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Abstract  

Macroalgae can rapidly proliferate across areas of degraded reefs preventing coral recovery. 

Marine microbial communities are fundamental to maintaining reef physiological and 

ecosystem function. Environmental stress can shift the diversity and resilience of reef-

associated microbial communities and these shifts have been shown to exacerbate reef 

degradation. Describing the response of microbial communities to changes in macroalgae 

abundance may help identify the contribution of microbes to promoting macroalgae 

proliferation on degraded reefs. Therefore, this research investigates how coral-algal 

interactions may influence the diversity and composition of host bacterial communities within 

macroalgae-dominated environments.  

To understand the role of microbes in macroalgae-dominated systems, it is first important to 

explore baseline microbial communities of common reef macroalgae. Chapter 2 characterises 

the bacterial community of two Sargassum species (S. aquifolium, S. polycystum) collected 

from an inshore fringing reef at Magnetic Island in the central Great Barrier Reef. This site has 

historically been exposed to poor water quality and high abundances of macroalgae with 

surveys identifying algal cover at 27.8% and coral cover at 31.7% in the study sites.16S rRNA 

gene amplicon sequencing was used to profile the microbial communities of the Sargassum 

species and microscopy approaches visualised external surface microbial colonisation. The 

bacterial community remained consistent between both Sargassum species, however 

differentiation in the bacterial communities of Sargassum regions (biofilm, leaf, stem (primary 

axis), basal growth and holdfast) was observed. In particular, a diverse microbial community 

was observed on the leaf and biofilm, dominated by bacterial sequences associated with 

Bradymonadales, Rhodobacteraceae, Saprospiraceae and Loktanella.  
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The effect of direct contact between Sargassum species (macroalgae) and Montipora 

aequituberculata (coral) on host bacterial communities was also investigated using 16S rRNA 

gene amplicon sequencing. Samples were collected from Magnetic Island across three 

proximity treatments (isolation, direct contact and systemic proximity) at three sampling time 

points (December 2017, February 2018, May 2018) to assess how the host bacterial 

communities changed in response to direct contact and over seasonal sampling time points. 

Benthic community surveys revealed the density of Sargassum species was higher in February 

2018 (43.3% ± 10.0 SE) compared to May 2018 (14.2% ± 2.4 SE). There was a temporal effect 

from summer to winter on both the Sargassum and M. aequituberculata associated bacterial 

communities. For example, sequences affiliated with Saprospiraceae (commonly associated 

with nutrient cycling in macroalgae) in the Sargassum bacterial communities were highest in 

February 2018 compared to May 2018. The reduction in Saprospiraceae relative abundance 

may be linked to the winter senescence of Sargassum observed in May, when there is reduced 

metabolic activity by the host that may result in decreased carbon-rich exudates that drive 

abundances of Saprospiraceae. Overall, while bacterial communities of both Sargassum and 

M. aequituberculata were consistent with respect to proximity treatment, a temporal shift in 

bacteria community structure was observed between winter and summer sampling for both 

Sargassum (December-May, p=0.013) and M. aequituberculata (February-May, p=0.003). The 

stability of the bacterial communities of Sargassum and M. aequituberculata when in direct 

contact with another indicates direct coral-algal interactions appear to have little impact on host 

microbial community of either adult M. aequituberculata or Sargassum at Magnetic Island. 

The stability of the M. aequituberculata bacteria community may reflect the tolerance of this 

species, and explain its success despite the historically high exposure to macroalgae and poor 

water quality at Magnetic Island.  
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Despite poor water quality conditions, inshore reefs of the GBR still display diverse coral 

community assemblages. Future studies should investigate if increases in macroalgae 

abundance can impact coral-associated microbial communities for a range of coral species with 

varying sensitivity to environmental stress, including reefs with varying levels of macroalgae 

abundance. Linking how microbiome changes can impact coral host health using metagenomic 

and metatranscriptomic approaches is fundamental to confirm the role of microbial 

communities in maintaining host fitness on reefs with high macroalgae abundances.
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1 Coral-algal interactions and their 
roles in structuring host microbial 

communities 

1.1  Threats to coral reefs 

Coral reefs are highly diverse, complex and productive ecosystems, relying on multipartite 

networks of biological processes within coral colonies and associated taxa to remain stable and 

successful (Nyström et al. 2000, Pandolfi et al. 2016, Casey et al. 2017). Reef health across the 

globe, however, is threatened by multiple environmental and anthropogenic stressors as a result 

of climate change (Sheppard et al. 2012, Heron et al. 2016, Hughes et al. 2017). However, 

continued disturbance to coral reefs can create instability within coral environments and 

increased rates of coral mortality, in turn leading to ecosystem degradation (Heron et al. 2016).  

While cycles of disturbance and recovery are natural on coral reefs, there is concern that the 

increased frequency and severity of disturbances has hindered the ability of coral reefs to 

recover (Dollar and Tribble 1993, Fox 2011, Hughes et al. 2018). The Great Barrier Reef 

(GBR), for example, lost approximately half of its live coral cover between 1985 and 2012 

(De’ath et al. 2012), and has since experienced additional coral mortality as a result of cyclones, 

crown of thorns starfish outbreaks (Matthews et al. 2019, Mellin et al. 2019) and two severe 

coral bleaching events (Hughes et al. 2017, 2018). The increasing severity and frequency of 

disturbances to the GBR are postulated to make it near impossible for reefs to recover to 

previous configurations and instead, the maintenance of biological functions is the emerging 

goal of coral reef conservation and management (Hughes et al. 2017). 
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With reduced capacity to cope with multiple stressors, disturbances to reefs can clear large 

areas, making them vulnerable to the establishment of other organisms where coral ecosystems 

were once dominant. Macroalgae are often quick to establish in spaces created through 

continued decline in coral health (Hughes et al. 2007, Mumby 2009, Dubinsky and Stambler 

2011). Though macroalgae are key components of coral reef ecosystems, providing food for 

higher trophic organisms and nurseries for juvenile fish (Lachnit et al. 2011, Martin et al. 2014), 

they can be of concern to reef health when they proliferate and overgrow previously coral-

dominated areas (McCook et al. 2001, Idjadi et al. 2006, Rasher et al. 2012). Coastal and 

inshore reefs are at higher risk of macroalgae overgrowth as a result of their proximity to 

additional anthropogenic stressors such as increased sediment and nutrient loading (Ayling and 

Ayling 2005, Fabricius 2005, Fabricius et al. 2005). High nutrients, turbidity, and naturally 

lower herbivory rates on inshore reefs have been linked in many ecosystems to increasing 

macroalgae cover and resultant decreasing coral cover and diversity (Wismer et al. 2009, Cheal 

et al. 2010, Brodie et al. 2012). Furthermore, exposure to chronic stressors can then exacerbate 

the effects of acute disturbances, hindering coral reef recovery, and increasing likelihood of 

macroalgae establishing on coral reefs (De’ath et al. 2010, Graham et al. 2011).  

Coral colony health and fitness can be negatively impacted by increased macroalgae 

abundance, for example by shading and abrasaion (Nugues et al. 2004, Morrow et al. 2011). 

Such impacts may arise via direct mechanisms such as competition for space, which can inhibit 

coral larvae recruitment and prevent coral propagation post-disturbance (Kuffner et al. 2006, 

Birrell et al. 2008a, Webster et al. 2015, Clements et al. 2018). Additionally, indirect processes 

resulting from abundant macroalgae may also reduce coral health,  such as allelopathy (Morrow 

et al. 2011) and the release of excess dissolved organic carbon, which can induce coral 

mortality by fueling microbial activity (Smith et al. 2006, Haas et al. 2016). In some degraded 

reef systems, where a combination of poor water quality, reduction in herbivorous fish biomass 
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and space clearing events (e.g. tropical storms, mass coral bleaching, coral disease) occur, 

shifts from coral to macroalgae-dominated systems have been observed (Idjadi et al. 2006, 

Hughes et al. 2007). Return of coral dominance is rare once newly dominant fleshy macroalgae 

communities have established (Mumby 2009, Sheppard et al. 2012, Holling 2016), and Hughes 

(1994) noted that in many cases of macroalgae regime shifts, recovery back to coral-dominated 

reefs may not in fact be possible.  

Triggers of shifts from coral to macroalgae dominance have been investigated with three main 

processes being identified:  

1) reduced herbivory from removal of herbivorous organisms with the potential to control 

macroalgae populations (Box and Mumby 2007, Mantyka and Bellwood 2007, Hoey 

and Bellwood 2011), 

2) nutrient and sediment loading from coastal development (Smith et al. 1981, Fabricius 

2005), 

3) space clearing through bleaching and storm events (Dubinsky and Stambler 2011, 

Hughes et al. 2018).  

Whilst various ecological triggers can be attributed to prompting macroalgae dominance on 

coral reefs, there are different circumstances under which macroalgae dominance can persist 

on coral reefs. For example, reefs in the Caribbean experienced outbreaks of coral disease 

(Bythell and Sheppard 1993), severe tropical storms (Bythell et al. 1993), coral bleaching 

(Kramer et al. 2003), reduction of grazer controls of macroalgae after the die-off of the 

Diadema antillarum urchin (Lessios et al. 1984), overfishing of herbivorous fishes (Hughes 

1994), and a reduction in water quality (Littler et al. 1993). These factors worked 

synergistically to clear space and provide more favourable conditions for macroalgae species  

(Bellwood et al. 2004, Mumby 2009). These pre-conditions are not always necessary, however, 
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for example within the Great Barrier Reef Marine Park, shifts to high macroalgae biomass were 

recorded in ‘no take’ areas where herbivorous fish, while low in diversity, were not harvested 

and where nutrient levels were not unusually high (Cheal et al. 2010).  

Currently, it appears that very little can be done to reverse macroalgae dominant reefs back to 

coral-dominated environments, particularly on a larger scale. Direct removal of macroalgae to 

clear space for coral recruitment has been proposed (Ceccarelli et al. 2018), but on reefs where 

macroalgae is established this action fails to target the underlying mechanisms thought to 

sustain algal dominance. Uncovering the systems and mechanisms that maintain a downward 

trajectory into a macroalgae regime may help inform development of tools and techniques to 

effectively manage macroalgae regime shifted reefs. Current attempts to understand the 

mechanisms that drive macroalgae dominance have been limited to explaining only why such 

states occur (ecological tipping points), but there has been increased interest in the role of 

microbial processes additionally contributing to the mechanisms of macroalgal persistence in 

degraded coral environments (Figure 1).  

As the global state of coral reefs continues to decline at an alarming rate, the risk of losing 

coral reefs to macroalgae-dominated environments has never been higher. Understanding 

mechanisms that may sustain macroalgae dominance can aid restoration attempts, as we are 

then able to address the underlying processes that contributed to high macroalgae abundance 

(Figure 1.1). Therefore, it is important to consider the potential role of microbes in reinforcing 

macroalgae abundance on coral reefs.  
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Figure 1.1 ‘Situating the review’. Green colouring represents established ecological processes and conditions 
contributing to shifts from coral to macroalgae dominance. Blue colouring represents unknown reinforcing 
mechanisms contributing to sustain macroalgae dominance. Investigating these mechanisms is essential to 
unlocked why macroalgae-shifted environments persist and help inform coral restoration strategies. This diagram 
highlights the knowledge gaps which this review will focus on (information highlighted in blue). 

 

1.2 Microbes in coral reef environments 

Marine microbes are associated with a wide variety of organisms, and have become 

increasingly recognised as essential contributors in maintaining host metabolism and 

fundamental function (Taylor et al. 2007, Webster and Thomas 2016). Microbes form the 

foundation of primary production in marine environments, efficiently assimilating limiting 

nutrients such as nitrogen and carbon to make them accessible for use by higher trophic levels 

(Azam and Malfatti 2007, Thornton 2012).  

Microbes in coral reef environments exist in complex systems of free-living and host-

associated communities, linked to benthic and pelagic environments. Marine biofilms are 

formed from the excretion of extracellular polymeric substances (EPS) (Underwood and 
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Paterson 2003) laid down by a variety of bacteria and diatoms (Patil and Anil 2005). Biofilms 

can form niches of marine microbiomes and form on a variety of surfaces (e.g. macroalgae), 

acting as a habitat for pelagic microorganisms and a food source for higher trophic levels such 

as deitivores (Eich et al. 2015). Microbial communities in seawater are diverse and their 

community structure is dependent on complex interactions between the water nutrient profiles 

and physical environmental parameters (Azam 1998, Stocker 2012). Pelagic microbial 

communities can be influenced by environmental change, with recent research highlighting 

that the seawater microbiome can act as an indicator for changes in the reef environment (Glasl 

et al. 2019). Microbial communities in coral reefs have also been associated with a range of 

organisms making up the coral benthos. Sponges, for example, form diverse relationships with 

microbial communities linked with water filtration and host physiological function (Hentschel 

et al. 2012, Webster and Taylor 2012, Webster and Thomas 2016). Similarly, microbial 

communities establish close symbiotic relationships with corals and have been implicated as 

critical in maintaining coral health and resilience (Ducklow and Mitchell 1979, Harris et al. 

2001). The best known example is the photosynthetic dinoflagellate (Symbiodinaceae) that 

resides within the coral gastrodermal layer and provides essential energy to the coral 

(Falkowski et al. 1984, Rosenberg et al. 2007). In addition to the Symbiodiniaceae, bacteria 

belonging to the genus Endozoicomonas have been regularly discovered in association with 

many coral genera and other marine invertebrates (Bayer et al. 2013, Neave et al. 2016, 

Pogoreutz et al. 2018). Genomic studies on Endozoicomonas spp. have highlighted the 

potential for its important  contribution to holobiont important function, such as transport of 

organic molecules and the synthesis of amino acids (Neave et al. 2017).  

Due to the close association between coral hosts and their microbial communities, the term 

‘coral microbiome’ is used to refer to the diverse and abundant prokaryotes and eukaryotes 

(bacteria, fungi, archaea, protists and viruses) that make up a species-specific internal microbial 
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community, as distinct from surrounding seawater (Ritchie 1997, Harris et al. 2001, Rohwer et 

al. 2002, Bourne and Munn 2005, Sunagawa et al. 2010). A stable microbiome supports a 

variety of functions to maintain host health and productivity, through for example production 

of antibiotics to deter opportunistic pathogens (Nissimov et al. 2009), and biogeochemical 

cycling of nitrogen, carbon and sulphur (Raina et al. 2009, Kimes et al. 2010).  

More recently, the ‘macroalgae microbiome’ has been recognised and may be integral in 

maintaining macroalgae health. Barott et al. (2011) revealed that tropical macroalgae functional 

groups in the Caribbean have diverse and significantly different microbial communities from 

each other and their surrounding environment. For example, crustose coralline algae (CCA) 

were dominated by sequences closely related to Cyanobacteria, Lactobacillus and 

Chloroflecaceae while Dictyota bartayresiana was dominated by sequence groups related to 

Cyanobacteria and unknown Bacteria; Halimeda opuntia (green seaweed) was dominated by 

sequences relating to Cyanobacteria Group I, Lactobacillus and Rhodobacteraceae; and turf 

algae was dominated by sequences related to Acidovorax, Lactobacillus and Cloacibacterium.  

Egan et al. (2013) highlighted the importance of macroalgal-bacterial interactions in 

maintaining algal health, and emphasised that the ‘seaweed holobiont’ associated with 

macroalgal biofilms is just as important as the coral holobiont in promoting reproduction, 

colonisation, and protection against fouling organisms. It has proven difficult, however, to 

explore consistency in macroalgae host microbiomes. Where stable host microbial 

communities have been shown in some cases (for example, in the entophytic communities of 

Caulerpa sp. and Bryopsis sp. (Hollants et al. 2011)), it has been difficult to demonstrate in 

others. Extensive 16S rRNA sequencing of the green seaweed Ulva australis, for example, was 

unable to detect a species-specific core community, with only 6 of 528 detected bacterial 

species being consistent across 6 individuals (Burke et al. 2011a). Nonetheless, further shotgun 
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metagenomic sequencing of U. australis showed the host community may be dictated by 

function rather than microbial taxonomy (Burke et al. 2011b).  

Microorganisms respond rapidly to altered environmental conditions in part due to short 

generational turnaround times (Torda et al. 2017). Environmental stress can disturb the stability 

of host-associated microbial communities (i.e. dysbiosis) which subsequently can impact 

host fitness (Schimel etl al. 2007, Egan et al. 2013, Bourne et al. 2016, Rocca et al. 2019). 

Zaneveld et al. (2017) proposed the ‘Anna Karenina principal’ whereby dysbiotic individuals 

vary more in microbial composition compared to healthy individuals, which has been observed 

within coral microbiomes experiencing environmental stress. Shifts in coral bacterial 

communities have been observed throughout periods of bleaching events (Bourne 2008), with 

exposure to above average temperature (Zaneveld et al. 2016), and corals displaying disease 

lesions have more variable microbial communities compared to stable microbiomes of healthy 

corals (Thurber et al. 2017, Maher et al. 2019). 

As shifts in microbial communities occur within corals during periods of environmental stress, 

it is also important to consider if there are connections between microbial and ecosystem 

stability from cumulative environmental stressors. Bourne et al. (2016) highlighted that with 

continued environmental stress, both the coral microbial communities and broader coral reef 

ecosystem shift into a new state of reduced diversity and resilience. More broadly, ecosystems 

and microbial communities have been shown to co-vary in response to environmental stressors 

(Reshef et al. 2006, Bordenstein and Theis 2015). However, there is currently limited 

understanding of how microbes contribute to changed ecosystem structure and function. As 

coral reefs continue to degrade and the risk of shifts from coral-dominated to macroalgae-

dominated systems increases, it is vital to consider how microbes may play a mechanistic role 

in macroalgae regime shifts. 
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1.3 Microbial processes facilitating macroalgae abundance 

Microbes potentially reinforce macroalgae regimes through a number of complex pathways. 

One of the most widely recognised ways is allelopathy (Gross 2003, Morrow et al. 2011, 

Rasher et al. 2011). Allelochemicals are energetically costly for macroalgae to produce, but 

can act as an anti-herbivory defence mechanism (Baumgartner et al. 2009) and inhibit the 

growth of pathogenic and fouling organisms (Puglisi et al. 2007). Furthermore, allelopathy 

through direct contact can cause necrosis of coral tissue, creating localised space for 

macroalgae to continue to spread (Rasher and Hay 2010). Higher macroalgae abundance can 

increase the concentration of algae-derived chemical exudates in the water column, creating 

further pathways by which algal exudates degrade corals and aid macroalgae proliferation 

(Barott et al. 2011, Egan et al. 2013).   

Smith et al. (2006) established that exudates released into the water column can cause indirect 

coral mortality. To demonstrate this, Pocillopora verrucosa and Dictyosphaeria cavernosa 

were kept in a tank and separated by a 0.02 µm filter to allow any chemical exudates released 

by the algae to pass through. In all instances, the coral suffered 100% mortality within two 

days. Physiological measurements (for example, tissue necrosis from hypoxia) showed an 

increase in direct coral stress with closer proximity between coral and algae due to higher 

microbial activity in the interface between them. The role of allelopathy, however, in 

promoting macroalgae growth is localised and often species-specific (Vieira et al. 2016b). 

