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Abstract 
 

In response to the increasing rate of coastal development in tropical regions managers are calling 

for ecosystem-based management strategies to assist with decisions regarding further urban and 

industrial expansion. Knowledge on the composition, status, and function of the ecosystems 

exposed to development is necessary and helps to ensure the conservation/restoration of natural 

habitat and the ecological services and functions they provide. Such information however is often 

not available at the scale at which managers perform their work, does not include artificial 

features as components of the ecosystem, and its acquisition is frequently limited by timelines 

and budgets. Additionally, the patterns of change and cumulative effects of incremental 

development in coastal ecosystems – particularly in tropical regions – are far from having been 

fully characterised and are still being investigated.  

To address these gaps in methodology and information I have developed a rapid assessment tool 

specific to intertidal foreshore mapping that can assist in gathering information on the structural 

complexity and status of an ecosystem at a scale applicable to managers and ecological 

researchers. Such information is not only essential as a baseline for effective planning of new 

developments but is also applicable for restoration of impacted areas. This novel approach to the 

classification of coastal ecosystems is achieved by assessing structural attributes (vegetation, 

sediment type, and artificial features) which can be combined in easily identifiable units called 

‘structural habitats’, a factor essential for mapping, quantification, and planning. This classification 

scheme for structural habitats can be applied to a variety of coastal ecosystems and has the 

advantage of being rapid, inexpensive, and versatile enough to align to other existing 

classifications or to be integrated in environmental impact assessment protocols.  

I tested and applied this classification scheme to the assessment of the habitat composition and 

mosaic configuration of four tropical estuaries located in Townsville and the broader region 

surrounding the city (Queensland, Australia). I chose these estuaries as they represent varying 

levels of urban development, with a mix of natural and hard engineering structures distributed 

along their linear length. Their location in the Great Barrier Reef World Heritage Area makes this 

research particularly relevant and essential for the broader context of GBR reef resilience as well, 

being part of a complex larger seascape. The protection and restoration of the GBR and the 

connected coastal ecosystems are in fact key targets in the Reef 2050 Long-Term Sustainability 

Plan (Reef 2050 Plan) prepared by the Australian government. The results obtained indicate 

estuaries that are largely modified by urban and industrial expansion have a higher level of habitat 
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complexity compared to those less exposed to development. I identified over seventy-nine 

different structural habitats across the four estuaries. Most habitats (81%) are characterised by 

the presence of one or more artificial features (e.g. rock walls, stormwater drains) and found 

predominantly in the more urbanised areas. This high variability in habitat composition is linked 

to the progressive development carried out in these ecosystems, and probably in coastal tropical 

regions more broadly. The distribution and extent of the different habitats across the estuaries 

revealed how incremental urban development has likely contributed to the formation of a 

complex and varied shoreline mosaic, particularly so in the more urbanised estuaries compared 

to the low-development estuaries that still have much natural shoreline vegetation present.  

Next, I assessed the species composition of the macrofauna present in each type of structural 

habitat and determined patterns of spatial distribution in three of the four estuaries. Using data 

collected over two years, I ran classification trees which revealed how the presence of non-

transient species across the different estuaries is influenced by the structural components 

selected for the classification scheme and utilised for structural habitat mapping: vegetation, 

sediment type and artificial features. Further investigation identified trends in association and 

preferences of species for certain structural elements, such as the presence of vegetation for 

terrestrial species and the preference of several gastropods for soft sediment. Understanding the 

relationship between the species inhabiting an ecosystem and its structural components provides 

essential information for the management and conservation of the local biotic communities. It 

also has the potential to facilitate the prediction of consequences on species composition and 

community assemblages associated with changes occurring with development, be that in the form 

of vegetation/substratum alteration or introduction of artificial features. Moreover, the trends 

identified on the importance of sediment and vegetation for species assemblages have also 

highlighted how the (re)introduction of mangrove vegetation and soft sediment in front of hard 

artificial structures could assist in achieving the balance between having a structure which 

provides a service to humans and ensuring the presence of a natural section of the ecosystem, 

with its native biotic communities and many ecological services. 

Overall, this thesis presents the development and application of a classification scheme for 

managers to rapidly perform habitat assessment along coastal estuaries. This simple and effective 

tool has the major advantage of quickly providing information on the habitat composition and 

configuration of coastal ecosystems, including an evaluation of the type and extent of structural 

changes linked to previous development works. Such information can be used to determine the 

status and condition of the ecosystem and thus assist in selecting the best course of action for 
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management in the face of development based on the objectives and outcomes desired. The 

classification approach presented here can be integrated as a standard tool in environmental 

impact assessment, monitoring programs, or ecological mapping, particularly when assessing 

extent of modification, and its influence on the local faunal communities, a fundamental starting 

point to plan restoration efforts. In addition, it provides a broadly applicable and standardised 

method that allows for the comparison of different ecosystems in the same area. This simple and 

rapid assessment tool can assist researchers in expanding on the current knowledge of coastal 

ecosystems exposed to anthropogenic development while also allowing managers to be in a 

stronger position to adequately plan for future development, avoiding unnecessary efforts, 

resources and time, and increasing the success of conservation/restoration of important coastal 

ecosystems.
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1 Chapter 1 

 

Urban expansion in tropical coastal wetlands:  

Tools available for management to assess ecosystem composition 
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1.1 Background information: Ecosystem-Based Management in coastal 

development 
 

The rate of development has increased concurrently with global population growth (Cohen 2006; 

McDonald 2008; Neumann et al. 2015), a phenomenon particularly evident along coastlines where 

the access to water transport, rich alluvial coastal land, fisheries and recreational resources favor 

urban or industrial expansion (Ehrenfeld 2000; Small and Nicholls 2003; Turner et al. 1996; Yeung 

2001). Extensive structural modifications of coastal areas are linked also to armouring against sea 

level rise and erosion (Davis et al. 2002; Ghazali 2006). Human development results in a suite of 

environmental changes that range from local alterations to radical transformations in an 

ecosystems’ geomorphology (El Banna and Frihy 2009; Gregory 2006; Hapke et al. 2013), structure 

(Alberti 2005; Coverdale et al. 2013; Fischer and Lindenmayer 2007), resilience (Folke et al. 2004), 

and functioning (Airoldi and Beck 2007). Such changes can lead to declines in native species’ 

composition/abundance and variations in habitat connectivity (Li et al. 2010; Lindenmayer and 

Fischer 2013). The concept of ‘sustainable development’, which focuses on minimising negative 

effects on the environment while allowing for development to take place (Dernbach 1998; Emas 

2015), has become a priority for managers, planners and scientists (Foley et al. 2010; Harding 

2006; Lele 1991; Yeung 2001). Integrated approaches such as ecosystem-based management 

(EBM) (Foley et al. 2010; Foley et al. 2013; Rosenberg and McLeod 2005) align the ecological 

objective of preserving natural resources with the societal needs for spatial, economic, and social 

growth. This is particularly relevant in tropical regions, given they include some of the most 

biologically diverse and productive ecosystems on the planet (Burt 2014; Costanza 1998; Spalding 

et al. 2001), many of which have been negatively affected by human actions (Airoldi and Beck 

2007; Laurance et al. 2011; Lee et al. 2006; Polidoro et al. 2010). EBM relies on clearly defining the 

appropriate strategy based, among other things, on the characteristics of the ecosystem involved. 

Thorough understanding of the ecological composition, status, functions, and services of the 

ecosystem exposed to human expansion and how these are affected by the development works 

is essential for planning and implementing appropriate EBM strategies (Airoldi and Beck 2007; 

Moberg and Rönnbäck 2003; Morrissey et al. 2012; Wegscheidl et al. 2017). 

 

1.2 Ecosystem assessment and mapping tools 
 

A primary step in the acquisition of information to effectively manage an ecosystem is the 

characterisation of the biological, physical and chemical variables at a spatial scale relevant for the 
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assessment of ecological characteristics and processes and/or for planning specific anthropogenic 

interventions (Busch 2018; De Groot et al. 2002; Mann and Lazier 2013; Zajac 1999). There are 

many different methodologies and criteria available to collect such data, ranging from remote 

sensing to ground-truthing as part of field sampling (Borja and Dauer 2008; Brandmeyer and 

Karimi 2000; Diaz et al. 2004; Singh et al. 2012). While remote sensing has the advantage of 

providing consistent and long-term data on large areas at low/minimal labour cost (Wang et al. 

2010), it often lacks small-scale or horizontal perspectives (Sabins 2007). On-ground data 

collection assists in complementing the information collected remotely by providing a higher 

resolution at smaller scales, even though in this case costs can increase due to supplemental 

labour. This can be achieved through visual or photographic surveys, sediment/water sampling, 

or the collection of biota (Davis et al. 2016; Vermeiren and Sheaves 2015a). Regardless of whether 

data are collected remotely or on-ground, a classification scheme is needed to provide a clear and 

precise evaluation of the ecosystem and its components. Numerous classification schemes have 

been developed for the characterisation and mapping of coastal ecosystems (Table 1; Appendix 

1a-b). These schemes aim to provide a standardised way of classifying natural ecosystems based 

on a series of pre-established parameters (predominantly physical and chemical), and to clearly 

define ecological units necessary for the mapping process.  

Table 1. Existing classification schemes for marine and/or coastal ecosystems around the world. 

Country Classification scheme Reference Application Scale 

Australia 
Interim Marine and Coastal Regionalisation for Australia 
(IMCRA) (V3.3) 

IMCRA 1998 
National & 
Regional 

100 km to 
1000s km 

Australia Interim Marine Classification Scheme (MHC) Stage 3 (V.2) 
Ferns and Hough 
2000 

Regional 
100 km to 
1000s km 

Australia National Marine Bioregionalisation of Australia (NMB) 
Commonwealth of 
Australia 2005 

National & 
Regional 

<1000 km2 to 
>100,000 km2 

Australia Wetland Mapping and Classification Methodology (V1.2) 
EPA Queensland 
2005 

Regional 
1:50,000 to 
1:100,000 

Australia 
Integrated Marine and Coastal Regionalisation for Australia 
(IMCRA) (V4.0) 

Commonwealth of 
Australia 2006 

National & 
Regional 

100 km to 
1000s km 

Australia 
CSIRO Marine Research hierarchical scheme for habitat 
mapping and classification 

Lyne et al. 2006 Regional 1 m2 to 100 km2 

Australia 
National Intertidal/Subtidal Benthic habitat classification 
scheme (NISB) (V.01) 

Mount et al. 2007 National n.c.d. 

Australia Primary Shallow Habitat Classification Scheme (Victoria) Ball et al. 2006 Regional n.c.d. 

Australia GIS Mapping Classification Scheme (Victoria) Ball et al. 2006 Regional n.c.d. 

Australia 
Seamap Australia benthic habitat classification scheme 
(SEAMAP) 

Butler et al. 2017 National n.c.d. 

Australia 
Queensland Intertidal and Subtidal Ecosystem Classification 
Scheme (V1.0) 

DEHP 2017 Regional 
1:5000 to 
1:2,500,000 

Canada Hierarchical classification of marine environment 
Roff and Taylor 
2000 

National 
10s km to  
1000s km 

Canada British Columbia Marine Ecological Classification Howes et al. 2002 Regional 
1:250,000 to 
1:2,000,000 

Caribbean Systematic classification scheme of marine habitats  
Mumby and 
Harborne 1999 

International 
10s m to  
100s m 

Europe European Nature Information System (EUNIS) Davies et al. 2004 International 1 m to >100 m2 

N/A Marine Ecoregions of the World (MEOW) Spalding et al. 2007 International n.c.d. 

New 
Zealand 

The New Zealand Marine Environment Classification Snelder et al. 2005 National 
1:250,000 or 
>1:4,000,000 
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New 
Zealand 

Coastal Marine Classification MFDC 2008 National 
100s m to 
1000s km 

UK and 
Ireland 

Marine Habitat Classification for Britain and Ireland (MHC) 
(V04.05) 

Connor et al. 2004 National >1 m 

USA 
Classification of Wetlands and Deepwater Habitats of the 
United States 

Cowardin et al. 1979 National n.c.d. 

USA Hydrogeomorphic Classification for Wetlands Brinson 1993 National n.c.d. 

USA 
Classification of wetlands of the central and southern 
California coast and coastal watersheds 

Ferren et al. 1996 Regional n.c.d. 

USA U.S. Marine and Estuarine Ecosystems Classification System Allee et al. 2000 National >10m 

USA 
Classification of benthic estuarine habitats in Mid-Atlantic 
USA 

Llansó et al. 2002 Regional n.c.d. 

USA 
System for Classification of Habitats in Estuarine and Marine 
Environments (SCHEME) for Florida 

Madley et al. 2002 Regional 
1:12,000 to 
1:48,000 

USA 
Coastal and Marine Ecological Classification Standard 
(CMECS) (V.2) 

Madden et al. 2005 National 
1 m2 to  
1000s km2 

USA Classification of Marine Sublittoral Habitats Valentine et al. 2005 
National & 
International 

1:25,000 to 
1:100,000 

USA National Estuarine Research Reserve System (NERRS) 
Kutcher et al. 2005; 
Kutcher 2008 

National   1:12,000 

USA Habitat Classification Scheme Auster et al. 2009 Regional 
1:5,000 to 
1:100,000 

USA Marine Habitat Classification 
Guarinello et al. 
2010 

National n.c.d. 

USA 
Coastal and Marine Ecological Classification Standard 
(CMECS) (V.6) 

FGDC 2012 National >10m 

USA 
Classification of Wetlands and Deepwater Habitats of the 
United States 

FGDC 2013 National n.c.d. 

USA 
Estuarine Habitat Classification for a Complex Fjordal Island 
Archipelago (Alaska) 

Schoch et al. 2014 Regional 
1 km2 to  
1000s km2 

n.c.d. = not clearly defined 

 

All classification schemes presented in Table 1 focus on large-scale assessment of physical and 

biological parameters, such as bathymetry, geomorphology, granulometry, water chemistry, and 

broadly classified sessile biotic communities (e.g. Ball et al. 2006; Commonwealth of Australia 

2006; IMCRA 1998). Many classification schemes however tend to not include vegetation or 

present it merely as ‘presence/absence’ rather than providing individual classes focusing on 

different types of vegetation. Moreover, in some cases vegetation and sediment are treated as 

mutually exclusive classes within the scheme. Structural elements such as sediment type and 

vegetation are fundamental ecological parameters to be included in classification schemes, 

particularly in the context of ecological assessment for coastal development and EBM (Zajac 1999). 

Sediment and vegetation represent the major structural components of coastal ecosystems and 

are directly affected/modified by development works in the form of removal, reduction, or 

substitution (Benfield et al. 2005; Hamilton and Gehrke 2005; Polidoro et al. 2010; Zajac 1999). 

Knowledge of the presence, type, and distribution of these structural elements in an ecosystem, 

as well as the changes occurred related to urban and/or industrial expansion, would therefore 

assist in providing a thorough evaluation of the structural composition of the ecosystem, including 

spatial heterogeneity. Moreover, sediment and vegetation are known to influence the presence 

and distribution of faunal communities in an ecosystem (Gray 1974; Martin et al. 2005; McKee 
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1993; Wallace 2011). This is another factor of relevance for environmental assessments and 

decision-making related to coastal development (be it past, current, or future) that is not 

considered or included in the range of available classification schemes. 

 

1.3 Issues identified in existing ecosystem assessment tools 
 

The classification schemes currently available present many advantages for mapping and 

assessment of coastal ecosystems, including simple and clear language for end users, repeatable 

environmental units, and applicability to a variety of ecosystems (Appendix 1a). However, these 

classification schemes also present issues and/or conceptual gaps that need to be addressed to 

ensure the validity, relevance, and applicability of the assessment tools and information collected 

(Appendix 1b). Some issues are particularly relevant for the context of EBM and local-scale coastal 

construction, and the most prominent are described in the sections below: 

1.3.1 Spatial scale 
 

Most standardised classification schemes are aimed to be applicable at national (if not 

international) scale to ensure the comparability of information across different temporal and 

spatial ranges. Examples of such schemes can be found in Europe (e.g. EUNIS), in the USA (e.g. 

Classification of Wetlands and Deepwater Habitats of the United States), and Australia (e.g. 

SEAMAP) (Table 1). While these large-scale classifications encompass a wide range of ecosystems 

and geographical areas, the resolution is coarse and thus frequently unsuitable for local 

management decisions (e.g. a council addressing the management of a single estuary or a small 

coastal section within their district). Urbanisation and industrial development usually occur at 

small/local scales (e.g. city, suburb, or neighbourhood); sometimes with works or modifications 

happening in specific sections of an ecosystem ranging from a few meters (e.g. stormwater drains, 

boat ramps, pontoons) to hundreds of meters (e.g. armouring of the banks, complex 

constructions, port developments for shipping goods and services overseas) (Figure 1).  
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Figure 1. Examples of coastal development works and their spatial extent: a) stormwater drain that intersects a 
stretch of mangrove shoreline, b) bridge that also intersects a mangrove shoreline, and c) armouring of the banks. 

 

The level of detail and up-to-date information on the composition of an ecosystem that is required 

to address the ecological implications of any development work (Wegscheidl et al. 2017) cannot 

be achieved using large-scale classification schemes solely, such as those developed for national 

or even regional use. Such classifications operate at scales that may be too large to detect 

variability in composition within individual ecosystems (Table 1). This is particularly relevant for 

classifications where the minimum mapping unit, representing the smallest areal entity to be 

mapped as a discrete entity (Lillesand and Kiefer 1995), corresponds to a few hundred meters or 

a kilometre (e.g. Butler et al. 2017; Davies et al. 2004; Howes et al. 2002; Spalding et al. 2007). 

1.3.2 Lack of inclusion of anthropogenic features 
 

A further complication in the application of the available classification schemes to coastal 

management is the lack of inclusion of anthropogenic features or modifications present in coastal 

ecosystems (Appendix 1b). In Australia examples can be seen with classifications such as the 

Primary Shallow Habitat Classification Scheme (Ball et al. 2006), CSIRO Marine Research 

hierarchical scheme for habitat mapping and classification (Lyne et al. 2006), or the National 

Intertidal/Subtidal Benthic habitat classification scheme (Mount et al. 2007). The SEAMAP 

Australia (Butler et al. 2017) system, for instance, provides maps for coastal ecosystems across 

Australia but often lacks information on several ecosystems located in urbanised or developed 

areas, such as cities or residential areas. The lack of focus or integration of anthropogenic features 

represents a substantial gap in information that is likely to affect the suitability of these 

classifications in the context of coastal development and ecosystem restoration projects. Many 

coastal ecosystems have been subjected to structural modifications associated with urban 

expansion, industrialisation, and farming (Airoldi and Bulleri 2011; Davis et al. 2002). 
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Anthropogenic modifications, particularly when (semi)permanent or present for years/decades, 

should be considered as integrated components of the ecosystem, and thus included in 

classification and mapping protocols to ensure a thorough descriptions of physical and structural 

characteristics. The presence of artificial structures can also impact species composition and 

utilisation of the area, with potential repercussions in the functioning and services of the 

ecosystem (Bulleri and Chapman 2010; Connell and Glasby 1999; Firth et al. 2016a; Hanlon et al. 

2018; Mayer-Pinto et al. 2018). Moreover, most classification schemes do not include a way to 

assess the nature and extent of structural modification linked to coastal expansion, nor do they 

provide a way to rapidly and consistently measure further additions or changes occurring over 

time with new urban developments. 

