition in reef systems have
previously been reported. For example, atolls of the Line Island
chain that experience the highest levels of coral disease, nitro-
gen and phosphate, and lowest coral cover also display micro-
bial abundances that are tenfold higher and communities
dominated by heterotrophs, including a large percentage of
potential pathogens12, features characteristic of near-shore

environments. In addition, the types of bacterial autotrophs
changed from Prochlorococcus-dominated assemblages in the
most pristine regions to Synechococcus-dominated communities
at atolls with human-influences such as increased concentra-
tions of nitrogen and phosphate12. Higher nutrient availability
also enriched for nutrient-related microbial metabolic traits
such as nitrate and nitrite ammonification29. In the Caribbean,
microbial signatures were also clearly distinct between pro-
tected and offshore Cuban reefs compared to human impacted
reefs in the Florida Keys18. Similarly, a study across three ocean
basins observed that algal-dominated sites were enriched in
copiotrophic microbial taxa, including Gammaproteobacterial
families such as Enterobacteriaceae, Vibrionaceae, Shewanella-
ceae and Pasteurellaceae, and Bacteroidetes such as Cytopha-
gaceae and Flavobacteriaceae, whereas coral-dominated reefs
were enriched in oligotrophic Alphaproteobacterial families
such as Caulobacteriaceae, Sphingomonadaceae, Hyphomona-
daceae, Bradyrhizobiaceae, Acetobacteriaceae, Phyllobacter-
iaceae, Rhodospirillaceae, Pelagibacteraceae, Rhizobiaceae and
Rhodobacteriaceae26.

Temporal and environmental variability in microbial assem-
blages at specific GBR sites have been identified, however the
drivers of bacterioplankton community change are poorly
resolved across the large expanse of the GBR. In the northern
GBR (Tully River region), microbial communities in proximity to
reefs followed seasonal dynamics and responded to riverine
inputs, with rainfall, water quality (i.e., nutrient, organic com-
pounds and herbicides), salinity and temperature implicated as
drivers of bacterial community composition30. In the southern
GBR, along cross-shelf gradients in the Mackay region, bacter-
ioplankton numbers correlated with dissolved organic carbon and
particulate carbon, nitrogen and phosphorus31. Seawater micro-
biomes from inshore reefs in the central GBR were investigated
for their predictive power to identify environmental perturbations
affecting reefs, with bacterial compositional variability sig-
nificantly explained by temperature in addition to water quality
parameters such as total suspended solids, particulate organic
carbon or chlorophyll concentrations32. Current evidence from a
number of global studies indicates that cumulative environmental
pressures and the ability of microbial communities to tolerate and
respond to various abiotic and biotic conditions structure the
microbial community33. However, the lack of available microbial
data collected at sufficient spatial and temporal resolution, and
supported by a comprehensive suite of contextual parameters,
limits our understanding of the role of microbes in the func-
tioning and resilience of the GBR and coral reef ecosystems more
generally11.

In recent years, the need to scale-up management of natural
ecosystems has been increasingly aided by modelling efforts. For
instance, ecosystem models have inferred relationships between
long-term anthropogenic pollution and reef resilience34 and
mapped their impacts on coral reef communities across the
continental shelf35. Models of water quality such as those inte-
grated in the eReefs collaborative data platform are now available
(https://ereefs.org.au/), allowing for interpretation and prediction
of ecosystem patterns at large temporal and spatial scales. As
contributors to coral reef functioning, it is important that
microbial communities are incorporated into modelling frame-
works to elucidate their applicability for ecosystem management
and bioremediation36,37. A first step towards a global under-
standing of microbial communities in the context of ecosystem
functioning in the GBR is to evaluate how much we know and,
importantly, identify knowledge gaps in microbial dynamics
across this threatened ecosystem38.

Here, we present an original meta-analysis targeting compo-
sitional variation of microbial communities in GBR waters and
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identify putative taxonomic (and functional) groups of reef
microbes across known environmental gradients and for distinct
reef categories. We use the coral community mapping of Mellin
et al.35 as the categorization framework. This classification splits
reefs surveyed across the GBR as part of the Long-Term Mon-
itoring Program (LTMP) of the Australian Institute of Marine
Science (AIMS)39 into six main reef benthic categories according
to environmental predictors (such as distance to the barrier reef
edge, seasonal range in seabed oxygen concentration and tem-
perature, seasonal range in sea surface temperature, and percen-
tage of carbonate sediments) (see Fig. 1). These reef benthic
categories differ in their macroorganism indicator taxa and geo-
graphic position across the GBR shelf and are represented as: (1)
outershelf soft coral communities (Out-Soft), (2), outershelf
branching hard coral (Out-Digit), (3) outershelf tabular and
corymbose hard coral (Out-Tab), (4) midshelf turf algae com-
munities (Mid-Mixed), (5) inshore hard coral communities (In-
Porites) and (6) inshore macroalgae communities (In-MA).

Results
Environmental variation across GBR surface waters. Modelled
estimates of the environmental conditions of surface seawater
retrieved from the eReefs hydrodynamic and biogeochemical
model (GBR1, https://research.csiro.au/ereefs/models/model-
outputs/gbr1/) for the microbial case study (n= 37) and LTMP
(n= 109) sites (see Fig. 1), covered 16 environmental variables
known as potential drivers of microbial community variation (see
Fig. 2 and Supplementary Fig. 1). Reefs within distinct categories
differed considerably in their prevalent surface seawater condi-
tions (Fig. 2). Overall, organic and inorganic nutrients decreased
in concentration with increasing distance from the shore (Fig. 2
and Supplementary Fig. 1; In-MA and In-Porites >Mid-Mixed
and Out-Tab > Out-Soft and Out-Digit). The exceptions were the
inorganic nitrogen variables (DIN, NH4 and NO3), which,
together with chlorophyll a, peaked at midshelf reefs, particularly
in the Out-Tab reef category. Superimposed on this inshore to
outershelf trend, there was strong seasonal variation. However,

144 146 148 150 152 154

-2
4

-2
2

-2
0

-1
8

-1
6

-1
4

Longitude (°)

La
tit

ud
e 

(°
)

Cairns

Townsville

Mackay

Rockampton

AUSTRALIA

CORAL SEA

100 200 km

E

N

W

S

Reef Cat.

