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Abstract 

Coral reefs are undergoing profound climate-driven structural and functional changes. These 

changes are expected to affect the fish and fisheries production that provide food for millions of people. 

However, the energetic processes that lead from solar energy to fish production on coral reefs are still 

poorly understood. This raises the question: will coral reefs maintain their capacity to provide this 

critically important ecosystem service? Answering this question will require innovative strategies to 

measure food production potential on reefs and to identify the impacts of ecosystem change. In this 

thesis, I first developed a framework for quantifying reef fish productivity from common field survey 

data and life-history traits. Combining this framework with detailed reef fish surveys, I then addressed 

three key ecological questions: What are the main trophic pathways fuelling reef fish productivity? What 

are the effects of coral loss, reduced topographic complexity and overfishing on productivity? And, what 

are the potential causal mechanisms underpinning potential productivity changes? 

Growth is a fundamental process of life, but little is known about what drives reef fish growth at 

macroecological scales. Given the practical challenges of collecting growth data for all 6,000+ reef fish 

species, universal relationships would be useful for predicting growth trajectories. My first objective 

was, therefore, to evaluate the drivers of reef fish growth across large spatial and environmental 

gradients and across a range of morphological and behavioural traits. I compiled, filtered and 

standardised a dataset of almost 2,000 Von Bertalanffy Growth Model curves from 588 reef fish species. 

These were used to test the influence of environmental variables and species traits on growth, while also 

accounting for phylogenetic structure. Body size was found to be the main driver of reef fish growth 

curves, followed by temperature. Alongside diet and reef dependence, these provided the basis for a 

machine learning model that predicted reef fish growth trajectories with high accuracy and precision. 

Although there is increasing interest in the productivity of coral reef fisheries, there are currently 

no standardised methods to explore assemblage-level reef fish production. My second objective was, 

therefore, to develop a robust and easily applicable framework to quantify fish productivity in high-

diversity systems, such as coral reefs. I started by integrating the model developed to predict growth 

trajectories into an existing approach to estimate individual and species-level somatic growth, and then 
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expanding this approach by incorporating mortality in the growth functions. This resulted in a 

framework that yielded fisheries-independent fish productivity from routinely-collected fish survey 

data. A step by step guide and an easy to use interface (R package) are provided, highlighting the utility 

of this approach as a tool for managing coral reef resources. 

Building on this approach, I used a high-definition survey dataset to generate the first energetic 

roadmap of a full coral reef fish assemblage, from the smallest to the largest fishes. Specifically, I 

identified the trophic pathways determining fish productivity on a windward coral-degraded reef. 

Because of its reduced coral cover and high abundance of algal turfs, this reef represents the conditions 

expected for most future coral reefs. Despite the reduced coral cover, 41% of all fish productivity was 

still supported by species feeding in the water column on external food sources, i.e. plankton from 

pelagic pathways. The critical energetic contribution of these pelagic subsidies would remain largely 

undetected if considering standing biomass alone, since this high productivity originated from a 

relatively small fish biomass. Thus, coral-degraded reefs can still maintain considerable fish 

productivity, with planktivorous fishes providing major pelagic subsidies. 

The global coral bleaching events of 2015-2017 reconfigured coral reefs, sparking the need to 

understand how multiple ecosystem functions respond to coral loss. I evaluated four metrics of the 

functioning of reef fish assemblages (standing biomass, productivity, consumed biomass and turnover) 

on a coral reef in the Great Barrier in two time periods: in 2003/04 and 2018/19. During this 15-year 

period, the reef was hit by two cyclones and two severe bleaching events leading to habitat-specific 

coral losses of up to 83%. Family-level responses to coral loss were similar to previous studies, but there 

were unexpected assemblage-wide responses. Reef fish biomass, productivity and consumed biomass 

increased after 15 years, indicating a trajectory of biomass accumulation after the observed coral loss. 

However, this biomass build-up was not matched by renewal rates, as turnover declined over the same 

period. The resulting slower-paced reef fish assemblages suggest enhanced production might be due to 

the growth of previously present individuals, questioning the long-term stability of the observed 

energetic shifts. 

I then expanded the thesis to explore the potential relationship between coral reef fish productivity 

and standing biomass on a macroecological scale. Although standing biomass is a widely used, static, 
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proxy for inherently dynamic biomass production rates, the equivalence between coral reef fish biomass 

and productivity has never been tested. I therefore investigated the relationship between biomass and 

productivity in a key reef fish group, using a 15,000 km wide Indo-Pacific dataset, which revealed 

evidence for distinct transect-level productivity-biomass relationships in high-biomass vs. low-biomass 

regions. These differences were due to smaller fishes with higher production per unit biomass in low-

biomass regions. Importantly, increased human population densities explained reduced fish size and 

decreased biomass in these regions, but was not related to productivity. A modelling framework that 

simulates the impacts of overexploitation on reef fish biomass and productivity showed that, as size-

selective fishing depleted fish biomass, it triggered increased production per unit biomass. Thus, 

compensatory productivity at low biomass may help to explain why some biomass-depleted fish 

assemblages still sustain fisheries catches and provide ecosystem goods under continued exploitation. 

The productivity estimates obtained from the frameworks developed herein are intuitive, easy to 

obtain, and independent from fisheries surveys. They, therefore, offer an opportunity to explore 

ecological questions that directly address resource production patterns on coral reefs. In this thesis, this 

approach revealed that on coral reefs: 1) external pelagic subsidies are key to coral reef fish production, 

even on reefs with low coral cover; 2) reef fish assemblages exposed to severe coral loss may undergo 

energetic shifts to a more productive, but potentially more unstable, state; and 3) overexploitation drives 

stronger declines in reef fish biomass than productivity, due to compensatory production at low biomass 

levels, potentially helping to explain sustained fisheries yields despite depleted biomass. By bridging 

the gap between common survey data and traditional resource production models, this thesis lays the 

foundation for a new resource assessment paradigm on coral reefs.  
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Chapter 1: General Introduction 

Coral reefs are among the most productive ecosystems on Earth, with gross carbon fixation 

commonly exceeding 2,500 g C m-2 year-1 (Crossland, Hatcher, & Smith, 1991; Kinsey, 1985; Odum 

& Odum, 1955). However, this exceptional food production is almost entirely consumed by reef 

residents, with respiration rates often matching carbon fixation (Kinsey, 1985; Odum & Odum, 1955; 

Sargent & Austin, 1954). The discovery of this fine energetic balance in the early 1950s led ecosystem 

ecologists to believe that coral reefs were closed systems, subsisting in nutrient-scarce tropical waters 

by means of elaborate mechanisms of internal recycling (e.g. Hatcher, 1988; Kinsey, 1985; Lewis, 

1977; Odum & Odum, 1955). This apparent contradiction of high internal photosynthesis in crystal 

clear, ‘desert’ oceans has garnered enough attention as to merit its own term, the ‘Darwin’s Paradox’ 

(e.g. Mumby & Steneck, 2018; Richter, Wunsch, Rasheed, Kötter, & Badran, 2001), although Darwin’s 

connection to this paradox is, at best, circumstantial (see Appendix A for an investigation on the origins 

of the ‘Darwin’s Paradox’). Only later in the 20th Century, did quantification of energy flows in detritus-

based food webs provide a potential mechanistic explanation for high photosynthesis and high recycling 

(e.g. Arias-González, Delesalle, Salvat, & Galzin, 1997; Crossland et al., 1991; Opitz, 1996). 

The ‘closed-system’ paradigm of coral reefs was soon confronted by observations of zooplankton 

depletion and extensive zooplankton-feeding by reef fishes (e.g. Emery, 1968; Hiatt & Strasburg, 1960; 

Randall, 1967). The closed-system paradigm persisted, however, because the low concentrations of 

plankton measured in surface waters around coral reefs were deemed insufficient to contribute to the 

extensive energetic requirements of coral reef consumers (Glynn, 1973; Lewis, 1977). Later research 

employing fine-scale mapping of water movement and plankton transport revealed that the ‘plankton 

insufficiency’ on coral reefs was only superficial. Cross-depth water transport mechanisms, such as 

upwelling, downwelling and internal waves were found to bring nutrients and biological productivity 

from deeper oceanic waters and concentrate them in the shallows near land masses (Andrews & 

Gentien, 1982; Genin, Jaffe, Reef, Richter, & Franks, 2005; Gove et al., 2016; Hamner & Hauri, 1981; 

Rougerie & Wauthy, 1993; Wyatt, Lowe, Humphries, & Waite, 2010). These mechanisms allow the 

pelagic production reaching coral reefs to attain values orders of magnitude larger than those found in 
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surface ocean waters (Genin, 2004; Gove et al., 2016; Hamner & Hauri, 1981; Hamner, Jones, Carleton, 

Hauri, & Williams, 1988; Wyatt et al., 2010). Upward water transport, thus, offered the missing piece 

in the coral reef productivity puzzle, highlighting the need to simultaneously consider both internal 

primary production and inputs from adjacent ecosystems, particularly those from the pelagic realm.  

Coral reef productivity is exploited by a wide array of consumers, with fishes being a dominant 

element in both diversity and biomass. Reef fishes sensu lato comprise over 6,000 species (Kulbicki et 

al., 2013; V. Parravicini et al., 2013) covering a vast array of forms and functions, and featuring 

numerous interactions that underpin their role as dominant actors in the energetic landscape of coral 

reefs (Bellwood & Wainwright, 2002; Wainwright & Bellwood, 2002). Not surprisingly, humans took 

advantage of coral reef productivity through harvesting of reef resources very early. This is indicated 

by early evidence of seafaring and fishing (Erlandson, 2001; Erlandson & Rick, 2010), including reef 

fish remains in shelters as old as 42,000 years from coral areas in East Timor, and 28,000 years in the 

Solomon Islands (S. O’Connor, Ono, & Clarkson, 2011; Wickler & Spriggs, 1988). Later on, the 

Polynesian island-hopping in the Pacific could hardly be made possible without relying on the 

predictability of coral reef resources (e.g. Craig, Green, & Tuilagi, 2008; Giovas, Lambrides, 

Fitzpatrick, & Kataoka, 2017; Longenecker et al., 2014). The strong cultural and ecological ties 

established between humans and coral reefs has resulted in a high contemporary dependence on reef 

resources. Over 400 million people live close to coral reefs (Donner & Potere, 2007), at least 6 million 

actively engage in coral reef fishing (Teh, Teh, & Sumaila, 2013), with many more benefitting indirectly 

from these activities. Thus, the overall importance of coral reefs in sustaining the livelihoods of people, 

particularly in low-income tropical countries, cannot be overstated.  

Until recently, most of the research focused on understanding the relationship between coral reef 

resources and people’s livelihoods addressed the impacts of overharvesting (including overexploitation 

or overfishing). Marine Protected Areas were largely advocated, planned and implemented as a 

management instrument aimed not only at maintaining and rebuilding fish stocks (Edgar et al., 2014; 

Halpern, 2003; Mora et al., 2006; Sale et al., 2005; Worm et al., 2009), but also as a means of enhancing 

the resilience of marine ecosystems. Enhanced resilience was thought to increase the chances of coral 

reefs resisting and recovering from impacts of other stressors (the “resilience-based paradigm”, e.g. 
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Bellwood, Hughes, Folke, & Nyström, 2004; Bruno, Côté, & Toth, 2019; Hughes, Graham, Jackson, 

Mumby, & Steneck, 2010; Mumby et al., 2006). However, the unprecedented global El-Niño event of 

2014-2016 had an important role in changing convictions and redirecting priorities in coral reef research 

(e.g. Bellwood, Pratchett, et al., 2019; Hughes, Barnes, et al., 2017), including this thesis. Indeed, in 

2015, when I first proposed this research program, my focus was primarily on understanding how 

trophic pathway partitioning could affect the spatial patterns of coral reef fish productivity. But the 

severe global coral mortality event that followed resulted in profound changes to coral reefs, including, 

presumably to productivity patterns. 

The impacts of the 2014-2016 marine were particularly well documented – and striking – on the 

Great Barrier Reef (GBR), Australia. Until then, the largest reef system in the planet had escaped from 

two bleaching events and a series of cyclones with only limited damage (Hughes, Kerry, et al., 2017). 

However, in 2016, over 90% of the reefs in the GBR suffered some level of bleaching, with over 50% 

suffering severe bleaching (> 60% of the corals bleached) (Hughes, Kerry, et al., 2017). This massive 

impact was not evenly spread in spatial or taxonomic scales, being concentrated in the northern part of 

the GBR and in fast-growing, staghorn and tabular corals (Hughes, Kerry, et al., 2017, 2018). Overall, 

coral cover declined by 30% throughout the GBR, with over 50% decreases on reefs in the northern 

portion, and over 75% cover reduction for staghorn and tabular forms (Hughes, Kerry, et al., 2018). 

These catastrophic coral population reductions and species composition changes were followed, not 

surprisingly, by plummeting coral recruitment (Hughes et al., 2019). Although the responses of reef 

fish assemblages to coral mortality often occur in longer time frames (e.g. Graham et al., 2007; Pratchett 

et al., 2008), acute changes in the abundance, spatial and trait distribution of some groups have already 

been documented (Richardson, Graham, Pratchett, Eurich, & Hoey, 2018; Stuart-Smith, Brown, 

Ceccarelli, & Edgar, 2018; but see Wismer, Tebbett, Streit, & Bellwood, 2019 for how coral-fish 

responses can be spatially decoupled at local scales). 

The pervasive 2014-2016 El-Niño had a global extent and its damage to coral reefs in other parts 

of the world mirrored what was seen on the GBR (Hughes, Anderson, et al., 2018; McClanahan et al., 

2019). Not only have the effects of climate change now reached coral reefs globally, they have also 

become more frequent and more intense (Hughes, Anderson, et al., 2018). Although coral mortality is 
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the main mechanism through which coral reef fishes are expected to respond to marine heatwaves, 

mismatching responses of fishes and corals have suggested that direct heatwave effects on fishes might 

already be occurring (Stuart-Smith et al., 2018). Indeed, tropical species, including most coral reef 

fishes,  live dangerously close to their metabolic optima (Barneche et al., 2014; Rummer et al., 2014; 

Tewksbury, Huey, & Deutsch, 2008). While further temperature increases from heatwaves are predicted 

to generate severe physiological impacts (Rummer et al., 2014) expected physiological impacts might 

be ameliorated to some extent by changes in metabolic optima driven by transgenerational acclimation 

and adaptation (Donelson, Munday, McCormick, & Pitcher, 2012; Donelson, Salinas, Munday, & 

Shama, 2018). 

Nevertheless, temperature is a critical ecological driver that dictates not only individual-level 

processes, such as metabolic requirements (Brown, Gillooly, Allen, Savage, & West, 2004; Gillooly, 

Brown, West, Savage, & Charnov, 2001), but also higher order phenomena, such as species range limits 

(Stuart-Smith, Edgar, & Bates, 2017), abundance-distribution patterns (Waldock, Stuart-Smith, Edgar, 

Bird, & Bates, 2019), and ecosystem energetic fluxes (Barneche et al., 2014). Multiple modelling 

forecasts have now been developed to evaluate the impact of present and future temperature increases 

on fisheries productivity at a global level (e.g. Barange et al., 2014; Blanchard et al., 2012; Cheung et 

al., 2010; Lotze et al., 2019; Thiault et al., 2019). These models generally forecast a redistribution of 

global fisheries catches under global warming, with increased catches in temperate latitudes and 

decreased in the tropics (e.g. Blanchard et al., 2012; Cheung et al., 2010; Thiault et al., 2019). This 

prediction is worrisome because of the dependence of low-income countries on tropical fisheries and, 

particularly, on reef fisheries (Barange et al., 2014; Newton et al., 2007).  

Global-scale fisheries forecast models, however, cannot capture complex processes that emerge 

at lower spatial scales on coral reefs (e.g. Jennings & Collingridge, 2015). Of particularly significance, 

the structural complexity of the coral-accreted reef matrix provides numerous niche opportunities for 

coral reef organisms (Graham & Nash, 2013), but tends to decline sharply after extensive coral mortality 

(Pratchett et al., 2008). Smaller-scale models that explicit consider aspects such as diversity and 

abundance of prey refuges have been used to examine the effects of structural complexity loss on reef 

fish productivity (Rogers, Blanchard, & Mumby, 2014, 2018; Rogers, Blanchard, Newman, Dryden, & 
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Mumby, 2018) These models predict short-term increases in fish productivity after coral loss, mainly 

due to herbivores benefitting from expanding algal turfs, followed by long-term declines in productivity 

after the erosion and collapse of prey refuges (Rogers, Blanchard, & Mumby, 2018; Rogers, Blanchard, 

Newman, et al., 2018).  

Contrasting with these models, empirical resource assessment on coral reefs has been 

traditionally focused on static metrics such as fish abundance and standing biomass (D’agata et al., 

2016; Duffy, Lefcheck, Stuart-Smith, Navarrete, & Edgar, 2016; Mora et al., 2011; Nash & Graham, 

2016) These are often used as a proxy for the real quantity of interest, i.e. the rates of production of new 

biomass. Although the limitations of using standing biomass to estimate biomass production were 

recognised early in coral reef ecology (Bardach, 1959), difficulties in quantifying the dynamic process 

of biomass production (K. R. Allen, 1971) resulted in standing biomass being used as a popular resource 

assessment tool. Unfortunately, to-date, there is no unequivocal evidence to indicate that a resource 

pool metric (standing biomass) can be used to predict its underlying build-up rate (productivity). This 

would be the same as judging the chance of a family running out of food solely by the size of their 

fridge, without accounting for how fast they eat or visit the shops. Indeed, a comprehensive meta-

analysis showed that, across multiple types of ecosystems, rarely were standing biomass and 

productivity directly proportional (Jenkins, 2015). If biomass is a questionable proxy, then there is an 

ever-increasing necessity to focus on quantifying resource production. However, present methods to 

estimate reef fish productivity are burdensome, either computationally (i.e. ecosystem or trophic 

models) or logistically (i.e. field-intensive monitoring of catches), and thus productivity estimates 

remain largely unavailable to most reef ecologists. Unfortunately, the lack of an alternative, general and 

accessible method to quantify resource production is now a major obstacle to our understanding of coral 

reef fisheries responses to global warming, stymying management progress and jeopardising the future 

of coral reef fisheries.  
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Thesis outline 

The unprecedented worldwide reshaping of marine ecosystems has created an ecological crisis 

that threatens the livelihoods of millions of people that rely on reef fish production for food. Addressing 

this emergency will require innovative strategies to measure food production potential and to identify 

the impacts of ecosystem change. The main aim of this thesis, therefore, is to develop a simple and 

effective framework to quantify coral reef fish productivity, and then use it to evaluate ecological 

patterns of productivity and their susceptibility to global changes and human impacts. In Chapter 2, I 

develop a machine learning-based model to predict reef fish growth coefficients for combinations of 

traits and environmental settings. This model both standardises existing growth data, ensuring 

comparability, and predicts somatic growth for data deficient species. In doing so, it bridges the gap 

between individual somatic growth and community-wide biomass production on reef systems. In 

Chapter 3, I provide a framework for easily estimating fish productivity for high species diversity 

ecosystems, such as coral reefs. This framework is anchored on somatic growth and mortality 

probability, and is facilitated by the model from the previous chapter. I also consider the use of fish 

productivity as a tool for monitoring and managing high-diversity aquatic systems, for which I provide 

an easy-to-use R software interface. In Chapter 4, I combine the model and framework from the 

previous chapters to quantify the productivity of an entire coral reef fish assemblage for the first time, 

from the smallest to the largest fishes. I then partition this productivity according to habitat and distinct 

trophic pathways and test a conceptual model in which reef fish productivity is driven by water flow 

and topographic complexity. In Chapter 5, I evaluate the effects of severe coral loss on four metrics of 

energy flow and storage that underscore biomass production, explicitly testing the hypothesis that coral 

loss can lead to energetic shifts in fish assemblages. This chapter expands on the previous ones by 

quantifying multiple aspects of fish production on coral reefs. Finally, in Chapter 6, I evaluate the key 

assumption that fish standing biomass is a surrogate for productivity. I explore potential relationships 

between biomass and productivity in two spatial scales using a large dataset of a key fisheries target 

group, simultaneously looking for human impact correlates. I then develop a theory-driven modelling 



Chapter 1: General Introduction 

 20 

framework to simulate fishing in coral reef fish assemblages, aimed at replicating the observed patterns 

while testing for potential explanatory mechanisms. 
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Chapter 2: Global drivers of reef fish growth 

Published as: Morais, R.A., & Bellwood, D.R. (2018) Global drivers of reef fish growth. Fish and 

Fisheries, 19(5), 874–889. 

 

Introduction 

Individual growth, i.e. increasing body size over time, is a fundamental process of life. If “the 

primary goal of any organism is to reproduce” (Roff, 1992), there is no doubt that growth is one of the 

main mechanisms facilitating reproduction. As individuals grow, they experience lower mortality rates 

and higher reproductive output that increase their reproductive success (Begon, Townsend, & Harper, 

2006; Beverton & Holt, 1959; Calder, 1984). Not surprisingly, life histories appear to be adjusted to 

optimize energetic investments in somatic growth and reproduction (Calder, 1984; Charnov & Gillooly, 

2004; Roff, 1992). However, the metabolic costs of synthesizing new molecules and replicating cells 

increase disproportionally as organisms grow (Bertalanffy, 1938, 1957). As a result, growth rates 

decrease during ontogeny, resulting in asymptotic or sigmoidal size-at-age curves that tend to stabilize 

close to the population average maximum body size (Bertalanffy, 1938, 1957; Ricker, 1979).  

Somatic growth is one of the most important data types for fisheries stock assessment. There have 

been, therefore, many theoretical and methodological advances in the study of fish growth in the context 

of fisheries stock management (e.g. Beverton & Holt, 1957, 1959; Hilborn & Walters, 1992; Pauly, 

1979; Ricker, 1979). Yet, fisheries biology has been based largely on temperate fish stocks, with studies 

often focusing on a single species (Beverton & Holt, 1957; Pauly, 1979). By comparison, tropical fishes 

have been relatively understudied (Munro & Williams, 1985; Pauly, 1980a). Moreover, there have been 

few attempts to understand growth patterns of fishes at the community or macroecological level (but 

see Munro & Williams, 1985; Pauly, 1998). Since growth links assimilated energy to the production of 

individual biomass (Brown et al., 2004), it incorporates individuals into patterns of community 

metabolism (Barneche et al., 2014). In this context, the size that an organism attains has physiological 

implications that scale up to the ecosystem level (Brown et al., 2004; Calder, 1984; Gillooly et al., 2001; 

Gillooly, Charnov, West, Savage, & Brown, 2002; T. A. McMahon & Bonner, 1983; Schmidt-Nielsen, 
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1984). High biodiversity fish assemblages, as formed on coral reefs, incorporate numerous functional 

and life-history types, with a wide range of potential growth trajectories (Bellwood & Wainwright, 

2002; Depczynski & Bellwood, 2006). These systems, therefore, offer an exciting opportunity to 

understand how fish growth varies at a macroecological scale (i.e. among populations or species). 

Body size and temperature are the two most important determinants of metabolism (Brown et al., 

2004; Gillooly et al., 2001) and are also very likely to be important in shaping reef fish growth (Pauly, 

1979; Ricker, 1979). Additionally, growth depends on the energy and nutrient supply available to an 

individual (Bertalanffy, 1957; West, Brown, & Enquist, 2001). Reef fish acquire resources in a 

multitude of different ways (Wainwright & Bellwood, 2002), and traits such as dietary preferences 

(Buesa, 1987; Choat & Robertson, 2002), position in the water column (Bellwood, 1988; Hamner et 

al., 1988) and schooling behaviour (Kavanagh & Olney, 2006) might also affect their growth. Finally, 

geometric constraints of body shape could affect the way fish grow, both directly and indirectly (e.g. 

by affecting their swimming performance Pauly, 1998). Despite important advances in characterizing 

some of the drivers of reef fish growth (Choat & Axe, 1996; Choat & Robertson, 2002; Gust, Choat, & 

Ackerman, 2002; Trip, Choat, Wilson, & Robertson, 2008), we still do not know the relative importance 

of these environmental and functional variables to determine growth patterns at the community level. 

In addition, we do not know how community-level growth patterns will behave at broader scales. 

Because characterizing fish growth is such a resource-demanding task, it is unrealistic to expect that 

ecologists will have access to growth trajectories of all species in high diversity reef communities. This 

hinders our comprehension of, for example, community-level fish growth and its energetic implications. 

Better knowledge of the drivers of reef fish growth would allow us to predict growth trajectories of 

unsampled species and further improve our understanding of the energetics of reefs as a whole. 

In this context, this study aims to quantitatively evaluate the drivers of reef fish somatic growth 

across a large gradient of environmental variables and across a range of morphological and behavioural 

traits. The basis of this study is the large volume of fish growth (mainly size-at-age) data collected by 

fisheries researchers over many decades. We first develop a standardization procedure that generates a 

growth measure that is both intuitive and comparable between species and populations. Then, we 

evaluate the metabolic predictions that body size and temperature should be the main drivers of reef 
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fish growth by modelling standardized reef fish growth relative to these variables, while simultaneously 

accounting for phylogenetic relationships. We also consider, in the same framework, traits that affect 

resource availability (primary productivity) and energy acquisition by reef fishes (diet, position relative 

to the reef, schooling behaviour, and body shape). We hypothesize that these factors might be important 

in explaining residual variance in growth, after accounting for body size and temperature. Finally, we 

feed the most important variables to a new machine learning routine that accurately predicts this 

standardized growth measure for the entire range of fish morphological and behavioural traits and 

environmental variables investigated. 

 

Methods 

Setting the stage: bioenergetics of fish growth 

A bioenergetic model describing animal growth was developed by Von Bertalanffy (Bertalanffy, 

1938, 1949, 1957) and has been extensively applied to fish growth, especially in fisheries biology (e.g. 

Beverton & Holt, 1957; Hilborn & Walters, 1992; Pauly, 1979). We acknowledge the effectiveness of 

other more recent growth models (e.g. West et al. 2001) but we use Von Bertalanffy’s one because: 1) 

the parameters required are mathematically simple to obtain and easy to interpret; and 2) it has been 

widely used. Thousands of growth curves have been produced using this model over the last seven 

decades. In the context of the Von Bertalanffy Growth Model (VBGM), growth is the net result of two 

opposite metabolic processes: anabolism, the production of body substances; and catabolism, the 

consumption of body substances. Its underlying mathematical formulation, the Von Bertalanffy Growth 

Function (VBGF) follows as  

 

!"
!#
= +,$ − .,%          (1)  

 

in which 
!"
!#

 is the instant rate of change in fish weight over time; +,$ is a term that represents 

anabolism and .,% is a term that represents catabolism. Growth may, thus, be either positive, when 

the organism increases in body mass, or negative, when the organism decreases in body mass. Biologists 
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are most frequently interested in positive growth, which, for multicellular organisms, is mainly due to 

an increasing number of cells (Bertalanffy, 1938). An increase in the number of cells leads to a 

proportional increase in catabolism because all living cells consume body substances (Bertalanffy, 

1938; Pauly, 1979). Therefore, the catabolic term should be proportional to weight, with / = 1. For 

fishes and other aquatic organisms, it has been proposed that anabolism is limited by the rate at which 

oxygen can diffuse through the gills and become available for cell synthesis (Bertalanffy, 1957; Pauly, 

1979). In this case, the anabolic term would increase proportionally to gill surface area and not to overall 

body weight (Bertalanffy, 1949; Pauly, 1979), with " =
&
'
 (Pauly 1979). However, empirical evidence 

strongly suggests that " is closer to 
'
(
 than to 

&
'
 (Pauly, 1979; Ricker, 1979; Savage, Gillooly, Woodruff, 

et al., 2004). The most likely explanation to this is that anabolism is proportional to the area of the 

circulatory network rather than to the gill surface area (West, Brown, & Enquist, 1997). Nevertheless, 

integrating the VBGF with " =
&
'
 generates a simplified mathematical formulation, the so-called 

“special VBGF” (Beverton & Holt, 1957; Pauly, 1979). Not surprisingly, the simple formulation of the 

special VBGF is the most widely employed facet of the VBGM, and the one used by most growth 

studies.  

The integrated special VBGF assumes two forms: 

 

%# = %)01 − 2*+
(#*#!)3         (2) 

and 

,# = ,)01 − 2*+
(#*#!)3

.
         (3) 

 

relating the body size of a fish at time 4 (in length, %#, or weight, ,#) to the average asymptotic size of 

the population to which it belongs (%) and ,)), the theoretical age when size = 0 (4/), and the rate at 

which fish in this population, on average, approach the population asymptotic size (!). Of these 

parameters, 4/ holds little biological information (Kritzer, Davies, & Mapstone, 2001; Pauly, 1979) and 

has frequently been constrained to zero or estimated after constraining size when age = 0 to the 
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settlement size (e.g. Berumen, 2005; Kritzer et al., 2001). The exponent 5 on equation (3) is equal to 

the species-specific length-weight regression parameter 5 (Froese, 2006). The most fundamental 

parameters to characterize growth are, thus, %) (or ,)) and !, which can also be used to statistically 

estimate 4/  (Pauly, 1979, 1980a).  

 

A database of VBGF parameters: assembling and processing 

The VBGM can be fitted to individual or population-level growth data. Individual-level data 

include repeated measures of the same individual over time, as in captivity or mark-recapture studies 

(Francis, 1988). Population-level data include length-frequency analysis (Pauly & Morgan, 1987) and 

size-at-age data from temporally deposited rings in hard structures such as vertebrae, dorsal spines, 

scales, but mainly otoliths (Campana, 2001; Choat & Robertson, 2002). However, caution should be 

exercised when comparing growth data derived from different methods for two reasons. Firstly, because 

in the VBGM from individual or population-level data, %) values have distinct meanings (Francis, 

1988). For individual-level data it is the length at which the expected growth increment of an individual 

is zero, whereas for population-level it is the average asymptotic size of a population (Francis, 1988). 

Secondly, because different methods can derive different VBGF parameters’ estimates, even from the 

same population (e.g. Schwamborn & Ferreira, 2002). Indeed, length-frequency and age-based methods 

have been used simultaneously to improve VBGF parameter estimates (Campana, 2001; Morales-Nin, 

1989). In the present paper, we compiled an extensive reef fish growth database that includes both 

individual and population-level growth data. We accounted for the potential issues listed above by first 

standardizing ! relative to the maximum size of a species instead of %), and then explicitly considered 

the type of data used for fitting the VBGM as a covariate in our model. Details of both procedures are 

given below. We then examine the effects of environmental factors and species morphological and 

behavioural traits on growth. 

The assembled database included the VBGF parameters, length-weight regression parameters, 

species morphological and behavioural traits and environmental variables associated with the 

geographic location of the compiled reef fish growth curves. We used the family list provided by 
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Bellwood & Wainwright (2002) to define a minimum list of “reef fish” families, with the addition of 

important commercial groups that eventually use reef habitats: Rachycentridae, Scombridae and 

Sebastidae. It is important to make clear that we use a broad concept of “reef fish” that encompasses 

both coral reef taxa and families restricted to the rocky coasts of temperate regions (i.e. Sebastidae). 

Within the selected families, we kept only those genera and species known to use reefs or that are likely 

to be seen in the vicinity of a reef. The main source of data was FishBase (Froese & Pauly, 2018) and 

the references therein, but we included 151 additional growth curves. Some of the growth curves from 

short-lived small cryptobenthic fishes were modelled by linear regressions in the original references 

(Depczynski & Bellwood, 2006; Kritzer, 2002; Winterbottom, Alofs, & Marseu, 2011; Winterbottom 

& Southcott, 2008). However, linear growth can be expected under the VBGM if longevity is smaller 

than that necessary to reach the asymptotic size. Thus, we fitted a VBGM to raw data extracted from 

the graphs in these studies. 

With the whole VBGF parameters dataset, we implemented a multi-step quality control 

procedure, excluding curves that were: 

1. obtained from individuals in captivity (aquarium and aquaculture); 

2. without clear information on the type of length measure employed (i.e. total length, 

standard length); 

3. outliers, i.e. where  %)  exceeded the reported maximum size of the species by 50% or 

more; or 	! deviated from a ! value typical of the family by 50% or more (unless 

differences in values could clearly not be explained by methodological approaches); 

4. from an inadequately circumscribed geographic locality (precluding access to 

environmental data); 

We converted all estimates of the parameter %) to TL (Total Length in cm) using length-length 

conversion factors obtained from FishBase or directly from photographic records. When both sex-

specific and combined growth curves were reported, we used only the combined curve; when only sex-

specific curves were reported, we averaged parameters between males and females to exclude the 

influence of sex. We acknowledge that this procedure places equal weights on sample sizes that might 

have differed between sexes. However, in many cases this information was not accessible. We therefore 



Chapter 2: Global drivers of reef fish growth 

 27 

averaged growth parameters to reduce the effect of differences in growth between sexes. Following 

these quality control criteria, 484 curves were excluded or aggregated, leaving a final database with 

1,921 growth curves from 588 species of reef associated fish (Appendix B; Morais & Bellwood, 

2018a). 

 

Compiling and processing of explanatory variables 

We modelled reef fish growth as a function of morphological and behavioural traits (i.e. 

maximum body size, diet, schooling behaviour, position relative to the reef and body form), 

environmental variables (i.e. sea surface temperature and pelagic primary productivity), and the method 

used to obtain the growth data).  

Maximum body size is the maximum recorded length (TL in cm) for a referred species, either 

based on the literature or the authors’ unpublished data (Appendix B; Morais & Bellwood, 2018a). 

“Body size” here was taken to be a synonym of “species body size”, an evolutionary property of a 

lineage (often a species). It is explicitly distinguished from “individual body size”, which is a property 

of an individual and a function of both ontogeny and the individual’s environment. Moreover, we 

acknowledge that the VBGM theory and much of the field of allometry quantifies body size in terms of 

body mass rather than length (Bertalanffy, 1938, 1949, 1957), however, we chose to use length because: 

1) growth has been traditionally expressed in terms of length in fisheries biology; and 2) because reef 

ecologists primarily collect length data of fish (e.g. from underwater visual census). Seven dietary 

categories were considered: herbivores/detritivores, herbivores/macroalgivores, omnivores, 

planktivores, sessile invertivores, mobile invertivores, and fish and cephalopod predators (Mouillot et 

al., 2014; Valeriano Parravicini et al., 2014). Schooling behaviour (or gregariousness) measures the 

extent of intraspecific aggregations in five levels: solitary, pair, small groups (3-20 individuals), 

medium groups (20-50 individuals) or large groups (>50 individuals) (Mouillot et al., 2014; Valeriano 

Parravicini et al., 2014). Position relative to the reef combines horizontal and vertical components, 

resulting in six levels (Bellwood, 1988). The horizontal component represents the degree of association 

of a fish to the reef: reef dwelling (more likely to be found on the reef than in other adjacent habitats) 

and reef associated (more likely to be found in adjacent non-reef habitats than on the reef). The vertical 
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component represents the position in the water column: benthic, bentho-pelagic and pelagic (Mouillot 

et al., 2014). The body shape factor is a continuous variable derived from the length-weight regression 

coefficients of fish (termed “body form factor” in Froese, 2006) that measures the extent to which a fish 

is elongated or deep-bodied. It can be perceived as the # parameter value a fish species should have if 

its 5 = 3. Since # and 5 can be sensitive to methodological issues (Froese, 2006), we compiled a 

database on these parameters estimated from the Bayesian Hierarchical Model described by Froese, 

Thorson, & Reyes (2014). This model starts with priors reflecting broad shape categories and is 

improved by the hierarchical addition of length-weight parameters from studies of closely related 

species or from different populations of the species of interest. The parameter estimates are given in 

(Appendix B; Morais & Bellwood, 2018a). The logical basis of the shape factor calculation is provided 

in Froese (2006). 

Environmental data (sea surface temperature and pelagic net primary productivity) were acquired 

by georeferencing the locality of each of the growth curves. Growth curves were only included if the 

referred areas were biogeographically discrete with no major disparities in oceanographic features, 

regardless of size. Thus, “Ionian Sea” was acceptable, but not “Eastern Australia”. Within the area, the 

centroid was estimated, and its coordinates used to extract mean sea surface temperature, mean 

chlorophyll concentration and mean photosynthetically active radiation from Bio-ORACLE 

(Tyberghein et al., 2012). To decrease the chance of bias due to the centroid estimate, we averaged the 

values from across the closest four cells (each cell has a width of ~9.2 km in Bio-ORACLE). Pelagic 

net primary productivity was estimated from chlorophyll concentration and photosynthetically active 

radiation by using the model described in Behrenfeld & Falkowski (1997). Details on the calculation 

of productivity can be found in (Morais & Bellwood, 2018b). 

Finally, given the possibility that the method used to derive the growth curves would affect the 

final VBGF parameter estimates (see above in A database of VBGF parameters: assembling and 

processing), we included method as a covariate in our model. Method consisted of six levels: mark-

recapture, length-frequencies, scale rings, otoliths rings, rings from other structures and unknown. 

Although we aimed to tease apart the confounding effects that different methods can have on growth 
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estimates, we were mainly interested in predicting for otoliths rings only, since this is the most widely 

used aging technique nowadays (e.g. Campana, 2001; Choat & Robertson, 2002). 

 

Accounting for phylogenetic non-independence 

Our dataset included species with varying degrees of shared ancestry, as well as multiple 

observations from the same species. These features result in non-independence among observations and 

require a phylogenetic correlation structure to be specified (Symonds & Blomberg, 2014). To do this, 

we first created a super tree by combining phylogenies that included our species using the '’rotl’ package 

(Michonneau, Brown, & Winter, 2016) in the software R (R Core Team, 2019). This package is an 

interface to the Open Tree of Life (Hinchliff et al., 2015). Non-matching species were manually 

included in the phylogeny alongside congeneric species (e.g. the Doederlein’s cardinalfish 

(Ostorhinchus doederleini, Apogonidae) with the Yellowstriped cardinalfish (Ostorhinchus 

cyanosoma, Apogonidae) or the Fusca drum (Umbrina ronchus, Sciaenidae) with the Shi drum 

(Umbrina cirrosa, Sciaenidae) or with the most closely-related families according to (Betancur-R et al., 

2017) (Morais & Bellwood, 2018b). Branch lengths were computed using the method of Grafen (1989). 

Each species was represented in the phylogeny by as many tips as its number of growth curves, and 

intraspecific branch lengths were set to zero. Finally, we used the phylogeny to generate a correlation 

structure by applying a Brownian motion model of trait evolution (Symonds & Blomberg, 2014). All 

phylogenetic procedures and manipulations were carried out with the packages ‘ape' (Paradis, Claude, 

& Strimmer, 2004) and ‘phytools’ (Revell, 2012) in R. 

Different populations of the same species vary in their growth trajectories depending on 

environmental factors, such as temperature and food availability (Bertalanffy, 1957; Choat & 

Robertson, 2002; Pauly, 1980a; Ricker, 1979). VBGF parameters’ estimates can also be affected by 

methodological issues such as small sample sizes and underrepresented body-size ranges (Berumen, 

2005; Kritzer et al., 2001). This can result in large disparities in %) (or ,)) and ! among populations 

of the same species (Figure 1A) or even among studies of the same population. Although these 

disparities could preclude direct comparisons, it has been argued that they conform to a theoretical and 
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empirical pattern. Pauly (1979) suggested that, in the special VBGF, ! varies with ,) with a slope of 

(0 = −
&
'
 and with %) with a slope of (1 = −2, when all parameters are log10 transformed (Munro & 

Pauly, 1983; Pauly, 1979, 1980a). If we assume a VBGF with " ≠
&
'
 (Pauly, 1979; Savage, Gillooly, 

Woodruff, et al., 2004), then ! should vary with ,) and %) with (0 and (1 slopes that differ from the 

values above. Following Pauly (1979) reasoning, we can define 

 

(0 = −" and (1 = −
$
.

          (4) 

 

where " is the VBGM anabolic term exponent and 5 is the species length-weight regression 

exponent (for simplicity, we will only refer to the length slope (1 from now on). The anabolic exponent 

can be taken as the metabolic scaling exponent, which (Savage, Gillooly, Woodruff, et al., 2004) found 

out to be on average 0.761 (CI95 0.68-0.86) for fishes. Froese et al. (2014) found that, for all body types 

of fish, 5 averages 3.04 (CI95 2.81-3.27). Substituting the mean and extreme (CI95) values of these 

parameters in Pauly’s equation results in the average slope, (19 , being -2.31 (CI95 from -2.75 to -1.91). 

Since 5 can vary among species, (1 is probably better characterized by a distribution centred on -2.31 

and ranging from -2.75 to -1.91 (Figure 1B). 
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Figure 1: (A) Growth curves from populations of the same species that vary in asymptotic size and in the 

Von Bertalanffy growth parameter !. The insert shows the theoretical relationship among these curves in a 

double logarithmic plot of ! and "!, with a slope of #". (B) Empirical relationships between ! and "! for 

multiple populations of four selected species (different shapes). Continuous lines mark the estimated #" for 

each species and the dotted line is the theoretical average slope #"$  of -2.31. The insert shows the theoretical 

distribution of #", with the average, #"$ , indicated by the dotted line. Data source: (Appendix B; Morais & 

Bellwood, 2018a). 

 

Standardizing growth curves for among-populations and species comparisons: the Ø and 

Kmax parameters 

The practical meaning of the relationship between ! and %) can be better represented in a plot 

like Figure 2. Variation among growth curves of a species along a theoretical line with slope (1 in such 

a plot could, for example, reflect incomplete sampling of the population size range. However, residual 

variation, i.e. variation in any direction other than along this line, will likely be due to environmental 

factors (e.g. temperature, productivity). This “residual variation” (quoted because it is actually the 

variation in which we are interested) can be isolated by regressing each growth curve along the 

theoretical line towards a specific size value (Figure 2). By regressing the curves towards the y-axis, 

we obtain the rate at which a fish population with the VBGF parameters specified would converge to 
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its asymptotic size, %), if it grew to %) = 1:" (Figure 2A). This approach is a standardization 

procedure that allows one to compare growth among populations at a constrained minimum body size. 

The resulting parameter has been named the growth performance index by Pauly (1979) and has been 

represented by the characters ;, #, < or	Ø. It will be hereafter referred as Ø. In practical terms, Ø is 

calculated as 

 

Ø = =>?2/! − (1 . =>?2/%)         (5) 

 

for length data (Froese & Binohlan, 2003). 

 

 

Figure 2: Growth curves from populations of the same species (same shaped dots) can vary in their 

parameters ! and "!, although they tend to depict a negative relationship in a double logarithmic plot. 

These curves can be standardized by regressing each data point along a line that crosses the point with a 

slope #". This can be done either towards the y-axis (A), obtaining the growth performance index (Ø) when 

"! = 1(); or towards a line perpendicular to the species maximum size "#$%, obtaining !#$% (B). 

