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a b s t r a c t 

We investigate a two-strain disease model with amplification to simulate the prevalence of drug- 

susceptible (s) and drug-resistant (m) disease strains. Drug resistance first emerges when drug- 

susceptible strains mutate and become drug-resistant, possibly as a consequence of inadequate treat- 

ment, i.e. amplification. In this case, the drug-susceptible and drug-resistant strains are coupled. We per- 

form a dynamical analysis of the resulting system and find that the model contains three equilibrium 

points: a disease-free equilibrium; a mono-existent disease-endemic equilibrium at which only the drug- 

resistant strain persists; and a co-existent disease-endemic equilibrium where both the drug-susceptible 

and drug-resistant strains persist. We found two basic reproduction numbers: one associated with the 

drug-susceptible strain ( R 0s ) ; the other with the drug-resistant strain ( R 0m 

) , and showed that at least 

one of the strains can spread in a population if max [ R 0s , R 0m 

] > 1 . Furthermore, we also showed that if 

R 0m 

> max [ R 0s , 1 ] , the drug-susceptible strain dies out but the drug-resistant strain persists in the pop- 

ulation (mono-existent equilibrium); however if R 0s > max [ R 0m 

, 1 ] , then both the drug-susceptible and 

drug-resistant strains persist in the population (co-existent equilibrium). We conducted a local stability 

analysis of the system equilibrium points using the Routh-Hurwitz conditions and a global stability anal- 

ysis using appropriate Lyapunov functions. Sensitivity analysis was used to identify the key model param- 

eters that drive transmission through calculation of the partial rank correlation coefficients (PRCCs). We 

found that the contact rate of both strains had the largest influence on prevalence. We also investigated 

the impact of amplification and treatment/recovery rates of both strains on the equilibrium prevalence 

of infection; results suggest that poor quality treatment/recovery makes coexistence more likely and in- 

creases the relative abundance of resistant infections. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Many pathogens have several circulating strains. The presence 

f drug-resistant strains of a pathogen often follows soon af- 

er a new treatment becomes available. This can be due to sub- 

herapeutic drug levels which may efficiently kill drug-susceptible 

athogens whilst allowing drug-resistant sub-populations to grow 

1] . This acquired resistance, which can result from incorrect treat- 
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ent, poor adherence or malabsorption, is called amplification 

2–4] . One of the major challenges in preventing the spread of in- 

ectious diseases is to control the genetic variations of pathogens 

hrough proper treatment regimens [ 5 , 6 ]. 

Mathematical models can improve our understanding of ge- 

etic variations of infectious pathogens as well as those compo- 

ents that are significant to infectious disease diagnosis, and treat- 

ent [7–13] . Mathematical models can also be used to improve 

ealth policy and infectious disease monitoring plans by identify- 

ng thresholds which must be reached in order to achieve elimi- 

ation [13–15] . For example, analytical solutions, numerical solu- 

ions and stability analyses of mathematical models can identify 
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Fig. 1. Flow chart of the two-strain SIR model showing the four infection states, 

and the per-capita transition rates in and out of each state (not shown: the constant 

recruitment rate � into the susceptible compartment S). Subscripts s and m denote 

drug-susceptible and drug-resistant quantities respectively. 
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1 Data strongly suggest that the absolute number of births globally has been ap- 

proximately constant for the last 30 years and is predicted to remain constant for 

the next 30 years. Therefore, within the timescale of an SIR-type infection it is rea- 

sonable to assume a constant growth rate ( https://population.un.org/wpp/Graphs/ 
egions in the parameter space where the various asymptotic states 

re stable or unstable, thus allowing us to predict the long-term 

ehaviour of the system [ 13 , 14 , 16 ]. Further, sensitivity analysis of

 mathematical model allows us to discover the parameters that 

ave the greatest influence on the model outputs [ 14 , 17 ]. 

The growing threat of drug-resistant pathogen strains presents 

 significant challenge throughout the world, particularly in de- 

eloping countries and those with lower socio-economic status 

18] . Once drug-resistant strains have emerged in a population, 

rimary transmission of these strains may also contribute to the 

isease burden (in addition to amplification) [19] . Recent studies 

20–24] have shown that drug-resistant strains can in some cases 

ossess higher virulence to transmit disease than drug-susceptible 

trains, and those individuals infected with a drug-resistant 

train have the highest mortality rate, e.g. tuberculosis and HIV 

 25 , 26 ]. 

To examine the threat posed by genetic variations of pathogens, 

e present a two-strain (drug-susceptible, and drug-resistant) 

usceptible-Infected-Recovered (SIR) epidemic model with coupled 

nfectious compartments and use it to investigate the emergence 

nd spread of mutated strains of infectious diseases. We consider 

he possibility that an individual’s position changes from drug- 

usceptible at initial presentation to resistant at follow-up. This is 

he mode by which drug resistance first emerges in a population 

nd is designed to reproduce the phenotypic phenomenon of am- 

lification. The model can be applied to investigate the co-existent 

r competitive exclusive phenomena among the strains. We choose 

he SIR model in this study in order to model the many diseases 

hat have a protracted infectious period with treatment–including 

epatitis C and HIV. Here the removed compartment “R” is to be 

pplied broadly to those people who are neither infectious nor sus- 

eptible, including people in treatment, isolation, no longer con- 

acting others or dead. In this way, we believe that our model cap- 

ures many of the infectious agents that are traditionally modelled 

y Susceptible (S) to Infected (I) models. 