Microbial Samples

Coral Sea
Tully region
Burdekin region
Yongala
Mackay region
Heron Island

Out-Soft

Out-Digit

Out-Tab

Mid-Mixed

In-Porites

In-MA

0

Fig. 1 Distribution of microbial samples and environmental datasets used in this study. Map of the Great Barrier Reef showing sites with available
microbial data (case studies, in black) and reefs included in the Long-Term Monitoring Program (LTMP, colour coded) for which comprehensive abiotic
data are available from the eReefs platform. Colour-coded reef categories (sensu Mellin et al.35) are: (1) Out-Soft—outershelf soft coral communities (dark
blue), (2) Out-Digit—outershelf branching hard coral (light blue), (3) Out-Tab: outershelf tabular and corymbose hard coral (dark green), (4) Mid-Mixed—
midshelf turf algae communities (light green), (5) In-Porites— inshore hard coral communities (orange), and (6) In-MA—inshore macroalgae communities
(red). Sites representative of microbial case studies are indicated by squares (Coral Sea), circles (Burdekin region, available in Glasl et al.32) and triangles
(Yongala location), all of which are BioPlatforms Australia (BPA) datasets, diagonal crosses (Tully region, available in Angly et al.30 dataset), diamonds
(Mackay region, available in Alongi et al.31 dataset) and plus signs (Heron Island, available in Epstein et al.40 dataset). Please see Supplementary Table 1 for
a summary of microbial datasets used in this study.
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Fig. 2 Cross-shelf and inter-seasonal environmental variation (boxplots) across the Great Barrier Reef (GBR) for parameters retrieved from the
eReefs platform. Data based on 146 LTMP and microbial sites combined (n= 4672 independent modelling experiments). Chl_a: total chlorophyll a, DIC:
dissolved inorganic carbon, DIN: dissolved inorganic nitrogen, DIP: dissolved inorganic phosphorus, DOR_C: dissolved organic carbon, DOR_N: dissolved
organic nitrogen, DOR_P: dissolved organic phosphorus, KD_490: vertical attenuation coefficient of light at 490 nm, NH4: ammonium, NO3: nitrate, salt:
salinity, TC: total carbon, temp: temperature, TN: total nitrogen, TP: total phosphorus, and tss: total suspended solids. Colour coded reef categories (sensu
Mellin et al.35) as detailed in Fig. 1.
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this effect tended to lose its influence towards outershelf cate-
gories (Out-Soft and Out-Digit). Out-Soft and Out-Digit were
devoid of seasonal effects, with the exception of temperature
differences between the wet and dry seasons. Inshore reef cate-
gories in contrast, showed strong seasonal differences for all
variables measured.

After dimensional reduction based on pairwise correlations
between variables (Supplementary Fig. 2), environmental varia-
tion represented in six non-collinear variables was modelled by
linear discriminant analysis (LDA) to predict reef category for the
sites with available microbial community data (Supplementary
Fig. 3). Training the LDA model with the LTMP dataset resulted
in a weighted average model accuracy of 73.4% (i.e. correct
classification of observed reef category as measured by “leave-
one-out” cross validation; see Supplementary Fig. 3a) and a
Cohen’s weighted Kappa of 68.8%, thus allowing assignment of a
putative reef benthic community category to the sites included in
the microbial dataset (Supplementary Fig. 3b). Nominally, the
inshore sites of Mackay and the Burdekin (Magnetic Island) were
representative of the In-MA category; the inshore Burdekin sites
of Orpheus Island, and Tully (Marine and Plume sites), represent
In-Porites; the midshelf sites of Mackay, the Burdekin (Yongala)
and Heron Island represent Mid-Mixed; and the Coral Sea sites
were representative of the Out-Soft category. Category Out-Tab
was represented by a limited number of the outershelf reef sites of
Mackay, and category Out-Digit by a small number of the Coral
Sea sites (Supplementary Fig. 3b).

Microbial community assemblages across the GBR. Locations
in the Burdekin region of the GBR (Magnetic Island: n= 1 site,
Orpheus Island: n= 2 sites, Yongala: n= 1 site) and the Coral Sea
(n= 6 sites), which comprised n= 69 samples across two seasons
(wet and dry), were used to assess broad microbial community
assemblages across environmental categories. These sites span the
inshore to offshore cross-shelf gradient and cover five out of six
defined benthic reef categories (Supplementary Fig. 3b; the
exception being the Out-Tab category), putatively representing
~90% of all GBR reefs35. In addition, the Tully dataset allowed
interpretation of seasonality and plume influence within the
single reef category In-Porites, reported as supplementary results.
Importantly, microbial community assemblages from the n= 10

Burdekin and Coral Sea sites were characterised using identical
sequencing protocols and comparable database taxonomic
assignment [i.e. generated from microbiome initiative coordi-
nated through BioPlatforms Australia (BPA)41]. Alpha diversity
(observed richness; Fig. 3a) varied significantly among reef cate-
gories and differences were not homogeneous across seasons
(significant interaction; F(2,59) = 14.43, p < 0.001; see Supple-
mentary Table 2 and Supplementary Fig. 4 for further results).
Outershelf reefs (Out-Soft and Out-Digit) consistently showed
the highest microbial richness, followed by the midshelf reefs
(Mid-Mixed), with these categories displaying approximately
threefold and twofold higher richness, respectively, than the
inshore reefs (In-MA and In-Porites). Microbial richness in each
reef category was consistently higher in the dry season than in the
wet season. A substantial number of OTUs were unique to a
particular reef category (Fig. 3b), with the midshelf reef (Mid-
Mixed) having the highest proportion of unique OTUs (63% of all
OTUs found in that category), followed by inshore macroalgae
communities (In-MA; 51%) and outershelf soft coral commu-
nities (Out-Soft; 33%). Outershelf branching hard coral (Out-
Digit, only 13% unique OTUs) and inshore hard coral commu-
nities (In-Porites, only 9% unique OTUs) shared most OTUs with
the other category in their respective reef shelf region, i.e., Out-
Soft (with which Out-Digit shared 43% of all OTUs) and In-MA
(with which In-Porites shared 54% of all OTUs). Unconstrained
ordination (nMDS, Fig. 4a) shows a clear separation of the
microbial community based on reef category and some segrega-
tion of samples according to season (within each reef category),
though the two inshore reef categories (In-Porites and In-MA)
and the two outershelf categories (Out-Soft and Out-Digit) have
overlapping microbial communities (Fig. 4a). Reef categories
(explaining 55% of variation) and season (explaining 5% of var-
iation) significantly structured the surface seawater microbiome,
and the effect of reef category was heterogeneous across season
(full model PERMANOVA with interaction, pseudo F(9,59)=
14.04, p < 0.001; see Supplementary Table 3).