1.3.3 Time and costs 
 

A further practical issue/limitation of many existing classification schemes is that their application 

can be costly and/or lengthy. In many cases this is not related to the classification scheme itself, 

but rather to the large-scale at which the assessments are carried out. Mapping whole regions and 

states, in fact, requires considerable resources and time (e.g. Bell et al. 2006; Ferns and Hough 

2000; Commonwealth of Australia 2005). However, there are instances where the timescales and 

costs are associated to the classification schemes themselves. The inclusion of many different 

biological and physical parameters (e.g. Guarinello et al. 2010; Madden et al. 2005) can require 

different assessment techniques, sometimes with the use of expensive instrumentation/analyses 

(e.g. Roob 2000) (Appendix 1b). In the context of coastal development, time and financial budgets 

are important factors that influence planning and decision-making. As such, given a target quality 

for any ecosystem assessment related to landscape management, achieving results/information 

in a more cost-effective way and/or in a shorter period of time is a competitive advantage. 

 

1.4 Thesis structure 
 

Considering the limitations of current ecosystem assessment tools that are available to managers, 

a standardised classification scheme that supports science-based decision-making and addresses 

the gaps highlighted in the sections above is needed for sustainable coastal development and 

management.  

This thesis aims to develop a rapid and cost-effective assessment tool to classify and map tropical 

coastal ecosystems to assist ecosystem-based management decisions, and to then use the tool to 

evaluate habitat complexity and related faunal communities in a range of estuaries exposed to 
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different extents of development. The integration of the proposed assessment tool with existing 

protocols for the characterisation of coastal wetland ecosystems would provide high-resolution 

data on the structural composition and configuration of target study areas (selected on a case-by-

case basis) and allow to determine the effect of different natural and anthropogenic structural 

features on local biodiversity. This information can be used to evaluate the potential resilience or 

vulnerability of coastal areas to development works, with detailed understanding of the 

role/impact of the different structural features assessed on local ecological processes, functioning, 

and services. Such information can be readily applied to ecological restoration of modified areas, 

by identifying natural structural features to be protected/restored and assist in the selection of 

locations to prioritise for intervention. Moreover, understanding of the effects that different 

artificial structures and modifications have on local biodiversity can be applied during the planning 

phase of future development to identify the most suitable strategy or the least impactful 

structure/modification to be introduced. 

The development, testing, and application of this rapid assessment tool have been achieved by:  

1) Developing a standardised classification scheme to define and map the structural habitat 

features of coastal ecosystems. (Chapter 2) 

2) Apply the classification scheme to assess habitat complexity in tropical estuaries that have 

been subjected to urban/industrial development. (Chapter 3) 

3) Determine the influence of structural attributes (sediment, vegetation, artificial features) 

on faunal communities. (Chapter 4) 

4) Present new resources and information for ecosystem assessment and landscape 

management in face of coastal development. (Chapter 5) 

 

Chapters of the thesis follow the general structure and format required for publication to facilitate 

their conversion to peer reviewed scientific articles.  
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The thesis structure is therefore as follows: 

Chapter 1. Urban expansion in tropical coastal wetlands: blending management with 

conservation. 

This introductory chapter analyses different classification schemes available to assess and 

characterise coastal ecosystems, and highlights key gaps and issues to be addressed in the context 

of their applicability for ecosystem-based management. 

 

Chapter 2. Mapping the structural complexity of tropical coastal wetlands: development of a 

standardised classification scheme. 

This chapter describes the development and testing of a broadly applicable classification scheme 

that focuses on the structural components, both natural and artificial, of tropical coastal wetlands 

to provide information useful for managers challenged with approving new development, while 

also protecting and enhancing coastal ecosystems.  

 

Chapter 3. Structural habitat configuration of estuaries exposed to different extent of urban 

development. 

This chapter investigates the habitat composition and distribution of tropical estuaries exposed to 

different types and extent of development over time. Focus is given to measuring the extent and 

distribution of structural modifications in each estuary as well as identifying the presence of 

dominant structural elements representing a shared or common composition between the 

different estuaries. 

 

Chapter 4. Influence of structural attributes on species assemblages in urbanised estuaries. 

This chapter analyses the influence of different structural elements of intertidal habitats in tropical 

estuaries with different amounts of development on the occurrence of faunal assemblages, with 

particular focus on non-transient species. 

 

Chapter 5. Analysing tropical coastal ecosystems in face of development: a new understanding 

of structural changes with implications for ecology and management. 

In the final chapter the information and new understanding presented in this thesis is expanded 

and discussed within the context of sustainable development techniques for tropical coastal 

ecosystems characterised by soft sediment and vegetation. New perspectives for ecosystem 

conservation and restoration of such ecosystems are presented.
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Mapping the structural complexity of tropical coastal wetlands: 

Development of a standardised classification scheme 
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2.1 Introduction 
 

Tropical coastal wetlands are highly dynamic and complex ecosystems located in transition areas 

between land and sea (Queensland EPA 1999). They support a wide range of plants and animals, 

both resident and transient (Gopal and Junk 2000; Milton et al. 2018), and provide numerous 

ecological services that benefit humans (Mitsch and Gosselink 2000). The high ecological value of 

wetlands and numerous functions and services provided (Barbier et al. 2011; Queensland EPA 

1999) make these ecosystems a priority for conservation and management of tropical coastal 

areas. At all levels of government, strategies are implemented and continuously updated to 

safeguard the ecological values of coastal wetlands (Barbier et al. 2011; Rogers et al. 2016) and 

promote restoration of areas affected by development (Bayraktarov et al. 2016; Moberg and 

Rönnbäck 2003). This is particularly relevant considering that coastal wetlands are among some 

of the ecosystems most heavily impacted by urban/agricultural/industrial development (Gardner 

et al. 2015; Milton et al. 2018). Extensive land reclamation to make space for residential housing 

and urban/coastal infrastructures are the leading cause of wetland reduction and degradation 

(Department of Environment and Energy 2016; Gardner et al. 2015). With an increasing rate of 

development expansion in tropical coastal areas (Barragán and de Andrés 2015) there is a pressing 

need for effective ecosystem-based management (EBM) to minimise and reverse further 

degradation of coastal wetlands (Foley et al. 2010; Temmerman et al. 2013). The aim is to achieve 

a balance between the need for coastal expansion and the conservation of the ecosystems where 

such works take place. The selection of appropriate strategies for the conservation and/or 

restoration of coastal wetlands exposed to development requires comprehensive understanding 

of the ecosystems’ composition, dynamics, and functions, as well as how these are affected by 

human expansion (Airoldi and Beck 2007; Moberg and Rönnbäck 2003; Morrissey et al. 2012). 

Such information is essential to managers and stakeholders to avoid wasted effort, resources, and 

time, and to adequately plan future development footprints while maximising conservation of 

natural resources. Most of the existing assessment tools available for the characterisation of 

coastal ecosystems, however, present limitations that affect their applicability in the context of 

coastal development, including coarse resolution, lack of inclusion of artificial features as 

structural elements of an ecosystem, and non-competitive timescales or costs (see Chapter 1). As 

such there is need for a rapid, standardised, comprehensive, and easy to apply assessment tool 

that provides data on the status and composition of coastal wetlands at a local scale. These 

protocols for ecosystem characterisation, mapping, and quantification need to focus on the 
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acquisition of information at a scale relevant for location-specific decision-making while also being 

broadly applicable to ensure comparability of data across different regions and times.  

To address this gap, I have developed and tested a broadly applicable classification scheme that 

focuses on the structural components, both natural and artificial, of tropical coastal wetlands, 

which is far more applicable in contemporary times given increasing development expansion in 

coastal areas. This simple and rapid assessment tool provides information useful for managers 

challenged with approving new development, while at the same time protecting and enhancing 

coastal ecosystems.  

To do so, the classification scheme incorporates the following characteristics: 

1) Be broad enough for application and generalisation to a wide range of coastal wetland 

ecosystems. 

2) Provide local-scale information on the structural composition and attributes of an 

ecosystem in a specific spatial level and tidal zone. 

3) Incorporate both natural and artificial elements in the scheme. 

4) Be adaptable to include new classes and/or hierarchical levels and able to be updated, so 

that location-specific variants can be included in the scheme. 

5) Permit the rapid assessment of a large range of coastal wetland ecosystems and the 

production of detailed maps of their structural composition. 

6) Provide a standardised way to assess type and extent of structural modification linked to 

coastal expansion. 

7) Use clear definitions and consistent terminology to reduce risk of ambiguity. 

8) Provide easily identifiable and homogenous ecological units to describe and map the 

structural composition of the ecosystem. In this classification such units are called 

“Structural Habitats”, abbreviated as “HABs”. 

9) Provide information in a format relevant and applicable to a wide range of stakeholders, 

regardless of their level of scientific knowledge. 

10) Be structured to allow consistency and repeatability to other ecosystems/regions. 

11) Provide location-specific information that value-adds to broader classification schemes. 

12) Focus on components that can be linked to ecosystem connectivity, processes, and 

services. 
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2.2 Materials and methods 
 

2.2.1 Procedural steps for the development of the classification scheme 
 

The sequential steps followed to develop, test, and validate the classification scheme are listed 

below and visualised in Figure 2. 

1) Review of existing classification schemes at national (Australia) and international level. 

2) Identification of the biological and physical attributes to be included in the proposed 

classification scheme. Since this classification scheme focuses only on the structural 

components of an ecosystem, chemical attributes were not included.  

3) Selection of the individual classes to be used to categorise each attribute, and the metrics 

used to measure them. 

4) Definition of scale, resolution, and spatial parameters for application of the classification 

scheme. 

5) Field-test the classification in a model urbanised wetland ecosystem (Ross Creek, Townsville) 

to test the feasibility, consistency, and meaningfulness of the classification scheme. 

6) Presentation of the classification scheme to experts from different relevant backgrounds (i.e. 

researchers, managers, city council members, and representatives of the community) to 

obtain feedback on applicability and relevance. 

7) Integration of the results and feedback obtained to adjust and improve the scheme. 

Finalisation of the classification scheme based on field tests and expert review.



 

 

1
5 

 

 

 

 

 

 

 

 

 

 

 
 Figure 2. Conceptual flowchart of the process followed to develop and finalise the proposed classification scheme. 
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A detailed description of each of the sequential steps followed for the development, testing, and 

finalisation of the proposed classification scheme is presented in the sections below (sections 2.2.2 

to 2.2.6). 

2.2.2 Step 1: Review of existing classification schemes 
 

A review of existing classification schemes from around the world was carried out to explore the 

current knowledge and tools available for the classification of coastal ecosystems and to identify 

relevant features to be integrated in this work. Web search engines Google, Google Scholar, Web 

of Science, and Science Direct were used to access peer reviewed publications and available 

technical reports on classification schemes developed for coastal and/or marine ecosystems. The 

keywords “classification scheme”, “scheme”, “marine”, “coastal”, “wetland”, “mapping”, 

“ecosystem”, “habitat”, “ecology”, “national”, and “international” were used individually and 

combined to perform a first selection of the literature. The following four criteria were used to 

select the publications/reports to be analysed: a) the document should describe a classification 

scheme for marine and/or coastal ecosystems, b) the classification must be aimed at describing or 

categorising ecosystems based on measurable physical, chemical and/or biological parameters, c) 

details on the scope, scale, parameters used, and hierarchical layers of the classification must be 

described, and d) the document should not consist solely of a case study where the classification 

scheme was applied, but rather describe in detail the development and wide applicability of the 

method. 

The 33 publications resulting from this selection (Table 1) were examined to obtain information 

on the process and criteria used to develop each scheme. Objectives, scope, geographical location, 

scale, parameters used, and classes developed were recorded for each scheme. Conceptual and 

practical gaps of individual classification schemes were also recorded (Appendix 1b). The 

information collected was then used as a frame of reference for the development of the structural 

classification scheme presented in this study. 

2.2.3 Steps 2-3: Identification and selection of attributes and classes 
 

The selection of appropriate ecological parameters to focus on and their subdivisions (or ‘classes’) 

was the first step undertaken for the development of a consistent, detailed, and scientifically 

complete classification scheme. 

Structural elements were chosen among the different biological, physical, and chemical attributes 

of an ecosystem as the core parameters of this classification scheme. Knowledge of the structural 
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composition is essential for the characterisation and mapping of an ecosystem. Structural 

elements are also directly impacted by development works for urban, industrial, and agricultural 

purposes (Benfield et al. 2005; Hamilton and Gehrke 2005; Polidoro et al. 2010; Thrush et al. 

2004). The most common structural alterations caused by development are introduction/removal 

of sediment, vegetation clearing or thinning, and introduction of artificial features and structures. 

Structural elements, such as vegetation, sediment type, and artificial features, also play an 

important role in influencing the presence and distribution of biota in an ecosystem (Gray 1974; 

Martin et al. 2005; McKee 1993; Wallace 2011). Inclusion of structural elements in assessment 

protocols is therefore relevant also for the evaluation of the status, composition, and distribution 

of the biotic communities of an ecosystem (Pihl 1986; Zajac 1999). As such, the structural 

classification scheme presented here focuses on three physical attributes: sediment, vegetation, 

and artificial structures or modifiers. 

2.2.3.1 Sediment 

Sediment is the primary structural element of most ecosystems (Thornton et al. 1995). Natural 

coastal wetlands in tropical regions are primarily characterised by small-particle sediments such 

as mud, clay and sand (Badarudeen et al. 1996). Hard sediments and rock formations can be found 

as well, albeit less frequently. In modified ecosystems larger sediment size fractions such as 

cobbles and boulders can be used as armouring structures to assist with bank stability and prevent 

erosion (Smith and Chapman 1982).  

Particle size of unconsolidated substrates was used to categorise the different classes of the 

attribute ‘Sediment’. A modified version of the Wentworth (1922) particle size chart was used. 

Sediment was grouped in three major classes to be used as subdivisions or layers for the 

classification scheme: mud (particle size <0.063mm), sand (between 0.063mm and 2mm), and 

gravel (>2mm) (Table 2). Silt and mud were grouped together under ‘mud’ since their difference 

in particle size may be considered negligible for a structural classification at an ecosystem scale. 

The class ‘gravel’ included substrates ranging from granules (2-4mm) to boulders (>256mm) and 

combined all unconsolidated hard substrate types that can be found in an ecosystem (e.g. an 

estuary). Where man-made hard structures (e.g. cement slopes and brick inclines) fully replaced 

unconsolidated substratum (mud/sand/gravel), the sediment type was marked as ‘absent’ and 

replaced by the artificial feature ‘foundation’ (see section 2.4.3). 
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Table 2. Sediment classes selected for the structural classification criteria based on particle size 

SEDIMENT 

Mud Sand Gravel 

<0.063mm 0.063mm-2mm >2mm  

 

2.2.3.2 Vegetation 

Vegetation cover and plant diversity are factors frequently used in landscape planning and 

management as important indicators of ecosystem status and composition (Lindenmayer et al. 

2008). Native vegetation is also often a core element for many ecological restoration projects of 

areas impacted by development (Lindenmayer et al. 2008). In this classification wetland 

vegetation was grouped in three major classes (mangrove, saltmarsh, and terrestrial grass) 

following the information available in literature and from the Department of Environment and 

Heritage Protection (DEHP) 2017 (Table 3). Since this classification scheme focuses solely on the 

structural role/characteristic of vegetation, taxonomical differentiations such as information on 

genus and species of plants were not considered. 

Table 3. Vegetation classes selected based on the type of flora commonly found in tropical wetlands. 

VEGETATION 

Mangrove Saltmarsh Grass 

 

2.2.3.3 Artificial structures or modifiers 

A review of existing literature on developed/urbanised wetlands was carried out to create a list of 

artificial structures and modifiers commonly found in these ecosystems. Relevant peer reviewed 

publications were identified using the following keywords and their combinations: “urbanised 

wetland”, “estuaries”, “piers”, “pontoons”, “boat ramps”, “weirs”, “storm-water drains”, 

“artificial structures”, “bank armouring”, and “coastal construction”.  

Based on the data generated in this literature search, the following four classes were created 

(Table 4): 

- Barriers: any continuous structure that impedes the settlement or landward movement of 

vegetation (e.g. brick walls, concrete slopes, boulder breakwaters, weirs);   

- Foundations: any man-made structure/element replacing or functioning as substratum (e.g. 

cement slopes, boulder inclines, rubble, walkways, roads);   
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- Structures: bridges, pontoons, floating piers, ramps and pillars. All smaller objects were 

recorded as ‘garbage’ (e.g. abandoned shopping trolleys, chains, anchors, nets), and thus 

excluded from the results; and 

- Stormwater drains and pipes: these were considered separately from the other structures, 

being permanent features that discharge surface waters that potentially would transfer 

nutrients/pollutants from the land to adjacent estuaries.   

Table 4. Artificial structure and/or modifier classes grouping the different anthropogenic features that can be 
found in a wetland ecosystem. 

ARTIFICIAL STRUCTURES/MODIFIERS 

Barrier Foundation Structure Stormwater drain 

breakwaters armouring bridges drains 

cement slopes breakwaters piers outlets 

fences cement slopes pillars   

walls ramps platforms   

weir rubble pontoons   

 

Once the structural attributes to be used in the classification scheme (i.e. sediment, vegetation, 

and artificial structures/modifiers) and their classes were defined, the next step was to determine 

the measurement criteria to be used in assessing their presence. Each attribute listed is measured 

in the form of ‘presence/absence’ of the different classes. This allows for equal assessment of the 

three attributes as well as a clear-cut subdivision of an ecosystem in standard and repeatable 

structural habitats. In the context of this thesis a ‘structural habitat’ is defined as a continuous 

spatial unit characterised by the presence of one or more of the ten classes (3 sediment, 3 

vegetation, and 4 artificial structures/modifiers) recorded in a specific tidal range. Each distinct 

combination of classes observed corresponds to an individual habitat type and is labelled with a 

unique code formed by the prefix ‘HAB-’ followed by a number (in order of appearance during the 

first field assessment): e.g. the fourth combination of classes identified would be labelled as 

HAB#04. 

Additionally, habitats without plants were labelled as ‘unvegetated’ (UNVEG), while habitats with 

at least one plant type present were labelled as ‘vegetated’ (VEG). Such classification is often used 

in landscape management as an indicator of ecosystem status and composition (Lindenmayer et 

al. 2008). The presence of artificial structures or modifications was used as an indicator of human 

development and alteration. Thus, habitats without artificial features were labelled as ‘natural’ 

(NAT), while habitats with at least one artificial feature were labelled as ‘modified’ (MOD).  
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A ‘habitat patch’ is defined as a continuous spatial unit with clearly defined boundaries that is 

occupied by a single structural habitat (Figure 3). The combination and distribution of all habitat 

patches in a study area represents the ‘habitat configuration’. The extent of each habitat patch 

(i.e. ‘habitat patch extent’) is defined as the measurement in meters (m) of the linear distance 

from end to end (lengthwise) of the patch (Figure 3). For habitats that occur more than once in 

the same study area, their overall habitat extent (i.e. ‘habitat extent’) is calculated by summing 

the values of the individual habitat patch extents for that particular habitat type mapped in the 

study area.  

 
Figure 3. Example of habitat patch (in orange) and habitat patch extent (in white) in an estuary. 