Microbialisation and the DDAM model (Dissolved organic material, Disease, Algae and 

Microbes) are predicted to influence microbial metabolic pathways and nutrient dynamics in 

coral reef ecosystems (Roach et al. 2017). Microbialisation represents a quantitative metric for 

coral reefs, directly referring to observed shifts in trophic structure, making macroalgae and 

microbes competitively superior over corals (Haas et al. 2016, Roach et al. 2017). Algal 
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overgrowth releases excess photosynthate into the environment (Carlson et al. 2002), which in 

excess cannot be efficiently assimilated by higher trophic organisms such as corals (Dinsdale 

and Rohwer 2011). Surplus of photosynthates derived from macroalgae is more efficiently 

assimilated by microbial communities with metabolic pathways shifting from predominantly 

autotrophic to copiotrophic and heterotrophic (Dinsdale and Rohwer 2011, Haas et al. 2016, 

Roach et al. 2017). These shifts deprive corals of available nutrients and oxygen, and microbes 

outcompe corals for the essential primary productivity they depend on for survival (McDole 

Somera et al. 2016). Ultimately, this transfer can cause localised hypoxia, stunted coral growth, 

and reduced reproductive capacity of corals (Haas et al. 2016). The microbialisation process 

can act in combination with the stressors, initially triggering macroalgae dominance. Haas et 

al. (2016) linked microbialisation and the DDAM model, implying both act in conjunction with 

the other as a mechanism to reinforce macroalgae abundance. The DDAM model (Figure 1.2) 

links increased abundance of macroalgae to (1) increased release of macroalgae derived 

organic compounds, (2) promotion of opportunistic pathogen invasion, and (3) stimulation of 

coral mortality (Barott et al. 2011, 2012). The model is a feedback loop where the processes 

already associated with increased macroalgae, facilitate additional algal biomass and coral 

decline (Smith et al. 2006). 

Microbialisation and the DDAM model suggest changes in microbial activity can contribute to 

increased macroalgae growth in coral reef ecosystems. Furthermore, the models indicate 

environmental change can enhance macroalgae associated microbes in such a way as to benefit 

macroalgae proliferation. Microbialisation of reefs and the DDAM model work indirectly 

alongside ecological tipping points, rather than contributing to direct coral-algal interactions. 

Changes to host microbiomes due to environmental change and/or contact with other organisms 

can alter the stability and ultimately health of organisms within an ecosystem. Therefore it is 

important to consider the role of direct coral-algal microbiome interactions alongside indirect 
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pathways to fully understand the ecosystem processes that may reinforce macroalgae 

populations.  

 

Figure 1.2 Increased benthic macroalgae cover can cause the release of excess bioavailable DOC, triggering a 
switch from autotrophic to copiotrophic/heterotrophic microbes. This can initiate microbialisation of the reef 
ecosystem. Changes in microbial community structure can lead to coral degradation, as the microbes outcompete 
coral for bioavailable resources. This deprives corals of the necessary nutrients they need for survival, leading to 
a higher chance of coral degradation. Furthermore, degraded reefs are more susceptible to opportunistic pathogens 
and therefore coral mortality from disease. Microbialisation of reef ecosystems encourages bottom-up trophic 
control, leading to decreased numbers of herbivorous fish. Freed benthic space (i.e. benthic space available to 
colonise) coral degradation and less grazing pressure yields a positive feedback loop promoting coral mortality 
and macroalgae-dominated regimes. 

 

Pratte et al. (2018) investigated direct microbiome interactions between turf algae and coral, 

showing that the coral microbiome becomes similar to the turf microbiome in areas of direct 

contact. These results suggest that the coral microbiome is vulnerable to microbial colonisation 

from turf microbes, but not vice versa. Thus, algal turf microbiome stability and coral 

microbiome vulnerability at areas of direct contact may contribute to loss of coral and 

proliferation of macroalgae. The ecological tipping points of macroalgae regimes have been 

established (e.g. reduced herbivory, nutrient and sediment loading, space clearing), though 
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currently our understanding of how direct interaction-induced shifts in microbial communities 

associated with both coral and macroalgae impacts host fitness is poorly understood.  Barott et 

al. (2012) proposed a model whereby some fleshy macroalgae can act on a micro-scale to stress 

corals, leading to macro-scale changes in reef ecology. We hypothesise that such micro- to 

macro- scale interactions can exacerbate coral decline across macroalgae-dominated 

environments and create space for macroalgae to persist.  

1.4  Study site and species 

Research for this thesis was undertaken on the inshore fringing reefs of Magnetic Island, 

situated off the coast of Townsville in the central GBR. Magnetic Island acts as an ideal study 

site to research the role of microbes in coral-algal interactions due to the high abundance of 

macroalgae on these reef environments.  

Magnetic Island’s fringing reefs are still host to diverse coral assemblages including Acropora 

spp., Monitpora spp., Porites spp. and Favia spp. (Marshall and Baird 2000, Bourne 2005, 

Glasl et al. 2019, Saha et al. 2019), and have displayed resilience in response to bleaching and 

cyclone events (Ayling and Ayling 2005). That said, over the last 30 years, coral cover around 

Magnetic Island has declined from ~40-50% to ~20-25% (Thompson et al. 2017). Long-term 

data records, highlight that coral cover on Magnetic Island at a depth of ~5m has stabilised to 

~20% for the past 15 years, with coral condition nevertheless characterised as ‘poor’ to ‘very 

poor’ (Thompson et al. 2017). Furthermore, water quality at the site has been described as 

‘poor’ on the basis of high turbidity levels and elevated chlorophyll-a and phosphorus 

concentrations (Schaffelke et al. 2012). 

Over the last 30 years, reefs around Magnetic Island have been subjected to a steady increase 

in macroalgae abundance. This can be correlated to high turbidity discharged from the 

Burdekin River and maintenance dredging of the Townsville port shipping channel (Bak 1978, 
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Browne et al. 2013a). Mapstone et al. (1992) recorded numerous macroalgae genera on 

Magnetic Island including: Caulerpa, Ceratodictyon, Halimeda, Lobophora, Padina and 

Sargassum. Their study showed that Sargassum species were the dominant taxon, contributing 

to over 85% of the macroalgae biomass across the island (Mapstone et al. 1992). Sargassum 

species are a brown, canopy-forming fleshy macroalgae with numerous species showing it to 

be distributed from arctic to tropical climates (McCourt 1984). Across coral reefs, Sargassum 

species grow sub-tidally and undergo seasonal cycles of growth and senescence (Martin-Smith 

1993). Summer growth and abundance of Sargassum species can blanket inshore reefs, with 

winter senescence starting after the algae has reproduced (Martin-Smith 1992). Sargassum 

species rarely completely senesces on reefs, however and, where environmental stressors are 

chronic and persistent, the reef can be left dominated by Sargassum species year round 

(Ceccarelli et al. 2018). Sargassum is an ideal study species to explore microbial coral-algal 

interactions as there is a knowledge gap regarding the effect of microbes from fleshy 

macroalgae on coral. Furthermore, the microbiome of tropical species of the algae is unknown, 

providing a platform from which to explore the microbial community of one of the most 

abundance macroalgae on the GBR. Moreover, the natural growth and senescence cycle of the 

alga acts as a proxy for ‘regime shift’; investigating coral-algal interactions from high to low 

abundance of macroalgae. Montipora aequituberculata was selected as our coral species as it 

is abundant across the reefs of Magnetic Island, and the response of the microbial community 

of the coral to environmental shifts is unknown.  

1.5 Thesis outline 

The overarching aim of this thesis is to examine whether direct coral-algal interactions have 

the potential to influence coral and macroalgae associated microbiomes on the inshore Great 

Barrier Reef. Ecological relationships between coral and macroalgae have been well 

documented, resulting in extensive knowledge regarding ecological competition between the 
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two organisms. Research exploring microbial communities in marine environments is 

developing rapidly, with many studies documenting the microbes associated with marine 

organisms and their response to stress. Whilst microbial responses to stressors such as 

bleaching and ocean acidification have garnered attention, there has been little development of 

microbial responses to increasing macroalgae abundance on coral reefs. Current attempts to 

understand underlying mechanisms that may drive macroalgae persistence have not fully 

explained why such states are maintained and therefore microbes likely play some role in 

facilitating the outcome of coral-algal interactions. Thus, this thesis investigates the baseline 

microbial communities of Sargassum species and M. aequituberculata to understand how 

increasing macroalgae abundance influences both the coral and macroalgae microbiomes.  

Whilst this thesis aims to explore microbial coral-algal interactions, it is imperative first to 

characterise microbes associated with tropical macroalgae. Thus, Chapter 2 of this thesis 

characterises the bacteria community of two Sargassum species (S. aquifolium and S. 

polycystum). These communities were investigated used 16S rRNA gene amplification and 

microscopy (light microscopy, scanning electron microscopy and fluorescent in situ 

hybridisation). The Sargassum samples were separated into different morphological 

components to detect microbially diverse areas of the alga and potentially influential 

morphological components in coral-algal interactions. Chapter 2 therefore provides a baseline 

understanding of the Sargassum species microbiome. 

Chapter 3 investigates the interactions between the dominant algal species Sargassum and coral 

M. aequituberculata on reefs at Magnetic Island. This study took place across three sampling 

time periods from the beginning of the austral summer to winter to investigate if Sargassum 

growth and senescence impacts both the algae and coral microbiome. This study also 

investigates direct coral-algal interactions by exploring the effect of ‘proximity’ between coral 
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and macroalgae. Sargassum species and M. aequituberculata samples were collected in 

isolation, direct contact and systemic contact (10cm away from point of direct contact) to 

examine whether direct contact between organisms shifts the bacterial communities of 

Sargassum and/or M. aequituberculata. Chapter 3 also used 16S rRNA gene amplification, as 

well as collecting descriptive ecological data to examine how the surrounding ecology changed 

throughout the sampling time period. This chapter provides insight into how the Sargassum 

species and M. aequituberculata bacterial communities change over time and with direct 

contact interaction, acting as a starting point to explore how microbial coral-algal interactions 

may influence coral and macroalgal health.  

Chapter 4 is a general discussion, providing a synthesis of the major findings of the thesis. This 

chapter evaluates the significance of this research and highlights key further research to be 

undertaken to improve understanding of the role of coral-algal interactions in contributing to 

coral and macroalgal health. 
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2 Exploring the tropical Sargassum 
macroalgae microbial community 

2.1 Abstract 

Disturbed coral reef systems are vulnerable to shifts from coral to macroalgae-dominated 

environments, which can also shift reef microbiome diversity and function. To understand the 

role of microbes in macroalgae-dominated systems, it is important to explore baseline 

microbial communities of common reef macroalgae. This study describes the bacterial 

community associated with two Sargassum species (S. polycystum and S. aquifolium) collected 

from Magnetic Island in the central Great Barrier Reef (GBR). Sargassum samples were 

dissected into 5 regions (biofilm, leaf, stem (primary axis), basal growth and holdfast) to 

investigate if the bacterial community, assessed through 16S rRNA gene amplicon profiling, 

differed across various Sargassum regions. Whilst S. aquifolium and S. polycystum microbial 

communities were not significantly different, differentiation between the upper (biofilm and 

leaf) and lower (holdfast and basal growth) regions was observed. The biofilm and leaf were 

dominated by bacteria potentially involved in nutrient cycling (Saprospiraceae, Loktanella, 

Bradymonadales), whilst the holdfast and basal growth were dominated by bacteria associated 

with marine sediments and anaerobic respiration (Firmicutes, Geobacter). Scanning electron 

microscopy (SEM) and fluorescent in situ hybridisation (FISH) visualised structures on the 

Sargassum leaf biofilm. Numerous diatoms associated with the formation of marine biofilm 

were observed, alongside coccoid and filamentous bacteria-like structures. This study reveals 

Sargassum species have a diverse bacterial community that differs across regions that may 

underpin host fitness.   
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2.2  Introduction 

With continued decline of coral reef health globally (Pandolfi et al. 2016, Hughes et al. 2017), 

there has been increased concern regarding shifts from coral-dominated to macroalgae-

dominated systems (McCook et al. 2001, Ceccarelli et al. 2018). Increased occurrence of 

extreme climatic events (e.g. mass bleaching) (Hughes et al. 2018), declining water quality 

from coastal development (De’ath et al. 2010) and coral predator outbreaks (Pratchett et al. 

2017) can reduce coral cover. Commonly, opportunistic macroalgae rapidly proliferate across 

areas of degraded reef (Rasher et al. 2012, Sheppard et al. 2012), and rapidly colonise dead 

coral skeletons (Diaz-Pulido and McCook 2003, Leggat et al. 2019), which can occupy space 

and hamper coral recovery (Hughes et al. 2007, Webster et al. 2015, Graham et al. 2015, 

Morrow et al. 2017). Return of coral dominance is rare once macroalgae communities have 

established (Graham et al. 2015). As such, there has been interest in understanding the 

pathways by which macroalgae persist on coral reefs, with current research showing these 

pathways as often complex and multifaceted mechanisms (Mumby 2009, Brown et al. 2018, 

Ceccarelli et al. 2018). While the role of microbes in coral-algal interactions is poorly 

understood, it is acknowledged that it may additionally contribute to macroalgal persistence in 

degraded coral reef environments (Haas et al. 2016). 

Microbial communities are increasingly recognised as performing an important role in 

maintaining tropical marine ecosystem function (Kimes et al. 2010, Glasl et al. 2016). Microbes 

form the foundation of primary productivity in coral reef environments, efficiently assimilating 

limiting nutrients (e.g. nitrogen, carbon and phosphorus) to make them accessible for use by 

higher trophic organisms (Falkowski et al. 2008, Raina et al. 2009). Microbial communities 

play a further active part in maintaining coral health and resilience (Ainsworth et al. 2010, 

Bourne et al. 2016) which has led to use of the term ‘coral microbiome’, which refers to the 

diverse and abundant prokaryotes and eukaryotes (bacteria, fungi, archaea, protists and viruses) 
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that make up a species-specific microbial community, distinct from surrounding seawater 

(Rohwer et al. 2002, Reshef et al. 2006). A stable microbiome supports a variety of functions 

to maintain host health and productivity, for example, production of antibiotics to deter 

opportunistic pathogens and biogeochemical cycling of nutrients internally in hosts (Reshef et 

al. 2006, Rosenberg et al. 2007, Nissimov et al. 2009). Shifts in host microbial community 

composition can occur, however, during periods of reef stress, such as disease and lower pH 

(Bourne et al. 2009, Thurber and Willner‐Hall 2009, Meron et al. 2011). Microorganisms 

respond rapidly to altered environmental conditions in part due to short generational 

turnaround, and thus microbial communities can become easily destabilised (dysbiosis), 

influencing host fitness (Schimel et al. 2007, Egan et al. 2013, Bourne et al. 2016, Rocca et al. 

2019).  

Similar to the coral microbiome recent studies have promoted the concept of the ‘macroalgae 

microbiome’ with the associated microbial communities having some role in underpinning host 

fitness. Egan et al. (2013) highlighted the importance of macroalgal-bacterial interactions in 

maintaining algal health; epiphytic bacterial communities assist in normal morphological 

development, and bacteria with anti-fouling properties to defend against pathogenic microbes. 

Factors such as season can influence bacterial communities associated with macroalgae: for 

example, Serebryakova et al. (2018) observed temporal shifts in the bacterial community of 

Sargassum muticum, with large abundances of Rhodobacteraceae and Loktanella in winter 

months, but prevalence of Pirellulales in summer months.  

Despite the growing recognition of the potential role of microbes in the functioning of coral 

reefs, our understanding of microbial communities of macroalgae is still in its infancy. Previous 

studies investigating macroalgae microbiomes in tropical environments assess the effect of 

macroalgae microbial communities on surrounding corals (Smith et al. 2006, Vermeij et al. 
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2009b, Barott and Rohwer 2012, Barott et al. 2012) rather than solely determining the 

macroalgae microbiome. Whilst it is important to understand the role of macroalgae microbes 

in coral-algal interactions, it is also imperative to characterise macroalgae host microbiomes 

that can act as a comparative baseline for environmental change. Therefore, to understand the 

ways in which microbes contribute to persistence of macroalgae abundance on coral reefs, it is 

crucial to know what microbes associate with macroalgae. 

The Great Barrier Reef (GBR) (Australia) has been subjected to a number of global and local 

stressors in recent years that have led to a significant decline in coral cover (De’ath et al. 2012, 

Hughes et al. 2017, 2018, Matthews et al. 2019, Mellin et al. 2019). Magnetic Island, a high 

continental island approximately 8km from the Queensland coast in the Central GBR, is 

surrounded by fringing reefs and has previously been described as having a mixed coral and 

macroalgae community (Morrissey 1980). Sargassum species are common on degraded and 

inshore reefs of the GBR (Martin-Smith 1993, Schaffelke and Klumpp 1997), and has been 

recorded as the dominant macroalgae on reefs around Magnetic Island (AIMS Data Centre, 

2019).  

Sargassum is a genus of brown canopy-forming macroalgae, with numerous species distributed 

across temperate and tropical marine environments (McCourt 1984). Sargassum has a 

macroscopic thallus, differentiated into a basal holdfast, ‘stem’-like primary axis, leaves and 

air bladders (Mattio et al. 2008). Sargassum is covered in microscopic biofilm thought to have 

a distinct microbial community from the host macroalgae and be important for physiological 

processes (Dobretsov 2009). On coral reefs, Sargassum species grow sub-tidally attaching to a 

variety of substrate (coral, rock, rubble, shells) using the holdfast mechanism (Loffler et al. 

2018). Tropical populations of Sargassum species undergo seasonal cycles of growth and 

senescence (Martin-Smith 1993). Summer growth and abundance of Sargassum can blanket 
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inshore reefs from October-March, with winter senescence starting after the algae has 

reproduced (Martin-Smith 1992). Sargassum rarely completely senesces on reefs where 

environmental stressors are chronic and persistent, and in regions where this is the case, the 

reef can be left dominated by Sargassum species year round (Ceccarelli et al. 2018).  

This study investigates the bacterial communities associated with Sargassum biofilm and 

tissue. In particular we characterised the microbial community of the different Sargassum 

regions (Figure 2.2) using 16S rRNA gene amplicon sequencing and a range of microscopy 

techniques to visualise microbial structures associated with the Sargassum leaf (fluorescent in 

situ hybridisation, scanning electron microscopy and light microscopy). 

   

2.3 Methods 

2.3.1 Study site and sample collection 

Thalli of Sargassum polycystum (n=5) and Sargassum aquifolium (n=5) were collected from 

Geoffrey Bay, Magnetic Island on 31/1/2018 (Figure 2.1, 19o 09’ 09.90” S, 146o 52’ 03.28” E) 

Each thallus was approximately 1 m in height, and the entire thallus from holdfast to tip was 

collected from 3-5 m depth using sterile gloves, sterile scissors and sterile chisel. Each thallus 

collected was a minimum of 10 m away from the nearest live coral to minimise the risk of any 

coral-algal interactions influencing the samples. Where the holdfast could not be taken, the 

thallus was collected as close as possible to the base of the alga, which constituted the basal 

growth (Table 1). Samples were collected under the G15/37574.1 and G16/38348.1 permits 

issued by the Great Barrier Reef Marine Park Authority.  
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Table 1 Number of Sargassum region replicates for S. aquifolium and S. polycystum. N represents the number of 
individual replicates collected with one sample obtained for each region per replicate. 

Sargassum aquifolium Sargassum polycystum 

Biofilm n = 5 Biofilm n = 5 

Leaf n = 5 Leaf n = 5 

Stem n = 5 Stem n = 5 

Basal growth n = 3 Basal growth n = 5 

Holdfast n = 3 Holdfast n = 2 

 

The holdfasts still attached to samples were scraped clean of sediment and rock using sterile 

scalpels before sample preservation. Each thalli collected for DNA extraction was immediately 

rinsed in sterile seawater to remove loosely attached or seawater microbes from the surface, 

then preserved in salt saturated EDTA-DMSO (Table S1) in the field and subsequently stored 

on ice and later kept at -20oC. 

 

Figure 2.1 Study site location at Magnetic Island, Great Barrier Reef, Australia (Google Earth, 2016, V 7.3.2.5776) 
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Seawater surrounding the Sargassum samples was also collected. Briefly, duplicate samples 

consisting of 2L of seawater was collected from approximately 3m depth and 2m above the 

substratum, and filtered through a 0.22 µm Sterivex filter (Merck Millipore). Filters were stored 

on ice in the field, returned to the laboratory within 1-2 h, and subsequently stored at -20oC 

until processed further to extract total genomic DNA. 