Explicitly, in this paper we perform a rigorous analytical and 

umerical analysis of the proposed two- strain model properties 

nd solutions from both the mathematical and biological view- 

oints. For each, we use the next-generation matrix method to de- 

ermine analytic expressions for the basic reproduction numbers of 

he drug-susceptible and drug-resistant strains and find that these 

re important determinants for regulating system dynamics. With 

 focus on the early and late-time behaviour of the system, we out- 

ine the required conditions for disease fade-out, infection mono- 

xistence, and co-existence. 

To supplement and validate the analytic analysis, we use nu- 

erical techniques to solve the model equations and explore the 

pidemic trajectory for a range of possible parameter values and 

nitial conditions. The local stability of the three system equi- 

ibria is examined using the Routh-Hurwitz conditions and the 

lobal stability of the disease-free equilibrium and mono-existent 

isease-endemic equilibrium is examined using appropriate Lya- 

unov functions. Following this, we perform a sensitivity analysis 

o investigate the model parameters that have the greatest influ- 

nce on disease prevalence. 

The remainder of this paper is constructed as follows: in 

ection 2 we present the two-strain SIR model with differential in- 

ectivity and amplification, and verify the boundedness and pos- 

tivity of solutions as well as the existence of several equilibria. 

ocal and global stability analyses of the equilibria are presented 

n section 3 . In section 4 we discuss a sensitivity analysis of the

odel outputs. We then provide numerical simulations to sup- 

ort analytic results in section 5 . Finally, in section 6 , we provide

 summary of our outcomes, discuss their importance for public 

ealth policy and propose guidelines for future disease manage- 

ent effort s. 
9

2 
. Model description and analysis 

Model equations: 

We developed a dynamic two-strain SIR model for the trans- 

ission of drug-susceptible and drug-resistant infections, where 

he total population is divided into four subclasses: S − suscepti- 

le individuals; I s – individuals infected with the drug-susceptible 

train; I m 

– individuals infected with the drug-resistant strain; 

nd R –recovered individuals, who are assumed to have immunity 

gainst both strains. Thus the total population number N(t) at time 

 is 

 ( t ) = S ( t ) + I s ( t ) + I m 

( t ) + R ( t ) . (1) 

We also introduced the following parameters: � – constant 

ecruitment rate into the susceptible class through birth or im- 

igration 

1 ; μ–natural per-capita death rate across the entire 

opulation; βs ( βm 

) – effective contact rate between individuals 

ith drug-susceptible (drug-resistant) infection and susceptibles; 

 s ( ω m 

) –per-capita treatment/recovery rate for drug-susceptible 

drug-resistant) infected individuals; φs (φm 

) −disease-related per- 

apita death rate for drug-susceptible (drug-resistant) infected 

ndividuals; ρ–proportion of individuals who amplify from the 

rug-susceptible strain to the drug-resistant strain during treat- 

ent/recovery. We assumed the proportion of individuals who 

mplify–due to incomplete treatment or lack of compliance in the 

se of first-line drugs–move directly from the drug-susceptible 

ompartment I s into the drug-resistant compartment I m 

. The 

odel structure is illustrated in Fig. 1 . 

From the aforementioned, the populations in each disease state 

re determined by the following system of nonlinear ordinary dif- 

erential equations: 

˙ 
 = � − μS − βs I s S − βm 

I m 

S , (2) 

˙ 
 s = βs I s S − ( ω s + φs + μ) I s , (3) 

˙ 
 m 

= ρω s I s + βm 

I m 

S − ( ω m 

+ φm 

+ μ) I m 

, (4) 
00 ). 

https://population.un.org/wpp/Graphs/900
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˙ 
 = ( 1 − ρ) ω s I s + ω m 

I m 

− μR . (5) 

Given non-negative initial conditions for the system above, it 

s straightforward to show that each of the state variables remain 

on-negative for all t > 0 . Moreover, summing equations (2) –(5) 

e find that the size of the total population, N(t) , satisfies 

˙ 
 ( t ) ≤ � − μN ( t ) . 

Integrating this inequality we find 

 ( t ) ≤ �

μ
+ N ( 0 ) e −μt . 

This shows that the total population size N(t) is bounded in 

his case and that it naturally follows that each of the compart- 

ent states ( S , I s , I m 

, R ) are also bounded. 

Note that equations (2) –(4) are independent of the size of the 

ecovered population R(t) ; therefore, if we only wish to track dis- 

ase incidence and prevalence, we can focus our attention on the 

ollowing reduced system (6)–(8): 

˙ 
 = � − μS − βs I s S − βm 

I m 

S , (6) 

˙ 
 s = ( βs S − χs ) I s , (7) 

˙ 
 m 

= ρω s I s + βm 

I m 

S − χm 

I m 

(8) 

here χs = ω s + φs + μ and χm 

= ω m 

+ φm 

+ μ represent the to- 

al removal rates from the respective infectious compartments. 

Given the positivity and boundedness of the system solutions, 

e find that the feasible region for equations (6) –(8) is given by 

 = 

{
( S , I s , I m 

) ∈ R 

3 
+ : S + I s + I m 

≤ �

μ

}
(c) 

here D is positively invariant. Therefore, in this study we consider 

he system of equations (6) –(8) in the set D . 

.1. Basic reproduction number 

Here we estimate the basic reproduction number of the model 

6)–(8). In an epidemic model, the basic reproduction number is 

he expected number of secondary cases created by a single infec- 

ious case introduced into a totally susceptible population. If the 

asic reproduction number is greater than one, the number of in- 

ected individuals grows and the infection typically shows persis- 

ent behaviour. Conversely, if the basic reproduction number is less 

han one, the number of infective individuals typically tends to 

ero [ 12 , 27 , 28 ]. Here we use the next-generation matrix technique

o estimate the basic reproduction number(s) of our system [28] . 