 

2.2.4 Step 4: Scale, resolution and spatial parameters 
 

The classes chosen for each attribute were selected considering the scale at which the 

classification criteria would be applied. The spatial levels described in the Australian National 

Aquatic Ecosystem Classification Framework (ANAE) (AETG 2012) were used to determine spatial 

scale (Figure 4).  
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Figure 4. Structure and levels of the Interim Australian National Aquatic Ecosystems Classification. Adapted from: 
Aquatic Ecosystems Task Group (2012). Aquatic Ecosystems Toolkit. Module 2. Interim Australian National 
Aquatic Ecosystem Classification Framework. 

 

Level 3 (system) was determined to be the most suitable scale to characterise the structural 

components of an ecosystem. This scale was also deemed relevant for coastal management and 

development planning. Several artificial structures and modifiers such as boat ramps, pontoons 

and storm-water drains are in fact relatively small (ranging from 1 m – 10 m) and visible only at 

small-scale resolutions. Another factor that influenced scale for the application of this model is 

the spatial range of movement, and distribution of several faunal species typical of wetlands. Most 

of the species inhabiting wetlands are invertebrates with a relatively small range of movement 

throughout their adult lives (Batzer and Boix 2016; Gopal and Junk 2000). Faunal communities in 

these ecosystems can therefore vary greatly in composition and abundance between areas of 

small size. Ecological assessments focusing on habitat utilisation and species assemblages need to 

be conducted at a scale relevant for the local biota. The classification scheme described in this 

work should therefore be applied at a within-ecosystem scale: optimal at 1:5000, but extendable 

to 1:10000, and has a minimum mapping unit of 1 m2. 
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The intertidal zone (undifferentiated between lower-mid-high) was selected as the target for the 

application of this classification scheme. The supratidal zone was excluded since this classification 

scheme focuses on coastal wetland ecosystems. The subtidal zone was excluded due to practical 

issues such as poor water visibility and the presence of crocodiles in this region. Additionally, the 

intertidal zone of tropical estuaries is characterised by high distribution and richness of macro-

benthic fauna which play an essential role in the ecological functioning and services of these 

ecosystems (Sheaves et al. 2016). 

2.2.5 Steps 5-6: Testing of the model and expert feedback 
 

To assess the feasibility, consistency and meaningfulness of the classification scheme described 

above, a field test was conducted in a model urbanised estuary: Ross Creek (Townsville, Australia) 

(Figure 5). This tropical estuary, while relatively small in size with its 5 km length, runs through the 

most populated city in northern Australia (approximately 190,000 people; Townsville City Council 

2018a). Ross Creek is classified as the most modified ecosystem in the Great Barrier Reef World 

Heritage Area (Waltham and Sheaves 2015) and represents an exemplary case study of the 

interface between urbanisation and ecological processes. Ross Creek has had over 150 years of 

urban modification and intensification, manifested through alterations of riverbank morphology, 

changes in hydrology, removal of vegetation, and introduction of artificial features. Despite such 

extensive modifications, several areas along this creek are fringed with thick patches of mangroves 

and saltmarsh, and past surveys have determined the presence of numerous invertebrate, bird, 

and fish species (Webb 1999), including a subset of fish species with life cycle linkages with the 

Great Barrier Reef (Sheaves and Johnston 2010). Considering these characteristics, the availability 

of historical records and data, and the plans for further development along the foreshore area of 

Ross Creek (Waltham 2016), this estuary represents a suitable ecosystem to test the applicability 

of the structural habitat classification scheme proposed in this study. 
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Figure 5. Map of the Townsville region with highlighted field test area of Ross Creek.  

 

Fieldwork was carried out along both banks of the creek starting from the furthest reach inland at 

Queens Road (19°16′S, 146°48′E) and ending at the Breakwater Marina (19°15′S, 146°49′E) at the 

mouth of the estuary. The combined length of Ross Creek riverbanks measured 8.8 km: 7.8 km 

were directly accessed from land, while 1 km could not be accessed directly due to private land 

access limitations and was thus examined from a distance (5 m – 100 m). Visual and photographic 

data were recorded along the intertidal zone at low tide every three months in the period August 

2016 – March 2017 to record the composition and configuration of the different habitats found in 

Ross Creek. Assessments were performed individually by four different observers to verify the 

consistency in the application of the classification scheme. No differences in the identification of 

the structural habitats resulted from the individual assessments. Habitat composition was 

evaluated by listing the different habitats present in the intertidal zone of both riverbanks. The 

spatial configuration of structural habitats along the riverbanks was mapped by using landmarks 

and photographic evidence. A GPS was initially used during a test run to mark coordinates of each 

structural habitat edge, however the margin of error of a few meters associated with the GPS 

devices resulted too great to allow for accurate mapping, particularly considering that several 
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structural habitat patches were smaller than 5 meters from edge to edge. A map of the distribution 

and extent of the habitats identified was then prepared using a combination of aerial mapping 

(source: Google Earth) and ground-truthing (photographic evidence and landmarks recorded in 

the field). 

Fifty-five different structural habitats were identified in Ross Creek. All ten classes belonging to 

the three structural attributes were observed throughout the estuary. Mud and gravel were the 

most common sediment types, present in 34 and 35 of the habitats, respectively, while sand 

occurred in 19 only. Mangrove trees, although the prominent feature of Ross Creek vegetation, 

were present in 21 habitats, often as narrow bands (<5 m thickness landward) along the riverbank. 

Saltmarsh succulents were found in 12 habitats, and wetland grass was found in 9 habitats. 

Thirty-one habitats exhibited at least one artificial structure, the most common type being 

stormwater drains. Artificial structures of the ‘foundation’ group – i.e. cement slopes and boulder 

inclines – were found in 19 habitats. Structures such as bridges, pontoons, boat ramps and floating 

piers were present in 11 habitats. Physical barriers such as vertical walls and brick embankments 

where the least common artificial structure, observed in 5 habitats of the 55 identified. 

The use of the classification scheme described in sections 2.2 and 2.3 led to simple, 

straightforward, and rapidly generated data relating to the habitat composition and mosaic 

configuration of the ecosystem assessed. Nevertheless, observations during the field testing and 

after analysing the data highlighted the need for alterations to improve the methodology. 

The classification scheme was also presented and described in detail to several experts from 

different fields and backgrounds to obtain feedback on its applicability and relevance. These 

people were identified as the ‘pilot test group’. The preliminary model was presented at the 2017 

scientific conference of the Australian Marine Sciences Association (Darwin, Australia), during 

lectures and special topic events at different institutions around Australia (James Cook University, 

University of New South Wales, Manly Hydraulics Laboratories, NQ Dry Tropics, TropWATER, 

CSIRO), at a city council meeting (Townsville), and during meetings with representatives of the 

public in Townsville. Overall, the classification scheme was received with high interest and 

considered to be both adequate and suitable for application in research and management. 

Feedback and comments provided was used to further refine the classification methodology. The 

changes are detailed in the section below.  
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2.2.6 Steps 7-8: Finalisation of the classification scheme 
 

After the field test and feedback provided by the pilot test group consulted (see section 2.2.5), the 

following definitions and adjustments were made (Tables 5-6-7): 

• The ‘sediment’ attribute was renamed as ‘substratum’.  

• The difference in size between boulders and the other unconsolidated hard substrates was 

considered too great for a single common class. Boulders were therefore separated and 

introduced as a class separately. 

• A ‘pavement’ class was introduced to represent undifferentiated consolidated substrates 

such as bedrock and cement.  

Table 5. Updated sediment classes selected for the structural classification criteria based on particle size and 
consolidation. 

SUBSTRATUM 

Mud Sand Gravel Boulder Pavement 

<0.063mm 0.063mm-2mm 2.1mm-256mm >256mm  consolidated 

 

• In the ‘vegetation’ attribute the class ‘grass’ was removed due to its substantial absence in 

intertidal and subtidal zones.  

• ‘Seagrass’ and ‘macroalgae’ classes were added to the vegetation attribute. 

• The class ‘non-native’ was introduced to represent any form of exotic or non-native 

vegetation intentionally introduced in the intertidal zone of wetlands (e.g. ornamental plants, 

exotic trees, or artificial forests/gardens). 

Table 6. Updated vegetation classes selected based on the type of flora commonly found in tropical wetlands. 

VEGETATION 

Mangrove Saltmarsh Seagrass Macroalgae Non-Native 

 

• The ‘artificial structures/modifications’ attribute was renamed as ‘artificial features’.  

• Due to the overlap between some of the classes within the artificial features attribute (e.g. 

brick wall being both a ‘barrier’ and a ‘substratum’) as well as with some of the substratum 

classes (e.g. boulders introduced as bank armouring being both ‘gravel’ and ‘substratum’), 

the classification of the attribute ‘artificial features’ was changed to the following classes: 

- Armouring: this class indicates whether one or more of the substratum classes have been 

artificially introduced to prevent erosion or to strengthen the riverbank.  
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- Drain: this class remains unchanged and represents the presence of any pipe, drain or 

outlet that introduces (uninterruptedly, periodically or just following flooding events) 

water into the ecosystem. 

- Raised (structure): any artificial structure that extends over the water and is supported 

by pylons or columns. It includes bridges, piers, docks, and other permanent raised 

structures. 

- Level (structure): any artificial structure built fully in contact with water that serves the 

purpose of a landing stage for vessels. It includes boat ramps, jetties, pontoons, and other 

permanent floating platforms. 

- Pillars: any permanent supportive structure in use or abandoned. 

- Roads: pathways, roads and tracks caused by or laid for vehicle transit. 

• The qualifier symbol ‘*’ was introduced to indicate whether the individual substratum classes 

recorded in a habitat are natural in origin or have been artificially introduced or are a result 

of the degradation of artificial structures. Its role is to help distinguish between ‘natural’ and 

‘artificial’ substratum (e.g. natural rocks vs. armouring boulders; natural bedrock vs. 

pavement or cemented slopes) and facilitate the distinction and labelling of individual 

habitats as either NAT or MOD. This symbol is to be placed immediately after the acronym of 

each artificial substratum class. Modified (MOD) habitats are defined as habitats that have at 

least one artificial feature or one class of substratum that has been artificially introduced 

(marked by the qualifier ‘*’). Natural (NAT) habitats are defined as habitats without any 

artificial feature or artificially introduced substratum. 

Table 7. Updated artificial feature classes grouping the different anthropogenic elements that can be found in a 
wetland ecosystem. 

ARTIFICIAL FEATURES 

Armouring Drain Raised Level Pillars Road 

 

• Habitat nomenclature was also changed from the numerical ‘HAB#n’ naming to a descriptive 

and sequential one that expresses more clearly and in detail the different classes found in a 

given habitat. All classes were given an abbreviation or acronym as symbol to be used in the 

nomenclature process of the different habitats, as shown in Table 8. 
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Table 8. List of the sixteen different classes belonging to the three structural attributes, and their 
corresponding abbreviation in the scheme. 

 SUBSTRATUM  
Class Mud Sand Gravel Boulder Pavement  
Symbol MUD SAN GRV BLD PAV  

 VEGETATION  
Class Mangrove Saltmarsh Seagrass Macroalgae Non-Native  
Symbol MG SM SG MA (NN)  

 ARTIFICIAL FEATURES 

Class Armouring Drain Raised Level Pillars Roads 
Symbol (A) (D) (R) (L) (P) (RD) 

* = Qualifier of ‘artificial’ substratum  
 

Habitat names are created by concatenating in the following sequential order the symbols of the 

different classes found in each individual habitat: substratum-vegetation-artificial features. The 

symbol ‘*’ is to be placed after the acronym of the relevant substratum class when it is artificial in 

origin. 

 

Example: 

A habitat having a combination of mud and gravel (the latter originated from construction rubble) 

with mangroves and a pier will therefore be named: MUD-GRV*-MG-(R). 

 

Such nomenclature not only permits the immediate identification of the structural components of 

a habitat in absence of photographic and/or map material, but also assists with the assessment of 

potential structural connections among habitats. Moreover, this nomenclature allows for the 

hierarchical placement of structural habitats based on their characteristics and potential 

identification of patterns of change and levels of modification (Figure 6).  

 

 
Figure 6. Example of hierarchical placement of structural habitat types based on their structural characteristics 
and added features/modifications. The base habitat ‘MUD’ can generate or change into several different habitat 
types with the addition of one or more other structural elements. 
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The option of creating hierarchical connections between different habitat types is a useful tool to 

hypothesise patterns of change in the structural composition of an ecosystem. The information 

can then be complemented with data collected on the influence of different structural 

features/habitats on species assemblages to evaluate effects over time of development works on 

local biodiversity. Knowledge of how different structural modifications affect the ecosystem and 

change over time would be useful in ecological restoration to prioritise areas for intervention and 

in further development plans to identify strategies to minimise impacts on the ecosystem 

connectivity, processes, and functioning. For instance, a habitat having artificial gravel (GRV*) 

located downstream of a habitat characterised by artificial pavement (PAV*-(A)) could be the 

result of an ongoing, progressive degradation process. The deterioration of the pavement with 

time could contribute to the formation of cobbles and rocks that have been gradually transported 

downstream during high water flow, and then deposited in a different habitat on an accretion 

bank. Alternatively, a large section characterised with bare mud (MUD) with a small habitat patch 

of mud with mangrove plants (MUD-MG) located at the seaward fringe could indicate the 

beginning of a (re)colonisation or recruitment response.  

The newly updated classification scheme was then submitted again for evaluation by a subset of 

the original reviewers and deemed simple in its application as well as relevant in generating data 

outputs for both research and management. Once finalised, the scheme was then applied for the 

assessment of the habitat composition and configuration of four estuaries in the Townsville region 

subjected to different levels of urban development. The assessment was carried out to further 

test the ability of this classification to rapidly and accurately assess different estuaries regardless 

of their size or their extent of modification. 

 

2.3 Discussion 
 

The increasing rate of development in coastal regions, particularly in tropical areas, means that 

more effective plans for the conservation of existing resources and restoration of affected areas 

at a local scale are critically needed (Foley et al. 2010; Moberg and Rönnbäck 2003; Rogers et al. 

2016). In-depth knowledge on the composition, status, functioning, and services of an ecosystem 

will assist managers in making informed decisions with respect to ecosystem-based management 

(Airoldi and Beck 2007; Moberg and Rönnbäck 2003; Morrissey et al. 2012). Such information is 

often not available or applicable at a local scale, does not include artificial features as components 

of an ecosystem, and its acquisition requires extensive work with timelines and budgets that are 
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in conflict with those available for development and landscape management. Many existing 

ecological assessment tools such as classification schemes and mapping protocols have been 

developed for scales coarser than those at which urban and industrial development take place and 

present several issues that still need to be addressed (Appendix 1b). High variability in scale, 

resolution, and parameters are often contributing problems that lead to the development of many 

different approaches for the classification of the same ecosystem. Additionally, the variety in 

methodologies employed for the collection of data (as well as sampling size/frequency) increase 

the likelihood of limitations and further obstacles to the comparability of the data collected. 

Alongside the lack of standardised rapid assessment protocols that provide information relevant 

at a local scale, there is also an overall lack of integration of anthropogenic features as detailed 

‘classes’ or ‘layers’ of these classification systems (see sections 1.2 and 1.3). Complete and 

thorough description of the physical and structural characteristics of an ecosystem is required for 

proper assessment and planning. Considering the prevalence of human structures and 

modifications along coastlines and their effect on the environment (Barwick et al. 2004; Becker et 

al. 2013; Bulleri and Chapman 2010; Dugan et al. 2011; Mayer-Pinto et al. 2018), the integration 

of such factors in classification schemes is essential for the objective of management and 

conservation. As such, standardised schemes for the classification of all structural components 

present in an ecosystem provide information to be applied for the prevention of adverse impacts 

in future development and for restoration of areas already affected (Baker and Harris 2020; 

Davidson-Arnott et al. 2019; Guarinello et al. 2010). 

The classification scheme for structural habitats of tropical coastal wetlands presented in this 

study was developed with the intention of complementing existing classification schemes at a 

finer scale and providing a template applicable to other ecosystems (e.g. freshwater or beaches) 

and geographical areas (e.g. temperate and polar). This classification is a simple, cost-effective 

and rapid assessment tool for mapping and acquisition of information on the structural 

composition of tropical coastal wetlands. The information collected is presented in a way that 

quickly provides standard ecological units (i.e. structural habitats) that can be investigated further 

either individually or as a mosaic to suit the requirements and objectives of end-users. Information 

on chemical or other environmental variables can be easily integrated to this scheme. Combining 

information on the composition, distribution and potential relationship among habitats of an 

ecosystem with historical data and/or other environmental parameters will assist in developing 

an in-depth understanding of the status of an ecosystem. Additionally, the use of ecological units 

allows for the linking of structural elements with faunal communities, ecosystem processes, and 
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services. Knowledge of the ecological composition, status, functioning, and services of coastal 

ecosystems that are directly or indirectly affected by human presence/expansion can then be 

easily applied by different end users (e.g. researchers, managers, and officials) to achieve 

objectives and outcomes set. 

This classification scheme can be easily applied to other coastal ecosystems and locations thanks 

to its simple framework and flexibility, thus providing a standard template that would increase the 

comparability of information collected in different areas. New structural classes can be added 

accordingly based on the characteristics of other coastal ecosystems around the world without 

compromising the core structure, applicability, and type of information provided by this 

classification scheme. The language and standard ecological units also ensure that the 

classification can be used by stakeholders from different areas of expertise, thus contributing to 

bridging the communication gap between research, management, and development.  

This classification scheme also addresses several gaps currently present in most existing 

assessment tools (see Chapter 1): 1) It focuses on a scale and resolution suitable for local 

management decisions with the possibility to assess structural habitats ranging from a few meters 

to several kilometres. This can be applied in the context of small-scale management (e.g. a city 

council addressing the introduction/change of a stormwater drain) as well as large scale 

development (e.g. the armouring of a long stretch of riverbank against erosion); 2) It includes 

artificial features as structural elements of an ecosystem, thus allowing the comprehensive 

evaluation of the type and extent of structural modification present in an ecosystem as 

consequence of progressive development; 3) It provides a standardised and user-friendly method 

to rapidly assess the structural composition of an ecosystem. 

This basic and rapid assessment tool allows managers and stakeholders to be in a stronger position 

to make informed decisions, adequately plan for development while maximising the conservation 

of natural resources or the restoration of affected areas at a local scale. Integrated approaches for 

landscape management and ecosystem-based management are essential to balance the need for 

human expansion with the duty to preserve or restore as much as possible the ecological 

resources available and related services (Foley et al. 2010; Foley et al. 2013; Moberg and Rönnbäck 

2003; Morrissey et al. 2012; Rosenberg and McLeod 2005). The integration of this classification as 

a standard for development planning and restoration efforts would facilitate the prioritisation of 

intervention and potentially increase the successful achievement of set environmental goals.  
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The next step in this research is to apply the newly developed classification scheme to four tropical 

estuaries exposed to different types and extents of development over the decades. The 

composition and configuration of structural habitats in the different estuaries was mapped and 

then used to assess the influence of presence and change in structural elements on local faunal 

assemblages.   
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3 Chapter 3 

 

Structural habitat configuration of estuaries exposed to                 

different extent of urban development. 
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3.1 Introduction 
 

Throughout history, coastal wetlands and estuaries have been modified by urban expansion and 

land conversion for agricultural or fisheries use (Diegues 1999; Ehrenfeld 2000; Wolanski and Elliott 

2015; Yeung 2001; Zhang et al. 2013). The geomorphological and ecological composition of these 

ecosystems are modified by development (McKinney 2008; Wolanski and Elliott 2015), with 

changes ranging from minor local alterations to radical transformations (e.g. El Banna and Frihy 

2009; Surian and Rinaldi 2003). Changes to the geomorphology of wetlands and estuaries include: 

alteration of the shape of channels, riverbanks, or shorelines (Dallas and Barnard 2011; Isik et al. 