Prior to DNA extraction, each algal sample was dissected into the desired region of Sargassum; 

leaf, stem/axis, biofilm, basal growth and holdfast (Figure 2.2). The leaf, stem, basal growth 

and holdfast were sampled with the biofilm intact, however the biofilm was also removed from 

the Sargassum thalli and sampled as its own region. To remove biofilm from each sample, a 

15-20 cm section of the thallus was placed into 10 mL 1X PBS solution in 15mL polypropylene 

tubes and sealed with Parafilm. The polypropylene tubes containing samples were vortexed 

briefly, then placed into a spinning incubator (RATEK Hybridization Oven, speed 10) for 12 

h at 37oC (Glasl et al. 2019). Post-incubation, each sample was vortexed briefly, and 2 mL of 

liquid was aliquoted into sterile 2 mL collection tubes centrifuged for 15 min at 5000 x g. The 

supernatant was discarded (careful to avoid the pellet), and the sample processing was repeated 

in the same 2 mL collection tubes until all the liquid from the polypropylene tubes was 

processed. On the final centrifuge round, the supernatant was removed, and total genomic DNA 

was extracted from the remaining pellet. 
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Figure 2.2 Schematic of the Sargassum regions sampled in study (credit to G. Al Moajil-Cole). 

 

2.3.2 Fluorescent in situ Hybridisation and Scanning Electron Microscopy 

Sargassum species samples collected for all microscopy techniques were first rinsed with 

sterile artificial seawater. Sargassum leaves were separated from the algae thallus and then 

preserved in 4% paraformaldehyde for 10 h. After fixation, samples were stored at 4oC in 50:50 

1XPBS:100% ethanol.  

Histology was used to visualise internal microbial structures with 3 Sargassum leaf samples 

longitudinally embedded and stained with Alician Blue Safarin (Demarco 2017, Jensen et al. 

2018). Samples were visualised using a Leica DM750 microscope, and images obtained with 

a Leica ICC50W camera using Leica LAZ EZ (V3.4) software. 
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Scanning electron microscopy (SEM) was used to visualise external structures on the 

Sargassum leaf surface. Sargassum leaf samples for SEM (n=2) were dehydrated through an 

ethanol dehydration series (70% - 100% ethanol), increasing by 5% increments for 10 min at 

each ethanol concentration. Samples were stored in an open polypropylene tube in silica gel 

beads to air dry overnight. Dried samples were mounted on aluminium stubs and coated with 

platinum. The specimens were observed and photographed using a scanning electron 

microscope (Hitachu SU5000) at 3(kV). 

FISH was used to visualise bacterial distribution on the Sargassum leaf surface. Sargassum 

leaf samples for FISH were dehydrated through the same ethanol dehydration series as SEM 

sample preparation. One leaf was used for each visualisation time point and dissected into three 

sections. Auto-fluorescence trials showed peaks in background fluorescence emissions 

between 650–680 wavelengths. Therefore, the 488 and 561 lasers were chosen to excite 

selected probes. For each visualisation time point, 4 samples were prepared: 1 x Sargassum 

leaf section with CY3 EUB 338 probe, 1 x Sargassum leaf section CY3 NONEUB 338 probe, 

1 x Sargassum leaf section with no probe (negative), 1 positive slide (Escherichia coli culture).  

Hybridisation of probes onto Sargassum samples was completed using a protocol amended 

from Hugenholtz et al. (2001) and Wada et al. (2016). The FISH samples did not need to be 

de-waxed as the samples used were just the fixed leaves (Zhang et al. 2015). After dehydration 

samples were left to air dry for 10 min. Samples were placed into a sterile centrifuge tube, and 

250 µL of freshly prepared hybridisation buffer heated to 46oC was added (Table S2). 25 µL 

of oligonucleotide probe (CY3 EUB 338 (I, II, III) and NONEUB 338) was added to the sample 

at a final concentration of 25 mg mL-1. The samples were incubated at 46oC for 16 h in the 

dark in a hybridisation oven to allow enough time for probes to penetrate the leaf surface. Post-

incubation, samples were immediately rinsed with freshly prepared wash buffer (Table S3) 
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heated to 48oC and held in a centrifuge tube with 2 mL of wash buffer at 48oC for 10 min. The 

sample was soaked in cold filtered water for 10 s, and then thoroughly dried using compressed 

air. Samples were placed onto sterilised histology slides using Citifluor Antifadent Mounting 

Solution and sealed with a cover slip. The samples were stored in the dark and visualised on a 

confocal microscope (Zeiss LSM 710, ZEN software) within 4 h. The positive bacterial culture 

samples were smeared and air-dried onto Superfrost Plus adhesive slides. A hydrophobic pen 

was used to create a barrier around the cells, and 90 µL of freshly prepared hybridisation buffer 

pre-heated to 46oC was applied to the culture. 10 µL of oligonucleotide probe was added at a 

final concentration of 25 ng mL-1. The positive slides were placed in an opaque box with paper 

towel soaked with the remaining hybridisation buffer. The positive slides were incubated in the 

dark at 46oC for 16 h. Post incubation, the slides were immediately rinsed with wash buffer 

preheated to 48oC then placed into a 50 mL polypropylene tube with preheated wash buffer 

and held at 48oC for 10 min. The positive slides were then rinsed with cold filtered Milli-Q 

water to remove excess salts. The slides were thoroughly dried using compressed air and 

mounted with Citifluor Antifadent Mounting Solution, and sealed with a cover slip. The leaf 

and positive samples were stored in the dark and visualised using a confocal microscope within 

4 h. 

2.3.3 Total genomic DNA extraction 

DNA was extracted from each region (leaf, stem, biofilm, holdfast, basal growth) using the 

Qiagen DNeasy PowerBiofilm Kit following the manufacturer’s instructions, with the 

exception of the following minor alterations: 2 mL of ‘NEXT ADVANCE’ zirconium oxide 

0.5mm beads were added to each Power Biofilm bead tube prior to the sample being added to 

the tubes; 20-40 mg of tissue was used. The leaf, stem, basal growth and holdfast were dissected 

into the smallest pieces possible using a scalpel until it reached a ‘sludge-like’ consistency, and 

added directly into the Power Biofilm bead tubes followed by Solution MBL; the whole biofilm 



Ch. 2. Exploring the tropical Sargassum macroalgae microbial community 

Al Moajil-Cole – 2019    26 

pellet was re-suspended in Solution MBL. All of the re-suspended biofilm was transferred 

directly into the Power Biofilm bead tubes; after adding Solution FB, each sample was 

incubated at 65oC for ten minutes; all samples underwent bead-beating for five minutes; when 

required to add Solution IRS, 200 µL was added to every sample and then incubated at 4oC for 

ten minutes; the final elution was completed in two 50 µL elutions, instead of one 100 µL 

elution to ensure as much DNA as possible was removed from the spin column filter. All other 

steps were kept consistent with the DNeasy Power Biofilm Kit protocol. 

DNA was extracted from the Sterivex filters for seawater microbial analysis. The filters were 

removed from their outer housing using sterile pliers. Once removed, a quarter of the filter 

paper was cut from the inner housing using a sterile scalpel blade and placed into the 

PowerBiofilm bead tubes using sterile tweezers. The DNA extraction was completed using the 

DNeasy PowerBiofilm Kit and using the same modifications as the tissue/biofilm extractions. 

2.3.4 PCR and 16S rRNA gene amplicon sequencing 

The 16S rRNA gene region was amplified using 799F (5’– AACMGGATTAGATACCCKG –

3’) and 1193R (5’– ACGTCATCCCCACCTTCC –3’) primers (fragment ~400bp), which 

target the V5, V6 and V7 regions of the 16S rRNA gene and avoid chloroplast cross 

amplification (Bodenhausen et al. 2013, Vieira et al. 2016a, Greff et al. 2017). Each primer 

was fused with the forward and reverse Illumina overhang sequences (forward overhang: 5’– 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG–3’, reverse overhang: 5’–

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG–3’) (Illumina 2013).  The 

following amplification protocol was used: after an initial denaturation at 95oC for 1min, 

conditions were 35 cycles of denaturation at 95oC for 15s, annealing at 55oC for 15s and 

extension at 72oC for 15s. The final extension was at 72oC for 15min. The 50 µL reaction 

contained 1 µL of each primer (20µM), 25µl MyFi 2X Mix (Bioline), 21 µL Milli-Q water and 
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2 µL template DNA (1:10 dilution). PCR product was submitted to Ramaciotti Centre for 

Genomics, UNSW Sydney for bead purification, library preparation (using Illumina MiSeq 

DNA library preparation protocol), and paired-end (2x250) Illumina MiSeq sequencing. 

2.3.5 16S rRNA analysis and bacterial community diversity 

Sequence reads of all samples were processed using QIIME2 (Caporaso et al. 2010). Sequence 

reads returned from sequencing were demultiplexed and rarefied. Reads were filtered for 

quality and chimeric sequences using DADA2 (Callahan et al. 2016). Taxonomic classification 

was assigned using a naïve Bayes classifier, trained on the extracted regions of interest from 

the SILVA 16S rRNA (99) reference alignment (132 QIIME release (Quast et al. 2013)). All 

sequences classified as chloroplast, mitochondria or Eukaryota were removed. The resulting 

amplicon sequence variant (ASV) table was used for statistical analysis in Calypso 

(Zakrzewski et al. 2016) and in R Studio (R Core Team 2017).  

Alpha diversity was calculated using Shannon’s diversity index and Faith’s richness index. 

Patterns in microbial community composition among species and Sargassum region were 

visualized using non-parametric multidimensional scaling (NMDS). Permutational 

multivariate analysis of variance (PERMANOVA) and PERMADISP were used to identify 

differences in the microbial community composition between the two Sargassum species and 

among the five regions of Sargassum sampled. The percent relative abundance of each 

microbial phylum, class and family present in all samples was calculated. The most abundant 

phyla across both Sargassum species, region and seawater were plotted, with ‘other’ 

accounting for <1% of remaining samples. The most abundant bacterial families across all 

samples and replicates in each region of each algal species were plotted against their bacterial 

class. ASV analysis was completed by calculating the most abundant taxa associated with 

100% of samples for each Sargassum species and region, identified to the lowest possible 
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taxonomic level before ‘unknown’ or ‘unclassified’. Compiling the most abundant taxa for 

each region and species resulted in a final list of 23 important ASVs. ASVs were BLASTed 

against the NCBI database to ascertain habitats the ASVs had been previously associated with.  

2.4 Results 

2.4.1 Visualising microbial communities on Sargassum leaf sections 

No internal microbial cell structures were observed using histology (see Figure S1) and 

therefore, microscopy approaches focused on microbial structures visualised on the leaf 

surface. Scanning electron microscopy (SEM) photomicrographs revealed the presence of a 

rich microbiota community residing on the Sargassum species leaf surface biofilm. Bacterial 

cell morphologies were observed, with abundant bacterial coccoid-like clusters across the leaf 

surface (Figure 2.3a). Furthermore, structures similar to prosthecate filaments were associated 

with the biofilm community (Figure 2.3b). A range of microscopic structures consistent with 

diatoms were commonly observed on the leaf surface (Figure 2.3c, d). Through SEM, a number 

of ostiole structures were visualised (Figure 2.3e); microscopic openings on the leaf surface 

associated with Sargassum reproduction. Lastly, possible fungal cell morphologies were also 

observed (Figure 2.3f), supporting the probable diversity of microbiota associated with tropical 

variants of Sargassum species.   
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Figure 2.3 SEM photomicrographs: a) Coccoid-like bacteria clusters (magnification: 22,000X). b) Possible 
prosthecate filaments associated with bacteria biofilm formation (magnification: 250X). c) Pennate diatom 
structure (magnification: 8000X). d) Elongate diatom structure (magnification: 2200X). e) Ostiole structure 
associated with Sargassum species reproduction (magnification: 700X). f) Possible filamentous fungal structures 
(magnification: 350X). 

 

Confocal micrographs of fluorescent signals revealed the presence of high autofluorescence on 

the Sargassum sp. leaf surface. Autofluorescent signals (Figure 2.4a, b) associated with the 

Sargassum species leaf surface were strongest using the confocal microscope 480 laser. The 
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confocal microscope 561 and 630 lasers were therefore used to excite the CY3 EUB338 (I, II, 

III) and CY3 NON-EUB338 probes. A variety of epiphytic bacterial structures were observed 

in relatively high abundance across the Sargassum species leaf surface (Figure 2.4c). Varying 

bacterial morphologies were also detected, including filamentous cells (Figure 2.4d).  

 

Figure 2.4 Confocal micrographs: a) Autofluorescence of Sargassum leaf cells with no probe attached 
(magnification: 60X). b) Autofluorescence of Sargassum leaf cells detected as negative control with NON-
EUB338 probe attached (magnification: 60X). c) Red is used to visualise autofluorescence of Sargassum leaf 
cells, green is used to visualise positive bacteria signal of coccoid-like clusters on the Sargassum leaf surface 
(magnification 40X). d) Red is used to visualise autofluorescence of Sargassum leaf cells, green is used to 
visualise positive bacteria signal of probably filamentous structures (yellow arrow) and coccoid-like clusters (blue 
arrow) (magnification: 60X). 
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2.4.2 Bacteria community diversity comparisons 

A total of 3,531,584 16S rRNA gene sequence reads were recovered from all 48 samples 

processed. Following filtering and rarefaction, 790,728 high quality reads were subsequently 

used for taxonomic classification (Table 2). Rarefaction analysis confirmed sampling depth 

was sufficient to estimate the total diversity of each sample (Figure 2.5). 

Table 2 List of species, samples and sequence reads, highlighting the quality reads used for taxonomic 
classification 

Species Sample No. raw reads No. cleaned reads % Removed 

S. aquifolium Basal growth, #1 214664 171314 20.19 

S. aquifolium Biofilm, #1 241288 189384 21.51 

S. aquifolium Holdfast, #1 286021 226102 20.95 

S. aquifolium Leaf, #1 252037 194467 22.84 

S. aquifolium Stem, #1 245641 193917 21.06 

S. aquifolium Basal growth, #2 218063 167477 23.2 

S. aquifolium Biofilm, #2 219656 180022 18.04 

S. aquifolium Holdfast, #2 192510 151488 21.31 

S. aquifolium Leaf, #2 400779 323126 19.38 

S. aquifolium Stem, #2 348032 274590 21.1 

S. aquifolium Basal growth, #3 249445 187347 24.89 

S. aquifolium Biofilm, #3 343339 274079 20.17 

S. aquifolium Holdfast, #3 165535 106608 35.6 

S. aquifolium Leaf, #3 533420 454916 14.72 

S. aquifolium Stem, #3 345171 275708 20.12 

S. aquifolium Biofilm, #4 183980 145460 20.94 

S. aquifolium Leaf, #4 249168 204252 18.03 

S. aquifolium Stem, #4 287184 228052 20.59 

S. aquifolium Biofilm, #5 202173 127111 37.13 

S. aquifolium Leaf, #5 176053 143410 18.54 
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S. aquifolium Stem, #5 339948 275744 18.89 

S. polycystum Basal growth, #1 470169 379029 19.38 

S. polycystum Biofilm, #1 346248 276040 20.28 

S. polycystum Leaf, #1 241975 193613 19.99 

S. polycystum Stem, #1 227108 182216 19.77 

S. polycystum Basal growth, #2 561943 445213 20.77 

S. polycystum Biofilm, #2 351156 283352 19.31 

S. polycystum Holdfast, #2 337185 268438 20.39 

S. polycystum Leaf, #2 359557 285382 20.63 

S. polycystum Stem, #2 229068 176105 23.12 

S. polycystum Basal growth, #3 344181 266619 22.54 

S. polycystum Biofilm, #3 372023 309074 16.92 

S. polycystum Leaf, #3 306790 249740 18.6 

S. polycystum Stem, #3 225725 173834 22.99 

S. polycystum Basal growth, #4 210115 148743 29.21 

S. polycystum Biofilm, #4 265115 212587 19.81 

S. polycystum Leaf, #4 281112 231389 17.69 

S. polycystum Stem, #4 226125 183021 19.06 

S. polycystum Basal growth, #5 293277 224028 23.61 

S. polycystum Biofilm, #5 260140 211936 18.53 

S. polycystum Leaf, #5 320797 263109 17.98 

S. polycystum Stem, #5 252900 197433 21.93 

n/a Seawater, #1 204988 177276 13.52 

n/a Seawater, #2 231761 188792 18.54 
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Figure 2.5 Rarefaction curves visualising sampling depth of individual S. aquifolium, S. polycystum and seawater 
samples 

 

Shannon’s diversity index and Faith’s richness index of microbial communities associated with 

S. aquifolium (n=5) and S. polycystum (n=5) showed no significant differences (Shannon’s – 

ANOVA: p = >0.05, F = 0.8; Faith’s – ANOVA: p = >0.05, F = 1.3) (Figure 2.6a, b). As such, 

sequences of the regions from each algal species were pooled.  Both Shannon’s index and 

Faith’s index showed a significant difference in the microbial communities of the separate 

Sargassum regions (Shannon’s – ANOVA: p = <0.05, F = 7.3; Faith’s – ANOVA: p = <0.05, 

F = 7.3) (Figure 2.6c, d). Faith’s richness index showed the taxa richness of each region: 

holdfast = 123.47 ASVs per sample, basal growth = 183.39 ASVs per sample, stem = 294.739 

ASVs per sample, leaf = 365.47 ASVs per sample, biofilm = 436.14 ASVs per sample. Further 
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investigation using Kruskal-Wallis pairwise tests, however, revealed significantly higher 

richness and diversity within only the biofilm compared to the remaining regions, most likely 

due to outliers within leaf and stem sample groups (biofilm/holdfast, p = <0.05; biofilm/leaf, p 

= <0.05; biofilm/stem, p = <0.05; biofilm/basal growth, p = <0.05). 

 

Figure 2.6 Alpha diversity assessment of Sargassum species and associated regions. Top panels (a, b) - alpha 
diversity assessment of S. aquifolium and S. polycystum. Bottom panels (c and d) - alpha diversity comparison of 
Sargassum regions (basal growth, biofilm, holdfast, leaf and stem) with Sargassum species data pooled. 

 

There was no significant difference between bacterial community compositions of the two 

species (PERMANOVA, R2 = 0.036, p = > 0.05), or with regards to the amount of variability 

(PERMDISP2, p = 0.285) (Figure 2.7a). Across all samples, bacterial community compositions 

of the Sargassum regions were significantly different (PERMANOVA, R2 = 0.285, p = <0.05), 

as was the variability between regions (PERMDISP2, p = <0.001) (Figure 2.7b). The samples 
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from the leaf, stem and biofilm were tightly clustered, suggesting greater bacterial consistency 

in these regions. Furthermore, the biofilm and leaf samples were clustered, suggesting a high 

correlation between the leaf and biofilm microbial communities. The samples from the basal 

growth and holdfast were not tightly clustered. Whilst this could be a result of lower sample 

size for holdfast and basal growth, it could also suggest a higher degree of variability in 

microbial community composition of these regions. 

 

Figure 2.7 Beta diversity assessment of Sargassum species and associated regions. a) Community composition 
comparisons between S. aquifolium, S. polycystum and seawater. b) Community composition comparisons 
between regions (Sargassum species data pooled) and seawater). 

2.4.3 Bacteria community composition 

Sequences associated with 21 microbial Phyla were identified within the 16S rRNA gene 

dataset across both algal species. Bacteroidetes and Proteobacteria were the most abundant 

sequences retrieved from samples derived from both species and across all Sargassum regions 

representing between 34-51% and 28-52% respectively. Bacteroidetes affiliated sequences 

were most abundant in the biofilm and least abundant in the holdfast, while Proteobacteria 
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was most commonly found in the holdfast and least commonly found in the stem. Whilst 

dominant phyla were consistent between Sargassum species, S. polycystum displayed an 

overall slightly lower abundance of Proteobacteria (34%) compared to S. aquifolium (41%), 

with higher relative abundances of both Actinobacteria (S. polycystum: 16%, S. aquifolium: 

12%), Firmicutes  (S. polycystum: 2%, S. aquifolium: 0.8%) and Patescibacteria (S. 

polycystum: 0.7%, S. aquifolium: 0.3%) (Figure 2.8). 