 

Alternatively, one can regress each growth curve towards the point where it intercepts a line 

projecting the maximum size reported for that species (%$34, Figure 2B). This standardization 
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procedure results in an estimate of the rate at which a fish population with the specified VBGF 

parameters would approach its %) if %) = %$34, and is termed !$34. Mathematically, it is obtained 

by 

 

=>?2/!$34 = Ø + (1 . =>?2/%$34        (6) 

 

It is important to clearly distinguish between the meanings of	!, !$34 and Ø. ! is the rate of 

convergence towards a population (or individual) asymptotic body size, with meanings as discussed 

above (section A database of VBGF parameters: assembling and processing). !$34 and Ø, however, 

are theoretical projections of ! at specific body lengths. By standardizing ! to a constrained body 

length (%) = 1	:" or %) =	%$34), the derived parameters (!$34 or Ø) concentrate all growth 

information and allow for comparisons across populations and species. 

The growth performance index (Ø) and the expected growth coefficient at the theoretical 

maximum species size (!$34) are, for any one species, opposite ends of the same line (Figure 2). Since 

we consider !$34 to be easier to interpret biologically than Ø, !$34 will be the main focus of this work. 

A potential caveat is that !$34 is first standardized by species maximum size, and then modelled by 

this same variable. We evaluate possible issues of this approach by, first, checking the relationship 

between !$34 and Ø (see below in Procedures for modelling Kmax and Ø), and then perform all 

modelling procedures using Ø as well as the response variable. We report all the alternative modelling 

results in the Appendix B. 

 

Contrasting theoretical and empirical estimates of sL  

To check if the theoretical range of (1 values is supported by our data, we first filtered our growth 

curves dataset to retain all species that had six or more growth curves. This resulted in 74 species for 

which (1 could be estimated by regressing log10 transformed ! and %) values. Then we calculated a 

weighted average of these estimated (1values in a meta-analytical Bayesian framework using the R 

package ‘brms’ (Bürkner, 2017). This procedure incorporates standard errors, weights, and a prior 
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distribution when averaging values of a variable. We used the standard errors of the (1 estimates from 

the ! and %) regressions; and also included the R2 of these regressions as the weights. The theoretical 

range of (1 values was used to delimitate the prior distribution of the intercept. The model was run with 

four chains of 3,000 iterations, with 1,500 warm-up steps and a thinning of every third step for each 

chain. The output of this procedure is a posterior distribution of (1 values whose 95% credibility interval 

can be used for inference. To check for mismatches between our data and the posterior distribution, we 

visually compared the distribution of (1 among the species in our dataset with values simulated from 

the posterior distribution. Complete overlap between the simulated and the empirical data would reveal 

that incorporating quality metrics (standard errors and weights) to the species (1 estimates did not affect 

the posterior distribution, i.e. the data quality was uniform, and no meta-analysis was required. 

 

Procedures for modelling Kmax and Ø 

Prior to fitting the model, we checked the explanatory variables for collinearity using two 

approaches. First, we plotted the relationship among these variables using Local Weighted Scatterplot 

Smoothing regressions (LOWESS, Figure B1 in Appendix B) and also checked for correlations. 

Second, we fitted a simple linear regression with all the covariates and calculated the Variance Inflation 

Factor (VIF). Only one correlation higher than 0.5 was found, between schooling and position. Further 

checking the VIF suggested that both of these variables and diet had some degree of collinearity. The 

exclusion of schooling resulted in all variables remaining with a VIF < 4, a value that we deemed 

satisfactory. We also assessed the assumptions that the response variable !$34 included information 

that was different from the parameters !, %), and Ø. We modelled these relationships by using 

LOWESS regressions. If these assumptions were true, then !$34 would be related to both ! and %)  

with a high residual variation, but not be related to Ø. 

To determine the main drivers of reef fish growth, we modelled !$34 and Ø relative to 

morphological and behavioural traits, and environmental variables, in a Phylogenetic Generalized Least 

Squares Models (PGLS, Symonds & Blomberg, 2014). Since there are currently no methods to fit a 

phylogenetic model with a Gamma distribution, we log10 transformed !$34 to achieve Gaussian 
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distribution (Figure B2 in Appendix B). We log2 transformed body size and primary productivity to 

decrease dispersion. Finally, to assist with model convergence, all continuous variables were centred. 

We fit the models using the package ‘nlme’ (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2017) 

in R. We contrasted the full model with nested submodels by iterating the model fit with one explanatory 

variable excluded each time. All models were fitted using Maximum Likelihood for comparing fixed 

effects and the comparisons were based on Akaike Information Criterion (AIC) metrics: ΔAIC and 

wAIC (Bartoń, 2016; Burnham & Anderson, 2002). Finally, we assessed the importance of each 

predictive variable by using the proportional change in the R2 from the full model to submodels 

excluding each variable. Since GLS techniques do not allow R2 calculation in the same way as Ordinary 

Least Squares, we instead calculated a prediction R2. This was achieved by fitting a linear regression of 

the raw data values by the predicted values from the PGLS, and then using the R2 from this regression 

to do the calculations. After the fitting procedure, we performed model validation as recommended by 

Zuur, Ieno, Walker, Saveliev, & Smith (2009) and refitted the final model using Restricted Maximum 

Likelihood.  

 

Predicting growth coefficients for trait combinations and environmental settings and 

assessing prediction accuracy 

We used XGBoost, a Gradient Boosted Regression Tree (GBRT) method to predict reef fish 

standardised growth coefficients !$34. The goal of this step was to derive a table that can be used to 

predict growth trajectories for unsampled species using the combinations of morphological and 

behavioural traits, and the environmental settings evaluated here. Machine learning techniques, such as 

GBRTs, are considered superior in predicting when compared to statistical methods (Elith, Leathwick, 

& Hastie, 2008). XGBoost, in particular, is regarded as the state-of-the-art tree boosting system, 

yielding very fast and accurate predictions (Chen & Guestrin, 2016; Mitchell & Frank, 2017). One of 

the main advantages of GBRTs over statistical methods is the possibility of efficiently modelling multi-

level variable interactions (Elith et al., 2008).  
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The same model structure as in the final PGLS was used for prediction, except that the response 

variable, !$34, was included in its raw form and the XGBoost model was fitted with a Gamma 

distribution. Two tuning steps were executed before running the prediction model. First, we fit the 

model multiple times with combinations of model parameters (learning rate, maximum tree depth, 

gamma and subsampling rate) that were varied systematically, and recorded the combinations that 

yielded the minimum root mean square error (rmse). These values were: learning rate = 0.15, maximum 

tree depth = 7, gamma = 0.15 and subsampling = 0.5. Other parameters were kept in their default values. 

Then, we refit the model multiple times with combinations of values randomly drawn from a uniform 

distribution bound by the recorded parameter values from the previous round ± 10%, and again selected 

the parameters that minimized rmse. These tuning steps reduced model rmse from 0.32 to 0.27, a 

substantial increase in prediction consistency.  

To evaluate the accuracy and precision of XGBoost in predicting from our data, we used a cross-

validation procedure. This consisted in randomly splitting the growth coefficients database into 

independent training and testing datasets. The training dataset contained 80% of the data points and was 

used to refit the final model in order to generate coefficients for prediction. The testing dataset contained 

the remaining 20% of the data points and was used exclusively to contrast with predictions from the 

training dataset model. By using different datasets to fit the model and to predict, cross-validation makes 

these steps independent, and, therefore enhances bias detection. We calculated a bias metric by 

subtracting each !$34 predicted by the xgboost from its estimate in the database (the “measured” 

value). An accurate model would have a bias at or very close to zero. Precision was assessed by a 

prediction R2 analogous to the one calculated for the PGLS. These cross-validation procedures were 

repeated 1,000 times. 

Finally, prediction was carried out for all diet and position groups, for body sizes between 2 and 

200 cm TL, for sea surface temperatures between 10 and 30 oC, and for the ageing method of otolith’s 

rings only (see above Compiling and processing of explanatory variables). We bootstrapped the model 

for 1,000 iterations to generate a distribution of !$34 predictions. All prediction-related analyses were 

conducted with the R package ‘xgboost’ (Chen, He, Benesty, Khotilovich, & Tang, 2018). 
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Results 

The average slope of the relationship between ! and %) for multiple species in our dataset, (19 , 

was estimated at -2.18, with 95% credibility interval ranging between -2.31 and -2.06 (Figure 3A). 

Thus, the posterior distribution just included the theoretical (19  of -2.31. Simulating species (1 from this 

posterior distribution resulted in a distribution of values that had two main differences when compared 

to the empirical dataset (Figure 3B). First, positive (1 values, that is, species for which the parameter 

! increased as %) increased, were rare in the simulated dataset (Figure 3B). Second, values in the 

vicinity of -2 were much more common in the simulated than in the empirical dataset (Figure 3B). 

Altogether, these findings suggested that the theoretical (19 	distribution was consistent with the posterior 

(19  estimated from the empirical data after accounting for its highly heterogeneous quality. Thus, we 

used equation (4) to estimate (1 for all species in our dataset, and then derived	Ø and !$34 from 

equations (5) and (6).  

 

 

Figure 3: Relationship between the derived growth coefficient, !#$%, and the Von Bertalanffy Growth 

parameters ! (A) and "! (B), as well as the growth performance index, Ø (C) from a global reef fish growth 

dataset. Trend lines are LOWESS smoothers. 

 

The growth coefficient !$34 for all fishes varied from 0.011 to 16.43, while the growth 

performance index, Ø, varied from 1.50 to 5.85. This range of !$34 and Ø was distributed across reef 

fish species varying in size and shape by more than two orders of magnitude (from 1.9 to 320 cm in TL 

and from 0.0004 to 0.034 in shape factor), living in sea surface temperature regimes ranging from less 



Chapter 2: Global drivers of reef fish growth 

 38 

than 6 oC to almost 31oC and primary productivity from 30 to more than 2,000 gC.m-2.year-1. As 

expected, !$34 was positively related to ! and negatively related to %), both with high residual 

variation (Figure 4). Also, as expected, !$34 and Ø were unrelated. 

 

 

Figure 4: (A) The prior and posterior #"	distributions from a Bayesian meta-analysis of a global reef fish 

growth dataset. The prior is the theoretical #" distribution centered on #"$ = −2.31. (B) Empirical #" 

distribution from 74 species in our dataset compared to simulated distributions of species #" drawn from the 

posterior distribution. 

 

Body size was the most important variable in our model, accounting for almost 64% of the 

explained variability in !$34 (Figure 5). Temperature, diet, method and position relative to the reef 

explained a smaller portion of the variability in !$34, between 6% and 2.5%. The fact that shape factor 

and pelagic primary productivity explained almost no variability !$34 suggested that these variables 

were adding little information to our model. This was further confirmed by comparing nested 

submodels: the model excluding both shape factor and productivity had an AIC indistinguishable from 

the full model (Table B1 in Appendix B), and thus we excluded both. The final model explained 61.5% 

of the variation in !$34 and contained body size, temperature, diet, method and position relative to the 

reef (Table 1; model validation in Figures B3 and B4, Appendix B).  
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Figure 5: The importance of each variable in our full model of !#$% using a global dataset of reef fish 

growth. This metric represents, for each variable, the proportion of total variability explained. size = body 

size, temp = mean sea surface temperature, posit = position relative to the reef, shape = body shape factor, 

prod = mean pelagic net primary productivity, method = method used to derive the growth curves.  
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Table 1: Model coefficients of the final PGLS used to model the growth coefficient !#$% in reef fishes using 

a global dataset. 

Variable Level Estimate St. Error t-value p-value 

Intercept - 0.032 0.152 0.21 0.8341 

Body size - -0.330 0.013 -26.14 <0.0001 

Sea surface temperature - 0.010 0.002 4.42 <0.0001 

Diet Herbivores/detritivores -0.338 0.101 -3.33 0.0009 

 
Omnivores -0.471 0.103 -4.58 <0.0001 

 
Planktivores -0.352 0.102 -3.46 0.0006 

 
Invertivores sessile -0.389 0.123 -3.16 0.0016 

 
Invertivores mobile -0.317 0.098 -3.23 0.0013 

 
Piscivores -0.205 0.100 -2.05 0.0402 

Position Pelagic reef dwelling -0.253 0.074 -3.43 0.0006 

 
Bentho-pelagic reef associated -0.239 0.055 -4.34 <0.0001 

 
Bentho-pelagic reef dwelling -0.249 0.052 -4.79 <0.0001 

 
Benthic reef dwelling -0.231 0.056 -4.11 <0.0001 

 
Benthic reef associated -0.274 0.053 -5.14 <0.0001 

Method Mark-recapture -0.074 0.038 -1.96 0.0505 

 
Otoliths rings -0.166 0.016 -10.22 <0.0001 

 
Unknown -0.136 0.017 -7.85 <0.0001 

 
Other rings -0.166 0.032 -5.17 <0.0001 

  Scale rings -0.160 0.024 -6.68 <0.0001 

 

The effects of the explanatory variables on !$34 are depicted in Figure 6 (see Appendix B, 

Figure B5 for data points). !$34 decreased steeply with maximum body size and increased with 

temperature. Among the diet categories, herbivores/macroalgivores had the highest !$34 values, 

followed by fish and cephalopod predators. All other dietary groups had lower values (Figure 5, Table 

1). In terms of the position relative to the reef, pelagic reef-associated fishes showed the highest !$34, 

while the remaining groups showed broad overlap in values (Figure 5, Table 1). Growth curves 
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obtained from length-frequency methods tended to overestimate !$34 compared to all other methods 

except mark-recapture (Table 1, Figure B4 in Appendix B). The model of Ø was almost identical to 

the one of !$34 in most outputs, except for a positive, instead of negative, relationship with body size 

(details in Tables B2 and B3, and Figures B6-B10 in Appendix B). 

 

Figure 6: Relationship between !#$% and body size, temperature, diet and position relative to the reef for 

reef fishes in a PGLS using a global dataset of growth. Note the different y-axis scales. Black lines and black 

dots indicate model predictions, and bands indicate the 95% confidence intervals of model predictions 

calculated from model standard errors. HerMac = herbivores/macroalgivores; HerDet = 

herbivores/detritivores; Omnivr = omnivores; InvSes = sessile invertivores; InvMob = mobile invertivores; 

FisCep = fish and cephalopod predators; PelgAs = pelagic reef associated; PelgDw = pelagic reef dwelling; 
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BtPlAs = bentho-pelagic reef associated; BtPlDw = bento-pelagic reef dwelling; BnthAs = benthic reef 

associated; BnthDw = benthic reef dwelling. 

Cross-validation of the XGBoost predictions is summarized in Figure B11, Appendix B. The 

median bias (measured minus predicted !$34) across the iterations was very close to, and not 

significantly different from zero (Figure B11). The bootstrapped R2 distribution was bimodal, 

indicating that predictive power varied across iterations (Figure B11). This suggested that a median 

would be more adequate than a mean to represent the bootstrapped values. Predictions were, in median, 

related to the !$34 values from our dataset with an R2 of 0.81 (Figure B11). The prediction table for 

!$34 values using the bootstrapped XGBoost model for different combinations of traits and 

temperature values is available from (Morais & Bellwood, 2018a). 

 

Discussion 

Of the broad spectrum of morphological and behavioural traits and environmental variables 

examined, body size was the main driver of reef fish growth. This variable alone accounted for 64% of 

the explained variation in reef fish growth as represented by !$34. By comparison, the other variables 

in our final model accounted for between 6% and 2.5% of the variation. Of these variables, temperature 

was the most important. These findings strongly agree with metabolic models of growth (e.g. 

Bertalanffy, 1938, 1957; West et al., 2001) and the Metabolic Theory of Ecology (Brown et al., 2004) 

in concluding that body size and temperature are the most important drivers of biological processes, 

including growth rates (Brown et al., 2004; Charnov & Gillooly, 2004; Ernest et al., 2003; Gillooly et 

al., 2001, 2002; Savage, Gillooly, Brown, West, & Charnov, 2004). Thus, reef fish should grow as 

predicted by their body size and their environmental temperature, assuming that they have access to 

energetic supplies exceeding metabolic costs for a substantial part of their ontogeny. Nevertheless, 

access to this energetic surplus can be constrained by resource availability or acquisition mode 

(Beverton & Holt, 1959; Ricker, 1946): for example, fish that feed on macroalgae are not expected to 

derive the same amount of energy per unit of food ingested as fish that feed on invertebrates (Choat & 

Clements, 1998; Clements, Raubenheimer, & Choat, 2009; Horn, 1989). Consequently, reef fish of a 

particular body size living at a given temperature could vary in the way they grow depending on access 
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to food resources. This potential influence of trophic resources is supported by our data, since diet and 

position relative to the reef were invariably kept in our final model. These variables were important to 

explain deviances from predictions based solely on body size and temperature. 

 

Body size and temperature effects  

The fact that reef fish growth rates depend on body size and temperature is a reflection of 

underlying physiological processes: all mass-specific physiological rates follow body size and 

temperature, since these factors determine metabolism (Gillooly et al., 2001). Consequently, they also 

determine energetic demands. Mass-specific metabolic rates decrease with size and increase with 

temperature (Brown et al., 2004), the same trends we observed for !$34. This relationship between 

rates and body size stems from physiological constraints on molecule transport (e.g. amino-acids or 

carbohydrates) across body surfaces to individual cells (West et al., 1997). By contrast, the temperature 

dependence of physiological rates follows a simple kinetic relationship: higher temperatures increase 

the rates of chemical reactions (Brown et al., 2004; Gillooly et al., 2001). All types of chemical 

reactions, from lyses to syntheses, are kinetically affected. As a result, organisms in warmer 

temperatures have higher metabolic rates, and also higher growth rates, than similar-sized organisms in 

cooler temperatures. 

 

Resource availability and acquisition effects 

Although the energetic demands of an organism are determined by size and temperature 

(Bertalanffy, 1957; Brown et al., 2004), its energetic supply is mediated by resource acquisition. Reef 

fishes encompass a wide array of morphological, physiological and behavioural traits that allow them 

to explore a broad spectrum of feeding resources (Wainwright & Bellwood, 2002). Feeding resources 

also vary largely in space and time. Thus, the interplay between resource availability and traits used to 

explore them should result in some level of growth disparities among feeding modes (Beverton & Holt, 

1959; Ricker, 1946). Our results partially support this expectation: diet and the degree of association 

with the reef affected reef fish growth coefficients. Remarkably, after accounting for body size and 
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temperature, herbivores/macroalgivores had higher growth coefficients than all other trophic groups. 

This includes fish with “better quality” diets (sensu Harmelin-Vivien, 2002), such as planktivores or 

fish and cephalopod predators.  

Marine prey items exhibit considerable variability in energetic and protein content (Bowen, Lutz, 

& Ahlgren, 1995; Brey, Müller-Wiegmann, Zittier, & Hagen, 2010; Choat & Clements, 1998), as well 

as in their structural and chemical defences against predation (Burns, Ifrach, Carmeli, Pawlik, & Ilan, 

2003; Hay, 1991). Depending on these factors, food resources for marine organisms have been 

categorized as “low-quality” or “high-quality” (Choat & Clements, 1998; Harmelin-Vivien, 2002). 

Low-quality items include sessile invertebrates and macroalgae that have low protein and/or energy 

content, and frequently also structural and/or chemical defences. High-quality items, such as mobile 

invertebrates and fish, have a high protein and energy content and relatively few structural or chemical 

defences. One may therefore assume, based on these differences, that fishes with “high-quality” diets 

would grow faster than fishes with “low-quality” diets (Harmelin-Vivien, 2002). However, “low-

quality” dietary items are readily available on reefs, and exploiting them may be a trophic opportunity 

rather than a constraint (Harmelin-Vivien, 2002). Niche expansion from “high-quality” to “low-quality” 

diets in reef fish lineages has, for instance, been followed by rapid evolutionary diversification (Lobato 

et al., 2014). Fishes have many behavioural and physiological mechanisms to deal with their preferred 

food (Choat & Clements, 1998; Clements et al., 2009). The fact that many fishes rely on apparently 

“low-quality” diets such as algae and particulates suggest that the purported obstacles posed by these 

diets (i.e. defences, scarcity of nutrients) are generally overcome. A possible trade-off between lower 

nutrient levels but higher and more predictable availability may mean that these “low-quality” items 

may indeed provide fishes with superior nutritional rewards (e.g. Choat, Clements, & Robbins, 2002; 

Wilson, Bellwood, Choat, & Furnas, 2003). There is increasing evidence that feeders of “low-quality” 

diets, such as herbivores and detritivores, do not grow markedly slower than feeders of “high-quality” 

diets (Choat & Axe, 1996; Choat & Robertson, 2002; Trip, Raubenheimer, Clements, & Choat, 2011). 

Our results add further support to these findings. After accounting for differences due to other factors 

(mainly body size and temperature), sessile invertivores and herbivores/detritivores grew similarly to 

planktivores or mobile invertivores, whereas herbivores/macroalgivores grew faster than the other 
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trophic groups. Clearly, the constraints imposed by an herbivorous diet are not as severe as previously 

thought.  

We see a similar but unexpected pattern in pelagic primary productivity, a component of resource 

availability for fishes. Although pelagic fishes associated with reefs had higher growth coefficients than 

all other position categories, we did not find a relationship between growth and pelagic primary 

productivity. This pattern, again, disconnects apparent food quality/availability from potential for 

growth. The gradient in primary productivity here investigated included very productive temperate reefs 

and also oligotrophic tropical coral reefs. The fact that fish growth did not respond to this gradient 

shows that, in the scale investigated, the different strategies that fish employ to acquire resources are 

optimized to deal with resource availability.  

Pelagic primary productivity can play an important role in the energetics of both temperate and 

tropical reefs (e.g. Truong, Suthers, Cruz, & Smith, 2017; Wyatt, Waite, & Humphries, 2012). 

However, some of the most productive marine habitats frequently occur in tropical oligotrophic waters: 

coral reefs (Crossland et al., 1991; Hatcher, 1988). This observation is partially explained by coral reefs’ 

high efficiency in uptake rates and recycling of nutrients, especially through the detritus pathway 

(Arias-González et al., 1997; Crossland et al., 1991; de Goeij et al., 2013). There may also be scale-

dependent factors involved, for example, the use of the pelagic environment adjacent to reefs. Ocean 

currents provide reef food chains with large transient zooplankton from the open ocean (Hamner et al., 

1988; Hobson, 1991). As currents move closer and through the reef, this large zooplankton is depleted 

by feeding from planktivorous fishes, i.e. the “wall of mouths” (Hamner et al., 1988). Thus, the pelagic 

environment adjacent to reefs provides a highly rewarding food source for those fishes capable of 

exploring it (Bellwood, 1988; Hamner et al., 1988). This pelagic environment also provides predators 

with the opportunity to feed on fishes that live far from the protection of the reef structure (Hobson, 

1991). Fish that live in the open have few chances of escaping predators other than schooling, swimming 

fast or getting large quickly (Hobson, 1991). A similar reasoning might be applied to the predators 

themselves. It seems likely that growing fast in the pelagic environment adjacent to reefs is an outcome 

of opportunities and pressures: opportunities provided by abundant, high quality feeding resources 
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(zooplankton and zooplanktivorous fishes); and the need to quickly achieve large body sizes to escape 

predation. 

 

Reef fish growth in a changing world 

This study has demonstrated the major importance of body size and, to a smaller degree, also of 

temperature on reef fish growth, as predicted by theory. Rising sea temperatures and disruption of fish 

size structure are ongoing threats to tropical reefs (Hughes, Kerry, et al., 2017; Jackson et al., 2001). 

Both are likely to disturb normal fish growth trajectories. For example, although fish growth 

coefficients increased with temperature in the present study, the temperature range investigated herein 

only encompasses present sea conditions (up to ~31oC). Many tropical reef fishes already live in 

temperatures close to their metabolic optimum, with further temperature increases resulting in 

diminished aerobic scope (Barneche et al., 2014; Rummer et al., 2014). Despite the fundamental ties 

between metabolism and growth, it is unlikely that reef fish growth coefficients will keep on increasing 

linearly with further rises in sea temperature. Moreover, reef fish size structure can be severely disrupted 

by size-selective fishing activities (Jennings & Blanchard, 2004; Jennings & Kaiser, 1998; Robinson et 

al., 2017). This type of fishing can also induce non-random genetic changes to fish populations, for 

example, by selecting for lineages that grow to smaller sizes, mature, and attain their asymptotic sizes 

more quickly (Kuparinen & Merilä, 2007). Although this scenario could potentially result in either 

increased or decreased growth rates (Kuparinen & Merilä, 2007), any potential benefits may be 

outweighed by detrimental consequences to reproductive output or larval survival (e.g. Birkeland & 

Dayton, 2005; Hixon, Johnson, & Sogard, 2014). Hence, exploring the links between population 

asymptotic size, growth rates, rising sea temperatures, and fishing-induced size changes is likely to be 

of increasing interest to reef fish ecologists in the near future. 

Variables that represent resource availability and acquisition had a minor, albeit significant role 

on growth in this study. We expect that downscaling from the global reef fish assemblage, examined 

herein, to local assemblages will increasingly emphasize links between growth and resource-related 

variables. For example, Gust et al. (2002) documented abrupt demographic changes between 

populations of parrotfishes and a surgeonfish from outer and mid-shelf reefs in the Great Barrier Reef. 
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Populations from outer-shelf reefs had smaller asymptotic size and higher growth coefficients, as well 

as higher abundances, when compared to mid-shelf reefs. The authors concluded that differences in 

growth were an outcome of density-dependent processes triggered by limited production of detritus, the 

main feeding resource of the species evaluated (Gust et al., 2002). On an even smaller spatial scale, 

Clifton (1995) observed varying growth rates of a Caribbean parrotfish between adjacent reefs subject 

to distinct wave action. This was attributed to wave action mediating the population dynamics of benthic 

filamentous algae targeted by that parrotfish species, thus determining its growth rates. Moreover, local 

communities include only a small subset of the potential environmental variability and, most often, also 

of the size range used in this study. Hence, resource-related variables are likely to be more important, 

and useful, to explain differences in growth at a reduced scale. Some of the most interesting departures 

from expectations in this paper resulted from investigating resource variables. Particularly, our model 

showed that growth rates of herbivores/macroalgivores, theoretically “low-quality” feeders, were 

higher than fish and cephalopod, and mobile invertebrate predators, considered as “high-quality” 

feeders. This supports the idea that fish have developed behavioural, physiological and anatomical 

mechanisms to deal with their preferred food and illustrates how studying fish growth might help to 

clarify other aspects of reef ecology. 

 

Predicting growth coefficients  

In addition to identifying the drivers of reef fish growth, we apply a state-of-the-art machine 

learning technique to predict growth coefficients for combinations of these drivers. Thus, we provide 

an accurate and precise means of estimating the growth trajectories of unsampled reef fish species. This 

can be particularly useful if one wishes to characterize whole-assemblage patterns of fish growth (e.g. 

Depczynski, Fulton, Marnane, & Bellwood, 2007). To facilitate this use, we provide the raw growth 

dataset (Appendix B; Morais & Bellwood, 2018a) and an easy-to-use table with predicted coefficients 

(Appendix B; Morais & Bellwood, 2018a). The prediction table includes most of the range of 

morphological and behavioural traits and environmental variables that tropical and temperate reef fishes 

are likely to encounter.  
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Ours is not the first study to provide predictions of fish life-history traits. Thorson, Munch, Cope, 

& Gao (2017), for example, used a multivariate probabilistic model to derive estimates of four life-

history traits, including growth parameters, of all fish species. This impressive task was not without 

challenges, and the authors recognize three drawbacks of their approach: 1) the use of a taxonomic, 

rather than phylogenetic, structure to model correlations among species; 2) the absence of resource-

related variables in their model; and 3) the lack of discrimination between high and low quality input 

data. We believe that, by focusing our attention to reef fishes, we were able to overcome these three 

drawbacks and, as such, to provide more accurate growth predictions for our targeted group.  

Growth is primarily a physical phenomenon driven by body size and temperature. Biological 

features related to resource acquisition are important but only to a minor extent, and some do not affect 

growth as expected. The model derived herein can be used as an easily available method for estimating 

growth trajectories of unsampled species and, as such, to bridge the gap between individual and 

community-level growth patterns. This will contribute to a better understanding of the role of fish 

growth in ecosystem processes, such as energy flow and nutrient cycling, which ultimately result in 

biomass accumulation. 
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Chapter 3: Principles for estimating fish productivity on coral reefs 

Publishe as: Morais, R.A., & Bellwood, D.R. Principles for estimating fish productivity on coral reefs. 

Coral Reefs. doi: 10.1007/s00338-020-01969-9. 

 

Introduction 

Overfishing and global warming are rapidly reshaping earth’s marine and freshwater ecosystems, 

changing species composition and altering fluxes of energy and matter (Norström et al., 2016). Some 

of these ecosystems are experiencing widespread structural and functional changes (Bellwood, 

Pratchett, et al., 2019; Hughes, Barnes, et al., 2017), with new configurations that are now considered 

irreversible. Importantly, we are only starting to understand the functional implications of these new 

ecosystem configurations (Figure 7A,B) (Bellwood, Pratchett, et al., 2019; Brandl, Rasher, et al., 

2019). With the onset of the Anthropocene, management of natural resources requires new strategies to 

accurately measure and then prepare for the impacts of contemporary drivers of change on critical 

ecosystem services (Norström et al., 2016). Aquatic natural resources support significant subsistence, 

economic and well-being activities (Lynch et al., 2016; Moberg & Folke, 1999). In particular, tropical 

inland and reef resources are overwhelmingly exploited by small-scale fisheries, and provide food for 

many hundred millions of people (Cinner, 2014; Deines et al., 2017; Lynch et al., 2016). Will tropical 

aquatic ecosystems in the Anthropocene be able to keep on sustaining the livelihoods of people that 

depend on them? 

Fish standing biomass has been widely used as a simple, practical means of quantifying resource 

availability for management purposes, particularly in marine systems (Nash & Graham, 2016). Biomass 

is an inherently intuitive concept (i.e. more biomass means more and larger fish) easily estimated 

combining fish abundance and size data with widely available length-weight regression parameters 

(Froese, 2006). Moreover, fish biomass has been tightly linked to impacts from human activities, such 

as fishing (e.g. Jennings & Lock, 1996; Nash & Graham, 2016). Spikes in fishing effort, for example, 

can lead to biomass depletion, whereas fishing closures have been observed to trigger biomass build-
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up (Russ & Alcala, 2003). Thus, it may seem logical that fish standing biomass be taken as good 

indicator of potential fisheries yields, particularly in data-deprived coral reef fisheries. 

 

 

Figure 7: Aquatic ecosystems are rapidly reconfiguring in response to global changes. Coral reefs, for 

example, are moving from coral-dominated (A) to alternate states (B). Still many people depend on reef 

resources as a source of food and income (C, D). Will reefs and other aquatic systems in the Anthropocene 

still be able to sustain peoples’ livelihoods? (A, B) RA Morais; (C, D) JL Gasparini. 

 

However, standing biomass is only one of the components required to understand fisheries yields 

(Worm et al., 2009). Fisheries rely on constant resource production, rather than on its abundance at any 

one point in time. Thus, it is possible that the perceived utility of standing biomass to inform coral reef 

fisheries yields has persisted without detailed scrutiny. Recent research has unveiled a general 

decoupling between fish biomass or fisheries yiels in these systems (Morais & Bellwood, 2019; Morais, 

Connolly, & Bellwood, 2020; Rogers, Blanchard, Newman, et al., 2018). Even biomass-depleted 

ecosystems can provide considerable fish productivity and, consequently, support significant fisheries 
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(Condy, Cinner, McClanahan, & Bellwood, 2015; McCann et al., 2016; Newton, Côté, Pilling, 

Jennings, & Dulvy, 2007). This decoupling between standing biomass and productivity might also 

affect perceptions of depletion, reinforcing the need to quantify productivity directly (Embke et al. 

2019; Morais et al., 2020). However, despite the clear management benefits and the recent increased 

interest on quantifying reef fish productivity (e.g. Benkwitt, Wilson, & Graham, 2020; Bozec, 

O’Farrell, Bruggemann, Luckhurst, & Mumby, 2016; MacNeil et al., 2015; McClanahan, 2018; Morais 

et al., 2020; Robinson, Wilson, Robinson, et al., 2019; Rogers et al., 2014), we currently lack a robust 

and easily applicable framework to estimate fish productivity on high species-diversity contexts. As a 

result, studies have diverged considerably in what they consider productivity to be and how they 

estimate it (McClanahan, 2018; Morais & Bellwood, 2019; Mourier et al., 2016; Rogers, Blanchard, 

Newman, et al., 2018).  

Here, we outline principles and present a generalised, fisheries-independent approach to estimate 

community-level reef fish productivity. Our approach combines well-established research methods in 

fisheries biology, ecology and marine research: demographic models and underwater fish counts. 

Although the framework here presented is particularly relevant for reef systems in the marine realm, 

we foresee applications to any high-diversity aquatic ecosystems for which fish abundances and 

individual weights can be obtained, and age estimated. This includes tropical lakes (Takeuchi, Ochi, 

Kohda, Sinyinza, & Hori, 2010), rivers and streams (Nunes, Morais, Longo, Sabino, & Floeter, 2020) 

and other coastal marine habitats (Hemingson & Bellwood, 2018) where underwater fish counts have 

been used.  

 

From individual to communities: pathways to the production of biomass 

From the perspective of an individual fish, biomass is produced through the growth of its tissues 

(somatic growth, i.e. muscles and bones, and ‘fattening’) and reproductive output. Both processes 

require energy, and the balance between how much energy is devoted to growth and reproduction 

changes with ontogeny, i.e. as individuals age (Figure 8). All fishes undertake a phase of intensive 

somatic growth and no gamete production early in their ontogeny, before sexual maturation (Phase 1, 

Figure 8). This leads to a transitional phase where somatic growth rates decline and investment on 
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reproduction quickly increases (Phase 2, Figure 8). Although some species continue to grow at similar 

rates throughout their lives (i.e. linear growth, Depczynski & Bellwood, 2006), most fishes eventually 

decelerate or even cease to grow, focusing solely on reproduction (Phase 3, Figure 8). This directed 

energetic investment allows reproductive rates to reach a maximum value, although reproduction often 

continues throughout a fish’s lifespan (which can last for many decades, Choat & Robertson, 2002). 

The total biomass production over the lifespan of a fish equals to its total somatic mass production plus 

its lifetime reproductive output (i.e. the total number of gametes produced throughout its life). 

 

Figure 8: Fish produce biomass through somatic growth (blue) and reproductive output (red). Early in the 

ontogeny (1), growth rates increase rapidly up to a maximum (dashed blue line), while reproductive rates 

are null or incipient (dashed red line). As the fish grows (continuous blue line), growth rates decrease and 

reproductive rates increase (2), until growth decelerates near the asymptotic size (3). In this phase, 
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reproductive rates are maximum, although the cumulative reproductive output increases until mortality 

(continuous red line). 

 

Upscaling the biomass production of individual fish to the whole community (Figure 9) requires 

considering both the temporal and spatial processes that emerge at this scale. These are mainly 

represented by mortality, inflow of larvae and recruits from outside the system (exogenous), and 

outflow of eggs and larvae (endogenous). Together, these processes link productivity across trophic 

levels (i.e. the consumption of a prey fish is the start of biomass production for a predator), connect 

adjacent ecosystems, and determine the degree of temporal stability of productivity (e.g. are fully grown 

fishes replaced by new recruits that can continue growing?).  From an energetic perspective, the 

production of fish biomass is a costly end goal that requires vast amounts of energy spent in foraging, 

processing and assimilating food, and tissue-building (Barneche & Allen, 2018; Clarke, 2019). For 

fishes and other ectotherms, these processes involve an energetic expenditure of ~4.4 times the energy 

stored in the form of biomass (Clarke, 2019) . 

Although individuals experience mortality as the outcome of a binary process (i.e. death or 

survival), populations and cohorts (i.e. individuals that settled at the same time interval) experience, 

instead, rates of mortality. Natural mortality rates, which can also be viewed as the instantaneous 

probability of death of an individual due to natural causes, decrease exponentially as fish cohorts age, 

mainly because of the correlation between age and size in young fish. Initial life-history phases of reef 

fishes, such as settlers, suffer extensive mortality (Almany & Webster, 2006; Victor, 1986). Although 

the exact mortality rates are unknown for reef fish larvae, more than 50% of recruits tend to die in the 

first two days after settlement (Almany & Webster, 2006; Goatley & Bellwood, 2016). As a result of 

sharply reduced mortality rates, some reef fishes can live for decades (Choat & Axe, 1996; Choat, Axe, 

& Lou, 1996; Choat & Robertson, 2002). Others, however, remain exposed to relatively high mortality 

rates (albeit substantially reduced from post-settlement) throughout their lives and only live for a few 

months (Depczynski & Bellwood 2006; Kingsford, O’Callaghan, Liggins, & Gerlach, 2017). 

Nevertheless, the fate of the biomass from individuals that die is challenging to detect, and normally 

goes unnoticed by researchers (the ‘dark productivity’ in Brandl, Tornabene, et al., 2019). Individuals 
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that die get consumed, either before dying, through predation, or after, through scavenging and 

decomposition (but not necessarily by fishes). The energy contained in their biomass is, thus, channelled 

to different pathways and end up indirectly fuelling the growth and biomass production of other reef 

(or non-reef mobile) consumers (Brandl, Tornabene, et al., 2019).   

Exogenous inflow of larvae and settlers can supplement the biomass production of local reef fish 

assemblages (Allgeier, Speare, & Burkepile, 2018; Brandl, Tornabene, et al., 2019). Although 

exogenous inflow can drive the replenishment of fish assemblages, the direct contribution of settlers to 

total biomass production is small. Settlers weigh several orders of magnitude less than adults and, hence, 

almost all of the biomass produced by an individual is due to post-settlement growth. This becomes 

obvious by comparing, for example, the weight of a recruit parrotfish (0.01-0.08 g, Grutter et al., 2017; 

Froese & Pauly, 2018) with a fully grown adult (750-5,400 g for most species, Randall, 1997). Although 

such a magnitude of difference in size between adults and settlers (over 60,000-fold) may be extreme, 

it is not restricted to parrotfishes, since most recruits of reef fishes are also very small (smaller than 2 

cm, Grutter et al., 2017). Even the smallest coral reef fish for which the whole life-cycle is known, the 

tiny Eviota sigillata, produces over 95% of its maximum body weight of ~0.045 g after settlement 

(Depczynski & Bellwood, 2005; RAM unpub. data). Nevertheless, endogenous eggs and larvae can 

also enter local biomass production indirectly, if recycled within the ecosystem (e.g. reef planktivores 

feeding on fish eggs), or if larvae return to settle in their natal areas (Almany et al., 2017). However, 

these cases have little direct (but high indirect) relevance for fisheries because eggs and larvae are 

typically too small to be harvested. 
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Figure 9: Biomass production at the community scale includes processes that transcend the individual, such 

as mortality, inflow of larvae and recruits, and outflow of eggs and larvae. These processes move 

productivity between ecosystems and link it across trophic levels. Biomass recycled via mortality (and 

consumption), added through recruitment, broadcasted as reproductive output (i.e. eggs and larvae) and 

proportions of standing biomass and somatic growth stored in small individuals cannot or are not directly 

harvested.  

 

Finally, movements of prey and predators may blur the spatial boundaries of ecosystems, 

potentially decoupling the productivity of fish assemblages from their trophic structure (e.g. Mourier et 

al., 2016; Trebilco, Baum, Salomon, & Dulvy, 2013). This may happen, for example, through feeding 

incursions from reef predators into non-reef habitats (McCauley et al., 2012), through prey fish 

movements that result in temporary aggregations (Mourier et al., 2016), or through the transport of 

external food subsidies to reef consumers via ocean currents (Morais & Bellwood, 2019). These 

mechanisms incorporate productivity from larger areas into coral reef food webs, but their effects are 

often confounded by the interaction between fish movements and the restricted spatial scale inherent to 

the method (i.e. underwater visual surveys) (Heenan, Williams, & Williams, 2019; Ward-Paige, 
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Flemming, & Lotze, 2010). Coral reefs also include food web compartments that are independent of 

fish, and, thus, not quantified in fish surveys (although these may be part of ecosystem trophic models, 

e.g. Arias-González et al., 1997; Blanchard et al., 2009; Rogers et al., 2014); as well as cryptic fish 

compartments that are also not quantified in visual surveys (e.g. Ackerman and Bellwood 2000; Brandl 

et al. 2019b; Morais and Bellwood 2019). Overall, these points highlight some of the difficulties in 

capturing the productivity of entire food webs on coral reefs. 

 

Assessing fish and fisheries productivity on tropical reefs  

In contrast to biomass, productivity is a dynamic measure, and hence not easy to directly quantify 

(K. R. Allen, 1971). Until the early 1980s, the only tractable method for estimating the productivity of 

fish assemblages was through monitoring of fisheries catches (Munro & Williams, 1985). Catches, 

however, depend on habitat, seasons, years, economic and even cultural factors (Dalzell, Adams, & 

Polunin, 1996), and it is often hard to define the area from where a specific catch derives (Bellwood, 

1988). This enormous variability made meaningful geographic comparisons of wild fish productivity 

difficult. The development of mass-balanced trophic (or ecosystem) models, such as ECOPATH, 

provided an alternative approach to quantify reef fish productivity (Christensen & Pauly, 1992), but 

this was often subject to similar constraints (i.e. delimiting reef and other habitats in a mosaic area, 

Polunin, 1996).  

More recently, reef fish productivity has been estimated using individual size-structured trophic 

models (Rogers, Blanchard, & Mumby, 2018; Rogers, Blanchard, Newman, et al., 2018; Rogers et al., 

2014), stock-production models (Bozec et al., 2016; McClanahan, 2018), bioenergetic models (Mourier 

et al., 2016), individual age models (Benkwitt et al., 2020; Brandl, Tornabene, et al., 2019; Depczynski 

et al., 2007; Morais et al., 2020; Morais & Bellwood, 2019), or empirical biomass gradients in protected 

areas (MacNeil et al., 2015). If the main goal is to popularise the use of fish productivity as a metric to 

quantify resource production and ecosystem function, the ideal method should be powerful, unbiased, 

simple and user-friendly. Each of the above-mentioned methods was developed for specific contexts, 

and we summarise some of their main features below. However, it is beyond the scope of this article to 

quantitatively evaluate their performance or accuracy. 
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Trophic models are useful in that they allow for estimates of ecosystem properties, in addition to 

fish productivity, such as consumption rates and trophic efficiencies (Blanchard et al., 2009; 

Christensen & Pauly, 1992). Because they incorporate trophodynamic processes, trophic models can 

generate long-term estimates of production, and also predict productivity under multiple scenarios of 

ecosystem change (Rogers, Blanchard, Newman, et al., 2018; Rogers et al., 2014). However, to be able 

to do that, trophic models require the input of multiple parameters describing trophic relationships, 

dependencies and rates. Many of these parameters can be uncertain or, more often, unknown for high-

diversity ecosystems such as coral reefs.  

Stock-production models are based on population trends over time (Pella & Tomlinson, 1969; 

Schnute & Richards, 2002). Because stock-production models work at the stock level, they require no 

inputs of trophic relationships and demand less input parameters. These models, however, have been 

developed for modelling single species dynamics and do require knowledge of intrinsic population 

growth rates (Pella & Tomlinson, 1969), or intensive model optimisation (Bozec et al., 2016). 

Population growth rates can be unknown for many species, especially when assessments do not cover 

extended time scales. Similarly, optimisation routines might not be easily accessible for field ecologists 

or managers (Bozec et al., 2016). Although simple stock-production models have been used on coral 

reefs by considering the whole fish community as the stock (McClanahan, 2018), their performance for 

multi-species contexts in these ecosystems has, to the best of our knowledge, not been evaluated. 