2008; Surian and Rinaldi 2003), removal or substitution of natural sediment (Isik et al. 2008; Jia et 

al. 2006; Wienberg and Bartholomä 2005), and introduction of artificial features (French 2002; Isik 

et al. 2008). Geomorphological changes can lead to alterations in the hydrology and 

erosion/accretion patterns of an ecosystem – particularly in areas comprising fine-grained 

sediments (El Banna and Frihy 2009; Hapke et al. 2013; Richter et al. 2003). Bank armouring and 

the engineering of permanent artificial structures reduce the natural lateral migration of 

waterways and coastlines (Gregory 2006; Hohensinner et al. 2004; Richter et al. 2003), and the 

ability of these ecosystems to evolve over time (Hapke et al. 2013). This results in a loss of 

resilience and the ability to adapt to changing or extreme environmental conditions such as 

flooding events, droughts, or geological phenomena (Biron et al. 2014; El Banna and Frihy 2009). 

The reduction of vegetation occurring with development and urban expansion also contributes to 

overall loss of resilience to flooding events and sea level rise (El Banna and Frihy 2009; Lee et al. 

2006). Changes in vegetation cover (i.e. patching, thinning, clearing), landscape modifications, and 

the introduction of artificial features can result in the loss or fragmentation of natural habitats 

(Lindenmayer and Fisher 2013), as well as changes to biogeochemical processes; most notably 

carbon, nitrogen, and sulphur cycles (Lal 2015). Such alterations not only affect the composition 

of natural ecosystems, but also the diversity of plant and animal species supported by different 

habitats (Airoldi and Beck 2007; McKinney 2008).  

Coastal wetlands and estuaries that have been progressively modified by development – in some 

cases even over hundreds of years – are likely to have a different structural composition and 

configuration (i.e. types and spatial distribution of substratum, vegetation, and artificial features) 

when compared to less developed or ‘natural’ ecosystems (Airoldi and Beck 2007; Lee et al. 2006; 

Lindenmayer and Fisher 2013). Such differences in structural composition can equate to changes 

in the presence, abundance, and distribution of local biota (Alberti 2005; Bulleri and Chapman 

2010; Connell and Glasby 1999; Mayer-Pinto et al. 2018), in some cases even shifting and 
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becoming novel ecosystems (Hobbs et al. 2013). It is important to note however that changes 

observed in the biotic communities do not necessarily correspond to loss in species richness. 

Anthropogenic alterations and artificial features can provide new conditions for different species 

to colonise the area (e.g. Bulleri and Chapman 2010; Cermak 2002; Connell 2001). This is a concept 

also used in ecological restoration and enhancement, such as artificial reefs (Charbonnel et al. 

2002; Gratwicke and Speight 2005) and ecological engineering (or “eco-engineering”) (Browne and 

Chapman 2011; Dyson and Yocom 2015; Paalvast et al. 2012; Strain et al. 2018; Todd et al. 2019).  

Conservation and/or restoration of tropical wetlands and estuaries facing development sprawl 

requires a clear and thorough understanding of the structural composition and configuration of 

these ecosystems. As a result, information on the composition and role of different structural 

habitats of the target ecosystem is essential for the prioritisation of efforts and rapid decision-

making.  

In this part of my research I selected four model estuaries and used the classification scheme for 

structural habitats (HABs) (see Chapter 2) as a rapid assessment tool to: 

a) Determine the structural habitat complexity of each estuary by assessing their structural 

habitat composition (i.e. list of the types of structural habitats in the area assessed) and 

structural habitat configuration (i.e. the spatial distribution of the different structural 

habitats in the area assessed). 

b) Compare the structural habitat complexity and extent of structural modification of four 

estuaries exposed to different extents of development. 

c) Compare patterns of distribution of structural modification in the four estuaries. 

d) Identify the ‘dominant’ habitats (i.e. habitats with the highest measure of habitat extent 

in the area assessed) for each estuary. 

e) Evaluate the differences in proportion of natural-modified habitats and vegetated-

unvegetated habitats to examine the role of vegetation and modifications as indicators of 

ecosystem status. 

f) Test the adequacy of the rapid assessment tool in evaluating the structural composition 

and complexity of a range of estuaries exposed to different extents of development. 
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3.2 Materials and methods 
 

3.2.1 Study areas  
 

The tropical estuaries examined in this study are located in the Townsville province (-19°15'13.80’ 

S ; 146°49'3.59’ E) adjacent to the Great Barrier Reef World Heritage Area (GBRWHA) in North 

Queensland, Australia. The highly diverse coastal and marine ecosystems characteristic of 

Queensland are physically and functionally connected in a complex network and provide 

numerous essential ecological functions and services (Paice and Chambers 2016). In view of the 

development planned for northern Australia (The State of Queensland 2017), including within and 

adjacent to the GBRWHA, research focusing on understanding the composition of different 

estuaries and providing data essential for the development of appropriate management strategies 

is essential. Management of estuaries along the Queensland coast is relevant also for the broader 

context of the GBR, particularly when considering that several reef species spend part of their 

lifecycle in estuaries and nearby coastal ecosystems (Bradley et al. 2017). The study area was 

designed to test the rapid assessment tool for mapping the structural habitat composition of 

coastal estuaries established in Chapter 2. The Townsville area is characterised by several 

waterways subjected to different extents of urban/industrial development. Since one of the goals 

of this study was to assess the impact of anthropogenic development on the structural habitat 

composition of tropical estuaries, attempts were made to account for and minimise the impact of 

potential biases caused by naturally occurring differences, as much as possible. Environmental 

factors that could influence structural composition, such as climatic, water quality, and 

geomorphic conditions, were thus considered when choosing the estuaries for this study. For this 

reason, only estuaries characterised by similar geomorphological composition/structure and 

exposed to the same meteorological events typical of the dry tropics were selected.  Four estuaries 

were chosen for this study (Figure 7). 
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Figure 7. Map of the study area highlighting the four estuaries assessed in this study: Althaus Creek, Ross Creek, 
Ross River, and Alligator Creek. 

 

1) Ross Creek (RCk) [5 km linear length] 

This tropical estuary, while relatively small with its 5 km length, runs through the most populated 

city in northern Australia (approximately 190,000 people; Townsville City Council 2018a) and is 

classified as the most modified estuary in the GBRWHA (Waltham and Sheaves 2015). Ross Creek 

is an exemplary case study of the interface between urbanisation and ecological processes, and 

how development can progressively shape and change the structure and composition of an 

estuary. Ross Creek was originally a tributary of Ross River, but its connection with the main river 

was gradually cut off due to land reclamation and development works carried out in the 50’s and 

60’s for Townsville’s expansion (The State of Queensland 2007; The State of Queensland 2011). 

This estuary could represent what future coastal seascapes might look like given expanding tropical 

coastal urban and industrial development (State of the Tropics, 2014; The State of Queensland 

2017). Ross Creek has been exposed to over 150 years of urban modification and intensification, 

manifested through alterations of riverbank morphology, changes in hydrology and water quality, 

removal of natural vegetation along the creek margins, and introduction of infrastructure and 

artificial features (Browne et al. 1994). Despite this, several areas along the creek still support 

mangrove vegetation, and past surveys have recorded many invertebrate, bird and fish species 

that utilise this creek (Webb 1999). This includes also a subset of marine fish species with life cycle 

linkages with the Great Barrier Reef (Sheaves and Johnston 2010). 
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2) Ross River (RR) [49 km linear length] 

Ross River is the major river flowing through Townsville, representing the primary source of 

freshwater for the city as well as providing several social, environmental and economic services 

(EPPD 2013). The estuarine section of this river extends from the mouth up to Aplins weir, the first 

of several built concrete barrages that have been introduced to regulate freshwater flow 

(Townsville City Council 2018b). Similar to Ross Creek, this estuary supports several sections of 

continuous wetland along its banks despite having been subjected to decades of urbanisation and 

port development. As such, Ross River still supports conditions suitable for many vertebrate and 

invertebrate species typical of local coastal wetlands (Sheaves et al. 2012). 

3) Alligator Creek (AlCk) [52.5 km linear length] 

This estuary is located 12 km South-East of Townsville within the western border of the Bowling 

Green Bay National Park, a wetland area of international importance and protected under the 

Ramsar Convention (WetlandInfo 2018a). Alligator Creek has been exposed to limited 

development on the riverbank due to its location in a national park and in a rural area with low 

population density (Google Earth 2017a; WetlandInfo 2016). The only visible development along 

the riverbank is located around the boat ramp of the Cleveland Palms Private Estate community, 

on the western bank. 

4) Althaus Creek (AtCk) [21 km linear length] 

This estuary is located near the Saunders Beach community, a sub-urban area 25 km North-West 

of Townsville, within the Black catchment (WetlandInfo 2018b). Flowing through a rural area, most 

of the riverbanks of Althaus Creek have remained structurally unmodified, with only few locations 

downstream, closer to the mouth, that have been cleared to provide direct access to the water for 

recreational purposes(Google Earth 2017b). 

Side channels and tributaries were not included in this survey. 

3.2.2 Habitat composition investigation 
 

In the context of this research, ‘habitat composition’ is defined as the list of different types of 

structural habitats identified in a spatially defined area. The classification scheme presented in this 

thesis can be applied to assess the habitat composition of areas of different sizes based on the 

scale and spatial boundaries defined a priori by managers or end-users. Such scales can range from 

a few meters to entire ecosystems (ANAE level 3 or below) (AETG 2012). The habitat composition 

of each estuary was assessed by recording the different types of structural habitat present in the 

intertidal zone of both riverbanks, using the standardised classification scheme for structural 
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habitats of tropical coastal wetland ecosystems (see Chapter 2). In brief, a ‘structural habitat’ is 

defined as the combination of one or more of sixteen classes belonging to the structural attributes 

‘substratum’, ‘vegetation’, and ‘artificial features’ (Table 9). 

Table 9. List of the different structural classes (and their corresponding acronym) to be used for the 
classification of individual habitats found in natural and modified wetland/coastal areas. 

 SUBSTRATUM  
Class Mud Sand Gravel Boulders Pavement  
Symbol MUD SAN GRV/GRV* BLD/BLD* PAV/PAV*  
Grain size <0.063mm 0.063mm-2mm 2.1mm-256mm >256mm  consolidated  

 VEGETATION  
Class Mangrove Saltmarsh Seagrass Macroalgae Non-Native  
Symbol MG SM SG MA (NN)  

 ARTIFICIAL FEATURES 

Class Armouring  Drain Raised structure Level structure Pillars Roads 

Symbol (A) (D) (R) (L) (P) (RD) 

 Qualifier of 'artificial' for Substratum = *    
 

The intertidal zone (mean low water spring tide to mean high water spring tide) was selected as 

the target section to be mapped since most artificial structures are set in this range. Additionally, 

physical alterations of the banks such as armouring, land reclamation and vegetation clearing are 

usually performed in intertidal areas (Chen et al. 2016; Dugan et al. 2011; Richards et al. 2016). All 

surveys were carried out during low spring tides to allow full access to the intertidal zone of each 

estuary for a complete and thorough mapping of its structural habitats. 

The sectors of each estuary characterised and mapped in this survey are the following: 

RCk (4 km assessed of 5 km total): from the ferry terminal located at the mouth of the creek until 

the furthest reach upstream (delimited by Queens Road). 

RR (10.9 km assessed of 49 km total): from the mouth of the river (delimited by Southern Port 

Road) until Aplins weir, the first barrage from downstream that separates the estuarine section of 

the river from the freshwater section. 

AlCk (14 km assessed of 52.5 km total): from the mouth of the creek until the first weir located 

upstream. 

AtCk (2.5 km assessed of 21 km total): only the first 2.5 km measured from the mouth of the creek 

could be assessed due to limitations in the accessibility of the estuarine sections bordered by 

private properties. The water in the creek at low tide was too shallow to allow the use of a vessel 

to access the intertidal zone, but deep enough in some sections to represent a danger for the 

surveyors to wade in the water (due to the presence of estuarine crocodiles in the region).  
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It is understood that due to the difference in length of each sector assessed for the four estuaries 

(as they represent the estuarine section of each of these waterways), careful consideration has to 

be applied when interpreting the data and results obtained. 

The surveys were carried out by walking in the intertidal zone of each riverbank moving from the 

mouth of the estuary to the highest reach upstream (or otherwise defined limit of the estuarine 

area). On some occasions, due to sufficient water depth at low tide, a vessel was used to assist in 

reaching remote or hard-to-access locations. Surveys were repeated periodically from October 

2016 to March 2018 to ascertain the consistency of results through the different meteorological 

events, which could have affected the presence, composition and distribution of sediment and 

vegetation (e.g. heavy rains, flooding, and cyclones). Surveys for the four estuaries were conducted 

during spring tides as follow: 

Round 1: Oct-Nov 2016 

Round 2: May-June 2017 

Round 3: Aug-Sept 2017 

Round 4: Feb-March 2018 

Visual/photographic assessments and granulometric analysis were employed to determine the 

presence of each structural class at a given location: 

- Substratum classes were assessed by sieving three subsamples of sediment (500 mL) 

collected from the top 5 cm horizon, where possible, for particle size fractionation of the 

finer sediments. A tape measure was used for the classification of gravel and boulders. 

Locations with consolidated sediment were marked as ‘pavement’. A further visual 

analysis and comparison with historical records was carried out to determine whether the 

sediment classes at each location were of natural or anthropogenic origin (e.g. armouring, 

rubble, detritus). The symbol ‘*’ was added after the acronym of each sediment class 

deemed ‘of artificial origin’. 

- Vegetation classes were determined by identifying the plants observed at each location 

as either mangrove trees or saltmarsh plants (no seagrass or macroalgae were observed 

in this survey). Following the classification scheme for structural habitat of intertidal 

wetlands, vegetation observed in the field were as such classified as ‘Mangrove’ (MG) or 

‘Saltmarsh’ (SM). No taxonomic identification was carried out.  
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- Artificial features were classified based on the structural characteristics and position of 

man-made elements located in the intertidal zone. Photographic evidence was used to 

record artificial features. 

Each habitat type identified was labelled with a unique name created by concatenating the 

acronyms and symbols of the structural classes it is formed of, in order of appearance left to right 

and top to bottom as shown in Table 6. Example: a habitat formed by mud, artificial gravel, and 

mangroves would be recorded as ‘MUD-GRV*-MG’. The position and extent of each habitat along 

the banks of the estuary was recorded on a paper map in the field using photographic evidence 

and landmarks to record the exact position and later digitised. GPS devices were not used due to 

their margin of error of a few meters that prevents accurate recording of the edges of the 

individual structural habitats. 

3.2.3 Habitat extent and mosaic configuration 
 

A ‘habitat patch’ was defined as the section of the intertidal zone occupied by a single type of 

structural habitat (or ‘habitat type’). A map of the location, size and characteristics of all habitat 

patches identified was created for each estuary assessed. Once the different structural habitats 

were identified along the creek, the information on the individual habitat patches collected 

through a combination of aerial mapping (source: Google Earth) and ground-truthing was used to 

prepare a habitat mosaic map for each estuary using a geographic information system (GIS) 

software. The distance from edge to edge lengthwise of each patch (following the bank 

meandering) corresponded to the measure of ‘habitat patch extent’. The overall combined extent 

of each habitat type (or ‘habitat extent’) was calculated by summing the extent of all the patches 

mapped in the estuary belonging to that habitat type. Calculations were made both in km and as 

% of the combined length of both riverbanks. The total number of patches of each habitat 

identified in an estuary was used to represent the frequency of occurrence (or ‘patch frequency’) 

for that habitat. 

The data on habitat composition and extent permitted the calculation of the overall extent and 

distribution of each habitat type, as well as of the individual sixteen structural classes. Additionally, 

the data collected allowed determination of the ‘natural-modified’ and ‘vegetated-unvegetated’ 

ratio of each estuary. The presence/absence of vegetation and/or anthropogenic features is often 

used in landscape management as an indicator of ecosystem status and composition (Lindenmayer 

et al. 2008), and applied in the planning of further development, restoration, or conservation 

works. 
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In the context of this research, habitats without plants were classified as ‘unvegetated’ (UNVEG), 

while habitats with one or more vegetation classes were classified as ‘vegetated’ (VEG). The 

presence of artificial structures or artificially introduced substratum/non-native vegetation were 

used as an indicator of human development and alteration.  Thus, habitats without any artificial 

structures, non-native vegetation or artificial substratum (marked by the symbol '*') were classified 

as ‘natural’ (NAT), while habitats with at least one artificial structure/substratum/non-native 

vegetation were classified as ‘modified’ (MOD). The combined extent of all MOD habitats 

identified in an estuary was used as the total measure of extent of structural modification. 

The data collected were used to prepare aerial maps of the structural habitat composition of all 

four estuaries using the program QGIS 2.18. Each map was fitted with nineteen individual layers 

highlighting the presence and distribution of the following: 

-    Structural habitats (habitat mosaic map) 

-    The 16 different structural classes recorded (one per layer) 

-    Natural-modified sections (‘NAT-MOD’) 

-    Vegetated-unvegetated sections (‘VEG-UNVEG’) 

 

3.3 Results 
 

3.3.1 Extent and patterns of structural modification 
 

The four estuaries analysed exhibited a wide range of values of the extent of structural 

modifications in the intertidal zone. Ross Creek and Ross River were the estuaries with the highest 

proportion of modification, with respectively 52.2% and 30.9% of MOD habitat extent (Figure 8a-

b; Appendix 2a-b). Given their history and location in a highly urbanised centre, it was expected 

that these two estuaries would have the most structurally altered shoreline. Alligator Creek and 

Althaus Creek on the other hand had little structural modification along their riverbanks, with only 

4.5% and 1.9% of the total habitat extent modified, respectively (Figure 8c-d; Appendix 2c-d). 
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Figure 8a-d. Aerial map of the habitat mosaic distribution of natural (NAT = blue) and modified (MOD = red) 
structural habitats in the intertidal zone of Ross Creek (a), Ross River (b), Alligator Creek (c), and Althaus Creek 
(d). 

 

In Ross Creek and Ross River MOD habitats were found on both riverbanks and distributed 

throughout the whole estuary, even though some areas showed a greater concentration/extent 

of modifications: closer to the mouth of the creek and the city centre for Ross Creek, and closer 

to the weir upstream for Ross River (Figure 8a-b). In Alligator Creek and Althaus Creek MOD 

habitats were found concentrated in few specific locations along the riverbanks that corresponded 

to boat ramps and other accesses to water, or as rubble in the downstream section close to the 

mouth of the river for Alligator Creek (Figure 8c-d). 