Shallow-water pelagic microbiomes in the GBR were domi-
nated by the bacterial phyla Proteobacteria, Cyanobacteria,
Bacteroidetes, Actinobacteria and SAR406 (Fig. 4b). The most
dominant bacterial families were the cyanobacterial Prochlor-
ococcaceae and Synechococcaceae, and Pelagibacteraceae (Alpha-
proteobacteria). Inshore reefs (including In-MA and In-Porites)
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Soft and Out-Digit not available.
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were dominated by Synechococcaceae. Pelagibacteraceae, Flavo-
bacteraceae (Bacteroidetes), Rhodobacteraceae (Proteobacteria),
family OCS155 (Actinobacteria), Cryomorphaceae (Bacteroi-
detes) and Halomonadaceae (Proteobacteria) (see Fig. 4b) were
also abundant. Differences between the two inshore reef
categories were minor, but for In-MA, there was a tendency for
a higher relative abundance of Synechococcaceae, Rhodobacter-
aceae and the typically low-abundance proteobacterial family
OM60. Comparatively for In-Porites, there was an increase in
Pelagibacteraceae and Prochlorococcaceae. Pelagic microbiomes
of Mid-Mixed communities were instead dominated by the
Pelagibacteraceae, with Prochlorococcaceae becoming increas-
ingly abundant in comparison to the Synechococcaceae, which
was the second most dominant taxon (Fig. 4b). These were
followed in dominance by the Halomonadaceae, which was
enriched in Mid-Mixed communities compared to inshore In-
MA and In-Porites reef categories. Mid-Mixed communities also
included taxa within the families Flavobacteraceae, Rhodobacter-
aceae, OCS155 and Cryomorphaceae which were still abundant,
though in contrast to the Halomonadaceae, present at lower
relative abundances than for inshore reef categories (In-MA and
In-Porites). Pelagibacteraceae also dominated outershelf reef
communities (Out-Soft and Out-Digit), and Prochlorococcaceae
was the second most abundant family. Halomonadaceae was also
highly abundant and enriched in Out-Soft and Out-Digit
compared to lower abundances in midshelf and inshore reef
categories. Synechococcaceae, Rhodobacteraceae, SAR86 (Proteo-
bacteria) and the Flavobacteraceae were next highest in
abundance. The family OCS155 showed lower relative abundance

in Out-Soft and Out-Digit compared to all categories further
inshore (In-MA, In-Porites and Mid-Mixed), and the Cryomor-
phaceae were nearly absent (Fig. 4b). Microbial communities
inhabiting Out-Tab pelagic habitats could not be predicted from
the available BPA case study data.

Environmental drivers of microbial community change. The
environmental parameters that influenced microbial communities
at sites across GBR surface waters were identified by integrating
16 local environmental variables (derived from eReefs) with
community patterns. After dimensional reduction based on
pairwise correlations between variables (Supplementary Fig. 5),
eight non-collinear variables were visualized by PCA (Supple-
mentary Fig. 6a; first two components explained 61.3% of var-
iation in the dataset). Variables explaining significant variation in
the microbial community were determined by dbRDA (Supple-
mentary Table 3). The full model (no interactions considered)
was significant according to an ANOVA-like permutational test
(pseudo F(7,61)= 6.15, p < 0.01) and included the variables sali-
nity, temperature, total chlorophyll a, dissolved inorganic carbon
(DIC), ammonium (NH4), dissolved organic carbon (DOC) and
the vertical attenuation coefficient of light (Kd_490) (Supple-
mentary Fig. 6b). Significant constraints had a total explanatory
value of 41.4% of variation, according to Variation Partitioning
Analysis. Percentage of variation explained by individual con-
straints was 18.3% for DOC, 11.2% for temperature, 4.2% for
salinity, 7.6% for NH4, 8.2% for DIC, 3.7% for chlorophyll a, and
7.3% for Kd_490. Nutrient dynamics and temperature explained

Fig. 4 Microbial community descriptors across reef categories of the Great Barrier Reef (GBR). a Unconstrained ordination (nMDS) of GBR microbial
communities based on reef category and season. b Microbial community composition of dominant bacterial families across GBR reef categories. n= 69
biologically independent samples. Colour coded reef categories (sensu Mellin et al.35) as detailed in Fig. 1. Data for wet season in Out-Soft and Out-Digit
not available.
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most of the variation in the microbial community assemblages.
This variation primarily corresponded to differences among reef
categories (Supplementary Fig. 6b), influenced by the patterns of
organic and inorganic nutrient loads (plus temperature)
decreasing from inshore (In-MA and In-Porites), to midshelf
(Mid-Mixed) and outershelf (Out-Soft and Out-Digit) reefs. This
nutrient and temperature axis also influenced the sample patterns
according to season, at least for categories In-MA and Mid-
Mixed. The effect of chlorophyll concentration on pelagic
microbiome variation related to an increase in attenuation of light
with depth, and both these parameters influenced microbial
communities in an opposite way to salinity. These variables
mostly influenced microbiomes within the two inshore reef
categories (In-MA and In-Porites) and the midshelf Mid-Mixed
category, but not for outershelf reefs, which displayed more stable
community patterns. For the In-Porites and Mid-Mixed reefs,
chlorophyll a, Kd_490 and salinity explained some of the seasonal
variation in microbiome composition (Supplementary Fig. 6b). In
contrast, for In-MA reefs, microbiome variation correlated with
chlorophyll a and salinity changes, though this variation was not
structured according to season.