Individual age models do not require inputs of trophic relationships or population trends (e.g. 

Depczynski et al., 2007; Morais & Bellwood, 2019). Instead, these models combine species and size 

data with life-history traits to predict the age, and then growth and natural mortality rates for individuals. 

As a result, individual models provide a practical interface with multispecies field data. These models 

rely on principles to quantify the productivity of fish cohorts using somatic growth models (e.g. the 

Von Bertalanffy Growth Model, VBGM) and mortality functions (e.g. exponential mortality rates) that 

were established more than 70 years ago (K. R. Allen, 1971; Beverton & Holt, 1957; Ricker, 1946). 

However, their key conceptual breakthrough was that visual survey data, which includes individual fish 

sizes and abundance, can be used to estimate somatic productivity if species-specific growth trajectories 

are known. In essence, this involves determining the ‘expected’ age of each fish at the moment they are 
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surveyed by positioning them in their known (or predicted) growth trajectory, based on their body 

length. This expected or ‘operational’ age can be unrelated to the real age, but nonetheless allows 

precise estimates of the expected growth after a time interval.  

This individual approach was first used by Depczynski et al. (2007), providing a simple but 

critical advancement in applying methods traditionally used in fisheries studies to coral reef ecology. 

Natural mortality rates were incorporated by Morais and Bellwood (2019), but here we expand this idea 

by including an ontogenetic, size-based mortality risk function. We formalise the individual age 

framework for estimating productivity as a series of steps, starting with the acquisition of field data, 

summarised below. We also provide the underlying model equations, as well as an R language package, 

rfishprod, with functions to implement all calculations and to predict (or access) the required life-history 

data for reef fishes (see Appendix C). A beta version of the package can be downloaded from 

http://github.com/renatoamorais/rfishprod. 

 

A framework for estimating fish productivity for high-diversity ecosystems 

Marine ecologists typically conduct underwater field surveys that cover areas of tens to a few 

hundred square metres. They identify the fish species within those areas and estimate their abundance, 

also tallying the approximate body length of each individual. This type of field data is the first step of 

our framework (Figure 10, Step 1). Species identities can be used to access species-specific length-

weight conversion coefficients, as well as life-history traits, such as growth and mortality coefficients 

(Figure 10, Step 2). These are normally obtained from databases (FishBase, Froese & Pauly, 2018), or 

from predictive models (e.g. Gislason, Daan, Rice, & Pope, 2010; Morais & Bellwood, 2018b; Thorson 

et al., 2017) that employ as inputs other species-specific traits and environmental variables such as 

temperature. 

Length-weight coefficients can then be used in conjunction with field-derived fish lengths to 

predict individual body mass values (Figure 10, Step 3). When species-specific coefficients are not 

available, data from phylogenetically related or morphologically similar species is normally used. 

Standing biomass is simply the cumulative body mass of individuals within a taxonomic or ecological 

unit, per unit area surveyed. Taxonomic or ecological units are normally species, size classes, trophic 
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groups, or the whole assemblage. Standing biomass can also be spatially aggregated to represent larger 

areas such as habitats, sites, islands, regions, etc.   

Individual body mass is also the starting point for estimating growth and productivity (Figure 

10, Step 4). Growth models, such as the Von Bertalanffy Growth Model (VBGM), use mathematical 

equations to describe average body size increments as individuals age. The most common size metric 

used in these models is length, which can be converted to mass following the previous step. These size-

at-age relationships can be used to forecast the expected size of a fish after a specific time interval  

(Choat & Robertson, 2002; Depczynski et al., 2007; Morais & Bellwood, 2018b). Somatic growth can 

then be approximated by subtracting the body mass of an individual at two time points. Because some 

fish are likely to die between time points, natural mortality has to be considered when calculating net 

productivity.  

 

 

Figure 10: Steps leading from the acquisition of underwater survey field data (1) to estimating fish 

productivity (6). Shape and life-history species traits predict growth trajectories and mortality probabilities 

(2) (see Appendix C). Length-weight relationships convert field-obtained lengths to body mass values (3), 

which are used with growth trajectories to predict body mass increments over a time interval (4). Finally, 

exponential mortality rates define the expected per capita weight losses due to natural mortality. 

Productivity is the resulting growth minus losses due to mortality (see main text). 
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The probability of a fish dying can be obtained empirically or from statistical and theoretical 

relationships (Brown et al., 2004; Gislason et al., 2010). From the perspective of an individual fish, the 

probability of mortality decreases exponentially as the fish ages and grows (Goatley & Bellwood, 2016; 

Jørgensen & Holt, 2013). From the perspective of a cohort of individuals settling, mortality rates 

decrease exponentially with time and have been predicted by the growth trajectory and maximum size 

of the species, and water temperature (Brown et al., 2004; Gislason et al., 2010). Natural mortality can 

be incorporated in the framework described herein in either of two ways: a probabilistic routine that 

randomly removes individuals, given their estimated mortality probabilities (e.g. daily or yearly, Figure 

10, Step 5); or a deterministic routine that removes the expected biomass loss due to mortality for each 

individual (Appendix C). The choice between stochastically or deterministically accounting for 

mortality will depend on the goal of the study. Whilst the deterministic routine allows estimating net 

productivity at the individual level by incorporating per capita losses, the probabilistic routine permits 

tracing the fate of individuals on a population. Because the choice of which individuals die is random 

(although probabilistic), the stochastic method only makes sense iteratively (i.e. after hundreds of 

independent simulations) and is most useful for simulating scenarios and outcomes. Conversely, the 

deterministic method avoids aggregating random variability, and, thus, facilitates comparisons (e.g. 

between reefs, years, etc.). However, the use of ‘expected per capita loss of biomass due to mortality’ 

might not be adequate in all scenarios, for it suggests a philosophically counter-intuitive process, i.e. 

that individual fishes die ‘a little bit’ every day. Regardless of the chosen method, productivity then 

equals the total somatic growth minus the losses due to mortality after a given time interval. Productivity 

can be aggregated in multiple levels, not only spatially, but also temporally. 

 

Validating productivity estimates and data quality 

Empirically measuring dynamic quantities, such as absolute productivity, requires closely 

controlled conditions (K. R. Allen, 1971). Two possible approaches would be to operate controlled 

fishing experiments on whole fish assemblages (R. E. Brock, Lewis, & Wass, 1979), or to simulate 

complete fish assemblages in captivity. Both approaches face substantial challenges (e.g. quantifying 

fishing intensity or the adequacy of simulating natural food provision to captive fish spanning multiple 
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trophic levels), with consequential low feasibility in the real-world. Estimated productivity must, 

therefore, be validated by ground-truthing its main empirical variables: growth and mortality rates. 

Because empirical VBGM parameters do not exist for all species, they need to be estimated 

(Chapter 2; Morais & Bellwood, 2018b). Previously, we have shown that the machine learning-based 

method for forecasting growth trajectories from species traits and water temperature can generate 

precise and unbiased estimates for reef fishes (Chapter 2; Appendix D; Morais & Bellwood, 2018a,b, 

2019). In that case, calculating productivity with estimated vs. empirical VBGM parameters generated 

nearly identical results (see the sensitivity analyses in Appendix D and Morais & Bellwood, 2019). 

Overall, this suggests that the cumulative growth potential estimated at the individual level is an 

accurate way to estimate the gross productivity of reef fish populations and assemblages. 

Mortality rates for wild fishes are difficult to obtain in the field, with empirical mortality data 

still lacking for most species (Depczynski & Bellwood, 2006; Goatley & Bellwood, 2016). However, 

these rates do obey theoretical and empirical trends, and therefore can be estimated from previously 

determined statistical relationships (Brown et al., 2004; Gislason et al., 2010; Pauly, 1980b). 

Concordant results have been found when reef fish mortality estimates using these methods were 

compared among one another or with field data (Depczynski & Bellwood, 2006; Hart & Russ, 1996; 

Thillainath, McIlwain, Wilson, & Depczynski, 2016). Although much more research is needed to unveil 

taxonomic and trait-level patterns of fish mortality, existing methods can provide initial approximations 

of mortality rates (Gislason et al., 2010). In the Appendix C, we explore different possible ways of 

incorporating both the cohort/population and the ontogenetic component of natural mortality (as 

referred in the previous section). 

Importantly, the quality of the productivity estimates obtained by the individual age framework 

will depend on the quality of both the survey data and the life-history data or predictions used. For 

example, due to strong method and observer bias, it is essential that counts be consistently derived from 

the same method (i.e. not mixing tape-first with simultaneous tape winding surveys, Dickens, Goatley, 

Tanner, & Bellwood, 2011; Emslie, Cheal, MacNeil, Miller, & Sweatman, 2018) and, preferentially, 

same observer, unless the observer effect can be eliminated or minimised (i.e. through extensive 

training, Thompson & Mapstone, 1997). Complementary techniques may also help to reduce bias such 
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as, for example, the use of stereo-video to improve size estimates (e.g. Harvey, Fletcher, & Shortis, 

2002) or implementing instantaneous surveys to account for very mobile species (Ward-Paige et al., 

2010). Likewise, it is imperative that life-history data from large databases (such as FishBase) be 

consistently checked for quality (e.g. Robertson, 2008; Thorson, Cope, & Patrick, 2014) and that 

methods to predict life-history traits be thoroughly tested and validated (e.g. Morais & Bellwood, 2018, 

2019). 

 

Forecasting population dynamics by considering recruitment 

Expanding the individual age productivity framework to forecast population dynamics requires 

considering recruitment besides growth and mortality (Figure 9). Contrary to somatic growth or 

mortality rates, recruitment rates cannot be predicted, for open systems such as coral reefs, from 

environmental or individual features (e.g. body size, temperature). Reef fishes have a bipartite lifecycle 

in which reef-inhabiting adults broadcast larvae to the open ocean. In the open ocean, large mortalities, 

water-driven transport and fish behaviour make predicting the fate of individual larvae virtually 

impossible. Thus, there is a large potential for spatial decoupling between where fishes reproduce and 

where they settle (Almany et al., 2017). Directly incorporating recruitment into fish productivity 

estimates would, thus, require data on recruitment rates, including abundance of recruits and frequency 

of recruitment pulses (e.g. as in Brandl, Tornabene, et al., 2019).  

A theoretical solution would be to employ stock-recruitment relationships, which assume that 

the number of recruiting fishes is a function of population spawning biomass or reproductive adults 

(e.g. Beverton & Holt, 1957; Ricker, 1954). In practice, evidence suggests that large density-dependent 

mortality in the pelagic phase or immediately after settling may weaken stock-recruitments for coral 

reef fishes (Caley et al., 1996; Doherty, 1991; Meekan, Milicich, & Doherty, 1993; Robertson, 1990), 

but this still remains under investigated. Furthermore, recruitment data with which to derive stock-

recruitment relationships is scarce for most reef fishes (Caley et al., 1996). To partially circumvent this, 

(Brandl, Tornabene, et al., 2019) assumed recruitment to be constant and proportional to the relative 

abundance of fish larvae from different families found near reefs, from different studies. However, this 
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is likely to apply mainly to small fishes with year-round reproduction, such as in their case. This 

procedure also generates abundances that cannot be scaled with empirical densities.  

Alternatively, Bozec et al. (2016) have assumed that recruit densities level-out to conform to 

the overall reef fish size-structure immediately after recruitment, and that size structure is constant 

through time. Community size-structure is known to change in response to disturbances such as fishing 

or coral loss (Dulvy, Polunin, Mill, & Graham, 2004; Morais et al., 2020; Robinson et al., 2017; Rogers, 

Blanchard, Newman, et al., 2018). Some of these size-structure changes in response to disturbance may 

be predictable, i.e. the expected steepening of the size spectrum from size-selective fishing (Dulvy et 

al., 2004; Jennings & Blanchard, 2004) and, could, in theory be accounted for. However, how stable 

community size-structure is in the absence of disturbance remains unclear. This topic thus remains open 

and will benefit from further developments. Long-term empirical datasets of recruitment dynamics and 

community size-structures will be key to assess how robust the above assumptions are, and the power 

of individual models in forecasting population dynamics beyond near-future productivity.  

 

Managing for coral reef fish productivity 

For decades, biomass-based targets and evaluations of ecosystem health have dominated 

management recommendations on coral reefs (e.g. R. E. Brock et al., 1979; Friedlander & Parrish, 1998; 

McClanahan et al., 2014; Russ, Stockwell, & Alcala, 2005; Sandin et al., 2008). But what can coral reef 

fish productivity tell fisheries managers and stakeholders that standing biomass cannot? Fishing 

activities rely on constantly harvesting standing biomass. New biomass must be produced to replace 

what has been harvested, otherwise standing biomass will diminish and, eventually, be depleted. This 

suggests a fundamental conceptual decoupling of productivity, a dynamic ecosystem rate; from standing 

biomass, an ecosystem pool that is the consequence of accumulating productivity over time (A. P. Allen 

& Gillooly, 2009; Brown et al., 2004; Jenkins, 2015). Indeed, such a decoupling between fish standing 

biomass and productivity has been shown for reef fishes, both theoretically and empirically (Barneche 

et al., 2014; Morais & Bellwood, 2019; Morais et al., 2020). 
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Biomass production rates, just like any other biological rates, are proportional to metabolism  

and, thus, depend on temperature and body size (Brown et al., 2004; Yvon-Durocher & Allen, 2012). 

Hence, the same standing biomass can be sustained by different production rates in different contexts. 

For instance, a higher metabolism, and thus productivity, is required to maintain the same standing 

biomass of small fishes compared to large fishes, and in warm compared to cold waters (Barneche et 

al., 2014). This is also evident from the increased productivity per unit biomass triggered by reductions 

in average size from intense size-selective fishing (Morais et al., 2020). Furthermore, many reef fish 

species have exceptionally high longevity (e.g. Choat & Axe, 1996; Choat & Robertson, 2002), with 

the biomass accumulated in these species potentially reflecting production amassed over decades, rather 

than their current productivity. Because of that, the temporal scope over which biomass has accumulated 

may not be obvious, and, thus, assuming that standing stocks are proportional to resource production 

can be risky.  

Fish productivity, conversely, provides a more direct link to fisheries yields and biomass build-

up (MacNeil et al., 2015) than standing biomass. Indeed, assuming negligible loss due to other sources 

(e.g. emigration), the productivity of a fish assemblage as quantified using the individual age framework 

described herein represents the potential fisheries yield of that fish assemblage. This is analogous to the 

concept of ‘surplus production’ (Beverton & Holt, 1957; Hilborn & Walters, 1992; Schnute & Richards, 

2002; Zottoli, Collie, & Fogarty, 2020). In doing so, this method may provide a long sought-after, 

fisheries-independent method of quantifying potential yields/surplus production in high-diversity 

tropical ecosystems (e.g. Jennings & Polunin, 1996). From it, one can, for example, determine species-

specific annual production and redirect fishing effort under a balanced harvest approach (e.g. Jacobsen, 

Gislason, & Andersen, 2014; Zottoli et al., 2020). The individual age framework thus offers a relevant 

tool with the potential to inform the management of tropical multispecies coral reef fisheries in a way 

that standing biomass simply cannot (see Morais et al., 2020).  

In summary, here we provide a simple, fisheries-independent framework to estimate fish 

productivity that can help to bridge the gap between biomass-based targets and process-based 

management. Because it arises from non-destructive visual surveys, the resulting productivity metric 

are particularly useful in a management context for monitoring fish productivity from repeated surveys. 
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Furthermore, this framework avoids the requirements from other methods of multiple unknown or 

uncertain ecosystem-level trophic relationships. Instead, it relies on relatively easily accessible life-

history parameters. Thus, this framework is ideal for high-diversity tropical aquatic ecosystems, such 

as coral reefs, in which many such parameters are unknown, or difficult and costly to obtain.  

Coral reef ecology is now expanding to embrace process-based management approaches 

(Bellwood, Pratchett, et al., 2019; Hughes et al., 2017), a response to worldwide mass loss of corals that 

is likely to intensify. Quantifying key ecological functions and services provided by these systems is 

now more critical than ever to detect changes, predict trends, and trigger management responses 

(Bellwood, Pratchett, et al., 2019). Given the renewed interest in methods to assess ecosystem health 

and resource availability, the framework presented here could facilitate the use of fish productivity as 

a robust tool to assist the management of coral reef resources and ecosystem functions, and contribute 

to a broader understanding of harvested coral reefs. 
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Chapter 4: Trophic pathways and the fish productivity of a degraded coral 

reef 

Published as: Morais, R.A., & Bellwood, D.R. (2019) Pelagic subsidies underpin fish productivity on 

a degraded coral reef. Current Biology, 29(9), 1521–1527.e6 

 

Introduction 

Coral reefs harbour high productivity in nutrient-poor tropical oceans. This exceptional 

productivity can be explained by high recycling rates (de Goeij et al., 2013; Wild et al., 2004), deep-

water nutrient enrichment (Gove et al., 2016), and assimilation of external production (Hamner et al., 

1988). Fishes consume this productivity through multiple trophic pathways and, as a result, dominate 

consumer biomass. Their reliance on pelagic vs. benthic productivity pathways has been quantified 

from the tissues of individual fish (K. W. McMahon, Thorrold, Houghton, & Berumen, 2016; Wyatt et 

al., 2012), but the contribution of different energetic pathways to the total productivity of coral reef fish 

assemblages remains unquantified. Here, we combined high-resolution surveys and individual biomass 

production estimates to generate the first energetic map of a full coral reef fish assemblage, from the 

smallest to the largest fishes (Ackerman & Bellwood, 2000; Ackerman, Bellwood, & Brown, 2004).  

Specifically, we investigated the major trophic pathways that sustain the productivity of this 

entire coral reef fish assemblage. We define trophic pathways as ensembles of trophic interactions 

leading from resources to consumers, incorporating ecological and spatial components (see Methods). 

We used high-resolution surveys of fish assemblages from the windward face of a mid-shelf reef in the 

northern Great Barrier Reef (GBR), incorporating gobies to large apex predators. Surveys combined 

nested visual surveys and enclosed clove oil stations (Ackerman & Bellwood, 2000; Depczynski et al., 

2007) using a sampling algorithm that integrates survey area, fish size and abundance. This allowed us 

to model individual-level somatic growth and mortality probability for the entire fish assemblage and, 

for the first time, to obtain the area-specific total fish productivity of a coral reef. We then partitioned 

this fish productivity by reef zone (from the exposed slope to the sheltered lagoonal back reef, Figure 

11), and by six reef and off-reef trophic pathways.  
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The 18,271 fish recorded included 309 species, spanning 7 orders of magnitude in body mass 

(0.002 to 19,300 g). We used the resulting dataset to: (1) estimate fish productivity for each reef zone 

and trophic pathway; (2) describe how the importance of each trophic pathway changes using fish 

standing biomass vs. productivity; and (3) to test a conceptual model of coral reef productivity based 

on water flow and topographic complexity. Our streamlined approach requires few model parameters 

and offers new insights into the drivers of coral reef fish productivity. 

 

Methods 

Study locality and design 

We conducted this study at Lizard Island (14.7°S; 145.46°E), a mid-shelf granitic island located 

c. 30 km from the Australian coast, in the northern section of the Great Barrier Reef. Our sampling 

design encompassed three sites at a well-developed windward section of the reef stretching from the 

lagoon entrance and Bird Islet, to South Island (Figure 11). At each of these sites, we surveyed coral 

reef fishes along a gradient of reef zones, from the exposed outer slope, reef crest and front flat, to the 

sheltered lagoonal back reef (Figure 11). Survey depths varied along with the zones, but were 6.9 ± 0.7 

m for the slopes, 3.7 ± 0.6 m for the crests, 1.9 ± 0.3 m for the front flats and 1.9 ± 0.6 m for the lagoonal 

back reefs. Within each reef zone at each site, we performed three sets of visual surveys (in a total of 

36 surveys), and one transect of eight enclosed clove oil stations, hereafter referred to as a ‘deployment’ 

(in a total of 12 deployments and 96 stations). All surveys took place during a five-week time period 

between January and February of 2018. 
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Figure 11: The studied reef at Lizard Island, northern Great Barrier Reef, with the reef zones surveyed (left 

panels). The right panel shows the cover of non-encrusting scleractinian corals on the different reef zones. 

Black circles are the mean cover, while coloured dots indicate the cover of each individual photoquadrat (n 

= 45 per reef zone). Error bars represent the standard error of the mean. 

 

Survey procedures 

Our surveys of coral reef fishes combined two sampling methods: underwater visual surveys and 

enclosed clove oil stations (Ackerman & Bellwood, 2000). The underwater visual surveys consisted in 

four nested sub surveys, designed to maximise the detection of fishes with distinct body sizes and 

behaviours. During each of the sub surveys, a single diver (RAM) identified, counted and estimated the 

length (TL, to the nearest cm) of a specific set of fish species within the count area. During the first 

phase, the diver swam while stretching a tape for 50 m and surveying fishes in an area that extended 

from the tape to 2.5 m at each side of it. In this phase, the diver surveyed large (>25 cm TL), 

conspicuous, water column-positioned or quick-swimming fishes likely to be scared away by the diver 

and to abandon the survey area. Large parrotfishes, surgeonfishes, rabbitfishes, jacks, fusiliers, 

groupers, emperors and snappers would normally be included within this category. During the second 

phase, the diver swam back along the tape for 30 m, while also surveying an area that extended from 

the tape to 2.5 m at each side of it. During this phase the diver surveyed smaller, but nonetheless mobile 
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fishes likely to be displaced by the diver’s passage during the first phase, but either unlikely to go far 

out of the area, or likely to return after a few seconds. This normally included small to medium-sized 

surgeonfishes, parrotfishes, rabbitfishes, groupers, most wrasses, small fusiliers, sergeant fishes and 

puller species (genus Chromis) feeding more than 1 m away from the substrate. Then the diver changed 

direction again, swimming towards the end of the tape for 30 m, while surveying an area that extended 

from the tape to 0.5 m at each side of it. During the third phase the diver surveyed small, non-cryptic, 

site-attached fishes, normally straight over the substrate or about a metre up the water column. This 

included mainly damselfishes and cardinalfishes, but also most small wrasses (e.g. Stethojulis, 

Pseudocheilinus). Finally, the diver started recoiling the tape and swimming back for another 30 m-

stretch while surveying holes, crevices and overhangs located between the tape and 0.5 m to each side. 

During this phase, the diver surveyed any fish hidden in these structures that would not have been 

detected in the previous surveys, such as squirrelfishes, soldierfishes and cardinalfishes; as well as small 

cryptobenthic fishes such as gobies, blennies, triplefins, dottybacks, and pipefishes (Brandl, Goatley, 

Bellwood, & Tornabene, 2018). 

Given the inefficacy of visual survey methods to adequately sample full cryptobenthic fish 

assemblages, we used enclosed clove oil stations for these taxa (Ackerman & Bellwood, 2000; 

Ackerman et al., 2004; Brandl et al., 2018). Each clove oil station deployment consisted of a 14 m long 

transect, along which we systematically laid eight small (0.4 m2), approximately circular stations at 2 

m intervals. Each station consisted of a 2 mm-mesh mosquito net sown in a conic shape, attached to a 

2.25 m long steel chain that delimited the circular area at the bottom. The chain links were 

approximately 5 cm long and the region where the mesh covered the chain was enveloped by a fabric 

tissue to avoid damage due to possible abrasion with coral substrate. We attached a small nautical float, 

tied to a string, to the tapered end of the mesh to keep it erect. Within each station, we sprayed 

approximately 150 mL of a 3:1 ethanol:clove oil mixture following a concentric border-to-centre 

pattern, until a curtain of the mixture could be seen within the whole station. The mixture was allowed 

to sit for approximately 2 min for the anaesthetic properties of the clove oil to act before starting the 

search for cryptobenthic fishes on the substrate within the station (Depczynski et al., 2007). The search 

followed a gradual pattern from the borders towards the centre. All fishes from each station were placed 
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within an individual plastic bag and further euthanised on ice with clove oil. Each individual fish was 

measured and identified in the lab under a stereomicroscope. Animal collection and euthanasia were 

performed according to the animal ethics permit A2375 from the James Cook University’s Animal 

Ethics Committee to RAM. 

Some of the cryptobenthic fish species detected during the fourth phase of the visual surveys 

were also captured in the enclosed clove oil deployments. This was especially true for gobies, blennies, 

triplefins, dottybacks and devilfishes. To deal with the different abundance estimates between the visual 

counts and clove oil collection methods for these species, we used the criterion of the highest 

abundance. For whichever cryptobenthic species detected in both methods, we kept the abundance 

estimated by the method that generated the highest value and excluded the other one. This most often 

involved excluding the data from the visual survey. However, a few gobies from the genera 

Amblyeleteotris and Valenciennea, as well as Koumansetta rainfordi; and blue and yellow devilfishes 

(Assessor macneilli and A. flavissimus) were more frequently detected by visual surveys. 

 

Additional environmental data 

In addition to the fish surveys, we also obtained topographic complexity data for each set of 

surveys, and coral cover and water flow data for each reef zone. Topographic complexity was measured 

using a modification of the chain method (e.g. Wilson, Graham, & Polunin, 2007) to target larger-scale 

topographic features. Instead of a chain, we used a 20 m-long rope with 40 g fishing sinkers attached at 

every 1 m interval. This weighed rope was laid over the reef substrate following a linear pattern and 

always in parallel to the tape used for the fish surveys, making sure that it conformed to the substrate 

as much as possible. The ratio between the known length of the weighed rope and the linear distance 

that it covered while on the substrate provided the rugosity metric herein considered to represent 

topographic complexity. Although this method provides only a broad overview of complexity, it 

correlates strongly with features such as the abundance of holes and crevices (Wilson et al., 2007). 

Coral cover was obtained by analysing five photoquadrats of 1 m x 1 m taken randomly along 

the tape at each fish survey. This resulted in 15 quadrats analysed per reef zone, per site (total of 180 

photoquadrats), encompassing a total surveyed area of 180 m2. We specifically aimed to quantify the 
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total cover of any living non-encrusting hard corals (Anthozoa: Scleractinia). This included mainly 

massive forms, but also digitate, corymbose and branching forms that provided structural complexity 

or, in the case of recruits, that could potentially provide future structural complexity. Non-encrusting 

hard coral cover, hereafter referred as coral cover, was estimated by overlaying 50 randomly assigned 

points to the area defined by each photoquadrat. Mean and standard deviation of coral cover for each 

reef zone was calculated from the pool of photoquadrats containing transects and sites.  

Net water flow was obtained from (Fulton & Bellwood, 2005) for the same reef zones of the 

same windward reef stretch at Lizard Island here investigated. These authors combined field dissolution 

experiments and posterior laboratory flow calibration to translate dissolution rates to linear flow 

velocities. Gypsum balls were used both in field and laboratory dissolution experiments for replicated 

24-h periods (Fulton & Bellwood, 2005). Laboratory calibration of dissolution rates involved exposing 

the gypsum balls to increasing flow velocities at the same water temperatures measured in the field 

(Fulton & Bellwood, 2005). Since only average flow and standard deviation per reef zone were 

available, we used a randomization procedure to incorporate the variability surrounding the average in 

our analysis (described in the Quantification and Statistical Analysis section). 

 

Defining trophic pathways 

We depart from the traditional paradigm of assigning each species to a specific trophic group, 

recognising that one species can perform multiple ecosystem functions and vice-versa (Bellwood, 

Streit, Brandl, & Tebbett, 2019). Instead, we identify one or multiple trophic pathways to which each 

individual fish is part in our study system. We define a trophic pathway as the ensemble of trophic 

interactions leading from a series of resources to a consumer. The trophic pathways we consider here 

incorporate not only the major recognised ecological compartments of coral reef economies (pelagic 

and benthic), but also the seascape (reef and off-reef) and the reef surface (epibenthic or cryptobenthic) 

where these trophic interactions occur. The boundaries of trophic pathways are, therefore, not only 

defined by the immediate source of primary productivity, but also consider specificities of habitat or 

microhabitat. For example, whereas most parrotfish species feed exclusively over the reef substratum, 

some species are known to feed over sand in the sediment apron adjacent to the reef (Bellwood & Choat, 
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1990). This case epitomises the use of two distinct trophic pathways that might not necessarily differ in 

the nature of the resource (i.e. particulates are ingested), but in terms of where the resource is located 

and, therefore, its composition and nutritional value.  

Many coral reef predators have generalised feeding habitats and high levels of flexibility, 

predating on fish in more than one of these trophic pathways and being able to switch between prey 

types depending on their availability (e.g. Kingsford, 1992). In such cases, only high-definition 

techniques that quantify the degree of reliance on different energy sources (e.g. stable isotope, 

comprehensive dietary analyses or DNA barcoding; K. W. McMahon et al., 2016) can confidently 

assign the main trophic pathway used by an organism. This level of resolution was available only for a 

handful of species and, thus, in most cases these generalist feeders were included in a ‘generalised 

predation’ pathway category. In addition to predators, the main consumers defining each of the trophic 

pathways considered herein are defined as:  

 

Off-reef water column: fishes that feed on plankton in the water column and that are not directly 

dependent on the reef structure for sheltering. This includes species that shelter in the reef 

structure during the night (Russ, Aller-Rojas, Rizzari, & Alcala, 2017) or that are able to move 

between reefs; 

Off-reef sand substrata: fishes that feed on particulates, invertebrates or on other fishes in the sandy 

substratum at the interface or adjacent to reefs, including lagoonal sediments and rubble 

surrounding patch reefs; 

Reef water column: fishes that feed on plankton in the water column, but that are directly dependent on 

the reef structure for sheltering; 

Reef epibenthic substrata: fishes that feed on macroalgae, turf algae, detritus, cyanobacteria, or on 

sessile invertebrates attached to the exposed surface of the reef matrix. Some of these fishes, 

particularly parrotfishes, pierce the reef matrix and, thus, in addition to the epilithic layer, access 

some of these resources in the endolithic layer immediately underneath it; 
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Reef cryptobenthic: fishes that feed on turf algae, detritus, cyanobacteria, sessile invertebrates, mobile 

invertebrates or on other fishes that occupy the concealed surface of the reef matrix. This includes 

caves, crevices, holes and other microhabitats used as shelter. 

 

Because our definition of pathways includes a spatial component, off-reef pathways involve 

potential energy subsidies (e.g. Mourier et al., 2016). Also, since this is a windward reef, the 

predominant transport of materials is assumed to take place from the open water to the reef, rather than 

the inverse (e.g. Hamner et al., 1988). Therefore, we consider both off-reef and reef water column 

pathways to represent potential pelagic subsidies to the reef economy. Importantly, we do not intend to 

quantify the absolute productivity of the trophic pathways here identified (Arias-González et al., 1997; 

Polovina, 1984). Our study focuses strictly on the portion of these pathways comprised by coral reef 

fishes. Therefore, the productivity of the different pathways needs to be interpreted as relative to the 

total fish component, rather than as absolute values. We recognise that some of these pathways are 

likely to have additional important contributions from other organisms, but we do not quantify these. 

Thus, we define the term ‘pelagic subsidies’ as the proportion of the potential total pelagic subsidies 

that is accessed by fishes, primarily, but not exclusively, in a direct form (i.e. planktivory). These 

subsidies are measured in units of fish mass produced (i.e. kg ha-1 day-1), and not in units of material 

mass transported. 

Furthermore, it is also noteworthy that we do not directly trace carbon flow or energetic pathways 

(e.g. K. W. McMahon et al., 2016; Wyatt et al., 2012). Instead, we define the relative use of different 

pathways at the species level based on an extensive compilation of dietary, habitat use and stable isotope 

analyses. Part of the data used herein suggests the occurrence of interactions between pathways, 

including: the assimilation of pelagic production by detritivores (Eurich, Baker, & Jones, 2019; K. W. 

McMahon et al., 2016), likely mediated by inputs and faeces from plankton-feeding fishes to the detritus 

(Robertson, 1982; Wilson et al., 2003); or feeding on detached benthic algae in the water column by 

planktivores (e.g. Hamner et al., 1988; Hobson & Chess, 1978; Wyatt et al., 2012). 

A matrix of reliance on trophic pathways was obtained based on information compiled from the 

literature for each of the 309 species examined. For as many species as possible, we used direct or 
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indirect quantitative evidence of feeding habits (i.e. dietary studies or stable isotopes) and habitat use 

(i.e. feeding behaviour studies or anecdotal evidence) to assign proportional reliance on each of the 

trophic pathways described above. When multiple quantitative studies were available, we averaged 

values across studies, using the standard deviation as a measure of variability. When only one 

quantitative study was available, the variability reported (e.g. among individuals or among habitats) 

was included. If no variability was reported, the scale of variability was estimated as a function of the 

mean value. This allowed uncertainty to be aggregated. For species with only anecdotal evidence of 

pathway reliance (e.g. descriptions of feeding behaviour with no quantification), both trophic pathway 

reliance and variability were estimated on a qualitative-quantitative scale, from 0 (negligible 

proportion) to 1 (almost complete dependence). The trophic reliance matrix for all species, including 

values, data types, references and notes on the procedures adopted are included in the Data S2. 

 

Quantification and statistical analysis 

Combining survey phases using a resampling algorithm 

We devised a resampling algorithm to combine the outputs of the four nested phases of the visual 

surveys and the clove oil stations into a single unit. This algorithm consisted of randomly sampling 

individuals from the area surveyed at each of these components, proportionally to their expected 

abundance in a standardised area following:  

 

B5467 = B89:7 × D
;"#$%
;&'(

E          (7) 

 

Where B5467 is the expected fish abundance in phase F if the area surveyed was equal to G546, 

B89:7 is the actual abundance surveyed in phase F,  G89:7 is the area surveyed in phase F; and G546 is 

the standardised area, taken here as 100 m2. The total fish abundance in the standardised area was then 

the sum of the B5467 from the four phases plus the clove oil deployment.  

This resampling procedure was applied to the group of three sets of visual surveys and eight 

clove oil stations of each reef zone at each site. This resulted in one resampled reef area of 100 m2 
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including fishes surveyed on all phases, per reef zone per site. For phases 1 and 2 of the visual surveys, 

the resampling procedure generated subsamples, whereas for phases 3 and 4 and the clove oil 

deployment, resampling resulted in extrapolated samples. This whole resampling procedure was then 

repeated 99 times, so to generate a distribution of values from resampled reef areas for each combination 

of zone and site. Given the number of iterations, we considered these distributions, hereafter 

‘resampling distributions’, to represent most of the variability in standing biomass and productivity of 

the surveyed assemblages. We could, thus, incorporate the variability of the fish assemblages within 

and among sites for each reef zone. The median of a resampling distribution was chosen as the reference 

value cited throughout the text. 

 

Standing biomass and productivity 

For all fish species detected in the visual surveys and clove oil deployments, we compiled 

Bayesian length-weight regression coefficients and coarse species-level traits (maximum length, diet 

and position relative to the reef) from FishBase, Chapter 2 and Appendix B. We used the length-

weight coefficients to estimate individual fish weights and, hence, standing biomass. The expected 

somatic growth of each individual fish was estimated from its growth trajectory under the Von 

Bertalanffy Growth Model (VBGM). This involved first using the compiled maximum length, diet and 

position relative to the reef to estimate VBGM !$34 coefficients for each species, according to the 

method and predictive model in Chapter 2 (Morais & Bellwood, 2018b).  !$34 is a standardised 

VBGM coefficient that represents the potential growth trajectory of an individual if its population 

asymptotic length (%)) was equal to its reported species maximum length (Chapter 2; Morais & 

Bellwood, 2018b). Then, we used the potential growth trajectory defined by the estimated !$34 and 

the maximum length of each species to ascertain the likely age of an individual fish, given its length 

(Depczynski et al., 2007). This potential growth trajectory was then used to estimate the expected 

growth, in length units, of the individuals after a one-day time interval. Expected somatic growth, in 

length, was afterwards converted to expected somatic growth, in mass units, using the length-weight 

regression coefficients. 
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We also incorporated into our estimates of fish productivity likely losses due to natural mortality. 

For a given species, natural mortality was assumed to decrease exponentially as individuals age, 

following the trajectory depicted by the scale parameter H  (Hilborn & Walters, 1992). The parameter 

H  was estimated for each species using Pauly’s method (Pauly, 1980b), which considers the VBGM 

parameters %) and !, as well as water temperature. We used the species maximum length and !$34 

obtained previously, and mean sea surface water temperature to estimate H. Sea surface temperature 

was retrieved for Lizard Island from the Integrated Marine Observing System (IMOS), a national 

collaborative research infrastructure supported by the Australian Government, and made available by 

the Australian Institute of Marine Science (Key Resources Table). IMOS data are obtained by an in-

situ autonomous monitoring system, and were based on the mean of daily average temperatures across 

at least seven years of data collection. We rescaled H from a yearly to a daily mortality scale parameter 

(H!) by dividing it by 365. We then used a modification of the formula in (Hilborn & Walters, 1992) to 

estimate the daily probability of survival for each individual fish:  

 

;89:<) = 2*=*) 

            (8) 

 

Where ##>2) is the relative age of the individual / on day 4 + 1, with ##>2 = {0,… ,1}; and H!% the 

daily mortality parameter for individual /. We simulated natural mortality events for each individual 

as the outcome of a Bernoulli trial (with 0 = mortality and 1 = survival) using the probability of survival 

as given by equation (2). Individuals were removed from the sample or kept depending on the outcome 

of each trial. Since fishing activities are prohibited at Lizard Island for any purposes other than scientific 

collections, we considered fishing mortality to be indistinguishable from zero and, thus, total mortality 

to equal natural mortality. The total fish productivity at any given resampled area was the sum of the 

somatic growth of all surviving individuals over the time interval used. Finally, standing biomass was 

rescaled from g 100 m-2 to ton ha-1, and productivity was rescaled from g 100 m-2 day-1 to kg ha-1 day-1. 

 



Chapter 4: Trophic pathways and reef fish productivity 

 77 

Assigning trophic pathways to individual fishes 

We used the Dirichlet distribution (also known as the Multivariate Beta distribution) to map 

trophic pathways to individual fish. A Dirichlet distribution of N dimensions (i.e. levels of a categorical 

variable) is governed by the parameters O2…O? that describe the magnitude of each level; and by O/, 

which is the sum of the magnitudes and, hence, the scaling factor. Together, they define the proportional 

expected values of each level of a categorical value (Balakrishnan & Nevzorov, 2003): 

 

P[R?] =
O?
O/

 

            (9) 

In our case, the different trophic pathways represent the different N dimensions. There are no 

independent variance parameters, and thus the O parameters also determine the variance (Balakrishnan 

& Nevzorov, 2003). We started by estimating, for each species, O/ for each trophic pathway from the 

trophic reliance matrix. The proportional reliance was considered to represent P[R?], and the compiled 

variability (see above ‘Defining trophic pathways’) to represent the variance T#U[R?]. From these 

terms, we initially calculated multiple O/+ from (Balakrishnan & Nevzorov, 2003): 

 

O/+ =
(P[R?] − P[R?]&)

T#U[R?]
− 1 

            (10) 

We then averaged the multiple O/+to obtain O/, and, from it, estimated the different O? by: 

 

O? = O/. P[R?] 

            (11) 

Finally, we simulated Dirichlet-distributed values by randomly drawing from the Dirichlet 

distribution defined by the species-specific parameters. We drew as many values per species as 

individuals from that species in our sample, each composing a stochastic variation of the species 

proportional trophic reliance vector. The proportional reliance vector for each individual was 
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subsequently multiplied by the expected somatic growth of that individual to generate a vector of 

growth, in mass units, attributable to the different trophic pathways. 

 

Data analysis and hypothesis testing 

To test the potential effect of pelagic subsidies in driving total productivity, we first modified the 

resampling algorithm described above to include only the four phases of the visual surveys (i.e. 

excluding the clove oil stations). This allowed us to resample the fish assemblage at the level of 

individual surveys, rather than at the level of reef zones and sites. Although excluding the enclosed 

clove oil stations implied underestimating the cryptobenthic pathway, we found similar productivity 

values for the cryptobenthic pathway in all reef zones (Figure 13). Therefore, doing so likely did not 

affect our capacity to detect the influence of pelagic subsidies on the total productivity of the different 

reef zones. Thus, we used the resampled reef areas for the 36 sets of surveys to test whether the 

proportion of pelagic subsidies, defined as the proportion of total productivity composed by the off-reef 

and reef water column pathways, was driving total fish productivity. To do so, we first fitted a gaussian 

Linear Mixed Model with proportion of pelagic subsidies as a fixed factor and site as a random 

intercept; and then fitted a similar model, but included an additional interaction term between proportion 

of pelagic subsidies and reef zone. We then compared the two models using the Akaike Information 

Criterion (AIC) and the derived weight of Akaike (wAIC). Because of the stochastic variation 

introduced by the resampling algorithm, we bootstrapped the resampling procedure and the best model 

for 300 iterations, recording the model coefficients (slope) at each iteration. 

We subsequently tested whether topographic complexity and water flow could be generating the 

distinct relationships between pelagic subsidies and total productivity among zones. We defined a 

piecewise Structural Equation Model (Lefcheck, 2016) that simultaneously considered the direct effects 

of water flow and topographic complexity on pelagic subsidies and on the remaining fish productivity 

(defined as the productivity of all other pathways excluding reef and off-reef water column). Pelagic 

subsidies in this analysis were considered to be the productivity, in mass units, of off-reef and reef water 

column pathways, and not their proportion relative to total productivity. The model also included an 

indirect effect of water flow on topographic complexity and a correlated error term between pelagic 
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subsidies and all other fish productivity. We started by running preliminary piecewise SEMs with 

standard linear models using the reported reef zone-level average net water flow values (Fulton & 

Bellwood, 2005). No independence claims were included. We checked whether including interaction 

terms between water flow and topographic complexity, and whether including a random intercept for 

each site improved our model by comparing models using the AIC and wAIC. The most parsimonious 

model did neither include interaction terms nor a random intercept for site, and was structured as: 

 

;U>X65@ =	O65@ + 0Y65@, ×,#4Z=>[3 + 0Y65@- × \>]^>"]3 + _65@    (12) 

;U>XA#B =	OA#B + 0YA#B, ×,#4Z=>[3 + 0YA#B- × \>]^>"]3 + _A#B    (13) 

\>]^>"] =	O#C + (Y#C ×,#4Z=>[) + _#C       (14) 

_65@ ∝ _A#B           (15) 

 

Where O indicates intercepts, Y slopes and _ error terms, and the subscripts relate the 

coefficients to the response variable on each case. Table D2 provides a summary of the final piecewise 

SEM with the average net water flow values. However, this model assumes that water flow is constant 

throughout its average values. We, thus, devised a random sampling procedure that incorporated the 

variability around the mean net water flow at each reef zone by generating a sample water flow intensity 

value that could be used at the survey-scale in our model. This procedure involved, for each transect, 

drawing a random value from the normal distribution defined by the reported average and standard 

deviation net water flow. Then, we ran the structural equation model and recorded all the model 

coefficients, as well as if the relationships they represented were statistically significant at the O = 0.05 

threshold or not. The random sampling of water flow values was done 200 times within each of the 200 

resampling iterations. This resulted in a final dataset that comprised of 4,000 sets of bootstrapped 

standardised piecewise SEM coefficients. We used the distributions of these coefficients, in association 

to the proportion of them that were significant at O = 0.05 to determine each variable importance in 

the piecewise SEM model. 
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Validation of productivity estimates and sensitivity analyses 

We validated our measure of productivity by assessing the accuracy of the estimates of !$34, 

and the productivity calculated from it, in a sensitivity analysis composed of two procedures. First, we 

implemented an accuracy analysis for the 56 species in our study that had empirical VBGM parameters 

available. This is an extension of the accuracy analysis in Chapter 2 and (Morais & Bellwood, 2018b), 

using the same machine learning technique. However, because we were only concerned about the ability 

of the model to predict the present set of growth parameters, we included all available curves to improve 

prediction (i.e. no division of the data in training and testing portions). Second, we used the accuracy 

analysis above to perform a sensitivity test on our estimates of productivity (Appendix D). We replaced 

the predicted !$34 by the empirical !$34 values for the 56 species mentioned above. For the remaining 

species, we simulated a random bias in the !$34 prediction by drawing from a distribution defined by 

the mean bias and standard deviation of the 56 species with empirical data. We then reran all resampling 

and bootstrapping procedures and the three main analysis of our manuscript, that is: 1) the proportional 

productivity represented by each trophic pathway; 2) the relationship between proportion of pelagic 

subsidies and total productivity for different reef zones; and 3) the relationship of topography and water 

flow with pelagic and non-pelagic productivity (Appendix D). 