 

Figure 2.8 The most abundant microbial phyla associated with S. aquifolium and S. polycystum across regions. 
“Other” includes phyla representing <1% of all sequences. Relative abundances are the percent values of the total 
number of sequences. 
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Within the Proteobacteria, sequences associated with Alphaproteobacteria and 

Gammaproteobacteria were the most abundant, representing 23% and 15% of retrieved 

sequences for S. aquifolium, and 19% and 13% of all sequences for S. polycystum respectively 

(Figure 2.9). Across both algal species and all Sargassum regions, Alphaproteobacteria were 

dominated by sequences associated with the family Rhodobacteraceae (S. aquifolium: 22%, S. 

polycystum: 16%), while the Gammaproteobacteria were not dominated by a single family, 

but were instead more evenly spread across several families (e.g. Porticoccaceae: S. aquifolium 

1.4%, S. polycystum 2.2%; Alteromonadaceae: S. aquifolium 2.9%, S. polycystum 2.1%; 

Woeseiaceae: S. aquifolium 5.5%, S. polycystum 2.5%; Vibrionaceae: S. aquifolium 1%, S. 

polycystum 0.5%) (Figure 2.9). While Deltaproteobacteria affiliated sequence were present 

across both algal species, their abundances were low and most commonly found in the holdfast 

of S. aquifolium (4%) and basal growth of S. polycystum (3.5%).  

Within the class Bacteroidia sequences affiliated with several families were found in high 

relative abundances across both algal species and all regions. For example, Flavobacteriaceae 

represented between 7-32% of all retrieved sequences. Interestingly, while Flavobacteriaceae 

was found across all regions, the highest and lowest relative abundance of sequences was 

retrieved from the basal growth section of each algal species (S. aquifolium: 32%, S. 

polycystum: 7%) (Figure 2.9). Saprospiraceae affiliated sequences represented between 2-24% 

of sequences, and while also present across all Sargassum regions, was in higher relative 

abundances within the leaf and biofilm of both algal species (between 12-24% of retrieved 

sequences) compared to only 2-7% of the sequences retrieved from the holdfast and basal 

growth sections of these algal species. Finally, Microtrichaceae (class Acidimicrobiia) was 

also found across both algal species and all regions, representing between 2-18% of sequences 

(Figure 2.9).  
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Some sequences were only retrieved from specific regions of the macroalgae. For example, 

members of the Firmicutes phylum including Clostridiaceae were observed associated with 

basal growth of S. polycystum (6%), Lactobacillaceae from the holdfast of S. polycystum (5%) 

and Streptococcaceae from both the basal growth (3.3%) and stem (2.5%) of S. aquifolium. 

The higher relative abundance of taxa associated with Firmicutes in the lower macroalgae 

regions (holdfast, basal growth and stem) of S. polycystum and S. aquifolium, suggest they may 

be useful region indicator taxa (Figure 2.9). 

BLASTing the most abundant ASVs revealed associations with tropical marine environments, 

localised from seawater, sediment and coral reef taxa (Figure 2.10). 9 ASVs were associated 

with both Sargassum species and all regions, and included Gammaproteobacteria, 

Rhodobacteraceae, Loktanella, Flavobacteriaceae, Maritimimonas, Saprospiraceae, Sva0996 

Marine Group and Microtrichaceae. Of these 9 ASVs, 7 were not retrieved from the 

surrounding seawater samples, suggesting some distinction between the seawater and 

Sargassum bacterial communities, and further suggesting that some bacterial groups are 

enriched or specific to the Sargassum microbiome.  The Gammaproteobacteria ASV had the 

highest mean relative abundance (S. aquifolium: 19%, S. polycystum: 10%) followed by 

Flavobacteriaceae ASV (S. aquifolium: 7.6%, S. polycystum: 5.9%). Interestingly, whilst 

Saprospiraceae (S. aquifolium: 1.8%, S. polycystum: 2.8%) and Loktanella (S. aquifolium: 

3.7%, S. polycystum: 2.6%) were observed across both Sargassum species and all regions, they 

were found in highest relative abundance within the upper Sargassum regions (Saprospiraceae: 

S. aquifolium leaf 3.3%, biofilm 2.8%; S. polycystum leaf 6.9%, biofilm 3.5%. Loktanella: S. 

aquifolium leaf 8%, biofilm, 7.3%; S. polycystum leaf 6%, biofilm 4.1%). Differentiation of 

the upper regions was also observed with the ASVs Weeksellaceae and Bradymonadales. 

Bradymonadales was observed in the biofilm (S. aquifolium: 1.9%, S. polycystum: 3.4%), leaf 

(S. aquifolium: 2.2%, S. polycystum: 6.6%) and stem (S. aquifolium: 3.4%, S. polycystum: 
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2.3%) of both Sargassum species. Weeksellaceae was present within the leaf (S. aquifolium: 

2.2%, S. polycystum: 4.6%) and biofilm (S. aquifolium: 1.8%, S. polycystum: 4.8%) of both 

species, but only present in the stem of S. aquifolium (1.1%). Differences in microbial patterns 

of the lower regions were also observed. For example, the ASV Geobacter was only found in 

the basal growth (2%) and holdfast (1.2%) of S. aquifolium. Moreover, whilst 

Gammaproteobacteria was observed across all regions, it was found in highest relative 

abundance in the holdfast (8.8%) and basal growth (6.1%).  
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Figure 2.9 Top 25 most abundant bacterial families associated with all samples and replicates of both Sargassum species and regions. Families grouped by associated phylum 
(colour) and differentiated by class (shape). Percentages are the relative abundances of total sequences. 
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Figure 2.10 ASV analysis of the top 23 more abundant taxon (not including taxon labelled ‘other’ or ‘unclassified’) in 100% of samples present across S. aquifolium, S. 
polycystum, seawater and each Sargassum region. The darker the blue, the most abundant the ASV and where white, the ASV was not present. Corresponding table: BLAST 
information of each taxa extracted from the NCBI database. Percentages are the relative abundances of total sequences. 
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2.5 Discussion 

2.5.1 Similarity between the S. aquifolium and S. polycystum bacterial 
communities 

Identification of the algal microbiome can help identify their role in promoting  host health, 

similar to the coral holobiont (Rohwer et al. 2002, Thurber et al. 2009, Glasl et al. 2016). This 

holobiont concept has been successfully applied to benthic macroalgae (Barott et al. 2012, Egan 

et al. 2013), and algal-associated bacterial communities can be specific to the type of 

macroalgae investigated (Singh and Reddy 2016, van der Loos et al. 2019). Here we found the 

bacterial communities of the two Sargassum species sampled were highly diverse, but the 

overall diversity and bacteria community composition of both algal species were similar. 

Previous research has indicated the bacterial communities of different algal functional groups 

vary, though the bacterial communities of algae within each functional group remained similar 

(Barott et al. 2011). Thus, the similarity of the bacteria community between S. aquifolium and 

S. polycystum of the same genus and algal functional group is consistent with these previous 

studies.  

The epiphytic bacterial community profiles of different macroalgae species across temporal 

and spatial scales has been previously profiled (Tujula et al. 2010, Lachnit et al. 2011, 

Campbell et al. 2015, Mancuso et al. 2016), suggesting the macroalgae sampled from the same 

site and time host similar bacteria communities. Both Sargassum species were collected at the 

same time point and from the same location, which may explain the consistency in the bacterial 

communities between S. aquifolium and S. polycystum. Campbell et al. (2015) suggested a 

‘lottery model’ whereby host bacterial communities can be influenced by surrounding 

environmental conditions (such as temperature) to enable host success in the given 

environment. Furthermore, on coral reefs, Glasl et al. (2019) revealed host-associated 
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microbiomes can be affected by different environmental parameters, suggesting community 

assembly patterns can be variable between conspecific individuals from different 

environmental conditions. Further research investigating the Sargassum microbiome should 

include samples collected from different locations and time points to assess to what extent the 

surrounding environment may influence the host bacterial communities. 

Results from this study showed Sargassum species were host to a diverse bacterial community 

distinct from seawater. Recent research has highlighted the Sargassum species biofilm bacterial 

community has a more varied response to environmental changes compared to seawater, and 

remains distinct from the seawater microbiome throughout fluctuations in the surrounding 

environment (Glasl et al. 2019). Such variability within host microbiomes can be attributed to 

increased niche space providing habitat for microbes, which can make the host distinct from 

surrounding free-living microbiomes such as seawater (Glasl et al. 2019). Macroalgae can 

release nutrient rich exudates and polysaccharides, which can form micro-niches that promote 

certain bacterial lineages (Martin et al. 2014, Singh and Reddy 2014, Vieira et al. 2016b, 

Morrow et al. 2017). The release of secondary metabolites and organic compounds by 

macroalgae also may promote proliferation of heterotrophic bacteria (Haas et al. 2016, Roach 

et al. 2017). These exudates provide a food source for bacteria, thus macroalgae can act as an 

ideal micro-niche for these bacteria to survive (Barott and Rohwer 2012). Bacteria belonging 

to the family Saprospiraceae were abundant across both Sargassum species, and bacteria 

within this family have been linked to the breakdown of complex macro-molecules such as 

polysaccharides from exudates (McIlroy and Nielsen 2014). Furthermore, bacteria within the 

class Gammaproteobacteria and associated families (e.g. Alteromonadaceae and 

Woeseiaceae) were dominant in both Sargassum species. Gammaproteobacteria are common 

in marine environments (Cho and Giovannoni 2004), particularly within nutrient rich niches 

such as marine biofilms (Wietz et al. 2010, López-Pérez and Rodriguez-Valera 2014, Franco 
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et al. 2017). Sequences associated with Alteromonadaceae, Woeseiaceae and Saprospiraceae 

were not retrieved from seawater samples, and highlight potential bacteria that may be 

associated specifically with the Sargassum host.  

Through the production of nutrient rich exudates, not only can the Sargassum host provide a 

niche for certain bacterial assemblages to colonise, but the bacteria in turn may offer 

advantageous characteristics for host survival. For example, bacteria belonging to the family 

Saprospiraceae, which were found in abundance across both Sargassum species and all 

regions, have been observed feeding on pathogenic and opportunistic bacteria (Aizawa 2005, 

Shi et al. 2006). As such, Sargassum species may be host to bacteria that can offer a defensive 

mechanism against potentially harmful microbes, which could contribute to sustaining host 

health. Furthermore, bacteria belonging to the family Rhodobacteraceae were dominant across 

both species of Sargassum, and many marine taxa within this family have been linked to 

sulphur and carbon biogeochemical cycling (Pujalte et al. 2014). The release of different 

nutrients as products from biogeochemical cycling by the bacteria are then made available for 

other organisms and the bacteria-associated host to utilise the nutrients for metabolic function 

(Fiore et al. 2010). As such, some of the bacteria found to be associated with the Sargassum 

species within this study may provide an important nutrient source to maintain host health. 

Whilst such bacteria-host benefits can be inferred, there remains limited discussion around the 

roles and functions of the macroalgae microbiome. Further functional metagenomic and 

metstranscriptomic work is essential in order to elucidate the functions particular bacteria may 

have in relation to maintaining host fitness.  

2.5.2 Microbial communities differ across Sargassum regions 

Microbial communities associated with macroalgae have predominantly been characterised 

from algal-associated biofilms (Kanagasabhapathy et al. 2006, Lachnit et al. 2011, Egan et al. 
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2013, Martin et al. 2014, Dogs et al. 2017), rather than different algal tissues such as the leaf, 

primary axis (stem) and holdfast. This current study observed significant differentiation in the 

bacteria communities of algal tissues from different regions of Sargassum. Within this study, 

niche clustering was observed; the biofilm of both Sargassum species was significantly more 

diverse than other regions of the alga, and the most abundant bacterial taxa of the leaf and stem 

was similar, as was the basal growth and holdfast. Due to distinct diversity clustering, and to 

simplify discussion of bacterial community differentiation, the biofilm, leaf and stem are 

referred to as ‘upper regions’, and basal growth and holdfast ‘lower regions’.  

In terrestrial environments, plant morphological attributes can drive the structure and assembly 

of microbial communities (Turner et al. 2013, Wallace et al. 2018), for example, root-

associated bacterial communities are different to those from the leaf (Bodenhausen et al. 2013, 

Fitzpatrick et al. 2018).  Similarly, upper and lower region differentiation was observed across 

both Sargassum species, with the overall diversity of the lower regions of Sargassum species 

appearing more variable than the upper regions. Relative abundance of bacteria belonging to 

the Phylum Firmicutes was highest in the basal growth and holdfast of both Sargassum species. 

Bacteria belonging to the ASV Geobacter was only found in the lower regions of S. aquifolium. 

Within marine environments, bacteria belonging to Firmicutes have been associated with 

marine sediments and benthos (da Silva et al. 2013), and Geobacter has been recognised in 

association with anaerobic respiration in aquatic sediments (Lovley et al. 2011, Ueki et al. 

2018). The holdfast and basal growth of Sargassum species generally live covered by marine 

sediment and other benthos material in anaerobic conditions (Umar et al. 1998, Kawamata et 

al. 2012), hence it is probable this may influence the abundance of retrieved Firmicutes and 

Geobacter sequences within these lower regions.   
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Marine microbes that colonise coral reef organisms potentially offer functional benefits to the 

host (Neave et al. 2017, van de Water et al. 2018, Shiu and Tang 2019). Sequences of the ASV 

Bradymonadales (Wang et al. 2015) were only retrieved in the leaf and biofilm of both algal 

species. This particular ASV was found to be associated with macroalgae (Aires et al. 2016), 

and bacteria belonging to Bradymonadales in marine environments have been proposed to aid 

sulphur-cycling within marine environments (Wang et al. 2015). Furthermore, bacteria such as 

Loktanella and Saprospiraceae, whilst present across all Sargassum regions, were in highest 

abundance on the leaf and biofilm of Sargassum, and both bacteria have potential functional 

roles in nutrient cycling, for example, making nutrient available to the host for metabolic 

processes (Miranda et al. 2013, McIlroy and Nielsen 2014, Tanaka et al. 2014, Ma et al. 2017). 

The higher abundances of these bacteria on the upper regions of Sargassum may assist in 

nutrient provision to the alga, but as this was the result of 16S data, further microbial functional 

analysis is essential to understanding functional properties of Sargassum associated bacteria.  

2.5.3 A diverse microbial assemblage is observed on the Sargassum leaf  
and biofilm 

Differentiation between the Sargassum regions was characterised across both Sargassum 

species, although the leaf and biofilm in particular were observed to host a highly diverse 

microbial community. Scanning electron microscopy of the Sargassum leaf visualised the 

alga’s biofilm and revealed a wide range of cell structures present on the surface. In particular 

an extensive array of diatoms and bacteria were observed. These microorganisms are among 

the first colonisers of surfaces in marine environments (Cooksey and Wigglesworth-Cooksey 

1995), playing an important role in the formation of marine biofilms and biogeochemical 

activity within the biofilm (Patil and Anil 2005, Lage and Graça 2016). Both diatoms and 

bacteria secrete extracellular polymeric substances (EPS), generally comprised of 
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polysaccharides, lipids and humic substances, which help form biofilms (Underwood and 

Paterson 2003, de Carvalho 2018). 

Many organisms such as macroalgae can provide a source of nutrients for planktonic diatoms 

and bacteria to attach to and produce biofilms (Horváthová et al. 2016). Biofilms on 

macroalgae surfaces comprised of macro molecules and organic compounds can become 

sources of nutrients for higher trophic level organisms (e.g. isopods and detritovores) (Chiu et 

al. 2007, Horváthová et al. 2016). In turn, EPS secreted by diatoms and bacteria can provide 

some defences to the host surface (e.g. macroalgae), such as protection against pH and 

temperature fluctuations, UV exposure, salinity changes, and depletion of nutrients (de 

Carvalho 2018). Bacteria have also been attributed to providing essential antifouling properties 

to protect macroalgae from secondary colonisation from pathogenic microbes (Egan et al. 

2013). Specifically, within this study, SEM revealed a variety of pennate and centric diatoms, 

and potential coccoid bacterial clusters and prosthecate filaments associated with bacteria 

cellular membranes. Furthermore, the use of FISH confirmed the presence of bacteria across 

the Sargassum leaf surface. The images from FISH and SEM highlight diatoms and bacteria 

are fundamental structures within the Sargassum biofilm, and although the exact function of 

diatoms and bacteria observed cannot be attributed, the presence of a diverse biofilm 

community on the Sargassum surface may contribute to the physiological function and health 

of the macroalgae. Microscopy has proven a useful descriptive tool for exploring the baseline 

microbial and microscopic communities of the Sargassum biofilm. Future studies using 

microscopy to investigate the structure of macroalgae surfaces should consider in depth 

identification of diatoms present and bacteria specific FISH probes to further explore the 

functional microbe-macroalgae relationship.  
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Potential fungal morphologies were visualised using SEM. Fungi, like bacteria, have been 

associated with cycling organic matter in marine ecosystems and Antarctic macroalgae (Loque 

et al. 2010). Specifically within terrestrial plants, endophytic fungal communities have been 

associated with utilising photosynthetic nutrients (Marcial Gomes et al. 2003, Zhang and Yao 

2015), and fungi are primarily responsible for the transformation of plant-derived carbon in 

terrestrial ecosystems (Voříšková et al. 2014). As potential fungal morphologies were observed 

on the Sargassum leaf surface, and fungal communities have an apparent nutrient cycling 

function within terrestrial plants, it is essential that future work explores the presence and 

distribution of fungal communities across macroalgae to capture all microbial components of 

the macroalgae microbiome.  

The leaf and biofilm of both Sargassum species hosted the most abundant and diverse bacterial 

communities of all the regions that most likely offer important roles in maintaining host health. 

Generally, macroalgae leaves provide the largest surface area for biofilm to form (Martin et al. 

2014), which contributes to macroalgal leaves forming diverse bacterial niches (Cooksey and 

Wigglesworth-Cooksey 1995). Whilst present across both Sargassum species’ regions, bacteria 

belonging to the family Rhodobacteraceae were most abundant within the leaf and biofilm, in 

particular the genus Loktanella. Loktanella has been previously described in association with 

seawater, marine sediments and biofilms (Lau et al. 2004, Tanaka et al. 2014, Ma et al. 2017). 

Serebryakova et al. (2018) revealed a high presence of Loktanella in endophytic and epiphytic 

microbial communities of Sargassum muticum, and previous bacterial community sequencing 

of the alga Porphyra umbilicalis revealed Loktanella are core taxa within the alga’s 

microbiome (Miranda et al. 2013). Loktanella are phototrophic, involved in sulphur and carbon 

biogeochemical cycling and symbiosis of aquatic micro- and macro-organisms (Pujalte et al. 

2014). The release of different nutrients as products from biogeochemical cycling are then 

made available for other organisms to utilise for metabolic function (Fiore et al. 2010). Thus, 
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it is likely that Loktanella may be a physiologically important taxa for macroalgae function and 

health.  

FISH analysis of the Sargassum leaf revealed various bacterial structures across the leaf 

surface. In particular, coccoid-like epiphytic bacterial clusters and filamentous structures. 

Interestingly, some bacteria belonging to the family Saprospiraceae have been recorded to 

have a filamentous structure (McIlroy and Nielsen 2014), and within this study Saprospiraceae 

was found to be most abundant within the leaf and biofilm of both Sargassum species. The 

family Saprospiraceae have previously been found to be an abundant bacteria associated with 

Sargassum (Serebryakova et al. 2018), and other macroalgae species such as Asparagopsis 

species (Aires et al. 2016). Bacteria within the Saprospiraceae family have been linked to the 

breakdown of complex biological and organic macromolecules, in particular polysaccharides 

and proteins, through an observed capacity for hydrolysis (Burke et al. 2011, McIlroy and 

Nielsen 2014). Such traits are thought to assist in providing effective metabolic function and 

nutrient cycling to the host that the bacteria is associated with (Kirchman 2002). Furthermore, 

Saprospiraceae related organisms are rarely present as free-living organisms in marine 

environments, instead attaching to surfaces rich in complex nutrient sources such as 

epibacterial communities and biofilms of macroalgae (McIlroy and Nielsen 2014, Lage and 

Graça 2016). From this study, we found abundances of Saprospiraceae bacteria across all 

Sargassum regions, with highest concentrations within the leaf and biofilm of both Sargassum 

species. Thus, the traits of the Saprospiraceae family described are the most likely explanation 

for why this particular bacteria family is so abundant within Sargassum and in particular the 

epiphytic niches.  

