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Abstract 23 
Silver nanoparticles are one of the most beneficial forms of heavy metals in nanotechnology 24 

applications. Due to its exceptional antimicrobial properties, low electrical and thermal resistance, 25 

and surface plasmon resonance, silver nanoparticles are used in a wide variety of products, including 26 

consumer goods, healthcare, catalysts, electronics, and analytical equipment. As the production and 27 

applications of silver nanoparticles containing products increase daily, the environmental pollution 28 

due to silver nanoparticles release is increasing and affecting especially the aqueous ecosystem. Silver 29 

nanoparticles can kill useful bacteria in soil and water, and bioaccumulate in living organisms even at 30 

low concentrations from 10-2 to 10 μg/mL silver can show antibacterial effect. On the other hand, the 31 

maximum silver discharge limit into freshwater is 0.1 µg/L and 3.2 µg/L for Australia and the USA, 32 

respectively.  To reduce its toxic consequences and meet the regulatory guidelines, it is crucial to 33 

remove silver nanoparticles from wastewater before it is discharged into other water streams. Several 34 

technologies are available to remove silver nanoparticles, but the adsorption process using low-cost 35 

adsorbents is a promising alternative to mitigate silver nanoparticle pollution in the bulk stage. As one 36 

of the low-cost adsorbents, biochar produced from the biomass waste could be a suitable adsorbent. 37 

This review focuses on collating the latest evidence on silver nanoparticle production, applications, 38 

environmental consequences, and cost-effective technological approaches for silver removal from 39 

wastewater. 40 

Keywords: Adsorption; Biochar; Environmental pollution; Nano silver; Nanoparticles  41 
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1 Introduction 42 
Silver nanoparticle (Ag NP) is an important innovation in nanotechnology.  Unique physicochemical 43 

and strong antimicrobial properties make silver nanoparticles suitable for numerous applications [1-44 

3]. Particularly biomedicines, medical devices, functional textiles, cosmetics, food packaging, food 45 

supplements, odour-resistant items, electronics, household appliances, dental amalgam, water 46 

disinfectants, paints, and room spray [4, 5]. Therefore, increasing demand has led to a rise of silver 47 

nanoparticles’ production. Worldwide, the total estimated production of silver nanoparticles was 48 

about 500 tonnes per year in 2009, while expecting an increase of approximately 900 tonnes by 2025 49 

[6-10]. 50 

Silver ion and metallic silver nanoparticles are both hazardous to living organisms and aquatic 51 

ecosystems [11]. Ingestion of silver may cause health risks by metabolising and depositing in 52 

subcutaneous fat [12, 13]. Silver ion in the water system is classified as a hazardous material by the 53 

World Health Organization (WHO), the U.S. Environmental Protection Agency (USEPA), Australia, and 54 

Germany [12-14]. Further, wastewater generating from manufacturing processes and usage of these 55 

products are contaminated with silver nanoparticles and/or silver ions [15-18]. Therefore, it is 56 

important to remove either form of silver from the wastewater before discharging the effluent into 57 

the natural environment [19, 20]. 58 

The concentration of silver nanoparticles or silver compounds in wastewater varies depending on the 59 

wastewater generating points. In Malaysia, concentrations of silver nanoparticles found in sewage 60 

treatment plant (STP) vary between 0.13 and 20.02 mg /L [9], in Canada up to 1.9 µg/L [21], and in 61 

Germany between 0.32 and 3.05 µg/L [22]. Wastewater treatment plant (WWTP) with primary 62 

treatment processes, such as screening, precipitation, coagulation, and followed by biological 63 

treatment can remove most of the silver nanoparticles and silver compounds [20, 22, 23].  However, 64 

wastewater treatment facilities, which have no preliminary or primary treatment process, can be 65 

impacted by silver toxicity and may lead to a discharge of contaminated effluents [24, 25] as silver ions 66 

have a negative influence on bacteria dominant aerobic treatment processes [6, 26-28]. Even low 67 



4 | P a g e  

concentrations of silver (ng/L) are toxic and still representing a real threat to the environment for the 68 

long run [29, 30].  69 

In terms of economic feasibility, easy operation, and sustainability, adsorption is a promising method 70 

to remove low concentrations of heavy metals including silver and other precious metals from 71 

wastewater [31-34]. Adsorption is the adhesion of atoms, ions, or molecules to the surface of a 72 

substrate by chemical or physical interactions [34]. Silver adsorption study by using a low-cost 73 

adsorbent has gained substantial interest in recent years [12, 35].  Several studies are found on silver 74 

removal using different adsorbents, but just a few research has been done so far on the application of 75 

biochar to remove silver from an aqueous solution [34, 36].  However, biochar produced from biomass 76 

might bring the breakthrough [37]. 77 

The present review made an effort to analyse the progress on silver nanoparticles application, 78 

consequences, and mitigation of its environmental toxicity by adsorption. To our best knowledge, this 79 

is the first review on silver nanoparticles from the synthesis processes to their environmental 80 

mitigation.   81 

2 Silver nanoparticles synthesis 82 

Metallic silver is a naturally available soft, white, lustrous rare element with high thermal and electrical 83 

conductivity [38-40]. Silver nanoparticles are a special form of metallic silver having less than 100 nm 84 

size in at least one dimension which offers silver nanoparticles a high surface area to volume ratio [3, 85 

7]. Silver nanoparticles can be produced by several methods, such as physical and chemical processes 86 

as shown in Figure 1 [41]. Each process has some advantages and disadvantages in terms of process 87 

complexity, particle size distribution, stability, applications of Ag NPs, and cost. 88 

In the physical process, metallic solid silver is firstly evaporated in a furnace by conventional heating 89 

or electrical arc discharge and then condensed as nanoparticles [42]. Uniform particle size, narrow 90 

particle size distribution, and uniform shape of Ag NPs can be produced by changing the thermal or ac 91 



5 | P a g e  

power, and arc discharge [43]. The common drawbacks of this conventional process are the high 92 

energy consumption, heating up the surrounding environment, and a long time to achieve thermal 93 

stability [44]. However, laser ablation is one of the most used physical processes where the metal 94 

plate absorbs a laser impulse to produce a plasma phase of silver atoms which form different particle 95 

sizes of silver nanoparticles by varying silver ions [45]. The cooling liquid medium allows condensation 96 

of nano drops of silver and finally high purity and desirable silver nanoparticles are produced by this 97 

process [46]. The laser ablation process produces pure Ag NP colloids as there is no use of chemicals 98 

in the solution.  99 

Spray pyrolysis (thermal decomposition) is another physical method by which monodisperse Ag NPs 100 

in poly (vinylpyrrollidone) matrix can be produced without any reducing agent [47]. In this process, an 101 

aqueous solution of AgNO3, and dextran or polyvinylalcohol (PVA) is first injected into an electrically 102 

heated horizontal tubular reactor [48], and then the solution is ultrasonically atomised and carried out 103 

from the reactor by nitrogen gas which protects the Ag NPs from oxidation [49, 50]. Silver 104 

nanoparticles can be also produced from direct silver metal sputtering into a liquid medium (glycerol 105 

and water). The silver nanoparticles produced from metal sputtering were spherical with a uniform 106 

particle size distribution with an average diameter of approximately 3.5 nm [51]. Another potential 107 

production method for silver nanoparticles is the emulsion detonation synthesis using precursors such 108 

as silver salts or metal particles [52].  In summary, the physical processes require high energy and are 109 

costly, but produce silver nanoparticles with a narrow particle size distribution and are the most 110 

suitable methods to produce a large volume of Ag NPs in a form of powder [44]. 111 

Chemical processes are the most common and simple methods to produce Ag NPs. Controlling particle 112 

growth in order to produce small spherical Ag NPs with narrow particle size distribution is one of the 113 

main challenges of this method. Chemical synthesis methods of silver nanoparticles often use three 114 

main components: metal precursor, reducing, and stabilizing agents. Silver nanoparticles are mainly 115 

produced from the reduction [53] of silver salts such as silver nitrate (AgNO3), silver perchlorate 116 
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(AgClO4), and silver tetrafluoroborate (AgBF4).  Commonly used reducing agents are ethylene glycol 117 