A second sensitivity analysis was performed to that test if the initial size structure of the fish 

assemblage we surveyed was dictating some of our results (Appendix D). Size structure effects could 

potentially occur, for example, if we sampled before or after the recruitment period. We first evaluated 

the proportion of the population size range (i.e. the maximum size of an individual ever observed in the 

population minus a generalised settlement size of 1 cm TL) encompassed by each of the species 

surveyed. Then, we evaluated the possibility that oversampling of highly productive size classes of 

planktivores was affecting our results. Following this reasoning, species whose size structure was 

mostly represented by earlier ontogenetic stages could potentially dominate the productivity because of 

their maximised investment in growth. If that was the case, we should observe productivity concentrated 

in the smaller sizes of all or most species. To evaluate this possibility, we looked at how the productivity 

of each species was divided among the different sizes sampled. Finally, to formally test this potential 
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impact, in addition to the aforementioned analyses, we performed a sensitivity analysis excluding the 

smallest individuals of each species. Thus, we explicitly examined the effect of recruits and small 

juveniles on productivity. These small individuals are the part of fish size structures that tend to exhibit 

the largest temporal fluctuations and that demonstrate, at the same time, the largest relative growth. We 

excluded the bottom 25% of the size structure, i.e. individuals smaller than 25% of the maximum size 

observed in our dataset and, again, reran all resampling and bootstrapping procedures and the three 

main analysis as described above (Appendix D). 

 

Results and Discussion 

Fish productivity across reef zones and trophic pathways 

Across all reef zones, average fish productivity was 4.7 kg ha-1 day-1. The reef slope had the 

highest productivity (6.86 kg ha-1 day-1, Figure D1A), followed by the back reef (5.21 kg ha-1 day-1) 

and crest (4.78 kg ha-1 day-1). The shallow reef flat had the lowest fish productivity (2.02 kg ha-1 day-1). 

Water column trophic pathways supported 1.93 kg ha-1 day-1 of fish productivity (Figure 12), of which 

1.13 kg ha-1 day-1 was supported by reef planktivores, and 0.8 kg ha-1 day-1 by off-reef planktivores and 

their predators (e.g. fusiliers, jacks, Figure 12, Figure D1B). The epibenthic trophic pathway, i.e. fishes 

that feed on benthic organisms on the reef surface (e.g. grazing herbivores, sessile invertivores), was 

the second most important pathway with 1.37 kg ha-1 day-1. The cryptobenthic pathway (e.g. gobies, 

blennies and predators of cryptic invertebrates), off-reef sediment feeders supported intermediate 

productivities (0.64 and 0.51 kg ha-1 day-1 respectively). Generalised predation contributed only (0.24 

kg ha-1 day-1). Overall, these results identify the primacy of water column trophic pathways for 

sustaining fish productivity, followed closely by epibenthic pathways. 
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Figure 12: The fish productivity of a windward reef in the Great Barrier Reef is dominated by water column 

(Plank) and epibenthic pathways (Epiben). Cryptobenthic feeders (Crypto) and the off-reef sand pathway 

(OffSand) also represent important contributions to total fish productivity, while generalised predation 

contributes less. Dashed lines represent median productivity and the density curves are resampling 

distributions (see Methods) with area scaled proportionally to the x-axis. See also Figure D1 in Appendix 

D. Right upper and middle photographs: JP Krajewski. 

 

 

Traditionally, the high benthic primary productivity of coral reefs is considered to dominate food 

chains, with planktonic production assigned to a minor role (Glynn, 1973; Hatcher, 1988; Lewis, 1977). 

Planktonic productivity in surface waters around coral reefs is considered insufficient to support reef 

community metabolism (Glynn, 1973; Lewis, 1977). However, detailed mapping of water movements 

and plankton abundance have revealed that oceanic plankton is primarily transported to the windward 

side of coral reefs in subsurface waters (Hamner et al., 1988). Various physical transport mechanisms 

(e.g. currents, tidal-forcing) interact with the submerged reef topography, driving vertical transport of 

plankton that is orders of magnitude more abundant than in surface waters (Gove et al., 2016; Hamner 

et al., 1988). We found that approximately 41% of total fish productivity originates from water column 

pathways, rising to 57% for fishes on the forereef slope. As a windward reef, the predominant particle 

transport is assumed to take place from the open ocean to the reef (e.g. Hamner et al., 1988), and we 
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thus consider water column pathways to represent potential pelagic energetic subsidies. The high 

contribution of these pathways to the productivity identified here highlights the potential importance of 

pelagic subsidies to coral reef food webs. 

Recently, considerable attention has focused on inverted biomass pyramids (IBPs) on coral reefs 

(McCauley et al., 2018; Mourier et al., 2016; Woodson, Schramski, & Joye, 2018). Allochthonous 

energetic inputs and low trophic-level feeding by large-sized consumers have been invoked to explain 

IBPs (McCauley et al., 2018; Mourier et al., 2016; Woodson et al., 2018), with inter-habitat predator 

mobility and spawning-prey aggregations offered as mechanisms providing allochthonous inputs to reef 

consumers (McCauley et al., 2018; Mourier et al., 2016). We show that pelagic energetic subsidies to 

fishes can also provide abundant allochthonous inputs to coral reefs. This has important consequences 

for coral reef fish productivity and fisheries yields. For example, in many parts of the Indo-Pacific, 

pelagic energy via off-reef planktivores can support significant subsistence and commercial fisheries 

(Dalzell, 1996; Russ et al., 2017). While some systems may have reef-ocean feedbacks (Gove et al., 

2016), our results suggest that these fisheries can be relatively independent of reef production, 

especially on windward reefs. 

 

Contrasting fish biomass and productivity  

Biomass was a poor predictor of the contribution of different trophic pathways to coral reef fish 

productivity. Neither the importance of pelagic subsidies, which include reef and off-reef water column 

pathways, nor that of cryptobenthic-derived productivity are apparent from their standing biomass. 

Indeed, reef planktivores and cryptobenthic feeders composed only a minor portion of fish biomass, 

despite their major contribution to productivity (Figure 13). Body size is probably why these pathways 

were underrepresented by biomass. Water column pathways are dominated by damselfishes 

(Pomacentridae), while small wrasses (Labridae) and cryptobenthic reef fishes are the main components 

of the cryptobenthic pathway. These fishes are predominantly smaller than 10 cm, and contribute little 

to standing biomass (Ackerman & Bellwood, 2000; Depczynski et al., 2007). However, they are among 

the most abundant coral reef fishes (Ackerman & Bellwood, 2000; Depczynski et al., 2007), and can 

produce biomass at rates as high as fishes orders of magnitude larger (Depczynski et al., 2007). We 
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show that water column and cryptobenthic pathways, together, exceeded 1.77 kg ha-1 day-1, 

approximately 38% of total productivity. Most of this production would be disregarded if considering 

biomass alone. 

While the perceived importance of some pathways changed between biomass and productivity, 

both variables unveiled similar among-zone patterns (Figure 13). The epibenthic, cryptobenthic and 

off-reef sand pathways, had relatively consistent productivity across zones. By contrast, reef and off-

reef water column pathways had high productivity on the slope and crest, dropping to almost zero on 

the flat. Thus, while some pathways were relatively important in all habitats, pelagic subsidies were 

mostly confined to exposed forereef zones. This highlights the potential for pelagic subsidies to shape 

reef-zone differences in productivity.  

 

 

Figure 13: Standing biomass and productivity of different trophic pathways vary considerably in importance 

across reef zones in a windward section of a coral reef in the northern Great Barrier Reef, Australia. Each 

coloured dot is a combined subsample of multiple transect areas and enclosed clove oil stations and dark 

dots are median values. The water column pathway from Figure 12 is divided into two components: off-reef 

planktivores (OffPlank) and reef planktivores (ReefPlank). Epibent = epibenthic feeders; Cryptob = 

cryptobenthic feeders; OffSand = off-reef sand feeders; Mixed = multiple trophic pathway feeders. 

 

Pelagic pathways as drivers of coral reef fish productivity 
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Given the large disparities in pelagic subsidies among habitats (Figure 13), we tested the 

potential effect of these subsidies in driving total productivity. We found a strong positive relationship 

between productivity and the proportion of pelagic subsidies (Figure 14A) that was driven by reef zone 

(Figure 3B). Reef slopes had the highest pelagic subsidies and productivity, back reefs and reef crests 

had intermediate values, and reef flats the lowest values (Figure 14B, Table D1). A tight and steep 

coupled increase in productivity and proportional pelagic subsidies was observed on the slope and crest, 

but not on the back or flat reef zones (Figure 14B; Table D1). Forereef zones had not only a higher 

contribution of pelagic subsidies, compared to reef flats and back reefs, but also a higher proportion of 

subsidies, underpinning their exceptional fish productivity. 

 

Figure 14: The strong positive relationship between pelagic subsidies and total fish productivity on a 

windward reef in the Great Barrier Reef (A) is driven by reef zone (B). The model in (B) including an 

interaction between subsidies and reef zones had better support than the one in (A): AIC model (B) = 123.5, 

wAIC = 1; AIC model (A) = 142.8, wAIC = 0. Whereas pelagic subsidies were not or only weakly related 

to total productivity in back or flat reef zones, these variables were strongly and tightly related in crests and, 

especially, reef slopes. (A) and (B) depict one resampling iteration, where dots are resampled visual surveys 

(see Methods), and lines and bands are, respectively, model predictions and 95% confidence intervals 

(LMMs, see also Table D1). The histograms in (C) show the bootstrapped distributions of model coefficients 

(slope) for the proportion of pelagic subsidies for each reef zone. Although coefficients for the flat were most 
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often negative, they almost invariably had 95% confidence intervals overlapping with zero (not shown, 

example on Table D1) 

 

Our data suggests that there are two main components of coral reef fish productivity: an internal 

component, that relies mainly on reef-based productivity; and pelagic subsidies, accessed by fishes, 

either off or on the reef, that consistently boost the productivity of exposed forereef zones (Figure 15). 

Feeding on these pelagic energetic sources is limited on sheltered back reefs and, especially, on the reef 

flat (Figure 15A). The internal productivity component depends on both algal production and recycling, 

and operates mainly through epibenthic and cryptobenthic energetic pathways. It is important across all 

reef zones. There is also a slightly smaller and more variable contribution from photosynthesis (i.e. 

from microalgae in the biofilm layer; Hatcher, 1988) and detritus to fish feeding over adjacent sediment 

areas (Figure 15B).  

Previous research has reported large differences in water flow and topographic complexity 

between reef zones, with marked effects on fish assemblages (Darling et al., 2017; Fulton & Bellwood, 

2005; Fulton, Bellwood, & Wainwright, 2005). Reef complexity has also been identified as an 

important driver of fish productivity (Rogers et al., 2014; Rogers, Blanchard, Newman, et al., 2018). 

We therefore asked if these physical features could explain differences in pelagic subsidies and total 

productivity between zones. Although water transports particles (e.g. zooplankton) to windward reefs 

(Hamner et al., 1988), maintaining water column position in high flows requires fast swimming that is 

energetically costly (Fulton & Bellwood, 2005; Fulton et al., 2005). Topographic complexity provides 

fishes with refuges against both water flow (Johansen, Bellwood, & Fulton, 2008) and predators (Hixon 

& Beets, 1993). Water flow and topography also tend to be correlated, as water motion affects, for 

example, coral growth that subsequently shapes topography (Darling et al., 2017). We therefore used a 

piecewise structural equation model (Lefcheck, 2016) to disentangle the relationships of both 

productivity from pelagic subsidies and other pathways, with water-flow speed and topographic 

complexity (see Methods).  
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Figure 15: Schematic representation of the main trophic pathways leading to coral reef fish productivity on 

the windward section of a coral reef, from the upper slope to the back reef. Width of the arrows is 

proportional to the raw fish productivity. (A) Pelagic subsidies accessed by fish, either off the reef or on the 

reef, boost the productivity of exposed forereef zones such as the upper reef slope and the reef crest. (B) 

Internal production and recycling operate mainly through epibenthic and cryptobenthic energetic pathways, 

which are relatively consistent across all reef zones, with additional contribution from adjacent sediment 

areas. Colours follow Figure 13. (C) The piecewise structural equation model, relating both the productivity 

of pelagic subsidies and the productivity from all other pathways with water flow speed and topographic 

complexity. Numbers are bootstrapped standardised coefficients, colours depict whether an effect is positive 

(blue) or negative (dark red), and the width of the arrow is proportional to the magnitude of the coefficient. 

Dashed lines represent potential relationships that were not significant at / = 0.05. See Table D2 and 

Figure D2 for more details. 

 

Model fits were heterogeneous, with 42% and 27% of the variation in pelagic productivity and 

the remaining productivity, respectively, explained by the predictors (Table D2). Pelagic subsidies and 

the remaining productivity were predicted by different variables (Figure 15C, Table D2). Whereas 

water flow had no direct influence on pelagic subsidies, it had a persistent negative effect on the 

remaining productivity. By contrast, topography had a strong positive effect on pelagic subsidies, but 
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no effect on the remaining productivity. Water flow had a strong negative effect on topographic 

complexity, explaining 52% of its variation, and thus exerting a strong indirect negative effect on 

pelagic subsidies. Despite considerable unexplained variability, we interpret these results as evidence 

that, at the scales investigated herein, topography mediates the capacity of water column fishes to 

intercept plankton transport, providing an important link between pelagic primary productivity and 

coral reefs. The mechanism behind this link is unclear, but probably involves increased provision of 

refuges against water flow and/or predation (Hixon & Beets, 1993; Johansen et al., 2008). In essence, 

to benefit from pelagic subsidies, reefs need topographic complexity.  

We also detected a moderate correlation between pelagic subsidies and the remaining 

productivity. This correlation may be driven by multiple possible links between the external and internal 

sources of productivity in coral reefs, including the sponge and coral-mucus loops (de Goeij et al., 2013; 

Wild et al., 2004), near-reef plankton blooms (Gove et al., 2016), detritus-enhancement from dead 

plankton or fish faeces (Wilson et al., 2003), or emerging resident plankton (Hobson & Chess, 1978). 

Other, unquantified, aspects of structural complexity (e.g. refuge abundance) and hydrodynamics (e.g. 

wave action), as well as predator abundance and activity are likely to contribute to the unexplained 

model variation. 

 

Fish productivity on transitioning coral reefs 

The reefs at Lizard Island have recently suffered multiple disturbance events, including crown-

of-thorns starfish outbreaks (Pratchett, 2010), cyclones (Ceccarelli, Emslie, & Richards, 2016), and 

widespread coral bleaching (Wismer et al., 2019). In particular, category 5 cyclone Ita, in April 2014, 

caused coral cover in our study area to decline by ~55% on the forereef slope, and up to ~70% in 

shallower zones (Ceccarelli et al., 2016). Four years later, non-encrusting coral cover ranged from 1.7% 

on the reef flat to 6% on the slope (Figure 11). Cyclones and other severe storms destroy mechanically-

vulnerable corals (Madin & Connolly, 2006), eroding structural complexity (Pratchett et al., 2008) that 

is critical for small body-sized fishes (Nash, Graham, Wilson, & Bellwood, 2013). This coral loss causes 

disproportional population declines in small fishes, especially planktivores (Ceccarelli et al., 2016; 

Pratchett et al., 2008). Even larger off-reef planktivorous fusiliers, presumably less reliant on the reef 
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structure, may decline following coral loss (Russ et al., 2017). Thus, it would be expected that the 

trophic pathways used by these planktivores would have diminished in importance in structurally-

degraded systems. However, we observed a consistently high contribution of pelagic inputs to the fish 

productivity of this degraded reef, averaging 41% of the total. This indicates some degree of resilience 

of planktivorous fish productivity despite coral loss. 

This raises the question: what were pre-disturbance reefs like? The total fish productivity of this 

degraded coral reef does not appear to differ markedly from estimates of other coral reef systems. For 

example, the productivity of our windward slope (6.86 kg ha-1 day-1) is superficially similar to values 

for a section of fringing reef in French Polynesia (6.85 kg ha-1 day-1 (Arias-González et al., 1997)). 

Unfortunately, most previous reef fish productivity estimates used non-comparable methods (Arias-

González, Galzin, Nielson, Mahon, & Aiken, 1994), encompassing different spatial scales (Arias-

González et al., 1994), and often including adjacent ecosystems (e.g. Polovina, 1984). Our method for 

estimating fish productivity based on somatic growth and mortality applied to underwater surveys 

provides a means to easily address productivity at the reef scale. Further studies using comparable 

methods on other reefs will be critical to understand if and, if so, how coral degradation affects coral 

reef fish productivity. 

 

Caveats and future research 

Our productivity model enabled us to disentangle the relative importance of trophic pathways to 

total fish productivity on a degraded coral reef. Although our study offers a snapshot of this fish 

assemblage, our productivity measures are accurate and robust to variations in growth parameters or 

initial size structure (Appendix D Sensitivity Analyses). Future research may explore the link between 

structural complexity, refuge availability and survivorship (Hixon, 1991; Rogers, Blanchard, Newman, 

et al., 2018). For example, including a dependence of natural mortality on complexity would likely 

reveal even stronger pelagic subsidies due to enhanced survivorship of small planktivorous fishes that 

dominate productivity on high complexity areas. 

Our results provide the first empirical estimate of total fish productivity incorporating the full 

size range of fishes on coral reefs, including pelagic off-reef-feeding taxa (Ackerman et al., 2004; 



Chapter 4: Trophic pathways and reef fish productivity 

 90 

Depczynski et al., 2007). However, our study location encompasses only a small subset of the 

conditions that coral reefs experience. Most coral reefs are not contained within a large continental 

lagoon, with limited wave energy and material transport from oceanic waters (Hamner et al., 1988). 

Many coral reefs are closer to oceanic waters than the reef studied herein, and thus have a larger 

potential to receive pelagic subsidies from deep-water upwelling and internal waves (Gove et al., 2016; 

Hamner et al., 1988; G. J. Williams et al., 2018). It is highly likely that pelagic subsidies will represent 

a much larger part of total fish productivity in these oceanic coral reef systems.  

Furthermore, the interplay between seascape configuration, water flow, and topographic 

complexity will likely determine the relative extent of pelagic vs. benthic pathways. Larger topographic 

complexity in shallow reef areas, for example, should increase the chances of strong pelagic coupling 

of reef food webs. Conversely, the loss of complexity may have significant impacts on pelagic subsidies 

if corals and three-dimensional structure are the key to accessing pelagic resources. Coral loss is often 

linked to decreasing fish abundances (Pratchett et al., 2008; Wilson, Graham, Pratchett, Jones, & 

Polunin, 2006), with likely effects on the ability of coral reefs to retain pelagic inputs. However, recent 

evidence has suggested that this is not always the case, with sustained productivity reported from reefs 

after extensive coral mortality (Robinson, Wilson, Robinson, et al., 2019). With coral cover of less than 

6% and substantial pelagic productivity, our study supports this view, offering additional hope for 

sustained pelagic coupling and subsidies even in low-coral systems. 

In summary, although reef epibenthic pathways are often assumed to dominate coral reef 

trophodynamics, we show that pelagic subsidies can make a substantial contribution to total fish 

productivity. As exemplified by our study system, these subsidies can remain and boost fish 

productivity even in the context of substantial local coral loss. Our findings suggest that the energetic 

functioning of coral reefs might show some resilience even after coral loss. 
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Chapter 5: Severe coral loss and the energetic dynamics of a coral reef 

Published as: Morais, R.A., Depczynski, M., Fulton, C., Marnane, M., Narvaez, P., Huertas, V., Brandl, 

S.J., & Bellwood, D.R. Severe coral loss shifts energetic dynamics on a coral reef. Functional 

Ecology, 34(7), 1507–1518. 

 

Introduction 

The unprecedented, worldwide coral bleaching events of 2015-2017 sparked a re-evaluation of 

coral reef research, conservation goals and the role of corals in underpinning the services provided by 

coral reefs (Bellwood, Pratchett, et al., 2019; Bruno et al., 2019; Hughes, Barnes, et al., 2017; G. J. 

Williams et al., 2019). There have been calls to accept this new low-coral state as an inevitable long-

term situation, strengthened by ongoing coral degradation events (Bellwood, Pratchett, et al., 2019; 

Hughes, Barnes, et al., 2017). If we are to embrace this new reality, we need to understand the biological 

and ecological attributes of these new coral reef ecosystems (Bellwood, Streit, et al., 2019; Graham, 

Jennings, MacNeil, Mouillot, & Wilson, 2015). For example, how will new reef configurations affect 

the energetic dynamics of coral reefs, and can they maintain their capacity to provide food resources 

for people? 

Reduced coral cover and loss of structural complexity are the most widely reported contemporary 

changes in coral reef ecosystems (Alvarez-Filip, Dulvy, Gill, Côté, & Watkinson, 2009; Graham et al., 

2015; Hughes, Kerry, et al., 2017). Such degradation is often exacerbated by other ecosystem stressors, 

such as increased benthic sediment loads (Tebbett, Streit, & Bellwood, 2020) and reduced water quality 

(MacNeil et al., 2019). The effect of these synergistic stressors on associated biota are often showcased 

by the responses of coral reef fishes (e.g. Pratchett, Thompson, Hoey, Cowman, & Wilson, 2018; Stuart-

Smith et al., 2018) because of the critical services fishes provide in tropical ecosystems (e.g. fisheries 

resources, aesthetical value, N. Marshall et al., 2018) and their potential role in mediating coral reef 

resilience (Bruno et al., 2019; Hughes et al., 2010, 2007).  

Reef fish responses to coral reef degradation are often species-specific, depending on body size 

and the degree of dependence on live coral (Ceccarelli et al., 2016; Cheal, MacNeil, Emslie, & 
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Sweatman, 2017; Graham et al., 2007; Stuart-Smith et al., 2018). Corallivorous, planktivorous, and 

coral-dwelling fishes are reported to be particularly susceptible to coral loss while herbivores appear 

relatively resilient (Gilmour, Smith, Heyward, Baird, & Pratchett, 2013; Graham et al., 2006; Pratchett 

et al., 2018; Stuart-Smith et al., 2018). Because many of the species investigated initially respond 

negatively to coral loss (Bellwood, Hoey, Ackerman, & Depczynski, 2006; Wilson et al., 2006), it is 

generally expected that assemblage-level fish responses would also be negative. However, species-level 

responses to coral loss are neither linear nor additive at the ecosystem level, with evidence suggesting 

that post-coral loss stability in coarse fish assemblage metrics, such as abundance or biomass, is possible 

(Bellwood et al., 2006; Ceccarelli et al., 2016). This apparent community stability may, however, 

overshadow major changes in species composition that result in alternate ecosystem states (Bellwood, 

Streit, et al., 2019; Graham, Cinner, Norström, & Nyström, 2014; Hughes, Barnes, et al., 2017).  

The energetic consequences of assemblage level responses to coral loss for fishes have relied 

predominantly on a single metric, standing biomass (e.g. Ceccarelli et al., 2016; Pratchett et al., 2018; 

Robinson, Wilson, Jennings, & Graham, 2019; Stuart-Smith et al., 2018). However, ecosystem 

functions operate through time and are, thus, more accurately assessed using dynamic, flow-based rates 

(Bellwood, Pratchett, et al., 2019; Brandl, Tornabene, et al., 2019; Hooper et al., 2005). Indeed, reef 

fish biomass and the underlying rate of biomass production often show only limited correlation. For 

example, small planktivores that comprise a small standing biomass are often important drivers of total 

biomass productivity (Chapter 4; Morais & Bellwood, 2019). Similarly, small cryptobenthic fishes 

contribute disproportionally to the biomass consumed by predators despite a negligible standing 

biomass, a result of their fast-paced lifestyle (i.e. short lifespan and high mortality rates, Brandl, 

Tornabene, et al., 2019). This suggests that different ecosystem functions are likely to respond to coral 

reef degradation in fundamentally different ways (cf. Rogers, Blanchard, & Mumby, 2018).  

Here, we focus on the impacts of coral loss on four metrics of energy flow and storage, which 

underpin consumer biomass production and thus, coral reef ecosystem functioning (Brandl, Rasher, et 

al., 2019). We exploit a recently expanded approach to estimate fisheries-independent fish productivity, 

and other ecosystem functions, in high diversity communities such as coral reefs (see Chapters 3 and 

4, also: Brandl, Tornabene, et al., 2019; Depczynski et al., 2007; Morais & Bellwood, 2019). Because 
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this approach is applied for each individual, it provides an ideal interface with underwater fish counts, 

the universal reef fish censusing method. By simultaneously quantifying multiple aspects of a key 

ecological process, we reinforce a pluralistic, process-oriented view of ecosystem research needed to 

decipher and better manage contemporary reef systems (Bellwood, Pratchett, et al., 2019; Brandl, 

Rasher, et al., 2019; Fulton et al., 2019; Hughes, Barnes, et al., 2017). 

 

Methods 

Study locality and survey design 

We carried out fish and benthic surveys at Lizard Island, on Australia’s Great Barrier Reef (GBR, 

Figure 16), in 2003-2004, and 14-15 years later, in 2018. Benthic surveys were used to quantify live 

coral and turf cover using point-intercepts and photoquadrats along transects in 2003/04 and 2018, 

respectively. We randomly subsampled points to ensure a similar precision and to be able to compare 

among these survey methods. In both 2003/04 and 2018, we surveyed 13 common reef fish families 

using visual surveys (belt transects) and enclosed clove oil stations. A detailed description of the field 

procedures is available in the Supplemental Methods (Appendix E). To combine the different fish 

survey methods into a single unit containing all surveyed fish families, we applied the resampling 

procedure described in Chapter 4.  

From 2014 to 2017, the reefs around the Lizard Island group were affected by four major coral 

degradation events which included two severe (category 5 & 4) cyclones in 2014 and 2015, closely 

followed by two major coral bleaching events in 2016 and 2017. These cumulative events resulted in 

up to 80% decline in coral cover throughout the island group, particularly at exposed sites (Ceccarelli 

et al., 2016; Madin et al., 2018). Our fish and benthic surveys were located in the southeast windward 

reef stretch between South Island and Bird Islet (Figure 16) following Depczynski et al. (2007), and 

encompassed a spectrum of reef habitat zones: upper slope (7-9 m depth), forereef crest (3-4 m depth), 

flat (1-2 m depth) and lagoonal back reefs (2-3 m). We used satellite images to map each of these reef 

zones and estimate their area (Figure 16, see Supplemental Methods, Appendix E for details). 
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Metrics of energy flow and storage 

The procedures to obtain the four metrics used to evaluate energy flow and storage in this study 

followed (Brandl, Tornabene, et al., 2019), and are described in detail in the Supplemental Methods, 

Appendix E. In brief, growth trajectories are predicted at the species/genus level based on traits and 

water temperature (Chapter 2 and Morais & Bellwood, 2018b). Then, the expected somatic growth, in 

g day-1, is estimated by placing each individual in their predicted growth trajectory (Chapter 3). Daily 

mortality rates are obtained by combining species/genus mortality coefficients estimated from growth 

trajectories and water temperature with an exponential negative relationship with individual body size 

(see Chapter 3; Supplemental Methods, Appendix E). These daily mortality rates are multiplied by 

the individual body mass to generate an ‘expected per capita loss of biomass’ due to mortality.  

The total standing biomass and productivity of each resampled fish assemblage was derived from 

the combined weights and expected growth of all individuals, respectively. Because productivity was 

estimated from the expected somatic productivity, it should be considered as a metric of potential 

productivity. The term ‘consumed biomass’ is hereafter used broadly to indicate expected losses from 

standing biomass due to mortality, including losses that are not directly a result of predation (i.e. 

decomposition). These expected losses were estimated for each individual based on their likely 

mortality probabilities (see Appendix E). While standing biomass measures an ecosystem pool of 

stored heterotrophic energy (scaled to t ha-1), productivity and consumed biomass are dynamic 

ecosystem flow metrics (scaled to kg ha-1 day-1) (Hooper et al., 2005).  

We also calculated two derived rate measures: total turnover (% year-1) and an instant biomass 

change metric (unitless). Turnover is classically defined as the ratio of production to biomass (K. R. 

Allen, 1971; Odum & Odum, 1955; Waters, 1969). We expand on this concept by defining total 

turnover as the sum of net turnover (the quotient of productivity and standing biomass) and consumption 

turnover (the quotient of consumed and standing biomass, Brandl, Tornabene, et al., 2019). Total 

turnover could be understood as the rate at which particles flow across the system, i.e. are either 

incorporated into the food chain or released from it. Our instant biomass change metric was obtained 

by dividing consumed biomass by (net) productivity. This metric positions the fish assemblage along a 
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gradient of immediate biomass response, from biomass erosion (values > 1, when consumption exceeds 

production) to biomass accumulation (values < 1, when production exceeds consumption). 

To provide a system-level analysis of potential changes in the main reef habitat zones, we 

calculated the weighted average of the reef zone-specific standing biomass, productivity, consumed 

biomass and turnover. We used the area of each reef zone as obtained from satellite-based habitat 

mapping (see full description in the Appendix E) as the averaging weights for all descriptors. 

 

Data analyses 

All data analyses were performed in R (R Core Team, 2019). To evaluate family-level abundance 

and biomass patterns across reef zones, as well as potential changes from 2003/04 to 2018, we used 100 

bootstrap iterations of resampled fish assemblages. These assemblages were aggregated by family and 

visualised in two dimensions using a non-metric multidimensional scaling (nMDS) ordination based on 

Bray-Curtis similarity of the square-root transformed community matrix. Because bootstrapped 

assemblages do not constitute replicates, instead of individualising samples with dots, we depict their 

bi-dimensional variability using polygons. The magnitude of potential changes in each family was 

calculated as the log10 of the ratio of abundance (or biomass) in 2018 and 2003. We used the probability 

of an effect (decrease or increase) to guide interpretation of these potential changes. 

We used a Bayesian analytical framework to test for differences in coral cover and ecosystem 

functioning metrics (fish standing biomass, productivity, consumed biomass and turnover) between 

sampling years for the different reef zones. We implemented MCMC chains using the No-U-Turn 

sampler algorithm in the Stan language with the rstanarm interface to R (Goodrich et al. 2018; Stan 

Development Team 2018). The full procedures, priors and model specifications can be found in the 

Supplemental Methods, Appendix E. 
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Results 

Between 2003/04 and 2018, live coral cover declined from 27.0% to 7.3% on the forereef slope 

(72% decline, high posterior density interval (HPD) = 61-82%) and from 41.6% to 5.7% on the reef 

crest (83% decline, HPD = 77-90%; Figure 16). There was no evidence of changing coral cover over 

the same time period in either the reef flat or back reef, with both HPDs including 1. The reef flat and 

back reef had low coral cover in 2003/04 and remained unchanged in 2018 (Figure 16). By contrast, 

turf cover increased substantially in the slope and crest (96% and 100% increase, respectively, HPD = 

68-127% and 75-130%; Figure 16), but less so in the reef flat and back reef (18% and 29% increase, 

respectively, HPD = 8-25% and 13-45%; Figure 16). Turf cover had zone-specific minimum values of 

~30% in 2003/04, but did not comprise less than 60% in any zone in 2018.  

There was a clear spatial mismatch between coral cover decline and the response of fish 

assemblages. While coral loss was greatest in exposed forereef habitats, fish assemblage structure 

changed markedly across all reef zones (Figure 17). The direction of these changes was generally 

consistent among zones and was marked in terms of both abundance and biomass. Fish assemblages 

tended to move towards the origin of the abundance ordination, due in particular to family-level 

decreases in the Epinephelidae, Pomacanthidae and Chaetodontidae. A major shift towards positive 

MDS1 scores was largely driven by increases in Acanthuridae, Siganidae, Tripterygiidae and 

Pseudochromidae biomass. 
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Figure 16: The studied windward reef at Lizard Island, Great Barrier Reef. Coloured areas in the upper 

right panel represent the five mapped reef zones. Scatterplots show transect-level proportional live coral 

cover (upper panels) and turf cover (lower panels) in 2004 and 2018 (individual dots), model estimated 

median (larger dots) and 95% credibility interval (whiskers) for each reef zone. The inner and outer reef 

flats have been combined, together comprising the broader ‘reef flat’ zone. 2&$'() is the ratio between the 

estimates in 2018 and 2004, HPD is the high posterior density interval of 2&$'().  
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Figure 17: Patterns in the abundance and biomass of reef fish families among reef zones at Lizard Island 

in 2003 and 2018. Polygons on the left panels represent the space occupied by 100 resampling iterations of 

the fish assemblages for each reef zone on each nMDS, while arrows link reef zones in 2003 and 2018. Right 

panels exhibit the family vectors. S = slope, C = crest, F = flat, B = back reef. 

 

Changes in fish families showed a degree of consistency among habitat zones (Figures E1 and 

E2, Appendix E). When family-level changes were normalised by the area of each reef zone, it became 

clear that the changes observed on Figure 17 were due to a combination of increases and decreases in 

the abundance and biomass of specific families (Figure 18). The Chaetodontidae declined in both 

abundance and biomass, while the Pomacanthidae and Acanthuridae declined in abundance, but not in 

biomass. By contrast, the Gobiidae and Blenniidae declined in biomass, but not in abundance, whereas 
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the Epinephelidae showed no clear reef-level change. However, most families increased in both 

abundance and biomass following coral loss. This includes mostly small-sized fishes, such the 

Apogonidae and Pseudochromidae, but also larger body-sized groups, such as the Siganidae and 

parrotfishes (Labridae, Scarini). The Pomacentridae increased in both abundance and biomass, although 

these increases were small in magnitude (Figure 18). 

 

Figure 18: Magnitude of change in the abundance and biomass of fish families on the studied windward 

reef at Lizard Island between 2003 and 2018. Circles represent medians across resampling iterations, wide 

bars the interquartile range, and whiskers the 95% quantile range. Colours are proportional to the 

probability of an effect: grey = < 70% probability of change; red > 70% probability of a decline; and blue 

> 70% probability of an increase. Numbers are the probabilities for all families with > 70% and < 100% 

probability (100% probabilities omitted). 
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Evaluating these reef-scale fish assemblage changes from an energetic standpoint revealed that 

total standing biomass and productivity increased by 71% (HPD = 64-77%) and 41% (HPD = 39-42%), 

respectively, while consumed biomass increased about 37% (HPD = 35-38%) (Figure 19A,B,C). This 

increase in standing biomass was driven by increases in parrotfishes, which were ranked fourth overall 

in 2003 and became second in 2018 (Figure E3, Appendix E), but also by surgeonfishes and 

rabbitfishes. These three families had higher abundance of moderately large individuals (100-1000g of 

body mass) and a lower abundance of relatively small individuals (with 10-100g) in 2018 compared to 

2003 (Figure E4, Appendix E). The increase in productivity in 2018 was mainly driven by 

surgeonfishes, parrotfishes and cardinalfishes and, to a lesser degree, rabbitfishes (Figure E3, 

Appendix E). Consumed biomass showed similar family-level changes to productivity (Figure E3, 

Appendix E). 

By contrast, the total turnover of this reef fish assemblage diminished by 19% (HPD = 17-21%) 

between 2003/04 and 2018 (Figure 19D). This happened irrespective of increased total abundance 

(from 1275 to 1817 individuals per 100m2), and of increased turnover in some small body-sized fish 

families (Figure E3, Appendix E). A closer look at the size structure of the fish assemblage in the two 

survey periods reveals that changes in biomass, productivity and consumed biomass followed similar 

size-related patterns (Figure E5, Appendix E). These three metrics clearly increased in the smallest 

sizes (from 0.1 to 1g), and in moderately large sizes (~1000g, Figure E5, Appendix E). By contrast, 

the three showed similar values or even a small decline in the median size range (10-100g) and very 

high variability in the largest sizes (>1000g).  
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Figure 19: Differences in standing biomass (A), productivity (B), consumed biomass (C) and total turnover 

(D) of 13 reef fish families on a windward reef at Lizard Island between 2003 and 2018. Density curves are 

based on bootstrapped fish assemblages for each sampling year over 500 iterations. 2&$'() is the ratio 

between the estimates in 2018 and 2003, HPD is the high posterior density interval of 2&$'(). 

 

Produced and consumed biomass increased at similar rates from 2003/04 to 2018 in this fish 

assemblage (41% for produced and 37% for consumed biomass, Figure 19 and Figure 20). 

Consequently, there was only a small shift in the instant biomass change, i.e. the ratio of consumed to 

produced biomass, of this assemblage in 2018 to about 96% relative to its value in 2003 (HPD = 96-

97%). In both cases, the total consumed biomass slightly exceeded the amount of produced biomass 

(change > 1, Figure 20), and thus the magnitude of the instant biomass change was similar in both 

periods. 
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Figure 20: The relationship between consumed and produced biomass on a windward coral reef at Lizard 

Island, northern GBR. The instant biomass change is the ratio of biomass consumption to production, with 

values > 1 meaning biomass erosion, and values < 1 meaning biomass accumulation. 2&$'() is the ratio 

between the instant biomass change estimates in 2018 and 2003/04, and HPD is the high posterior density 

interval of 2&$'(). 

 

Discussion 

While the responses of coral reef fishes to coral reef degradation have attracted considerable 

attention (reviewed in Pratchett et al., 2008, 2018), most research to date has focused on species and 

family-level responses and static aggregate metrics such as abundance, diversity and biomass. By 

estimating multiple dynamic metrics that portray consumer biomass production, a key component of 

ecosystem functioning, we reveal thus far overlooked ecosystem effects of coral loss that help explain 

previously documented assemblage responses. Most strikingly, coral loss was associated with 

substantial increases in total fish biomass, productivity and consumed biomass, but with decreased 

turnover. These findings imply a more productive but slower-paced reef fish assemblage following 

severe live coral loss. 

 

Family-specific responses to coral degradation 

Family-level responses were largely consistent with the literature. For example, chaetodontids 

exhibited the most extensive declines in abundance and biomass, a pattern repeatedly reported 
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previously (e.g. Cheal et al., 2017; Stuart-Smith et al., 2018; Wilson, Graham, & Pratchett, 2013). 

Similarly, although we did not observe a net decline of pomacentrids, most planktivorous damselfishes 

exhibited a strong decline on the reef crest (Figure E6, Appendix E) following an 86% coral loss in 

this zone. Such declines of planktivorous damselfishes are among the most widely reported responses 

of fishes after coral loss (Pratchett et al., 2008, 2018; Wilson et al., 2006), potentially due to their 

reliance on branching coral structures for refuge (Wilson, Burgess, et al., 2008; but see Wismer et al., 

2019).  

Positive responses were also consistent with previous studies, including increasing biomass of 

nominally herbivorous fishes (mainly Siganidae, Labridae – Scarini and Acanthuridae) (Figure 17). 

The vast majority of studies evaluating the responses of multiple coral reef fishes to coral degradation 

have found nominally herbivorous fishes to respond positively with increases in abundance and/or 

biomass (Adam et al., 2011; Ceccarelli et al., 2016; Cheal et al., 2017; Pratchett et al., 2008, 2018; 

Robinson, Wilson, Jennings, et al., 2019; Russ, Questel, Rizzari, & Alcala, 2015; Wilson et al., 2006). 

However, the families that displayed the strongest responses over the 15-year span of our study were 

small cryptobenthic reef fishes (sensu Brandl et al., 2018). Pseudochromids, tripterygiids and apogonids 

all displayed over ten-fold increase in abundance and/or biomass (Figure 18, Figures E1 and E2 in 

Appendix E), although the same pattern did not hold for gobies or blennies. Only one study has 

documented the response of cryptobenthic reef fishes to coral loss, likewise reporting increased 

abundance and a markedly different species composition following coral bleaching (Bellwood, Baird, 

et al., 2012; Bellwood et al., 2006). It is possible that, because of their short generation times 

(Depczynski & Bellwood, 2006), cryptobenthic fishes are more responsive to changes over medium-

term timeframes than larger species. 

 

Potential explanations for the observed energetic shifts 

Our study, therefore, revealed responses of reef fishes to coral loss that reflect previous research, 

thus implying a typical assemblage-level response. The novelty of our findings, however, stems from 

an understanding of how these responses integrate with key elements of ecosystem function (Bellwood, 

Streit, et al., 2019; Brandl, Rasher, et al., 2019). The simultaneous increases in reef fish biomass, 
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productivity and consumed biomass, alongside a decrease in turnover, imply higher productivity but 

slower-paced energetic flow in the fish assemblage of this new low-coral cover reef state. Although our 

study was restricted to a single locality, our results have broader implications for coral reefs because 

many of the key components of change (e.g. increases of nominally-herbivorous fishes from the 

families Acanthuridae, Siganidae and Labridae - Scarini) are congruent with prior studies across the 

Indo-Pacific (see above).  

Trophic models have suggested that reef fish productivity would follow a parabolic trajectory 

after coral loss (Rogers, Blanchard, & Mumby, 2018; Rogers, Blanchard, Newman, et al., 2018). 

Reduced live coral cover would initially trigger increased resource availability, favouring herbivores 

and invertivores; but the subsequent erosion of the reef structure would reduce the availability of 

predator refuges (Rogers, Blanchard, Newman, et al., 2018). In our study, despite extensive reduction 

in structural complexity (as indicated by severe loss of branching corals, Wismer et al., 2019), we found 

no evidence of declining fish productivity. Rather, our results seem to corroborate long-term catch data 

that reported maintained, but increasingly variable, reef fishery yields in coral-degraded reefs that 

underwent phase shifts to dominance of structurally-complex benthic macroalgae (Robinson, Wilson, 

Robinson, et al., 2019). However, no macroalgae-dominance shifts occurred in our site, suggesting that 

different mechanisms have underpinned this sustained productivity. Potential explanations for the 

observed ecosystem function responses in our study can be divided into two classes: 1) reduced resource 

limitation due to increased abundance, quality or accessibility of benthic resources; and 2) predator-

release mechanisms, implying increased fish survivorship. These mechanisms are not mutually 

exclusive and may reinforce one another. 