Correlations between individual environmental parameters and
individual bacterial families were observed for all GBR reef
categories combined (Fig. 5). Increasing nutrient loads (DIC,
DOC and NH4) positively correlated with an increase in families
OCS155, Cryomorphaceae, Flavobacteriaceae, Synechococcaceae,
Pelagibacteraceae and Rhodobacteraceae, with particularly sig-
nificant correlations during the dry season (Spearman correlation
coefficient module often equal or higher than 0.6; Supplementary
Fig. 7). In contrast, increasing nutrient loads correlated with

decreasing relative abundances of Prochlorococcaceae. The
influence of increased temperature was similar to that of
increasing nutrient concentrations across the different bacterial
taxa. The exception to this pattern is the negative correlation of
temperature with Pelagibacteraceae in the wet season (Supple-
mentary Fig. 7). Synechococcaceae also displayed a response to
light attenuation (Kd_490). Salinity correlated significantly
(Spearman correlation coefficient, p < 0.05) and positively with
OCS155 and Prochlorococcaceae, and negatively with Cryomor-
phaceae (Fig. 5). These environmental-microbial correlations
demonstrate that most responses are consistent across seasons
(dry versus wet season, but see Supplementary Fig. 7) and capture
patterns across broad spatial scales (reef categories and cross-shelf
habitats).

Diagnostic microbes of GBR reef categories. The inshore reef
categories, In-MA and In-Porites, were characterised by a high
diversity of microbial indicators (Fig. 6), with 59 and 68 OTUs
identified, respectively. The families Rhodobacteraceae and
Synechococcaceae were the most dominant indicators though
taxa spanning Cryomorphaceae, Flavobacteriaceae, Pelagibacter-
aceae and Halomonadaceae were also characteristic for these
inshore reef categories (see Supplementary Fig. 8 for individual
indicator OTUs). The Mid-Mixed reef category was also char-
acterised by a high number of indicators (59 OTUs) though
dominated by OTUs affiliated with the Prochlorococcaceae.
Outershelf reef categories had far fewer indicator taxa (only 15
OTUs for both Out-Soft and Out-Digit) and were similarly
dominated by the Prochlorococcaceae. Members of the OCS155,

Fig. 5 Association between individual environmental parameters and the relative abundance of dominant individual bacterial families for the Great
Barrier Reef (GBR). Lines represent fitted linear regression models (n= 69 biologically independent samples) and asterisks on upper corners of panels
represent adjusted p-values for significance of Spearman correlation coefficients between each environmental parameter and relative abundance of each
family (*p < 0.05, **p < 0.01, ***p < 0.001). Chl_a: total chlorophyll a, DIC: dissolved inorganic carbon, DOR_C: dissolved organic carbon, KD_490: vertical
attenuation coefficient of light at 490 nm, NH4: ammonium, salt: salinity, and temp: temperature.
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Halomonadaceae, Pelagibacteraceae and unclassified Alphapro-
teobacteria comprise the remainder of the indicator taxa in out-
ershelf reefs. It should be noted that when the same family was
depicted as an indicator across reef categories, for example
OCS155, Pelagibacteraceae and Halomonadaceae (Fig. 6), the
specific indicator OTU was different within each reef category
(Supplementary Fig. 8).

OTUs identified as an indicator for one particular reef
category, were also generally indicators for two or more other
reef categories (see Supplementary Fig. 8). For example, 24

different OTUs were identified as indicators of inshore categories
(mostly Cryomorphaceae, Flavobacteriaceae, Synechococcaceae,
OM60, Pelagibacteraceae and Rhodobacteraceae), 34 OTUs for
the combined midshelf and inshore categories (including
OCS155, Cryomorphaceae, Flammeovirgaceae, Flavobacteriaceae,
Saprospiraceae, Synechococcaceae, Halomonadaceae, OM60,
Pelagibacteraceae, Rhodobacteraceae, two families in the
SAR406 and Acholeplasmataceae), and 5 OTUs for the combined
outershelf and midshelf categories (mostly Prochlorococcaceae).
The only exception was OTU161, a Flavobacteriaceae that was the
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only indicator of a single category, in this case In-MA
(Supplementary Fig. 8). Importantly, the absence of a particular
OTU can also be informative for a particular reef category. For
example, 10 OTUs were diagnostic across all analysed categories
with the exception of In-MA. OTUs affiliated with the
Piscirickettsiaceae and unclassified Rhizobiales (plus OTUs in
the OCS155, Halomonadaceae and Pelagibacteraceae) are addi-
tional examples where absence is diagnostic of the In-MA
category.

Discussion
This study extrapolated microbial community composition from
all currently available datasets relevant to the GBR and explored
environmental drivers of microbial variation using eReefs at the
relevant spatial and temporal scales. This approach allowed us to
summarize seasonal shifts in the microbial community of GBR
waters along an inshore to offshore gradient. Our extrapolations
putatively represent ~90% of all GBR reefs. Microbial commu-
nities in coral reef waters respond, at least partially determinis-
tically, to environmental fluctuations and drivers17,32,42. Our
analyses support this inference by showing that microbial com-
munities within GBR surface waters strongly correlate with their
surrounding prevailing conditions (e.g., nutrient dynamics, tem-
perature), both at broad geographical scales (i.e. across reef
categories), and at the level of temporal-seasonal dynamics. A
trend of increasing terrestrial input near-shore resulted in
reduced richness and diversity of bacterial communities in In-MA
and In-Porites (inshore) reefs. Reduced microbial diversity was
also evident at riverine stations (Supplementary Results, Supple-
mentary Figs. 10-14 and Supplementary Tables 4–5). In contrast,
stable oligotrophic oceanic conditions correlated with more
diverse and rich bacterial communities for the Out-Digit and
Out-Soft (outershelf) reefs (Figs. 2 and 3). Substantial changes in
bacterial community structure were also evident across the GBR
shelf (Fig. 4), primarily explained by nutrient dynamics, though a
general gradient of decreasing temperature from inshore towards
outershelf reefs also correlated with these community changes
(Supplementary Fig. 6). These bacterial community patterns
suggest that terrestrial and riverine influences impose selective
processes under which a narrower array of microbial taxa can
thrive43,44.