This study provides a baseline dataset of the bacteria communities present within Sargassum 

species at Magnetic Island (GBR), to enable further study the role of macroalgae associated 
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microbes in coral-algal interactions. The leaf and biofilm of the Sargassum species displayed 

the highest diversity of all the regions, and when considering direct interactions between coral 

and fleshy macroalgae, these components can be the first point of contact between coral and 

Sargassum.  

To study the direct interactive effect of Sargassum on the coral microbial community, the 

biofilm in particular could be considered an important component in assessing the role of 

microbes in coral-algal interactions. While previous studies examining the macroalgae 

microbiome have largely focused on sequencing the macroalgae biofilm alone, this study 

reveals Sargassum has a diverse bacterial community that differs across different regions of 

the alga that may underpin host fitness. Therefore, future research investigating the microbial 

assembly of macroalgae should consider examining host tissues alongside biofilm communities 

with functional analysis undertaken to decipher links between bacterial assemblies present and 

host fitness. 

2.6 Conclusions 

This study acts as an important baseline step in characterising the bacteria that are present in 

tropical variants of Sargassum species. These results can inform future research regarding the 

role Sargassum associated microbes may have in influencing the surrounding environment on 

coral reefs. Importantly, whilst the microbiome between the Sargassum species investigated 

was similar, there was microbial distinction between alga’s regions. As apparent region based 

niches were observed across Sargassum species, it is key that future research explores 

morphologically separated microbial assemblies when investigating the factors that make 

macroalgae a successful competitor on coral reefs. To address the overall aim of this thesis, it 

was concluded the biofilm would be used to explore direct microbial coral-algal interactions 

between Sargassum species and coral. When Sargassum is in direct contact with coral, the 
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biofilm covering the algae is the first component to touch the coral. Furthermore, the 

Sargassum biofilm was found to host numerous microbial structures and a diverse bacterial 

community. 
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3 Microbial coral-algal interactions on 
the inshore Great Barrier Reef 

3.1 Abstract 

Coral-algal interactions can have detrimental effects on coral contributing to decline in reef 

health, which may be partly driven through direct and indirect microbial processes. Within this 

study, 16S rRNA gene amplicon sequencing was conducted on Sargassum species and 

Montipora aequituberculata to assess how direct contact between the two species affects host 

bacterial communities. Sargassum and M. aequituberculata samples were collected from 

Magnetic Island (Central GBR) from different proximity treatments (isolation, direct contact 

and systemic proximity) and across three time points (December 2017, February 2018 and May 

2018) to explore how the host bacterial communities may change over time and in relation to 

proximity interactions. Benthic community surveys revealed significantly higher Sargassum 

abundances in February 2018 (43.3% +/- 10) compared to May 2018 (14.2% +/- 2.4). Analysis 

of the 16S rRNA data revealed the Sargassum, M. aequituberculata and seawater bacterial 

community compositions were all significantly different from each other. Across proximity 

treatment and time, the M. aequituberculata community was dominated by sequences affiliated 

with the bacterial families Pirellulaceae, Nitrosopumilaceae, Rhodobacteraceae and 

Flavobacteriaceae. Sargassum species bacterial community was dominated by sequences 

associated with Flavobacteriaceae, Rhodobacteraceae and Saprospiraceae. Both the 

Sargassum and M. aequituberculata bacterial communities displayed distinct temporal shifts. 

Sequences affiliated with Saprospiraceae (commonly affiliated with macroalgae) in the 

Sargassum bacterial community were highest in February 2018 compared to May 2018, most 

potentially linked to changes in Sargassum density between February and May. Whilst the 
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diversity and community assemblage of Sargassum and M. aequituberculata bacterial 

communities remained consistent across proximity treatments, some shifts in the community 

structure of direct contact samples were observed. For example, sequences associated with the 

bacteria family Endozoicomonadaceae, previously implicated as highly abundant in healthy 

corals, were most prevalent within M. aequituberculata isolation samples and lowest in direct 

contact samples, especially in February 2018 when Sargassum abundance was highest. 

Stability of the M. aequituberculata bacterial community in direct contact with Sargassum 

indicates that micro-scale coral-algal interactions appear to have little impact on the adult M. 

aequituberculata host microbial community at Magnetic Island. This may be reflective of the 

tolerance of this species, and explain its ecological success despite the conditions and 

interactions the reefs are exposed to at Magnetic Island. Further research should investigate 

whether this stability is consistent across other coral species, especially more sensitive 

branching acroporids, and if it can be replicated on other inshore reefs that have had less 

historical exposure to Sargassum. 

3.2 Introduction 

Within marine environments, competitive interactions between species can promote the 

survival of one organism over another (Buss and Jackson 1979, Aerts and Van Soest 1997, 

Kuffner et al. 2006, Forrester 2015). One of the most significant competitive interactions on 

coral reefs exists between macroalgae and coral (Hay 1997, McCook et al. 2001, Swierts and 

Vermeij 2016, O’Brien and Scheibling 2018). Primarily, macroalgae and coral compete for 

space for propagation and light for photosynthesis (McCook et al. 2001, Vroom et al. 2006, 

Box and Mumby 2007). While the broad effects of these interactions have been investigated at 

the macro-scale, there remains limited understanding on how macroalgae impact coral at a 

microbial scale. Microorganisms respond rapidly to altered environments conditions, in part 

due to short generational turnaround, and thus microbial communities can become destabilised, 
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subsequently influencing overall fitness of the coral holobiont (Schimel etl al. 2007, Egan et 

al. 2013, Bourne et al. 2016, Rocca et al. 2019). Thus, it is critical to consider how direct coral-

algal interactions influence the microbial communities of both host species. 

Increase in macroalgal abundance on reefs can have direct negative impacts on corals through  

shading and abrasion (Smith et al. 2006, Birrell et al. 2008a, Ceccarelli et al. 2018) and by 

changing the coral microbiome (Rasher and Hay 2010, Barott and Rohwer 2012, Leong et al. 

2018). For example, Barott et al. (2012) observed tissue abrasion and necrosis of Montastrea 

annularis where turf algae grew attached to the coral, while Diaz-Pulido et al. (2009) noted 

localised bleaching on Acropora sp. where Lobophora sp. that had been growing on the coral 

had been removed.  Microbial communities derived from algae can also impact coral health, 

with Vieira et al. (2016) detecting areas of localised bleaching of Acropora species within 24 

h when bacteria isolated from Lobophora species were applied to the coral surface.  As 

macroalgae abundance increases, opportunity for direct contact and thus direct microbial 

interactions between macroalgae and coral also increases. Throughout a thermal stress event, 

which promoted growth of turf macroalgae over corals, Pratte et al. (2018) witnessed increased 

similarity between the microbiome of Porites and turf macroalgae at points where the two 

organisms were in direct contact, suggesting a transfer of microbes. Furthermore, direct 

microbial coral-algal interactions can have macro-scale impacts (Brown et al. 2018, Clements 

et al. 2018). Barott et al. (2012) proposed a model whereby macroalgae can act on a micro-

scale to stress corals, leading to macro-scale changes to reef ecology. For example, contact 

between turf algae and Montastrea annularis eliminated oxygen production at the contact 

interface (Barott et al. 2012), contributing to reduced coral growth (Lirman 2001, Barott et al. 

2009), lower coral fecundity (Foster et al. 2008) and the inhibition of coral larval settlement 

(Birrell et al. 2005). 
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Indirect coral-algal interactions can also influence coral health, primarily through reduced 

space for coral propagation (Kuffner et al. 2006, Brown et al. 2018, Leong et al. 2018). 

Moreover, indirect mechanisms can also influence the coral microbiome through release of 

algal exudates such as dissolved organic carbon (DOC) (Smith et al. 2006, Hauri et al. 2010, 

Haas et al. 2016). This indirect mechanism has been summarised within the Dissolved organic 

material, Disease, Algae and Microbes (DDAM) model; increased macroalgae abundance 

promotes the release of bioavailable DOC into the environment, initiating microbialisation of 

the reef ecosystem (Barott and Rohwer 2012, Haas et al. 2016). Microbes can outcompete 

corals for bioavailable resources, depriving corals of the necessary nutrients (e.g. carbon and 

nitrogen) needed for survival, leading to a higher chance of coral degradation (Barott and 

Rohwer 2012, Haas et al. 2016, Roach et al. 2017), which can in turn promote increased algal 

cover (Smith et al. 2006).  

Environmental stress can also disturb the stability of coral associated microbes (Rohwer et al. 

2002, Thurber et al. 2009, Sunagawa et al. 2010). Coral bleaching, for example, can shift the 

bacterial community structure of corals (Bourne et al. 2008), and increased nutrient inputs can 

trigger coral disease lesions, which can destabilise healthy coral microbiomes (Bourne 2005, 

Rosenberg et al. 2007). Similarly, changes have also been recorded in the macroalgae 

microbiome as a result of environmental change (Egan et al. 2013, Zozaya-Valdés et al. 2017, 

van der Loos et al. 2019). For example, bleaching and a reduction of bacterial diversity in the 

temperate algae Delisea pulchra throughout periods of higher seawater temperatures have been 

documented (Campbell et al. 2011). Previous studies investigating the nature of coral-algal 

interactions have focused on macro-scale interactions and the different ways in which they may 

impact the coral itself and surrounding environment (Mumby 2009, Hoey and Bellwood 2011, 

Lefévre and Bellwood 2011, Bruno et al. 2015). Consequently, as macroalgae continues to 

proliferate on coral reefs and there are clear links between shifts in microbial and ecosystem 
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health, understanding microbial coral-algal interactions is integral to help identify which 

factors may promote algal dominance over corals, and how this may exacerbate decline in coral 

health.  

To date, research investigating the coral-algal interactions on corals of the GBR have examined 

the effects of allelochemicals produced by the brown alga Lobophora on coral larvae and 

associated microbial communities of Porities coral (Morrow et al. 2017). In situ field tests 

detailing microbiome shifts of algae and coral hosts as a result of direct interactions, however, 

have not been conducted. As the frequency and magnitude of disturbance events increases on 

the GBR (Hughes et al. 2017), there is increasing risk of higher macroalgal dominance on some 

reefs (Dudgeon et al. 2010), with the risk of increased algal abundance highest on inshore reefs 

of the GBR due to the proximity of coastal development and elevated sediment and nutrient 

inputs (Fabricius 2005, Fabricius et al. 2005). Magnetic Island (inshore Central GBR) has seen 

an increase in macroalgae cover following disturbance-driven declines of hard coral cover 

(Ceccarelli et al. 2019). Furthermore, significant negative relationships between coral and 

macroalgae abundance have been observed at Magnetic Island, especially once macroalgae 

cover exceeds 20% (Ceccarelli et al. 2019). Algal abundances change on a seasonal scale at 

Magnetic Island, with rapid growth throughout the Austral summer (Martin-Smith 1992, 

Brown et al. 2018). Nonetheless, despite seasonally prolific algae and low abundances of 

macroalgae grazing fish (Ayling and Ayling 2005), relatively stable hard coral cover (though 

low diversity community composition) exists on the reefs around Magnetic Island (Ceccarelli 

et al. 2019). The mixed community of coral and macroalgae therefore provided an ideal 

location to study the influence of direct coral-algal interactions on their respective host’s 

microbial communities.  
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The overall aim of this chapter is to investigate micro-scale coral-algal interactions,  

specifically combining microbial analysis and benthic community surveys at Magnetic Island 

(Geoffrey Bay) to investigate the effect of direct contact between Sargassum species and M. 

aequituberculata on their respective bacterial communities, including how this changes over 

the seasonal growth cycle of Sargassum species (Martin-Smith 1992). The benthic community 

surveys were completed by assessing the percent cover of M. aequituberculata and the density 

of Sargassum species to quantify how the benthic assemblage changed over time. 16S rRNA 

gene amplicon sequencing was used to investigate microbial changes between M. 

aequituberculata and Sargassum species in varying proximities to each other and over time. 

3.3 Methods 

3.3.1 Study site and species 

The study site was Geoffrey Bay, Magnetic Island (19o 09’ 09.90” S, 146o 52’ 03.28” E) with 

further details of this site presented in Chapter 2. Montipora species were the most abundant 

coral present in 2017, accounting for more than half of the total coral cover (AIMS, 2019). 

Montipora aequituberculata was selected due to its plating morphology facilitating ease of 

sampling.  Sargassum species follow seasonal growth trends (Martin-Smith 1993, Schaffelke 

and Klumpp 1997) and account for more than half of the total macroalgae cover at Magnetic 

Island (AIMS, 2019). The natural growth and senescence cycle of the alga acts as a proxy for 

fluctuating macroalgae abundance over the seasonal sampling regime. Sample collections and 

surveys took place at three time points (4th December 2017, 13th February 2018, and 25th May 

2018). At each time point, coral, macroalgae and seawater samples were collected for microbial 

community analysis and benthic assemblages were quantified to describe how the sampling 

environment changes over time (see section 3.3.2). As little distinction between the two 

Sargassum species microbiomes was observed in Chapter 2, it was decided the Sargassum 
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samples for Chapter 3 would not be identified to species level, and the interaction study 

focusses on the genus Sargassum and M. aequituberculata at Geoffrey Bay (Magnetic Island).  

3.3.2 Benthic community surveys 

Point intercept transects were completed at Geoffrey Bay, Magnetic Island alongside sample 

collection to quantify any changes in benthic assemblages over time. Three replicate 20m 

transect tapes were randomly laid across the site at approximately 5-7m depth. Every 50cm 

along each transect the substratum directly below the tape was recorded as coral, algae, rock, 

sand or rubble. Corals and algae were identified to genus and species where possible. 

Quadrat surveys were used to monitor how the density and canopy height of Sargassum 

species, and the amount of contact between Sargassum species and M. aequituberculata 

changed over time between sampling time points. Six 1 x 1m quadrats were randomly placed 

across the study site to quantify the benthic assemblage. Within each quadrat, the following 

observations were recorded: percent cover of Sargassum species; percent cover of M. 

aequituberculata; percent contact between Sargassum species and M. aequituberculata; 

percent of M. aequituberculata diseased/lesions present; number of Sargassum species 

holdfasts; and Sargassum species canopy height. Sargassum canopy height was quantified by 

measuring the height of three randomly selected Sargassum thalli from holdfast to tip and 

calculating the mean height. Contact between Sargassum species and M. aequituberculata was 

measured by estimating the percent of M. aequituberculata completely smothered by 

Sargassum within each quadrat. M. aequituberculata colonies in each quadrat affected by 

disease or lesions were counted, and the tissue area of each colony estimated within categories 

(0-25%; 26-50%; 51-75% and 75-100%). This area was normalize over total coral colony tissue 

area to provide an inference for allelopathic activity (Table S2). 
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3.3.3 Benthic community analysis 

ANOVA models were constructed to determine if percent cover estimates of Sargassum 

species and the percent contact between Sargassum species and M. aequituberculata changed 

over time. The number of Sargassum holdfasts and the Sargassum canopy height were 

measured as a proxy for Sargassum density, and were similarly modelled using ANOVA to 

investigate the differences in the number of holdfasts and canopy height over time. Tukey post-

hoc pairwise comparisons were conducted to establish differences between individual time 

points for each ANOVA model. All models were fitted using R v3.5.3 (R Core Team, 2018) 

and pairwise comparisons conducted using the “lsmeans” package (Lenth 2016). Model 

assumptions (normality and homogeneity of variances) were visually inspected via boxplots 

and residual plots. 

3.3.4 Sample collection 

Samples were collected from M. aequituberculata and Sargassum species that were isolated 

from each other (>5m away), in direct contact (area of the organisms touching), and in systemic 

proximity (the same organisms in contact, but sampled ~10cm away from the point of direct 

contact) (Figure 3.1, Figure 3.2). Approximately 15-20cm pieces of Sargassum frond and 5 cm 

x 5 cm pieces of M. aequituberculata were collected from each proximity treatment. 5 

replicates of each proximity treatment of both Sargassum and M. aequituberculata were 

collected per time point (Sargassum time point n = 15; M. aequituberculata time point n = 15; 

Sargassum total n = 45; M. aequituberculata total n = 45). Sargassum samples were collected 

using sterile gloves and sterile scissors, and M. aequituberculata samples were collected using 

sterile gloves and a sterile hammer and chisel. Samples were immediately rinsed in sterile 

artificial seawater, preserved in EDTA-DMSO (Table S1), and later stored at -20oC. Seawater 

samples of 2 x 2Ls were collected at each sampling time point, filtered using 0.22μm Sterivex 
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filter (Merck Millipore), and stored using the same methods described previously (see Chapter 

2, samples collected using permits G15/37574 and G16/38348). 

 

Figure 3.1 Proximity treatments to collect Sargassum and M. aequituberculata samples (icons from Tracy Saxby 
and Jane Thomas, IAN image library (ian.umces.edu/imagelibrary), figure credited to author). 

 

Figure 3.2 a) M. aequituberculata in isolation proximity (Geoffrey Bay, Magnetic Island). b) M. aequituberculata 
and Sargassum species in direct contact, highlighting direct contact interface and systemic proximity (Geoffrey 
Bay, Magnetic Island. Photographed May 2018, credit to G. Al Moajil-Cole. 
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3.3.5 Total genomic DNA extraction 

Prior to DNA extraction, M. aequituberculata samples were tissue blasted in 5 mL of sterile 

artificial seawater to remove tissue and mucus. 2 mL of the coral tissue slurry was then 

aliquoted into centrifuge tubes and centrifuged at 10,000 x g for 10 min. DNA was extracted 

from the resulting pellet and the supernatant discarded. DNA was extracted from the coral 

pellet using the Qiagen DNeasy PowerBiofilm Kit following the manufacturer’s instructions 

with the exception of the same alterations used during DNA extraction in Chapter 2 (Section 

2.2.2). Sargassum DNA was extracted from the biofilm, which was removed from the 

Sargassum samples using the same methods described in the previous chapter (Section 2.2.1). 

Sargassum DNA was extracted from the biofilm also using the Qiagen DNeasy PowerBiofilm 

Kit using the same modifications and methods from Chapter 2 (Section 2.2.2). DNA was 

extracted from the Sterivex filters using the same methods detailed in Chapter 2 (Section 2.2.2).  

3.3.6 PCR and 16S rRNA gene amplification  

The V4 region of the 16S rRNA gene of Sargassum, M. aequituberculata and seawater was 

amplified used 515F (modified) (5’ – GTG YCA GCM GCC GCG GTA A – 3’) and 806R 

(modified) (5’ – GGA CTA CNV GGG TWT CTA AT – 3’) primers. Different primers were 

used in Chapter 3 compared to Chapter 2 as 515F and 806R primers are commonly used for 

amplification of the 16S rRNA gene in corals. Each primer was fused with the forward and 

reverse Illumina overhang sequences (forward overhang: 5’– 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG–3’, reverse overhang: 5’–

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG–3’) (Illumina 2013). The following 

amplification protocol was used: after an initial denaturation at 95oC for 1min, conditions were 

35 cycles of denaturation at 95oC for 15s, annealing at 55oC for 15s, and extension at 72oC for 

15s. The final extension was at 72oC for 15min. The 50 µL reaction contained 1 µL of each 

primer (20 µM), 25 µL MyFi 2X Mix (Bioline), 21 µL Milli-Q water and 2 µL template DNA 
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(1:10 dilution). The PCR product was submitted to Ramaciotti Centre for Genomics, UNSW 

Sydney for bead purification, library preparation (using Illumina MiSeq DNA library 

preparation protocol) and paired-end (2x250) Illumina MiSeq sequencing. 