Nominally-herbivorous fishes have been hypothesised to be resource-limited on coral reefs 

(Carpenter, 1990; Hart, Klumpp, & Russ, 1996; Hart & Russ, 1996). Their major feeding substratum, 

algal turfs (Adam et al., 2018; Bellwood & Choat, 1990; Brandl & Bellwood, 2014), is an important 

colonist of dead coral skeletons and is likely to increase in abundance following coral mortality (e.g. 

Diaz-Pulido & McCook, 2002). Increased resource availability has been assumed to cause the strong 

correlation found between changes in coral and turf cover, and the abundance of nominally-herbivorous 

fishes (Adam et al., 2011; Hart et al., 1996; Hart & Russ, 1996; Russ et al., 2015). Indeed, in our study, 
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we detected algal turf cover increases of 18-100%, depending on the reef zone, from an estimated cover 

of 32-70% during 2003/04 to 64-83% in 2018. Although some of this turf increase can be due to 

‘canopy-effects’ from previously undetected turfs underneath structurally-complex corals (Goatley & 

Bellwood, 2011), increased energy yield of algal turfs to herbivores after coral loss is possible, even if 

turf abundance remains unchanged, if their accessibility or nutritional quality have improved. Increased 

accessibility can occur if larger herbivores become able to exploit algal turfs previously underneath 

branching corals (i.e., due to size constraints, Bennett, Vergés, & Bellwood, 2010; Steneck, Arnold, & 

Mumby, 2014) or vigorously defended by territorial damselfishes and surgeonfishes (Choat & 

Bellwood, 1985; Robertson & Polunin, 1981). Although territorial damselfishes, in particular, have 

been observed to decline following storm-induced coral loss (Ceccarelli et al., 2016; Emslie et al., 

2012), these fishes were scarce in the forereef zones of our reef even before coral loss and showed no 

clear declining trend (Figure E6, Appendix E).  

Improved nutritional quality of algal turfs, can arise though multiple mechanisms. For example, 

increased light irradiance from reduced coral canopy overshading or reduced sediment loads due to 

changes in water movements can result in more productive turfs (Carpenter, 1985; Goatley & Bellwood, 

2013; Tebbett, Bellwood, & Purcell, 2018). Additionally, other nutritious components of the epilithic 

algal matrix can be boosted under these circumstances (Clements, German, Piché, Tribollet, & Choat, 

2017; Kramer, Bellwood, & Bellwood, 2013). Increases in turf abundance, accessibility, or nutritional 

quality, in isolation or combination, could provide a causal explanation for the strong herbivore effect 

observed in our productivity metrics. 

Finally, reduced predation could, in theory, contribute to the observed biomass and productivity 

increases through enhanced survivorship of juveniles settling from the pelagic realm or of adults 

migrating to forereef areas. It is unlikely that settlers would face decreased predation because of the 

substantial increases in the abundance of key mesopredators of juvenile reef fishes, such as labrids and 

pseudochromids (e.g. Connell, 1998; Goatley, González-Cabello, & Bellwood, 2017). However, large 

juveniles or adult reef fishes migrating to the area could face decreased predation risk from ambush 

predators that benefit from tabular coral structures for hunting (e.g. epinephelids such as Plectropomus 

leopardus, Kerry & Bellwood, 2012; Samoilys, 1997). Support for this hypothesis is limited. Although 
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there was a trend of decreasing epinephelid abundance in the exposed forereef habitats (72% chance of 

a negative effect in the slope and crest, Figure S1), we did not detect clear reef-level responses of 

epinephelids to coral loss.  

 

Temporal-stability and implications of energetic shifts for ecosystem functioning 

Our findings suggest that cumulative coral loss can drive energetic shifts on coral reefs toward 

biomass accumulation. However, we did not detect a clear and consistent shift in the energetic balance 

(i.e. produced minus consumed biomass) of these fish assemblages between 2003/04 and 2018, mainly 

because productivity and consumed biomass increased at similar rates (41% and 37% respectively). 

Nevertheless, the 71% increase in standing biomass during this period requires some mechanism of 

biomass accumulation. Two explanations appear plausible: either our two snapshot assessments 

obscured shifts in the balance between consumed and produced biomass that happened in between 

sampling periods, or the very small shift towards biomass accumulation (4%, depicted in Figure 20) 

was sufficient over the 15-year time period to generate the observed biomass build-up. As noted above, 

the elements underpinning the observed energetic shift (i.e. increasing abundance and biomass of 

herbivores) are shared with other coral reefs, suggesting this may become a common feature of degraded 

coral reef systems. But what are the potential ecosystem consequences of the observed energetic shifts? 

Superficially, the observed biomass accumulation may seem like a positive outcome of coral loss 

from a human perspective. The increase in fish productivity on our reef reinforces observations of stable 

reef fish catches after coral loss (Robinson, Wilson, Robinson, et al., 2019), and suggests that the 

livelihoods of people that rely on food production on degraded coral reefs could be maintained. 

However, this superficial analysis conceals an important implication of another key finding of the 

present study: that the turnover of the fish assemblage decreased substantially despite the increased 

biomass and productivity. 

On coral reefs, turnover has been shown to be dominated by small, fast-lived cryptobenthic reef 

fishes (Brandl, Tornabene, et al., 2019; Depczynski & Bellwood, 2006; Depczynski et al., 2007) 

suggesting declines in this group could provide a primary driver for assemblage turnover. However, we 

observed increases in most families of cryptobenthic reef fishes including the highly abundant gobies 
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(Figure E3, Appendix E). By contrast, we found evidence for reductions in the turnover of larger fish 

families (e.g. Labridae, Acanthuridae). Thus, it appears that the decline in turnover is due to a 

disproportional increase in the biomass relative to productivity or consumed biomass, for larger reef 

fishes. This is supported by a shift in the size structure of the three main nominally-herbivorous fish 

families from 2003/04 to 2018 (Figures E4 and E7, Appendix E) that was not associated with an 

increase in overall abundance (see Figure E3, Appendix E). This size shift involved reduced biomass 

in small sizes (5-50g) and increased in moderately large sizes (> 500g) for Acanthuridae and Labridae 

– Scarini, although these were less marked for the Siganidae (Figures E4 and E7, Appendix E).  

Decreased turnover, thus, indicates that the system is currently unable to replace biomass at the 

same rates as new biomass is generated. This suggests that, regardless of what mechanism underpinned 

the observed biomass accumulation, the enhanced productivity might be due to storage effects from the 

somatic growth of individuals previously present (e.g. Hart et al., 1996; Russ et al., 2015). The somatic 

growth of individual herbivorous fishes has recently been found to increase after acute coral loss (Taylor 

et al., 2019), further providing support for the role of storage effects in the enhanced productivity. 

Similar dynamics involving an initial increase of herbivore biomass following abrupt coral loss have 

been found to result in population crashes after recovery of coral cover (e.g. Gilmour et al., 2013; Russ 

et al., 2015). Even in the absence of coral recovery, sustained herbivore productivity would theoretically 

require sustained recruitment. However, so far, the recruitment dynamics of fishes on degraded coral 

reefs remain largely unknown. Finally, although our results are not entirely consistent with previous 

models forecasting declining fish productivity after the erosion of structural complexity (e.g. due to 

refuge loss, Pratchett et al. 2018; Rogers, Blanchard & Mumby 2018), it is not impossible that a low 

complexity threshold exists, which was not reached in our study. In this scenario, if complexity 

continues to decline past this ‘refuge-threshold’, fish populations would crash, and productivity would 

be bound to decline. Altogether, our findings warrant caution in interpreting the newly amassed biomass 

as temporally stable over extended timescales, especially where harvesting occurs. 

 

Conclusion 
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Overall, our ecosystem-based functional evaluation of a coral reef fish assemblage after 15 years 

of cumulative coral loss provides evidence for nuanced but important shifts in the energetic pathways 

that underpin reef fish assemblages. Measuring, modelling or estimating functional attributes is gaining 

momentum in coral reef ecology, and can reveal key insights into the components that make or break 

these diverse marine ecosystems (Longo, Hay, Ferreira, & Floeter, 2019; McWilliam, Chase, & 

Hoogenboom, 2018; Morais & Bellwood, 2019; Ruttenberg, Adam, Duran, & Burkepile, 2019; Streit, 

Cumming, & Bellwood, 2019; Tebbett et al., 2020). Our findings further underscore the utility of this 

approach and emphasize the need to investigate multiple metrics of ecosystem functioning 

simultaneously to reveal the complexity of functional shifts that can occur after major ecosystem shocks 

(Brandl, Rasher, et al., 2019). For example, considering only standing biomass and productivity would 

not in itself reveal the full extent of the altered demographic dynamics unveiled by examining the 

turnover of this reef fish assemblage. Our results provide evidence that coral reefs facing extensive and 

cumulative coral loss likely undertake a number of energetic shifts. Furthermore, they suggest that, 

although some of these changes might be initially perceived as positive, their temporal stability is 

questionable. 
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Chapter 6: Human exploitation and productivity-biomass relationships on 

coral reefs 

Published as: Morais, R.A., Connolly, S.R., & Bellwood, D.R. (2020) Human exploitation shapes 

productivity‐biomass relationships on coral reefs. Global Change Biology, 26(3), 1295–1305. 

 

Introduction 

Understanding the relationship between human harvesting of coral reef resources and resource 

availability is challenging. Of all indicators used to explore this relationship, fish standing biomass is 

one of the most widely and successfully employed (Cinner et al., 2018; Nash & Graham, 2016). 

Standing biomass is conveniently estimated from field data, such as underwater counts of fishes. 

Further, it responds negatively to multiple proxies of human impacts, such as human population density 

(Bellwood, Hoey, & Hughes, 2012; Dulvy et al., 2004), distance from markets (Cinner, Graham, 

Huchery, & Macneil, 2013; Robinson et al., 2017), accessibility (Cinner et al., 2018; Maire et al., 2016) 

and fishing effort (Jennings & Lock, 1996; Jennings & Polunin, 1996). Standing biomass has also been 

linked to multiple ecosystem processes, and is often used as a measure of ecosystem functioning and 

resource production (Bellwood, Hoey, et al., 2012; Duffy et al., 2016; Graham et al., 2015; Mora et al., 

2011; M. I. O’Connor et al., 2017). Standing biomass is, above all, an intuitive representation of 

resource availability: more biomass equals to more fish.  

However, standing biomass is a static measure that results from production accumulated over an 

unknown time frame, whereas resource productivity is a rate associated to how energy or material flow 

within a system (A. P. Allen & Gillooly, 2009; Jenkins, 2015; Odum & Odum, 1959). Although critical, 

the relationship between community-level resource productivity and standing stock biomass has rarely 

been explicitly tested (Jenkins, 2015). For instance, theory predicts that community biomass should not 

scale proportionally to its underlying rates (e.g. biomass production). Instead of constant, the ratio 

between productivity and biomass (i.e. biomass turnover) is predicted to scale with body mass at an 

exponent of -0.25 (A. P. Allen & Gillooly, 2009; Brown et al., 2004; Jennings & Mackinson, 2003; 

Trebilco et al., 2013). In essence, this means that more biomass per unit productivity is expected as 
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standing biomass increases. This non-proportionality between community standing biomass and 

production rates has been observed in empirical data from several terrestrial and aquatic systems 

(Jenkins, 2015), but remains under-investigated for coral reefs.  

Large-scale assessments of coral reef fish assemblages have repeatedly demonstrated depleted 

biomass in locations with large human populations or easy access (e.g. Cinner et al., 2018; Edgar et al., 

2014; Maire et al., 2016; Mora et al., 2011; I. D. Williams et al., 2015). However, even biomass-

depleted coral reef fish assemblages can still support socially significant harvesting (Condy et al., 2015; 

Newton et al., 2007). Human adaptability may help to explain this ongoing food provisioning despite 

biomass depletion (e.g. use of destructive fishing or exploiting previously ignored grounds or stocks, 

Berkes et al., 2006; Pauly et al., 2002; Pauly & Zeller, 2014). However, compensatory ecological 

mechanisms permitting the coexistence of low coral reef fish biomass and relatively high somatic 

productivity may also be involved. Compensatory dynamics are at the heart of fisheries theory, which 

considers that fishing mortality drives standing biomass below the carrying capacity and, in doing so, 

stimulate increased ‘surplus’ productivity (Beverton & Holt, 1957; Hilborn & Walters, 1992; Schnute 

& Richards, 2002). These compensatory ecological mechanisms, however, have not commonly been 

investigated on reef systems, potentially due to logistic constraints and methodological challenges in 

quantifying coral reef fish productivity and parameterizing multispecies surplus production models 

(Appeldoorn, 1996; Hollowed et al., 2000). When biomass and fisheries yields were independently 

estimated and correlated with fishing intensity on coral reefs, diverging relationships were observed 

(Jennings & Polunin, 1996). Thus, it is possible that human exploitation affects large-scale patterns of 

coral reef productivity and biomass, yet this hypothesis remains untested. 

Here, we base on a recent framework for generating fisheries-independent estimates of fish 

productivity (Chapter 3; Brandl, Tornabene, et al., 2019; Morais & Bellwood, 2019), to evaluate if 

standing biomass can reliably predict the productivity of coral reef fishes. Specifically, we test whether 

standing biomass and productivity co-vary proportionally across a large spatial scale dataset spanning 

15,000 km from the Western Indian Ocean to the Central Pacific. We first focus on a heavily targeted 

reef fish group, parrotfishes (Hamilton et al., 2016; Taylor, Lindfield, & Choat, 2015), from uninhabited 

and near-pristine, to densely populated and highly-exploited locations. We then evaluate the impacts of 
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human exploitation on the biomass and productivity of coral reef fish assemblages using a model that 

integrates size-spectrum theory, somatic growth trajectories, and stochastic simulations. Finally, we test 

predictions from this model by using high-definition datasets of entire coral reef fish assemblages from 

two of the world’s most diverse marine regions, the Coral Triangle and the Great Barrier Reef.  

 

Materials and Methods 

Individual body mass and growth, assemblage biomass and production 

Standing biomass and biomass production are obtained from fish assemblage data, e.g. 

underwater surveys, and geometric and life-history traits. The body mass b7 of individual fish F can be 

obtained from its length, %7, through: 

 

b7 = #7(%7
.%)	

                      (12) 

where #7 	and 57 are species-specific power-law parameters with geometric properties, often referred to 

as length-weight parameters (Froese, 2006). The cumulative sum of / individual fish masses in an 

assemblage, i.e. the total biomass of the assemblage, can be obtained by: 

 

c =db7

%

7D2

	

                      (13) 

The expected growth, in mass units, of each individual F over a period of " days is obtained from 

equation (12) by using %#%, the length of the fish at time 4 (e.g. at the time of the survey), and %#>$7, its 

length after " days. %#>$7 can be calculated in the context of the Von Bertalanffy Growth Model 

(VBGM, e.g. Chapters 2, 3). VBGM coefficients ! and %) are highly correlated on the log-scale 

(Chapter 2; Morais & Bellwood, 2018b; Pauly, 1998), and can be standardised on a single parameter, 

!$34, following the procedures described in Chapter 2. The size of individual F in time 4 + ", %#>$7, 

is given by the function: 
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%#>$7 = %$347 e1 − 2
*+./'%E301.%*3!%Ff	

            (14) 

where %$347 is the maximum species size for individual F; ##>$7 is its age, in years, at time 4 + "; and 

#/7 is its theoretical age at size = 0 (4/ in the VBGM). We estimated #/7 from the regression model 

provided by Pauly (1980) and rescaled the output values between the maximum value obtained and a 

minimum value of -0.5 to avoid unrealistically low values of #/ for coral reef fishes (Choat & 

Robertson, 2002; Grandcourt, 2002). The age of individual F at time 4 + " (Depczynski et al., 2007) 

can be estimated from: 
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            (15) 

where %#7 is the size of a fish at time 4; and %/7 is its theoretical length at time 4 = 0, calculated by: 

 

%/7 = %$34701 − 2
+./'%3!%3	

            (16) 

The total growth in mass units of each individual over " days is thus: 

 

w$7 =	b#>$7 −b#7 = x#70%#>$7
.%3y − x#70%#7

.%3y	

                        (17) 

and the assemblage-level total biomass production over " days is given by: 

; =dw$7

%

7D2

	

                       (18) 
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Empirical productivity-biomass relationships 

We evaluated whether standing biomass can predict the productivity of fish assemblages using a 

dataset of parrotfishes (Labridae, Scarini) comprising 313 transect counts in 19 locations and 10 regions 

across the Indo-Pacific realm (Figure 21, Table F5 in the Appendix F). At each location, four coral 

reef habitat zones were surveyed: back, flat, crest and slope, with 4.3 ± 0.8 transects per habitat (mean 

± SD). We used Bayesian length-weight parameters (Froese & Pauly, 2018; Froese et al., 2014) and 

von Bertalanffy Growth Model (VBGM) coefficients to estimate total parrotfish standing biomass (kg 

m-2) and biomass productivity (g m-2 day-1) per transect across our study regions following the 

procedures described on Chapters 3 and 4. We then aggregated both biomass and productivity at each 

region by averaging among transects.  

We tested for productivity-biomass relationships in parrotfish assemblages among and within 

regions using Generalized Linear Models (GLM), with gamma and Gaussian error distributions, 

respectively (Appendix F). Within-regions, productivity was modelled as a function of region and reef 

habitat, in addition to biomass, following a model selection procedure that evaluated alternative 

candidate models (Appendix F). Hence, the final model had the form of: 

 

log ;7,B,: = (log O/ + logOB + logO:) + (Y/ +Y:) logc7,B,: + _7,B,: 	

            (19) 

where log denotes log10-transformation, ;7,B,: is the total productivity of transect F in habitat ℎ of region 

U; O/ is a fixed intercept for all samples, OB is an intercept for each reef habitat, and O: is an intercept 

for each region; Y/ is a fixed slope for all samples, Y: is a slope for each region, c7,B,: is the total 

standing biomass of transect F in habitat ℎ of region U; and _7,B,: is the unexplained residual variation 

of each transect. 

We then evaluated if human population density could explain regional-level patterns in parrotfish 

biomass, body length and productivity using GLMs with gamma (biomass and productivity) and 

Gaussian (body length) error distributions. Detailed methods can be found in the Appendix F, including 

the procedures for obtaining human population density data.  
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Modelling a coral reef fish assemblage and simulating coral reef fisheries impacts 

To further explore potential mechanisms relating productivity-biomass relationships with human 

population density, we developed a modelling framework to simulate size-selective fishing. We started 

by using size-spectrum theory to derive theoretical expectations on the size structure of fish 

assemblages in our model (Andersen & Beyer, 2006; Edwards, Robinson, Plank, Baum, & Blanchard, 

2017; Jennings & Dulvy, 2005). Size-spectrum expectations have been shown to accurately reflect the 

empirical size structure of coral reef fish assemblages (Dulvy et al., 2004; Graham, Dulvy, Jennings, & 

Polunin, 2005; Robinson et al., 2017; Wilson et al., 2010). Thus, we used the principles laid out by 

Edwards et al. (2017) to guide our model building. Assemblage size distributions were characterized 

by a power-law distribution bounded by a minimum and a maximum size (Edwards et al., 2017), which 

we constrained to be between 5 cm total length (TL) and 100 cm TL. The procedures and parameter 

values employed to define the size-spectra, as well as to obtain length-weight parameters and to estimate 

VBGM parameters are described in detail in the Appendix F. 

The next step was to simulate exploitation of our modelled fish assemblages, i.e. coral reef 

fisheries. We did so by simulating the effect of different capture levels using a size-dependent fishing 

probability function (Appendix F). We defined an arbitrary threshold species maximum size, 20 cm 

TL (total length), for a fish species to be considered as “fishable” or target for fisheries. Thus, any 

individuals from species capable of attaining 20 cm TL or more, were considered as targeted. We 

formulated a size-dependent fishing function to describe how the probability of being captured varied 

with individual body size for those fishes that satisfied the species target-size criterion above. This 

fishing function took the form of a mixed Power and Gompertz curve (Appendix F). We then simulated 

fishing impacts by randomly withdrawing a proportion of the target individuals in our assemblage with 

a probability vector given by the size-dependent fishing probability function (Appendix F). Fishing 

simulations were independently repeated for incremental capture rates (200 iterations for each capture 

level), up to a previously defined maximum capture rate that resulted in biomass depletion. The 

procedures and parameter values employed to define the fishing function, incremental capture rates, 

and to execute fishing simulations are described in detail in the Appendix F. 
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Simulating the impact of coral reef fisheries on empirical fish assemblages 

To understand if the observed ‘buffering productivity’ (see Results) can arise from the size-

selective exploitation of empirical coral reef fish assemblages, we used two high-resolution datasets 

from the Great Barrier Reef (Lizard Island) and the Coral Triangle (Raja Ampat, Indonesia). In both 

locations, surveys were undertaken primarily within no-take zones of Marine Protected Areas (in the 

Great Barrier Reef Marine Park and the Misool Private Marine Reserve, respectively). Apart from 

limited poaching, there is virtually no fishing extraction in both locations, making them ideal for 

simulating the effects of fishing on reef fish assemblages. We first asked if the same responses of 

productivity and biomass to overexploitation in the model simulations could be generated by simulating 

fishing using these empirical datasets. Then, we evaluated features of the initial assemblage size 

structure likely to affect the shape and intensity of these responses. 

The Great Barrier Reef (GBR) dataset encompassed fish counts from Lizard Island, northern 

GBR (from Chapter 4), distributed between the outer slope, crest, flat and back reef. The Coral Triangle 

dataset was collected in the southern Raja Ampat, Indonesia, and encompassed counts from the 

crest/slope of fringing reefs (Appendix F). These datasets were filtered to include the same size range 

encompassed by our modelled assemblages (individuals with 5-100 cm TL, with %$34 ≥ 6	:"). 

Bayesian length-weight parameters and VBGM coefficients were obtained for each species using the 

procedures and methods used for parrotfish dataset (see Appendix F).  

We also carried out two sets of fishing simulations using the whole fish assemblage datasets from 

the GBR and Coral Triangle. First, to evaluate if decoupled responses from productivity and biomass 

to widespread exploitation occurred at the regional scale, we combined samples within each dataset into 

one large assemblage, and then simulated fishing on each of these regional assemblages. Second, to 

compare buffering responses between modelled and empirical fish assemblage submitted to increased 

local exploitation, we simulated fishing on each of the transect-level fish assemblages. In both cases, 

the target assemblages were subjected to iterated fishing over a range of capture rates following 

procedures similar to the modelled assemblages and described in the Appendix F.  
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Comparing modelled and empirical buffering responses to exploitation 

We used the transect-level set of fishing simulations above to compare features of buffering 

responses to fishing between empirical and modelled fish assemblages. Specifically, we examined the 

extent of peak ‘buffering productivity’, i.e. the maximum average ‘buffering productivity’ over iterated 

fishing simulations (see Results and Appendix F), triggered by different size structures of the target 

component of unfished assemblages. We used four size structure indicators of unfished assemblages as 

potential predictors of peak buffering responses: the size spectrum exponent, mean individual body 

size, mean individual growth and biomass turnover rates of unfished assemblages as indicators of size 

structure (Appendix F). Due to extensive collinearity among variables, peak buffering productivity 

from empirical assemblages was modelled separately by each size structure indicator using Generalized 

Additive Models (GAMs, Appendix F) with the form: 

 

;2c~�7 = O/ + �(T7) + _7 

            (20) 

where ;2c~�87 is the peak buffering productivity for transect F; O/ is a fixed intercept for all samples; 

�(T7) is the spline function applied to each of the size structure indicators T7 listed above; and _7 is the 

unexplained residual variation of each transect. 

For the modelled assemblages, we simply varied the initial size spectrum exponent over the same 

interval observed in the empirical assemblages and plotted the peak buffering response against each of 

the four indicators above. Empirical- and modelled-peak buffering productivity responses to each 

indicator were compared visually (Appendix F). 

 

Results 

Across the Indo-Pacific, average parrotfish standing biomass ranged from 73 kg ha-1 to 406 kg 

ha-1, while average productivity varied from 217 to 615 g ha-1 day-1. However, this variation in 

productivity did not mirror spatial patterns in standing biomass (Figure 21, Figure F1 in the Appendix 
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F). Regions with low biomass encompassed as much, or even more, variability in productivity than in 

high biomass regions. Indeed, the highest productivity values were in regions with some of the lowest 

biomass. As a result, standing biomass was a poor predictor of large-scale productivity variation in 

parrotfishes, with an estimated slope that was very close to, and did not differ significantly from, zero 

(Figure 22, Figure F2 in the Appendix F). 

 

Figure 21: The mismatch between biomass and productivity in parrotfish assemblages across the Indo-

Pacific. Colours on the map and panels and are proportional to the regional-level average biomass (lower-

left panel). Error bars represent the standard error of the mean. Individual sample points can be viewed on 

Figure F1. ROW = Rowley Shoals; GBR = Great Barrier Reef; COC = Cocos (Keeling) Islands; MIC = 

Micronesia; MAU = Mauritius; IND = Indonesia; FRE = French Polynesia; PNG = Papua New Guinea; 

SAM = Samoa; VAN = Vanuatu. 

 

Focusing on the relationship between productivity and standing biomass at the local scale 

revealed substantially different relationships (Figure 22, Figure F3 in the Appendix F). Productivity 

and biomass were positively associated among transects, but the magnitude of this relationship 

exhibited considerable variation among regions that were explained neither by habitat nor by 
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biogeography (Tables F1 and F2 in the Appendix F). Instead, strength of the local biomass-

productivity relationship was strongly correlated with regional average standing biomass (Tables F1 

and F2; Figure 22, Figure F3). In particular, low-biomass regions had steeper local productivity-

biomass relationships compared to high biomass regions (Figure 22; Table F2). These steeper slopes 

in the productivity-biomass relationships are linked to, and probably caused by, reduced average body 

sizes in low biomass regions (Figure 23A). Hence, parrotfish assemblages with predominantly smaller 

individuals had increased productivity per unit biomass, i.e. higher biomass turnover (Figure 23A).  

 

 

Figure 22: Regional and local productivity-biomass relationships for parrotfishes exhibit remarkably 

distinctive scaling. Whereas there is no clear association between productivity and biomass at the regional 

scale (slope does not differ from zero, left and top-right panels, see also Figure F2 in the Appendix F), 

relationships at the local scale are all positive and vary according to the regional average standing biomass 

(mid and bottom-right panels). Low biomass regions (red tones) display steeper slopes compared to high 

biomass regions (green colours). Error bars (left panel) represent the standard error of the means. Density 

curves are normal distributions of the model coefficients (slope) from log-scale relationships, with the 

dashed line indicating the model estimate (Figure F2, Table F2 in the Appendix F). 

 

We observed a strong negative relationship between human population density and both 

parrotfish biomass and average body length, but not productivity (Figure 23B, Table F3 in the 

Appendix F). Productivity was independent of human population, at least in the range of human 

population densities examined herein. This indicated that biomass-depleted parrotfish assemblages 
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underwent size structure changes that culminated in increased turnover rates. Increased turnover, in 

turn, partially offsets the exploitation-induced productivity depletion.  

 

 

Figure 23: Distinctive local-scale productivity-biomass relationships for parrotfishes are characterised by 

reduced body size and increase turnover, which relate to increased human population density. (A) Low 

biomass regions (red tones, left) with steeper productivity-biomass slopes have also smaller parrotfishes 

(mid) and higher turnover (right) compared to high biomass regions (green colours, left). (B) Both parrotfish 

biomass (left) and mean body length (centre) decrease with human population density. In contrast, there is 

no decrease in productivity (right). Dashed lines represent the linear model fits. For details on the models, 

see Appendix F. Regions are colour-coded according to the regional-scale average biomass. 

 

To explore the potential mechanistic basis of the different responses of biomass and productivity 

to human exploitation, we developed a modelling framework to simulate size-selective fishing. This 

involved expanding the group-focused taxonomic scope of the study (parrotfishes) to an entire fish 

assemblage. First, we integrated size-spectrum theory predictions and somatic growth models to 
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estimate the assemblage-level fish productivity of coral reefs. We then simulated size-selective fishing, 

over a range of capture rates, and evaluated the impacts on both the standing biomass and productivity 

of target fishes. We show that with increasing exploitation, fish productivity declines more slowly than 

standing biomass (Figure 24). This is due to a sharp increase in biomass turnover rates (P/B ratio, 

Figure F4 in the Appendix F) that happened alongside a steepening of the size-spectrum exponent 

with increasing exploitation (Figure F5 in the Appendix F). We propose the term ‘buffering 

productivity’ to describe the community level decoupled response of productivity relative to biomass 

as exploitation rates increase. We define ‘buffering productivity’ as the difference between the 

proportion of initial productivity and the proportion of initial biomass that remains after any degree of 

exploitation (Figure 24). Buffering productivity encompasses the surplus production from multiple 

populations/species that vary in body size and that, when subjected to similar size-selective fisheries, 

are driven to different parts of their exploitation axis (see Appendix F). The buffering nature of 

productivity was unveiled both when considering all fishes or only target species (Figure F4 in the 

Appendix F), and was robust to varying model assumptions such as the initial exponent of the size-

spectrum, minimum fishable size, and the form of the size-specific fishing function (Figures F6-F11, 

Appendix F).  
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Figure 24: Buffering productivity is triggered by decoupled responses of productivity and biomass with 

increasing exploitation in both modelled and empirical coral reef fish assemblages. (Top row) At high 

exploitation, modelled coral reef fish biomass approaches zero (left), yet productivity consistently remains 

higher (centre), resulting in a buffer zone (right), the ‘buffering productivity’. Black lines denote the output 

of each fishing simulation, and coloured lines represent their average. The dotted and dashed horizontal 

lines represent, respectively, the 25% and 5% values of the unfished assemblage biomass or productivity. 

(Bottom row) Buffering productivity increases with exploitation until it reaches a peak value, and shows the 

same features in modelled and empirical fish assemblages (see also Figure F13 in the Appendix F). Cmax is 

the maximum capture level as a proportion of initial abundance (see Appendix F). Coloured lines denote 

the output of each fishing simulation, and black lines represent their average. The dotted vertical line denotes 

the maximum exploitation under the Cmax. 

 

To evaluate if buffering productivity can also arise from the size-selective exploitation of natural 

fish assemblages, we simulated fishing using datasets from the highly diverse Coral Triangle (Raja 

Ampat, Indonesia) and Great Barrier Reef (Lizard Island). These datasets provide a comprehensive 

snapshot of fish assemblages from two of the world’s most diverse coral reef regions, encompassing 
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the full size-range of non-cryptobenthic fishes and including all groups, from strictly benthic, to pelagic 

reef fishes. Similar to our modelled assemblages, increasing the intensity of exploitation of these natural 

reef fish assemblages generated consistent, decoupled declines in biomass and productivity, as well as 

increased turnover rates (Figure F12 in the Appendix F). As a result, increased exploitation induced 

strong buffering productivity responses in both the Coral Triangle and the GBR fish assemblages 

(Figure 24; Figure F13).  

Buffering productivity increased with exploitation rates up to a peak value, and then either 

stabilised or started to decline, both in our modelled assemblages and in the empirical dataset (Figure 

24). This peak buffering productivity varied with features of the assemblage before the simulations 

(Figures F14 and F15 in the Appendix F). For example, unfished assemblages with steeper size 

spectrum (i.e. a more negative exponent) were characterized by fish with small average body weight 

and growth, and large turnover rates (Figures F14 and F15). In both model and empirical data, 

increasing the steepness of the size spectrum resulted in larger peak buffering productivity (Figure F16, 

Table F4, in the Appendix F). 

 

Discussion 

In this study, we integrated large-scale empirical data analysis and robust modelling approaches 

to unveil the effects of exploitation on the relationship between reef fish productivity and standing 

biomass. Using parrotfishes as a case study, we first showed that productivity and biomass did not relate 

at the regional scale. This was due to diverging local relationships, with low-biomass regions having 

steeper local productivity-biomass relationships, and thus higher productivity per unit biomass 

(turnover), than high-biomass regions. We also found that, although both parrotfish biomass and 

average size strongly declined as human population increased, productivity did not respond to human 

population. Human population density is widely used as a surrogate for fishing pressure (Duffy et al., 

2016; Jennings & Polunin, 1996; Mora et al., 2011; Robinson et al., 2017), and changes in fish 

assemblage biomass or size structure are common indicators of the impacts of fishing on coral reefs 

(Dulvy et al., 2004; Graham et al., 2005; Nash & Graham, 2016; Robinson et al., 2017). Thus, the 
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differential relationship of parrotfish size, biomass and productivity to human population suggested a 

potential compensatory response of productivity to overexploitation.  

Size-selective fishing simulations on both modelled and empirical whole fish assemblages (i.e. 

all non-cryptobenthic groups) showed that increased exploitation rates drove slower declines in fish 

productivity compared to standing biomass (Figure 24). This was paralleled by a sharp increase in 

biomass turnover rates (Figure F4 in the Appendix F) and a steepening of the size-spectrum exponent, 

as seen elsewhere (Blanchard et al., 2009; Dulvy et al., 2004; Graham et al., 2005; Jennings & 

Blanchard, 2004; Robinson et al., 2017). Increased exploitation rates in both modelled and empirical 

coral reef fish assemblages triggered a buffering productivity that is consistent with previous theory 

and empirical data (Jennings & Blanchard, 2004; McCann et al., 2016). The intensity of the buffering 

responses to exploitation depended on the pre-exploitation size structure of the fish assemblages, 

highlighting its compensatory nature: as exploitation increased, fisheries operating under the worst 

ecological situations (i.e. in assemblages with a low abundance of large fishes) got the most intense 

buffering responses. Thus, buffering productivity is likely to contribute to the remaining fisheries 

productivity of some severely depleted coral reef regions (MacNeil et al., 2015; Newton et al., 2007).  

Non-equivalence between biomass and productivity has also been implied by recent coral reef 

research showing that fish productivity does not necessarily decrease following structural complexity 

loss (Robinson, Wilson, Robinson, et al., 2019; Rogers, Blanchard, Newman, et al., 2018). Although 

these observations arise in a different context (i.e. habitat changes leading to the expansion of algal 

resources and loss of prey refuges), they reveal another mechanism that can potentially decouple large-

scale community productivity from biomass. Because habitat changes can occur simultaneously with 

overexploitation, they may potentially obscure the detection of these ecosystem responses (Wilson, 

Fisher, et al., 2008), this reinforces the need to tease apart both effects. Our study offers the ideal ground 

for this because all regions in our large-scale parrotfish dataset had intact coral communities when 

surveyed, with previous analyses of ecosystem functions consistently detecting a negative effect of 

human impacts (Bellwood, Hoey, & Choat, 2003; Bellwood, Hoey, et al., 2012). 

Although diverging responses of biomass and yields to increasing exploitation have been 

observed previously on coral reefs (Jennings & Polunin, 1996), our study is the first to integrate large-
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scale empirical data analysis and modelling to unveil the effects of exploitation on reef fish production 

and turnover. The compensatory community responses observed here are paralleled by widely 

appreciated compensatory population dynamics in the fisheries literature (e.g. Beverton & Holt, 1957; 

Hilborn & Walters, 1992; but see Keith & Hutchings, 2012), yet have rarely been explored in coral reef 

settings (Dulvy et al., 2004). By drawing from a longstanding body of work in fisheries science, we 

demonstrate a clear mechanistic connection between size-selective fishing and the differential depletion 

trajectories of reef fish biomass and productivity. In doing so, we cast new light on the relationship 

between structure and function in coral reef ecology. 

Buffering productivity, as defined here, only describes the somatic component of productivity in 

response to exploitation. By using it as a proxy for overall productivity, we implicitly assume that 

somatic productivity varies more strongly with assemblage biomass than recruitment does. This can 

happen if assemblage-scale density-dependence operates more strongly on recruitment than on somatic 

growth, consistent with the fact that incoming recruits tend to be particularly vulnerable to negative 

species interactions, such as predation and competition (Caley et al., 1996; White & Kendall, 2007). 

Indeed, even at the single species level, evidence suggests that recruitment saturates or peaks at low to 

intermediate biomass, with further increases in biomass yielding no recruitment gains or even decreases 

in recruitment (Beverton & Holt, 1957; Hilborn & Walters, 1992; Subbey, Devine, Schaarschmidt, & 

Nash, 2014). Three circumstantial lines of evidence suggest that this may be the case for reef fishes.  

First, although the impacts of fishing on reproductive-biomass and -energy output are often 

strong (Barneche, Robertson, White, & Marshall, 2018; Hixon et al., 2014; Scott, Marteinsdottir, & 

Wright, 1999), evidence for strong positive relationships between reproductive biomass and recruitment 

in marine fishes is weak, suggesting that any such relationships are likely to be small in magnitude 

(Munch, Giron-Nava, & Sugihara, 2018; Szuwalski et al., 2015). In coral reef fishes, for example, the 

lack of relationship between spawning biomass and recruitment has been attributed to high density-

dependent pelagic mortality of larvae (Doherty, 1991; Meekan et al., 1993; Robertson, 1990), although 

there is limited direct evidence to evaluate this suggestion. Second, the degree of spawning-recruitment 

decoupling varies with body size among fish families globally, with larger fishes having low 

recruitment despite high reproductive output, and smaller fishes the opposite pattern (Brandl, 
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Tornabene, et al., 2019). This implies that families of larger fishes that are most likely to drive buffering 

productivity do so despite limited inputs from recruitment. Third, we found much stronger productivity-

biomass relationships within regions than among regions (Figure 22), suggesting the potential for high 

reproductive output in high-biomass locations to be exported to low-biomass locations, where they 

would experience less density-dependent mortality (reflecting Jensen’s inequality, Chan, Connolly, & 

Mapstone, 2012; White & Kendall, 2007). This would further reduce the magnitude of between-region 

differences in recruitment. Moreover, we hypothesize that density-dependent dampening of the 

relationship between biomass and productivity will be even more pronounced at the assemblage than at 

the single species level, given the potential for interspecific predation on recruits (Caley et al., 1996; 

Hixon & Webster, 2002). Testing this hypothesis would involve currently unavailable empirical 

quantifications of biomass-recruitment relationships at the assemblage level.  

In summary, we present both theoretical and empirical evidence of the decoupling of productivity 

and biomass in coral reef fish assemblages. This decoupling has important consequences for studies 

that assume equivalence between fish biomass and coral reef functioning or service provision. Our 

study significantly expands previous findings of how fish biomass and fisheries yields relate to fishing 

pressure on coral reefs (Jennings & Polunin, 1996). We show that overexploitation can cause distinct 

productivity-biomass relationships to emerge in coral reef fish assemblages: as overfishing drives fish 

biomass down, an increase in biomass turnover ameliorates, to some extent, expected productivity 

declines. Increased turnover leads to buffering productivity, a mechanism that contributes to averting 

immediate coral reef fisheries collapse. Buffering productivity appears to be compensatory as initial 

assemblages with steeper size-spectrum trigger the most intense buffering responses both in our model 

and empirical datasets.  

Two decades ago, the most important questions were if, and how, marine ecosystems were 

declining, and what were the causes (Myers & Worm, 2003; Pauly et al., 2002). This was followed by 

a change in focus to what could be done to avoid or avert some of the perceived changes (Bellwood et 

al., 2004; Hughes et al., 2010; Worm et al., 2009). Moving forward, there is a need to accept degradation 

as part of the new configuration of Anthropocene coral reef systems. Marine scientists are beginning to 

explore the functioning of these transitioning ecosystems (Bellwood, Pratchett, et al., 2019; Hughes, 
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Barnes, et al., 2017; Mellin et al., 2019; Norström et al., 2016). By bridging the gap between ecological 

and fisheries theory and coral reef empirical research, we point to an ecological mechanism that can 

potentially explain how, despite widespread depletion, coral reef fisheries continue to sustain the 

livelihoods of people. This cautions against interpreting coral reef functioning and food production 

exclusively through the lens of available standing biomass. Furthermore, it offers hope that even 

biomass depleted reef systems may still be able to partially deliver the goods and services needed during 

this new transitional period. 
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Chapter 7: General Discussion 

Assessing fish and fisheries productivity on tropical reefs 

Productivity lies at the very core of sustained fishing activities: harvesting that continually 

exceeds natural bounds of stock productivity will, inevitably, crash. Although mechanistic principles to 

quantify the productivity of fish cohorts were established more than 70 years ago (cf. K. R. Allen, 1971; 

Beverton & Holt, 1957; Ricker, 1946), fish productivity per se is rarely quantified directly. Most often, 

productivity is estimated from fisheries yields, i.e. rates of biomass harvested by humans, or by standing 

stock biomass, i.e. the snapshot of ‘available’ biomass. Fisheries yields are frequently used in the 

context of classical fisheries stock assessments that hinge on concepts such as Maximum Sustainable 

Yield and Surplus Production (Hilborn & Walters, 1992). Standing stock biomass, conversely, has had 

a prominent role in informing resource production estimates in tropical fisheries, facilitated on coral 

reefs by the advent of visual survey methods to estimate fish populations (V. E. Brock, 1954).  

It was recognised over half a century ago, however, that standing stock biomass is only a proxy 

for resource production (e.g. Bardach, 1959). The development of ecosystem models from early 

productivity theory offered a way forward. ECOPATH and extensions, provided a way to directly 

estimate reef fish production rates (K. R. Allen, 1971; Christensen & Pauly, 1992; Polovina, 1984). 

However, ecosystem models proved to have limited compatibility with the increasingly popular 

underwater visual surveys. ECOPATH routines, for example, require detailed inputs of trophic 

relationships to be able to predict biomass and production rates for specific trophic groups, including 

different guilds of fishes (Christensen & Pauly, 1992; Polovina, 1984). Conversely, underwater survey 

methods output data from which standing biomass can be estimated directly, but are rarely followed by 

broad trophic investigations. As a result, although ecosystem models have the theoretical potential to 

inform the productivity of coral reef resources, bottlenecks in data availability meant that they were 

rarely used for this end. Meanwhile, standing stock biomass, easily obtained from underwater survey 

data, continued to figure as the main data source in resource assessments on tropical reefs (e.g. R. E. 

Brock et al., 1979; Cinner et al., 2018; D’agata et al., 2016; Friedlander & DeMartini, 2002; Friedlander 
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& Parrish, 1998; McClanahan, Graham, MacNeil, & Cinner, 2014; Morais, Ferreira, & Floeter, 2017; 

Russ & Alcala, 2010; Russ et al., 2005; Sandin et al., 2008). 

The key conceptual breakthrough was that visual survey data, that includes individual sizes and 

abundance, can be used to estimate somatic productivity if species-specific growth trajectories are 

known. In essence, this involves determining the ‘expected’ age of each fish at the moment they are 

surveyed. This age determination is achieved by positioning each fish in their likely growth trajectory 

under a Von Bertalanffy Growth Model (VBGM), based on their body length. This approach was first 

used by Depczynski, Fulton, Marnane, & Bellwood (2007), providing a simple but critical advancement 

in applying methods traditionally used in fisheries studies to coral reef ecology. This thesis further 

expands on this approach by: 1) providing a computational routine that forecasts VBGM growth 

trajectories from species traits and environmental temperature, allowing predictions not only for data-

scarce species, but also for environmentally separated populations of the same species (Chapter 2; 

Morais & Bellwood, 2018b); 2) integrating negative exponential natural mortality, in addition to 

somatic growth, into the framework for estimating fish productivity with both probabilistic and 

deterministic applications (Chapters 3, 4 and 5; Morais & Bellwood, 2019); 3) formalising a 

framework to quantify fish productivity from largely available data using intuitive, easy to apply 

methods (including an R package interface, Chapter 3); 4) using the developed framework to test 

hypotheses pertaining to the trophodynamics (Chapter 4; Morais & Bellwood, 2019), the effects of 

habitat degradation (Chapter 5) and human exploitation (Chapter 6; Morais et al., 2020) on the 

productivity of coral reef fishes; and, finally, by 5) pioneering the use of complementary metrics of the 

contribution of fishes to coral reef functioning and productivity, particularly the expected consumed 

biomass and total biomass turnover (Chapter 5; Brandl, Tornabene, et al., 2019). 