(C2H6O2), ethanol (C2H5OH), glucose (C₆H₁₂O₆), sodium borohydride (NaBH4), hydrazine (N2H4), and 118 

sodium citrate (C₆H₅Na₃O₇) [41, 53]. During the chemical synthesis of silver nanoparticles, it is also 119 

essential to use some sort of stabilising agents to stabilise the nanoform of silver by avoiding the 120 

aggregation of freshly prepared nanoparticles. For instance, polyvinyl pyrrolidone (PVP), 121 

polysaccharide, polyvinyl alcohol (PVA), polyethylene glycol (PEG), chitosan, oleylamine, and gluconic 122 

acid [41, 54]. Formation of initial nuclei and the subsequent growth of nuclei are the most important 123 

processing stages to determine the uniformity of size and shape of Ag NPs, which can be controlled 124 

by the reaction conditions, such as pH, reaction time, silver salts, reducing agents, and capping 125 

chemicals [55, 56]. Chemical process is more suitable to produce highly monodispersed and shape 126 

specific Ag NPs [57, 58]. 127 

Some researchers have successfully used selective plant extract or living organisms as a reducing agent 128 

to replace synthetic chemicals. Using plant extract in the chemical reduction process is often termed 129 

as biological reduction or eco-friendly or green manufacturing process of silver nanoparticles [41, 54, 130 

59]. Recently, this biological pathway is gaining high interest because of a potential lower 131 

environmental impact compared to other chemical processes [60, 61]. Biological method is not only 132 

simpler and low-cost, but also has a lower environmental impact due to the elimination of toxicity 133 

from the unreacted synthetic chemicals and their disposal [62, 63]. Ag NPs produced from the green 134 

synthesis route are less likely to aggregate in the cell biological environment, which helps Ag NPs in 135 

their biomedical applications [64].  136 

Silver nanoparticles can also be synthesized by electrochemical cell methods where a silver anode 137 

dissolves gradually. Under the electrolysis conditions, produced silver ions are reduced at the platinum 138 

cathode, and subsequently a colloidal suspension of silver nanoparticles is produced [65, 66]. Silver 139 

nanoparticles are produced by photochemical methods by using electromagnetic radiation. In this 140 

process, ultraviolet and visible lights are used. The reduction is carried out by the silver ions which are 141 

produced by the irradiation of the solvent molecules [2, 67]. 142 
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Ag NPs are also produced by mechanical ball milling (mechanical process), which is a top-down 143 

physical process. The silver nanoparticles are produced by grinding coarse silver particles (usually 144 

microparticles) that are placed in a ball mill and subjected to high-energy collision from ceramic balls. 145 

[68]. The final size of Ag NPs depends on the size of the ceramic balls, milling time, and concentration 146 

of silver particles in the mill. However, solid powder of silver salts such as silver nitrate can also be 147 

milled with an organic reducing agent (i.e. lignin, plant extracts) by ball mill and produced Ag NPs, this 148 

process is often classified as a mechano-chemical process [69, 70]. Mechanical ball milling is 149 

advantageous for its low energy consumption, simplicity, and high potential for mass production of 150 

Ag NPs [69]. A representation of the production methods is presented in Figure 1 while Table 1 151 

summarises the main processing conditions, properties, and applications of Ag NPs for the most used 152 

production methods.  153 

154 

Figure 1. Main silver nanoparticles production methods.155 
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Table 1. Few examples of shape-specific Ag NPs synthesis methods, properties, and their applications. 156 

Method Process Reagents and Conditions Properties of Ag NPs Application of Ag NPs Reference 
Ph

ys
ic

al
 

M
et

ho
ds

 

Laser 
ablation 

Precursor = Silver 99.99% 
Laser ablation at 355 and 532 and 1064 nm light and laser power 12 
mJ/pulse for 30 min 

Size : 10 - 30 nm 
Shape: Spherical Electronic devices, catalyst [71] 

Precursor = Silver 99.99% 
Laser ablation at 532 nm light and laser power 0.34 J/pulse for 5 min 

Size: 2 - 5 nm 
Shape: Spherical Electronic devices, catalyst [72] 

Ch
em

ic
al

 M
et

ho
ds

 
 

Chemical 
reduction 
 

Precursor = Silver chloride (0.01 M) 
Reducing agents = hydrazine hydrate (0.1M) 
Capping agent = 2% PVA 
pH 8–9 by ammonia at room temperature 

Size: 10 - 60 nm 
Shape: Spherical or pseudo-spherical 

Biomedical science (anti-
bacterial) [55] 

Precursor = Silver nitrate (10 mM) 
Reducing agents = NaBH4 ( 8 mM) in NaOH (0.125 M) 
Capping agent = trisodium citrate (100 mM) 
silver seeds are instantly irradiated with a 70 W sodium lamp for 2 hours 

Size: 4 - 5 nm 
Shape: Triangular / nanoprisms 

Plasmonic and sensing, 
analytical devices, 
photovoltaics, molecular 
detection 

[73] 

Precursor = Silver nitrate (95 mM) 
Reducing agents = hydrochloric acid in ethylene glycol (3mM) 
Capping agent = 2% PVP 
at 130°C for 10 hrs 

Size: 50 ± 5 nm 
Shape: Nanocubes 

Cysteine sensing, 
analytical devices [74] 

Precursor = Silver oxide 
Reducing agents = NA as reaction supports oxidation reduction growth at 
200 - 300°C 

Size: 40 - 55 nm 
Shape: Nanorods 

Plasmonic and sensing, 
analytical devices [75] 

Precursor = Silver nitrate (0.1 M) 
Reducing agents = Trisodium citrate (0.1 M) 
Capping agent = Formaldehyde (1.5 M) 
Irradiated by MW(650 W, 2.45 GHz) for 1 min 

Size: 24 - 132 nm 
Shape: Spherical Anti-bacterial [76] 

Precursor = Silver nitrate (0.25 mM) 
Reducing agent = Starch 
Capping agent = cetyl trimethyl ammonium bromide (0.2 M) 
at 40°C temperature for 12 hrs 

Size: ~ 60 nm 
Shape: Hexagonal 

Plasmonic and sensing, 
analytical devices [77] 

Precursor = Silver nitrate (15 mM) 
Reducing agent = Starch 
Capping agent = Cetyl trimethyl ammonium bromide (0.1 M) 
at 27°C temperature for 20 hrs 

Size: ~ 40 nm 
Shape: Flower-shaped 

Analytical devices (SERS), 
catalysis [77] 

Precursor = Silver nitrate  
Reducing agent = NaBH4 
Capping agent = trisodium citrate and ascorbic acid 
electrochemical cell process at room temperature 

Size: 2 - 5 nm diameter and 2 - 4 µm 
length 
Shape: Nanorods and nanowires 

Plasmonic and sensing, 
analytical devices [78] 
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Bi
ol

og
ic

al
 m

et
ho

ds
 

   

Biological 
reduction by 
plant extracts 

Precursor = Silver nitrate (20 mM) 
Reducing agents = fresh extract of Artichoke (Cynara scolymus L.) flower 
heads 
pH 7 at 40°C temperature 

Size: 30 - 80 nm 
Shape: Spherical Electronic applications [60] 

Precursor = Silver nitrate (1.0 mM) 
Reducing agents = turmeric powders 
at room temperature 

Size: 5 - 35 
Shape: Spherical and quasi-spherical 

Agricultural and food 
industries [79] 

Precursor = Silver nitrate (1.0 mM) 
Reducing agents = S. mammosum extract 
pH 9 by NaOH at 35 (± 1)˚C temperature for 30 minutes 

Size: 10 - 14 nm 
Shape: Spherical Biosensor [80] 

Precursor = Silver nitrate 
Reducing agents = Quercetin (QUC,3,3Q,4Q,5,7-pentahydroxyflavone) (50 
mM) 
at pH 7 

Size:  5 - 8 nm 
Shape: Spherical Biosensor [81] 

Precursor =  Silver nitrate (0.1 M) 
Reducing and capping agents = Orange Peel Extract 
Irradiated by Microwave (700 W) for 15 min 