3.3.7 16S rRNA analysis and bacterial community diversity 

Sequence reads of all samples were processed using QIIME2 (Caporaso et al. 2010). Sequence 

reads returned from sequencing demultiplexed. Reads were filtered and rarefied for quality and 

chimeric sequences using DADA2 (Callahan et al. 2016). Taxonomic classification was 

assigned using a naïve Bayes classifier, trained on the extracted regions of interest from the 

SILVA 16S rRNA (99) reference alignment (132 QIIME release (Quast et al. 2013)). All 

sequences classified as chloroplast, mitochondria or Eukaryota were removed. The resulting 

amplicon sequence variant (ASV) table was used for statistical analysis in Calypso 

(Zakrzewski et al. 2016) and R Studio (R Core Team 2017). 

Alpha diversity was calculated using Shannon’s diversity index and Faith’s richness index. 

Patterns in microbial community composition were visualized using non-parametric 

multidimensional scaling (NMDS). Permutational multivariate analysis of variance 

(PERMANOVA) was used to identify differences in the microbial community composition of 

Sargassum, Montipora and seawater as a function of proximity treatment and time. The percent 

relative abundance of each microbial phylum and family present across Sargassum species, M. 

aequituberculata and seawater was calculated, and the most abundant bacterial taxa were 

plotted to analyse how the bacteria community changes over time and with proximity between 

coral and algae. ASV analysis of the most abundant bacterial taxa associated with Sargassum 

species, M. aequituberculata and seawater were identified down to the lowest possible 

taxonomic level, and BLASTed against the NCBI database. 
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3.4 Results 

3.4.1 Benthic community analysis  

An interaction between the percent cover of Sargassum species and sampling month was 

observed (Figure 3.3a). The mean percent cover of Sargassum species was higher in December 

2017 (25.8% +/- 7.7) and February 2018 (43.3% +/- 10.0) compared to May 2018 (14.2% +/- 

2.4). The percent cover of Sargassum species varied over time (ANOVA; Fdf=2,15 = 3.94,  

p=0.042) and was found to be significantly lower in May 2018 compared to February 2018 

(Tukey; tdf=15 = 2.78, p=0.035). The mean percent cover of M. aequituberculata across 

sampling time points was 31.7% (+/- 5.8). 

Similar seasonal patterns were also observed for Sargassum canopy height (Figure 3.3c). 

Canopy height varied over time (ANOVA; Fdf=2,15 = 4.20,  p=0.036), again showing significant 

declines from February to May (Tukey; tdf=15 = 2.79, p=0.034). The number of Sargassum 

holdfasts also varied over time, with significantly lower numbers in December compared to 

May (Figure 3.3b: Tukey; tdf=15 = -3.12, p=0.018). This is likely to be because counting 

holdfasts at the peak of Sargassum biomass is more difficult and more potentially prone to 

human error, rather than the number of holdfasts increasing across sampling periods. 

Finally, the percent contact between Sargassum species and M. aequituberculata (described as 

the percent of M. aequituberculata completely smothered by Sargassum species within each 

quadrat) was monitored over time to assess how the abundance of Sargassum influenced the 

amount of contact between the two organisms (Figure 3.3d). While a similar pattern of seasonal 

fluctuation emerged, it was only significant at the 90% confidence level (ANOVA; Fdf=2,15 = 

3.12,  p=0.074: Tukey February-May; tdf=15 = 2.26, p=0.094). 
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Figure 3.3 Analysis of benthic community assemblage variables, demonstrating how the density of Sargassum 
species fluctuated over time at the Geoffrey Bay study site. a) Sargassum species mean percent cover across 
sampling time point. b) The mean number of Sargassum species holdfasts across sampling time points. c) The 
mean Sargassum canopy height at the Geoffrey Bay study site across sampling time points. d) The percent contact 
observed between Sargassum and M. aequituberculata across sampling time point.   

 

3.4.2 Bacteria community analysis 

A total of 3,116,725 sequence reads were recovered from 96 samples derived from coral, 

macroalgae and seawater. Following filtering for high quality reads with 99% accuracy and 

removal of chimeric reads, a total of 844,110 high quality reads were subsequently used for 

taxonomic classification (Table S4). Rarefaction analysis confirmed sampling depth was 

sufficient to estimate the total diversity of each sample (Figure 3.4). 
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Figure 3.4 Rarefaction curves visualising sampling depth of each Sargassum species, M. aequituberculata and 
seawater samples grouped by proximity treatment. 

3.4.2.1 M. aequituberculata bacterial community analysis 

Diversity comparisons 

Diversity analysis of the M. aequituberculata bacterial communities revealed there was a 

significant interaction between species and time. The diversity and richness of the December 

bacterial community was significantly lower than that of February and May (Faith’s richness: 

ANOVA, p = 0.0046; Shannon’s diversity: ANOVA, p = 0.012) (Figure 3.5a, b). No significant 

differences were observed in the bacterial community of M. aequituberculata across the three 

proximity treatments of isolation, direct contact and systemic (Shannon’s diversity: ANOVA, 

p = 0.83; Faith’s richness: ANOVA, p = 0.99) (Figure 3.5c, d). 



Ch. 3. Microbial coral-algal interactions on the inshore Great Barrier Reef 

Al Moajil-Cole – 2019   66 

 

Figure 3.5 Alpha diversity of M. aequituberculata across sampling month and proximity treatment. Faith’s 
richness (a) and Shannon’s diversity (b) observed to be significantly lower in December compared to February 
and May sampling time points. No significant difference in the M. aequituberculata Faith’s richness (c) and 
Shannon’s diversity (d) across proximity treatment. 

 

Bacterial community composition 

Bacteria community composition analysis also showed there was a significant interaction 

between species and time. The M. aequituberculata bacterial community composition was 

significantly different between February and May (PERMANOVA: R2 = 0.156, p = 0.003) 

(Figure 3.6a). No significant difference in the bacterial community composition of M. 

aequituberculata across proximity treatments was observed (PERMANOVA: R2 = 0.451, p = 

0.46) (Figure 3.6b). 
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Figure 3.6 Bacteria community composition analysis of M. aequituberculata. a) February community composition 
of M. aequituberculata observed to be significantly different from the May sampling time point (December, red; 
February, green; May, blue). b) No changes in the M. aequituberculata microbial community observed across 
proximity treatments. 

Sequences associated with 41 bacterial Phyla and 5 archaeal Phyla were identified from the 

16S rRNA dataset derived from all M. aequituberculata samples. Archaeal phyla represented 

less than 2% of all retrieved sequences, and are therefore not discussed further. Proteobacteria 

affiliated sequences were the most abundant phyla, representing approximately 50% of all 

retrieved sequences (Figure S1, 2). There were no major changes in the relative abundance of 

sequences retrieved from M. aequituberculata proximity treatment samples (Figure S1), 

although small shifts in relative abundance of phyla were observed for corals sampled from the 

different time points (Figure S2). For example, Proteobacteria affiliated sequences were 

highest in relative abundance in December 2017 (47.4-54.8%) and May 2018 (50.7-53.1%), 

but represented only 44.8-47.0% of retrieved sequences in February 2018 (Figure S2). 



Ch. 3. Microbial coral-algal interactions on the inshore Great Barrier Reef 

Al Moajil-Cole – 2019   68 

Sequences affiliated with Bacteroidities were similarly highest in December (10.1-14.6%) and 

May (10.5-14.7%), and lowest in February (4.5-7.7%). By contrast, Planctomycetes displayed 

highest relative abundances in February 2018 (16.2-18.6%), but represented only 7.7-10.8% 

and 6.6-12.1% of retrieved sequences in December 2017 and May 2017 respectively. The most 

abundant and frequently observed classes were Gammaproteobacteria (21.4-31.0%), 

Alphaprotobacteria (17.4-21.0%), Planctomycetacia (2.8-18.3%), Bacteroidia (4.2-15.2%) 

and Oxyphotobacteria (4.6-10.7%). 

Similarly to the NMDS community composition analysis (Figure 3.6) and phyla comparisons 

(Figure S2), there were generally larger changes in relative abundances of bacteria associated 

sequences with respect to sampling time points than between proximity treatments at the family 

level (Figure 3.7). For example, Pirellulaceae (within the Planctomycetes) affiliated sequences 

were retrieved at consistently higher relative abundances from February samples (17.6-21.1%) 

compared to May (7.1-9.7%) (Figure 3.7). In December samples however, there were higher 

abundances of Pirellulaceae affiliated sequences in direct contact samples (14.2%) compared 

to systemic (6.1%) and isolation (2.9%) samples. Cyanobiaceae affiliated sequences were 

consistently higher in February (10.0-14.7%) compared to December (4.1-6.3%) and May (2.1-

6.4%), while, by contrast, Flavobacteriaceae (Bacteroidetes) and Nitrosopumilaceae 

(Proteobacteria) displayed the opposite trend, having lowest relative abundance of retrieved 

sequences in February (2.6-5.7% and 0.9-1.8% respectively) compared to December (7.1-9.2% 

and 2.9-7.5%) and May (7.1-9.5%; and 5.8-14.4 %).  For all these families no clear effect of 

proximity treatment (direct contact, systemic or isolation) was observed (Figure 3.7). 

Interestingly, Endozoicomonadaceae affiliated sequences represented only 1.5% of retrieved 

sequences within the direct contact samples compared to 9.3% for isolation samples at the May 

sampling point. During February sampling, at the peak of Sargassum biomass (Figure 3.3a), 

the relative abundance of Endozoicomonadaceae affiliated sequences was much lower, 
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representing only 0.15% of sequences retrieved from systemic treatment samples, and this was 

not observed in any other February proximity treatment (Figure 3.7).  
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Figure 3.7 Top 25 most abundant bacterial families associated with all samples and replicates of M. aequituberculata across sampling time points and proximity treatment. 
Families grouped by associated phylum (colour).  
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3.4.2.2 Sargassum species bacterial community analysis 

Diversity comparisons 

Diversity analysis of the Sargassum species bacterial communities revealed there was a 

significant interaction between species and time. The richness and diversity of the Sargassum 

bacterial community was significantly lower in December compared to February and May 

(Faith’s richness: ANOVA, p < 0.001; Shannon’s diversity: ANOVA, p < 0.001) (Figure 3.8a, 

b). No significant differences in the richness and diversity of the Sargassum bacterial 

community was observed across proximity treatment (Faith’s richness: ANOVA, p = 0.78; 

Shannon’s diversity: ANOVA, p = 0.60) (Figure 3.8c, d). 

 

Figure 3.8 Alpha diversity of Sargassum species across sampling month and proximity treatment. Faith’s richness 
(a) and Shannon’s diversity (b) observed to be significantly lower in December compared to February and May 
sampling time points. No significant difference in the Sargassum species Faith’s richness (c) and Shannon’s 
diversity (d) across proximity treatment. 
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Bacterial community composition 

Bacterial community composition analysis showed that there was a significant interaction 

between species and time. The Sargassum species bacterial community composition was 

significantly different between December and May (PERMANOVA: R2 = 0.116, p = 0.013) 

(Figure 9a). Again, however, there was no significant difference in the bacterial community 

composition of Sargassum species across the proximity treatments direct contact, isolation and 

systemic (PERMANOVA: R2 = 0.601, p = 0.13) (Figure 3.9b).  

 

 

Figure 3.9 Bacteria community composition analysis of Sargassum species. a) December community composition 
of Sargassum species observed to be significantly different from the May sampling time point (December, red; 
February, green; May, blue). b) No changes in the Sargassum species microbial community observed across 
proximity treatments. 

Sequences associated with 40 bacterial Phyla and 4 archaeal Phyla were identified within the 

16S rRNA dataset across Sargassum species samples. Archaeal phyla, as in the coral samples, 

represented less than 2% of all retrieved sequences. Bacteria affiliated with the Proteobacteria 
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phyla were the most abundant within the Sargassum species bacterial community (39.2-

53.3.0%) (Figure S1, 2). As observed with the M. aequituberculata samples, there were no 

major shifts in the bacterial community profiles of Sargassum with respect to proximity 

treatment. Across the temporal time points, the dominant phylum Proteobacteria was relatively 

consistent for the December (47.3-53.3%), February (44.7-47.0%) and May (39.2-47.0%) 

sampling points (Figure 3.10). Similarly the second and third most abundant Phyla, 

Bacteroidetes (18.1-26.8%) and Cyanobacteria (8.2-14.6%), remained relatively consistent for 

all temporal and proximity samples.  The most abundant and frequently observed classes were 

Bacteroidia (18.7-27.0%) Gammaproteobacteria (16.4-28.0%) and Alphaprotobacteria 

(20.1%).  

At the family level, there were generally larger changes in relative abundance of sequences 

derived from the Sargassum species with respect to sampling time points than between 

proximity treatments (Figure 3.10). For example, Rhodobacteraceae (Proteobacteria) affiliated 

sequences were consistently the most abundant family retrieved across all Sargassum samples, 

and most abundant in December samples (14.3-21.2%) compared to those of February (10.3-

12.9%) and May (9.3-16.2%). Their relative abundance, however, was similar for the proximity 

treatments of direct contact, isolation and systemic samples at each of these sampling time 

points (Figure 3.10). Within the Bacteroidetes, Saprospiraceae affiliated sequences were 

generally in higher abundances from February (9.5-17.2%) and December samples (6.1-15.0%) 

compared to May (5.1-7.5%). The highest abundance of Cyanobiaceae (Cyanobacteria) 

affiliated sequences were retrieved from direct contact samples from February (4%), with no 

sequences recovered from the December isolation samples.  
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Figure 3.10 Top 25 most abundant bacterial families associated with all samples and replicates of Sargassum species across sampling time points and proximity treatment. 
Families grouped by associated phylum (colour).
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3.4.2.3 Seawater bacterial community analysis 

Diversity comparisons 

Seawater bacterial community diversity varied significantly over time. The richness of the 

seawater bacterial communities was significantly higher in February and May compared to 

December (Faith’s richness: ANOVA, p = 0.046) (Figure 3.11a), and the diversity of the 

seawater bacterial community was higher in May compared to February and December 

(Shannon’s diversity: ANOVA, p = 0.05) (Figure 3.11b).  

 

Figure 3.11 Alpha diversity of the seawater bacterial community across sampling month. a) Faith’s richness 
observed to be significantly lower in December compared to February and May. b) Shannon’s diversity observed 
to be significantly higher in May compared to December and February. 

 

Bacterial community composition 

At each time point, the seawater, M. aequituberculata and Sargassum species bacteria 

community composition differed significantly (DECEMBER – PERMANOVA: R2 = 0.191, p 

< 0.001; FEBRUARY – PERMANOVA: R2 = 0.256, p < 0.001; MAY – PERMANOVA: R2 

= 0.234, p = 0.003) (Figure 3.12a, b, c).  



Ch. 3. Microbial coral-algal interactions on the inshore Great Barrier Reef 

  Al Moajil-Cole – 2019      76 

Sequences associated with 25 bacterial Phyla and 3 archaeal Phyla were identified within the 

16S rRNA dataset across seawater samples. Similar to the Sargassum and M. aequituberculata 

bacterial community datasets, bacteria affiliated with Proteobacteria represented the highest 

abundance of retrieved sequences across all time periods, but were most abundant in May 

(47.1%) compared to December (36.9%) and February (37.2%) (Figure S2). By contrast, the 

second most abundant Phyla, Cyanobacteria (overall: 33.3%) were retrieved in lowest relative 

abundances in May (27.5%) compared to February (37.8%) and December (36.3%), while 

Bacteroidetes were consistently retrieved across all sampling time points (December: 14.2%; 

February: 12.7%; May: 12.1%). The most abundant and frequently observed classes were 

Oxyphotobacteria (33.9%), Alphaprotobacteria (24.7%), Gammaproteobacteria (13.3%), and 

Bacteroidia (12.5%). Within the Cyanobacteria, Cyanobiaceae affiliated sequences were in 

highest relative abundance in December (45.0%) and February (45.4%) samples but 

represented only 33.0% of sequences in May. The next most abundant family, 

Flavobacteriaceae (Bacteroidetes), was in much lower abundances, and was retrieved 

consistently from all sampling periods (December: 8.8%; February: 8.8%; May: 9.4%) (Figure 

3.13). 
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Figure 3.12 Bacteria community composition analysis of seawater (blue) compared to Sargassum species (green) and M. aequituberculata (red) over time. Over all sampling 
time points, the Sargassum species and M. aequituberculata bacterial communities remain distinct from each other and seawater. 

 

a) b) c) 
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Figure 3.13 Top 25 most abundant bacterial families associated with all samples and replicates of Sargassum, M. aequituberculata and seawater across sampling time points to 
compare bacterial community compositions. Families grouped by associated phylum (colour) 
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3.5 Discussion 

3.5.1 Temporal patterns in the benthic assemblage of Geoffrey Bay 

Increased frequency of abiotic stressors has the potential to shift some tropical reefs from coral 

to macroalgae dominance (Dubinsky and Stambler 2011). Colonisation of space by macroalgae 

previously occupied by coral can be interpreted as competition between coral and macroalgae 

(Box and Mumby 2007, Cheal et al. 2010). In particular, on some inshore reefs of the GBR, 

Sargassum species overgrow coral in summer months, outcompeting coral for space, light and 

nutrients (Martin-Smith 1992, Schaffelke and Klumpp 1997, Ceccarelli et al. 2018). Even when 

Sargassum biomass senesces in winter months, lower stipes and holdfasts of the algae remain 

across coral reefs (Loffler et al. 2018), continuing to take up space and compete with coral.  

In this chapter, Sargassum density at Magnetic Island was recorded over time and demonstrated 

seasonal differences with highest density (as indicated by canopy height and percent cover) 

observed in the summer months (December and February), and with a significant decline in 

density at the end of autumn (May) (Figure 3). The percent cover of Sargassum recorded was 

consistent with recent assessments by Ceccarelli et al. (2019), who observed ~30-40% cover 

of Sargassum at Magnetic Island. Tropical variants of the Sargassum genus show pronounced 

seasonality with respect to growth, reproduction and senescence (Critchley et al. 1991, Kaehler 

and Williams 1996, Schaffelke and Klumpp 1997). The increase in growth and reproduction 

of Sargassum species has been observed previously at Magnetic Island as occurring from late 

spring to peak density in mid-late summer, with lower density from autumn to winter (Martin-

Smith 1993). The growth and senescence cycles of tropical Sargassum species are linked to 

changes in seawater temperature. Fulton et al. (2014) observed peak Sargassum canopy 

biomass on Ningaloo Reef (Western Australia), with warmer summer temperatures and larger 

biomass in 2011, and cooler summer temperatures and smaller biomass in 2012.  
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Macro-scale impacts of contact between macroalgae and coral have been well documented (i.e. 

coral tissue paling and necrosis, and localised bleaching (Diaz-Pulido et al. 2009, Morrow et 

al. 2011, Barott and Rohwer 2012)). Changes within host microbiomes as a result of coral-algal 

contact, however, are often overlooked. The impacts associated with direct coral-algal contact 

at the micro-scale are likely to be greatest at these peak summer Sargassum densities (Figure 

3), when the chance of direct contact between coral and Sargassum is highest.  

3.5.2 Temporal changes in the Sargassum species, M. aequituberculata and 
seawater bacteria communities 

The bacterial communities of Sargassum, M. aequituberculata and seawater were all 

significantly different from each other, and all displayed changes across sampling time points. 

The largest temporal shifts were observed within the seawater bacterial communities, with the 

Cyanobiaceae representing nearly half of the retrieved sequences at the summer sampling time 

points (December and February), though only approximately a third of all retrieved sequences 

for the May sampling point. Cyanobiaceae are autotrophic microorganisms (for example, ASV 

Synechococcus observed throughout the dataset), commonly associated with other 

photosynthetic organisms (Charpy et al. 2012, Cornet et al. 2018). Thus, it is likely that 

Cyanobiaceae bacteria are more abundant throughout summer periods due to greater access to 

light and warmth for increased metabolic processes (Frade et al., in press). Recent research has 

highlighted seawater microbiomes are highly responsive to changes within environmental 

conditions such as increased seawater temperatures, and these responses show a uniform 

response pattern over time (Glasl et al. 2019). Future research investigating temporal changes 

in the seawater microbiome would therefore benefit from repeated long term monitoring to 

examine the consistency of these community shifts.  