3.3.2 Habitat composition 
 

Only 13 of the 16 structural classes described in the classification scheme were observed in the 

four estuaries assessed for this study. The classes ‘seagrass’, ‘macroalgae’, ‘non-native’, and ‘roads’ 

were not found in this survey. Based on the combination of the observed classes, a total of 79 

different structural habitats were identified in the four estuaries (Table 10). Sixty-four habitats 

(81% of the total) contained at least one artificial feature, be it in the form of an introduced 

artificial structure (Armouring (A), Drains (D), Raised structures (R), Level structures (L), or Pillars 



44 

(P)) or alterations of the sediment composition (indicated with the symbol ‘*’). These habitats were 

thus classified as ‘MOD’. Less than 20% of the habitats identified (15 habitats) were devoid of any 

artificial feature. These habitats were thus classified as ‘NAT’. Of the 64 modified habitats, 49 

contained at least one artificial structure, such as bridges, piers, pontoons, boat ramps, and 

stormwater drains, while 45 were characterised by armouring of the banks in the form of boulder 

piles, cement slopes and rock/brick walls. 

Table 10. Structural habitats identified in the survey listed by their acronym code in alphabetical order and 
colour-marked based on whether they are natural (blue) or modified (red). Each acronym represents an 
individual structural habitat type and lists in sequential order the different structural classes it is comprised of: 
sediment, vegetation, and artificial features. 

HABITAT CODE  HABITAT CODE  HABITAT CODE 

BLD*  MUD-GRV*-(A)-(D)  MUD-SAN-GRV*-MG-SM-(R) 

BLD*-(A)  MUD-GRV*-(A)-(R)  MUD-SAN-GRV*-SM 

BLD*-(A)-(D)  MUD-GRV*-BLD*-(A)  MUD-SAN-MG 

BLD*-(A)-(R)  MUD-GRV*-BLD*-(A)-(D)  MUD-SAN-MG-SM 

BLD*-MG-(A)  MUD-GRV*-BLD*-(A)-(R)  MUD-SAN-SM 

BLD*-PAV*-(A)-(D)  MUD-GRV*-BLD*-MG-SM-(A)  MUD-SM 

BLD*-PAV*-(A)-(R)-(P)  MUD-GRV*-BLD*-SM-(A)  PAV 

BLD*-SM-(A)  MUD-GRV*-MG  PAV*-(A) 

BLD*-SM-(A)-(P)  MUD-GRV*-MG-SM  PAV*-(A)-(D) 

GRV*-(A)  MUD-GRV*-PAV*-(A)  PAV*-(A)-(L) 

GRV*-BLD*-(A)  MUD-GRV*-SM  PAV*-(A)-(P) 

GRV*-BLD*-(A)-(D)  MUD-MG  PAV*-(A)-(R) 

GRV*-BLD*-MG-(A)  MUD-MG-SM  PAV*-(A)-(R)-(P) 

GRV*-BLD*-MG-(A)-(D)  MUD-PAV  PAV*-MG-(A) 

GRV*-BLD*-MG-SM-(A)  MUD-PAV*-(A)-(D)  PAV-MG 

GRV*-BLD*-SM-(A)  MUD-PAV*-(A)-(L)  SAN 

GRV*-MG-SM-(A)  MUD-PAV*-(A)-(R)  SAN-BLD 

GRV*-PAV*-MG-(A)  MUD-PAV*-MG-(A)-(D)  SAN-GRV* 

GRV*-SM-(A)-(D)  MUD-SAN  SAN-GRV*-BLD* 

MUD  MUD-SAN-GRV*  SAN-GRV*-BLD*-MG-(A) 

MUD-BLD*-(A)  MUD-SAN-GRV*-BLD*  SAN-GRV*-MG 

MUD-BLD*-MG-(A)  MUD-SAN-GRV*-BLD*-(A)  SAN-GRV*-MG-SM 

MUD-BLD*-MG-(A)-(R)  MUD-SAN-GRV*-BLD*-SM  SAN-MG 

MUD-BLD*-MG-SM-(A)  MUD-SAN-GRV*-MG  SAN-MG-SM-(P) 

MUD-BLD*-PAV*-(A)-(D)  MUD-SAN-GRV*-MG-(D)  SAN-SM 

MUD-BLD*-SM-(A)  MUD-SAN-GRV*-MG-(R)   

MUD-GRV*  MUD-SAN-GRV*-MG-SM   

 

Vegetation was present in half of the habitat types classified. Of these 41 habitats, 18 featured 

mangroves only, 12 saltmarsh, and 11 a combination of both plant classes. Thirty-eight habitats, 

on the other hand, were completely devoid of vegetation. 
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The most frequently occurring substratum class observed was mud, found in 41 of the 79 habitats 

listed (51.8%). Following in decreasing order of frequency: gravel (37 habitats), boulders (32 

habitats), sand (24 habitats), and pavement (19 habitats). Despite the presence of mud in more 

than half of the habitats classified and sand in approximately one third, only 12 habitats (15%) 

were characterised exclusively by soft sediment (mud and/or sand). Similarly, 28 habitats (35%) 

featured hard substratum types only, such as gravel, boulders, or pavement. Most habitats listed 

(39) were in fact characterised by a mix of soft and hard sediment types.  Each of the four estuaries 

assessed had a unique composition of structural habitats (Table 11). 

Table 11. List of the structural habitats found in each of the four estuaries assessed: Ross Creek, Ross River, 
Alligator Creek, and Althaus Creek. 

Structural habitat types ROSS CREEK ROSS RIVER ALLIGATOR CREEK ALTHAUS CREEK 

BLD*    X 

BLD*-(A) X X  X 

BLD*-(A)-(D) X X   

BLD*-(A)-(R) X X   

BLD*-MG-(A) X X X  

BLD*-PAV*-(A)-(D)  X   

BLD*-PAV*-(A)-(R)-(P)  X   

BLD*-SM-(A) X X   

BLD*-SM-(A)-(P)  X   

GRV*-(A)    X 

GRV*-BLD*-(A)    X 

GRV*-BLD*-(A)-(D) X X   

GRV*-BLD*-MG-(A)  X   

GRV*-BLD*-MG-(A)-(D)  X   

GRV*-BLD*-MG-SM-(A)  X   

GRV*-BLD*-SM-(A) X X   

GRV*-MG-SM-(A)     

GRV*-PAV*-MG-(A) X    

GRV*-SM-(A)-(D)  X   

MUD X X X X 

MUD-BLD*-(A) X X   

MUD-BLD*-MG-(A) X X X  

MUD-BLD*-MG-(A)-(R) X X X  

MUD-BLD*-MG-SM-(A)  X   

MUD-BLD*-PAV*-(A)-(D) X    

MUD-BLD*-SM-(A) X    

MUD-GRV* X X X X 

MUD-GRV*-(A)-(D) X    

MUD-GRV*-(A)-(R) X    

MUD-GRV*-BLD*-(A)  X X  

MUD-GRV*-BLD*-(A)-(D) X X   

MUD-GRV*-BLD*-(A)-(R)  X   

MUD-GRV*-BLD*-MG-SM-(A)  X   

MUD-GRV*-BLD*-SM-(A) X X X  

MUD-GRV*-MG X X  X 

MUD-GRV*-MG-SM X X  X 

MUD-GRV*-PAV*-(A) X X X  

MUD-GRV*-SM  X  X 

MUD-MG X X X X 

MUD-MG-SM X X X X 

MUD-PAV    X 

MUD-PAV*-(A)-(D) X X   
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MUD-PAV*-(A)-(L)    X 

MUD-PAV*-(A)-(R) X  X  

MUD-PAV*-MG-(A)-(D) X    

MUD-SAN X X X X 

MUD-SAN-GRV* X X X X 

MUD-SAN-GRV*-BLD* X    

MUD-SAN-GRV*-BLD*-(A) X  X  

MUD-SAN-GRV*-BLD*-SM  X   

MUD-SAN-GRV*-MG X X   

MUD-SAN-GRV*-MG-(D) X    

MUD-SAN-GRV*-MG-(R) X    

MUD-SAN-GRV*-MG-SM X X   

MUD-SAN-GRV*-MG-SM-(R) X    

MUD-SAN-GRV*-SM X X   

MUD-SAN-MG X X X X 

MUD-SAN-MG-SM X X   

MUD-SAN-SM X X   

MUD-SM X X X  

PAV  X  X 

PAV*-(A) X X X X 

PAV*-(A)-(D) X X   

PAV*-(A)-(L)  X  X 

PAV*-(A)-(P)  X   

PAV*-(A)-(R) X    

PAV*-(A)-(R)-(P)  X   

PAV*-MG-(A) X    

PAV-MG   X  

SAN X X  X 

SAN-BLD    X 

SAN-GRV*    X 

SAN-GRV*-BLD* X    

SAN-GRV*-BLD*-MG-(A) X X   

SAN-GRV*-MG X X   

SAN-GRV*-MG-SM X    

SAN-MG    X 

SAN-MG-SM-(P)  X   

SAN-SM X X   

 

The estuaries located in the city centre had the highest diversity in habitat composition, with a 

total of 53 different habitats identified along the riverbanks of Ross River and 51 in Ross Creek. 

Althaus Creek had 23 habitats overall and Alligator Creek was the estuary with the least number 

of habitats, with only 18 recorded (Table 11). 

Ross Creek and Ross River showed similarities not only in the number of habitats identified, but 

also in their types: 35 of the structural habitats observed were in fact found in both estuaries 

(Table 11). Most of these overlapping habitats contained modifications (MOD). It should be noted 

that Ross Creek and Ross River shared all but one of the natural (NAT) habitats identified in these 

two estuaries: MUD, MUD-MG, MUD-MG-SM, MUD-SAN, MUD-SAN-MG, MUD-SAN-MG-SM, 

MUD-SAN-SM, SAN, and SAN-SM. The natural habitat ‘pavement’ (PAV), representing in this case 

bedrock, was found in Ross River only and not in Ross Creek. Alligator Creek and Althaus Creek on 

the other hand showed little similarity in habitat composition. Only eight habitats were common 
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to both estuaries, and those habitats were found in RR and RCk as well (Table 11). The eight 

habitats found in all estuaries assessed are: MUD, MUD-GRV*, MUD-MG, MUD-MG-SM, MUD-

SAN, MUD-SAN-GRV*, MUD-SAN-MG, and PAV*-(A). 

3.3.3 Habitat extent 
 

Patch frequency and habitat extent were assessed for each habitat identified in the four estuaries. 

These measures were used to determine which habitats represented the ‘dominant’ structural 

habitats of the four estuaries. Similarities and/or patterns in habitat dominance between the four 

estuaries were also assessed. Each location on the riverbank could contain more than one type of 

habitat due to the presence of three intertidal levels: high, mid, and low (Figure 9-10).  

 
Figure 9. Example of an estuarine section with different habitats at different intertidal levels. Aerial view of a 
downstream section of Ross Creek, Townsville. Photograph taken from Google Earth 2019. 

 

 
Figure 10. Photograph of the corresponding estuarine section with different habitats at different intertidal levels 
(see Figure 9). Photograph taken in the downstream section of Ross Creek, Townsville. 
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Thus, the measured sum of habitat extents for each estuary was greater than the linear 

measurement of the estuarine sectors assessed (see section 2.2 Habitat Composition) (Table 12). 

Table 12. Comparison between the linear extent of sectors assessed and corresponding sum of habitat extent 
measured in each of the four estuaries. 

Estuary Sector assessed Total measurement of habitat extents 

Ross Creek 4 km 11.9 km 

Ross River 10.9 km 32.8 km 

Alligator Creek 14 km 32.5 km 

Althaus Creek 2.5 km 6.5 km 

 

Despite the high variety of habitats recorded in this study, only 1-3 habitats per estuary were 

identified as ‘dominant’ based on their habitat extent values and patch frequency (Figures 11-14; 

Tables 13-16). Most habitats classified were found either as single/scarce patches and had a linear 

extent smaller than 10% of the total length assessed of each estuary. 

3.3.3.1 Ross Creek 

Three dominant habitats were identified for Ross Creek: MUD-MG, MUD and PAV*-(A). The natural 

habitats MUD and MUD-MG represented the most extensive habitats, accounting for 42.8% of the 

overall length assessed (11.9 km) (Figure 11; Table 13; Appendices 3a and 4a). Over 3 km of the 

intertidal zone of RCk were comprised of unvegetated mud (MUD), accounting for 26% of the total 

extent of this estuary while 16.8% (1.9 km) was formed by mud and mangroves (MUD-MG). The 

combination of pavement and armouring (PAV*-(A)) was found in 1.3 km in total (10.9%). The 

substratum mix of mud and artificial gravel with (MUD-GRV*-MG), and without (MUD-GRV*) 

mangroves comprised for 5.6% and 6.8% of the overall extent, respectively. All other habitats 

identified in Ross Creek measured individually <5% of the total extent. 

 
Figure 11. Percentage of overall extent of the structural habitats identified in Ross Creek (plotted only values 
>1%; Appendix 3a shows values for all 51 habitats). 
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Values of patch frequency for the different habitats found throughout the estuary varied between 

1 and 27 (Table 13; Appendix 4a), the latter value belonging to the habitat MUD.  

Table 13.  Total extent, number of patches, mean patch size, and percentage of total extent of the ten most 
extensive habitat types of Ross Creek. 

Structural habitat type overall extent (m) patches mean patch size (m) % total extent 

MUD-MG 3094.0 27 114.6 26.05 

MUD 1991.5 13 153.2 16.77 

PAV*-(A) 1298.6 11 118.1 10.94 

MUD-GRV* 813.4 16 50.8 6.85 

MUD-GRV*-MG 661.3 16 41.3 5.57 

MUD-SAN-GRV*-MG 497.6 6 82.9 4.19 

BLD*-(A) 496.6 13 38.2 4.18 

BLD*-MG-(A) 443.3 4 110.8 3.73 

MUD-BLD*-(A) 366.4 5 73.3 3.09 

MUD-GRV*-MG-SM 322.7 4 80.7 2.72 

 

3.3.3.2 Ross River 

The dominant habitat in Ross River, both in terms of extent and patch frequency, was the 

combination of mud and mangroves: MUD-MG. This habitat alone accounted for 36.8% of the 

overall extent, a value greater than that of all modified habitats combined (Figure 11). MUD-MG 

occupied over 12 km of the intertidal zone and was distributed over 69 different patches of various 

extent (Figure 12; Table 14; Appendices 3b and 4b).  In descending order, other habitats were: 

MUD (8.3%), MUD-MG-SM (8%), SAN (7.7%) and MUD-GRV* (6.3%).  Despite the higher number 

of modified habitats (MOD=42) compared to natural habitats (NAT=11), 69.1% of the extent of 

Ross River’s intertidal zone was formed by natural habitats, predominantly with mud as 

substratum.  

 
Figure 12. Percentage of overall extent of the structural habitats identified in Ross River (plotted only values 
>1%; Appendix 3b shows values for all 53 habitats).  
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Table 14.  Total extent, number of patches, mean patch size, and percentage of total extent of the ten most 
extensive habitat types of Ross River. 

Structural habitat type overall extent (m) patches mean patch size (m) % total extent 

MUD-MG 12075.2 69 175.0 36.79 

MUD 2721.9 15 181.5 8.29 

MUD-MG-SM 2634.0 28 94.1 8.02 

SAN 2534.9 13 195.0 7.72 

MUD-GRV* 2075.0 15 138.3 6.32 

BLD*-(A) 1490.3 45 33.1 4.54 

MUD-SM 1438.6 28 51.4 4.38 

BLD*-MG-(A) 1061.9 23 46.2 3.23 

MUD-GRV*-MG-SM 853.7 13 65.7 2.60 

MUD-BLD*-MG-(A) 838.9 13 64.5 2.56 

 

3.3.3.3 Alligator Creek 

Alligator creek had almost exclusively natural mud-based habitats: MUD-MG (69.8%), MUD-MG-

SM (18.3%), and MUD-SM (5%) (Figure 13; Table 15; Appendices 3c and 4c). The only modified 

habitat appearing for more than 1% of the total extent was the substratum mix of mud and artificial 

gravel (MUD-GRV*), found predominantly in the downstream section of the river. 

 
Figure 13. Percentage of overall extent of the structural habitats identified in Alligator Creek (plotted only 
values >1%; Appendix 3c shows values for all 18 habitats). 

 

Table 15.  Total extent, number of patches, mean patch size, and percentage of total extent of the ten most 
extensive habitat types found in Alligator Creek. 

Structural habitat type overall extent (m) patches mean patch size (m) % total extent 

MUD-MG 22657.7 79 286.81 69.76 

MUD-MG-SM 5943.3 81 73.37 18.30 

MUD-SM 1634.3 41 39.86 5.03 

MUD-GRV* 1079 2 539.50 3.32 

MUD 223.3 7 31.90 0.69 

PAV-MG 222.3 2 111.15 0.68 

MUD-SAN-MG 180 1 180.00 0.55 

MUD-BLD*-MG-(A) 148.1 4 37.03 0.46 

MUD-SAN 144.3 3 48.10 0.44 

PAV*-(A) 58.9 2 29.45 0.18 
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3.3.3.4 Althaus Creek 

Similar to Alligator Creek, Althaus’ intertidal zone was comprised predominantly by natural 

habitats. In this estuary, however, the substratum ‘sand’ was much more prevalent than in the 

other estuaries. Of the total 6.5 km assessed, 3.9 km (59.7%) were characterised by the 

combination of natural mud and mangroves (MUD-MG), 0.7 km (11.3%) by unvegetated sand 

(SAN), 0.5 km (8%) by unvegetated mud (MUD), and 0.3 km (5.3%) by natural mud and bedrock 

(MUD-PAV) (Figure 14; Table 16; Appendices 3d and 4d). All modified habitats appeared no more 

than three times each, and all with an overall extent of <40 m (<1%). Compared to the other 

estuaries the habitats of Althaus Creek were present individually in fewer patch numbers (Table 

16). 

 
Figure 14. Percentage of overall extent of the structural habitats identified in Althaus Creek (plotted only values 
>1%; Appendix 3d shows values for all 23 habitats). 

 

Table 16.  Total extent, number of patches, mean patch size, and percentage of total extent of the ten most 
extensive habitat types found in Althaus Creek. 

Structural habitat type overall extent (m) patches mean patch size (m) % total extent 

MUD-MG 3875.3 8 484.41 59.66 

SAN 734.5 7 104.9 11.31 

MUD 518.8 5 103.76 7.99 

MUD-PAV 345.6 3 115.20 5.32 

MUD-SAN 297.7 4 74.43 4.58 

SAN-MG 229.2 4 57.3 3.53 

MUD-SAN-MG 157.1 7 22.44 2.42 

PAV 156.8 3 52.27 2.41 

SAN-BLD 51.5 1 51.5 0.79 

SAN-GRV* 37.7 3 12.6 0.58 

 

The most common habitat type (both in extent and frequency) among estuaries was natural mud 

and mangroves (MUD-MG), followed by unvegetated mud (MUD), different combinations of 

mud and vegetation (MUD-MG-SM and MUD-SM), or unvegetated sand (SAN) (Tables 13-16; 

Appendix 4a-d). 
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3.3.4 Habitat mosaic configuration and patterns of structural classes 
 

Each of the four estuaries presented a unique mosaic configuration of the structural habitats 

identified in the survey (Appendix 2a-d). By examining the distribution of each habitat type and 

their structural characteristics throughout all four estuaries it was possible to understand the 

configuration of the different structural classes at ecosystem-scale and determine 

trends/similarities between the estuaries. 

3.3.4.1 Vegetation 

The proportion of vegetated intertidal zone was greater than that of unvegetated areas in all four 

estuaries. Alligator Creek was the estuary with the greatest extent of vegetation, comprised of 

mangroves and/or saltmarsh (VEG=95%). The other estuaries, while still being predominantly 

covered in vegetation, were less extensively vegetated. Ross River and Althaus Creek showed 

similar proportions, with VEG being 66.7% and 66.1% respectively. Ross Creek estuary had the 

smallest value with 52.6% of total vegetation cover. 