The reduced model (6)–(8) has two infected states: I s ; and I m 

, 

nd one uninfected state: S . At the infection-free steady state I ∗s = 

 

∗
m 

= 0 . Hence, from (6), in the absence of infection S ∗ = 

�
μ . 

Linearizing the system about the infection-free equilibrium, we 

nd that equations (3) –(4) are closed, such that the linearized in- 

ection sub-model becomes 

˙ 
 s = ( βs S 

∗ − χs ) I s , (9) 

˙ 
 m 

= ρω s I s + βm 

I m 

S ∗ − χm 

I m 

. (10) 

Here, the ODEs (9) and (10) describe the production of newly 

nfected individuals and changes in the states of already infected 

ndividuals. 

By setting x T = ( I s , I m 

) T , where T denotes transpose, the infec- 

ion subsystem can be written in the following form: 

˙  = ( T + �) x . (11) 
3 
The matrix T contains the transmission component of 

quations (9) and (10) (i.e. the arrival of susceptible individuals 

nto the infected compartments I s and I m 

) and the matrix � con- 

ains transitions between, and out of the infected states (i.e. recov- 

ry, amplification and death). 

For the subsystem (9)–(10), these components are given respec- 

ively by 

 = 

(
βs S 

∗ 0 

0 βm 

S ∗

)
and � = 

(
−χs 0 

ρω s −χm 

)
. 

The next-generation matrix, K , is then given by [27] 

 = −T �−1 = 

( 

S ∗βs 

χs 
0 

S ∗βm ω s ρ
χs χm 

S ∗βm 

χm 

) 

. 

The dominant eigenvalues of K are the basic reproduction num- 

ers for the drug-susceptible and drug-resistant strains; they rep- 

esent the average number of new infections from each strain pro- 

uced by one infected individual. The lower triangular structure of 

 allows us to immediately read off the basic reproduction num- 

ers for the drug-susceptible and drug-resistant strains respec- 

ively as: 

 0s = 

S ∗βs 

χs 
= 

� βs 

μχs 
(a) 

nd 

 0m 

= 

S ∗βm 

χm 

= 

� βm 

μχm 

. (b) 

Interestingly we find that the basic reproduction numbers R 0 s 

nd R 0 m 

are both independent of the amplification rate ρ [29] . 

.1.1. Strain replacement 

To investigate the relative magnitude of R 0s and R 0m 

, which is 

nticipated to strongly influence the system dynamics (see below), 

e introduce the parameters c and ∈ which we respectively de- 

ne as the fitness cost exacted on the transmissibility of strain m 

elative to that of strain s , and the reduction in treatment rate of 

train m relative to that of strain s . More specifically, we let 

m 

= ( 1 − c ) βs 

nd 

 m 

= ( 1 − ∈ ) ω s . 

If we assume that both R 0s and R 0m 

are greater than 1, then 

he condition for resistant infections to replace sensitive infections 

s given by, 

 0m 

> R 0s . 

Substituting the formulae (a) and (b) for the basic reproduction 

umbers gives: 

βm 

ω m 

+ φm 

+ μ
> 

βs 

ω s + φs + μ
. 

Assuming that μ ≈ 0 (since it is very slow compared to the 

ther rates) and that φm 

≈ φs yields the condition 

( 1 − c ) βs 

( 1 − ∈ ) ω s + φs 
> 

βs 

ω s + φs 
, 

hich we can rearrange to obtain 

 > 

c ( ω s + φs ) 

ω s 
. 

The above relation shows that the resistant strain can outcom- 

ete the susceptible strain if the resistance level ∈ is high (which 

ay be the case for drug-resistant individuals). Alternatively, the 

esistant strain will be fitter than the susceptible one if the fitness 

ost c is sufficiently low. 
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.2. System properties 

.2.1. Existence of equilibria 

It is clear from equations (6) –(8) that a disease-free equilibrium 

denoted by E ∗) always exists: 

 

∗ = ( S ∗, I ∗s , I ∗m 

) = 

(
�

μ
, 0 , 0 

)
. (12) 

From equation (6) –(8) we can also derive the mono-existent 

ndemic equilibrium point (denoted by E # ) at which the drug- 

esistant strain persists and the drug-susceptible strain dies out: 

 

# = 

(
S # , 0 , I # m 

)
, 

here 

 

# = 

S ∗

R 0m 

= 

�

μR 0m 

, 

I # s = 0 , I # m 

= 

μ( R 0m 

− 1 ) 

βm 

. 

(13) 

Inspecting (13) we see that the mono-existent endemic equilib- 

ium E # = ( S # , 0 , I # m 

) ∈ D (i.e. exists) if, and only if R 0m 

≥ 1 . 

Finally, the co-existent endemic equilibrium of the system (6)–

8) (denoted by E † ) is given by 

 

† = ( S † , I † s , I 
† 
m 

) , 

here 

S † = 

�

μR 0 s 

= S ∗/R 0 s , 

I † s = 

μ ( R 0s − 1 ) 

βs 
	, 

 

† 
m 

= 

ρR 0s ω s μ ( R 0s − 1 ) 

βs χm 

( R 0s − R 0m 

) + ρR 0s ω s βm 

, 

= 

ρω s R 0s 

χm 

( R 0s − R 0m 

) 

μ ( R 0s − 1 ) 

βs 
	. 

(14) 

The variable 	 in equation (14) is defined as 

= 

(
1 + 

ρω s R 0s βm 

βs χm 

( R 0s − R 0m 

) 

)−1 

= 

(
1 + 

ρω s R 0m 

χs ( R 0s − R 0m 

) 

)−1 

, 

(d) 

nd 0 < 	 < 1 for R 0s > R 0m 

. Therefore, equation (14) shows that 

he co-existent endemic equilibrium E † = ( S † , I 
† 
s , I 

† 
m 

) ∈ D (i.e. ex- 

sts) if, and only if R 0s > max [ R 0m 

, 1 ] . 