Size: 1 – 56 nm (95% < 30 nm) 
Shape: Spherical Anti-bacterial [82] 

Precursor = Silver nitrate (2.0 mM) 
Reducing agent = saffron (Crocus sativus L.) wastages extract 
Ultrasonic irradiation at room temperature for 3 hrs 

Size: 12 - 20 nm 
Shape: Spherical Anti-bacterial [83] 

Microbial 
reduction 
 
 

Precursor = Silver nitrate (3.5 mM) 
Reducing agent = Airborne bacteria (Bacillus sp.) 
Nutrient agar containing silver nitrate solution is incubated at room 
temperature for 7 days 

Size: 5 - 15 nm 
Shape: Spherical Anti-bacterial [84] 

Precursor = Silver nitrate (3.5 mM) 
Reducing agent = fungus (C. Cladosporioides) 
Fungi and nutrient containing silver nitrate solution is incubated at 27°C 
temperature for 78 hrs 

Size: 10 - 100 nm 
Shape: Spherical Anti-bacterial [85] 

Precursor = Silver nitrate (0.1 g/L) 
Reducing agent = Bacillus licheniformis at pH 8 
Incubated at 27°C temperature for 24 hrs 

Size: 10 - 80 nm 
Shape: Spherical Anti-bacterial [86] 

157 
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Physicochemical properties of Ag NPs depend largely on the production process and reducing or 158 

capping agents used. Each of the synthesis methods produces a colloidal solution of Ag NPs with a 159 

specific size and shape. Ag NPs can be produced in a variety of shapes such as nanospheres, necklaces, 160 

nanobars, nanocubes, nanoprism, bipyramids, nanostars, nanowires, triangular, hexagonal, nanorice, 161 

and flower-shaped [53, 77, 87]. However, according to Table 1, the spherical shape is the most 162 

common shape obtained from many of the synthesis processes. Morphology of Ag NPs determines 163 

the efficiency of their end application [77]. For example, triangular / nanoprisms shapes are suitable 164 

for biosensors, Surface Enhanced Raman Spectroscopy (SERS), and Metal-Enhanced Fluorescence 165 

(MEF) [8]. In electronic circuit printing and catalytic usages Ag NPs size is more important than shape, 166 

ultrafine particles with a size ranging from 2 nm to 8 nm are appropriate for these applications [71].  167 

Crystallinity is also an important property of Ag NPs. A higher degree of crystallinity of Ag NPs shows 168 

a high quality of SPR by doubling the dephasing time of localized surface plasmons [88]. A study also 169 

suggests that single crystalline Ag NPs showed three times higher response than polycrystalline Ag 170 

NPs on absorption cross-section of N719 dye [89]. X-ray diffraction data of produced Ag NPs reveals 171 

that the face centred cube crystalline structure are (111), (200), (220), and (311) lattice planes [90, 172 

91]. 173 

Stability of the colloidal solution of Ag NPs often depends on Zeta potential [92, 93]. Zeta potential is 174 

defined by the charge of the particles in a colloidal system [94]. In general, a minimum value of ±30 175 

mV zeta potential is required for a stable colloidal system [95]. Ionic nature or polarity of capping 176 

agents or stabilising agents can also influence the physicochemical behaviour of the colloidal solution, 177 

such as zeta potential [96].  178 

In summary, each production method has some advantages and some disadvantages. Depending on 179 

the applications, Ag NPs are required to have different shape and purity. For instance, laser ablation 180 

method is suitable to produce Ag NPs for electronics use where purity is one of the most important 181 

properties. However, this physical method may not be suitable for other applications because of its 182 
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high production cost. Similarly, considering the low environmental impact, green synthesis (biological) 183 

methods are promising, but for cheap and bulk production of Ag NPs, pure chemical routes are cost-184 

effective where the synthetic chemicals are used as reducing and stabilising agents. Ag NPs produced 185 

from the green synthesis method have less aggregation behaviour than the Ag NPs produced from 186 

direct chemical synthesis, thus retains higher toxicity for a longer time [64]. However, a requirement 187 

in terms of the shape of Ag NPs may dictate the selection of the synthesis method. 188 

3 Applications of silver nanoparticles 189 

Silver nanoparticles have numerous applications in: healthcare, consumer products, information, and 190 

communication technology (ICT), food industry, environmental health, and agriculture sectors [38, 41, 191 

54]. Figure 2 shows the main nano silver applications, 30% of silver nanoparticles are used in medical 192 

products, 25% in paints and coatings, 15% in functional textiles, and 15% in cosmetics or personal care 193 

products [97]. 194 

 195 

Figure 2. Major applications of silver nanoparticles [97]. 196 

Before the discovery of antibiotics, silver compounds were widely used to treat wounds or burns [98, 197 
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wound.  Due to silver’s unique antimicrobial properties to fight viruses [100], bacteria, and fungi, silver 200 

nanoparticles have been used in diverse healthcare products such as antimicrobial dressing/bandages, 201 

wound care products, breathing tubes, and catheters [54, 101, 102]. Ag NPs are also used in various 202 

implantable medical devices, for instance, Ag NPs deposited polymeric composite coatings (single or 203 

multi-thin layer) on dental implants, contact lenses, orthopaedic implants, and cardiovascular 204 

implants [103-105]. Direct deposition of Ag NPs on surgical equipment and titanium implants is also a 205 

common practice [106-108]. Silver nanoparticles have good potential to be also used as antitumor 206 

agents to treat human lung cancer cells [109, 110]. Also, Ag NPs have proven inhibitory effect on HIV1 207 

(human immunodeficiency virus) cells [111-113]. 208 

Antibiotic resistance is one of the greatest concerns raised by health experts and WHO [114-116]. 209 

Particularly, whether antibiotics fail to destroy microorganisms to control the infection or to treat a 210 

wound [117]. In those cases, silver nanoparticles containing medication can be beneficial [118-120]. 211 

Recent studies have also revealed a synergetic effect of silver nanoparticles when applied with 212 

selective antibiotics, such as penicillin G, amoxicillin, erythromycin, vancomycin, and clindamycin [3, 213 

4, 38, 54].  214 

Furthermore, silver nanoparticles have good optical properties such as Surface Plasmon Resonance 215 

(SPR), which makes nano silver suitable to be used in biosensors, diagnostics, drug delivery, and 216 

imaging [7, 121]. Other examples of applications include analytical sensors in Surface Enhanced Raman 217 

Spectroscopy (SERS) [8], Metal-Enhanced Fluorescence (MEF), in immune sensing of biological probes 218 

and biological markers where nanoparticles are used [122]. 219 

Silver nanoparticles are abundantly used as an ingredient in many consumer products, such as 220 

cosmetics, soaps, pastes, antimicrobial textiles, and plastic coatings [123]. The main reason may be 221 

the intrinsic antimicrobial effect of silver nanoparticles, even when present in low concentrations 222 

[102]. For instance, silver-containing deodorants or socks (functionalized textiles) help to diminish 223 

bacterial growth on the skin [117]. In addition, due to very low electrical resistivity [8] and increased 224 
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stability, silver nanoparticles are used in electronics products such as high conductive pathways, 225 

transistors, photonic and antireflective materials, and optical fibres [1, 2, 124]. 226 

Preservation of packed foodstuff is still challenging as bacteria or fungi can grow during the storage 227 

period. Silver nanoparticles are used in packaging containers and wrapping consumables to prevent 228 

and/or control food spoilage and extend the shelf-life [4, 125]. On the other side, organic preservatives 229 

are available and widely used in full processed foods; however, they are not suitable for semi-230 

processed foods as they can be converted into toxic substances under various food processing 231 

conditions such as high temperature [54]. A few food supplements also contain silver nanoparticles in 232 

low concentrations that are safe to humans, but sufficient to kill microorganisms [54, 126]. 233 

Drinking water must also be free from any form of microorganisms. Therefore, the disinfection of 234 

potable water is as equally important as filtering. Silver nanoparticles have been used in membrane 235 

filters to disinfect drinking water [127, 128]. Similarly, silver nanoparticles are used in the filter of a 236 

heating, ventilation and air conditioning (HVAC) system to disinfect air [54, 129]. 237 