Mangrove plants were found to cover most of the intertidal zone in all estuaries. For the most 

urbanised estuaries (RR and RCk) mangroves were predominantly present as narrow patches 

following the riverbanks’ meandering, while in Alligator Creek and Althaus Creek they were found 

mostly as continuous forests that stretched up to a few hundred meters inland (Appendix 2a-d).  

In Ross Creek mangroves occupied 51.5% of the overall extent and were found most extensively in 

the mid and upstream sections, where the presence of undeveloped land or parks still allows for 

thicker vegetated areas along the riverbanks. However, a few dense mangrove patches (either 

remnants or re-colonising a formerly cleared area) were also found in the more urbanised area 

closer to the city centre, despite the extensive modification of the intertidal zone of this section 

and overall lack of space due to the closeness of buildings and roads to the riverbanks (Figure 15; 

Appendix 2a). 
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Figure 15. Close-up of the downstream section of Ross Creek with the habitats featuring mangrove trees 
highlighted in green. 

 

Ross River had an almost continuous mangrove cover, with the only exceptions being a section 

near Queens Road where one side of the riverbank has been completely cleared and armoured 

with cement and boulders, and the extensive boat ramp area located close to the mouth of the 

creek (Appendix 2b). Both Alligator Creek and Althaus Creek riverbanks were almost entirely 

fringed by mangrove forests (Appendix 2c-d). 

Saltmarsh was found less frequently and extensively than mangroves. In Althaus Creek, saltmarsh 

was found in a small section (12.3 m) of the high-intertidal zone at one of the boat ramps (Appendix 

2d). Ross Creek had only a few patches located almost exclusively in the upstream part of the creek 

(Appendix 2a), while Ross River had more sections of the riverbanks lined with saltmarsh, 

particularly in the Annandale wetlands area (Figure 16; Appendix 2b). The estuary with the highest 

presence of saltmarsh was Alligator Creek, with over 7 km distributed in patches of various size 

(ranging from 4.7 m to 529 m) along the entirety of the ecosystem (Appendix 2c). In AlCk, RR, and 

RCk saltmarsh was often found mixed with mangroves. 

 
Figure 16. Annandale wetlands in Ross River with the habitats featuring saltmarsh plants highlighted in red. 
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3.3.4.2 Substratum 

Mud was the predominant substratum type observed in all four estuaries, occupying between 77% 

‒99% of the total intertidal extent (Appendix 2a-d). Sand on the other hand was present at a much 

smaller frequency and usually concentrated in emerging patches in the lower-intertidal zone, often 

on the accreting side of the riverbank (Appendix 2a-d). Althaus Creek was the estuary with the 

highest extent of sandy patches (23.2%), concentrated toward the mouth of the creek and in the 

more upstream area (Appendix 2d). With 14.7% and 12.2% respectively, Ross River and Ross Creek 

showed similar distribution and extent of sandy habitats (Appendix 2a-b). Alligator Creek was the 

estuary to present the least extent of intertidal sand: only 1% of the overall extent and 

concentrated in the furthest upstream section (Appendix 2c). 

Gravel was the second most abundant substratum type, found most extensively in the urbanised 

estuaries – RCk 24.5% and RR 16.6% – but also present in the other estuaries, although in much 

smaller proportions (Appendix 2a-d). In Alligator Creek gravel was recorded predominantly at the 

mouth of the river on the eroding sides of the riverbanks (Figure 8c). Small patches of habitats 

with gravel were also found around the Cleveland Palms boat ramp, the only section of the estuary 

where the riverbank has been altered through construction and the introduction of artificial 

features (Appendix 2c). The gravel substratum class in Althaus Creek was found around the two 

boat ramps and in one location close to the mouth of the creek representing a popular access and 

fishing spot (Appendix 2d). 

Boulders and pavement were found at low proportions throughout the four estuaries. Ross Creek 

and Ross River had the highest abundance in comparison to the other estuaries, mostly due to the 

introduction of boulders and pavement as armouring structures (Appendix 2a-d). 15.9% of the 

overall habitat extent measured in Ross Creek was comprised of boulders, and 13.2% by pavement 

in the form of brick walls, cement slopes and barriers. RCk was the only estuary with boulders and 

pavement present uniquely as artificial structures and not in any natural form. Alongside the 

artificial forms of these substratum classes, Ross River, Alligator Creek and Althaus Creek all 

featured at least one habitat patch formed by natural bedrock or boulders (Appendix 2a-d). 

3.3.4.3 Artificial features 

All estuaries examined here had some level of anthropogenic modification, ranging from alteration 

of the bank substratum to the introduction of artificial structures. Even though Ross Creek was the 

most heavily modified estuary (52.2%), Ross River had the highest diversity and distribution of 

artificial features (Appendix 2a-b). All five classes belonging to the attribute ‘artificial features’ 
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were recorded in multiple locations along this estuary, while only some were found in the other 

estuaries. 

Bank armouring was observed in all four estuaries, although it was highest in Ross River and Ross 

Creek: 29.3% (RCk), 16.1% (RR), 1% (AlCk), and 0.8% (AtCk). In Alligator Creek and Althaus Creek 

armouring structures were concentrated uniquely around boat ramps and other access to water. 

By contrast, Ross Creek and Ross River armoured sections of the banks could be found throughout 

the whole estuary (Appendix 2a-d). 

Similarly, stormwater drains were recorded along both riverbanks of Ross Creek and Ross River, 

while no drain was observed in the two estuaries located outside the city area (Appendix 2a-d). 

Ross Creek had the highest frequency of occurrence of drains, even considering the substantial 

difference in the length of this estuary compared to Ross River. 

Artificial structures residing on top of the water surface or extending in the water (i.e. boat ramps 

and pontoons) were observed in all estuaries, except Ross Creek (Appendix 2a-d). In Ross River 

such structures were concentrated predominantly in the downstream section, closer to the mouth 

of the river, while in Althaus Creek and Alligator Creek the three structures recorded were located 

up to 1.0 km and 4.5 km upstream, respectively. 

Raised structures on the other hand were found in Ross Creek and Ross River distributed 

throughout both estuaries, based on the layout of the roads (bridges) and marinas (piers/docking 

stations). Only one account of raised structure was recorded in Alligator Creek, located at the boat 

ramp at the end of the Cleveland Palms residential area (Appendix 2c). 

The structural class ‘pillars’ was recorded in Ross River only and mostly in association with raised 

structures (Appendix 2b). 

 

3.4 Discussion 
 

3.4.1 Structural habitat composition and extent of modification 
 

The analysis of the habitat composition, extent and configuration of four tropical estuaries 

permitted the quantification of the variety in structural composition across estuaries exposed to 

different types of urban development. The four estuaries assessed had a high diversity in habitat 

composition and extent of modification. However, similarities were observed among the most 
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urbanised estuaries (Ross Creek and Ross River) and among those located in less urbanised areas 

(Alligator Creek and Althaus Creek).   

Due to the development of the city of Townsville along the riverbanks of Ross Creek and Ross River, 

it was expected that these two estuaries would have the highest level of structural modification of 

their intertidal zones (52.2% and 30.9% respectively). Ross Creek in particular has been exposed 

to over 150 years of progressive changes driven by the shaping of the waterway to fit the 

requirements of increasing urban expansion. Development, land reclamation, creation of a 

network of roads supplying access to water have all led to the reduction of the natural habitats 

located along the riverbanks. The same process has taken place in Ross River, with a gradual 

introduction of artificial structures and armouring of the banks leading to habitat fragmentation, 

and an overall decrease in the presence and extent of intertidal vegetation. Over the years the 

shoreline comprising of natural habitats in these two estuaries has been altered and replaced with 

a variety of artificial features. The similarities in habitat complexity between these two estuaries 

becomes more evident when their current habitat composition is considered: despite the 

differences in extent (4 km assessed in Ross Creek vs. 10.9 km in Ross River) the two estuaries 

contain almost the same number of habitat types (51 and 53, respectively) and display a similar 

habitat composition (35 habitat types overlapping) (Table 11).  

Urban expansion and development have extensively affected the structural composition of these 

estuaries and changed from a more natural original state. A substantial difference in both extent 

of modification and number of structural habitats can in fact be observed between the more 

urbanised Ross Creek and Ross River, and the less developed Alligator Creek and Althaus Creek. 

Except for the artificial rubble recorded at the mouth of Alligator Creek, the modifications recorded 

in AlCk and AtCk were located at boat ramps, where the riverbanks have been altered, reinforced, 

and fitted with structures to provide an easy access to water for boats and other vessels. The 

artificial rubble in Alligator Creek has likely been transported downstream and accumulated at the 

mouth from the Cleveland Boat ramp section, where gravel and boulders have been introduced 

over the years to armour the banks close to the ramp and near other structures. Outside these 

small sections of the riverbanks, the rest of the intertidal zone of both Alligator Creek and Althaus 

Creek has remained relatively unchanged, with natural habitats extending uninterrupted along the 

riverbanks. Due to the low population density around these two estuaries there has been no need 

for extensive development of housing bordering the creeks. This also means that armouring of the 

banks, introduction of structures such as bridges, piers, and stormwater drains, or other features 

characteristic of highly populated areas were not carried out in these areas. ‘Natural’ estuaries 
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such as Alligator Creek and Althaus Creek have less habitat types but greater patch extent and 

continuous habitats, while more urbanised estuaries like Ross River and Ross Creek are 

characterised by a greater variety of habitats and generally smaller, fragmented patches. 

The greater variety of habitats observed in the more urbanised estuaries is caused primarily by 

the introduction of artificial features, rather than the fragmentation of natural habitats in smaller 

patches. The number of habitats recorded belonging to the ‘modified’ category greatly surpassed 

those classified as ‘natural’ (overall 64 MOD vs. 15 NAT).  Only five of the sixteen structural classes 

were identified as major baseline natural features of tropical estuaries: mud, sand, pavement 

(bedrock), saltmarsh and mangroves. The combinations of these classes are quite limited in 

comparison to the high variety of habitats that can form with the introduction of artificial features, 

particularly given the possibility for multiple artificial classes to be present in the same habitat. 

The link between a greater diversity in habitats and the presence of anthropogenic modifications 

is evident in the most urbanised estuaries but can be observed in Alligator Creek and Althaus Creek 

as well. Even though less than 5% of the overall extent was recorded as structurally altered in each 

estuary, the number of modified habitats identified in these estuaries was greater than that of the 

natural habitats: NAT-MOD habitat count was 7-11 in AlCk and 10-13 in AtCk, respectively. 

Modified habitats were found concentrated in small areas, while the natural habitats tended to 

extend for long/wide patches along the banks. 

3.4.2 Patterns of distribution of structural habitats 
 

Patterns of distribution shared by two or more of the estuaries emerged when habitats were 

grouped based on their structural classes or presence/absence of modifications. In both Ross Creek 

and Ross River modified habitats were found distributed throughout the whole estuary but 

concentrated particularly in areas closer to the urban centre or to the more developed residential 

areas. This pattern is consistent with the fact that areas with denser population usually correspond 

to a reduction of the space available and an increase of the services and structures required (e.g. 

roads, docking stations, drains). Additionally, whenever there is high density of housing closer to 

the water edge, such as in cities and urban centres built around waterways, reinforcement of the 

banks through armouring in the form of boulder/cement slopes is required to ensure housing 

stability. Less urbanised areas, on the other hand, have little need for such radical alterations of 

the banks (as explained in section 4.1). For example, the distribution of modified habitats in the 

less population-dense Alligator Creek and Althaus Creek was concentrated around the only areas 

used frequently by the local community  (i.e. boat ramps and water accesses), leaving the 

remaining sections of the estuaries unmodified and therefore characterised by extensive natural 
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habitats. It should also be noted that Ross Creek and Ross River have both undergone decades of 

gradual urban modifications, often completed without a long-term ecological perspective set 

during the design phase (Browne et al. 1994; The State of Queensland 2007b). This has led to a 

patchy structural modification process of their riverbanks. The distribution and extent of different 

habitats along RCk and RR display how unplanned urban development contributes to the 

formation of a complex and varied shoreline mosaic. Such a trend is not unique to this area, but 

rather shared in coastal cities that have also been progressively expanding. Examples can be seen 

in Dubai (Burt et al. 2011), Sydney (Johnston et al. 2015), San Francisco (Nichols et al. 1986), and 

the southern California coast (Callaway and Zedler 2004). Urban expansion is a phenomenon 

responsible in many cases for the increase fragmentation of natural areas (Dobbs et al. 2017; 

Forman 2014; Li et al. 2017; Romano et al. 2017) as well as overall changes in spatial distribution 

and reduction of abundance of vegetation (Dobbs et al. 2017; Forman 2014; Li et al. 2017). This is 

particularly evident in areas with higher population density (Dobbs et al. 2017; Romano et al. 2017) 

or where urban expansion has occurred in an unplanned manner, meaning without an overarching 

landscape-focused perspective but rather through a series of uncoordinated and separate changes 

over time (Fiorini et al. 2019; Pauleit et al. 2005; Romano et al. 2017). Should further development 

occur in scarcely modified estuaries such as Alligator Creek and Althaus Creek, attention will be 

needed to carefully plan for and define the areas to be modified (both in location and extent) to 

limit as much as possible structural alterations to the environment and other long-term (and 

costly) negative impacts. This could be done by complementing the information collected on the 

structural habitat composition and configuration of these estuaries with knowledge on the 

biodiversity and functioning associated with the different habitat types. This would allow to 

identify areas to focus conservation efforts on and areas where potential future anthropogenic 

intervention would be less impactful on the environment. This of course needs to be planned on 

a case-by-case basis depending on the characteristics and extent of the development works 

planned. Moreover, information collected on estuaries that have already been affected by similar 

modifications could provide further perspective to adequately plan for impact mitigation rather 

than have to resort to a posteriori remediation/restoration efforts. Strategic landscape planning 

and modification based on environmental assessments are fundamental to ensure the appropriate 

management of natural resources while allowing development to occur in a sustainable manner 

from economic, ecological and social perspectives (Forman 2014). When such practices are not 

carried out appropriately, unchecked urban planning can lead to extensive alterations of the 

natural ecosystems which can be often irreversible or lead to long-term consequences with 
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associated management/restoration costs (El Banna and Frihy 2009; Rydin 2012; Simenstad et al. 

2005). 

3.4.3 Dominant habitats and structural classes 

 
Despite the differences in habitat composition, configuration and extent of modification, all 

estuaries analysed shared the same dominant habitats. These habitats are characterised by the 

presence of mud and/or sand, both with or without vegetation. The combination of MUD-MG in 

particular was the most extensive habitat type in all estuaries, ranging from 26.5% to 69.7% in 

total. Additionally, Ross Creek and Ross River shared the same set of NAT habitats (except for 

pavement), suggesting a comparable – if not identical – original natural composition of these two 

estuaries. This concept is further supported by the fact that these two estuaries were originally 

connected, with Ross Creek being a tributary of Ross River before the extensive development of 

the city of Townsville separated the two estuaries in the early 60s (The State of Queensland 2007; 

The State of Queensland 2011). The similarities in dominant natural habitat types between the 

four estuaries seem to indicate a common natural structural composition for the tropical estuaries 

in this region, a critical factor when considering the need for baseline information to be used in 

restoration and rehabilitation efforts. Features such as mud, sand, and intertidal vegetation are 

equally relevant for the conservation of the natural estuaries of this region and their services. The 

preservation, restoration or re-introduction of these structural components in modified estuaries 

is fundamental, particularly considering the role of vegetation and sediment type in the presence 

and survival of local biota (intertidal and subtidal). Mangrove forests and saltmarsh plants play a 

key role in providing shelter, spawning and feeding grounds for many terrestrial and aquatic animal 

species (Alongi 1998; Beck et al. 2001; Gopal and Junk 2000). Similarly, the presence of soft 

sediment such as mud and sand is essential for the macroinvertebrate communities of wetland 

regions (Anderson 2008; Jayaraj 2008; Kristensen 2008), which support a broader range of biota 

as part of complex food webs (Lugendo et al. 2006; Wallace and Webster 1996). Substratum 

alteration is one of the primary modifications resulting from urban development in wetland areas, 

either in the form of sediment removal (dredging, scouring from high flow events during cyclones), 

introduction (rubble and boulders as armouring features) or substitution (cemented slopes or 

walls). In many cases, there is a tendency to shift from soft sediments to mixed or hard sediments, 

such as gravel, boulders or pavement, as estuarine margins are armoured to prevent erosion 

(Bulleri and Chapman 2010; Morley et al. 2012). Most of the hard sediment recorded in this study 

was of anthropogenic origin: either armouring of the banks (boulder and cement slopes) or as 

rubble and debris originated from the gradual degradation of artificial structures over the years. If 
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not properly planned and regulated, the change in substratum from soft to hard, and the 

introduction of hard artificial structures, could lead to changes in the biodiversity and functioning 

of the wetland/estuary subjected to development. For example, species dependent on the 

presence of soft sediment (such as crabs, polychaetes and other benthic infauna) are likely to 

decrease if not completely disappear from the area, along with the ecological services and 

functions they provide (Aller 1988; Gibson et al. 2001; Hutchings 1998; Mermillod-Blondin et al. 

2004; Montague 1982). On the other hand, the introduction of new hard sediment and structures 

can provide favourable conditions for a different set of species to colonise the area: barnacles, 

oysters and other sessile microbiota can quickly settle on hard surfaces (Anderson and Underwood 

1994), and gastropods, fish as well as other nektonic species can find refuge in the increased 

structural complexity provided by boulders or artificial structures (Barwick et al. 2004; Cermak 

2002; Emson and Faller-Fritsch 1976; Henderson et al. 2019; Mayer-Pinto et al. 2018). Changes in 

substratum type and distribution were observed in all estuaries assessed in this study but resulted 

particularly extensive in Ross Creek and Ross River. Between 30%-52% of the overall intertidal zone 

of these estuaries currently presents alterations in substratum composition, and 16%-29% of the 

riverbanks have been armoured against erosion by introducing rubble/boulder/cement slopes or 

walls. 

The four estuaries assessed showed very similar natural structural composition. As such, it is 

possible to hypothesise that if Alligator Creek and Althaus Creek were to be subjected to 

uncontrolled development, the number of their habitats and degree of fragmentation would 

increase, similarly to Ross Creek and Ross River’s current status. 

Another shared feature among the four estuaries was the presence of mangrove vegetation in 

most of the intertidal zone of these estuaries, with a total extent ranging between 51.5% and 

89.9%. While in Ross Creek mangroves were concentrated predominantly in the mid/upstream 

sections, where the riverbanks had been subjected to fewer modifications, thick patches of 

vegetation were also found in the area in the middle of the city centre. In the other estuaries - 

including Ross River - mangroves were present as almost continuous patches throughout the 

estuary. Despite extensive alterations, it seems that mangrove plants have been able to 

(re)colonise many of the sections that have undergone structural changes, such as sediment type 

modification and introduction of artificial structures. The resilience of estuarine vegetation to 

substantial structural alterations and ability to adapt to new conditions and recolonise/thrive 

despite changes in sediment type or the introduction of artificial structures, as observed in these 

estuaries, needs to be considered during development planning and when prioritising restoration 
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efforts of modified areas (Townsville City Council 2018c). Sometimes it can even result as a 

potential source of maintenance and costs associated with periodical mangrove removal from 

undesired zones (Lundquist et al. 2017). Saltmarsh plants had a similar pattern of 

recolonisation/resilience to the presence of artificial features, albeit in a reduced way when 

compared to mangroves, probably due to their occupation predominantly of the high intertidal 

zone (Daly 2013; Johns 2010). 