Bacteria belonging to the family Endozoicomonadaceae also displayed a seasonal response. In 

M. aequituberculata samples, Endozoicomonadaceae affiliated sequences were in highest 
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abundance in May (1.5-9.3%), but were much lower in February (0-0.15%) (Figure 7) when 

the density of Sargassum species was highest. Bacteria belonging to the family 

Endozoicomonadaceae are associated with many coral genera and other marine invertebrates 

(Bayer et al. 2013, Neave et al. 2016, Pogoreutz et al. 2018). Genomic sequencing of 

Endozoicomonadaceae bacteria has highlighted the potential for important functional roles, 

such as transport of organic molecules and the synthesis of amino acids (Neave et al. 2017), 

contributing positively to coral health (Shiu and Tang 2019). Various studies have shown a 

reduction in the relative abundance of bacteria belonging to the Endozoicomonadaceae family 

in the microbiome of corals under environmental stress (e.g. bleaching, increased ocean 

acidification and disease) (Glasl et al. 2016, O’Brien et al. 2018, Pogoreutz et al. 2018, Pollock 

et al. 2019). A reduction in this bacterial family in response to environmental stressors may 

compromise coral health. To explore how declines in bacteria associated with 

Endozoicomonadaceae may influence overall coral host health during periods of high 

Sargassum density, future work should incorporate metagenomics to identify the genomic 

metabolic potential of coral microbial communities, along with their gene expression responses 

through metatranscriptomics. This could then be linked to host transcriptomics to correlate 

Endozoicomonadaceae functional response with host metabolic changes, and represent a more 

complete understanding of interactions between the coral microbiome and host during periods 

of high Sargassum abundance and increase coral-algal interactions. 

Lower relative abundances of Saprospiraceae affiliated sequences were observed in the 

Sargassum microbial community in May compared to sampling in December. Saprospiraceae 

has previously been linked to breakdown of complex molecules and waste material (McIlroy 

and Nielsen 2014), carbon cycling (Khan et al. 2007, Lee 2007, Oh et al. 2009) and localised   

from macroalgal biofilms and macroalgae microbial communities (Burke et al. 2011, Miranda 

et al. 2013). The lower relative abundance of Saprospiraceae affiliated sequences is consistent 
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with potentially reduced nutrient cycling requirements of Sargassum species when entering the 

senescence cycle (peak biomass in summer followed by decline in autumn). Further host and 

microbial transcriptomic approaches are required, however, to establish if changes in 

Saprospiraceae communities are linked to Sargassum metabolic changes throughout this 

senescence cycle.  

Temporal changes in the Sargassum density observed throughout this study have highlighted 

scope for future research to investigate links between increased Sargassum abundance and 

indirect coral-algal interaction models. Increased macroalgae abundance has been linked to the 

DDAM model and microbialisation of coral reefs (Barott and Rohwer 2012, Haas et al. 2016). 

Increases in macroalgae abundance releases DOC into the environment, causing increases in 

heterotrophic microbes that outcompete coral for nutrients (Roach et al. 2017). These processes 

are predicted to contribute to continued degradation of corals throughout periods of high 

macroalgae abundance (Barott and Rohwer 2012, McDole Somera et al. 2016). Moreover, 

recent research has highlighted the potential for the seawater microbiome to be used as an 

indicator of environmental change (Glasl et al. 2019). As the seawater microbiome is amenable 

to abiotic fluctuations, assessing how abundant macroalgae may influence the seawater 

microbial community could allow for an empirical assessment of the DDAM model and 

microbialisation, and their effects upon coral health.  

3.5.3 Direct contact interactions observed in the Sargassum species and M. 
aequituberculata bacterial communities  

The microbial communities associated with both Sargassum and M. aequituberculata appeared 

to be stable despite direct contact between these species.  One interesting observation, however, 

was the shift in the Endozoicomonadaceae related sequences associated with M. 

aequituberculata samples. Thought not found to be statistically different between proximity 

treatment, M. aequituberculata displayed lower average relative abundance of 
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Endozoicomonadaceae bacteria for direct contact samples compared to isolation samples. As 

previously highlighted, Endozoicomonadaceae associated bacteria are prevalent across 

multiple coral species (Neave et al. 2016, Shiu and Tang 2019), and have a putative beneficial 

role in the coral holobiont (Neave et al. 2017, Shiu and Tang 2019), with reductions in their 

relative abundance observed for stressed coral microbiomes (Glasl et al. 2016, O’Brien et al. 

2018, Pogoreutz et al. 2018, Pollock et al. 2019). Lower relative abundances of sequences 

associated with Endozoicomonadaceae suggests direct contact with Sargassum species 

influences the corals microbiome and potentially overall health.  

Bacteria associated with Cyanobiaceae (Oxyphotobacteria) were consistently abundant within 

M. aequituberculata across all proximity treatments (~5-10%). For Sargassum, however, the 

relative abundance of Cyanobiaceae affiliated sequences was lower overall (1-2%), and 

particularly so in isolated Sargassum samples (Figure 7). The comparatively higher relative 

abundance of Cyanobiaceae sequences retrieved from M. aequituberculata compared to 

Sargassum may be explained by the observation that the coral mucus bacterial communities 

can be influenced by the surrounding seawater microbial community (Frade et al. 2016).  DNA 

derived from all coral samples included coral mucus and coral tissue. Cyanobiaceae were the 

most abundant taxa in the seawater (Figure 13), and these sequences could be derived from that 

boundary layer of seawater, mucus and coral tissues.   The coral mucus is the first point of 

direct contact with macroalgae, which may also explain why the relative abundance of 

Cyanobiaceae affiliated bacterial sequences was higher in Sargassum direct contact samples.  

Previous research into microbial coral-algal interactions has provided evidence for allelopathy 

(Morrow et al. 2012, Ritson-Williams et al. 2016), stimulation of disease (Barott and Rohwer 

2012), and dysbiosis of the coral bacteria community (Pratte et al. 2018). For example, 

allelochemicals produced by the brown macroalgae Lobophora genus have been active against 
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coral larvae settlement, and are associated with a loss of Endozoicomonas bacteria within coral 

tissues (Morrow et al. 2017). Whilst some changes in the bacterial communities of M. 

aequituberculata and Sargassum species were observed in direct contact samples, overall there 

was little effect of proximity between the two organisms.  Furthermore, there were no signs of 

disease, tissue necrosis or lesions on M. aequituberculata in direct contact with Sargassum 

species throughout field surveys (Table S2), these being common responses to allelopathic 

action (Rasher and Hay 2010, Greff et al. 2017). There is debate as to whether Sargassum is 

an allelopathic alga (Rasher and Hay 2014), and in particular Sargassum polycystum, a 

common species at Magnetic Island (Martin-Smith 1993), has been observed as having no 

allelopathic effect on corals (Bonaldo and Hay 2014). Thus, it is likely that direct contact 

between Sargassum species and M. aequituberculata is not a source of allelopathic action, and 

this may partially explain why no extensive microbial direct interactions were observed. 

3.5.4 Stability of the M. aequituberculata bacteria community with 
proximity to Sargassum species at Magnetic Island 

Overall, the M. aequituberculata bacteria community remained consistent and distinct from 

Sargassum species and seawater. Pirellulaceae affiliated sequences were observed in 

consistently high relative abundances in M. aequituberculata samples, with no discernable 

response to proximity treatment (Figure 7). Bacteria belonging to the family Pirellulaceae have 

been frequently retrieved from coral microbiome studies (Lawler et al. 2016, Weiler et al. 2018, 

Kellogg 2019) and attributed with nitrogen cycling (Gade et al. 2004, Mohamed et al. 2010). 

Furthermore, Gammaproteobacteria related sequences were in consistently high relative 

abundances with respect to both proximity treatments and sampling time point. Bacteria 

belonging to the class Gammaproteobacteria have previously been associated with carbon, 

nitrogen and sulphur cycling within the coral microbiome (Raina et al. 2009, 2016, Bourne et 
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al. 2013), and, like Pirellulaceae, have a potentially important role in maintaining host health 

of M. aequituberculata.  

The M. aequituberculata bacterial community from Magnetic Island was found to be relatively 

unchanging with respect to direct algal interactions (Figures 6, 7). This is consistent with 

previous studies that have shown the microbial stability of the Montipora species throughout 

periods of environmental stress. Gonzalez-Pech at al. (2017) identified Montipora digitata 

transcriptomic resilience in response to change in pH, for example, and ascertained that the 

microbial community had the capability to acclimatise to extended periods of low pH. 

Furthermore, Van De Water et al. (2017) showed M. aequituberculata is capable of 

maintaining a stable bacterial community under elevated seawater temperatures by regulation 

of genes involved in stress and immune response processes. Thus, it is likely that species of 

coral belonging to the genus Montipora may be host to an innate microbial stability throughout 

periods of environmental stress and change, and results from this study complement previous 

observations such as those cited above. This microbiome stability has been consistently 

observed for adult corals, although increased macroalgae abundance has been shown to inhibit 

juvenile coral growth and settlement by competing for space (Norström et al. 2009, Ceccarelli 

et al. 2018), and in some cases negative impacts from coral-algal interactions have been limited 

to affecting early life stages of coral (Kuffner et al. 2006, Leong et al. 2018, O’Brien and 

Scheibling 2018). Thus, future research should explore microbial effects of contact between 

Sargassum and coral larvae and planulae, to investigate how direct contact and high Sargassum 

abundance can impact coral recruitment.  

One explanation as to why the bacterial community of M. aequituberculata remained consistent 

in response to direct contact with Sargassum species in this study may be historical ecological 

factors at Magnetic Island where the samples were collected. Macroalgae abundance has been 
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steadily increasing since the 1980s (Ceccarelli et al. 2018) linked to increased nutrient input 

from the Townsville port and coastal development (Bak 1978, Browne et al. 2013). Whilst 

abundance of coral across the fringing reefs of Magnetic Island has significantly declined with 

the increase of macroalgae, corals that remain display resilience to the challenging effects of 

their environment, including poor water quality, high sedimentation and high macroalgae 

abundance. Magnetic Island’s fringing reefs still host a diverse range of corals including 

Acropora, Montipora, Porites and Dipsastrea (previously Favia) (Marshall and Baird 2000, 

Bourne 2005, Glasl et al. 2019, Saha et al. 2019), and have displayed resilience in response to 

bleaching and cyclone events (Ayling and Ayling 2005). At Magnetic Island, Montipora 

species and Sargassum species have successfully grown alongside each other as Sargassum 

species’ abundance has gradually increased over time, with Montipora species as one of the 

dominant coral present on reefs at Magnetic Island (AIMS, 2019). Thus, as a result of ongoing 

interactions with macroalgae, M. aequituberculata and its associated bacterial community have 

developed resilience to periods of high algal abundance. To test this hypothesis, it is important 

to characterise host responses and microbiome patterns of M. aequituberculata from different 

locations across the GBR where macroalgae abundance is lower and there is greater separation 

between macroalgae and coral colonies. If combined with metagenomic and transcriptomic 

analyses, this could be expanded to characterise the stability of other, potentially more 

susceptible coral taxa at various levels of macroalgae abundance. 

3.6 Conclusions 

The objective of this Chapter was to investigate the effect of proximity on the microbial 

communities of Sargassum species and M. aequituberculata. Small shifts in the average 

relative abundance of the M. aequituberculata and Sargassum microbial communities direct 

contact samples were observed, which may be linked to points where the samples were 

physically touching. Overall, however, proximity did not have a discernable effect on either 
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the M. aequituberculata or Sargassum bacterial communities. Importantly, this result suggests 

the M. aequituberculata and its associated bacterial community may be resilient to contact with 

Sargassum potentially due to historically high abundances of the macroalgae at Magnetic 

Island. Both the Sargassum species and M. aequituberculata were found to be distinct from the 

seawater microbial community and changed across sampling time points. The observed 

changes in the Sargassum and M. aequituberculata samples over time may be linked to changes 

in the Sargassum species density from December 2017/February 2018 to May 2018. Future 

metagenomic research should be used to investigate the genomic metabolic potential of the M. 

aequituberculata and Sargassum microbial communities, along with their gene expression 

response to changes in Sargassum density through metatranscriptomics. This could be linked 

with host transcriptomics to correlate the microbial functional response (particularly 

Endozoicomonadaceae and Saprospiraceae) with host gene expression change. Whilst few 

substantive microbial coral-algal interactions were observed, the information collected 

provides a species specific dataset exploring the Sargassum and M. aequituberculata bacterial 

communities over time and with proximity. The methods used to determine the effect of direct 

contact between Sargassum and M. aequituberculata can also be applied to other coral and 

algal species to explore whether proximity between coral and macroalgae negatively influences 

host bacterial communities, with the potential to reduce coral health on the inshore GBR.  
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4 General Discussion 

4.1 Characterising the macroalgae microbiome 

Degraded reef systems can be susceptible to shifts from coral to macroalgae-dominated 

environments (McCook et al. 2001, Mumby 2009, Ceccarelli et al. 2018). On inshore regions 

of the GBR, coastal development, increased sedimentation and higher nutrient inputs are 

degrading reefs, with some experiencing high macroalgal abundance (De’ath et al. 2010, 

Ceccarelli et al. 2018, 2019). Coral health is dependent on maintenance of associated microbial 

partners which include photosynthetic dinoflagellates (Symbiodiniaceae) and a range of other 

bacteria (Rohwer et al. 2002, Ainsworth et al. 2010). However,  environmental stress can 

disrupt the stability of these microbial communities, subsequently impacting coral health 

(Bourne et al. 2008, 2009, Meron et al. 2011, Glasl et al. 2016). As macroalgae dominance 

increases on some reefs, it is important to assess if macroalgae presence and direct contact with 

coral affects coral microbiomes. 

To investigate the potential negative effects macroalgae may have on coral microbiomes, it is 

important to first provide a baseline assessment of the microbial communities associated with 

macroalgae. In the Caribbean, Barott et al. (2012) revealed different functional groups of 

macroalgae have varied microbial communities. In temperate Australia, Burke et al. (2011b) 

defined a species-specific core microbial community of Ulva australis. Current attempts to 

define macroalgae microbial communities on the GBR have, however, been limited. In this 

thesis, Chapter 2 explored the microbial community of two Sargassum species (S. aquifolium, 

S. polycystum) to begin to define macroalgae microbiomes on the GBR. The study took place 
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at Magnetic Island, an inshore reef of the central GBR with a historical high abundance of 

Sargassum (Mapstone et al. 1992, Martin-Smith 1993, Ceccarelli et al. 2019).  

Chapter 2 revealed that the diversity and bacterial community composition of two macroalgae 

species, Sargassum aquifolium and Sargassum polycystum, were similar. The samples were 

collected from the same location and time point, with previous studies also showing that 

macroalgae associated microbial communities are similar when sampled from the same 

environment (Campbell et al. 2015, Perkins et al. 2016, Glasl et al. 2019). As coral reef health 

on the GBR is threatened by spatially variable environmental and anthropogenic stressors, it is 

pertinent therefore, to replicate Chapter 2 on Sargassum species from different locations and 

time points on the GBR. This will aid understanding the degree to which the Sargassum 

bacterial community is species-specific or dependent on the surrounding environment, and 

highlight how changing environmental conditions may influence the Sargassum microbiome. 

Importantly, results from Chapter 2 showed microbial community differentiation between 

Sargassum regions (holdfast, basal growth, stem (primary axis), leaf and biofilm). Many 

studies investigating the bacterial community of macroalgae have focused solely on the biofilm 

of the alga (Burke et al. 2011, Barott and Rohwer 2012, Egan et al. 2013, Glasl et al. 2019), 

however findings from Chapter 2 suggests it is important to also include other tissue regions to 

characterise the complete bacterial community of macroalgae. From the findings of Chapter 2, 

the biofilm was also identified as the most useful region for investigating direct coral-algal 

interactions due to be being highly diverse and the first point of contact between the alga and 

coral. 

The next steps, following elucidation of the baseline microbial communities of Sargassum 

species, is to assess the functional roles of the bacteria within the holobiont and their 

contribution to host health. In terrestrial plants, bacterial and fungal microbial communities 
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contribute to sustaining host health (Zhang and Yao 2015, Wallace et al. 2018). Bacteria 

associated with the plant Arabidopsis thaliana, for example, have been shown to increase root 

growth (Berg 2009). Like plants, algae produce nutrient sources through photosynthesis 

(Muscatine et al. 1969, Lloyd et al. 1977) and are often considered ‘plants of the sea’. While 

macroalgae are less complex organisms than plants, which lack vascular systems and can 

sometimes be unicellular (Bhattacharya and Medlin 1998), it is likely microbes may play a 

similar role in sustaining algae health as in plants. The functional role of bacterial sequences 

retrieved from Chapter 2 can be speculated, for example, Sargassum leaf and biofilm 

communities were dominated by bacteria associated with nutrient cycling (for example 

Loktanella and Saprospiraceae), and the basal growth and holdfast were dominated by bacteria 

associated with anaerobic respiration (Firmicutes and Geobacter). Within terrestrial plants, 

bacteria associated with Geobacter has been sequenced from the roots of rice plants in paddy 

fields, and directly associated with aiding anaerobic respiration, highlighting an ability to 

survive in anoxic environments (Ikenaga et al. 2003). Additionally, Chlorophyta (green) algae 

and terrestrial plants are thought to host similar Plant Growth Promoting Bacteria (PGPB), 

primarily belonging to the bacterial phyla Proteobacteria and Bacteroidetes (Ramanan et al. 

2016). Throughout Chapter 2, bacteria belonging to both Proteobacteria and Bacteroidetes 

were highly abundant within the Sargassum species bacterial community. Hence further 

investigation should explore if Sargassum species are also host to PGPB which may aid in 

supporting healthy growth pathways within the alga. Using 16S rRNA gene data alone in 

characterising microbe-algae function is, however, problematic. Thus, it is important to 

examine the function of different regions of the macroalgae. Metagenomics can be used to 

identify the genomic metabolic potential of macroalgae microbial communities, along with 

their gene expression responses through metatranscriptomics. This could then be linked to host 

transcriptomics and proteomics to correlate microbial functional responses with host metabolic 
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changes, and represent a more complete understanding of interactions between the macroalgae 

microbiome and host.  

Microscopy proved a useful tool to explore macroalgae associated bacterial communities. 

Fluorescent in situ hybridisation revealed various structures and clusters of potential bacteria. 

Further research should use species specific probes to target potentially important bacteria for 

Sargassum species, specifically Saprospiraceae, to validate 16S rRNA gene amplicon 

observations. Using microscopy has highlighted potential fungal morphologies in Chapter 2. 

Fungal communities are essential to terrestrial plant microbiomes, for example Trichoderma 

species can supply macro- and micro-nutrients to the plant host primarily through nitrogen 

cycling (Contreras-Cornejo et al. 2009). Fungal communities have also been associated with 

Antarctic macroalgae (Loque et al. 2010), and algae represent the second largest source of 

marine fungi (Berg 2009). Fungal communities in Antarctic macroalgae may be linked to 

carrageenolytic and agarolytic activites that breakdown polysaccharides, particularly carrageen 

and agar found within macroalgae (Furbino et al. 2018, Ogaki et al. 2019). Such fungi are 

thought to breakdown macroalgae biomass and release nutrients into the surrounding 

environment (Furbino et al. 2018).  Future research should attempt to characterise fungal 

communities in marine environments and their potential functional roles in tropical macroalgae 

species. Whilst this is an important step in defining the entire macroalgae microbiome, 

characterising fungal communities (mycobiomes) in marine environments is currently limited. 

ITS primers typically used for fungal amplification also amplify other eukaryotes (e.g. 

Symbiodiniaceae) (Scholz et al. 2016, Hume et al. 2018) resulting in limited representation of 

fungal communities (Amend et al. 2019). To accurately characterise marine mycobiomes 

standardization of fungal primers and sampling techniques need to be established.  