 

Future developments 

While methodological bottlenecks might have curbed the development of simple methods to 

quantify fish production in the past (Bardach, 1959; Roedel & Saila, 1980), this thesis synthesises 

principles, procedures and recommendations that help to overcome some of these bottlenecks (Chapter 

3). Nevertheless, this individual-level productivity framework will benefit from future developments, 



Chapter 7: General Discussion 

 129 

particularly those aimed at: 1) improving estimates of mortality rates; and 2) incorporating long-term 

dynamics by explicitly considering recruitment. Initial estimates of natural mortality have been obtained 

at the individual level from Gislason, Daan, Rice, & Pope (2010)’s empirical relationship, and from a 

procedure to scale the species level mortality estimates from Pauly (1980)’s empirical relationship by 

ontogenetic risk declines (see Chapter 3 and Appendix C). Because of the relatively few mortality 

values from coral reef fishes used to generate both Pauly’s and Gislason et al.’s relationships, both 

methods to estimate natural mortality in Chapter 3 should be considered cursory. Expanded reef fish 

natural mortality datasets will be important in developing models capable of accurately predicting 

mortality coefficients based on species traits and the environment, similarly to the one developed for 

VBGM coefficients in the Chapter 2 of this thesis. Such a development would be particularly important 

to incorporate the effect of mortality rates when deriving ecosystem functioning metrics, such as 

biomass consumed and turnover of coral reef fish assemblages.  

Beyond mortality rates, explicitly incorporating recruitment dynamics to expand on the temporal 

scale of productivity estimates requires defining the extent of connection between adult and recruit 

populations. This challenge will involve understanding, and being able to predict, potential stock-

recruitment relationships for coral reef fishes. Stock-recruitment relationships assume that the number 

of recruiting fishes is a function of population spawning biomass or reproductive adults (e.g. Beverton 

& Holt, 1957; Ricker, 1954). Although stock-recruitment relationships are a cornerstone of fisheries 

dynamics, there has been much debate on the occurrence and strength of these relationships. Recent 

meta-analyses, for example, point to the occurrence of relatively weak stock-recruitment relationships 

in marine fishes (e.g. Munch et al., 2018; Szuwalski et al., 2015). However, coral reef fishes have 

remained understudied and notoriously underrepresented in stock-recruitment meta-analyses (e.g. 

Gilbert, 1997; Munch et al., 2018; Myers & Barrowman, 1996; Szuwalski et al., 2015). One possible 

way of accounting for recruitment in the productivity framework of this thesis that neither assumes 

density-dependence nor density-independence would be to consider the size-structure of fish 

assemblages to be constant through time, i.e. enough fish recruit as to make up for the mortality or 

growth of immediately larger size classes. 
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The productivity of coral reef fishes 

Our understanding of the productivity of coral reef fishes has remained cloudy due to the absence 

of a universal method allowing data collected in independent studies to be compared. Ecosystem models 

and fisheries yield monitoring are particularly prone to this issue because their estimates of productivity 

rely heavily on seascape features of the area considered. Thus, the availability of reef substratum and 

of different reef habitats can drastically bias productivity estimates, yet this information is not always 

available or might be difficult to quantify (Arias-González et al., 1994; Bellwood, 1988; Polunin, 1996).  

Early attempts to compile existing fisheries yields data, for example, have documented wildly 

varying yields due to multiple confounding factors (e.g. varying fishing pressure or survey area) 

(Marten & Polovina, 1982; Munro & Williams, 1985; Russ, 1984). In practice, this rendered unclear 

results and precluded the identification of general patterns. A later tentative generalisation of fish 

productivity estimates derived from ECOPATH models suggested that approximately 20 t km-2 year-1 

of wet fish weight are produced on coral reefs (Polunin, 1996). Subsequent ECOPATH studies yielded 

larger, but highly variable, values, from about 33 t km-2 year-1 (Bozec, Gascuel, & Kulbicki, 2004) to 

over 330 t km-2 year-1 (Arias-González et al., 1997). More recently, a size-spectrum based ecosystem 

model has also estimated total fish productivity for a Caribbean coral reef at about 330 t km-2 year-1 

(Rogers et al., 2014), with approximately 175 t km-2 year-1 composed of fisheries target species (>25cm 

TL). This model was also used to forecast the productivity of fisheries target species on another reef, at 

about 50 t km-2 year-1 (Rogers, Blanchard, & Mumby, 2018). Assuming a similar target species 

composition, this would generate an estimate of about 100 t km-2 year-1 of total productivity.  

In this thesis, using a complete fish assemblage survey scheme, I estimated fish productivities 

for a coral reef subjected to coral loss, but closed to fishing, that varied from 73 t km-2 year-1 on the reef 

flat up to 250 t km-2 year-1 on the reef slope (Chapter 4; Morais & Bellwood, 2019). Due to the generally 

low abundance of fishes on reef flats (e.g. Bellwood et al., 2018), it is possible that the estimate of 73 t 

km-2 year-1 is close to the lower bound of total fish productivity expected for reef habitats not subject to 

fishing. The productivity of fisheries target species would be expected to comprise a fraction of this 

value, increasing in proportion to the breadth of the fisheries. Regardless, the individual-level 

productivity framework presented in this thesis provides a way of effectively obtaining fish productivity 
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estimates from smaller areas and suggests that previous estimates may have been highly sensitive to 

reef-habitat type (see below for fish movements and external subsidies).  

 

New avenues for research 

Results from this thesis open up new avenues for research on coral reef functioning. Chapter 4 

provided evidence of the importance of external energetic pathways in sustaining fish productivity on 

coral reefs. This is consistent with recent research quantifying substantial reliance by coral reef fishes 

on external energetic subsidies (e.g. Barneche et al., 2014; McCauley et al., 2018; K. W. McMahon et 

al., 2016; Trebilco et al., 2013). Although the role of pelagic plankton in the trophodynamics of reef 

consumers has been recognised for decades (e.g. Hamner et al., 1988; Hobson & Chess, 1978), their 

importance for fish productivity and fisheries yields remained poorly investigated. Complementary to 

the understanding of external pelagic subsidies as a critical resource for reef consumers is the 

consideration that some reef fishes can acquire a substantial part of their resources from non-reef 

habitats (e.g. Fox & Bellwood, 2011). Both pelagic subsidies and fish movements can, thus, decouple 

spatial scales at which survey efforts and energy intake occur in coral reef fish assemblages. This 

suggests that the trophodynamics of coral reefs might require re-evaluation under a spatially explicit 

perspective that accounts for: 1) external (passive) food inputs to reef consumers; and 2) external 

(active) food harvesting by mobile reef consumers executing trans-habitat movements. These forms of 

nutrient and energy subsidies (Polis, Anderson, & Holt, 1997) have been increasingly reported for coral 

reefs in empirical studies (e.g. McCauley et al., 2012; K. W. McMahon et al., 2016; Mourier et al., 

2016) and could be more important as reefs degrade. Therefore, future steps might benefit from an 

integrative approach considering the relationship between fish mobility and survey design (e.g. Heenan 

et al., 2019; Ward-Paige et al., 2010). This should ideally involve explicitly measuring/modelling 

passive and active external food inputs to reef consumers. 

This thesis also provides insights into a potential mechanism helping to explain sustained yields 

in biomass-depleted fisheries. In Chapter 6, I found that overexploitation disproportionally depletes 

the standing biomass compared to the productivity of coral reef fish assemblages. This is due to 

increased turnover as fish size distributions are constrained in their upper range due to size-selective 
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fishing, triggering compensatory ‘buffering’ responses (Chapter 6; Morais et al., 2020). While 

buffering productivity could help to explain the occurrence of simultaneous biomass depletion and 

sustained fisheries yields, temporal persistence of this mechanism requires recruitment not to be 

substantially affected by biomass reduction. In essence, this requires stock-recruitment relationships 

that quickly saturate as adult biomass increases (e.g. Gilbert, 1997). While research has shown how 

fecundity and the energetic investment in reproduction from large fishes disproportionally outweigh the 

same indicators in smaller fishes, including reef fishes (Barneche et al., 2018; Birkeland & Dayton, 

2005; Hixon et al., 2014; D. J. Marshall, Gaines, Warner, Barneche, & Bode, 2019; Scott et al., 1999), 

we know comparatively less about how reproductive output translates into fish recruitment onto coral 

reefs. To date, evidence suggests that large density-dependent mortality in either the pelagic phase or 

immediately after settling can result in weak stock-recruitment (Caley et al., 1996; Doherty, 1991; 

Meekan et al., 1993; Robertson, 1990), but a comprehensive analysis of this question with multiple 

sources of empirical data across multiple families is lacking. In my point of view, the extent to which 

local populations are sustained by locally-sourced recruits is a key aspect that should be investigated in 

a range of reef fish species. Would, for example, weak locally-sourced recruitment in fisheries target 

species mean that ‘buffering productivity’ could be maintained from external recruitment? Spatially-

explicit models incorporating metacommunity dynamics and data collected over large spatial-scales 

(e.g. Bode et al., 2019; Harrison et al., 2012; Hopf, Jones, Willamson, & Connolly, 2015; Hopf, Jones, 

Williamson, & Connolly, 2019; D. J. Marshall et al., 2019) will be crucial in determining the importance 

of compensatory buffering responses as a mechanism underpinning sustained fisheries yields in 

depleted biomass situations. In this context, methods incorporating dispersal kernels might be ideal to 

merge biophysical models, dispersal potential, and seascape features in a metacommunity framework 

within which to further explore buffering responses (e.g. Bode et al., 2019; Bode, Williamson, Harrison, 

Outram, & Jones, 2018). 

 

A new paradigm for reef resource assessment 

In summary, this thesis presents evidence that a non-linear relationship between fish weight and 

growth constrains our ability to safely infer the production of coral reef fish biomass production from 
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their standing stock biomass alone (Chapters 4 and 6; Morais & Bellwood, 2019; Morais et al., 2020). 

The same might indeed apply to any high species diversity aquatic environments in which fish are key 

consumers. At the same time, this thesis provides a simple and accessible method to estimate fish 

productivity from underwater visual survey data (Chapter 3). It therefore offers a tool with the potential 

to generate a new paradigm for resource assessment in reef systems: one that is process-based, dynamic 

and that takes into consideration how fast new resource, i.e. fish biomass, is produced, rather than only 

how much is available at a given time. 
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Appendix A: The elusive ‘Darwin’s Paradox’ 

The outstanding productivity of coral reefs, deeply nested within desert tropical oceans, has 

captured scientists’ minds. This energetic and nutrient paradox has repeatedly been attributed to Charles 

Darwin in his 1842 book entitled “The structure and distribution of coral reefs” (e.g. de Goeij et al., 

2013; McMahon, Thorrold, Houghton, & Berumen, 2016; Mumby & Steneck, 2018; Richter, Wunsch, 

Rasheed, Kötter, & Badran, 2001; Sammarco, Risk, Schwarcz, & Heikoop, 1999). Indeed, judging from 

the number of times it has been used in recent years, media articles claiming scientists have ‘solved’ 

the ‘Darwin’s Paradox’ have become a successful strategy to draw attention to the topic (e.g. Fitch, 

2016; Johnson, 2016; Nowak, 2002; Pennisi, 2019). But have we actually solved the ‘Darwin’s 

Paradox’? Do we even know what it means? Answering these questions requires tracing the origin of 

the term and clearly defining what ‘the Darwin’s Paradox’ is and what it is not. This is what this 

appendix endeavours.  

In its most recent common form, the ‘Darwin’s Paradox’ is defined as the counterintuitive high 

productivity, abundance and/or diversity of organisms on coral reefs despite them being situated in 

nutrient-poor, oligotrophic tropical oceans (e.g. Mumby & Steneck, 2018; Richter et al., 2001). 

However, Darwin’s “The structure and distribution of coral reefs”, the most often cited source of the 

paradox, is very narrowly focused on the geological origins and features of coral reefs. Geology 

appeared to be, indeed, Darwin’s main interest before boarding the Beagle, and the geographical 

distribution of coral reefs appeared to provide data in support of his hypothesis on seamount subsidence 

and the formation of the different types of reefs. The few explicit ecological excerpts in the book offer 

little evidence that Darwin was explicitly curious about the ecological productivity of coral reefs. 

Subsequent mentions of a ‘Coral Reef Problem’ (Davis, 1928) refer to the competing theories 

attempting to explain the geological origins of coral reefs (of which Darwin’s appeared to be favoured), 

and also do not appear to address their paradoxical productivity patterns.  

The first traceable, explicit mention to the term ‘Darwin’s Paradox’ in the coral reef ecological 

literature appears relatively recently, in the work of Andrews & Gentien (1982). These authors refer to 

‘the Darwin’s question’ when quoting Darwin's (1842) conclusion that “(…) the polypifers in their turn 
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must prey on some other organic beings; the decrease of which from any cause, would cause a 

proportionate destruction of the living coral”. The fragment quoted by Andrews & Gentien (1982) is 

one of the few in which Darwin indeed considers patterns and mechanisms other than geological ones. 

However, even in that case the goal was clearly to explain a geographical pattern: why are coral reefs 

common in some tropical areas (Indian and Pacific Oceans), but absent from others (East and South 

Atlantic) (Darwin, 1842). It is also worth noting that Darwin’s conjecture above is restricted to the 

nutrition of corals (or, in his words, ‘polypifers’), with no evidence that he was generalising this 

conjecture to other organisms or to coral reefs as a whole. 

Andrews & Gentien (1982) did not specify to which ‘Darwin’s question’ in the quoted excerpt 

they were referring to. Because their study demonstrated a new upwelling source of nitrogen to corals, 

they presumably referred to Darwin’s conjecture on coral nutrition. Andrews and Gentien’s study was 

subsequently cited by Rougerie & Wauthy (1993) as providing a “solution to Darwin’s question 

concerning functioning”, although ‘functioning’ is not defined. The word ‘paradox’ is first mentioned 

(i.e. as ‘Old Paradox’) in Rougerie & Wauthy (1988), defined as the “huge production/calcification of 

coral communities surrounded by clear oligotrophic waters”. These authors, however, neither attribute 

the pioneering of this paradox to Darwin, nor to anybody else. Hence, it appears that Sammarco et al. 

(1999) were the first to explicitly put together the term ‘Darwin’s Paradox’, defining it as “the apparent 

health of coral reefs in nutrient-poor waters” while attributing it to Darwin (1842). Besides Darwin, 

Sammarco et al. (1999) cited Andrews & Gentien (1982) and Rougerie & Wauthy (1993) but no other 

studies in this excerpt. The subsequent work of Richter et al. (2001) repeats the term “Darwin’s 

Paradox” but only references Darwin (1842). 

In their seminal study of the trophic structure of coral reef communities from Eniwetok Atoll, 

Odum & Odum (1955) offer the first account on the apparent contradictory nature of high diversity/low 

food sources on coral reefs. The authors write that “The coral reef communities of the world are 

tremendously varied associations of plants and animals growing luxuriantly in tropical waters of 

impoverished plankton content”. Their detailed quantification of the energetics of a coral reef alongside 

Sargent & Austin (1954) measurements of coral reef photosynthesis provided the basis for the view that 

coral reefs are steady-state, closed, systems, with very limited energetic or nutrient connections to 
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adjacent ecosystems (e.g. Lewis, 1977). Furthermore, this perspective highlights the vast 

photosynthesis gradient existing between coral reefs and the adjacent open ocean (Stoddart, 1969). 

Stoddart (1969) offered one of the first numerical comparisons of gross productivity rates between coral 

reefs and the adjacent open ocean, highlighting the perceived productivity gradient, but noting that 

plankton inputs were largely unknown. The perspective of coral reefs as energetically auto-sufficient 

was posteriorly emphasised by Emery (1968) and Glynn (1973)’s collections of plankton, both authors 

concluding that the quantity of plankton flushed through coral reefs on a daily basis was insufficient to 

respond for the metabolism of coral reef consumers. Although this view of plankton insufficiency has 

later been challenged by studies such as those of Hamner & Hauri (1981), Andrews & Gentien (1982), 

Hamner, Jones, Carleton, Hauri, & Williams (1988) and others, as showed in the first paragraph of this 

appendix, the idea of an unexplained paradoxical productivity on coral reefs still remains. It is also 

clear, however, that the closed-system perspective of coral reefs and, particularly, the idea of 

photosynthesis gradients between coral reefs and the open ocean, introduced by Odum & Odum (1955), 

matches more closely the core idea expressed by the ‘Darwin’s paradox’, i.e. high diversity/productivity 

on nutrient-poor coral reefs, than Darwin’s original, geologically-focused contribution. Therefore, I 

propose that the term ‘Darwin’s paradox’ should be reserved to Darwin’s 1842 conjecture on the then 

enigmatic nutrition of corals and the distribution of coral reefs, and that what is nowadays referred to 

as the ‘Darwin’s paradox’ would be most adequately termed the ‘Odunian paradox’. 
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Appendix B: Supporting Information for Chapter 2 

 

Figure B1: Pearson’s correlation (upper right panels) and relationship (lower left panels) among potential 

correlates of reef fish growth. The diagonal panels show histograms of each variable. Trend lines are 

LOWESS smoothers. Diet, from 1 to 7: herbivores/macroalgivores, herbivores/detritivores, omnivores, 

planktivores, sessile invertivores, mobile invertivores, and fish and cephalopod predators; School = 

schooling behaviour, from 1 to 5: solitary, pair, small groups, medium groups and large groups; Posit = 

position relative to the reef, from 1 to 6: pelagic associated, pelagic dwelling, bentho-pelagic associated, 

bentho-pelagic dwelling, benthic associated and benthic dwelling; Method, from 1 to 6: length-frequency, 

mark-recapture, otolith rings, unknown, other rings  and scale rings; Shape = body form shape; SSTmean 

= average sea surface temperature; pelNPP = average pelagic net primary productivity. 
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Figure B2: Histograms and approximate distribution of standardized reef fish growth coefficients. (A) 

	!#$% is approximately Gamma distributed, whereas 345*+(!#$%) (B) and Ø (C) are approximately 

Gaussian distributed. 
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Figure B3: Model validation procedures for the final PGLS with !#$% as the response variable. Steps are 

as described by (Zuur, Ieno, Walker, Saveliev, & Smith, 2009) and include checking for patterns: (upper 

row) in the standardized residuals against the predicted values and in the distribution of the residuals; and 

(middle and bottom rows) in the residuals by explanatory variables. No residual patterns were detected in 

any of these steps. clog2MaxSizeTL = centred log2 of maximum body size; csstmean = entered mean sea 

surface temperature; HerMac = herbivores/macroalgivores; HerDet = herbivores/detritivores; Omnivr = 

omnivores; InvSes = sessile invertivores; InvMob = mobile invertivores; FisCep = fish and cephalopod 

predators; PelgAs = pelagic reef associated; PelgDw = pelagic reef dwelling; BtPlAs = bentho-pelagic reef 

associated; BtPlDw = bento-pelagic reef dwelling; BnthAs = benthic reef associated; BnthDw = benthic 

reef dwelling. 



Appendix B 

 179 

 

 

Figure B4: Standardized residuals from the final PGLS with !#$% as the response variable, plotted against 

the explanatory variable method used to derive growth curves (left, continuation of model validation step in 

Figure B3); plus the relationship between !#$% and the method (right). In the right panel the large black 

dots indicate model predictions (accounting for phylogenetic structure) and the grey bands the 95% 

confidence intervals of model predictions calculated from model standard errors. The small grey dots are 

the partial residuals, that is, the raw data after accounting for the effect of method. 
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Figure B5: Relationship between !#$% and body size, sea surface temperature, diet and position relative to 

the reef in the final PGLS with data points. Black lines and black dots indicate model predictions (accounting 

for phylogenetic structure), and coloured bands the 95% confidence intervals of model predictions 

calculated from model standard errors. The small grey dots are the partial residuals, that is, the raw data 

after accounting for the effect of the variable in the plot. HerMac = herbivores/macroalgivores; HerDet = 

herbivores/detritivores; Omnivr = omnivores; InvSes = sessile invertivores; InvMob = mobile invertivores; 

FisCep = fish and cephalopod predators; PelgAs = pelagic reef associated; PelgDw = pelagic reef dwelling; 

BtPlAs = bentho-pelagic reef associated; BtPlDw = bento-pelagic reef dwelling; BnthAs = benthic reef 

associated; BnthDw = benthic reef dwelling.  
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Figure B6: The importance of each variable in our full model of Ø using a global dataset of reef fish growth. 

This metric represents, for each variable, the proportion of total variability explained. size = body size, temp 

= mean sea surface temperature, posit = position relative to the reef, shape = body shape factor, prod = 

mean pelagic net primary productivity, method = method used to derive the growth curves. 
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Figure B7: Model validation procedures for the final PGLS with Ø as the response variable. Steps are as 

described by (Zuur et al., 2009) and include checking for patterns: (upper row) in the standardized 

residuals against the predicted values and in the distribution of the residuals; and (middle and bottom 

rows) in the residuals by explanatory variables. No residual patterns were detected in any of these steps. 

clog2MaxSizeTL = centred log2 of maximum body size; csstmean = centred mean sea surface temperature; 

HerMac = herbivores/macroalgivores; HerDet = herbivores/detritivores; Omnivr = omnivores; InvSes = 

sessile invertivores; InvMob = mobile invertivores; FisCep = fish and cephalopod predators; PelgAs = 

pelagic reef associated; PelgDw = pelagic reef dwelling; BtPlAs = bentho-pelagic reef associated; 

BtPlDw = bento-pelagic reef dwelling; BnthAs = benthic reef associated; BnthDw = benthic reef dwelling. 
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Figure B8: Standardized residuals from the final PGLS with Ø as the response variable, plotted against the 

explanatory variable method used to derive growth curves (left, continuation of model validation step in 

Figure B3); plus the relationship between Ø and the method (right). In the right panel the large black dots 

indicate model predictions (accounting for phylogenetic structure) and the grey bands the 95% confidence 

intervals of model predictions calculated from model standard errors. The small grey dots are the partial 

residuals, that is, the raw data after accounting for the effect of method. 
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Figure B9: Relationship between Ø and body size, temperature, diet and position relative to the reef for reef 

fishes in a PGLS using a global dataset of growth. Note the different y-axis scales. Black lines and black 

dots indicate model predictions, and coloured bands the 95% confidence intervals of model predictions 

calculated from model standard errors. HerMac = herbivores/macroalgivores; HerDet = 

herbivores/detritivores; Omnivr = omnivores; InvSes = sessile invertivores; InvMob = mobile invertivores; 

FisCep = fish and cephalopod predators; PelgAs = pelagic reef associated; PelgDw = pelagic reef dwelling; 

BtPlAs = bentho-pelagic reef associated; BtPlDw = bento-pelagic reef dwelling; BnthAs = benthic reef 

associated; BnthDw = benthic reef dwelling. 
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Figure B10: Relationship between Ø and body size, sea surface temperature, diet and position relative to 

the reef in the final PGLS with data points. Black lines and black dots indicate model predictions (accounting 

for phylogenetic structure), and coloured bands the 95% confidence intervals of model predictions 

calculated from model standard errors. The small grey dots are the partial residuals, that is, the raw data 

after accounting for the effect of the variable in the plot. HerMac = herbivores/macroalgivores; HerDet = 

herbivores/detritivores; Omnivr = omnivores; InvSes = sessile invertivores; InvMob = mobile invertivores; 

FisCep = fish and cephalopod predators; PelgAs = pelagic reef associated; PelgDw = pelagic reef dwelling; 

BtPlAs = bentho-pelagic reef associated; BtPlDw = bento-pelagic reef dwelling; BnthAs = benthic reef 

associated; BnthDw = benthic reef dwelling. 
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Figure B11: Cross-validation of XGBoost predictions of growth coefficients !#$% for reef fishes using a 

global dataset. Histograms summarize densities of 1,000 cross-validation iterations, each one 

comprehending (left) the average bias among all data points in the testing datasets and (right) the predicted 

R2 of the model. The bias metric used was, for each data point, the !#$% value minus the XGBoost predicted 

!#$% and is, thus, in !#$% units. Dashed vertical lines represent median values across iterations. 
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Table B1: Model selection table of nested submodels of the PGLS used to model !#$% in reef fishes. Drop 

models indicate which variables were dropped. Shap = shape factor; Size = Body size; Prod = Primary 

Productivity; Temp = Sea surface temperature; Method = Method used to obtain the growth curve; Posi = 

Position relative to the reef. 

Model Interc. Shap Size Prod Temp Diet Meth Posi df ∆AIC wAIC 

drop.prod 0.018 -4.368 -0.331 - 0.010 + + + 21 0.00 0.48 

full 0.018 -4.450 -0.331 0.005 0.010 + + + 22 1.33 0.25 

drop.shape.prod 0.032 - -0.330 - 0.010 + + + 20 1.93 0.18 

drop.shape 0.032 - -0.330 0.004 0.010 + + + 21 3.40 0.09 

drop.posit -0.166 -6.410 -0.313 0.006 0.011 + + - 17 15.49 0.00 

drop.temp 0.066 -3.455 -0.338 -0.003 - + + + 21 20.75 0.00 

drop.diet -0.252 -6.522 -0.310 0.004 0.011 - + + 16 29.64 0.00 

drop.method -0.107 -6.416 -0.330 0.009 0.017 + - + 17 101.69 0.00 

drop.size -0.290 -1.823 - 0.005 0.017 + + + 21 592.82 0.00 
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Table B2: Model selection table of nested submodels of the PGLS used to model Ø in reef fishes. Drop 

models indicate which variables were dropped. Shap = shape factor; Size = Body size; Prod = Primary 

Productivity; Temp = Sea surface temperature; Method = Method used to obtain the growth curve; Posi = 

Position relative to the reef. 

Model Inte Shap Size Prod Temp Diet Meth Posi df ∆AIC wAIC 

drop.shape.prod 4.029 - 0.358 - 0.010 + + + 20 0.00 0.41 

drop.prod 4.021 -2.538 0.357 - 0.010 + + + 21 0.75 0.28 

drop.shape 4.029 - 0.358 0.003 0.010 + + + 21 1.64 0.18 

full 4.021 -2.605 0.357 0.004 0.010 + + + 22 2.32 0.13 

drop.posit 3.818 -4.828 0.378 0.006 0.011 + + - 17 20.02 0.00 

drop.temp 4.068 -1.631 0.351 -0.004 - + + + 21 20.21 0.00 

drop.diet 3.739 -5.047 0.382 0.003 0.011 - + + 16 40.56 0.00 

drop.method 3.899 -4.605 0.358 0.008 0.017 + - + 17 103.30 0.00 

drop.size 4.353 -5.438 - 0.004 0.003 + + + 21 657.36 0.00 
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Table B3: Model coefficients of the final PGLS used to model the growth coefficient Ø in reef fishes with a 

global dataset. 

Variable Level Estimate St. Error t-value p-value 

Intercept - 4.029 0.155 26.07 <0.0001 

Body size - 0.358 0.013 27.92 <0.0001 

Sea surface temperature - 0.010 0.002 4.37 <0.0001 

Diet Herbivores/detritivores -0.371 0.103 -3.61 0.0003 

 
Omnivores -0.507 0.105 -4.85 <0.0001 

 
Planktivores -0.365 0.103 -3.53 0.0004 

 
Invertivores sessile -0.451 0.125 -3.61 0.0003 

 
Invertivores mobile -0.332 0.100 -3.34 0.0009 

 
Fish/cephalopod predators -0.211 0.101 -2.08 0.0379 

Position Pelagic reef dwelling -0.283 0.075 -3.78 0.0002 

 

Bentho-pelagic reef 

associated -0.255 0.056 -4.57 <0.0001 

 

Bentho-pelagic reef 

dwelling -0.274 0.053 -5.18 <0.0001 

 
Benthic reef dwelling -0.246 0.057 -4.31 <0.0001 

 
Benthic reef associated -0.277 0.054 -5.12 <0.0001 

Method Mark-recapture -0.069 0.038 -1.80 0.0716 

 
Otoliths rings -0.165 0.016 -10.01 <0.0001 

 
Unknown -0.138 0.018 -7.84 <0.0001 

 
Other rings -0.182 0.033 -5.58 <0.0001 

  Scale rings -0.160 0.024 -6.57 <0.0001 
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Appendix B Datasets 

Dataset 1 

This metadata refers to the dataset ‘Supporting Information - DS1.csv’ permanently available 

from the Tropical Data Hub (Morais & Bellwood, 2018), which contains a global dataset of Von 

Bertalanffy growth parameters, morphological and behavioural traits, and length-weight regression 

coefficients for reef fishes. The variables included in this dataset are: 

 

Family: Taxonomic family. 

Species: Species name. 

SpecCode: Species code from FishBase. 

MaxSizeTL: Maximum recorded size for the species, referring to Total Length in cm 

Diet: Dietary category, in seven levels (see Chapter 2 for explanation). 

Schooling: Schooling behaviour or gregariousness, in six levels (see Chapter 2 for explanation). 

Position: Position relative to the reef, combining horizontal and vertical components, in six levels (see 

Chapter 2 for explanation). 

a: Length-weight regression parameter ‘a’, estimated from the Bayesian Hierarchical Model from 

(Froese, Thorson, & Reyes, 2014) and FishBase.  

b: Length-weight regression parameter ‘b’, estimated from the Bayesian Hierarchical Model from 

(Froese et al., 2014) and FishBase. 

FormFactor: Body shape factor (as Form Factor in Froese, 2006) measuring the extent to which a fish 

is elongated or deep-bodied. It can be perceived as the ‘a’ parameter value a fish species should 

have if its b = 3. 

Linf: Population asymptotic length in cm as reported by the growth study. 

LinfType: Type of measure used to derive Linf. SL = Standard Length; FL = Fork Length; TL = Total 

Length; NG = Not Given (conservatively assumed to be TL). 

LinfTL: Population asymptotic length in cm, converted to total length if Linf was reported in a measure 

other than this (see LinfType). 
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K: The Von Bertalanffy Growth coefficient K, as reported by the growth study. 

Kmax: The standardized growth coefficient Kmax (see Chapter 2 for explanation). 

O: The standardized growth coefficient Ø, also termed Growth Performance Index (see Chapter 2 for 

explanation). 

lon: Longitudinal geographic coordinate of the population studied (see article for its derivation). 

lat: Latitudinal geographic coordinate of the population studied (see Chapter 2 for its derivation). 

sstmean: Mean sea surface temperature from the geographic coordinate of the population studied, 

obtained from Bio-ORACLE (Tyberghein et al., 2012). 

pelnpp: Mean pelagic net primary productivity from the geographic coordinate of the population 

studied, modelled from chlorophyll concentration and photosynthetic active radiation data 

obtained from Bio-ORACLE (see Chapter 2 for explanation; Tyberghein et al., 2012). 

Method: Method used to derive the growth curve, also referred to as the ageing method, in six levels 

(see Chapter 2 for explanation). 

Country: Country of the population studied. 

Locality: Locality of the population studied, when available. 

GrowthRef: Reference of the growth study that includes the referred growth curve. When a number, it 

matches the reference number from FishBase (Froese & Pauly, 2018). 

 

Dataset 2 

This metadata refers to the dataset ‘Supporting Information – DS2.csv’ permanently available 

from the Tropical Data Hub (Morais & Bellwood, 2018), which contains predictions of the standardized 

growth coefficient Kmax (derived from the Von Bertalanffy growth parameters K and Linf) for 

combinations of morphological and behavioural traits, and sea surface temperature. The variables 

included in this dataset are: 

 

MaxSizeTL: Maximum recorded size for the species for which growth is being predicted. It refers to 

Total Length in cm. 
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sstmean: Mean sea surface temperature from the geographic coordinates of the population for which 

growth is being predicted (see Chapter 2 for explanation). 

Diet: Dietary category of the species for which growth is being predicted, in seven levels (see Chapter 

2 for explanation). 

Position: Position relative to the reef of the species for which growth is being predicted, combining 

horizontal and vertical components, in six levels (see Chapter 2 for explanation). 

Kmax: The predicted standardized growth coefficient Kmax. It is the median of 1,000 bootstrap 

estimates (see Chapter 2 for explanation). 

Kmax_lowqt: The lower quantile (2.5%) of the standardized growth coefficient Kmax predictions across 

1,000 bootstrapping iterations (see Chapter 2 for explanation). 

Kmax_upqt: The upper quantile (97.5%) of the standardized growth coefficient Kmax predictions 

across 1,000 bootstrapping iterations (see Chapter 2 for explanation). 
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Appendix C: Supporting Information for Chapter 3 

Calculating individual body mass, growth and natural mortality, and assemblage 

biomass and production from field data 

Standing biomass and biomass production can be obtained by applying geometric and growth 

functions to fish assemblage data, e.g. from underwater surveys. Because length is the primary data 

obtained in the field, we start with %#%, representing the length of any individual fish F at time 4 (e.g. at 

the time of the survey). Its body mass can be obtained by: 

 

b#% = #7(%#%
.%)                    (C1) 

 

where #7 	and 57 are species-specific power-law parameters with geometric properties, often 

referred to as length-weight parameters (Froese, 2006). The cumulative sum of / individual fish masses 

in an assemblage, i.e. the total biomass of the assemblage, can be obtained by: 

 

c# =db#%

%

7D2

 

          (C2) 

The expected growth, in mass units, of each individual F over a period of " days can be obtained 

from equation (C1) from %#%and %#>$7, the length values at the time of the survey and after " days, 

respectively. %#>$7 can be calculated in the context of the Von Bertalanffy Growth Model (VBGM) 

(Depczynski, Fulton, Marnane, & Bellwood, 2007; Morais & Bellwood, 2019). VBGM coefficients ! 

(the rate at which fish in a population, on average, approaches its population asymptotic body size) and 

%) (the population asymptotic body length of a fish) are highly correlated on the log-scale (Beverton 

& Holt, 1959; Kozlowski, 1996; Pauly, 1998; Chapter 2). In Chapter 2 it was shown how this 

relationship can be used to standardise Von Bertalanffy growth coefficients for a reef fish population 

at %$34, the maximum species size, instead of %), obtaining !$34. Predictions of !$34 for reef fishes 
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based on species maximum body size, water temperature, trophic group, and the position relative to the 

reef were also provided (Morais & Bellwood, 2018a). Thus, the size of individual F in time 4 + ", 

%#>$7, is given by the function: 

 

%#>$7 = %$347 e1 − 2
*+./'%E301.%*3!%Ff         

                    (C3) 

where %$347 is the maximum species size for individual F; ##>$7 is its age, in years, at time 4 +

"; and #/7 is its theoretical age at size = 0 (most commonly referred to as 4/ in the VBGM). We 

estimated #/7 from the regression model provided by Pauly (1979, 1980a) and rescaled the output 

values between the maximum value obtained and a minimum value of -0.5. This was done to avoid very 

low values of #/ that are unrealistic for coral reef fishes (Choat & Robertson, 2002; Grandcourt, 2002). 

The next step hinges on the ‘operational’ age of individual F at time 4 + ", ##>$7. Because fishes and, 

particularly, reef fishes can live for many years after reaching their population asymptotic size (Choat 

& Robertson, 2002), it is impossible to estimate the real age of a fish based solely on its size. Instead, 

the operational age represents the expected age of a fish relative to its species maximum size, %$347. 

##>$7 can be estimated from: 

##>$7 = g
1

!$347
h ln

⎩
⎪
⎨

⎪
⎧

0%$347 − %/73

op1 − D
%#7
%$347

Eq %$347r
⎭
⎪
⎬

⎪
⎫

+ e
"

365
f	

                     (C4) 

where %#7 is the size of a fish at time 4; and %/7 is its theoretical length at age #7 = 0, calculated 

by: 

 

%/7 = %$34701 − 2
+./'%3!%3                  (C5) 

 

When %#7 = %$347, that is, when the fish has reached its species maximum size, the denominator 
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within the =/ function in (C4) becomes 0, and ##>$7 = ∞, that is, no further growth is expected. This 

is not an issue for Equation (C3), because 2*) = 0 and, thus, %#>$7 = %$347. With %#>$7, the expected 

growth of each individual, in mass units, over " days can be calculated as: 

 

w$7 =	b#>$7 −b#7 = x#70%#>$7
.%3y − x#70%#7

.%3y               (C6) 

 

Natural mortality can be accounted for deterministically or stochastically. Both cases require the 

input of an instant mortality rate parameter, which can be obtained from field data or using empirical 

relationships (see below Estimating exponential natural mortality, also, Gislason, Daan, Rice, & Pope, 

2010). Total mortality (b in the fisheries literature) is the sum of two components: H, the natural 

mortality, and Z the fisheries mortality. Because H7, the natural mortality of individual fish F, is normally 

estimated over a year, it should be rescaled using: 

 

 H$% = H7 e
$
'HI
f                    (C7) 

  

The probability of survival after " days is then obtained from: 

 

($7 =	2
*=.%                    (C8) 

 

Deterministically accounting for natural mortality is useful when one wishes to calculate per 

capita losses of biomass. It involves multiplying the body mass of individual F on time 4, b#7, by its 

probability of survival on time 4 + ": 

 

Ä$% = ($7b#%                     (C9) 

 

where Ä$% is the per capita expected loss due to mortality for individual F. In this context, the 
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assemblage-level standing biomass 4 + " and total biomass production over " days are given by: 

c#>$ =db#% + w$7

%

7D2

− Ä$% 	

                                (C10) 

and 

;$ =dw$7

%

7D2

− Ä$% 	

                                (C11) 

Stochastically accounting for mortality is useful when one wants to trace the fate of the 

individuals on a population instead of calculating per capita losses. In this case, the fate of each 

individual after " days is judged based on a Bernoulli distribution with ] = ($7, Z7 	~	c2U/>~==F	(($7). 

Following this, c#>$ and ;$ become, respectively, the sum of the body masses and of growth 

increments of the surviving individuals. Table C1 summarises the parameters estimated from the 

equations C1 to C11. 

 

Table C1: Model selection Relevant parameters estimated from the equations of the individual age 

framework (see main text), including their notation, equations in which they are referred and definition.  

Parameter Equation(s) Definition 

!!! 1.1, 1.2, 5, 6.3, 7.1 The body mass of any individual fish " at time # 

$! 1.2 The total biomass of an assemblage 

%!"#$ 2, 5 
The size of an individual " in time # + ', in which ' is the 
defined time interval (days) over which growth is forecasted 

(!"#$ 2, 3 
The operational age of a fish ", i.e. its expected age relative to 

its species maximum size, %#%&$ 

%'$ 3, 4 The theoretical length of a fish " at age ($ = 0 

+#$ 5, 7.1, 7.2 The expected growth of a fish ", in mass units, over ' days 

,#! 6.1, 6.2 
The instantaneous natural mortality of individual fish ", 

rescaled ' days 

-#$ 6.1, 6.2, 6.3 The probability of fish " surviving after ' days 

.#! 6.3, 7.1, 7.2 
The expected loss of biomass of fish " after ' days due to 

mortality (deterministic) 

$!"# 7.1 The assemblage-level standing biomass at time # + ' 

/# 7.2 The assemblage-level total biomass production over ' days 
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Methods to derive life-history parameters for reef fishes 

Estimating von Bertalanffy Growth Model parameters 

Somatic growth for each individual is modelled from expected growth trajectories in the Von 

Bertalanffy Growth Model (VBGM) as in Chapter 2. The original VBGM uses population asymptotic 

length, %), and a shape parameter, !, to estimate growth in length (Bertalanffy, 1949, 1957; Pauly, 

1979). There is substantial intra and interspecific variation in both %) and !, but a correlation between 

these parameters precludes direct evaluation of both simultaneously. To solve this, Pauly (1979) and 

Munro and Pauly (1983) suggested using the intercept of the log-log relationship between %) and ! as 

a standardised growth parameter. Developing on this, in Chapter 2 it was suggested that projecting this 

relationship to the maximum size reported for a species, %$34, would yield an easily interpretable, 

standardised parameter that could be used in the VBGM formula along with %$34. This parameter, 

!$34, is the shape parameter describing the expected growth trajectory of a fish with the determined 

values of %� and ! if it was supposed to reach its species maximum size, %$34. 

In Chapter 2, an extreme gradient boosting modelling framework was used to predict !$34 at 

the species level using %$34 (‘body size’), sea surface temperature, and two broad categorical traits: 

trophic group (in seven levels) and relationship with the reef (in six levels). To this end, a database of 

VBGM parameters was compiled from the literature, consisting in 1,921 curves and 588 species. This 

model showed highly accurate and precise predictions (see Chapters 2 and 4, and Appendices B and 

D; also Morais & Bellwood, 2018b, 2019). A table with !$34 predictions for a non-exhaustive range 

of combinations of predictors was also provided in (see Appendix B; Morais & Bellwood, 2018a). We 

now provide an interface to the boosting model itself in the package rfishprod, allowing the user to 

predict !$34 for any combinations of the predictors. This includes the possibility of expanding the 

input dataset to improve predictions even further or of specifying a different model structure. The model 

is executed by the function ‘predKmax'. !$34 predictions are then incorporated in the formulas (C1) to 

(C11) above within rfishprod to generate the growth trajectories and expected somatic growth. A beta 
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version of the package rfishprod is available from http://github.com/renatoamorais/rfishprod. 

 

Estimating exponential natural mortality 

Total mortality is often described in the fisheries literature in terms of the instantaneous mortality 

rate parameter, b. This is composed by natural mortality, H, and fisheries mortality, Z (Beverton & 

Holt, 1957, 1959; Hilborn & Walters, 1992; Pauly, 1980b). In the absence of fishing mortality, b = H. 

Although H describes the exponential mortality rate experienced by a cohort of individuals from a 

population, it is also generally acknowledged that the mortality risk of a fish declines exponentially 

with its body size (Andersen & Beyer, 2006, 2015; Gislason et al., 2010; Goatley & Bellwood, 2016; 

Jørgensen & Holt, 2013).  

We implement two methods to estimate H7, the instantaneous natural mortality rate of individual 

fish F. Because of obvious logistical constraints in obtaining field estimates of natural mortality, 

predictions of b based on empirical relationships are often used (Brown, Gillooly, Allen, Savage, & 

West, 2004; Gislason et al., 2010; Pauly, 1980b). Widely used methods, such as Pauly’s and Hoenig’s 

empirical relationships (Hoenig, 1983; Pauly, 1980b), generate predictions of mortality coefficients at 

the species/population level. These methods do not consider known declines in natural mortality risk 

due to body size increases along the ontogeny of a species (Gislason et al., 2010; Jørgensen & Holt, 

2013). That drove Gislason et al. (2010) to revisit Pauly’s empirical relationship, further including age-

specific, or size-specific, values of H for as many species as available. We implement Gislason et al.’s 

empirical relationship as the first method to estimate H7 in the rfishprod package. Although these authors 

applied high-quality filters to isolate the most trustable data points, they recognised limitations in some 

of their methodological assumptions to incorporate individual body size-specific values of H (Gislason 

et al., 2010). 