. Stability analysis 

Since equations (2) –(4) are independent of equation (5) (i.e. the 

volution of S , I s and I m 

are independent of R(t) ), we can focus 

ur attention on the reduced system (6)–(8) to study the persis- 

ence of the infection. To investigate stability of the equilibria of 

quations (6) –(8) , the following results are established: 

.1. Infection-free equilibrium 

emma 1. If R 0 = max [ R 0s , R 0m 

] < 1 , the disease-free equilibrium 

 

∗ of (6)–(8) is locally and globally asymptotically stable; if, how- 

ver, R 0 = max [ R 0s , R 0m 

] > 1 , E ∗ is unstable. 

roof. : We consider the Jacobian of the system (6)–(8) which is 

iven by 

 = 

( −βs I s − βm 

I m 

− μ −βs S −βm 

S 
βs I s βs S − χs 0 

βm 

I m 

ρω s βm 

S − χm 

) 

. 
4 
At the infection-free equilibrium point, E ∗, this reduces to 

 

∗ = 

( −μ −βs S 
∗ −βm 

S ∗

0 χs ( R 0s − 1 ) 0 

0 ρω s χm 

( R 0m 

− 1 ) 

) 

. 

The structure of J ∗ allows us to immediately read off the three 

igenvalues, λi , as 

1 = −μ, λ2 = χs ( R 0s − 1 ) and λ3 = χm 

( R 0m 

− 1 ) . (15) 

It is easy to verify that all the eigenvalues (15) have negative 

eal parts for R 0s < 1 and R 0m 

< 1 . Hence, the disease-free equi- 

ibrium E ∗ of (6)–(8) is locally asymptotically stable for R 0s < 1 and 

R 0m 

< 1 . If R 0s > 1 or R 0m 

> 1 , at least one of the eigenvalues

15) has a positive real part and E ∗ is unstable. 

Now the global stability of the disease-free equilibrium E ∗ for 

 0s < 1 and R 0m 

< 1 can be investigated. First, from equation (7) , 

e have 

˙ 
 s = ( βs S − χs ) I s , 

hich can be integrated to give 

 s ( t ) = I s ( 0 ) e 

t 
∫ 
0 
βs S ( τ ) d τ−χs t 

(16) 

or all t ≥ 0 . 

Substituting in the upper bound S(t) ≤ �
μ = S ∗, which follows 

mmediately from the definition of D (equation (c)), we obtain 

 s ( t ) ≤ I s ( 0 ) e ( βs S 
∗−χs ) t , 

I s ( 0 ) e χs ( R 0s −1 ) t . 

It follows then that if R 0s < 1 we have I s (t) → 0 as t → ∞ .

ence the hyperplane I s = 0 attracts all solutions of (6)–(8) orig- 

nating in D whenever R 0s < 1 . 

Since I s (t) → 0 as t → ∞ for R 0s < 1 , it follows that ρ ω s I s (t) →
 such that equation (8) reduces to 

˙ 
 m 

= βm 

I m 

S − χm 

I m 

. 

Following the same strategy for I m 

as we used above for I s 
ields 

 m 

( t ) ≤ I m 

( 0 ) e χm ( R 0m −1 ) t . 

Similarly, if R 0m 

< 1 , I m 

(t) → 0 as t → ∞ and the hyper-

lane I m 

= 0 attracts all solutions of (6)–(8) originating in D . Fi- 

ally, it is straightforward to show that if I s → 0 , and I m 

→ 0 ,

hen S → S ∗. Therefore E ∗ is globally asymptotically stable when 

 0 = max [ R 0s , R 0m 

] < 1 . 

.2. Mono-existent endemic equilibrium 

emma 2. If the boundary equilibrium E # = ( S # , 0 , I # m 

) of the 

quations (6)—(8) exists and R 0m 

> max [1 , R 0s ] , E # is locally and 

lobally asymptotically stable. 

roof. : We consider the Jacobian of the system (6)—(8) at the 

ono-existent endemic equilibrium point E # which is given by 

 

# = 

⎛ 

⎝ 

−βm 

I # m 

− μ −βs S 
# −βm 

S # 

0 −χs ( R 0m −R 0s ) 
R 0m 

0 

βm 

I # m 

ρω s 0 

⎞ 

⎠ . 

The structure of J # allows us to immediately read off the first 

igenvalue, λ1 = −χs 
( R 0m 

−R 0s ) 
R 0m 

which is negative whenever R 0m 

> 

 0s . The remaining eigenvalues can be calculated as the roots of 

he following equation 

λ2 + a 1 λ + a 2 
)

= 0 (17) 
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here 

 1 = βm 

I # m 

+ μ = μR 0m 

, 

 2 = β2 
m 

I # m 

S # = μχm 

( R 0m 

− 1 ) . 

For local stability we must ensure that the Routh-Hurwitz cri- 

eria [30] are satisfied: 

a 1 > 0 , and 

a 2 > 0 , which holds whenever R 0m 

> 1 . 

Thus, by the Routh-Hurwitz criteria, the boundary equilibrium 

E # is locally asymptotically stable whenever R 0m 

> max [ 1 , R 0s ] . 

onversely, for E # ∈ D , it is unstable when R 0m 

< R 0s . 