3.4.4 Indicators of ecosystem status 
 

Mangrove and saltmarsh plants were also found present in half of the modified habitats identified 

in this study. Vegetation cover and plant diversity are factors frequently used in landscape 

planning and management, particularly in the sense of important indicators of ecosystem status 

and composition (often used also to extrapolate extent of natural vs. modified areas), as well as 

baseline components for habitat conservation/restoration in development planning (Lindenmayer 

et al. 2008). However, the data presented in this study highlight how information on vegetation 

cover/composition alone will likely provide an incomplete picture of the habitat composition and 

configuration of tropical estuaries. Additionally, the VEG-UNVEG approach does not consider the 

presence of structurally modified habitats (i.e. with artificial structures, foundations) where 

vegetation has established (e.g. MUD-BLD*-MG-(A)-(R), or MUD-SAN-GRV*-MG-(R)), or the 

presence of natural habitats typically devoid of vegetation, such as mudflats and exposed sand 

banks (e.g. MUD or SAN). This leads to potential differences in the evaluation of the habitat 

composition and extent within an ecosystem based on the criteria used. The presence/absence of 

vegetation alone is an incomplete indicator for the extent of natural/modified sections of an 

ecosystem. While the NAT-MOD and VEG-UNVEG ratios were almost identical in Alligator Creek 

(95.5%–4.5% for NAT-MOD and 95%–5% for VEG-UNVEG), and quite similar in Ross River (69.1%–

30.9% vs. 66.7%–33.3%, respectively), the situation for Ross Creek and Althaus Creek is 

substantially different. In Althaus Creek the extent of vegetation cover, while still representing 

most of the estuary, was smaller than the overall extent of natural habitats (VEG=66.1% and 

NAT=98.1%). By contrast, the values of overall extent of NAT-MOD and VEG-UNVEG resulted 

almost exactly inverted in RCk: 47.8%–52.2% vs. 52.7%–47.3%, respectively. A complete different 

perception of the status and composition of this estuary would occur if vegetation was used as an 

indicator of ‘naturalness’ or lack of modification. 
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3.4.5 Testing the adequacy of the classification scheme for structural habitats and future 

applications 
 

The classification scheme for structural habitats employed in this study has demonstrated to 

rapidly provide fine-detailed information on the composition, extent, frequency and distribution 

of structural habitats in an ecosystem. Moreover, this assessment tool has been able to detect the 

differences in habitat complexity between four estuaries and provide an accurate quantification 

of the presence and extent of the various structural classes, structural habitats, and major 

subdivisions (NAT-MOD and VEG-UNVEG). This represents an advantage over classification 

schemes that only operate with coarser resolution (e.g. Butler et al. 2017; Davies et al. 2004; 

Howes et al. 2002), as it ensures the ability to detect all structural components present in 

estuaries, both natural and anthropogenic in origin, including those occupying sections smaller 

than a few meters (e.g. stormwater drains, pillars). The ability to provide fine-detailed information 

on the structural components of an estuary prevents misrepresentations and facilitates the 

accurate assessment of the presence, extent, and distribution of modification. Additionally, the 

simple layout and straightforward applicability of this classification scheme resulted in the 

completion of each round of habitat characterisation and mapping in a relatively small amount of 

time (i.e. less than three days per estuary), with the only limiting factor relating to the change of 

tide, which prohibited accessibility of the intertidal zone. The information obtained through the 

application of the classification scheme for structural habitats in four model estuaries with 

different extent of modification has confirmed the relevance of this novel and rapid assessment 

tool for the detailed characterisation and mapping of the structural composition of different 

tropical coastal wetlands. The integration of the classification scheme in assessment protocols 

would lead to the creation of standardised high-resolution datasets on the structural composition 

and extent of development of different estuaries/wetlands. Such standardised information would 

increase the comparability of different cases and/or study areas, thus potentially allowing the 

prediction of patterns of change or effects on spatial heterogeneity associated with future 

development using knowledge acquired through the analysis of similar areas that have already 

been affected by urban expansion (as in the case of Ross Creek and Ross River). The information 

could also be used to identify and monitor patterns of change over time as well as investigate 

differences in rates of structural modification associated with different types of development 

works occurring in a single estuary or wetland. If complemented with other information, such as 

connectivity, hydrology, biodiversity, and concurring stressors, the knowledge acquired through 

the application of the classification scheme proposed could be used to determine thresholds and 

potentials for recovery of the ecosystem as well as assess potential ripple effects on connectivity 
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or biodiversity at larger landscape-scale over time. Such information would be of great relevance 

for landscape management and for the selection of appropriate strategies for ecological 

conservation/restoration in face of development. 

 

3.5 Concluding remarks 
 

The more heavily modified estuaries of Ross Creek and Ross River presented a greater number 

and variety of structural habitats, as well as larger extent of modification, compared to the less 

urbanised Alligator Creek and Althaus Creek, despite the very similar underlying patterns in 

natural composition observed between the four estuaries. Future studies could focus on 

performing repetitive assessments over time to monitor patterns of structural change following 

further development and/or restoration works within the individual estuaries. This would allow to 

determine rate of change and potentially link it to environmental resilience and/or potential for 

recovery of the estuary by complementing the information on structural composition and 

configuration with data on species presence, distribution, and functioning. The high variability in 

the number, distribution and extent of structural habitats present in estuaries within/near 

populated areas can, in fact, have consequences for the presence and distribution of physical 

resources available to flora and fauna as well. These factors are likely to influence species 

composition and habitat utilisation (Bulleri and Chapman 2010; Cermak 2002), with potential 

ripple effects and alteration of ecosystem structure and functions more broadly in a connected 

seascape (Lee et al. 2006). The increased heterogeneity in estuarine and wetland ecosystems 

following human development poses interesting questions about how native faunal communities 

responds to structural changes caused by development, and the extent to which the complexity 

of the new habitats provides enhanced opportunities for species colonisation. Both during and 

after development works the composition and abundance of the biotic communities is likely to 

change, potentially including a decline in local species and an increase of exotic/colonising species 

(e.g. Dafforn et al. 2009). The effect of habitat composition and presence/absence of artificial 

features on the flora and fauna (and thus on the functioning and productivity of an ecosystem) 

needs to be taken into consideration when planning new/further development. The next part of 

this project will focus on investigating the effect of different structural features, both natural and 

anthropogenic, on the presence and richness of species found in the urbanised tropical estuaries 

investigated in this study. 
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4 Chapter 4 

 

Influence of structural attributes on species assemblages                           

in urbanised estuaries. 
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4.1 Introduction 
 

Urban development alters the presence and distribution of structural elements of coastal 

ecosystems, either in the form of change/removal of sediment and vegetation or with the 

introduction of artificial features (see Chapters 2 and 3). The most frequent transformations 

occurring with urbanisation of tropical estuaries are the shift from soft sediment (i.e. mud and 

sand) to hard sediment (i.e. gravel, boulders, and pavement) (Figure 17), the alteration of the 

vegetation present along the banks (i.e. removal/clearing, reduction, or thinning) (Figure 18), and 

the introduction of artificial features (e.g. bridges, ramps, pontoons, stormwater drains) (Figure 

19). 

 
Figure 17. Example of shift from soft sediment (mud) to hard sediment (pavement) in Ross Creek, Townsville. 
 

 
Figure 18. Example of vegetation clearing for the introduction of bank armouring and stormwater drainage in 
Ross River, Townsville. 
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Figure 19. Examples of artificial features introduced in the estuaries around the Townsville region. Boulders as 

armouring and erosion mitigation in Ross River (top left); a stormwater drain in Ross Creek (top right); a bridge 

overpassing Ross Creek (bottom left); and a boat ramp in Althaus Creek (bottom right).  

 

The fauna inhabiting these areas, particularly non-transient species, are often affected by changes 

in the sediment type and vegetation available, which can lead to a shift in species occurrence or a 

reduction in population size (Aguilera 2014; Bulleri and Chapman 2010; Connell 2000; Connell and 

Glasby 1999). Some species are able to inhabit a wide range of habitats and are thus less likely to 

be affected by structural changes resulting from urbanisation and development, but other species 

have more specific requirements and so are limited to few habitat types or specific structural 

components (e.g. LaSalle and de la Cruz 1985; Nobbs 2003). In these circumstances changes in the 

composition of structural elements of estuaries could result in shifts in species composition, 

distribution or density, which may then have broader ecological consequences on the function and 

services provided by those species (Alberti 2005; Bulleri and Chapman 2010; Connell and Glasby 

1999; Mayer-Pinto et al. 2018). 

Tropical estuaries are home to many terrestrial and aquatic species that require the presence of 

vegetation and soft sediments for their survival. Most notably, many invertebrate species utilise 

available soft sediments during most of their life cycles (e.g. polychaetes, molluscs, crustaceans). 



68 

For example, fiddler crabs require muddy and sandy environments to burrow and forage (Christy 

1982; Crane 2015), while some bivalve species live entirely burrowed to escape predators (Ansell 

and Trevallion 1969). Vegetation such as mangroves and saltmarsh provide shelter, food, and other 

essential services/resources for many taxa inhabiting estuaries (Kathiresan and Bingham 2001). 

The introduction of artificial features including piers, pontoons, and armoured walls along the 

banks of estuaries can alter the presence/distribution of faunal species by providing novel habitats 

(Barwick et al. 2004; Becker et al. 2013; Connell 2000; Dugan et al. 2011). With the fast rate of 

development in many tropical coastal areas, understanding the role of different structural 

elements (vegetation, sediment, artificial features) to determine the presence and distribution of 

the native fauna is essential for appropriate planning and decision-making. Identifying how 

structural elements, individually or in combination, influence the fauna could facilitate the 

prediction of changes in species composition and community assemblages exposed to 

development, be it in the form of vegetation/substratum alteration or introduction of artificial 

features.  

Examining the faunal community occupying the vast number of habitats identified in these urban 

waterways will provide a measure of how the different habitat patches support fauna, and indeed, 

whether a habitat combination, including artificial structures, supports a greater taxonomic 

diversity compared to others. Moreover, linking faunal communities to the different habitats will 

assist with determining how the different structural elements influence species occurrence. 

Understanding how species are affected by the presence or absence of specific structural 

elements is also essential to direct ecological restoration effectively. 

To determine the influence on the faunal communities of the different structural elements of 

intertidal habitats in the tropical estuaries assessed (see Chapter 3) I sampled the species 

composition of each identified habitat type in the intertidal zones of Ross Creek, Ross River, and 

Alligator Creek over the course of a year to: 

a) Collate an inventory of the faunal communities of the three estuaries and identify 

differences in the composition of non-transient species (i.e. species with a range of 

movement <20m in their adult life). 

b) Determine the influence of structural elements (sediment, vegetation, and artificial 

features) on the occurrence of non-transient species across the three estuaries.  
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4.2 Materials and methods 
 

4.2.1 Study area 
 

The survey was carried out in three tropical estuaries located in the Townsville region exposed to 

different levels of development: Ross Creek, Ross River and Alligator Creek (see Chapter 2) (Figure 

20). The banks of Ross Creek and Ross River have been extensively modified over the past decades, 

with 52% (RCK) and 31% (RR) of their overall extent being altered through sediment and 

vegetation changes as well as introduction of artificial features (see Chapter 3). By contrast, the 

composition and distribution of structural elements present in Alligator Creek has remained 

relatively unchanged, with only 4.5% of the banks having been subjected to modifications and 

development (see Chapter 3). 

 

 
Figure 20. Map of the study area with the three estuaries assessed in this study highlighted: Ross Creek, Ross 
River, and Alligator Creek. 

 

4.2.2 Macrofauna assessment 
 

Macrofauna species composition was assessed through on-ground surveys carried out in each 

type of structural habitat in the three estuaries. In the context of this research the term 

‘macrofauna’ represents fauna larger than 3 mm.  
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Firstly, a complete list of the structural habitats present in each estuary was prepared using the 

standardised classification scheme for structural habitats of tropical coastal wetland ecosystems 

described in Chapters 2 and 3 (Figure 21).  

 
Figure 21. List of the different structural classes of the attributes ‘Substratum’, ‘Vegetation’, and ‘Artificial 
features’ found in the intertidal zone of three tropical estuaries: Ross Creek, Ross River, and Alligator Creek. The 
substratum classes can be further grouped in ‘Soft sediment’ and ‘Hard sediment’.  

 

A total of 53 structural habitats were identified in Ross Creek, 51 in Ross River and 18 in Alligator 

Creek. Within each estuary, three replicate ‘sampling points’ were selected for every structural 

habitat type. Sampling points were randomly selected among the different habitat patches (see 

Chapter 3). Only one or two sampling points could be selected for each structural habitat type 

with less than three patches within a single estuary.  

A pilot study was carried out to select the most appropriate transect length for the macrofauna 

assessment in the different structural habitat types identified in the estuaries analysed. Despite 

the presence of some structural habitat patches that extended for over 30 meters across the 

intertidal zone (particularly in areas with sand/mud flats), most habitat patches measured 

between 3 and 6 meters. As such, 5 meters transects were found to be the most suitable as a 

standard measure to cover from low intertidal zone to high intertidal zone. Should this protocol 

be applied to other estuaries/wetlands/study areas, then transect length should be reconsidered 

and adjusted based on the characteristics of the intertidal zone of those areas.  

At each sampling point two 5m transects were set perpendicular to the riverbank (i.e. moving from 

lower intertidal to higher intertidal) (Figure 22). Visual and photographic surveys (digital auto-

focus camera) were carried out for each transect to assess the intertidal macrofauna by recording 

all species found on the sediment and vegetation located within 1m each side along the transect. 

Quadrats were not used in this assessment, but photographic evidence of single (or, where 

possible, multiple) resident macrofauna specimens to assist in their taxonomic identification. 

Where possible, rocks within the transect area were turned over to examine for the presence of 

macrofaunal species underneath. Where soft sediment (mud and/or sand) was present only 

epifaunal species or species emerging / visible in the sediment were recorded. To reduce the 

confounding effect of human interaction, two rounds of assessments were carried out where 

species were observed to flee/hide: a close-up round walking along the transect, in addition to a 
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more distant (a few meters) observation survey over a period up to 15 minutes. Observation time 

was calculated during a pilot assessment as the maximum time required for fiddler crabs to re-

emerge from borrows after a disturbance. All invertebrates observed were recorded. Birds were 

recorded only if sighted on the ground or perched on the vegetation at the time of the survey. Fish 

were recorded only if sighted within the transect area of the intertidal zone at low tide. Fauna 

were identified to the lowest possible taxa. Fauna that could not be identified on site were 

photographed for later identification.  

 
Figure 22. Example of the disposition of the 5m transects laid at each sampling point. The image depicts the 
position of the transect for the first sampling point of the structural habitat SAN-GRV*-BLD*-MG-(A) located in 
Ross Creek. Each transect was sampled moving from the lower intertidal zone to higher intertidal zone. 

 

Sampling was carried out on a three-monthly basis between October 2016 – September 2017: 

Round 1: Oct 2016 

Round 2: Feb 2017 

Round 3: May-Jun 2017 

Round 4: Aug-Sep 2017 

All sampling rounds were completed at low spring tide to allow full access to the entire intertidal 

zone. The sampling period was characterised by lower than average rainfall values, particularly 

during the wet season (November-April), so almost all sampling occurred in periods without 

heavy/substantial rainfall (Appendices 5a-b and 6). Ross Creek macrofaunal sampling carried out 

in May 2017 was the only one that occurred close to a substantial rain event (Appendix 6). 

However, in this instance sampling was carried out a week after rainfall, during a period of time 
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that was deemed sufficient to negate the impact of rainfall. Rainfall was therefore excluded as 

factor potentially influencing differences in macrofaunal composition recorded between sampling 

rounds. 

 

4.2.3 Statistical analyses 
 

Species were divided in two groups based on their range of movement:  

- Non-transient: organisms that are sessile or with a relatively small range of movement in 

their adult life (i.e. less than 20 m). Predominantly benthic invertebrates. 

- Transient: organisms with a wide range of movement in their adult life (i.e. more than 

20m). Predominantly vertebrates and flying invertebrates. 

The data collected in the field were used to calculate: 

• Species richness: the total number of species recoded in each habitat type or estuary. 

• Species composition: list of the different species recorded in each habitat type or estuary. 

• Total frequency of occurrence (%): proportion of occurrence of a species across the entire 

sampling pool (all habitat types collectively). 

• Relative frequency of occurrence (%): proportion of occurrence of a species across habitats 

characterised by a specific structural parameter. 

Faunal assemblages between the three estuaries sampled with focus on natural NAT-MOD 

structural habitats were investigated using multi-dimensional scaling (MDS) using the Sorensen 

index (taxa presence-absence) and with cluster groups superimposed for visual interpretation. 

These analyses were carried out using the software Primer v.6.  

Analyses of the influence of structural components on the species richness and occurrence was 

only carried out for non-transient species, since their limited short-term dispersal makes them 

more reliable indicators of habitat usage and environmental impact. Due to the inherent 

differences in structural habitat composition between estuaries (RCK=51, RR=53, ALCK=18) and 

the subsequent differences in frequency of occurrence of each individual structural class (e.g. 

MUD, SAN, MG, SM, (A), (R)…) (see Chapter 3), differences in sampling sizes were observed 

between structural classes and between the three estuaries. While this posed an initial challenge 

in the choice of statistical analyses to perform, the differences in sampling size did not preclude 

the execution of significant tests to determine the influence of structural components on taxa 

richness and occurrence. Classification and Regression Trees (CART) were constructed for the 

entire “non-transient” dataset to determine whether the different structural components of these 



 

73 

estuaries influence the species assemblages in the different habitats. The structural components 

investigated reflected the structural classes used for the standardised classification scheme for 

structural habitats of tropical coastal wetland ecosystems (see Chapter 2). Dependant variable: 

presence/absence of species. Predictor variables were: Site =RCK, RR, ALCK; Modification =NAT, 

MOD; Vegetation =MG, SM; Sediment class: MUD, SAN, GRV, BLD, PAV; and Sediment type = Soft, 

Hard. A ten-fold cross validation was applied to both total and marine non-transient macro-

benthic taxa datasets to select the final tree models presented in this work (De’ath 2002). The 

selection was made following the principle presented by Breiman et al. in 1984: the final tree was 

chosen as the smallest tree having a cross validation error falling within 1 standard error of the 

minimum cross-validated error (1-SE trees). Analyses were run using the packages ‘party’ (Hothorn 

et al. 2010) and ‘mvpart’ (De’ath 2007) in the software R version 3.4.2. 

 

4.3 Results 
 

4.3.1 Species composition in the three estuaries 
 

A total of 134 macrofaunal organisms were identified in the three estuaries assessed (Appendix 

7). Most were identified to species level, while a few could only be identified to genus. Of the total 

macrofauna observed, 67 taxa were recorded as non-transient and further divided in ‘terrestrial’ 

(N=14) and ‘marine’ (N=53). The list of species observed in the four estuaries sampled was 

compared with the list of invasive species presented in Queensland Biosecurity Act (2014). None 

of the 33 invasive species listed in the Act were recorded in this study. However, it should be noted 

that it is not possible to state that all of the species recorded in this study are native species, due 

to the lack of official records existing for many of the species listed. 