Silver nanoparticles are also used as a catalyst for several chemical processes, in particular its 238 

photocatalytic behaviour allows silver nanoparticles to catalyse several chemical reactions, such as 239 

hydrogenation of organic compounds and some oxidation reactions [7, 130, 131]. However, some 240 

researchers claim that the high surface area and surface energy dominate the catalysis process [1, 8]. 241 

Functional textiles often contain silver nanoparticles that are embedded in textiles, but the washing 242 

process releases most of the silver nanoparticles [132, 133]. However, silver leaching from the textiles 243 

during the washing cycle is driven by several factors, such as nanoparticle size, water quality, hardness, 244 

detergent quality, and attachment of silver nanoparticles within textiles [134].  A study in Norway 245 

found that washing machines using a ‘nano-wash’ feature can release silver nanoparticles or silver 246 

ions up to 11 µg/L into the water during its operation [132]. 247 
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Building materials, including paints, contain silver nanoparticles to protect against microbial activity 248 

[123]. Figure 3 demonstrates the wide variety of silver nanoparticle applications discussed in previous 249 

paragraphs.  250 

 251 

Figure 3. Main applications of silver nanoparticles. 252 
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accumulated in the soil [3].  Figure 5 shows that the estimated nano silver flow and the discharge in 264 

the aquatic system after wastewater treatment is 13% of total production [136]. Therefore, the study 265 

on the toxic effect on organisms and ecosystems gained substantial interest among researchers in 266 

recent years. 267 

 268 

Figure 4. The life cycle of silver nanoparticles. 269 
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 270 

Figure 5. Global material flow for silver nanoparticles [136]. 271 

When the silver nanoparticles come to the open surface water environment, the interaction between 272 

Ag NPs and other natural organic materials (NOM), such as fulvic and humic acids create a coating on 273 

the surface of Ag NPs and subsequently settled as sediments [137-139]. These coated Ag NPs are 274 

analogous to the protein corona [10, 140]. This transformation often contributes to change the 275 

aggregation behaviour and toxicity of Ag NPs [141].  276 

However, silver in wastewater is a mixture of silver nanoparticles, nanoparticle aggregates of silver 277 

sulphide and silver ions [142]. Over time, chemical transformation often occurs including oxidation, 278 

reduction, dissolution and/or sulfidation [7, 123, 143]. Nevertheless, the dissolution of silver 279 

nanoparticles depends on several factors including the type of surface coating of Ag NPs and 280 

surrounding water parameters, such as pH, dissolved organic matter (DOM), dissolved oxygen (DO), 281 

coexisting electrolytes, hardness, particle size and exposure time [144-146]. Due to its ionic behaviour, 282 

silver ions can bioaccumulate in the organism through cell membrane ion transporters [123]. In 283 

contrast, DOM can lead to the reduction of silver ion (Ag+) into silver (Ag0) nanoparticles under the 284 

sunlight [143, 145, 147].  Therefore, both phenomena demonstrate a direct impact on the aquatic 285 

ecosystem. In acidic condition, silver nanoparticles produce silver ions as demonstrated by reactions 286 

(1) and (2) [3]: 287 
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4Ag(s) + O2(aq) + 4H+
(aq) = 4Ag+

(aq) + 2H2O(l)       (1) 288 

Ag2S + 2H+  ⇌ 2Ag+ + H2S (aq)        (2) 289 

However, recent studies suggest that the aggregation rate of Ag NPs is directly proportional to the 290 

concentration of cations (e.g. Na+, Ca2+) and the presence of humic acid (DOM) expedites the 291 

aggregation [148, 149]. Despite the low concentration of DOM in seawater Ag NPs still show a higher 292 

aggregation rate because of the concentration of the cations in the seawater [148]. This aggregation 293 

of Ag NPs not only decreases the rate of silver ion (Ag+) release, but also helps to decrease the toxic 294 

effect of Ag NPs [150, 151]. However, other researchers suggested that both pH and electrolyte 295 

density are mostly responsible for the aggregation, and the presence of DOM inhibits the aggregation 296 

because of the biomolecular corona effect [64]. 297 

Ag NPs having higher specific surface area show a higher dissolution rate thereby higher toxicity than 298 

Ag NPs having low surface area regardless of particle shape [152].  However, the surface area often 299 

depends on the shape of the particles. A study suggests that truncated triangular Ag NPs have more 300 

antibacterial property to the gram-negative organisms than Ag NPs with other shapes [153]. However, 301 

another study shows that human alveolar epithelial cells were strongly affected by the wire-shaped 302 

Ag NPs, whereas spherical Ag NPs showed no effect [154]. Optical properties are also influenced by the 303 

geometrical shape of the particles, but further investigation is required to better understand the 304 

impact of the particle shape on other usages of Ag NPs [45].  305 

Silver nanoparticles can contaminate air from the HVAC filters where they are used. These airborne 306 

silver nanoparticles can be inhaled by humans [3]. However, researchers showed that the potential 307 

routes of exposures are mainly oral, inhalation or transdermal [8, 41]. It is reported that overexposure 308 

to silver nanoparticles causes severe skin decolouration to bluish grey (argyria) in humans [41]. 309 

However, specific toxicity to humans is yet to be explored [155]. Quantification and comprehensive 310 

risk assessment of ecotoxicity need to be carried out. 311 
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Silver nanoparticles can be adsorbed by plant species that are growing in soil amended with mostly 312 

silver-containing biosolids. In WWTP, usually, silver nanoparticles and silver nitrate (AgNO3) are 313 

converted into Ag2S according to reaction (3) [156, 157] which has low bioavailability in the soil [158].  314 

4Ag + O2 + 2HS-  ⇌ 2Ag2S + 2OH-        (3) 315 

Silver intake by plant root (wheat, rape) was increased by high concentration of Cl- in soil, but plant 316 

growth was not impacted [159, 160].  However, as the silver is adsorbed by plants, consumption of 317 

fresh produce loaded with silver compounds may pose a health risk to humans. Additionally, the 318 

toxicological studies on phytoplankton (e.g. Hydrilla Verticillate), zooplankton (e.g. Daphnia Magna), 319 

fish (e.g. zebrafish, rainbow trout, Japanese medaka) showed clear ecotoxicity by silver nanoparticles 320 

in different environmental conditions [161, 162]. Therefore, silver bioaccumulation in fish and plant 321 

species can be transferred into the entire food chain [30]. 322 

Capping/stabilising agents or chemical coatings have not only direct influence on the particle size, 323 

shape, and aggregation behaviour, but also, they have a vital role in dissolution and induced 324 

cytotoxicity [163]. These coatings are fundamental for the final application. For instance, chitosan 325 

derived polysaccharide coated Ag NPs demonstrate significant antimicrobial property without 326 

showing any toxicity to eukaryotic cells [164]. On the other hand, PEG-coated Ag NPs demonstrated a 327 

higher dissolution rate than PVP coating [165].  However, the dissolution of any coating or capping 328 

agents also depends on the surrounding environment [166].  329 

5 Silver Toxicity 330 

Several studies found that silver nanoparticles show toxicity to bacterial growth, cell-based in vitro 331 

systems, algae, fishes [4, 167], water plants and the human reproductive system [2]. Even though 332 

many of those studies have been done under controlled laboratory conditions, a short duration of 333 

time, and with a relatively higher concentration of silver ions than the real-life situation. Additionally, 334 

the natural aquatic ecosystem has a complex dynamic among the inhabitants, surrounding 335 

environment, other nanoparticles, and pollutants, and chemical transformation of the different forms 336 
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of silver at their extremely low concentration (ng/L to µg/L) over a long period of time. Therefore, 337 

detail environmental and health risks associated with silver nanoparticles in a realistic situation are 338 

yet to be done [30]. However, recent studies prove that a concentration as low as 10-2 to 10 μg/mL 339 

silver has shown antibacterial activity [61, 168]. 340 

The toxicity of silver nanoparticles can be explained by various mechanisms. The majority of silver 341 

toxicological studies show the elemental silver (Ag0) and monovalent silver (Ag+) are the most common 342 

forms of silver that have demonstrated toxicity. However, the toxic effect of silver is determined by 343 

the amount of free silver ion released from the silver substrates [38]. Elemental or zero-valent silver 344 

can enter into cells, and react with oxygen to produce toxic silver ions and reactive oxygen species 345 