Now we prove E # is globally asymptotically stable if R 0m 

> 

ax [ 1 , R 0s ] . Considering equation (7) and (8) , we have 

˙ 
 s = ( βs S − χs ) I s , (18) 

˙ 
 m 

= ρω s I s + βm 

I m 

S − χm 

I m . (19) 

Following [31] , first we divide equation (18) and (19) through 

y I s and I m 

respectively to obtain 

d log I s 

dt 
= βs S − χs , (20) 

d log I m 

dt 
= βm 

S − χm 

+ ρω s 
I s 

I m 

. (21) 

Rearranging equations (20) and (21) to solve for S we get 

 = 

1 

βs 

d log I s 

dt 
+ 

χs 

βs 
= 

1 

βm 

d log I m 

dt 
+ 

χm 

βm 

− ρω s 

βm 

I s 

I m 

(22) 

hich immediately leads to the following inequality: 

1 

βs 

d log I s 

dt 
+ 

χs 

βs 
≤ 1 

βm 

d log I m 

dt 
+ 

χm 

βm 

. 

Integrating both sides of the equation above gives 

I s ( t ) 

I s ( 0 ) 

) 1 
βs 

e 
χs 
βs 

t ≤
(

I m 

( t ) 

I m 

( 0 ) 

) 1 
βm 

e 
χm 
βm 

t 

hich we can rearrange to obtain 

I s ( t ) 

I s ( 0 ) 

) 1 
βs 

≤
(

I m 

( t ) 

I m 

( 0 ) 

) 1 
βm 

e 

(
χm 
βm 

− χs 
βs 

)
t 
. 

Next, we use equations (a) and (b) for the basic reproduction 

umbers, to rewrite this inequality as 

I s ( t ) 

I s ( 0 ) 

) 1 
βs 

≤
(

I m 

( t ) 

I m 

( 0 ) 

) 1 
βm 

e 
S ∗

(
1 

R 0m 
− 1 

R 0s 

)
t 
. 

Finally, since both I s (t) and I m 

(t) are bounded, as we take the 

imit as t → ∞ we find: 

lim 

 →∞ 

(
I s ( t ) 

I s ( 0 ) 

) 1 
βs 

≤ lim 

t →∞ 

(
I m 

( t ) 

I m 

( 0 ) 

) 1 
βm 

e 
S ∗

(
1 

R 0m 
− 1 

R 0s 

)
t → 0 for R 0m 

> R 0s .

Hence the hyperplane I s = 0 attracts all solutions of (6)–(8) 

hen R 0m 

> R 0s . 

To complete the global stability proof, we show the endemic 

quilibrium E # is globally asymptotically stable on the hyperplane 

 s = 0 by constructing the following Lyapunov function [32] : 

 

# = S − S # ln S + I m 

− I # m 

ln I m 

+ C 

here 

 = −
(
S # − S # ln S # + I # m 

− I # m 

ln I # m 

)
. 
5 
Taking the derivative of V 

# (t) along system trajectories yields 

˙ 
 

# = 

(
1 − S # 

S 

)
˙ S + 

(
1 − I # m 

I m 

)
˙ I m 

, 

= 

(
1 − S # 

S 

)
( � − μS − βm 

I m 

S ) + 

(
1 − I # m 

I m 

)
( βm 

I m 

S − χm 

I m 

) , 

= � − μS − βm 

I m 

S − � S # 

S 
+ μS # + βm 

I m 

S # + βm 

I m 

S − χm 

I m 

−βm 

I # m 

S + χm 

I # m 

. 

First, we substitute in the identity 

= μS # + βm 

I # m 

S # , 

o obtain 

˙ 
 

# = μS # + βm 

I # m 

S # − μS − μS # 
S # 

S 
− βm 

I # m 

S # 
S # 

S 
+ μS # 

+ βm 

I m 

S # − χm 

I m 

− βm 

I # m 

S + χm 

I # m 

, 

= μS # 
(

2 − S 

S # 
− S # 

S 

)
+ βm 

I # m 

S # − βm 

I # m 

S # 
S # 

S 
+ βm 

I m 

S # 

−χm 

I m 

− βm 

I # m 

S + χm 

I # m 

. 

We can simplify this expression further by substituting in the 

dentity βm 

S # = χm 

to get 

˙ 
 

# = μS # 
(

2 − S 

S # 
− S # 

S 

)
+ χm 

I # m 

− χm 

I # m 

S # 

S 
+ χm 

I m 

− χm 

I m 

−χm 

I # m 

S 
S # 

+ χm 

I # m 

, 

= μS # 
(

2 − S 

S # 
− S # 

S 

)
+ χm 

I # m 

(
2 − S 

S # 
− S # 

S 

)
, 

= 

(
μS # + χm 

I # m 

)(
2 − S 

S # 
− S # 

S 

)
. 

Since the arithmetic mean is greater than or equal to the geo- 

etric mean, we obtain 

˙ V 

# ≤ 0 . 

Therefore, the mono-existent endemic equilibrium E # is glob- 

lly asymptotically stable if R 0m 

> 1 . 

.3. Co-existent endemic equilibrium 

emma 3. If the endemic equilibrium E † = ( S † , I 
† 
s , I 

† 
m 

) of equa- 

ions (6)—(8) exists, E † is locally asymptotically stable. 

roof. : We consider the Jacobian of the system (6)—(8) at the co- 

xistent endemic equilibrium point E † which is given by 

 

† = 

⎛ 

⎜ ⎝ 

−βs I 
† 
s − βm 

I † m 

− μ −βs S 
† −βm 

S † 

βs I 
† 
s βs S 

† − χs 0 

βm 

I † m 

ρω s βm 

S † − χm 

⎞ 

⎟ ⎠ 

. 