Riverine outflows are known to impact the health of inshore
reefs as they carry organic and inorganic nutrients of terrestrial
origin (such as agricultural fertilizers) onto the reef systems3,4.
Particulate matter is usually deposited a few kilometres from river
mouths, though dissolved nutrients can reach distances >100
Km45. Terrestrial inputs are a major influence on environmental
variation of GBR benthic and pelagic habitats46,47 and observed
patterns from this study indicate that water chemistry and
nutrient gradients are also a crucial driver of microbial commu-
nity change across spatial scales of GBR surface waters. This
appears to be a generality of coastal oligotrophic waters. For a
coastal environment in the Sargasso Sea, changes in microbial
communities were observed from estuarine nearshore sites across
the continental shelf to offshore oligotrophic waters, with sea-
water temperature and distance from shore (as proxy for gra-
dients in productivity, terrestrial input and nutrients) identified as
the strongest drivers of microbial community composition42.
Changes in bacterioplankton community structure related to
freshwater runoff have also been described for Hawaiian reefs48.

Seasonal variation influenced the richness and structure of
bacterial communities, though trends were not as strong as
observed for cross-shelf spatial variation (see Figs. 3 and 4).
Lower bacterial diversity was evident for the wet season in the
Mid-Mixed reef category and seasonality influenced bacterial

community structure for the inshore In-MA and In-Porites
categories, as well as Mid-Mixed reefs (Supplementary Fig. 6). For
these three reef categories, seasonality likely represents a response
to the combined effects of temperature and nutrient dynamics,
with a relative decrease in the availability of nutrients and a rise in
seawater temperature during the wet season (see Fig. 2). For the
In-Porites and Mid-Mixed reefs, there was a contribution of
chlorophyll a and salinity to bacterial seasonal dynamics. Seaso-
nal changes in community structure may be the result of event-
related phytoplankton blooms, which are known to quickly
assimilate and turnover available pools of dissolved inorganic
nutrients in the GBR lagoon at the beginning of the warm wet
season49,50. Seasonal influence on microbial diversity (lower in
the wet season) and community structure was also confirmed for
In-Porites reefs located under the influence of river plumes (see
Supplementary Discussion). These seasonal patterns in microbial
community dynamics, even at smaller spatial scales of river
influence, are consistent with previous studies on the GBR30,32.
Irrespective of their spatial and temporal drivers, temperature and
nutrient availability likely interact to establish selective processes
that determine the assemblage of prevalent bacterial groups for
each reef category. Inshore reefs are typically light limited (high
attenuation of light due to high particulate and dissolved nutri-
ents) and richer in heterotrophic processes, whereas outershelf
reefs are more nutrient limited, particularly nitrogen limited (low
DIN), and richer in autotrophic processes45,49,50.

The shallow-water pelagic microbiomes of the GBR were
dominated by autotrophic cyanobacterial families Pro-
chlorococcaceae and Synechococcaceae, as well as the oligo-
trophic Pelagibacteraceae (Alphaproteobacteria). These bacterial
groups are highly abundant in the global ocean, with Pelagi-
bacteraceae (formerly SAR11 clade) accounting for up to a third
of all cells present in the oceans’ surface waters51. Across the
GBR, Pelagibacteraceae reached mean relative abundances >30%
in outershelf (Out-Digit and Out-Soft) and midshelf (Mid-Mixed)
reef waters. Prochlorococcaceae and Synechococcaceae represent
the main photosynthetic bacteria in the ocean52,53. Pro-
chlorococcaceae reached mean relative abundances of ~25% in
outershelf reef waters (Out-Digit and Out-Soft), while Synecho-
coccaceae populations were >30% in inshore reefs (In-MA and
In-Porites). Metabolic properties of the dominant bacterial taxa
likely influenced these observed distribution patterns across the
GBR shelf.

Bacterial families OCS155, Cryomorphaceae, Flavobacteriaceae
and Synechococcaceae, OM60, and Rhodobacteraceae positively
correlated with increasing nutrient loads (DIC, DOC and NH4)
and thus dominated inshore reefs. OM60 is an oligotrophic
gammaproteobacterial family known to encompass diverse
metabolisms including aerobic anoxygenic photosynthesis54, and
was previously identified as being more abundant in marine
coastal zones than in open-ocean surface waters55. Rhodo-
bacteraceae are often characterised as opportunistic microbes
correlated with poor reef health21 and are commonly enriched in
diseased corals56. Both these lineages were found at higher rela-
tive abundances on In-MA than In-Porites reefs. The high
abundance of the Bacteroidetes families Cryomorphaceae and
Flavobacteriaceae in inshore reefs is consistent with previous
studies. Bacteroidetes have been used as fecal indicators and can
act as a reservoir of resistance genes for other more pathogenic
bacterial strains57. A recent study has proposed that increased
levels of Bacteroidetes in reef waters are indicative of enhanced
macroalgal growth and the onset of microbialisation in coral
reefs58. Proximity to river mouths has also been linked to
increases in microbial taxa implicated in coral disease21,30. In
contrast, Prochlorococcaceae showed increasing relative abun-
dance with decreasing nutrients, being more abundant on
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outershelf reefs likely as a result of their photoautotrophic
metabolism. Rhodospirillaceae also showed a tendency to increase
with decreasing nutrients, but their known diversified lifestyles
(including diazotrophs, opportunistic pathogens, and varied
genera able to grow in anaerobic or aerobic conditions59), likely
support their constant relative abundances across reef categories.
The increase in Pelagibacteraceae and SAR86, two abundant
marine bacterial lineages that exhibit metabolic streamlining60, is
consistent with the oligotrophic conditions found in the GBR
lagoon and Coral Sea. Nutrient levels measured in these habitats
were the lowest found across all parameters and throughout all
datasets included in our meta-analysis (see Fig. 2).

The population of indicators identified for each reef category
includes particular OTUs within the families Rhodobacteraceae,
Synechococcaceae, Cryomorphaceae, Flavobacteriaceae, Pelagi-
bacteraceae and Halomonadaceae, among others. Counter-intui-
tively, the less rich and less diverse inshore communities yielded a
larger number of microbial indicators than the taxa-rich and
diverse outershelf reefs. This pattern strongly relates to the
number of unique OTUs found in the different reef areas. The
outershelf reefs were characterised by only 15 indicator OTUs
from a restricted number of families and appeared to support a
higher abundance of ubiquitously distributed bacterial taxa. In
contrast, inshore environments harboured a greater relative
abundance of autochthonous microbial taxa that represented
indicators of inshore and potentially degraded systems. The
absence of diagnostic microbial taxa for individual reef categories
is a good illustration of the spatial continuity observed for free-
living microbial communities among reef categories. This
strongly contrasts with host-associated microbial data, where the
specificity of bacterial taxa towards their host is usually high and
indicator taxa are common32.