(ROS), which can cause DNA damage [169, 170].  346 

Human exposure to silver nanoparticles can occur through skin contact with silver nanoparticles 347 

containing products, food that contains or in contact with silver nanoparticles packaging, disinfected 348 

drinking water, swimming pools and antifouling, nasal and throat sprays, and other forms of medicines 349 

[4, 41]. If the silver ion is ingested by a human, it is deposited in the subcutaneous fat cells [12, 13]. 350 

Excessive exposure can cause argyria in which human skin turns greyish blue [117, 171]. Silver can also 351 

inhibit Na+ and Cl- uptake which may lead to failure of electrolyte balance in body fluid [33]. Airborne 352 

silver nanoparticles can enter the lungs and cause chronic health problems, which can become serious 353 

for people with preconditions such as asthma or chronic obstructive pulmonary diseases [172]. 354 

Silver ion oxidises thiol group of enzymes, thus interrupts the electron-transport chain and DNA 355 

reproduction. Ag+ can also directly interact with DNA [41] and denature DNA and RNA [7]. However, 356 

in some cases, the dissolution of silver nanoparticles into silver ions may produce reactive oxygen 357 

species (ROS) which can deactivate microorganisms [30, 173]. Therefore, silver nanoparticles are 358 

usually more toxic than silver ions in the same environment. Figure 6 summarises the different routes 359 

of exposure of silver nanoparticles in the environment, including human exposure. 360 
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 361 

Figure 6. Route of exposure of silver nanoparticles. 362 

Recent studies have demonstrated that all forms of Ag NPs toxicity are size-dependent instead of 363 

shape or morphology. Particle size less than 20 nm is more toxic than other larger particle size of Ag 364 

NPs [174, 175]. Because smaller particle size offers a higher specific surface area which increases the 365 

rate of Ag+ release.   366 

6 Regulation 367 

Silver nanoparticles can be released from silver-containing products to wastewater during the 368 

production process or after use. Scientists have warned about the widespread use of Ag NPs, in-vitro 369 

studies have demonstrated a high toxic effect on aquatic organisms and the possibility to be 370 

environmentally persistent [176, 177]. This growing concern raises awareness among the regulatory 371 

bodies and policymakers around the world to control the usages of silver nanoparticles and to ensure 372 

the appropriate treatment of wastewater. However, the regulation guidelines provide a maximum 373 

acceptable concentration of elemental forms of metals in surface water, groundwater, and drinking 374 

water. There is no separate guideline value of discharge for nanoform of silver or other metals in EPA, 375 

REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals), EU, UK, Australia, and 376 
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New Zealand [178]. Despite the evidence of bioaccumulation and cellular toxicity, in vivo and 377 

environmental toxicity data of Ag NPs is insufficient for the short and long run. Thus, further 378 

investigation is necessary on the impact of Ag NPs under present and future exposure scenarios for 379 

both aquatic and terrestrial ecosystems. Nevertheless, all the regulatory bodies are researching 380 

detailed toxicity data to set a separate regulation for Ag NPs disposal limits.  Regulatory bodies 381 

worldwide set the maximum allowable limit for silver; these values are presented in Table 2. The 382 

maximum limit for drinking water is 0.1 mg/L for the USA, Australia and Switzerland, while for 383 

Germany and China is 0.08 mg/L and 0.05 mg/L, respectively. The maximum limit for freshwater and 384 

marine waters is slighter lower than for drinking water and vary between 0.1 to 7.5 µg/L depending 385 

on the country regulation (Table 2).  386 

Table 2. Permissible limits of silver in water according to various standards. 387 

Country Regulatory Body Area Maximum 
Limit Reference 

USA National Secondary Drinking Water 
Regulations (NSDWR) Drinking water 0.1 mg/L [13, 179] 

USA U.S. Environmental Protection Agency 
(U.S. EPA) 

Freshwater and 

saltwater 
3.2 µg/L and 

1.9 µg/L [179] 

USA Toxicity Characteristic Leaching 
Procedure (TCLP) 

Leachate as a 
hazardous waste 5.0 mg/L [179] 

Australia ANZECC* 
Freshwater and 

Marine waters 
0.1 µg/L and 

1.0 µg/L [180] 

Australia NHMRC** Drinking water 
guideline 0.1 mg/L [14] 

Canada Canadian Water Quality Guidelines for 
the Protection of Aquatic Life 

Freshwater and 

Marine waters 
0.25 µg/L and 

7.5 µg/L [181] 

Germany German Federal Environment Agency 
(GFEA) (1990) 

Drinking-water 
regulations 0.08 mg/L [182] 

China National Standard of the People’s 
Republic of China Drinking water 0.05 mg/L [183] 

Switzerland WHO Drinking water 0.1 mg/L [184] 

* ANZECC: Australian and New Zealand Environment Conservation Council 388 
** NHMRC: National Health and Medical Research Council 389 
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In this section, a global regulatory point of view on Ag NPs is discussed. In the USA:  Different US 390 

federal agencies such as U.S. EPA, U.S. FDA, and U.S. NIOSH (National Institute for Occupational Safety 391 

and Health) work to regulate the environmental and public health impacts of Ag NPs [176]. According 392 

to the recent recommendation, NIOSH proposed the maximum exposure limit (REL) of 0.9 µg/m3 for 393 

silver nanoparticles and 10 µg/m3 for any other form of silver [185]. On the contrary, the US 394 

Conference of Governmental Industrial Hygienists sets the threshold limit values for metallic silver and 395 

soluble silver as 0.1 mg/m3 and 0.01 mg/m3, respectively [186]. However, the absence of effective 396 

methods for detail hazard assessment of Ag NPs makes regulation of Ag NPs a difficult task [187]. U.S. 397 

EPA and scientists elsewhere urged to develop a comprehensive risk assessment to further investigate 398 

the potential health and environmental impacts of all forms of nanomaterials [188]. 399 

In the European Union (EU):  Like in the USA, the European Food Safety Authority (EFSA) is working 400 

to set a separate risk assessment followed by authorisation of nanomaterials. EFSA published a 401 

guidance report on risk assessment of the application of nanoscience and nanotechnologies in the 402 

food and feed chain in 2018. According to that guidance report, EFSA pointed out that the existing 403 

authorisation process is not adequate to cover the safety aspects of a nanomaterial or a corresponding 404 

non-nanomaterial [189]. However, the Joint Research Centre (JRC) published a NANoREG framework 405 

for the safety assessment of nanomaterials policy document to make a common ground to understand 406 

the environmental health and safety (EHS) aspects of nanomaterials under the current European 407 

regulatory framework focused on REACH [190].  REACH Regulation 1907/2006 focuses on both 408 

applicability and regulatory acceptance of nanomaterials and conventional or bulk substances. 409 

Nevertheless, these guidance documents suggest to take specific approaches for Ag NPs to carry out 410 

further risk assessment and uncertainty analysis for future recommendations [191, 192]. 411 

In Australia: Despite the growing scientific concern on some nanomaterials which may pose 412 

potentially serious health and environmental impacts, the regulatory bodies are yet to place a 413 

separate guideline for the nanomaterials in food and agriculture. Food Standards Australia New 414 
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Zealand (FSANZ), TGA (Therapeutic Goods Association), APVMA (Australian Pesticide and Veterinarian 415 

Medicines Association), and Department of the Environment are working together to assess the public 416 

and environmental health and safety of nanomaterials. However, a comprehensive regulation of any 417 

nanomaterials and their environmental release control measures have not been addressed yet [193]. 418 

7 Mitigation  419 

In previous sections, the consequences of silver nanoparticles were discussed. This section focuses on 420 

gathering and discussing the potential solutions to mitigate silver pollution as well as the impact on 421 

the ecosystem. In recent years, several treatment processes have been explored by researchers. 422 