Natural mortality is expected to scale with individual body mass within a species according to an 

exponent of approximately 0.25 (Andersen & Beyer, 2006, 2015; Brown et al., 2004; Jørgensen & Holt, 

2013). Rescaling that to body length, instead of mass, yields an exponent of 0.75 (Jørgensen & Holt, 

2013). Hence, another potential approach to account for intraspecific mortality risk would be to apply 



Appendix C 

 200 

a function of individual body size to species-level estimates of H. A similar reasoning was used by 

Bozec et al. (2016), although these authors used optimization routines to find functional parameters. 

Instead, one could use the theoretical scaling of 0.75 along with a ratio Ç8, a scaling parameter that 

describes how H is expressed relative to a fixed (at the population/species level) size proportion ], so 

that 

 

H7 = Ç8H/.KI                               (C12) 

 

where H7 is the instantaneous natural mortality of individual F, b is a population level average 

instantaneous mortality rate as measured or estimated from empirical relationships (such as Pauly’s). 

Ç8 is then defined as 

 

Ç8 = g
%7 − %:
%6

h 

          (C13) 

where %7 is the length of individual F, %: is the length at recruitment (e.g. settlement from the 

pelagic realm for reef fishes) and %6 is the length at ]. An intuitive value for ] could be, for example, 

0.5, which would indicate that H7 = H for fishes at the mid point of their body size range (i.e. between 

their size at settlement and their maximum species size). In the package rfishprod, this functional 

relationship is used alongside Pauly’s empirical relationship to generate the second method to predict 

H7. A comparison of mortality rates and daily survival probabilities estimated using the two methods 

for the same dataset composed of three reef fish species can be seen in Figure C1. Also represented is 

the population-level estimate from Pauly (1980b). Although the trajectory from the size-specific 

function appears visually to resemble more closely the empirical relationship provided by Goatley and 

Bellwood (2016) for reef fishes, it is not in the scope of this work to evaluate which approach would 
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generate more adequate mortality estimates. 

 

Figure C1: A comparison of two methods to estimate size-specific mortality rates (Z, left panels) and 

survival probabilities (right panels). Depicted are three reef fish species. ‘Gislason’ is the empirical 

equation from Gislason et al. (2010), ‘Size function’ is the second method presented in the main text, which 

combines a functional relationship with body size with population-level estimates of Z, such as the one from 

Pauly (1980b). 

 

Table C2 below summarises the parameters cited above to derive life-history parameters (both 

growth and mortality) for reef fishes. 
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Table C1: Parameters from the methods used to derive life-history parameters for use in the individual age 

framework (see main text) for reef fishes, including its notation, method to which this parameter pertains 

and definition 

Parameter Method Definition 

%� Growth The population asymptotic body length of a fish 

0 Growth 
The rate at which fish in a population, on average, approaches its population 

asymptotic body size 

%#%& Growth The maximum reported size for a species 

0#%& Growth 
A standardised Von Bertalanffy Growth Parameter (related to the shape, or 0). The 

rate at which a fish with the specific values of %� and 0 would approach its 
species %#%&, if it could grow to %#%& (see Morais and Bellwood 2018). 

!,,	and	3 Mortality 

The traditional notation for the total instantaneous mortality rate parameter (!), the 
instantaneous natural mortality (,) and the instantaneous fishing-induced mortality 

(3) at the population-level. ! is avoided herein, both to avoid confusion with 
individual body mass (represented as !!! see Table S1) and because the individual 

age framework is most directly concerned with natural mortality, ,. Also, in the 
absence of fishing (3 = 0), ! = ,. 

,$ Mortality The instantaneous natural mortality rate parameter, ,, of an individual fish " 

4( Mortality 
A scaling ratio parameter that describes how , is expressed relative to a fixed size 

proportion 5 

5 Mortality 
The portion of the body size range of a fish species in which ,$ = ,, that is, the 

individual mortality risk equals the instantaneous population mortality rate 
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Appendix D: Supporting Information for Chapter 4 

 

Figure D1: Components of the fish productivity of a windward reef on the northern Great Barrier Reef. (A) 

Total per unit area fish productivity by reef zone; (B) per unit area fish productivity by trophic pathway, 

averaged among reef zones. This panel uses the same data from Figure 12, however, here the water column 

pathway (Plank in Figure 12) is decomposed in its proportion explored from the reef (ReefPlank) and its 

proportion explored off the reef (OffPlank). Epiben = epibenthic feeders; Crypto = cryptobenthic feeders; 

OffSand = off-reef sand pathway; GenPred = generalised predation pathway. Numbers above distributions 

represent the median productivity. 
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Figure D2: Bootstrapped coefficients of the piecewise structural equation model relating both the 

productivity of pelagic subsidies and the productivity from the other pathways with water flow speed and 

topographic complexity at a windward reef on the Great Barrier Reef. Left panels are the coefficients for 

pelagic productivity as the response variable (Cur = water flow, Top = topographic complexity), mid panels 

are the coefficients for all other sources of productivity as the response variable, and right panels depict the 

relationship between water flow and topographic complexity (Cur à Top), and the correlated errors of 

pelagic and other sources of productivity (Prod ßà Prod). Opaque histograms summarise significant 

coefficients (with α=0.05), whereas transparent histograms summarise non-significant coefficients. 
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Table D1: Linear Mixed Model used to test the relationship between pelagic subsidies and total productivity 

on a windward reef in the Great Barrier Reef. This model includes an interaction term with reef zone and a 

random intercept for site. This table illustrates one iteration of the bootstrapped model; a full distribution 

of the coefficients (slopes) for each habitat can be found on Figure 3. Random effect (Site) intercept = 

0.0000565, residual variance = 1.334. 

Fixed effects Value Std. Error DF t-value p-value 

(Intercept) -0.927 2.612 26 -0.355 0.7255 

Pelagic Subsidies 12.309 4.226 26 2.913 0.0073 

Reef Zone - Crest 1.789 2.975 26 0.601 0.5528 

Reef Zone - Flat 3.024 3.074 26 0.984 0.3342 

Reef Zone - Back 5.264 2.857 26 1.842 0.0769 

Pelagic Subsidies x Reef Zone - Crest -4.951 5.143 26 -0.963 0.3446 

Pelagic Subsidies x Reef Zone - Flat -13.955 8.989 26 -1.552 0.1327 

Pelagic Subsidies x Reef Zone - Back -10.993 5.835 26 -1.884 0.0708 
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Table D2: Piecewise Structural Equation Model relating both the productivity of pelagic subsidies and the 

productivity from the other pathways with water flow speed and topographic complexity at a windward reef 

on the Great Barrier Reef, related to Figure 4. PelProd = productivity of pelagic subsidies; NonPelProd = 

productivity from other pathways; WatFlow = water flow speed; TopComp = topographic complexity. The 

‘~~’ symbols indicates correlation, but no causational hypothesis is included (no response and predictor in 

this case). Coef and Std Coef = coefficient and standardised coefficient, respectively; St Error = standard 

error; DF = degrees of freedom, Crit Val = critical value. 

Response Predictor Coef R2 St Error DF Crit Val p-value Std Coef 
 

PelProd WatFlow -0.110 
0.42 

0.340 33 -0.322 0.9895 -0.062 
 

PelProd TopComp 1.066 0.340 33 3.131 0.0041 0.600 ** 

NonPelProd WatFlow -0.325 
0.27 

0.239 33 -2.156 0.0185 -0.464 * 

NonPelProd TopComp -0.066 0.239 33 0.328 0.6202 0.070 
 

TopComp WatFlow -0.722 0.52 0.119 34 -6.088 <0.0001 -0.722 *** 

~~PelProd ~~NonPelProd -0.118 - - 36 -2.048 0.0243 -0.118 
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Appendix D Sensitivity Analyses 

Accuracy test of VBGF parameters, the Kmax parameter  

VBGF parameters estimated from otolith ageing were available for 56 of the 309 species of this 

study, totalling 136 growth curves. These growth curves were predicted with 98.7% of accuracy, as 

indicated by the relationship between measured and predicted values. Mean bias across all curves was 

of only 0.01 units of Kmax or, on average, 8.7%. A linear model showed that this bias could neither be 

predicted by body size, nor by diet or position relative to the reef (all variables p > 0.3; R2 = 0.066), and 

the intercept did not differ from 0 (-0.15 ± 0.31 SE). In other words, there were no distinguishable 

patterns in the bias of VBGF predictions among species traits that mediate trophic interactions. This 

suggested that the small bias detected was mostly based on random deviations, and that it would not 

affect the importance of the different pathways to productivity. 

 

Sensitivity test of productivity estimates  

The main features of this sensitivity analysis are included in Table D3. Overall, quantitative 

changes to any set of results were small (10% or less) and no qualitative changes were observed in any 

of the three analyses. Therefore, we can confidently conclude that the growth parameters used in our 

study and the productivity measures estimated from them are accurate, and the minor heterogeneous 

bias in some of them insufficient to affect our main findings. 
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Table D3: Sensitivity of the three main analyses of the manuscript to bias in estimating Kmax, the standardised growth parameter. Percentages and the absolute 

productivity values in the first analysis are median from bootstrapped distributions. In analyses 2 and 3, the coefficient is the median from bootstrapped distributions 

and the square brackets depict the 95% bootstrapped quantile interval. 

Analysis Variable Indicator Before Sens. Analysis Evaluation Conclusions 

1) Proportional productivity 

among trophic pathways 

Relative 

productivity 

OffWaCol 17.06% 16.67% Minor change 

Unchanged 

ReefWaCol 24% 23.75% Minor change 

ReefEpib 29.38% 30.11% Minor change 

ReefCryp 13.65% 13.37% Minor change 

OffSand 10.71% 10.30% Minor change 

GenPred 5.24% 5.79% Minor change 

Total productivity Total 4.71 kg.ha-1.day-1 4.48 kg.ha-1.day-1 Minor change 

2) Proportional pelagic 

subsidies driving total 

productivity among reef 

zones 

Slope of linear 

relationships 

Reef zone, slope 12.46 [10.48, 15.22] 11.29 [9.68, 13.61] Remained strongly positive 

Unchanged 
Reef zone, crest 5.53 [2.10, 8.42] 5.79 [2.38, 8.62] Remained positive 

Reef zone, flat -4.51 [-9.00, -0.45] -5.32 [-12.5, -1.18] Remained negative/neutral 

Reef zone, back -0.52 [-4.50, 2.93] 0.78 [-2.77, 4.02] Remained neutral 

3) Topography and water 

flow effects on pelagic and 

non-pelagic productivity 

Standardised SEM 

coefficients 

TotNonPel~~TotPel -0.13 [0.00, -0.23] -0.13 [0.00, -0.23] No change 

Unchanged 

NetFlow->TopComp -0.71 [-0.66, -0.75] -0.71 [-0.66, -0.75] No change 

NetFlow->TotNonPel -0.43 [-0.29, -0.55] -0.39 [-0.22, -0.53] Minor change 

TopComp->TotNonPel 0.11 [-0.01, 0.23] 0.11 [-0.01, 0.27] Insignificant change 

NetFlow->TotPel -0.05 [-0.16, 0.06] -0.05 [-0.17, 0.06] Insignificant change 

TopComp->TotPel 0.59 [0.51, 0.67] 0.59 [0.50, 0.68] Insignificant change 
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Evaluating the initial size structure of the dataset 

Since planktivores are the most likely to affect our results (which depend on their productivity), 

we first thoroughly analysed the size distributions of these species from two different perspectives. We 

used insights from these size distributions to address the broader issue using a size-based sensitivity 

analysis. We started by selecting all planktivores among the species that summed > 90% of the total 

productivity. This resulted in 21 focal species (Table D4) that also accounted for 97% of the planktivore 

productivity, and over 36% of the total productivity in our study. One species, representing 3% of the 

planktivore productivity had to be excluded because only one size has been observed. The remaining 

species had on average 64 ± 23% (mean ± SD) of their population size range (i.e. the maximum size of 

an individual ever observed in the population minus a generalised settlement size of 1 cm TL) sampled 

(see table below with size indicators for the planktivores). This is a conservative measure since many 

of these species recruit at a size larger than 1cm TL. Furthermore, the five most abundant of these 

species (accounting for 64% of planktivore productivity) had between 79% and 92% of their population 

size range sampled. This strongly suggests that, for the species that contribute most to pelagic subsidies, 

the limited temporal scope of the sampling did not appear to result in a biased size structure. 

To evaluate the possibility that oversampling of highly productive size classes of planktivores 

was affecting our results possibility, we looked at how the productivity of each species was divided 

among the different sizes sampled (Figure D3). Species with size structure mostly represented by 

earlier ontogenetic stages could potentially dominate productivity because of their maximised 

investment in growth. If that was the case, we should observe productivity concentrated in the smaller 

sizes of all or most species. The figure below shows that, for most of the 20 species investigated this is 

not the case. Indeed, only one species showed clearly higher productivity in the smallest size class 

compared to the others, Pterocaesio digramma. The other species depicted the opposite pattern (i.e. 

highest productivity in the largest sizes, e.g. Caesio cuning, Chromis sp., C. viridis, and Ostorhinchus 

neotes), showed uniform distribution (e.g. Naso hexacanthus, Pomacentus brachialis), concentration in 

both smallest and largest sizes (e.g. Caesio caerulaurea, Ostorhinchus cyanosoma), or depicted varying 

levels of concentration in the middle classes (e.g. all other species). These patterns in size structure 
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offer further evidence that there is no consistent concentration of planktivore productivity in early 

ontogenetic phases with exacerbated relative growth rates. This, again, supports the conclusion that the 

snapshot nature of our sampling is not a major factor affecting our analyses. 

 

Table D4: The 21 most abundant planktivorous fish species in the study. minObs = minimum size observed; 

maxObs = maximum size observed; PopMaxSize = maximum size expected for this population; 

PropSizeRange = the size range observed relative to the population size range; CumProd = cumulative 

planktivore productivity. 

Species minObs maxObs PopMaxSize PropSizeRange CumProd 

Caesio cuning 3 30 33 0.84 0.22 

Neopomacentrus azysron 1 7 7.5 0.92 0.35 

Pomacentrus lepidogenys 1 8 8.8 0.9 0.48 

Acanthochromis polyacanthus 1 12 13.2 0.9 0.58 

Caesio caerulaurea 4 25 27.5 0.79 0.64 

Naso brevirostris 10 30 38.5 0.53 0.69 

Pomacentrus brachialis 1 9 9.4 0.95 0.74 

Ostorhinchus cyanosoma 2 4 4.4 0.59 0.79 

Naso hexacanthus 20 40 44 0.47 0.82 

Taeniamia fucata* 4 4 10 0 0.85 

Pomacentrus nagasakiensis 2 8 8.8 0.77 0.87 

Pterocaesio digramma 5 25 27.5 0.75 0.9 

Chromis sp. 4 5 8 0.14 0.92 

Chromis atripectoralis 3 8 8.8 0.64 0.93 

Ostorhinchus neotes 1 3 4 0.67 0.94 

Chrysiptera rollandi 2 5 5.5 0.67 0.94 

Abudefduf whitleyi 5 12 16.5 0.45 0.95 

Thalassoma amblycephalum 3 12 13.2 0.74 0.96 

Nectamia fusca 3.25 4.54 11.2 0.13 0.96 

Zoramia viridiventer 2 4 5.5 0.44 0.97 

Chromis viridis 2 6 8 0.57 0.97 

*All individuals from this species sampled had the same size and were, thus, excluded from the analyses. 
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Figure D3: Size-specific productivity of the 20 most abundant planktivorous fishes. Numbers under the bar 

are the mid-point of the size class, in cm. Labels are the abbreviations of species names in the Table above, 

following the same order from left to right, from top to bottom. 
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Sensitivity test of removing recruits 

The main features of this sensitivity analysis are included in Table D5. Overall, quantitative 

changes to any set of results were small and no qualitative changes were observed in analyses 1) or 3) 

(see Chapter 4). In analysis 2) the slope of the relationship between the proportion of pelagic subsidies 

and total productivity of the reef crest changed from being unequivocally positive originally (i.e. the 

bootstrapped interval never intercepted zero) to being mainly positive in the sensitivity analysis (i.e. the 

bootstrapped interval intercepted zero, although the vast majority of values are still positive). We 

interpret this as evidence that recruits had a complementary and important role in providing pelagic 

subsidies to the reef crest. However, even excluding all recruits changed this relationship in only a small 

proportion of iterations, indicating that adults are still more important than juveniles in accessing 

pelagic subsidies in the reef crest. These results offer additional support to our conclusions in the 

paragraphs above that the snapshot nature of our sampling does not significantly affect our conclusions. 
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Table D5: Sensitivity of the three main analyses of the manuscript to the effects of excluding the smallest size class (25% of known size range) for all reef fish species. 

Percentages and the absolute productivity values in the first analysis are median from bootstrapped distributions. In analyses 2 and 3, the coefficient is the median 

from bootstrapped distributions and the square brackets depict the 95% bootstrapped quantile interval. 

Analysis Variable Indicator Before Sens. Analysis Evaluation Conclusions 

1) Proportional productivity 

among trophic pathways 

Relative 

productivity 

OffWaCol 17.06% 16.35% Small change 

Unchanged 

ReefWaCol 24% 25.04% Small change 

ReefEpib 29.38% 29.79% Minor change 

ReefCryp 13.65% 12.78% Small change 

OffSand 10.71% 11.04% Minor change 

GenPred 5.24% 5.00% Minor change 

Total productivity Total 4.71 kg.ha-1.day-1 4.04 kg.ha-1.day-1 Expected change, small 

2) Proportional pelagic 

subsidies driving total 

productivity among reef 

zones 

Slope of linear 

relationships 

Reef zone, slope 12.46 [10.48, 15.22] 12.24 [10.16, 14.60] Remained strongly positive 
Affected by recruits 

in the crest and 

back reefs 

Reef zone, crest 5.53 [2.10, 8.42] 2.95 [-0.85, 5.83] No longer definitely positive 

Reef zone, flat -4.51 [-9.00, -0.45] -6.65 [-10.59, -2.76] Became more strongly negative 

Reef zone, back -0.52 [-4.50, 2.93] -3.24 [-6.39, 0.05] Almost negative 

3) Topography and water 

flow effects on pelagic and 

non-pelagic productivity 

Standardised SEM 

coefficients 

TotNonPel~~TotPel -0.13 [-0.23, 0.00] -0.09 [-0.22, 0.04] Minor change 

Unchanged 

NetFlow->TopComp -0.71 [-0.75, -0.66] -0.71 [-0.75, -0.66] No change 

NetFlow->TotNonPel -0.43 [-0.55, -0.29] -0.37 [-0.50, -0.24] Minor change 

TopComp->TotNonPel 0.11 [-0.01, 0.23] 0.14 [0.02, 0.25] Insignificant change 

NetFlow->TotPel -0.05 [-0.16, 0.06] -0.04 [-0.15, 0.08] Insignificant change 

TopComp->TotPel 0.59 [0.51, 0.67] 0.59 [0.51, 0.68] Insignificant change 
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Appendix E: Supporting Information for Chapter 5 

Supplemental Methods 

Study locality and survey design 

Lizard Island is a mid-shelf island group in the northern Great Barrier Reef, offshore from a low-

populated coastline and away from major sources of coastal runoff and intensive agricultural activities 

(Bainbridge et al., 2018). Human population at Lizard Island is minimal and restricted to small-scale 

tourism and scientific research. Most of Lizard Island’s marine environments are part of no-take areas 

of the Great Barrier Reef Marine Park, with all forms of recreational and commercial fishing strictly 

prohibited (GBRMPA, 2016). Thus, apart from relatively small crown-of-thorns starfish outbreaks that 

caused localised damage (Pratchett, 2010), the reefs we surveyed around Lizard Island remained largely 

intact in 2003-2004. 

 

Detailed survey procedures and resampling algorithms 

Benthic surveys to quantify live coral and turf cover were conducted using point-intercept and 

photoquadrats along transects in 2003/4 and 2018, respectively. In 2004, 12 x 10 m-long transects were 

surveyed at each of the four reef zones, totalling 33 points per transect and 396 points per reef zone. In 

2018, five 1 m2 photoquadrats were obtained from each of nine replicated 30 m long transects. From a 

total of 50 randomly distributed points per photoquadrat (Morais & Bellwood, 2019b), we randomly 

subsampled nine, totalling 45 points per transect and 405 points per reef zone. Subsampling followed 

by bootstrapping ensured that a similar number of point-intercepts and, hence, a similar precision in 

coral and turf cover estimates were used in 2003/4 and 2018. Detailed description of the field procedures 

is available in Wismer, Hoey, & Bellwood (2009) and Chapter 4 for the surveys in 2003/04 and 2018, 

respectively. 

In both 2003/04 and 2018, we used an array of visual surveys (belt transects) and enclosed clove 

oil stations to generate a comprehensive sampling of 13 common reef fish families. Visual surveys 

encompassed the families Acanthuridae, Apogonidae, Chaetodontidae, Epinephelidae, Labridae, 

Pomacanthidae, Pomacentridae and Siganidae, and clove oil collection methods the families 
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Blenniidae, Gobiidae, Pseudochromidae and Tripterygiidae. We subsequently split the family Labridae 

into Scarini and non-Scarini subgroups. To combine the different survey methods into a single unit 

containing all surveyed fish families, we applied the resampling procedure described in Chapter 2 

(Morais & Bellwood, 2019b). In brief, individual fishes are randomly sampled within each census at 

each zone and each year, proportionally to their density. The final fish assemblage for each year/zone 

combination was based on an arbitrary resampling area unit of 100 m2. The resampling procedure was 

bootstrapped for 100 or 500 iterations to create distributions of parameters of interest (see main text for 

the ordination methods and below for the Bayesian analytical approach). 

In 2003/4, visual surveys were family-targeted and divided into three blocks: Block 1 targeted 

parrotfishes (Labridae: Scarini) covering an area of approximately 587 m2 per transect (four transects 

per zone); Block 2 targeted cardinalfishes (Apogonidae) covering an area of 400 m2 per transect (nine 

transects per zone, except for the back reef, with 18 transects); Block 3 targeted Acanthuridae, 

Chaetodontidae, Epinephelidae, Labridae, Pomacanthidae, Pomacentridae and Siganidae on an area of 

250 m2 per transect (six transects per zone). In 2018, visual surveys were size and behaviour-targeted, 

and were also divided into three blocks: Block 1 targeted large (> 25 cm total length, TL), water-column 

located or quick swimming fishes, covering 250 m2 per transect (nine transects per zone); Block 2 

targeted smaller (< 25 cm TL), quick-swimming or water column-positioned fishes, covering 150 m2 

per transect (nine transects per zone); and Block 3 targeted small, non-cryptic, site-attached fishes found 

typically within 1 m from the benthic substrate, covering 30 m2 per transect (nine transects per zone). 

Because these surveys were not taxonomically-driven, they initially included all detected fish families 

following Chapter 4. Families not surveyed in 2003/4 were subsequently excluded to keep consistency. 

Cryptobenthic reef fish families (Blenniidae, Gobiidae, Pseudochromidae and Tripterygiidae) were 

surveyed in both 2003/4 and 2018 using enclosed clove oil stations. Small (0.4 m2 per station), 

approximately circular reef areas were enclosed with a fine-mesh mosquito net weighted with a steel 

chain and sprayed with an ethanol:clove oil solution. In 2003, 24 stations were haphazardly laid in the 

dominant substrate types within each reef zone (Depczynski & Bellwood, 2005). In 2018, eight stations 

were laid systematically along three 14 m-long transects (totalling 24 stations per reef zone). 
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Identification was done at the species level for the enclosed clove oil collections in both time 

periods, for all visual survey blocks in 2018, and for block 1 in 2003/4. However, blocks 2 and 3 were 

surveyed at the genus-level in 2003/4. To ensure comparability between all blocks and years, we 

downgraded species-level identification to the genus resolution. All fishes surveyed visually were size-

tallied in the same size bins (in total length, TL), with 2.5 cm precision up to 20 cm TL (e.g. 0-2.5 cm, 

2.6-5 cm, etc.) and 5 cm thereafter. Cryptobenthic fishes collected with clove oil were measured to the 

nearest 0.1 mm, but were binned in the same size classes to keep consistency with small fishes from 

other families. Detailed description of the field procedures is available in (Depczynski & Bellwood, 

2005; Depczynski, Fulton, Marnane, & Bellwood, 2007; Fulton & Bellwood, 2005) and in Chapter 4 

for the surveys in 2004 and 2018, respectively. 

We used a series of procedures to ensure that visual estimates of reef fish abundance and sizes 

were accurate and precise and consistent between surveys. First, all three surveyors (CJF, MM and 

RAM) had extensive previous experience in doing fish counts at the time of the surveys, ranging from 

over a hundred to over a thousand counts per person. This also included 20-100 hours identifying and 

estimating fish sizes previously to the surveys in the same specific field site. Fish sizes were also 

constantly calibrated against objects with known sizes, particularly the tape measurement markings and 

the annotation slates. Finally, to avoid unconscious bias in either abundance or size estimates, the 

surveyor in 2018 had no previous access to the data from 2003/04. This ensured that size estimates from 

2018 were kept independent from 2003/04. 

 

Mapping reef zones 

To provide a system-level analysis of potential changes in the main reef habitat zones, we 

calculated the weighted average of the reef zone-specific standing biomass, productivity, consumed 

biomass and turnover. We used the area of each reef zone obtained from satellite-based habitat mapping 

as the averaging weights for all descriptors. We started by mapping and subsequently measuring the 

area of the distinct reef zones of this windward reef stretch (Fulton & Bellwood, 2005). We used similar 

procedures to Bellwood et al. (2018) when distinguishing among reef zones from satellite images. 

Initially, the crest was defined and visually identified as the pale outer margin of the windward edge of 
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the reef. The crest was connected to the slope, characterised by a darker blue colour due to deeper 

waters. Leeward from the crest, a dark brown colour indicated the exposed outer flat, and a gradual 

transition lighter brown tone indicated the inner flat. The back reef was located immediately after the 

inner flat toward the lagoon and was identified by a blue colour tone due to increasing bottom depth. 

The back reef presented a disconnect between its north-eastern and southwestern parts and was flanked 

by small isolated patch reefs amidst sand. These patch reefs were not included on the mapping. 

All mapping procedures were undertaken with Google Earth Pro, and the polygons were read and 

processed in R (R Core Team, 2019) using the package rgdal (Bivand, Keitt, & Rowlingson, 2019). 

The total planar area of each reef zone, in km2, was obtained using the package geosphere (Hijmans, 

2019). We used the Pythagoras’ theorem to obtain the real area of the slope from its planar area and its 

maximum depth (about 20 m). We constrained the mapping to the boundaries of the area surveyed, 

except for the inner reef flat. Although we did not directly survey the inner reef flat, we included it 

alongside the outer flat for two reasons. First, although the inner flat is composed of reef pavement 

interspersed with sand, its reef fish assemblage was qualitatively similar to the outer flat (authors pers. 

obs.). Second, not accounting for the inner flat would result in an overestimate of the contribution of 

other, more structurally complex zones, to the energetics of this windward reef system, particularly the 

slope and back reef (Bellwood et al., 2018). Because the inner flat is structurally and biologically more 

similar to the outer reef flat than to any of these other reef zones, aggregating it alongside the outer flat 

was the most parsimonious and conservative procedure.  

 

Obtaining and aggregating metrics of energy flow and storage 

We used the trait dataset from Chapter 4 (Morais & Bellwood, 2019a) to obtain genus-level 

maximum length, length-weight, growth and mortality coefficients. This was done by averaging these 

traits across the different species of each genus in that dataset, a procedure that assumes species 

composition at the reef scale has not undergone extensive changes between the survey years, i.e. 

changes were mainly in terms of abundance. Although this procedure could generate biased genus-level 

estimates of traits if local extinctions were common, there is ample evidence that, even after extensive 

coral mortality, local extinctions are a rare phenomenon largely restricted to very specialized 
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corallivorous species (Brooker, Munday, Brandl, & Jones, 2014; Munday, 2004; Pratchett, Wilson, & 

Baird, 2006). Combined with the naturally low abundance of corallivores relative to other feeding 

guilds (e.g. Bellwood, Hughes, Folke, & Nyström, 2004), it is unlikely that this small potential bias 

would affect our system-level energetic analyses. 

Length-weight power coefficients were used to convert individual lengths as obtained from 

counts to individual weight (Froese, 2006). Genus-averaged maximum species length and growth 

coefficients (Kmax) were used to estimate the expected size of each fish after a one-day period of growth 

under a Von Bertalanffy Growth Model (VBGM) trajectory (Morais & Bellwood, 2018, 2019b). 

Expected growth, in weight, was then obtained by subtracting the weight of the fish during the survey 

from the weight of the same fish after a one-day following its expected growth trajectory. Daily 

mortality rates were estimated in a two-step procedure. First, we obtained instantaneous mortality 

coefficients for each genus using Pauly’s empirical equation, which considers VBGM parameters and 

water temperature (Pauly, 1980). These mortality coefficients were then used to delineate a negative 

exponential relationship between mortality rates and individual body size (see Bozec, O’Farrell, 

Bruggemann, Luckhurst, & Mumby, 2016), reproducing the reported empirical decline in mortality risk 

as individuals age and grow (Gislason, Daan, Rice, & Pope, 2010; Goatley & Bellwood, 2016; 

Jørgensen & Holt, 2013). This provided daily probabilities of survival for each individual in the dataset, 

which were subsequently multiplied by the individual body mass to generate an ‘expected per capita 

loss of biomass’ due to mortality. The total standing biomass, productivity and consumed biomass of 

resampled fish assemblages were the combined weights, growth, and expected loss of biomass from all 

individuals, respectively. 

 

Bayesian data analysis procedures 

We combined bootstrapping and a Bayesian analytical framework to test for differences in coral 

and turf cover, and ecosystem functioning metrics (fish standing biomass, productivity, consumed 

biomass and turnover) between sampling years. For coral and turf cover, we tested for differences 

between years for each reef zone, whereas for the function metrics we used the reef-level values 

calculated from weight averaging zone-specific values (see above Mapping reef zones). All models 
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used the No-U-Turn sampler algorithm to sample MCMC chains, and were implemented using the Stan 

language with the rstanarm interface to R (Goodrich, Gabry, Ali, & Brilleman, 2018; Stan Development 

Team, 2018). For all model sets, we inspected the MCMC chains for convergence and efficiency by 

using the number of effectives and the Gelman-Rubin statistic (Rhat). 

Because of the subsampling procedure employed to keep benthic surveys consistent among 

sampling years (see Detailed survey procedures and resampling algorithms), we ran one Bayesian 

model for each of the 500 subsampling bootstrap iterations. These models included number of coral/turf 

points per subsample as the response variable, and sampling period and reef zone as predictors. We 

used a binomial error distribution with logit link, and normally distributed priors with mean = 0 and 

standard deviation = 3 for both intercept and slopes. Each model had three chains of 1,000 steps, with 

a 50% burn-in and no thinning, yielding a final composite of chains summing 750,000 steps. We 

calculated the effect sizes of sampling year by dividing the estimated parameter value (coral or turf 

cover) for 2018 by the 2003/4 value for each step of the composite of chains. We then used the high 

posterior density interval (HPD, 95% credibility interval) of the effect sizes to guide statistical 

inference. 

For the fish component, we bootstrapped the ecosystem functioning metrics (standing biomass, 

productivity, consumed biomass, turnover and instant biomass change) calculated from the resampled 

fish assemblages for 500 iterations (see Detailed survey procedures and resampling algorithms). We 

used these 500 bootstrapped observations of each metric as the response dataset and sampling period 

as predictor. Following histogram inspection of the bootstrap distributions, we used gaussian error 

distributions for the standing biomass, productivity and instant biomass change models, and gamma 

error distributions with log link for the consumed biomass and turnover models. Each model was run 

for three chains of 3,000 steps with a 50% burn-in and a thinning of one in every two steps per model. 

We used normally distributed priors with mean = 0 and standard deviation = 10 and 100, respectively, 

for intercept and slopes; as well as Cauchy distributed auxiliary priors with mean = 0 and standard 

deviation = 5. Similar to the benthic data analysis, we calculated the effect sizes of sampling year by 

dividing the estimated parameter values of each metric for 2018 by the 2003/4 values for each MCMC 

step and HPD of the effect sizes to guide statistical inference. 
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Figure E1: Magnitude of change in the abundance of fish families in different reef zones on a windward 

reef at Lizard Island, northern GBR, between 2003 and 2018. Circles are the median across resampling 

iterations, wide bars represent the interquartile range, and whiskers the 95% quantile range. Colours are 

proportional to the probability of an effect: grey = < 70% probability of change; red > 70% probability of 

a decline; and blue > 70% probability of an increase. 
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Figure E2: Magnitude of change in the standing biomass of fish families in different reef zones on a 

windward reef at Lizard Island, northern GBR, between 2003 and 2018. Circles are the median across 

resampling iterations, wide bars represent the interquartile range, and whiskers the 95% quantile range. 

Colours are proportional to the probability of an effect: grey = < 70% probability of change; red > 70% 

probability of a decline; and blue > 70% probability of an increase. 

 

0.01 0.1 1 10 100

Apogonidae

Pseudochromidae

Tripterygiidae

LabridaeScarini

Siganidae

Blenniidae

Gobiidae

Acanthuridae

Pomacentridae

LabridaeOthers

Epinephelidae

Pomacanthidae

Chaetodontidae Slope

0.01 0.1 1 10 100

Crest

0.01 0.1 1 10 100

Flat

0.01 0.1 1 10 100

Back

Magnitude of biomass change

Biomass



Appendix E 

 224 

 

Figure E3: Family-level abundance, standing biomass, productivity, consumed biomass and total turnover on a windward reef at Lizard Island, northern GBR, in 2003 

and 2018. Error bars represent the standard deviation of resampling distributions. Acanthurid = Acanthuridae, Pomacentri = Pomacentridae, LabOthers = Labridae 

excluding Scarini, LabScarini = Labridae, Scarini, Epinepheli = Epinephelidae, Chaetodont = Chaetodontidae, Pomacanthi = Pomacanthidae, Tripterygi = 

Tripterygiidae, Pseudochro = Pseudochromidae. 
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Figure E4: Size distribution of the studied reef fish assemblage at Lizard Island, northern GBR, in 2003 and 

2018. Lines and dots describe the mean abundance of each family aggregated in log10 body mass bins 

across 500 resampling iterations, with intervals representing standard deviations. 
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Figure E5: Biomass, productivity and consumed biomass size spectra of the studied reef fish assemblage at 

Lizard Island, northern GBR, in 2003 and 2018. Lines and dots describe the mean value of each metric, 

aggregated in log10 body mass bins, across 500 resampling iterations. Intervals define the 90% quantile 

interval. Note log10 scale in the y-axis implying that differences among sampling periods are larger than 

perceived. 

  



Appendix E 

 227 

 

Figure E6: Magnitude of change in the abundance of the main genera of planktivorous (Acanthochromis, 

Amblyglyphidodon, Chromis, Neoglyphidodon and Neopomacentrus) and territorial herbivorous 

(Dischistodus and Stegastes) damselfishes (Pomacentridae) in different reef zones on a windward reef at 

Lizard Island, northern GBR, between 2003 and 2018. Circles are the median across resampling iterations, 

wide bars represent the interquartile range, and whiskers the 95% quantile range. Colours are proportional 

to the probability of an effect: grey = < 70% probability of change; red > 70% probability of a decline; and 

blue > 70% probability of an increase. 
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Figure E7: Biomass size structure of the three main nominally-herbivorous fish families at Lizard Island, 

northern GBR, in 2003 and 2018. Lines and dots describe the pattern of standing biomass for a family, 

aggregated in log10 body mass bins, across 500 resampling iterations. Intervals define the 90% quantile 

interval. Note log10 scale in the y-axis implying that differences among sampling periods are larger than 

perceived. 
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On the relationship between individual weight and somatic growth 

Growth, as a proportion of the body size of a fish tends to exponentially decline over time as the 

individual gets larger. Growth in mass units, on the other hand, can be high for a relatively large period 

in the life of a fish, and, thus, fish with different body sizes can sustain raw growths of similar 

magnitude. This implies that the increased productivity observed simultaneously to increased biomass, 

as observed in our study, is not necessarily paradoxical.  

This reasoning can be exemplified if we consider a hypothetical growth curve of a reef fish as in 

Figure E8 (following a VBGM trajectory with K = 0.2, Linf = 30 cm and t0 = -0.2; and average length-

weight regression parameters a = 0.015 and b = 3.01). Growth as a proportion of the asymptotic body 

weight shows an asymmetric, dome-shaped trajectory, in which maximum growth potential occurs 

relatively early in the ontogeny, but at a relatively large size (in that case, ~30% of Winf, the asymptotic 

body weight). The asymmetric nature of the curve implies that the growth deceleration that follows 

peak growth is less pronounced than the growth acceleration that led to the peak growth. Take, for 

example, an arbitrary growth rate of 70% of the maximum growth relative to the asymptotic weight (y-

axis, Figure E8). This magnitude of growth can occur in two moments of the ontogeny of this fish, 

highlighted with two green circles linked by a line (Figure E8). These two moments correspond to an 

order of magnitude difference in body weight (numbers 1 and 2), from ~6% to ~65% of the asymptotic 

weight. Thus, in a simplified scenario, a fish assemblage composed of individuals with size 1, can 

increase in both biomass and productivity if these individuals grow to any size between sizes 1 and 2. 

This observation implies that the size structure of a fish assemblage is critical in determining its 

productivity. 
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Figure E8: Relative length, weight, growth rate relative to individual weight and proportional growth rate 

relative to asymptotic weight for a hypothetical fish (VBGM coefficients: K = 0.2; Linf = 20 cm; t0 = -0.2; 

Length-weight parameters: a = 0.015; b = 3.01). Green circles linked by a green line represent 70% of the 

maximum growth rate, which occurs at two points in the ontogeny of this fish, coincident with body weights 

of an order of magnitude difference (1 and 2). 
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Appendix F: Supporting Information for Chapter 6 

Supplemental Methods 

Productivity-biomass relationships: a large-scale empirical dataset 

To evaluate whether standing biomass is able to predict the productivity of fish assemblages, we 

used a dataset of parrotfish (Labridae, Scarini) counts across the Indo-Pacific realm, from Mauritius, in 

the Western Indian Ocean, to French Polynesia, in the Central Pacific (Bellwood, Hoey, & Choat, 2003; 

Bellwood, Hoey, & Hughes, 2012). This spanned 154º of longitude and around 15,000 km of linear 

distance. Parrotfishes have been repeatedly identified both as key to coral reef functioning (Bellwood, 

Hughes, Folke, & Nyström, 2004; Bonaldo, Hoey, & Bellwood, 2014; Hoey, Taylor, Hoey, & Fox, 

2018) and coral reef fisheries, in studies ranging from local scales to across the whole Indo-Pacific 

(Bellwood et al., 2012; DeMartini et al., 2017; Hamilton et al., 2016; Houk et al., 2012; Rhodes, Tupper, 

& Wichilmel, 2008; Taylor, Lindfield, & Choat, 2015). Furthermore, although large parrotfish species 

can be very susceptible to fishing (Bellwood et al., 2012; Hamilton et al., 2016), small species often 

exhibit quick life-histories, maturing early and having a relatively short lifespan (Choat, Axe, & Lou, 

1996; Choat & Robertson, 2002). Parrotfishes have been shown to play a key role in sustaining 

fisheries-depleted stocks in developing countries (Condy, Cinner, McClanahan, & Bellwood, 2015; 

McClanahan, 2018), and are likely to play an even greater role in sustaining coral reef fisheries as 

longer-lived species are depleted from these systems. 

Parrotfishes were counted and had their size estimated (total length, TL, in cm) during timed-

swim transects of 20 min duration that covered an average distance of 235 m (Bellwood & Wainwright, 

2001). The width of the transects was 5 m for fish larger than 10 cm, and 1 m for fish 10 cm or smaller. 

Details on the procedures are available in Bellwood & Wainwright (2001). Transects were laid in four 

coral reef habitat zones: back, flat, crest and slope, with 4.3 ± 0.8 transects per habitat (mean ± SD). 

The dataset had a total of 313 counts divided in 19 locations and 10 regions (Figure 1, Table S5). 

Bayesian length-weight parameters ! and " (Froese, Thorson, & Reyes, 2014) and species maximum 

size (#!"#) for all parrotfish species were obtained from FishBase (Froese & Pauly, 2018). VBGM 

coefficients were estimated following Chapter 2, using mean sea surface temperature data for each 
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locality extracted from Bio-Oracle (Tyberghein et al., 2012). We used the procedures in equations (12) 

to (18) in the Methods of Chapter 6 to estimate total parrotfish standing biomass (kg m-2) and biomass 

productivity (g m-2 day-1) per transect across our study regions, and then aggregated both biomass and 

productivity by averaging among transects within regions.  

We evaluated potential productivity-biomass relationships in parrotfish assemblages in two 

spatial scales. First, we tested whether standing biomass could predict patterns in productivity among 

regions using a Generalized Linear Model (GLM) with gamma error distribution. Second, within-

regions, we modelled productivity as a linear function of biomass, region, reef habitat, and a 

biogeographic measure of distance to the centre of the Indo-Australian Archipelago (IAA), using a 

Gaussian linear model. This distance was calculated in longitudinal degrees from each sampled 

coordinate towards the longitude of 131º, in Raja Ampat, Indonesia. This region has been showcased 

as the centre of biodiversity in the Coral Triangle, having the highest recorded coral reef fish species 

richness in the world (Allen, 2008; Allen & Erdmann, 2009). The distance to the centre of the IAA was 

intended to account for biogeographic differences in species composition between different regions 

along the broad longitudinal stretch sampled. Our linear model included interactions between biomass 

and region, biomass and reef habitat, and biomass and distance to the centre of the IAA. We compared 

this full model with nested subset models using Akaike Information Criterion and derived measures, as 

implemented by the R package MuMIn (Bartoń, 2016). The two most informative sub models had AICs 

that differ in less than two units and were, thus, indistinguishable (Burnham & Anderson, 2002). Both 

models included biomass, region, habitat, and an interaction between biomass and region (Table F1), 

but only one of these models included distance to the centre of the IAA. Since these models were 

indistinguishable, we opted for the simplest model, which excluded distance to the centre of the IAA 

(see Methods section on Chapter 6 for the model equation).  

To disentangle some of the drivers of patterns in productivity versus biomass for parrotfish 

assemblages, we modelled regional-level biomass, body length and productivity as linear functions of 

human population density and distance to the centre of the IAA. Biomass, productivity and body length 

were first averaged among individual transects for each habitat, then across habitats in each location, 

and then between locations, if a region comprised more than one location. Distance to the centre of the 
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IAA was processed in a similar hierarchical way, although it was obtained for different sites in a 

location, and most habitats shared the same coordinate. Human population density was calculated by 

averaging human population in a radius of 30 km from each site, rescaling it to log10 (individuals 100 

km-2), and then averaging across locations and regions. The raw human population data was obtained 

from the Gridded Population of the World (GPW), v4 (CIESIN, 2016). We used GLMs with gamma 

error distribution to model regional biomass and productivity, and Gaussian linear models to model 

regional average body length. 