To simplify this expression, we use the following identities 

βs I 
† 
s − βm 

I † m 

− μ = −μ R 0s , 

βs S 
† = − R 0s χs 

S ∗
S ∗

R 0s 

= − χs , 

βm 

S † = − R 0m 

χm 

S ∗
S ∗

R 0s 

= − χm 

R 0m 

R 0s 

, 

s I 
† 
s = βs 

μ ( R 0s − 1 ) 

βs 
	 = μ( R 0s − 1 ) 	, 

m 

I † m 

= 

ρω s 

χs 

R 0m 

( R 0s − R 0m 

) 
μ ( R 0s − 1 ) 	, 

s S 
† − χs = χs 

(
βs S 

∗

R 0s χs 
− 1 

)
= χs 

(
R 0s 

R 0s 

− 1 

)
= χs ( 1 − 1 ) = 0 , 
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Fig. 2. PRCC values depicting the sensitivities of the model output I s with respect 

to the input parameters βs , ω s , φs , βm , ω m , φm and ρ, when R 0s > max [ R 0m , 1 ] 

(i.e. co-existent endemic equilibrium E † ). 

Fig. 3. PRCC values depicting the sensitivities of the model output I m with respect 

to the input parameters βs , ω s , φs , βm , ω m , φm and ρ, when R 0s > max [ R 0m , 1 ]] 

(i.e. co-existent endemic equilibrium E † ). 

o

a

s

a

l

t

o

a

ρ
e

(

a

c

φ
β
p

t

t

m 

S † − χm 

= χm 

(
βm 

S ∗

χm 

R 0s 

− 1 

)
= 

χm 

R 0s 
( R 0m 

− R 0s ) 

here in the fourth line we have substituted in the definition of 

given in equation (d). This allows us to rewrite the matrix J † in 

he following form: 

 

† = 

⎛ 

⎝ 

−μR 0s −χs −χm 

R 0m 

R 0s 

μ ( R 0s − 1 ) 	 0 0 

μ ( R 0s − 1 ) ( 1 − 	) ρ ω s χm 

( R 0m −R 0s ) 
R 0s 

⎞ 

⎠ . 

To determine the stability of this matrix we use the Routh- 

urwitz criteria, which state that the real parts of the roots of the 

haracteristic polynomial associated with a three by three matrix J † 

re negative if A 1 > 0 , A 2 > 0 , A 3 > 0 , and A 1 A 2 > A 3 , where A 1 =
trace ( J † ) , A 2 represents the sum of the two by two principal mi- 

ors of J † and A 3 = −det ( J † ) . 

Condition 1: For the matrix J † , we have 

 1 = −trace 
(
J † 

)
= μ R 0s + 

χm 

( R 0s − R 0m 

) 

R 0s 

. 

Hence, A 1 > 0 if R 0s > R 0m 

. 

Condition 2: 

 2 = 

∣∣∣∣ 0 0 

ρ ω s 
χm ( R 0m −R 0s ) 

R 0s 

∣∣∣∣ + 

∣∣∣∣∣ −μR 0s −χm 

R 0m 

R 0s 

μ ( R 0s − 1 ) ( 1 − 	) χm 

( R 0m −R 0s ) 
R 0s 

∣∣∣∣∣
+ 

∣∣∣∣ −μR 0s −χs 

μ( R 0s − 1 ) 	 0 

∣∣∣∣, 
= μχm 

( R 0s − R 0m 

) + μχm 

R 0m 

R 0s 
( R 0s − 1 ) ( 1 − 	) + μχs ( R 0s − 1 ) 	. 

Recalling that 0 < 	 < 1 for R 0s > R 0m 

, we see that A 2 > 0 is

atisfied whenever R 0s > 1 and R 0s > R 0m 

. 

Condition 3: 

 3 = det 
(
J † 

)
, 

= −μ ( R 0s − 1 ) 	

∣∣∣∣ −χs χm 

R 0m 

R 0s 

ρ ω s χm 

( R 0m −R 0s ) 
R 0s 

∣∣∣∣, 
= −μ ( R 0s − 1 ) 	

[
χs χm ( R 0s −R 0m ) 

R 0s 
+ 

ρ ω s χm R 0m 

R 0s 

]
, 

= μ ( R 0s − 1 ) 	
χs χm 

( R 0s − R 0m 

) 

R 0s 

[
1 + 

ρ ω s R 0m 

χs ( R 0 s −R 0m ) 

]
, 

= μ ( R 0s − 1 ) 
χs χm 

( R 0s − R 0m 

) 

R 0s 

	

	
, 

= 

μ χs χm 

R 0s 
( R 0s − 1 ) ( R 0s − R 0m 

) 

here in the fifth line we have substituted in the definition of 	

iven in equation (d). The condition A 3 > 0 is true if R 0s > 1 and

 0s > R 0m 

. 

Finally, if we multiply the expressions for A 1 and A 2 it is 

traightforward to show that the condition A 1 A 2 > A 3 is satisfied 

hen R 0s > 1 and R 0s > R 0m 

. Thus, by the Routh-Hurwitz crite- 

ia, the co-existent endemic equilibrium E † is locally asymptotically 

table when R 0s > 1 and R 0s > R 0m 

. 

. Sensitivity analysis 

Recognizing the relative importance of the various risk factors 

esponsible for the transmission of infectious diseases is essential. 

he progression of the drug-resistant strain and its incidence and 

revalence must be understood in order to determine how best to 

ecrease disease burden. For this purpose, we calculated the par- 

ial rank correlation coefficients (PRCCs)–which is a global sensi- 

ivity analysis technique using Latin Hypercube Sampling (LHS)–of 

everal key output variables. In each case we assigned a uniform 

istribution from 0 to 3 times the baseline value for each input 

arameter to generate a total of 10 0,0 0 0,0 0 0 computations of each
6 
utput variable of interest. Here the model outputs we consider 

re the number of infectious individuals I s and I m 

and their total 

um ( I s + I m 

) at equilibrium. Note that PRCC values lie between -1 

nd + 1. Positive (negative) values imply a positive (negative) corre- 

ation to the model parameter and outcomes. The bigger (smaller) 

he absolute value of the PRCC, the greater (lesser) the correlation 

f the parameter to the model outcome. 