Sequencing Batch Reactor (SBR) [194], activated sludge process [195], anaerobic treatment, 423 

membrane filtration, reverse osmosis, and ion-exchange can remove most of the silver nanoparticles 424 

and silver compounds from wastewater. However, simplicity of operation and cost-effectiveness lead 425 

to investigating suitable sustainable alternatives such as adsorption. Several studies have been carried 426 

out on different adsorbents such as activated carbons, clays, biowaste materials, cellulosic materials, 427 

zeolites, graphene, and biochar. The adsorption capacity of an adsorbent depends on several 428 

physicochemical factors, such as specific surface area (BET), pore size, pore-volume, and surface 429 

functional groups [196]. More specifically, specific surface area and surface functional groups are the 430 

two most relevant contributors to physical and chemical adsorption respectively [197, 198]. The 431 

advantages and disadvantages of these various types of adsorbents are discussed in the following sub-432 

sections.  433 

7.1 Activated Carbon 434 

Activated carbon is the most popular carbonaceous material used for numerous applications including 435 

wastewater treatment, drinking water purification, air and gas filtration, catalysts, catalyst support, 436 

hydrometallurgical processes, and gas mask for personal protection [199]. In general, activated carbon 437 

has a very high specific surface area between 200 to 2,500 m2/g [200, 201] and high pore volume, 438 
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which makes this adsorbent suitable for adsorbing a wide range of organic and inorganic pollutants 439 

including silver. Activated carbon is one of the widely used commercial adsorbents for air and water 440 

purification [33].  441 

Activated carbon can be produced from coal (mineral carbon) or agricultural waste biomass or 442 

naturally available abandoned lignocellulose materials [26, 202]. The production process involves 443 

either physical or chemical activation to convert biomass into activated carbon [203, 204]. In both 444 

processes, carbonisation is carried out at a temperature from 300°C to 600°C and activation at around 445 

500°C to 900°C in an inert environment [202, 205]. Chemical activation demands an excessive amount 446 

of chemicals from 1:1 to 1:6 for the mass ratio of feedstock to activating agent [206, 207]. While 447 

physical activation requires CO2 or steam, chemical activation requires the use of inorganic salts and 448 

acids such as ZnCl2, K2CO3, HNO3, H2SO4, H3PO4, KOH, or NaOH [205, 208]. 449 

Finely porous structure and hydrophilic surface functional groups are key characteristics that make 450 

activated carbon a good adsorbent [209]. The electrostatic interaction between functional groups 451 

present in the activated carbon and ionic species such as silver ion is responsible for high adsorption 452 

[210]. For instance, oxygen anions (O2-) present in the activated carbon forms a bond with silver ions 453 

to produce Ag2O. However, chemical modification of activated carbon introduces strong acidic groups, 454 

and increases the density of total surface functional groups, such as –CHO, =CO, –COOH, –SO3H, thus, 455 

increases adsorption capacity [33, 211]. As shown in Table 3, chemical modification of activated 456 

carbon by sodium hydroxide treatment can double the silver adsorption capacity, even in a short 457 

contact time [33]. As presented in Table 3, all experiments are favourable at room temperature and 458 

for low initial concentration of silver. Low concentration acid solution (e.g. HNO3) can be used for silver 459 

recovery from the used adsorbents [211]. Adsorption of silver nanoparticles on activated carbon 460 

depends largely on the conversion of silver nanoparticles into silver ions [212]. 461 
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Table 3. Summary of silver adsorption capacity by different types of adsorbents from aqueous solution (mainly silver nitrate solution).  462 

Type of 
Adsorbents Adsorbent Pre-treatment / 

modification 
Adsorption 

capacity (mg/g) pH Initial concentration 
of silver (mg/L) Contact time Temp 

(°C) Reference 

Activated 
Carbon 

Colloidal carbon nanospheres 
(CNS)  

Sodium 
hydroxide 152 3-9 0.098 - 202 6 min – 32 hrs Room 

Temp [33] 

Activated carbon (Norit® 
CA1)* No 65 3-9 50 - 105 12 hrs 20 [212] 

Coconut shell activated carbon Washed in 
deionized water 60 - 80 3 - 5 100 - 500 200 min 30 - 50 [213] 

Peat-based activated 
carbon** 

Washed with 
water 37.2 1.5 - 4.5 120 5 hrs 25 [209] 

Biowaste 
Materials 

Trimercaptotriazine-
functionalized polystyrene 
chelating resin 

- 187.1 0.0 820 4 hrs Room 
Temp [214] 

Chelamine - 129.4 6 20 - 700 24 hrs 22±0.5 [215] 

Thiourea-modified chitosan 
resin - 406.6 4 1,698 4 - 12 hrs 25 - 55 [216] 

Chitosan - 42.0 6 50 1 - 96 hrs 20±0.1 [217] 

Hexanedioyl thiourea 
chelating resin (HTR) - 491.8 6.9 5,393 (0.05M) 12 hrs 20 [218] 
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Ion-imprinted chitosan gel 
beads - 89.2 5 353 1 - 48 hrs 25 [219] 

Modified 
celluloses 

Magnetic cellulose xanthate - 166 1 10 5 min – 1 hr Room 
Temp [220] 

L-cysteine functionalized 
cellulose - 66.67 6.9 160 1 - 10 hrs 25 [221] 

Mercerized coconut fiber - 64.93 7.5 169.8 30 - 340 min 30±1 [222] 

Pristine coconut fiber - 54.15 7.5 25.4 30 - 340 min 30±1 [222] 

Cellulose nanocrystals (CNC) - 34.35 6.39 107.8 2 hrs 20 [223] 

Chitin nanocrystals (ChNC) - 19.80 6.63 107.8 2 hrs 20 [223] 

Cellulose nanofibers (CNF) - 15.45 5.45 107.8 2 hrs 20 [223] 

Clays 

Modified vermiculite - 69.2 4 10,000 30 sec - 16 hrs 10 - 20 [224] 

Montmorillonite - 63.29 6 200 1 - 5 hrs 25 [35] 

Calcined bentonite - 61.48 - 50 - 200 3 - 120 min Room 
Temp [225] 

Hectorite - 49.5 4 27 60 min Room 
Temp [226] 

Saponite - 48.3 4 - 8 2,000 5 hrs 23 [227] 

Raw Vermiculite - 46.2 4 10,000 30 sec - 16 hrs 10 - 20 [224] 

Perlite - 8.46 6.5 5 - 50 2 hrs 20 - 50 [19] 
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Biochars 

Biochar-supported nanoscaled 
zero valent iron (nZVI) 

zero valent iron 
(nZVI) 745.5 and 534.5 - 25 - 300 24 hrs 22±0.5 [11] 

Bamboo biochar No 640 - 0-3000 24 hrs 22±0.5 [12] 

Engineered biochar from 
biofuel residue No 90.06 - 20.7 10 min - 24 hrs Room 

Temp [36] 

Vineyard biochar No 88.9 5.0± 0.1 50 - 500 70 min 19±2 [198] 

Paulownia tree biochar No 75.2 5.0± 0.1 50 - 500 70 min 19±2 [198] 

Tobacco biochar No 72.5 5.0± 0.1 50 - 500 70 min 19±2 [198] 

Biochar produced from 
biosolids No 41.5 - 100 - 1000 10 min - 45 hrs 22±2 [34] 

* Citrate-coated silver nanoparticles 463 
** Silver sulphate media 464 
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Despite having a large specific surface area which mainly comes from the microporous structure 465 

(<2nm) [228, 229], activated carbon cannot utilise those pores to adsorb Ag NPs as Ag NPs are larger 466 

than the pore diameter of activated carbon. The main limitations of using activated carbon for silver 467 

removal are the activation mechanism, regeneration of activated carbon, and overall cost-468 

effectiveness [203, 205, 230]. The chemical modification involves the additional usage of chemicals, 469 

which is not environmentally and economically sustainable. Another limitation is the low or acidic 470 

working pH (Table 3). Semi-treated wastewater, which is the input for activated carbon adsorption, 471 

exhibits neutral pH after coagulation. Acidification is initially required which uses extra chemicals to 472 

bring the pH down, then neutralising demands more chemicals to meet the discharge limit of pH, 6 to 473 