Ch. 4. General Discussion 

  Al Moajil-Cole – 2019      
   92 

4.2 Direct microbial coral-algal interactions on the inshore GBR, 
Magnetic Island 

A comprehensive understanding of the micro- and macro-scale effects of coral-algal 

interactions on coral health is required to predict reef ecosystem states under macroalgae-

dominated regimes. Previous studies have identified that negative effects on coral health occurs 

through direct contact with algae resulting in abrasion of coral tissues, inducing coral bleaching 

and necrosis (Rasher and Hay 2010, Vieira et al. 2016a). Some indirect microbial processes 

may also have negative implications for coral health. For example, the DDAM model and the 

microbialisation index postulate that indirectly high macroalgal abundance can impact coral 

health through releasing excess DOC, triggering a switch from autotrophic to heterotrophic 

microbes thought to deprive coral of the necessary nutrients they need for survival, leading to 

a coral degradation (Barott and Rohwer 2012, Haas et al. 2016, McDole Somera et al. 2016). 

Chapter 3 focused on direct contact interactions between the host bacterial communities of 

macroalgae and coral, assessing if direct contact influences the bacterial communities of coral 

and algae, and infer if this may impact host health using the microbiome as a proxy for health 

through destabilisation.  

The bacterial community of Sargassum (macroalgae) and M. aequituberculata (coral) samples 

were collected across three proximity treatments (isolation, direct contact and systemic 

proximity) at Magnetic Island in the Central GBR. Samples were also collected over three time 

points (December 2017, February 2018, May 2018) alongside benthic community surveys to 

examine how the host bacterial communities and proximity interactions changed over time in 

relation to the senescence cycle of Sargassum. Overall, the M. aequituberculata bacteria 

community remained consistent across proximity treatments, which may be reflective of the 

tolerance of this species, and explain its ecological success despite the poor water quality 
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(Schaffelke et al. 2012) and historical abundance Sargassum on reefs at Magnetic Island 

(Martin-Smith 1993, Schaffelke and Klumpp 1997). 

Recent research has highlighted that sections of coral tissue host coral associated microbial 

aggregates (CAMAs) and that the abundance of CAMAs observed increased in corals sampled 

from the inshore GBR (Wada et al. 2019). Microbial communities of Sargassum and M. 

aequituberculata from the inshore GBR were examined in Chapter 3 using the coral tissue and 

mucus combined. This was due to the tissue blasting technique used to remove coral tissue for 

DNA extraction; an inherent limitation of coral microbiome research. Coral mucus however, 

can respond differently to coral tissue throughout periods of environmental stress (Glasl et al. 

2016), and localisation of tissue-specific CAMA communities may have different metabolic 

functions contributing to the coral holobiont (Wada et al. 2019). Due to the sampling of tissue 

and mucus together throughout Chapter 3, it is therefore not possible to discern if any of the 

minor changes in abundance of bacterial taxa within M aequituberculata and Sargassum were 

due to contact between Sargassum and the coral mucus or tissue. Thus, future research 

investigating direct coral-algal interactions should isolate coral mucus and coral tissue samples 

to assess which part of the corals are more microbially sensitive to direct contact with 

macroalgae.  

Identifying the potential resilience of M. aequituberculata to direct microbial changes from 

contact with Sargassum, provides the opportunity explore traits which may make the coral 

successful at Magnetic Island. As Chapter 3 focussed on adult M. aequituberculata colonies, 

an important step forward is identifying whether microbial communities of the early life stages 

of the coral (such as larvae and planulae) also remain stable in direct contact with Sargassum. 

Increased macroalgae abundance can reduce coral larvae recruitment (Webster et al. 2015) and 

juvenile survival (Hughes et al. 2007). Algal exudates can also poison juvenile corals which 
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settle on turf algae (Kuffner et al. 2006, Birrell et al. 2008b, Vermeij et al. 2009a), and limit 

larval metamorphosis which prevents corals making it to adulthood (Baird and Morse 2004). 

Nonetheless, Montipora at Magnetic Island appear to be successful competitors, and so it is 

important to evaluate if this success begins with resilient microbial communities of Montipora 

larvae. Further research should monitor changes to M. aequituberculata larvae and planulae 

microbial communities to assess if they also remain stable in direct contact with Sargassum. 

In moderate abundances, macroalgae can positively contribute to reef biodiversity, for example 

by protecting sessile corals from sunlight and therefore bleaching (Jompa and McCook 2003). 

Whilst the diversity of corals around Magnetic Island has declined with increased macroalgae 

(Ceccarelli et al. 2019), the corals that remain (such as M. aequituberculata) most likely derive 

some benefit from the abundance on macroalgae around the island, via shading or reducing the 

competition for space with other less robust coral species. Whilst no clear evidence of M. 

aequituberculata microbial community destabilisation was observed with respect to 

Sargassum proximity however, it is possible that the coral microbial community had shifted 

previously and those observed reflected a dysbiotic community (Zaneveld et al. 2017). 

Comparing results from this study to a reef with less or no historical exposure to Sargassum 

would help clarify whether the stability of the M. aequituberculata microbial community is 

inherently stable or stable with respect to local environmental and ecological conditions. 

Magnetic Island has been exposed to historical degradation from increased coastal 

development and sedimentation (Bak 1978, Browne et al. 2013a, Ceccarelli et al. 2018). 

Sedimentation from dredging the Townsville Port Channel is thought to contribute to the high 

macroalgae abundance at Magnetic Island (Browne et al. 2013b, Ceccarelli et al. 2018). 

Sedimentation can have negative effects on corals, as coral energy outputs are focussed toward 

removing sediment through sloughing rather than growth and photosynthesis (Abdel-salam and 
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Porter 1988, Anthony et al. 2007). Nonetheless, Montipora corals have shown resilience to 

changes in environmental condition (Raina et al. 2009, Harpeni and David 2011), and have 

also been shown to retain fecundity in areas of high sedimentation. (Padilla-Gamiño et al. 

2014). Further dredging around Magnetic Island is planned during port expansion capital works 

(Port of Townsville, 2019), which will likely increase sediment dynamics around Magnetic 

Island. Based on previous literature, increased sediment dynamics around Magnetic Island may 

result in further declines in coral abundance (Bak 1978, Fabricius et al. 2005), and increases in 

macroalgae (Fabricius 2005, Fabricius et al. 2005). Magnetic Island are also host to acroporids, 

though in much lower abundances compared to Montipora (AIMS 2019), which are typically 

sensitive to environmental change (Shinzato et al. 2011). Since macroalgae abundance around 

the island will be persistently high, it is essential future research also characterises the microbial 

stability of other more environmentally sensitive corals in direct contact with algae, to more 

thoroughly understand the role of microbes in direct coral-algal interactions. Furthermore, such 

research could help inform restoration practices. Sargassum removal restoration practices are 

implemented at Magnetic Island to clear space in order to aid coral recovery (Ceccarelli et al. 

2018). If, however, there are corals around the island which are more sensitive to contact with 

Sargassum species, it could be prudent to target the areas around these corals first to remove 

Sargassum to reduce stress associated with coral-algal direct contact.  

4.3 Conclusions 

The overall objective of this thesis was to examine the effect of direct contact between coral 

and macroalgae on host bacterial communities on the inshore GBR. Overall, the Sargassum 

and M. aequituberculata bacterial community structure remained stable and consistent across 

all proximity treatments, yet distinct shifts were observed over time and potentially related to 

Sargassum seasonal senescence cycle. The data collected provides a species specific dataset 

exploring the Sargassum and M. aequituberculata bacterial communities over time and with 
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proximity. The methods used to determine the effect of direct contact between Sargassum and 

M. aequituberculata can also be applied to other study sites with less historical exposure to 

Sargassum to assess if the observed microbial stability of M. aequituberculata is species-

specific or site-specific.  

Coral reefs are facing accumulated challenges from global and local anthropogenic impacts 

resulting in alarming declines globally. On some inshore reefs of the GBR, poor water quality, 

sediments and nutrients are facilitating increases in macroalgae abundance at the expense of 

reef building corals. These direct and indirect interactions are complex and multidimensional 

with microbial scale processes critical to evaluating the outcomes of these competitive 

interactions. Through generating baseline information on the microbiome of Sargassum 

species and documenting response of coral and algal microbiome direct interactions, this study 

has attempted to shine light on these important microbial processes. Whilst this study did not 

observe many changes in the microbial communities of Sargassum and M. aequituberulcata in 

relation to direct contact, further in depth work is required to ascertain how changes in the 

microbiomes of macroalgae and coral are influenced by direct contact and how this may 

subsequently impact host health. Nonetheless, in a time where corals are threatened by various 

environmental and anthropogenic stressors, this research is an essential step forward to more 

fully understand the mechanisms by which increased macroalgae abundances contribute to 

coral decline.  
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6 Appendix 

6.1 Chapter 2 Supplementary Information 
Table S 1 Recipe to make ~1.5L EDTA-DMSO solution for sample preservation 

Ingredient Recipe 

93.06g disodium EDTA 

400 mL Milli-Q water 

Dissolve EDTA in 400 mL Milli-Q water 

1M NaOH/NaOH pellets Add NaOH until solution reaches pH 8 

800 mL Milli-Q water Add 800 mL Milli-Q and autoclave 

200 mL DMSO Add 200 mL DMSO to autoclaved solution 

NaCl Add NaCl until solution is saturated (quantity 
varies) 

 

Table S 2 Hybridisation buffer recipe, adapted from Hugenholtz et al. 2001 and Wada et al. 2016, used to prepare 
samples for fluorescent in situ hybridisation 

 

 

 

 

 

 

 

 

Solution Volume 

5M NaCl 360 µL 

1M Tris-HCl (pH 7.2) 40 µL 

100% Formamide 1000 µL 

Autoclaved Milli-Q water 598 µL 

10% SDS 2 µL 
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Table S 3 Wash buffer recipe, adapted from Hugenholtz et al. 2001 and Wada et al. 2016, used to prepare samples 
for fluorescent in situ hybridisation visualisation. 

 

  

Solution Volume 

5M NaCl 180 µL 

1M Tris-HCl (pH 7.2) 1000 µL 

Autoclaved milli-Q water 48.77 mL 

10% SDS 50 µL 
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Figure S 1 Histology images of the Sargassum species leaf; longitudinal sections stained with Alcian Blue Safarin. No evidence of internal microbial structures were observed. 
Both a) and b) visualised using X10 magnification with a scale of 0.22mm. b) Focusing on apparent cell structure observed within the leaf 

a) 
b) 
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6.2 Chapter 3 Supplementary Information 

 

Table S 4 List of samples, species and associated sequence reads highlighting the quality reads used for taxonomic 
classification 

Sample Species No. raw reads No. cleaned 
reads 

% 
Removed 

Dec, direct contact, #1 Sargassum, biofilm 244984 211995 13.47 

Dec, direct contact, #2 Sargassum, biofilm 171734 151780 11.62 

Dec, direct contact, #3 Sargassum, biofilm 258038 235231 8.84 

Dec, direct contact, #4 Sargassum, biofilm 242852 214353 11.74 

Dec, direct contact, #5 Sargassum, biofilm 305644 267310 12.54 

Dec, isolation, #1 Sargassum, biofilm 207682 187798 9.57 

Dec, isolation, #2 Sargassum, biofilm 182506 164902 9.65 

Dec, isolation, #3 Sargassum, biofilm 190672 173259 9.13 

Dec, isolation, #4 Sargassum, biofilm 247534 223553 9.69 

Dec, isolation, #5 Sargassum, biofilm 194716 175746 9.74 

Dec, systemic, #1 Sargassum, biofilm 225198 206369 8.36 

Dec, systemic, #2 Sargassum, biofilm 204869 188318 8.08 

Dec, systemic, #3 Sargassum, biofilm 175638 161323 8.15 

Dec, systemic, #4 Sargassum, biofilm 209020 179646 14.05 

Dec, systemic, #5 Sargassum, biofilm 209954 190141 9.44 

Feb, direct contact, #1 Sargassum, biofilm 216266 192894 10.81 

Feb, direct contact, #2 Sargassum, biofilm 224649 190947 15.00 

Feb, direct contact, #3 Sargassum, biofilm 171207 150822 11.90 

Feb, direct contact, #4 Sargassum, biofilm 279291 244693 12.39 

Feb, direct contact, #5 Sargassum, biofilm 262592 226961 13.57 

Feb, isolation, #1 Sargassum, biofilm 240934 209600 13.01 

Feb, isolation, #2 Sargassum, biofilm 279302 245267 12.19 
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Feb, isolation, #3 Sargassum, biofilm 262760 237739 9.52 

Feb, isolation, #4 Sargassum, biofilm 178116 156914 11.90 

Feb, systemic, #1 Sargassum, biofilm 230813 193237 16.28 

Feb, systemic, #2 Sargassum, biofilm 285096 252618 11.39 

Feb, systemic, #3 Sargassum, biofilm 246910 219420 11.13 

Feb, systemic, #4 Sargassum, biofilm 201352 173411 13.88 

Feb, systemic, #5 Sargassum, biofilm 241012 208787 13.37 

May, direct contact, #1 Sargassum, biofilm 205345 169368 17.52 

May, direct contact, #2 Sargassum, biofilm 185980 165846 10.83 

May, direct contact, #3 Sargassum, biofilm 222103 193574 12.84 

May, isolation, #1 Sargassum, biofilm 303732 270211 11.04 

May, isolation, #2 Sargassum, biofilm 232653 207066 10.99 

May, isolation, #3 Sargassum, biofilm 192670 174528 9.42 

May, systemic, #1 Sargassum, biofilm 234314 198214 15.41 

May, systemic, #2 Sargassum, biofilm 261163 229970 11.94 

May, systemic, #3 Sargassum, biofilm 288051 262464 8.88 

Dec, direct contact, #1 Montipora 156042 136065 12.80 

Dec, direct contact, #2 Montipora 141538 120437 14.91 

Dec, direct contact, #3 Montipora 147976 130299 11.95 

Dec, direct contact, #4 Montipora 155591 126279 18.84 

Dec, direct contact, #5 Montipora 119046 95367 19.89 

Dec, isolation, #1 Montipora 178614 147760 17.27 

Dec, isolation, #2 Montipora 172996 146590 15.26 

Dec, isolation, #3 Montipora 248063 210301 15.22 

Dec, isolation, #4 Montipora 158923 135729 14.59 

Dec, isolation, #5 Montipora 155273 127986 17.57 

Dec, systemic, #1 Montipora 179648 135650 24.49 
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Dec, systemic, #2 Montipora 131255 111123 15.34 

Dec, systemic, #3 Montipora 201949 171269 15.19 

Dec, systemic, #4 Montipora 134042 112105 16.37 

Dec, systemic, #5 Montipora 140382 118771 15.39 

Feb, direct contact, #1 Montipora 82446 54838 33.49 

Feb, direct contact, #2 Montipora 160264 132982 17.02 

Feb, direct contact, #3 Montipora 150641 122251 18.85 

Feb, direct contact, #4 Montipora 219083 184919 15.59 

Feb, direct contact, #5 Montipora 152461 128789 15.53 

Feb, isolation, #1 Montipora 154934 132269 14.63 

Feb, isolation, #2 Montipora 177714 139473 21.52 

Feb, isolation, #3 Montipora 115370 91584 20.62 

Feb, isolation, #4 Montipora 187922 159596 15.07 

Feb, isolation, #5 Montipora 161303 136243 15.54 

Feb, systemic, #1 Montipora 126280 107462 14.90 

Feb, systemic, #2 Montipora 227639 198420 12.84 

Feb, systemic, #3 Montipora 205276 176980 13.78 

Feb, systemic, #4 Montipora 181638 156208 14.00 

Feb, systemic, #5 Montipora 146829 115702 21.20 

May, direct contact, #1 Montipora 197915 160535 18.89 

May, direct contact, #2 Montipora 222823 187354 15.92 

May, direct contact, #3 Montipora 226448 193813 14.41 

May, direct contact, #4 Montipora 240885 195422 18.87 

May, direct contact, #5 Montipora 206166 172256 16.45 

May, isolation, #1 Montipora 182888 155217 15.13 

May, isolation, #2 Montipora 174952 141033 19.39 

May, isolation, #3 Montipora 139981 118726 15.18 
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May, isolation, #4 Montipora 161604 137570 14.87 

May, isolation, #5 Montipora 201246 173411 13.83 

May, systemic, #1 Montipora 172208 144471 16.11 

May, systemic, #2 Montipora 184212 157449 14.53 

May, systemic, #3 Montipora 153007 122191 20.14 

May, systemic, #4 Montipora 129800 110822 14.62 

May, systemic, #5 Montipora 175920 147156 16.35 

Seawater, Dec, #1 n/a 135441 98441 27.32 

Seawater, Feb, #1 n/a 186724 161289 13.62 

Seawater, Feb, #2 n/a 236191 205012 13.20 

Seawater, May, #1 n/a 208766 182645 12.51 

Seawater, May, #2 n/a 239915 208668 13.02 

 

Figure S 2 The most abundant microbial phyla associated with M. aequituberculata, Sargassum species and 
seawater across proximity treatments. “Other” includes phyla representing <1% of all sequences. Relative 
abundances are percent values total sequences. 



Ch. 6. Appendix 

  Al Moajil-Cole – 2019       
   136 

 

Figure S 3 The most abundant microbial phyla associated with M. aequituberculata, Sargassum species and 
seawater across sampling time points. “Other” includes phyla representing <1% of all sequences. Relative 
abundances are percent values total sequences. 
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Figure S 4 Alpha diversity parameters highlighting diversity comparisons between M. aequituberculata, Sargassum and seawater. Faith's richness: a) December 2017, b) 
February 2018, c) May 2018. Shannon’s diversity: d) December 2017, e) February 2018, f) May 2018 

a b c

d e f
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Figure S 5 ASV analysis of the top 20 more abundant taxon in 100% of samples present across M. aequituberculata, Sargassum species, seawater and sampling time point. The 
darker the blue, the most abundant the ASV and where white, the ASV was not present. Corresponding table: BLAST information of each taxa extracted from the NCBI 
database. 
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Table S 5 Benthic community investigation at Geoffrey Bay, Magnetic Island. % M. aequituberculata and % Sargassum estimated by the proportion of the quadrat taken up 
by each organisms. % Diseased M. aequituberculata estimated by the percent of the M. aequituberculata plate in each quadrat with signs of disease. Sign of disease is a 
description of what the disease looked like. % M. aequituberculata/Sargassum contact estimated by the percent of M. aequituberculata completely smothered by Sargassum 
species within each quadrat. Number of Sargassum holdfasts is raw counts of the total number of holdfasts in each quadrat. Sargassum canopy height was quantified by 
measuring the height of three randomly selected Sargassum thalli from holdfast to tip and the mean height calculated 

Sampling 
trip 

Quadrat no. % M. 
aequitubercul

ata 

% Sargassum % Diseased M. 
aequituberculata 

Sign of disease (if 
present) 

% M. 
aequituberculata/ 

Sargassum contact 

No. 
Sargassum 
holdfasts 

Sargassum 
canopy height 

(cm) 

Dec 2017 1 70 40 0 N/A 25 22 77 

Dec 2017 2 50 35 2 Small black patch 20 5 65 

Dec 2017 3 35 15 5 Small black patch 10 10 49 

Dec 2017 4 15 55 2 Small black patch 5 16 59 

Dec 2017 5 45 30 5 Small black patch 20 7 45 

Dec 2017 6 30 20 0 N/A 15 9 41 

Feb 2018 1 20 60 0 N/A 20 21 52 

Feb 2018 2 15 35 0 N/A 0 12 47 

Feb 2018 3 80 20 0 N/A 20 9 42 

Feb 2018 4 25 30 0 N/A 5 14 57 

Feb 2018 5 25 85 0 N/A 15 12 59 

Feb 2018 6 5 30 0 N/A 5 10 38 

May 2018 1 15 15 0 N/A 5 11 22 
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May 2018 2 20 20 0 N/A 5 16 24 

May 2018 3 10 5 0 N/A 30 30 30 

May 2018 4 10 15 0 N/A 50 20 23 

May 2018 5 35 10 0 N/A 5 13 31 

May 2018 6 15 20 0 N/A 5 17 27 
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