Figs 2 –4 display the correlation between I s , I m 

and ( I s + I m 

) 

nd the corresponding parameters βs , ω s , φs , βm 

, ω m 

, φm 

and 

when R 0s > max [ R 0m 

, 1 ] , that is, at the co-existent endemic 

quilibrium. From Figs 2 –4 , it is easy to perceive that I s and 

 I s + I m 

) have a strong positive correlation with βs and I m 

has 

 weaker positive correlation with βs , implying that a positive 

hange of βs will increase I s , ( I s + I m 

) and I m 

. Parameters ω s and 

s have a negative correlation with I s , I m 

and ( I s + I m 

) . In addition 

m 

has a negative correlation with I s and ( I s + I m 

) but a strong 

ositive correlation with I m 

. Parameters ω m 

and φm 

have a posi- 

ive correlation with I s and ( I s + I m 

) but strong negative correla- 

ion with I m 

. 
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Table 1 

Description of model parameters 

Parameters Description Estimated value References 

� A demographic parameter which represents the recruitment rate into the population 1 

μ Per-capita death rate 1 
70 

per year [33] 

βs The effective contact rate per unit time between susceptible and drug-susceptible infective individuals variable –

βm The effective contact rate per unit time between susceptible and drug-resistant infective individuals variable –

ω s The per-capita rate at which the drug-susceptible infected population progress to the recovery stage per 

unit time as a result of treatment 

0.290 per year [34] 

ω m The per-capita rate at which the drug-resistant infected population progress to the recovery stage per unit 

time as a result of treatment 

0.145 per year Assume 

ρ The proportion of amplification due to treatment default on first-line drug therapy 0.035 [35] 

ϕ s The per-capita rate at which the drug-susceptible infected population die from infection per unit time 0.37 over 3 years [35] 

ϕ m The per-capita rate at which the drug-resistant infected population die from infection per unit time 0.37 over 3 years [35] 

Fig. 4. PRCC values depicting the sensitivities of the model output I s + I m with re- 

spect to the input parameters βs , ω s , φs , βm , ω m , φm and ρ, R 0s > max [ R 0m , 1 ]] 

(i.e. co-existent endemic equilibrium E † ). 

(

s

Fig. 5. PRCC values depicting the sensitivities of the model output I m with 

respect to the input parameters βs , ω s , φs , βm , ω m , φm and ρ, when R 0m > 

R 0s and R 0m > 1] (i.e. mono-existent endemic equilibrium E # ). 

c

w

e

F

d

Further, parameter ρ has a negative correlation with I s and 

 I s + I m 

) but a strong positive correlation with I m 

. Fig. 5 repre- 

ents the correlation between the equilibrium value of I m 

and the 
ig. 6. Co-existent endemic equilibrium: R 0s > max [ R 0m , 1 ] . In this case both the drug-

ot). All parameter values assume their baseline values given in Table 1 . 

7 
orresponding model parameters βs , ω s , φs , βm 

, ω m 

, φm 

and ρ
hen R 0m 

> R 0s and R 0m 

> 1 (i.e. at the mono-existent endemic 

quilibrium). Parameters βs , βm 

and ρ (small value not showing) 
susceptible infection and drug-resistant infection persist in the population (black 
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Fig. 7. Effect of amplification ( ρ) on the drug-susceptible ( I s ) prevalence and drug- 

resistant prevalence ( I m ) . All parameter values assume their baseline values given 

in Table 1 . 
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Fig. 8. Effect of drug-susceptible treatment/recovery rate ( ω s ) on the equilibrium 

level of total prevalence when both infectious rates ( βs , βm ) are fixed to their base- 

line values. All remaining parameter values assume their baseline values given in 

Table 1 . 

Fig. 9. Effect of drug-susceptible treatment/recovery rate ( ω s ) on the equilibrium 

level of the drug-resistant strain when both infectious rates ( βs , βm ) are fixed to 

their baseline values. All remaining parameter values assume their baseline values 

given in Table 1 . 

b

c

r

o

t

t

c

a

s

b

s

s

r

a

ave positive PRCC values, implying that a positive change in these 

arameters will increase I m 

. In contrast, ω s , φs , ω m 

and φm 

have 

egative PRCC values and, thus, increasing theses parameters will 

onsequently decrease I m 

. 

. Numerical simulations 

In this section, we carry out detailed numerical simulations 

using the Matlab programming language) to support the analytic 

esults and to assess the impact of amplification and the drug- 

usceptible treatment/recovery rate on equilibrium levels of total 

revalence and drug-resistant prevalence. For illustration we have 

hosen baseline parameter values consistent with tuberculosis in- 

ection and transmission [33–35] . In accordance with the analytic 

esults we found three equilibrium points: the disease-free equi- 

ibrium E ∗; a mono-existent endemic equilibrium E # ; and a co- 

xistent endemic equilibrium E † . We used different initial condi- 

ions for both strains of all populations and found that if both basic 

eproduction numbers are less than one (i.e. max [ R 0s , R 0m 

] < 1 ) 

hen the disease-free equilibrium is locally and globally asymp- 

otically stable. If R 0m 

> max [ R 0s , 1 ] , the drug-susceptible strain 

ies out but the drug-resistant strain persists in the population. 

urthermore, if R 0s > max [ R 0m 

, 1 ] , then both the drug-susceptible 

nd drug-resistant strains persist in the population. 