The cyanobacterial families Prochlorococcaceae and Synecho-
coccaceae show opposing correlations to many of the environ-
mental parameters included in the analyses (Fig. 5), indicating
they occupy complementary photoautotrophic microhabitats.
Prochlorococcus is commonly reported from oligotrophic waters,
due to its capacity to take up low levels of organic nitrogen,
whereas Synechococcus becomes increasingly dominant in nutri-
ent rich waters53,61. The Prochlorococcaceae:Synechococcaceae
relative abundance ratio represents a potential indicator for the
contribution of nutrient concentration in coral reef waters. These
patterns have also been observed for pristine versus human-
influenced reef atolls, with a four-fold increase in nitrogen and
phosphate concentrations associated with Synechococcus dom-
inance from 9–15% to 64–66% of the cyanobacterial popula-
tion12. However, even within a particular bacterial genus or
species, there can be different lineages (i.e. 16S rRNA sequence
variants) that are associated with distinct environmental
conditions32,62. For example, the Prochlorococcus group is com-
prised of various ecotypes that are phylogenetically and physio-
logically distinct and whose abundance distributions respond
according to environmental gradients63. These patterns are often
attributed to the partitioning of environmental resources and
niche spaces among taxa64. An index could be established that
categorizes this ratio into levels that broadly relate to the avail-
ability of nutrients/contribution of terrestrial run-off. Additional
indices could be developed to monitor eutrophication of GBR
waters, for instance by including particular lineages (e.g., Pro-
chloroccocus or Synechococcus) with different substrate affinities.
Comparison of broader trophic groups may also prove valuable
indicators of ecosystem health and/or function. For example,
levels of typical copiotrophs such as families OCS155, Flavo-
bacteraceae, Cryomorphaceae and Rhodobacteraceae, could be
modelled against levels of oligotrophs such as Pelagibacteraceae
and SAR86 to generate a complementary index for eutrophication

(e.g. Haas et al.26). Typical opportunistic bacteria, such as those
exhibiting virulence towards benthic organisms (e.g., the families
Rhodospirillaceae, Rhodobacteraceae and Vibrionaceae), could
also be used as indicators of reef health and/or degradation.

Analyses of GBR microbial communities with extensive
environmental metadata identified bacterial taxa that are indi-
cative of particular conditions on the reef, either because they
contribute to the processes underlying reef health, or because they
occur as a consequence of those underlying processes. The
causality of these relationships is difficult to attribute directly,
though a non-mutually exclusive alternative explanation could be
that variability in benthic cover and associated availability of
labile organic matter released by dominant benthic primary
producers65 causes changes in the microbial communities26. For
instance, a reduced Prochlorococcaceae:Synechococcaceae ratio at
In-MA reefs may be related to the increasing contribution of
organic nutrients of macroalgal origin. In-MA reefs are poten-
tially influenced by positive feedback loops through which
microbial changes related to increased macroalgae cover promote
more advanced states of macroalgae domination26,66. Although
the identification of microbial taxa and functions that contribute
to a functioning reef (or to disturbed reef states) is a major
objective of this work, further analyses are required to identify
potential microbial indicators of reef health, microbialization,
degraded environments and ecological tipping points. The
Flavobacteriaceae-affiliated OTU161 was the only indicator for a
single reef category (i.e. In-MA) and may represent a microbial
indicator of ecosystem degradation on the GBR. Further work
should be undertaken to assess the robustness of this indicator by
establishing comprehensive baselines and additional experimental
validation. Future research should also resolve dynamic causal
relationships between environmental parameters, microbial
communities and underlying coral reef ecosystem health.

Robust mapping of microbial communities across the GBR
requires extensive baselines across temporal periods and spatial
scales that reflect its expanse of 2300 Km and almost 3000
individual reefs. Microbial baselines could be achieved through a
series of microbial observatories spanning key habitats to com-
plement current reef-monitoring efforts (e.g. AIMS LTMP).
Establishment of parallel cross-shelf transects that capture all six
reef communities previously identified35, with frequent sampling
to capture inter-seasonal patterns, is proposed. Extension of
microbial data to the far northern section of the GBR is required
to ascertain whether pelagic microbial communities in this region
follow the patterns identified here for other regions of the GBR.
Sampling effort should also be directed towards characterising
pelagic microbial communities over the outershelf tabular and
corymbose hard coral (Out-Tab) and the outershelf branching
hard coral (Out-Digit) communities, for which we could not
robustly predict a microbial community. However, we suggest
that inshore reefs demand the most intensive monitoring pro-
gram, as this is the area exposed to the broadest range of envir-
onmental variation, and the highest degree of uncertainty due to
proximity to land and human activities affecting inshore reefs.
These interactions drive higher spatial heterogeneity of bacterial
communities in inshore reefs as compared to more homogeneous
outershelf and open ocean sites67.

Microorganisms represent the first responders to environ-
mental change and may mitigate or exacerbate the impacts of
disturbance for higher trophic levels11. Establishment of a GBR
microbial observatory network would aid identification and
validation of microbial indicators for environmental disturbance
and facilitate early identification of ecosystem conditions leading
to tipping-points in reef condition. Extending beyond taxa to also
characterise the functional traits of these microorganisms would
determine if changing community composition translates to
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changes in biogeochemical cycling and/or other microbial pro-
cesses important for ecosystem health58. Finally, it is crucial to
generate global reef microbial data to understand the ubiquity of
the patterns described here for the GBR.

Methods
To estimate the compositional variation of microbial communities in GBR waters
across different environments from inshore to outershelf reefs, we undertook a
modelling exercise extrapolating the publically available microbial data (for a
number of sites) into the larger extent of the GBR. The crucial step here was to
ascertain the spatial representativeness of the available case study sites in relation to
the wider GBR, which we did by modelling their environmental variation and
comparing it to that of known GBR reef habitats as categorized in a recent study35.
Our approach comprised: (1) deriving water chemistry data for sites with microbial
data as well as for broad reef categories as monitored by the LTMP of the AIMS; (2)
training a classification model that establishes a relationship between reef cate-
gories and prevailing environmental conditions; (3) predicting reef category for the
microbial case study sites; and (4) summarizing microbial community data for
broad reef categories across the wider GBR.