9 [180, 231-233]. In addition, silver nitrate solution has been used to measure the adsorption capacity 474 

except for one case where a mixture of silver ions and silver nanoparticles were used, which would be 475 

a more realistic scenario of silver in wastewater. However, the selectivity of silver among other 476 

pollutants, and the possibility of scaling-up to a continuous process are yet to be explored. 477 

7.2 Functionalised biowaste materials 478 

Multiple researchers find that adsorbents having sulphur and nitrogen-containing groups can show a 479 

higher affinity to silver ion as both have lone pair electrons [234]. Therefore, absorbents functionalised 480 

by amino or thiol groups can have good silver adsorption efficiency from aqueous solution [235]. 481 

Grapefruit peel modified by urea to create an amino group-containing organic matrix refers as bio-482 

template showed 72.33 mg/g silver adsorption from aqueous medium [234]. Functional groups 483 

primarily form silver complexes thereby higher adsorption is achieved. However, strong bond energy 484 

between adsorbent and silver ions does not allow full regeneration of the adsorption which negatively 485 

affects the feasibility of the process [234]. Adsorption performances of few functionalised biowaste 486 

materials are shown in Table 3, showing that chelating and chitosan resins demonstrated a high silver 487 

adsorption capacity while chitosan has the lowest adsorption rate. The main limitation of using resins 488 
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and chelating agents is that the initial concentration of heavy metals in secondary or semi-treated 489 

effluent has to be more than 100 ppm to make the treatment process workable and feasible [236].  490 

7.3 Cellulosic materials 491 

Cellulose is the most abundant natural polymer [237], which is made of D-glucose repeating units 492 

[238], a six-carbon ring, also known as pyranose [239]. Structurally cellulose contains several hydroxyl 493 

groups that have a substantial impact on adsorption behaviour towards a wide range of water 494 

pollutants such as heavy metals (silver, copper, gold, zinc, lead, iron and chromium), organic dyes, 495 

protein and pesticides [220]. Adsorption capacity and selectivity for a specific target pollutant can be 496 

enhanced by chemical and/or physical modification [240]. 497 

Silver along with other heavy metals adsorption studies by modified cellulose gained considerable 498 

interest in recent years. For instance, L-cysteine modified cellulose can provide three surface 499 

functional groups (– COOH, –NH2, and –SH) which shows a high silver adsorption capacity 66.67 mg/g 500 

in a batch process and 41.23 mg/g in a continuous column method exhibiting high selectivity towards 501 

silver ion in a multiple metal ions environment and good reusability of the adsorption column [221]. 502 

Magnetic cellulose xanthate can show up to 166 mg/g silver adsorption capacity from an acidic 503 

solution with three cycle adsorption-desorption and has a huge advantage of easy magnetic 504 

separation after adsorption [220]. Magnetic celluloses often contain zero-valent iron atoms, which 505 

have reductive and complexation tendencies and therefore increase the adsorption capacity [241]. 506 

Adsorption behaviour of modified cellulose for silver removal from aqueous solution is summarised in 507 

Table 3, showing an adsorption capacity between 15 and 166 mg/g. Table 3 also indicates that 508 

cellulosic materials can work at neutral effluent pH which does not require extra chemicals to adjust 509 

pH. However, adsorbent modification requires usually a chemical treatment that can produce 510 

subsequent wastewater and increase the environmental impact of the overall process.  511 
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7.4 Inorganic adsorbents 512 

Inorganic adsorbents such as zeolite and clay possess good adsorption property. Zeolites have a 513 

porous framework of crystalline hydrated aluminosilicates [242]. Common types of natural zeolites 514 

are clinoptilolite, stilbite, natrolite, analcime, mordenite, phillipsite, chabazite and laumontite. 515 

However, several zeolites are synthesised such as zeolites A, X, Y and ZMS-5 [243, 244]. Both natural 516 

and synthetic zeolites are widely used due to their unique high cation exchange property, molecular 517 

sieving, catalytic, and adsorption behaviour [242]. Natural zeolites have been used to remove heavy 518 

metal ions and ammonium ions for groundwater and wastewater [245]. Among natural zeolites, 519 

clinoptilolite is the most abundant and naturally available with a typical chemical formula of 520 

Na6[(AlO2)6(SiO2)30].24H2O, and has shown a silver adsorption capacity of 33.23 mg/g [246]. Chemical 521 

modification of zeolites enhances its adsorption capacity and extends the property to adsorb anions 522 

and organic pollutants from aqueous medium [242]. Although the application of zeolites for various 523 

heavy metals removal is well studied, very few research has been done on silver adsorption by zeolites. 524 

Synthetic zeolite produced from green tuff stone cake showed a maximum silver adsorption capacity 525 

of 118.6 mg/g while the H-Na-ZSM-5 zeolite showed 61.4 mg/g [236, 247]. 526 

Clay is another example of inorganic adsorbents that have been used for heavy metals removal from 527 

aqueous solution even at a low concentration due to a good adsorption capacity [248].  Clay is a 528 

mixture of silica, alumina, metal oxides, water, and other minerals. Scientists classify clays into 529 

different groups depending on the quality and minerals present in them, such as kaolinite, 530 

montmorillonite, saponite, illite, pyrophyllite, vermiculite and serpentine [249]. However, most of the 531 

clays contain anions and cations that give strong ion-exchange property to remove inorganic and 532 

organic pollutants from wastewater [250]. In contact with water, clays can produce negative charges 533 

which can undergo complex reactions with the positively charged species such as silver, copper, lead, 534 

mercury, zinc, chromium, cadmium, manganese and arsenic to remove them from their aqueous 535 

solutions [249, 251]. 536 
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The main advantage of using clay as an adsorbent is naturally available on the earth's surface, low-537 

cost, non-toxic and abundantly available [226]. Nevertheless, scientists urged for pre-treatment and 538 

modification of clay with metallic oxides, such as MnO2, Al2O3, Fe2O3, TiO2, Fe3O4, MnFe2O4, to increase 539 

the adsorption capacity and selectivity towards a specific heavy metal or pollutant [224].  Previous 540 

researchers demonstrated that modified clay exhibits better results than the natural clay (Table 3 ). 541 

For instance, modified vermiculite and raw vermiculite showed a silver adsorption capacity of 69.2 542 

mg/g and 46.2 mg/g, respectively [224], and the pH dependency is moderate. Inorganic materials can 543 

work in a wide pH range from 4 to 8. However, the silver adsorption capacity by clays is significantly 544 

lower than other adsorbents. 545 

7.5 Graphene 546 

Graphene is a single atomic layer of sp2-hybridized carbons, which are hexagonally arranged [252].  547 

Graphene has drawn substantial scientific attention in recent years for its exceptional physical and 548 

chemical properties and multipurpose usages such as energy storage, hydrogen storage, 549 

nanocomposite and nanoelectronics [253]. The large theoretical surface area of approximately 2,630 550 

m2/g [254] favours graphene to be used as a promising adsorbent to remove pollutants from aqueous 551 

media. However, chemical modification helps to improve the surface properties and increase the 552 

density of oxygen functional groups [252]. For instance, triethanolamine modified graphene oxide 553 

showed silver ion adsorption capacity of about 410 mg/g after four cycles of reuse [255].  554 

Nevertheless, graphene can aggregate irreversibly by π–π bonding and Van der Waals interactions to 555 

form graphite and consequently reducing its adsorption capacity and reusability [256]. The production 556 

cost of graphene is still high and its production processes may have a high carbon footprint. Recently, 557 

significant research has been carried out on the preparation of graphene containing biochar that has 558 

demonstrated good performance in adsorption of different pollutants [257].  559 
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7.6 Biochar 560 

Biochar is the solid carbonaceous by-product from the pyrolysis of biomass, which consists of 561 

unconverted organic solids and ash, a mineral fraction of the biomass pyrolysis process [239, 258-562 