Fig. 6 illustrates the stability of the co-existent endemic equi- 

ibrium (i.e. when R 0s > max [ R 0m 

, 1 ] ) by depicting system trajec- 

ories through the I s vs I m 

plane originating from different initial 

onditions. In this system both strains ( I s and I m 

) persist because 

f the amplification pathway from the drug-susceptible strain to 

he drug-resistant strain. Fig. 7 depicts the effect of amplifica- 

ion (ρ) on equilibrium levels of drug-susceptible prevalence and 

rug-resistant prevalence and shows that in the first region ( ρ � 

 . 6 ) the drug-susceptible prevalence is initially dominant but that 

he drug-resistant prevalence rises with increasing ρ . Eventually, 

or ρ � 0 . 6 , the drug-resistant strain becomes dominant courtesy 

f the amplification pathway. 

Fig. 8 , and Fig. 9 show the effect of the drug-susceptible strain 

reatment/recovery rate on the equilibrium level of total preva- 

ence, and drug-resistant prevalence when both infection rates 

 βs , βm 

) are fixed. If we increase the proportion of amplification, 
8 
oth the total prevalence and drug-resistant prevalence also in- 

rease. 

However, Fig. 9 shows that for high amplification, the drug- 

esistant prevalence increased when the treatment/recovery rate 

f the drug-susceptible strain moved from zero to around 0.25 

o 0.30, then declined to a common point. For lower amplifica- 

ion values, the drug-resistant proportion only increased up to the 

ommon point. This point is the drug-resistant only equilibrium 

nd occurs when the effective reproduction number of the drug- 

usceptible strain becomes lower than the basic reproduction num- 

er of drug-resistant strain. Numerical simulations show that for 

ufficiently high amplification, the prevalence of the drug-resistant 

train will exceed that of its inherent equilibrium value (that is, the 

esistant-only equilibrium) when the drug-susceptible strain exists 

nd is being treated. 
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. Discussion and conclusion 

In this study, we formulated a two-strain SIR non-constant pop- 

lation model with amplification and investigated its dynamic be- 

aviour. We considered amplification as the process by which an 

ndividual infected with a drug-susceptible strain acquires infec- 

ion with a drug-resistant strain. Using the next-generation matrix, 

e obtained the basic reproduction number of each strain, namely 

 0s for drug-susceptible cases and R 0m 

for drug-resistant cases. We 

ound that the basic reproduction numbers determine the equilib- 

ium states of the system and their stability. Specifically if R 0m 

is 

reater than R 0s and unity, only the drug-resistant strain will re- 

ain, whereas if R 0s is larger than R 0m 

and unity, a coexistence 

s likely. We also found that both basic reproduction numbers are 

ndependent of the amplification rate, which indicates that the re- 

roductive capacity of each strain is autonomous of the amplifica- 

ion rate between them. 

We also found that the drug-susceptible strain is not necessar- 

ly the most prevalent at equilibrium even if it has the highest ba- 

ic reproduction number. This is a consequence of the fact that 

he drug-susceptible strain persists purely on direct transmission 

hereas the drug-resistant strain prevalence is driven by a combi- 

ation of direct transmission and amplification. These results ex- 

lain in part the rise in drug-resistant strain prevalence when the 

rug-susceptible strain is treated. 

Lastly, we explored the effect of the drug-susceptible treatment 

ate on the equilibrium level of total prevalence and drug-resistant 

revalence. We found that if we increase the drug-susceptible 

reatment rate, the total prevalence will decline. However, the re- 

ponse of the drug-resistant strain prevalence is non-monotonic, 

ncreasing for a certain period and then declining at a particular 

hreshold point. This finding has important implications for choos- 

ng the proper intervention or treatment strategies. From a micro- 

iological viewpoint, resistance first occurs by a genetic mutation 

n a micro-organism that leads to resistance to a treatment, mod- 

lled by reducing the treatment rate. Therefore, one could ques- 

ion whether it is prudent to risk the emergence of drug-resistant 

trains by increasing the treatment rate of the drug-susceptible 

train. However, at least initially, such resistance-conferring mu- 

ations typically exact a “fitness cost” whereby drug-resistant or- 

anisms reproduce at a lower rate and are often less transmissi- 

le than their drug-susceptible counterparts [36] . Nevertheless, the 

elective pressure applied by antibiotic treatment permits drug- 

esistant mutants to become the dominant strain in a patient in- 

ected with disease on first-line therapy and allows for further 

utations with selection for fitness. Therefore, increasing drug- 

usceptible treatment rates may increase the likelihood of emer- 

ence of an even more prolific strain which also has drug resis- 

ance. 

In conclusion, this study has concentrated on a two-strain cou- 

led SIR epidemic model and performed a rigorous analytical anal- 

sis of the system properties and solutions, for understanding in- 

ectious disease genetic variation and the rising threat of antibi- 

tic resistance or inadequate treatment. These results help inform 

he practice of drug treatment in the setting of drug resistance 

nd emergent strains, such as is occurring in tuberculosis and 

ther bacterial pathogens. This work shows theoretically that treat- 

ent of drug-susceptible strains of an infectious disease can drive 

he emergence of the drug-resistant strain, even if that strain has 

educed fitness, such that the reproduction number is less than 

ne. Further, under these circumstances, our analysis shows that 

his emergence of drug resistance will be overcome if the treat- 

ent rate is sufficient to eliminate the drug-susceptible strain from 

he population. Hence, we recommend that for problematic drug- 

esistant pathogens, estimates of the reproduction numbers of the 

usceptible and resistant strains be made along with the risk of 
9 
mplification, to ensure optimal levels of treatment be used to 

inimise the risk of emergence of the resistant strains. Future 

odelling studies could focus on specific pathogens (and their as- 

ociated parameters) and whether treatment may lead to unin- 

ended threats to infection control such as an increase in resistant 

trains. 
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