Accumulated datasets for GBR microbial predictions. The GBR represents an
extensive reef system with large longitudinal temperature gradients and a seawater
productivity gradient mostly defined by distance to shore4. The microbial datasets
available as case studies for the GBR are spatially restricted, covering localised sites
on Heron Island40 and the Mackay region31 in the southern GBR, the Burdekin
region32 in the central GBR, and the Tully region30 in the northern GBR (see
Fig. 1). Additional unpublished datasets (available through BioPlatforms Australia,
BPA) were also incorporated into the meta-analysis, covering the Yongala lagoon
site and several Coral Sea sites (Fig. 1) currently monitored by the Integrated
Marine Observing System (IMOS) National Reference Station (NRS) Network41. In
contrast, an extensive reef water quality program has been implemented for the
GBR with the contextual data publicly available within the eReefs platform68.
eReefs integrates a hydrodynamic model (predicting key environmental conditions
such as temperature and salinity) and a biogeochemical model (water chemistry
and ecological processes driving the water chemistry) to generate estimates with a
high spatial and temporal resolution for a vast variety of environmental conditions
across the GBR, from inshore reefs to the open ocean. Aggregations of such data
are available over hourly, daily, monthly, annual or all-time periods (https://ereefs.
org.au/).

To extend predictions of microbial community composition from the case study
sites to the wider GBR, we use the coral community mapping of Mellin et al.35 as a
categorization framework. This classification splits reefs surveyed across the GBR
as part of the LTMP of the AIMS39 into six main reef benthic categories according
to environmental predictors (such as distance to the barrier reef edge, seasonal
range in seabed oxygen concentration and temperature, seasonal range in sea
surface temperature, and percentage of carbonate sediments) (see Fig. 1). These
reef benthic categories differ in their macroorganism indicator taxa and geographic
position across the GBR shelf and are represented as: (1) outershelf soft coral
communities (Out-Soft), (2), outershelf branching hard coral (Out-Digit), (3)
outershelf tabular and corymbose hard coral (Out-Tab), (4) midshelf turf algae
communities (Mid-Mixed), (5) inshore hard coral communities (In-Porites) and
(6) inshore macroalgae communities (In-MA)35.

To compare surface seawater conditions across sites for the available
microbial case studies with those included in the LTMP program, environmental
data available from the eReefs hydrodynamic and biogeochemical model (GBR1,
https://research.csiro.au/ereefs/models/model-outputs/gbr1/) were extracted using
the R package ereefs (https://github.com/AIMS/ereefs). Specifically, surface
seawater temperature, salinity, total chlorophyll a, dissolved inorganic carbon
(DIC), nitrogen (DIN) and phosphorus (DIP), ammonium (NH4), nitrate (NO3),
dissolved organic carbon (DOC), nitrogen (DON) and phosphorus (DOP), total
carbon (TC), nitrogen (TN) and phosphorus (TP), total suspended solids (TSS)
and the vertical attenuation coefficient of light (Kd_490) were retrieved. For each of
these 16 environmental variables, data spanning the period Jan 2015–Jan 2018,
were extracted for each 1 × 1 Km grid cell matching the n= 37 sites that are part of
the analysed case studies (further referred to as “microbial” sites) and n= 109
reference sites included in the GBR-wide analysis of Mellin et al.35 (further referred
to as “LTMP” sites) using an adapted R script (https://github.com/
sammatthews990/eReefs_Fradeetal2019). Data for each site were then averaged for
two seasons, wet and dry, as formally defined by the Australian Bureau of
Meteorology (http://www.bom.gov.au/climate/glossary/seasons.shtml), i.e., warmer
wet season defined as Dec-Feb, and cooler dry season as Jun-Aug. After assessing
collinearity among the 16 environmental variables (module of correlation
coefficient higher than 0.7, using function “ggpairs” in package GGally), non-
collinear variables were included in a Linear Discriminant Analysis (LDA, function
“lda” in package MASS69). LDA identifies the component axes that maximize the
variance of the data, but additionally finds the axes that maximize the separation
between multiple data classes. LDA was initially trained with the LTMP dataset to
predict the reef category in the classification system of Mellin et al.35 based on the

reduced set of environmental variables. LDA performance was evaluated using
“leave-one-out” cross validation (LOOCV70), with function “table”, and with
Cohen’s weighted Kappa for interrater agreement71, via function “kappa2” in
package irr, where disagreements were weighted according to their squared
distance from perfect agreement. The trained LDA model was then used to predict
reef categories for the reefs included in the microbial dataset using the prevailing
environmental data as model input (using function “predict”). This allowed
identification of the reef community classes of Mellin et al.35 that show
environmental variation similar to, or in the range of that occurring in the
microbial sites, thus facilitating extrapolation of microbial community data to each
of the reef benthic categories to predict putative community composition across the
wider GBR.

Summarizing microbial community data. Microbial community data originating
from the GBR case studies was obtained in the form of “species versus samples”
tables, or tables of operational taxonomic units (OTUs) for which microbial tax-
onomy had previously been assigned using 16S rRNA phylogenetic marker genes.
OTU tables quantified abundance of the 16S rRNA gene sequences affiliated with
each microbial lineage across sampling sites, which provided an accepted proxy for
relative abundances of distinct microbial taxa. Limitations of this metadata
approach are that methods differed among case studies (see Supplementary
Table 1), including: (i) different primer sets to amplify the 16S rRNA gene,
(ii) different sequencing platforms, (iii) different reference databases to infer
taxonomic affiliation of the 16S rRNA gene reads, (iv) different taxonomic reso-
lution, and (v) different sampling depths, such that only the 2–5 m depth was used
here, unless specified otherwise. These limitations highlight that caution is required
when inferring trends across studies. Therefore we focus primarily on changes in
microbial communities within each of the individual case studies rather than
inferring responses across datasets (please see Supplementary Figs. 15–17, and
Supplementary Discussion for further comments on putative limitations of this
meta-analysis).