 

Modelling a coral reef fish assemblage 

We used size-spectrum theory as a basis to derive theoretical expectations on the size structure 

of fish assemblages in our model (Andersen & Beyer, 2006; Edwards, Robinson, Plank, Baum, & 

Blanchard, 2017; Jennings & Dulvy, 2005). Size-spectrum expectations have been shown to accurately 

reflect the empirical size structure of coral reef fish assemblages (Dulvy, Polunin, Mill, & Graham, 

2004; Graham, Dulvy, Jennings, & Polunin, 2005; Robinson et al., 2017; Wilson et al., 2010). Thus, 

we used the principles laid out by Edwards et al. (2017) to guide our model building. The bounded 

power law is defined by the probability density function: 

 

$(#$) = (#$
%		

            (F1) 

where #$ represents the length of each individual fish, * is the exponent governing the abundance-size 

relationship, and ( is a constant relating the exponent to the maximum and minimum sizes, #!$'
'  and 

#!"#'  (Edwards et al., 2017). We considered 5 cm total length (TL) as the minimum size of a fish in our 

modelled assemblage, and 100 cm TL as the maximum size. Fish smaller than 5 cm TL are not 

adequately surveyed by standard coral reef fish sampling procedures (e.g. visual surveys, Ackerman & 

Bellwood, 2000). Fish larger than 100 cm TL have very low abundances, encompassing a small fraction 

of what is normally detected in coral reef surveys. Sharks can be an exception to this, and large densities 

of sharks in remote coral reefs have been estimated using visual surveys (Sandin et al., 2008). However, 
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their high mobility and inquisitive behaviour likely result in overestimated counts by divers (Bradley et 

al., 2017; Ward-Paige, Flemming, & Lotze, 2010). Thus, we follow recent large-scale studies (e.g. 

Robinson et al., 2017; Williams et al., 2015) and do not consider sharks in our modelled assemblage. 

The exponent * describing the shape of the size spectrum was set to the value of -2.7, based on the 

values for length size spectra in Robinson et al. (2017). Nevertheless, we have also considered different 

values of * (see Sensitivity Analyses below). We used the inverse probability distribution function to 

randomly draw length values from the bounded power law in equation (F1), as described in Edwards et 

al. (2017). Our fish assemblage consisted of + = 1000 individuals with length values sampled by this 

method. 

To be able to estimate individual somatic growth, and therefore productivity (Chapter 3), we 

had to assign a theoretical maximum size (total length) to which each individual . could grow, #!"#$. 

Because there are no mechanistic links between the size of a fish in a community and the maximum 

size it will potentially attain, we based this step on the distribution of maximum sizes of an empirical 

coral reef fish assemblage at Lizard Island, in the Great Barrier Reef (Chapter 4; Morais & Bellwood, 

2019). We used a resampling procedure that combines multiple survey phases in one standardised area 

as described below (section Simulating fishing on whole coral reef fish assemblages). The resampled 

dataset included only individuals from species with #!"# ≥ 6	12 TL, thus allowing fish with 5 cm TL 

(i.e. the minimum size in our modelled assemblage) to grow at least 1 cm. We first created size-specific 

distributions of #!"# by binning the sizes of the individuals on this dataset (5-10 cm, 11-20 cm, 21-30 

cm, 31-50 cm and >50 cm). Then, for each individual in our simulated assemblage, we sampled a 

maximum size value from the size-specific #!"# distribution that matched #$, the size of that individual. 

For example, a fish with #$ = 15	12 would have its maximum size drawn from the empirical #!"# 

distribution of the 11-20 cm size bin. The probability of drawing each #!"# value in a size bin was 

proportional to the number of individuals from the empirical dataset that had that value, provided that 

#!"# ≥ #$ (i.e. an individual could not attain a maximum size smaller than its actual size). 

To estimate body mass values, we assigned length-weight regression parameters to each fish. 

These parameters were obtained from the same empirical assemblage as above. We started by testing 
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for potential relationships between the length-weight parameters ! and " and individual size or 

maximum species size. Linear models did neither show evidence of size nor of maximum species size 

dependences on ! or ", and therefore we used the model intercept estimates (i.e. average values) of ! =

0.019 and " = 3.04 for all individuals. In essence, this means that all fishes in our model shared the 

same average body shape and did not significantly change this shape during their ontogeny (see Froese, 

2006). These parameters were then used to estimate the mass of each individual following equation (12) 

in Chapter 6, and the biomass of the assemblage following equation (13) in Chapter 6. 

To model the somatic growth of each individual, we first determined likely growth trajectories 

in the Von Bertalanffy Growth Model (VBGM) following Morais & Bellwood (2018). The theoretical 

maximum size of each individual assigned above, #!"#!, was used as the species maximum body size; 

and we assigned a temperature of 30ºC to our simulated coral reef fish assemblage. This is a typical 

mean sea surface temperature to which reefs in the Coral Triangle are exposed (data extracted from 

Bio-Oracle, Tyberghein et al., 2012). Then, we used these values to predict growth for all combinations 

of trophic groups and positions relative to the reef. We further averaged the predictions across trophic 

groups and remaining positions relative to the reef to obtain 8!"#$, i.e. the growth coefficient of an 

individual . from our modelled fish assemblage. By averaging across trophic groups and positions, we 

assume that all combinations of these traits can coexist in the modelled community. Nevertheless, the 

impact of any potential departure between the result of this step and the trophic structure of real 

assemblages is likely to be minor because dietary group and position relative to the reef explain, 

together, only about 6% of the variability in reef fish 8!"#. Body size and temperature are the primary 

drivers of fish growth, together explaining around 69% of its variability (Chapter 2; Morais & 

Bellwood, 2018). Finally, we used the derived parameters #!"# and 8!"# to calculate the expected 

growth, in mass units, from equations (12) to (18) of Chapter 6. 

 

Simulating coral reef fisheries impacts in our modelled assemblage 

The next step to unveiling the potential mechanisms relating productivity-biomass relationships 

with human population density, was to simulate exploitation of our modelled fish assemblages, i.e. coral 
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reef fisheries. We did that by simulating the effect of different capture levels 1 with a size-dependent 

fishing probability function. We started by establishing #!"#"# = 2012, as an arbitrary threshold #!"# 

for a fish to be considered as “fishable” or target for fisheries. Thus, any individuals with #!"#! ≥

#!"#"#$ were considered as targeted. We formulated our size-dependent fishing function as a mixed 

Power and Gompertz curve that should act over this pool of target fishes, +("). Within this function, 

we established a reference size, #*, so that: 1) fish with 5 cm TL had zero chance of being captured; 2) 

fish with 6-10 cm TL had a negligible chance of being captured; and 3) fish with 11-#* cm had an 

exponential increase in their chance of being captured, 1:+*, up to 1:+* = 0.1. Thus, from 5 cm to #* 

the probability of being captured obeyed the Power part of the function (Figure F17). From #* to #!"#' , 

the maximum size potentially found in our assemblage (i.e. 100 cm TL), our function followed a 

Gompertz curve. The Gompertz inflexion point was set at 2#* and, given the mixed nature of the 

function, coincided with a 1:+* = 0.6. Between 2#* and #!"#' , 1:+ would slowly grow in an asymptotic 

way (Figure F17). Finally, at #!"#' , the probability of capture was at its maximum value, 1:+!"# = 1. 

The mathematical formulation of our function was, for #* < # ≤ #!"#' : 

 

1:+ = = + ?(@ − =)B,
%&'(%)(*+C	

                      (F2) 

where # is length in cm,  #* = 17	cm, and the parameters =, @ and G are fixed at = = 1.25, @ = 1 and 

H = 0.025. For #!$'
' ≤ # ≤ #*: 

 

1:+ = I#-	

                      (F3) 

where ℎ is fixed at ℎ = 6 and I is a constant defined by I = 	
./0(23.),,

%&'(*%)(*+5

6*#
. The calculated 1: 

vector was rescaled to assume values between 0 and 1, resulting in actual probability values. Sigmoidal 

size-susceptibility curves have been suggested for multiple gear types in coral reef fisheries, including 
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trawls, seines, traps and corrals (Dalzell, Polunin, & Roberts, 1996). Other gears, such as handlines or 

spearfishing select for carnivorous and/or large fish, and potentially also result in sigmoidal size-

susceptibility curves. 

We simulated fishing impacts by randomly withdrawing a proportion 1 of the +(") individuals 

in our assemblage with the probability vector given by our size-dependent fishing probability function. 

A preliminary exploration showed that a value of 1!"# = 0.2 was sufficient to create a scenario of 

biomass depletion, with K7-./ < 0.1	K8, i.e. in which the final biomass was reduced to less than 10% 

of the initial biomass. Therefore, we simulated fishing at	1 = {0.01, 0.02, 0.03, ..., 1!"#= 0.2}, and 

measured the standing biomass, productivity and turnover rates of the resulting assemblage. We present 

our results relative to exploitation rate (Worm et al., 2009), which is given by: 

 

L7 = 1 − M
K7
K8
N	

            (F4) 

where L7 is exploitation rate at catch 1, K7 is biomass at 1, and K8 is unfished biomass. Productivity 

was calculated from equations (12) to (18) in Chapter 6, and turnover rates were calculated as the ratio 

of productivity per biomass, rescaled to % year-1. 

Fishing was repeated for each capture level 1 for 200 iterations. Importantly, we simulated fishing 

captures acting over the initial (unfished) fish assemblage only. Our emphasis here is on the effects of 

“instantaneous fishing” on the biomass and productivity of coral fish assemblages. We acknowledge 

that other processes acting at larger time scales, such as behavioural responses to fishing, could 

additionally affect capture rates in a scenario of continue fishing, i.e. fishing over previously fished 

assemblages.  

 

Measuring the steepening of the size-spectrum exponent and sensitivity analyses 

One of the expected consequences of fishing is the steepening of the size spectrum exponent *, 

i.e. * becoming more negative (Dulvy et al., 2004; Jennings & Blanchard, 2004; Robinson et al., 2017). 

We evaluated if this prediction held in our simulations by estimating the exponent *7 from our 
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assemblage after fishing for each 1 value. To do that, we calculated the log-likelihood of a broad range 

of candidate *7, and then searched for the value of *7 that maximum the likelihood function. We 

employed the modified form of the likelihood function presented in Edwards et al. (2017): 

 

ln[ℒS*7|	#U⃗ W] = + lnY
*7 + 1

#!"#' %0/9 − #!$'
' %0/9Z + *7[ln#$

'

$:9
	

            (F5) 

where ℒ denotes the likelihood function and #U⃗  is the vector of observed fish lengths. 

 

We also performed a series of sensitivity analyses to assess how relaxing certain assumptions 

could affect our conclusions. We re-ran all the analytical procedures by varying 1) the initial exponents 

of the size spectrum, *; 2) the size thresholds for considering a fish as “fishable” or target, #!"#"#$; and 

3) the size-specific fishing function. We used * = {-2.9, -2.7, -2.5, -2.3, -2.1}, which encompasses the 

range of the length size-spectrum exponent empirically reported for uninhabited coral reef fish 

assemblages in Robinson et al. (2017). We used #!"#"#$ = {30, 25, 20, 15, 10} in cm, ranging from a 

scenario of selective fisheries (larger #!"#"#$), normally characteristic of lightly fished coral reef 

systems, to a scenario of unselective fisheries (smaller #!"#"#$), normally characteristic of heavily 

fished systems. The alternative size-dependent fishing probability functions employed varied in how 

they dealt with our size reference points #*, 2#*, and #!"#' . All functions, however, had the same overall 

shape: the probability of being captured was very small at small sizes, growing quickly at intermediate 

sizes and slowing down towards the largest sizes. Table F6 lists the functions used, their formulas and 

their fixed parameter values. 

 

Simulating fishing on parrotfish assemblages 

To evaluate whether the observed decreases in biomass and productivity with fishing in our 

model could arise from properties of our modelled fish assemblages, we simulated fishing in the 

parrotfish dataset. This procedure also involved applying a size-dependent fishing probability function 
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and simulating different capture intensities (see Methods, Simulating the impact of coral reef fisheries 

on empirical fish assemblages). 

We started by subsampling the parrotfish assemblage of each region to include three samples 

from each of back, flat and crest reef habitats. Vanuatu was the only region where back reefs were not 

present, so we sampled six reef flats and three crests from this region instead. Samples were drawn from 

the available pool hierarchically by habitat, and randomly within habitats. We rescaled the outputs from 

a total sampled area of 10,575 m2 for each region, to one hectare. In contrast to our modelled 

assemblages, each subsampled assemblage had different abundances, and so the maximum capture rate 

1!"# could not be fixed. We chose 1!"# values for each region that allowed enough individuals to be 

captured and to result in a scenario of at least K7-./ < 0.2	K8. These 1!"#$ values varied from 0.25 to 

0.55. We then simulated fishing, for each region, using 1) values that ranged from 1) = {0.01, 0.02, ..., 

1!"#$}. Each 1 intensity was simulated over 200 iterations for each region, with each iteration 

subsampling the parrotfish assemblages per region. 

Parrotfish assemblages subjected to simulated fishing exhibited the same decoupled declines in 

biomass and productivity as the modelled assemblages (Figure F18). This happened irrespective of the 

regional-scale initial level of biomass depletion, although the capture rates required to trigger the most 

intense responses varied depending on the region (Figure F19). This reinforced the suggestion from 

our model that the initial size structure affects the intensity of the buffering response (see Figure F8). 

However, intrinsic size-structure differences between whole fish assemblages (i.e. our model) and 

selected groups (i.e. parrotfishes) could preclude generalising insights from simulating fishing on this 

dataset. To solve this potential issue, we simulated fishing over entire coral reef fish assemblages using 

empirical data from the Coral Triangle and the Great Barrier Reef. 

 

Simulating fisheries impacts on whole coral reef fish assemblages 

We simulated fishing on two high-resolution empirical datasets of entire coral reef fish 

assemblages from the Great Barrier Reef (Lizard Island) and the Coral Triangle (Raja Ampat, 

Indonesia). We first asked if the same decoupled productivity-biomass relationships were generated by 
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fishing these datasets, and then evaluated initial size structure features likely to affect the intensity of 

these decoupled relationships. 

The Great Barrier Reef (GBR) dataset encompassed the same underwater visual counts of fish as 

used in Chapter 4 (Morais & Bellwood, 2019). This included 36 fish counts obtained at Lizard Island, 

in the norther section of the GBR, distributed among four reef zones: outer slope, crest, flat and back 

reef. The Coral Triangle dataset was collected in the southern Raja Ampat’s islands around Misool, in 

Indonesia’s West Papua Province, using the same underwater visual count method. A total of eight 

counts were obtained from the crest/slope of fringing reefs at the same depth range (6-15 m). In these 

fringing reefs, the transition between the reef crest and slope was often not reliably identifiable. In both 

locations, surveys were undertaken primarily within no-take zones of Marine Protected Areas (the Great 

Barrier Reef Marine Park and the Misool Private Marine Reserve, respectively). Apart from limited 

poaching, there is virtually no fishing extraction in both locations, making them ideal for simulating the 

effects of fishing on reef fish assemblages. 

The counts from both the GBR and the Coral Triangle were composed of four phases, each 

targeting fishes of different size ranges and behaviours. These phases were combined by using an 

algorithm that resamples proportionally to the abundance detected and area surveyed on each phase, 

providing an output relative to a standardised area (see Chapter 4). We chose a standardised area of 

250 m2, equal to area of the largest survey step, which included enough individuals to withstand 

simulated fishing with varying intensity. All coral reef fishes detected within the surveyed area at each 

phase were recorded and identified to the species or genus level. Because of significant differences in 

accessibility, we split the Lizard Island dataset in lagoon (flat and back reefs) and exposed habitats 

(crest and slopes). The three resulting datasets (lagoon and exposed reefs at Lizard Island, and Raja 

Ampat) were then filtered to include the same size range encompassed by our modelled assemblages 

(individuals with 5-100 cm TL, with #!"# ≥ 6	12). Bayesian length-weight parameters ! and " and 

VBGM coefficients were obtained for each species using to the same procedures and methods described 

above for parrotfishes.  

We then ran two sets of fishing simulations using the three datasets. First, to evaluate if decoupled 

responses from productivity and biomass to exploitation occurred at the regional scale, we combined 
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samples within each dataset into one large assemblage, and then simulated fishing on each of these 

regional assemblages. Then, we resampled one standardised area of 250 m2 per dataset (i.e. lagoon and 

forereefs at Lizard Island, and Raja Ampat). Finally, we simulated fishing over a range of capture rates, 

1, ranging from 1 = {0.01, 0.02, 0.03, ..., 1!"#= 0.35}, that resulted in a biomass after fishing of K7-./ <

0.1	K8. These steps were repeated for each 1 for 200 iterations. Second, to compare the behaviour of 

modelled and empirical fish assemblages submitted to fishing, we resampled one standardised area of 

250 m2 per sample per dataset. This resulted in 44 fish assemblages (18 in the lagoon and 18 in the 

forereef of Lizard island, and eight on Raja Ampat). We then submitted each of these to fishing over a 

range of capture rates, 1), that ranged from 1) = {0.01, 0.02, ..., 1!"#$}. In this case, the maximum 

capture rate 1!"# could not be fixed and was chosen for each sample to result in a scenario of at least 

K7-./ < 0.1	K8. These 1!"#$ values varied from 0.11 to 0.3. Again, each 1 intensity was simulated 

over 200 iterations for each sample.  

 

Comparing modelled and empirical buffering responses to exploitation 

We used the transect-level set of fishing simulations above to compare features of the buffering 

responses to fishing between empirical and modelled fish assemblages. Specifically, we chose the 

maximum buffering productivity as a reference point with which to contrast modelled and empirical 

datasets. We first calculated the maximum value attained by the average buffering productivity curve 

across 200 iterations in our modelled fish assemblages while varying the size-spectrum exponent, with 

values of * = {-5, -4.8, -4.6, ..., -1.8, -1.6, -1.4}. This interval was similar to the size-spectrum exponent 

interval comprised by the empirical fish assemblages before fishing. We term the maximum value of 

the buffering productivity curve the ‘peak buffering productivity’. We hypothesized that the peak 

buffering productivity would respond to the size structure of the target component of the unfished 

assemblages. Therefore, we investigated how it related to *, mean individual body size (in g), mean 

individual growth (in g day-1) and biomass turnover rates in both the model and empirical fishing 

simulations. Importantly, these size-structure indicators (i.e. size spectrum exponent, mean body size 

and growth, and turnover) were calculated from fishable individuals, i.e. those larger than the minimum 
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fishing species size threshold of 20 cm TL. This resulted in both modelled and empirical target size-

spectrum exponents, *(") shallower (i.e. less negative) than *.  

Due to extensive collinearity among variables (e.g. mean individual body size and growth, 

Figure F16), peak buffering productivity from empirical assemblages was modelled separately by each 

size structure indicator. We used Generalized Additive Models (GAMs) with thin plate regression 

splines as the smoothing basis and a maximum dimension of 10. Each GAM had peak buffering 

productivity as the response variable and one of the size structure indicators as the predictor. Posterior 

checking of the estimated degrees of freedom revealed that maximum dimension chosen performed 

consistently. For the modelled assemblages, we simply varied the initial size spectrum exponent over 

the same interval observed in the empirical assemblages and plotted the peak buffering response against 

each of the four indicators above. Empirical- and modelled-peak buffering productivity responses to 

each indicator were compared visually. 

 

Model assumptions and stock-recruitment relationships 

In this study, we consider that the variation in productivity as a function of biomass is likely 

driven by somatic growth rather than by recruitment. This can happen if recruitment saturates or peaks 

at low to intermediate biomass, with no recruitment gains (or decreases in recruitment) following further 

biomass increases. Fisheries models such as Beverton-Holt, Ricker, Deriso-Schnute and Shepherd 

commonly include an asymptotic or unimodal stock recruitment relationship that arises from post-

recruitment density-dependent processes (Beverton & Holt, 1957; Hilborn & Walters, 1992; Subbey, 

Devine, Schaarschmidt, & Nash, 2014). Multiple lines of evidence suggest that a relationship like that 

is likely for reef fishes. For example, although the impacts of fishing on reproductive-biomass and -

energy output are well documented (Barneche, Robertson, White, & Marshall, 2018; Hixon, Johnson, 

& Sogard, 2014; Scott, Marteinsdottir, & Wright, 1999), evidence for strong positive relationships 

between reproductive biomass and recruitment in marine fishes is weak, suggesting that any such 

relationships are likely small in magnitude (Munch, Giron-Nava, & Sugihara, 2018; Szuwalski, Vert-

Pre, Punt, Branch, & Hilborn, 2015). A recent evaluation of stock-recruitment assumptions showed 
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that, for most fisheries stocks evaluated, recruitment was relatively independent of spawning biomass 

(Szuwalski et al., 2015). The authors of this study found that recruitment was, most often, explained by 

environmental variations (Szuwalski et al., 2015). Another meta-analysis on the subject detected higher 

coupling between stock size and recruitment, although stock size explained only a very small proportion 

of variation in recruitment (Munch et al., 2018). Importantly, neither of these two large-scale 

evaluations were based on multispecies stocks or included coral reef fish species. 

Coral reef fishes have distinct life-histories and habitat relationships compared to temperate or 

tropical non-reef fishes, which predominate as fisheries stocks. The dual life cycle of reef fishes 

includes a pelagic larvae, but there is mixed evidence on the degree to which these populations are open 

or closed, and on the extent to which adult populations can affect recruitment (Mora & Sale, 2002). 

Intense pelagic mortality, for instance, can drive substantial decoupling in the magnitudes of spawning 

and recruitment (Doherty, 1991; Meekan, Milicich, & Doherty, 1993; Robertson, 1990). Furthermore, 

the degree of spawning-recruitment decoupling varies with body size among fish families globally 

(Brandl et al., 2019), with larger fishes having low recruitment despite high reproductive output, and 

smaller fishes the opposite pattern (Brandl et al., 2019). This implies that families of larger fishes that 

are most likely to drive buffering productivity do so despite limited inputs from recruitment. Thus, our 

assumption that recruitment saturates at relatively low biomass levels for coral reef fishes appears 

reasonable in light of the knowledge available. 

By modelling the somatic component of productivity, we do not explicitly quantify settlement 

inputs and natural mortality. We believe that this is likely to have minimal consequences for the output 

values. First, the direct contribution of settlement to local biomass production is likely to be negligible. 

Because recruits are often just a small fraction of adult size (Leis, 1991; Victor, 1991), any fish in the 

range size targeted by coral reef fisheries undertakes the vast majority of their somatic growth post-

recruitment. This point can be further illustrated if we consider a hypothetical parrotfish recruit with 

1.7 cm TL (a conservative recruit size for this group, see Grutter et al., 2017) and apply average length-

weight regression coefficients for the group (a = 0.017 and b = 3.06, Froese & Pauly, 2018; Froese et 

al., 2014) to estimate its body mass. The weight of this recruit, 0.086 g, would only be 0.33% of the 

weight of an individual (with the same length-weight regression coefficients) with the minimum length 
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susceptible to fishing in our model (11 cm TL), approximately 26 g. Thus, 303 recruits would be 

required to yield the weight of a single 11 cm-sized fish. Such a ratio of recruits is not ordinarily 

expected in coral reef fishes (Hixon & Webster, 2002), further supporting our assumption that 

recruitment is negligible as a direct source of standing biomass. 

Second, natural mortality rates are small in the size range considered herein. Although coral reef 

fish recruits can have high (> 35%) daily mortality rates (Almany & Webster, 2006), these rates drop 

rapidly (to <0.2%) as the fishes grow above 42 mm (Goatley & Bellwood, 2016). Hence, fishes in the 

scope of this work have probably already overcome most of the natural mortality rates to which they 

would be subjected during their lives. At the sizes considered, fishing mortality is likely to dominate 

total mortality. Furthermore, spatial variation in natural mortality rates of parrotfishes has been 

attributed to either predation pressure or density-dependent processes (Gust, Choat, & Ackerman, 2002; 

Taylor et al., 2018). If differential predation pressure drives natural mortality variation, natural mortality 

would be expected to decrease at low biomass levels as large predatory fishes are depleted first with 

increasing fishing pressure (D’agata et al., 2016; Graham et al., 2017). Similarly, if density-dependent 

processes drive natural mortality, higher mortality would be expected under high biomass/high density 

than under low biomass/low density scenarios. In both cases, natural mortality would decrease as 

biomass is depleted. Our model therefore provides a conservative estimate of the effects of biomass 

depletion on fish productivity. 

 

Relationship between buffering productivity and surplus production 

Although buffering productivity may resemble the dynamic concept of surplus production 

(Schnute & Richards, 2002; Szuwalski et al., 2015), they differ in three fundamental ways. Firstly, 

while surplus production is a measure of net production, buffering productivity exclusively describes 

relative rates of productivity depletion: net production does decline with decreasing biomass (Figure 

4, Chapter 6). Secondly, while surplus production curves are traditionally dome-shaped (Hilborn & 

Walters, 1992; Schnute & Richards, 2002), buffering productivity curves are left-skewed (Figure 4, 

Chapter 6). Finally, while surplus production models have been developed and are implemented 

predominantly at the population/stock level (Hilborn & Walters, 1992; Schnute & Richards, 2002), 
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buffering productivity is essentially an assemblage-level metric. Buffering productivity could arise, for 

example, as an emergent property of surplus production from multiple populations that vary in body 

size. When subjected to size-selective fisheries, these populations would be driven to different parts of 

their exploitation axis. As a consequence, while surplus production models predict, at high exploitation, 

a steep decline in productivity from its peak value, buffering productivity predicts only a small decline. 

Thus, its compensatory nature appears to be stronger.  
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Figure F1: The mismatch between biomass and productivity in parrotfish assemblages across the Indo-

Pacific. Each circle is a sample, diamonds are the mean values, and error bars are the standard errors of 

the mean. Note that the axes were rescaled from Figure 1 to accommodate extreme values. ROW = Rowley 

Shoals; GBR = Great Barrier Reef; COC = Cocos (Keeling) Islands; MIC = Micronesia; MAU = Mauritius; 

IND = Indonesia; FRE = French Polynesia; PNG = Papua New Guinea; SAM = Samoa; VAN = Vanuatu. 
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Figure F2: Standing biomass did not predict parrotfish productivity across regions in the Indo-Pacific. The 

upper-right equation describes the output of a Generalized Linear Model (GLM) with gamma error 

distribution including biomass as the only potential predictor of productivity. Colours are proportional to 

the regional-level average biomass. Error bars represent the standard error of the mean. The grey band is 

the 95% confidence interval of the model. 

  

  



Appendix F 

 251 

 

Figure F3: The productivity-biomass relationship (at the site level) for Indo-Pacific parrotfish assemblages 

suggests different relationships for regions with high and low average biomass. Different habitats (central 

panel) and distances to the centre of the IAA (right panel) did not entail consistently distinct productivity-

biomass slopes (see model in Table F1 and Table F6). 
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Figure F4: Effects of increasing exploitation on the whole-assemblage and target fish biomass, productivity 

and turnover in modelled coral reef fish assemblages. At high exploitation, modelled coral reef fish biomass 

approaches zero (first row), yet productivity consistently remains higher (centre row). This happens because 

turnover steadily increases (bottom row). Black lines are the output of each fishing simulation and the 

orange lines are the average. The dotted and dashed horizontal lines represent, respectively, the 25% and 

5% values of the unfished assemblage biomass or productivity. Left panels depict all fish and right panels 

target-species only. 

  



Appendix F 

 253 

 

Figure F5: Steepening of the size-spectrum exponent with increasing fishing intensity (capture rates) of 

modelled coral reef fish assemblages. Shown are the probability density functions (left panels) from the 

average size-spectrum exponents (coloured vertical line, right panels) across simulations (histogram, right 

panels) at different capture levels (from C0.01 to C0.2). 
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Figure F6: The effect of varying the size-spectrum exponent on the biomass and productivity of modelled 

fish assemblages before and after fishing simulations. Initial total biomass and total productivity increase 

as assemblages become more size even (less negative exponents, left and middle-right panels). Although the 

proportion of initial biomass after simulating fishing at the maximum capture Cmax (see Method of Chapter 

6) increases for the more size even assemblages (middle-left), the proportion of initial productivity at Cmax 

is fairly constant across exponents (right). Grey lines represent each simulation and black thick lines the 

average across simulations. 
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Figure F7: The effect of varying the minimum size thresholds for exploitation on the biomass and 

productivity of modelled fish assemblages before and after fishing simulations. Neither the initial total 

biomass nor the proportion of initial biomass change after simulating fishing at the maximum capture Cmax 

when fisheries target increasingly small individuals (left and middle-left panels). Contrarily, both the initial 

total productivity and the proportion of initial productivity at Cmax increase as fisheries target smaller 

individuals (middle-right and right panels). This suggests that fisheries targeting smaller individuals will 

have larger disparities between the declining trajectories of biomass and productivity (buffering 

productivity). Grey lines represent each simulation and black thick lines the average across simulations. 
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Figure F8: The proportional decline in the biomass and productivity of modelled fish assemblages with increasing exploitation changes according to the initial size-

spectrum exponents. The main overall effects of decreasing size evenness (more negative size-spectrum exponents) are increasing the disparity between the declining 

trajectories of biomass and productivity (buffering productivity), and between whole-assemblages and target species curves. 
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Figure F9: The proportional decline in the biomass and productivity of modelled fish assemblages with increasing exploitation changes according to the minimum 

size thresholds for considering a fish as targeted by fisheries. The main overall effects of decreasing the minimum target size are increasing the similarity between the 

whole-assemblages and target species curves, as well as increasing the disparity between the declining trajectories of biomass and productivity (buffering productivity).
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Figure F10: The effect of changing the size-selective fishing function used to simulate fishing on modelled 

assemblages with varying size-spectrum exponents. Changing the shape of the size-selective function causes 

no changes in the biomass depletion of target species after fishing with a capture level of Cmax at more 

negative size-spectrum exponents. At less negative exponents, biomass depletion is smaller for Gompertz 

and Power curves compared to the Logistic and the Mixed functions. A similar trend occurs with 

productivity, except that in no case productivity is depleted below 15% of the initial value. Buffering 

productivity, therefore, is a constant feature across size-spectrum exponents regardless of the fishing 

function used. 
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Figure F11: The effect of changing the size-selective fishing function used to simulate fishing on modelled 

assemblages with varying minimum size thresholds for fisheries. Changing the shape of the size-selective 

function causes no changes in the biomass or productivity depletion for target species after fishing with a 

capture level of Cmax. Buffering productivity, therefore, is a constant feature across minimum size thresholds 

for fisheries regardless of the fishing function used. 
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Figure F12: Biomass, productivity and turnover of three entire coral reef fish assemblages with increasing 

exploitation. The observed patterns between assemblages remarkably mimic one another and the patterns 

observed both in the modelled (Figure F4) and in the parrotfish assemblages (Figure F18). Cmax is the 

maximum capture level as a proportion of the initial abundance and varied across regions as depicted. 
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Figure F13: The buffering productivity of entire coral reef fish assemblages with increasing exploitation. 

As exploitation increases, buffering productivity also increases until it reaches a peak value. The observed 

patterns between assemblages remarkably mimic one another and the patterns observed both in our 

modelled (Figure F4) and parrotfish assemblages (Figure F19). Cmax is the maximum capture level as a 

proportion of initial abundance and varied across regions. 
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Figure F14: Peak buffering productivity is highly correlated with features of the modelled fish assemblages 

before fishing simulations. These features include: a negative relationship with SizeSpecExp = size-spectrum 

exponent; a negative relationship with MeanIndWeight = mean individual weight in g; a negative 

relationship with MeanIndGrowth = mean individual growth in g day-1; and a positive relationship with 

turnover in % year-1. Most of the features also correlate among themselves. All features refer to the target 

portion of the fish assemblage only (see Methods of Chapter 6). Red lines are LOWESS smoothers. Numbers 

in the upper right panels are Pearson’s correlation coefficient. 
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Figure F15: Peak buffering productivity is correlated with features of empirical coral reef fish assemblages 

before fishing simulations. The directionality of these correlations is always the same as in our modelled 

fish assemblages (Figure F14). The correlated features include: a negative relationship with SizeSpecExp 

= size-spectrum exponent; a negative relationship with MeanIndWeight = mean individual weight in g; a 

negative relationship with MeanIndGrowth = mean individual growth in g day-1; and a positive relationship 

with turnover in % year-1. Some of the features also correlate among themselves, especially mean individual 

weight and mean individual growth. All features refer to the target portion of the fish assemblage only (see 

Methods of Chapter 6). Red lines are LOWESS smoothers. Numbers in the upper right panels are Pearson’s 

correlation coefficient. 
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Figure F16: The response of beak buffering productivity to features of the initial assemblages (before fishing 

simulations) in modelled versus empirical data. All features refer to the target portion of the fish 

assemblages only (see Methods of Chapter 6), both in the case of the modelled and the empirical data. Black 

continuous lines are peak buffering productivity from modelled assemblages and coloured dots from 

empirical data. Dashed and dotted lines are, respectively, Generalized Additive Model fits to the empirical 

data, and upper and lower 95% confidence intervals of these fits. 
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Figure F17: The mixed Power and Gompertz size-specific fishing function used to simulate coral reef 

fisheries in both modelled and empirical fish assemblages. The body size (length) reference points represent: 

the transition size between the Power and the Gompertz components of the curve (!!); the inflexion point of 

the Gompertz part of the curve (2!!), and the maximum size potentially found in our assemblage (!"#$% ). 
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Figure F18: Parrotfish biomass, productivity and turnover with increasing exploitation at four regions. 

Although with particularities in the scales of variation or magnitude of responses, the observed patterns 

between regions remarkably mimic one another and the patterns observed in the modelled (Figure F4) and 

whole empirical assemblages (Figure F12). Cmax is the maximum capture level as a proportion of the initial 

abundance, varying with regions as shown. 
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Figure F19: The buffering productivity of parrotfish assemblages with increasing exploitation. As exploitation increases, buffering productivity also increases until it 

reaches a peak value. Although with particularities (e.g. scales of variation, peak value or exploitation rate at which buffering productivity starts to decline), the 

observed patterns between regions remarkably mimic one another and the patterns observed in our modelled (Figure F4) and whole empirical assemblages (Figure 

F13). Cmax is the maximum capture level as a proportion of initial abundance and varied with regions as shown.
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Table F1: Model selection table of sample-level parrotfish productivity as a function of biomass, region, 

habitat and distance to the centre of the IAA (linear fits). The models are ordered by AICc. Productivity 

(response variable) and biomass were log10-transformed. Dist = distance to the centre of the IAA; Hab = 

habitat; Biom = biomass; Reg = region; df = degrees of freedom; logLik = log-likelihood. 

Dist Hab Biom Reg Dist:Biom Hab:Biom Biom:Reg df logLik AICc ∆AIC wAIC 

+ + + +   + 25 63.96 -73.3 0.00 0.463 

 + + +   + 24 62.35 -72.4 0.85 0.303 

+ + + + +  + 26 64.15 -71.3 2.01 0.170 

+ + + +  + + 28 64.90 -67.9 5.35 0.032 

 + + +  + + 27 63.30 -67.2 6.12 0.022 

+ + + + + + + 29 64.96 -65.6 7.65 0.010 

+ + + + +   17 31.19 -26.3 47.03 0.000 

+  + +   + 22 35.74 -23.9 49.37 0.000 

  + +   + 21 34.50 -23.8 49.53 0.000 

+  + + +  + 23 36.25 -22.6 50.69 0.000 

+ + + + + +  20 31.79 -20.6 52.65 0.000 

+ + + +    16 18.23 -2.6 70.71 0.000 

 + + +    15 17.09 -2.5 70.77 0.000 

+ + + +  +  19 20.05 0.5 73.84 0.000 

 + + +  +  18 18.92 0.5 73.84 0.000 

+  + + +   14 -0.74 30.9 104.21 0.000 

+ + +  +   8 -7.89 32.3 105.56 0.000 

+ + +  + +  11 -6.90 36.7 109.99 0.000 

  + +    12 -16.38 57.8 131.12 0.000 

+  + +    13 -15.78 58.8 132.10 0.000 

 + +     6 -23.51 59.3 132.60 0.000 

+ + +     7 -22.80 60 133.27 0.000 

 + +   +  9 -21.79 62.2 135.47 0.000 

+ + +   +  10 -21.01 62.8 136.06 0.000 

+  +  +   5 -36.07 82.3 155.63 0.000 

+  +     4 -52.11 112.4 185.64 0.000 

  +     3 -53.26 112.6 185.89 0.000 

 +      5 -163.06 336.3 409.61 0.000 

+ +      6 -162.87 338 411.31 0.000 

 +  +    14 -157.16 343.8 417.05 0.000 

+ +  +    15 -156.49 344.6 417.93 0.000 

       2 -185.35 374.7 448.03 0.000 

+       3 -185.33 376.7 450.04 0.000 

   +    11 -177.21 377.3 450.60 0.000 

+     +       12 -176.80 378.7 451.95 0.000 
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Table F2: Sample-level parrotfish assemblage productivity as a function of biomass, region and habitat. 

The model presented was chosen among nested subsets of the complete model using model selection 

procedures. The full model and less informative nested models are in Table F6. Productivity and biomass 

have been log10-transformed. 

Model Multiple R2 Adjusted R2 F-statistic p-value 
 

Prod ~ Biom * Reg + Hab 0.801 0.785 51.91 <0.0001 *** 

Coefficient Estimate Std. Error t-value p-value 
 

Intercept 1.669 0.239 6.98 <0.0001 *** 

Biomass 0.388 0.100 3.88 0.0001 *** 

Region (GBR) -0.166 0.257 -0.65 0.5183 
 

Region (Cocos Keeling) -0.877 0.342 -2.56 0.0109 * 

Region (Micronesia) -0.790 0.271 -2.92 0.0038 ** 

Region (Mauritius) -0.537 0.323 -1.66 0.0976 
 

Region (Indonesia) -0.669 0.268 -2.50 0.0130 * 

Region (French Polyn.) -1.237 0.298 -4.15 <0.0001 *** 

Region (PNG) -1.008 0.292 -3.45 0.0007 *** 

Region (Samoa) -1.027 0.280 -3.67 0.0003 *** 

Region (Vanuatu) -0.783 0.305 -2.57 0.0107 * 

Habitat (Flat) -0.118 0.038 -3.12 0.0020 ** 

Habitat (Crest) -0.258 0.036 -7.09 <0.0001 *** 

Habitat (Slope) -0.197 0.035 -5.60 <0.0001 *** 

Biomass x Region (GBR) 0.058 0.111 0.53 0.5986 
 

Biomass x Region (Cocos Keeling) 0.484 0.155 3.12 0.0020 ** 

Biomass x Region (Micronesia) 0.601 0.124 4.85 <0.0001 *** 

Biomass x Region (Mauritius) 0.326 0.154 2.12 0.0353 * 

Biomass x Region (Indonesia) 0.440 0.124 3.55 0.0005 *** 

Biomass x Region (French Polyn.) 0.687 0.141 4.88 <0.0001 *** 

Biomass x Region (PNG) 0.629 0.138 4.56 <0.0001 *** 

Biomass x Region (Samoa) 0.703 0.132 5.34 <0.0001 *** 

Biomass x Region (Vanuatu) 0.450 0.150 3.01 0.0028 ** 

Residual - 0.205 - - 
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Table F3: Region-level average biomass, body length and productivity of parrotfish assemblages as 

functions of human population density and distance to the centre of the Indo-Australian Archipelago (IAA). 

Models are Generalized Linear Models with gamma distribution (biomass and productivity) or gaussian 

distribution (length). Human population density was log10-transformed. Hum = human population density; 

Dist = distance to the centre of the IAA. 

Model Coefficient Estimate Std. Error t-value p-value 
 

Biomass ~ Hum + Dist 

Intercept 5.725 0.166 34.42 <0.0001 *** 

Human Pop. -0.397 0.067 -5.90 0.0006 *** 

Dist. Cent. IAA 0.001 0.004 0.22 0.8354  

Length ~ Hum + Dist 

Intercept 23.947 1.152 20.80 <0.0001 *** 

Human Pop. -1.911 0.467 -4.09 0.0046 ** 

Dist. Cent. IAA -0.002 0.028 -0.06 0.9518  

Productivity ~ Hum + Dist 

Intercept 5.792 0.310 18.66 <0.0001 *** 

Human Pop. -0.005 0.126 -0.04 0.9710  

Dist. Cent. IAA 0.000 0.008 0.03 0.9790  
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Table F4: Peak buffering productivity as a function of features of two empirical coral reef fish assemblages 

(Raja Ampat, Indonesia, and Lizard Island, Great Barrier Reef) before fishing simulations. Models are 

Generalized Additive Models with gaussian distribution, and only statistics from the smoothers are shown. 

SizeSpecExp = size-spectrum exponent; MeanIndWeight = mean individual weight; MeanIndGrow = mean 

individual growth; edf = estimated degrees of freedom. MeanIndWeight and MeanIndGrow are log10-

transformed. 

Model Adjusted R2 Dev. expl. Smoother edf F-statistic p-value 

PeakBP ~ s(SizeSpecExp) 0.441 46.2% 1.605 17.06 <0.0001 

PeakBP ~ s(MeanIndWeight) 0.511 52.8% 1.492 26.25 <0.0001 

PeakBP ~ s(MeanIndGrow) 0.581 59.9% 1.892 25.32 <0.0001 

PeakBP ~ s(Turnover) 0.212 23.1% 1 12.58 0.0009 
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Table F5: Number of parrotfish counts per reef habitat, for each location, among the ten sampled regions 

across the Indo-Pacific. 

Region Location Back Flat Crest Slope 

Rowley Shoals Clerke Reef 4 4 5 5 

GBR Day Reef 4 4 4 4 

GBR Hicks Reef 4 4 4 4 

GBR Yonge Reef 4 4 4 4 

Cocos (Keeling) South Keeling 4 4 6 6 

Micronesia Kosrae 5 4 4 4 

Micronesia Pohnpei 4 4 4 4 

Mauritius Mauritius 4 4 4 4 

Mauritius Rodrigues 4 4 4 4 

Indonesia North Sulawesi - 5 6 6 

Indonesia Togean 3 4 4 8 

French Polynesia Moorea 4 4 6 4 

French Polynesia Tahiti 4 4 4 4 

Papua New Guinea North Kavieng 4 4 4 4 

Papua New Guinea South Kavieng 4 4 4 4 

Samoa Apia 6 4 4 5 

Samoa Nu'utele 5 4 4 4 

Vanuatu Efate - 4 4 4 

Vanuatu Nguna - 4 4 4 
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Table F6: Alternative size-selective fishing functions used to simulate fishing on modelled fish assemblages, 

including conditions, formulas and values of fixed parameters. 

Function Condition Formula Parameters 

Logistic - 	"#! =
%

&1 + )"#$%"&%!'*
 + = 1;	, = 0.18; 0( = 17 

Gompertz 

For 0 < 12	cm "#! = 0 + = 1; 6 = 1.25;	, = 0.025; 

 0( = 15 For 0 ≥ 12	cm "#! = 6 + 9(+ − 6)))"#$%"&%!'= 

Power 
For 0 < 10	cm "#! = 0 

> = 200;	ℎ = 4 
For 0 ≥ 10	cm "#! = >0* 
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