260]. Depending on the potential use, pyrolysis parameters can be controlled to produce biochar with 563 

desired properties for a specific use. For instance, at a high temperature, volatile materials are 564 

removed quickly which results in high micro-pore volume in the biochar [261].  Micro-porous structure 565 

and a large surface area make biochar appropriate for diverse use such as soil quality enhancement 566 

and carbon storage [262-266], wastewater treatment [31, 34, 267-273], pesticide remediation [274], 567 

fuel and catalyst in energy recovery technologies [275, 276], activated carbon production [204, 277], 568 

removal of SO2 and NOx from flue gases [260]. 569 

Micro-pore volume is the main physical property defining the adsorption capacity of biochar. Surface 570 

functional groups are also important for the adsorption of certain pollutants. Pyrolysis temperature is 571 

the main processing variable impacting on both properties, surface functional groups decrease at high-572 

temperature (> 600°C) while micro-pore volume increases with pyrolysis temperature [278]. The 573 

adsorption capacity of biochar is also affected by properties of contaminants such as ionic nature, 574 

polarity, and processing conditions [276]. Therefore, it is fundamental to understand the key biochar 575 

properties for adsorption of each compound or element and then define the biochar production. For 576 

instance, BET surface area, pore size, pore-volume, surface functional groups, surface charge, pH, and 577 

mineral components play a key role on adsorption [279, 280]. For example, pore size has an important 578 

influence on metal adsorption; biochar with small pore size cannot trap large adsorbate particles, 579 

regardless of their charges or polarity [279]. Oppositely, favourable polarity or surface charge allows 580 

adsorbate particles to enhance its contact with biochar.   581 

Heavy metals (e.g. As, Cr, Cd, Hg, Pb) recovery by biochar is dominated by various mechanisms such 582 

as electrostatic interactions, cation exchange, complexation, reduction, and precipitation [279]. Silver 583 

adsorption is also driven by different mechanisms depending on the biochar quality and the 584 
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adsorption conditions. Chemical and/or physical modification is often carried out to increase the 585 

density of surface functional groups or to add minerals, reducing agents and nanoparticles [279]. 586 

Surface functional groups such as –COOH, –NH2, –OH have a strong influence on metal adsorption 587 

capacity [281]. Biochar is often treated with alkali, reducing agents, oxidizing agents, carbonaceous 588 

materials, metal ions, acid, steam and gas purging to modify its properties according to a specific use 589 

[261]. 590 

Biochar has several added advantages compared to other similar adsorbents. For instance, relatively 591 

low temperature and less chemically intensive process makes biochar less complicated and 592 

inexpensive compared to activated carbon. Biochar production is an effective method for carbon-593 

sequestering from waste biomass, which would produce greenhouse gases by conventional disposal 594 

(landfilling) [282]. Therefore, biochar has limited environmental footprints compared to activated 595 

carbon. 596 

The application of low-cost adsorbents to remove heavy metals, particularly modified biochar, has 597 

attracted much attention in recent years [12, 35]. However, the low-cost sustainable modification and 598 

application of biochar to mitigate silver nanoparticles pollution has not been well explored so far. 599 

Table 3 compiles all projects where biochar was used for silver removal. According to Table 3, the 600 

modification of biochar enhances adsorption efficiency to a great extent. For instance, biochar 601 

supported nanoscale zero-valent iron (nZVI) showed up to 745.5 mg/g silver adsorption capacity [11]. 602 

The silver adsorption process by biochar can work under a wide range of initial concentrations at room 603 

temperature. However, the pH dependency of the adsorption process has not been studied yet. 604 

Firstly, data shown in Table 3 indicates that only one modification (by zero-valent iron) was studied. 605 

Secondly, the pH dependency of the adsorption processes was not monitored and reported. Thirdly, 606 

all the experiments were done on silver nitrate solution prepared with double distilled water except 607 

one case. According to the literature, silver can be presented in various forms in wastewater, such as 608 

silver nitrate, silver chloride, silver sulphide nanoparticles and silver nanoparticles. A study 609 
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demonstrated that the biochar can break the PHBV (polyhydroxybutyrate-co-valerate) composites 610 

containing Ag NPs to release silver ions and eventually adsorb in a tropical soil environment [165]. 611 

Therefore, biochar adsorption should be tested for other silver forms that are available in aqueous 612 

solutions. 613 

In summary, the adsorption capacity of different adsorbents (Table 3) depends on the initial 614 

concentration of silver, modification and/or activation of adsorbents, contact time and solution pH. In 615 

general, biowaste materials and biochars are the type of materials with higher silver adsorption 616 

capacity. The adsorption capacity of biowaste materials vary between 42 mg/g (for chitosan) and 407 617 

mg/g for thiourea-modified chitosan, showing that the modifying agent/process plays a key role on 618 

the adsorption capacity of adsorbents.  This is also confirmed by the biochar adsorption results, the 619 

biochar modified with the zero valent iron demonstrated the highest adsorption capacity of 745.5 620 

mg/g. Bamboo biochar has also confirmed a high silver adsorption capacity, and is a promising low-621 

cost adsorbent for nano silver mitigation as well as for other contaminants.   622 

8 Conclusions  623 

Water pollution is the greatest threat to the entire ecosystem. Increasing the production and use of 624 

silver nanoparticles are going to be an additional toxicity risk for the aquatic environment. Therefore, 625 

it is crucial to develop an economically and environmentally feasible process to mitigate silver 626 

pollution. Adsorption research has gained significant interest in recent years because of its cost-627 

effectiveness and suitability for bulk effluent treatment. The present review explored the 628 

effectiveness of silver adsorption by different adsorbents. 629 

Silver can be present in various forms in wastewater. For instance, silver nitrate, silver chloride, silver 630 

sulphide nanoparticles, and silver nanoparticles. However, most of the research has been carried out 631 

on silver nitrate which has not demonstrated the effectiveness of the process in a realistic 632 

environment. Modified activated carbon shows good adsorption capacity under certain conditions, 633 
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such as low working pH. Activation mechanisms to produce activated carbon in order to enhance its 634 

adsorption rate as well as regeneration processes to extend the adsorption cycles have been 635 

investigated. However, these conditions make the treatment process more complex, more chemically 636 

intensive, and cost-intensive. The selectivity of silver from other pollutants and the possibility of 637 

scaling-up to a continuous process are yet to be explored.  638 

Some of the functionalised organic/biowaste materials, such as resins and chelating agents can work 639 

at a neutral pH. However, the initial concentration of silver has to be more than 100 ppm which is 640 

impractical compare to the real-life situation where the silver ion concentration is less than mg/L level. 641 

Cellulosic materials can also work at a neutral effluent pH and showed significant adsorption capacity, 642 

but modification of these materials requires chemical treatment which can produce subsequent 643 

wastewater. Inorganic adsorbents, such as zeolites and clay, demonstrated an adsorption capacity 644 

significantly lower than the other adsorbents, but they can work under a wide range of pH: 4 to 8. 645 

Another promising adsorbent, graphene, has drawn research interest recently, but susceptibility to 646 

aggregate and to forming graphite is still a challenge to be further explored. Additionally, the current 647 

production methods of graphene have a high carbon footprint due to the high energy demand which 648 

again impacts on the production cost and environment.  649 

Biochar has several advantages compared to other similar adsorbents. For instance, relatively low 650 

processing temperature and no and less chemically intensive production processes make biochar a 651 

low-cost adsorbent compared to activated carbon. Additionally, biochar production from biomass 652 

waste helps to capture carbon rather than producing greenhouse gases. However, the low-cost 653 

sustainable modification and application of biochar to mitigate silver nanoparticles pollution should 654 

be further explored. A few key prospective areas of interests of silver removal may include, but are 655 

not limited to: 656 

• selection of appropriate biomass as the composition of biomass often drives the physical 657 

and chemical properties of biochar 658 
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• low-cost modification of biochar to increase the adsorption capacity and to extend the 659 

reusability of used biochar 660 

• assessment of the adsorption capacity under a realistic environment, especially the effect of 661 

other co-existing chemical compounds or elements  662 

• experimentation on selectivity and recyclability 663 

• scaling up of the adsorption process – from batch method to a continuous process 664 

• in-depth cost study to demonstrate the economic viability of the overall process.  665 
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