All OTUs derived from cellular plastids (mitochondria and chloroplast) were
removed from the analyses and, because Archaea were only reported for the Tully
region30, our analyses are restricted to the domain Bacteria (unless specified).
OTUs with one single occurrence (singletons) were removed to avoid including
spurious data originating from sequencing errors. All data were rarefied for within-
study comparisons (see Supplementary Table 1). For all data generated by
BioPlatforms Australia (BPA) (Burdekin, Yongala and Coral Sea datasets), further
documentation outlining the standard operating procedures for generating and
processing sequencing amplicons is available online (https://data.bioplatforms.
com/organization/pages/bpa-marine-microbes/methods). Otherwise, all pre-
processing data analyses are detailed in the respective publications for each of the
GBR regions: Tully30, Burdekin32, Mackay31 and Heron Island40.

All microbial data were transformed into relative abundance data and presented
figures summarize the most abundant microbial taxa in each case study. Alpha-
diversity estimators (richness, Shannon and Chao diversity) were calculated after
rarefying (to 25,000 reads), and a mixed-effects Analysis of Variance (ANOVA;
function “lmer” of lme4 package72 and “rand” of lmerTest package73) applied to
test for the effect of reef category and season (fixed factors) on each estimator
(while using the original site as random effect). Venn diagrams were constructed
with VennDiagram package74 to depict the number of unique and shared OTUs.
Beta-diversity statistics and visualizations were calculated from Bray-Curtis
similarity matrices based on Hellinger-transformed abundance data to reduce
influence of dominant lineages. Non-metric Multidimensional Scaling (NMDS—
function “metaMDS” of vegan package75) limited to two dimensions was used to
visualize the microbial community structure. Permutational Multivariate Analysis
of Variance (PERMANOVA; function “adonis2” of vegan package75) was used to
test (using 9,999 permutations) for differences in community structure between
reef categories and seasons within each dataset (original site included as random
effect). All beta-diversity statistics and follow-up analysis (see below) included only
OTUs seen more than five times in at least 50% of the samples (dominant taxa).
However, data obtained by 454 sequencing technology (Tully dataset) yielded a low
number of OTUs and all OTUs were included in beta-diversity statistics and
follow-up analysis.

Drivers of microbial variation across the GBR. To identify environmental drivers
of microbial variation across GBR surface waters, environmental data available for
the microbial case studies was again extracted from the eReefs hydrodynamic and
biogeochemical model using the R package ereefs, with spatial and temporal
resolution matching the available microbial datasets (and the place/time reported
for their collections). All surface seawater data were extracted using 1 × 1 Km
resolution except for those cases where only the 4 × 4 Km model could provide
data, such as for the Tully region (1 × 1 Km model only available from 2015
onwards). In all cases, data were averaged across the 3 days leading up to (and
including) the actual sampling dates reported in the case studies. eReefs only
models data obtained since 2011 (using 4 × 4 Km model), so microbiome-
environment links could not be established for the Mackay region as this study31

was conducted in 2009–2010. This precludes identification of the drivers of
microbial variation for the Alongi et al.31 dataset.
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Environmental variation was visualized by Principal Component Analysis
(PCA, function “prcomp” in package ggfortify76) of non-collinear variables (chosen
as explained above for the GBR-wide dataset). Before PCA, abiotic variables were
first checked for normality using a graphical check (and transformed if needed)
and then scaled to zero mean and unit variance (z-scores standardization). To
determine the contribution of abiotic parameters to the structure of microbial
communities, a Bray-Curtis distance-based redundancy analysis (db-RDA) was
applied on Hellinger-transformed relative abundance and the abovementioned
non-collinear environmental metadata using functions “dbrda” and “capscale” of
vegan package75. Samples with missing values for at least one of the environmental
parameters were removed. A model selection tool based on the explained variance
(function “ordiR2step”) was used to select the environmental variables
(constraints) significantly explaining variation in the microbial community (pin=
0.05, max perm 200), after which the significance of each constraint was confirmed
with analysis of variance (ANOVA) for db-RDA (function “anova.cca” in the vegan
package75). An ANOVA-like permutational test (function “permutest”) for dbRDA
was used to assess the significance of the full model. Explanatory value (in %) of
significant constraints (e.g., environmental parameters, season and sampling date)
was assessed with a Variation Partitioning Analysis of the vegan package75. The
function “taxa.env.correlation” of microbiomeSeq package was used to compute
(Spearman) correlation coefficients between environmental gradients and the
relative abundance of the 20 most abundant OTUs (non-transformed data), for the
environmental variables that were significant constraints of the community
(“ordiR2step” above). The Benjamini-Hochberg procedure was used to calculate
adjusted p-values for multiple comparisons.

Finally, to identify groups of microbes diagnostic of the different reef categories,
an indicator value analysis (IndVal; indicspecies package77) was performed on
relative abundance data (non-transformed). IndVal identifies microbial taxa based
on their significant specificity and fidelity to particular treatments78 and has been
previously used in the coral microbiome literature79.

Statistics and reproducibility. No experiments were performed. A high number
of permutations was applied to deal with hypothesis-driven statistical tests. All
meta-analyses of available microbial community composition and contextual
environmental data were performed in R version 3.4.380 using the phyloseq
package81, and graphical outputs were generated with ggplot2 package82.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All sequencing data obtained from BioPlatforms Australia (BPA), covering the Burdekin,
Yongala and Coral Sea datasets, is available online: https://data.bioplatforms.com/
organization/pages/bpa-marine-microbes/ Availability of all other sequencing data
(reported in supplementary materials) is detailed in the respective publication for each of
the GBR regions: Tully30, Mackay31 and Heron Island40. All environmental data used are
available from the eReefs hydrodynamic and biogeochemical model (GBR1). Source data
underlying the graphs and charts presented in the main figures are available as
Supplementary Data.

Code availability
An adapted R script83 was developed to extract environmental data from eReefs
spanning the period Jan 2015–Jan 2018 from each 1 × 1 Km grid cell matching the
n= 37 microbial sites and n= 109 LTMP reference sites which is available here:
https://github.com/sammatthews990/eReefs_Fradeetal2019
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