The more habitat-diverse and heavily modified estuaries of Ross Creek and Ross River presented 

the greatest values of richness and relative frequency of occurrence of non-transient macrofauna, 

with 47 and 57 taxa respectively (Figure 23; Appendix 8). Both these estuaries are characterised 

by a high number of structural habitats (51 and 53, respectively; see Chapter 3) and a greater 

number of anthropogenic modifications. Only 31 taxa were recorded in Alligator Creek (Appendix 

8), the estuary with the least number of habitat types (18 in total) and extent of modification (<5% 

of its total linear length). A similar trend was observed for a number of taxa recorded in the 

individual habitats of each estuary, with Ross Creek and Ross River having overall greater values 

of taxonomic richness than Alligator Creek (Appendix 9).  
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Figure 23. Correlation between values of non-transient taxa richness measured in Alligator Creek (yellow), Ross 
Creek (red), and Ross River (blue) and the number of structural habitats identified in each of the three estuaries. 
 

The MDS and cluster analysis performed on taxa occurrence, particularly in relation to NAT-MOD 

structural habitat types, further confirmed the distinction between the more urbanised and less 

urbanised estuaries. Ross Creek and Ross River shared more similarities in occurrence of non-

transient taxa compared to the less modified estuary of Alligator Creek (Figure 24). Additionally, 

the differences in taxa observed between NAT and MOD habitats were more evident in Alligator 

Creek than in the other more heavily urbanised estuaries (Figure 24).  

 
Figure 24. MDS ordination with Sorensen cluster analysis superimposed with 60% similarity of non-transient taxa 
occurrence in natural (NAT) and modified (MOD) structural habitats in the three estuaries of Ross Creek, Ross 
River, and Alligator Creek." 
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Of the 67 non-transient macrofauna identified, 24 occurred in all three estuaries (Table 17), the 

majority being crabs and gastropods. 

Table 17. List of non-transient species found across all three estuaries: Ross Creek, Ross River and Alligator 
Creek. 

Species list 

Balanus amphitrite 

Camponotus sp. 

Crematogaster laeviceps 

Gryllotalpa pluvialis 

Littoraria articulata 

Littoraria filosa 

Littoraria pallescens 

Littoraria scabra 

Macrophthalmus latreillei 

Macrophthalmus pacificus 

Metopograpsus frontalis 

Metopograpsus latifrons 

Nerita planospira 

Periophthalmus sp. 

Podomyrma gratiosa 

Polyrhachis sp. 

Saccostrea cucullata 

Scylla serrata 

Sesarma longicristatum 

Telescopium 

Thalassina sp. 

Uca coarctata 

Uca seismella 

Uca signata 

 

4.3.2 Influence of structural elements on species assemblages 
 

The CART analyses showed how different structural parameters influenced the occurrence of the 

non-transient macro-benthic taxa among structural habitat types across the three estuaries. 

Presence of vegetation and anthropogenic features were the main drivers when considering all 

macro-benthic taxa (marine and terrestrial) (Figure 25). For marine taxa the parameters 

influencing species occurrence changed, with sediment type (hard/soft) becoming the main driver, 

followed by mangroves, then sampling sites, and finally gravel in the larger estuaries (Alligator 

Creek and Ross River) (Figure 26). 
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Figure 25. Classification and regression tree (CART) of occurrence of the 67 non-transient macro-benthic taxa 
identified in the three estuaries: Ross Creek, Ross River, and Alligator Creek. Labels indicate the parameter 
determining each split in the tree. Histograms indicate the relative frequency of occurrence of each taxon per 
split, with the number of samples indicated in brackets below.  
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Figure 26. Classification and regression tree (CART) of the occurrence of the 53 non-transient marine macro-
benthic taxa identified in the three estuaries: Ross Creek, Ross River, and Alligator Creek. Labels indicate the 
parameter determining each split in the tree. Histograms indicate the relative frequency of occurrence of each 
taxon per split, with the number of samples indicated in brackets below.  

 

The presence or absence of mangrove plants was the most influential parameter for the frequency 

of occurrence of the entire non-transient macro-benthic species community (Figure 25). Even 

accounting for the difference in sampling size between habitats with mangroves (N=119) and 

habitats without (N=203), greater values of species richness and relative frequency of occurrence 

for most taxa were associated with presence of mangroves (Figure 27 and Figure 28): 

51 taxa: higher relative frequency of occurrence in habitats with mangroves. 

16 taxa: higher relative frequency of occurrence in habitats with no mangroves. 
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Figure 27. Relative frequency of occurrence (%) for each taxon across habitats with (yellow) and without (blue) 
mangroves.   
 

It is notable that the only habitats without non-transient macro-benthic taxa were habitats 

characterised by the absence of mangroves (Figure 28).  



 

79 

 
Figure 28. Frequency of occurrence of species richness values (ranging from 0 to 25 species per sample) for non-
transient species in the sampled habitats for presence (‘Mangrove’) and absence (‘NoMangrove’) of mangroves. 
 

Although most taxa exhibited a preference for habitats with mangroves, 66% were observed to 

utilise both Mangrove and NoMangrove habitats (Figure 27). Species like Enigmonia aenigmatica 

and several Littorinidae where recorded prevalently on mangrove plants (Figure 29), but in some 

occasions could be seen in habitats devoid of vegetation, attached to hard structures such as 

pillars and walls. Several other species however exhibited a clear preference for either of these 

two groups (Figure 27). Fifteen taxa, nearly half of which were terrestrial insects or arachnids, 

were located only on mangrove plants, while 8 taxa were found only in habitats devoid of 

mangroves (Table 18 and Figure 27).  

Figure 29. Examples of C. leviceps (a, b), Littorinidae (e, f, g), E. aenigmatica (d) and other non-transient 
invertebrates (c) inhabiting habitats characterised by mangroves in the estuaries of Ross Creek, Ross River and 
Alligator Creek. 
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Table 18. List of species found uniquely in habitats with (‘Mangrove’) or without (‘NoMangrove’) vegetation. 
Terrestrial species are highlighted in bold purple. 

Species typical of 
Mangrove habitats 

Class  Species typical of 
NoMangrove habitats 

Class 

Argiope keyserlingi Arachnida  Clithon oualaniensis Gastropoda 

Cassidula angulifera Gastropoda  Metopograpsus thukuhar Malacostraca 

Cerithium Sp. Gastropoda  Onithochiton Sp. Polyplacophora 

Cleistostoma wardi Malacostraca  Ophicardelus ornatus Gastropoda 

Crassostrea Sp. Bivalvia   Phascolosoma arcuatum Phascolosomatidea 

Crematogaster 
laeviceps 

Insecta  Thais kienieri Gastropoda 

Duplicaria Sp. Gastropoda  Uca perplexa Malacostraca 

Halyomorpha halys Insecta  Uca vocans Malacostraca 

Helice sp. Malacostraca    

Oecophylla 
smaragdina 

Insecta    

Onchidina australis Gastropoda    

Onchidium 
verruculatum 

Gastropoda    

Oxyopes Sp. Arachnida    

Perisesarma messa Malacostraca    

Pristhesancus 
plagipennis 

Insecta    

 

When considering only non-transient macro-benthic marine organisms (53 in total), the presence 

or absence of hard sediment (i.e. Gravel, Boulders, and Pavement) was the most influential 

parameter determining the occurrence of taxa (Figure 26). In this section all habitats without hard 

sediment are defined as ‘Soft’ and habitats that are characterised fully or partially by hard 

sediment are defined as ‘Hard’. Presence and absence of mangrove plants was the second ranking 

structural parameter for both soft and hard sediment habitats (Figure 26). However, while no 

further splits occurred in the regression tree with soft sediments, the occurrence of taxa in 

habitats characterised entirely or partially by hard sediment were influenced by other factors: 

Saltmarsh, Sampling sites (estuaries), and Gravel (Figure 26). 

Despite differences in sampling size between soft (N=68) and hard (N=254) habitats, the number 

of taxa observed for both groups were similar: 41 taxa in soft sediment and 48 in hard sediment 

(Figure 30). Frequency of occurrence of the different taxa on the other hand was higher in habitats 

with soft sediment, with seventeen taxa (predominantly gastropods) found uniquely or more 

frequently in habitats characterised by mud and/or sand, like the mangrove slug O. damelii, horn 

snail Telescopium, or fiddler crabs Uca coarctata and Uca signata (Figure 30 and Figure 32). Twelve 
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taxa, half of which were crabs, were found only in hard sediments, and five taxa, almost all 

gastropods, were found only in habitats characterised by soft sediment (Table 19 and Figure 30).  

Table 19. List of species found uniquely in habitats with hard sediment or soft sediment. Highlighted in colour: 
crabs (red) and gastropods (green). 

Species typical of Hard 
sediment habitats 

Class  Species typical of Soft 
sediment habitats 

Class 

Crassostrea Sp. Bivalvia  Cassidula angulifera Gastropoda 

Metopograpsus latifrons Gastropoda  Cerithium Sp. Gastropoda 

Metopograpsus thukuhar Malacostraca  Clibanarius Sp. Malacostraca 

Myomenippe fornasinii Malacostraca  Duplicaria Sp. Gastropoda 

Onchidina australis Gastropoda  Onchidium daemelii Gastropoda 

Onithochiton Sp. Polyplacophora    

Ophicardelus ornatus Gastropoda    

Phascolosoma arcuatum Phascolosomatidea    

Portunus Sp. Malacostraca    

Thais kienieri Gastropoda    

Uca perplexa Malacostraca    

Uca vocans Malacostraca    
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Figure 30. Relative frequency of occurrence (%) for each marine non-transient macro-benthic species in habitats 
with (‘Hard’, grey) and without (‘Soft’, yellow) hard sediment.  
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Figure 31. Relative frequency of occurrence (%) for each marine non-transient macro-benthic species across the 
four subgroups identified in the first two splits of the CART analysis: habitats with soft sediment and mangroves 
(green), habitats with soft sediment but no mangroves (orange), habitats with hard sediment and mangroves 
(blue), and habitats with hard sediment but no mangroves (yellow). 
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Figure 32. Examples of T. telescopium (a), O. damelii (b) and U. coarctata (c, d) inhabiting habitats characterised 
by soft sediment in the estuaries of Ross Creek, Ross River and Alligator Creek. 

 

Looking at the next subdivisions identified by the CART analysis, the presence of mangrove 

vegetation, particularly in habitats characterised by soft sediment, corresponded to higher values 

of relative frequencies of occurrence for most taxa (34 of the total 53 marine macro-benthic taxa) 

(Figure 31). The combination of soft sediment and lack of mangroves showed the lowest number 

of taxa. Of the 53 taxa observed, only 14 were recorded across all four habitat subgroups: Soft-

Mangrove, Soft-NoMangrove, Hard-Mangrove, and Hard-NoMangrove (Figure 31). Some taxa 

appeared to depend on the presence of vegetation, regardless of sediment type, including C. 

wardi, Helice sp., L. filosa, L. scabra, O. verruculatum, and P. messa (Figure 31). When considering 

habitats characterised by hard sediment, frequency of occurrence of the different taxa in presence 

or absence of mangroves varied quite substantially (Figure 31), however, gastropods were 

observed to prefer habitats with mangrove vegetation (Table 20). 

Table 20. List of species occurring more frequently in Mangrove (left) or NoMangrove (right) habitats, in 

presence of hard sediment. Highlighted in colour: crabs (red) and gastropods (green).  

Mangrove habitats Class  NoMangrove habitats Class 

Enigmonia aenigmatica Bivalvia  Anomiidae sp. Bivalvia 

Grapsus tenuicrustatus Malacostraca  Balanus amphitrite Hexanauplia 

Littoraria articulata Gastropoda  Chthamalus antennatus Hexanauplia 

Littoraria filosa Gastropoda  Isognomon ephippium Bivalvia 

Littoraria pallescens Gastropoda  Metopograpsus frontalis Malacostraca 
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Littoraria scabra Gastropoda  Metopograpsus latifrons Malacostraca 

Macrophthalmus latreillei Gastropoda  Myomenippe fornasinii Malacostraca 

Nerita planospira Gastropoda  Portunus Sp. Malacostraca 

Periophthalmus Sp. Actinopterygii  Saccostrea cucullata Bivalvia 

Scylla serrata Malacostraca    

Sesarma erythrodactyla Malacostraca    

Sesarma longicristatum Malacostraca    

Telescopium Gastropoda    

Thalassina Sp. Malacostraca    

Uca coarctata Malacostraca    

Uca seismella Malacostraca    

 

Habitats characterised by hard sediment and absence of mangroves corresponded almost entirely 

to modified habitats. Most of the 24 taxa across all three estuaries showed similarities in patterns 

of relative frequency of occurrence and were observed in both natural (NAT) and modified (MOD) 

habitats (Figure 34). Several taxa, however, occurred uniquely or more frequently in habitats 

characterised by anthropogenic features and hard sediment, such as the barnacle Balanus 

amphitrite, the crabs Metopograpsus frontalis, Metopograpsus latifrons, and the oyster 

Saccostrea cucullata (Figure 33 and Figure 34). 

 
Figure 33. Examples of S. cucullata (a, c), B. amphitrite (c, e), M. frontalis (b), M. latifrons (d) and other non-
transient invertebrates inhabiting modified habitats in the estuaries of Ross Creek, Ross River and Alligator Creek. 
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Figure 34. Relative frequency of occurrence (%) of the 24 ‘shared’ taxa in Natural (NAT) and Modified (MOD) 
habitats across the three estuaries: Ross Creek, Ross River and Alligator Creek. Natural habitats are represented 
by the blue bars (upper) and Modified habitats by the red bars (lower). 
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4.4 Discussion 
 

Estuaries characterised by a greater variety of structural habitats as a consequence of coastal 

development, particularly in the form of urban and industrial expansion, showed higher values of 

fauna richness compared to less modified and structurally diverse estuaries. Of the 67 non-

transient taxa recorded, 86.5% were found in Ross River and 70% in Ross Creek. These estuaries 

have been extensively modified over the decades resulting in an increased number of structural 

habitats found in the intertidal zone (53 and 51, respectively) (see Chapter 3). By contrast, less 

than 50% of the non-transient taxa were recorded in the more ‘natural’ Alligator Creek, an estuary 

with only 18 structural habitats and substantially less altered by anthropogenic development (<5% 

of total linear length) (see Chapter 3). The introduction in an ecosystem of additional structural 

elements, such as artificial features and/or hard sediment provides novel resources and 

opportunities for a wider range of species to colonise and utilise the area (Anderson and 

Underwood 1994; Bulleri and Chapman 2010). For example, ‘hard’ surfaces such as cement slopes, 

boulders, pillars and walls create the optimal conditions for the settlement of many sessile species 

such as barnacles, oyster and mussels in areas predominantly formed by soft sediments. The 

results presented in this study provide compelling evidence that, in this case, estuaries that have 

been extensively modified by development, and are thus characterised by more combinations of 

structural elements, harbour more taxa (Figure 23). Thus, considering the positive correlation 

between variety of structural habitats and fauna richness, the assessment of the number of 

species in an ecosystem exposed to development does not generally provide a useful indicator of 

ecosystem health. The assumption that a greater number of species corresponds to a natural and 

healthy ecosystem is misleading as it does not consider the almost inevitable increases in richness 

linked to the introduction/colonisation of new species (potentially non-native, fouling or invasive) 

following changes caused by development (Bulleri and Airoldi 2005; Glasby et al. 2007; Tyrrell and 

Byers 2007).  

The results obtained in this study showed how development, particularly involving changes in 

structural composition, can be associated with an increase in species richness. As such, 

species/taxonomic richness in itself is an inadequate indicator for the status and composition of 

an ecosystem altered by development. However, this measure is still often used as an ecological 

indicator in landscape management and restoration (Atauri and de Lucio 2001; Nally and 

Fleishman 2004; Noss 1990; Simmonds et al. 2019), particularly where the stated focus is on 

ensuring high numbers of species in the affected ecosystems. However, the focus shouldn’t be on 

richness per se, but on ensuring that the species assemblages inhabiting an ecosystem modified 



88 

by development still provide the natural ecosystem functioning and services, a priority for healthy 

and valuable wetlands (Barbier et al. 2011).  

Despite the differences in the number and types of benthic macrofauna observed among the 

estuaries, twenty-four non-transient taxa overlapped consistently among the three estuaries 

(Table 17). Fifteen were observed in both modified and natural habitats, although their relative 

frequency of occurrence was overall higher in habitats devoid of any anthropogenic features, 

particularly in Alligator Creek. The ability to inhabit a wide range of habitats could be indicative of 

the capacity of these animals to adapt to or withstand the changes in structural elements occurring 

with development, and points to the existence of a range of taxa typical of the natural wetlands 

and estuaries that can exist and survive even in urban conditions. The conversion from an 

ecosystem primarily formed by natural habitats to a more heterogeneous and modified habitat 

mosaic would therefore not necessarily correspond to an overall decrease in occurrence of these 

taxa, as many could adapt to the new conditions and/or re-colonise the area. These observations 

are consistent with other cases where several marine species have been observed to inhabit both 

areas with natural structures and those with artificial structures (Cenci et al. 2011; Clynick et al. 

2008; Wakefield et al. 2013). Although it should be noted that the natural areas described in these 

studies sharing similarities in species composition with artificial structures are characterised by 

rock formations and reefs, as opposed to the natural habitats described in this thesis which are 

predominantly characterised by soft sediment. 

Focusing on the habitat utilisation of different taxa, preferences for certain structural features 

(either individually or grouped) were observed for many species. Overall, a strong effect of soft 

vs. hard sediment was observed for the occurrence of marine non-transient taxa, while the 

presence of terrestrial taxa was influenced predominantly by vegetation and then by 

anthropogenic modifications. Notably, several taxa where found uniquely/prevalently in 

structural habitats characterised by artificial features and hard sediment. The barnacle B. 

amphitrite and the hooded oyster S. cucullata utilise the hard surfaces characteristics of artificial 

structures and sediments to settle and form encrusting colonies (Holm 1991; Lam et al. 2009; 

Zvyagintsev and Korn 2003), while the crabs M. latifrons and M. frontalis seem to utilise the 

increased structural complexity presumably as suitable refuges from predators. S. cucullata is a 

species endemic of Australian estuaries and an ecological engineer able to form extensive oyster 

beds on natural intertidal rocky foreshore (Gillies et al. 2018). B. amphitrite, a fouling species able 

to spread through commercial shipping (Foster 1978; Jones 1992), can quickly form large 

encrusting colonies on artificial sediment and structures in the lower intertidal zone. The crabs M. 
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latifrons and M. frontalis are known to be associated with the presence of structures (Vermeiren 

and Sheaves 2015b) and as such it is not surprising that their occurrence is strongly associated 

with the presence of anthropogenic modifications (Figure 34). Taxa whose occurrence is linked to 

modified habitats can colonise new environments and increase in presence and distribution 

concurrently with modification in the form of a shift from soft to hard sediment and introduction 

of artificial structures. Such phenomenon can be observed in Ross Creek and Ross River, as well as 

in the boat ramp area of Alligator Creek. While this can result in an increase in the number of taxa 

of the ecosystem, the onset and distribution of species not previously observed can affect the 

overall species assemblages and related ecological functions, particularly considering the role of 

these species as ecosystem engineers (Kristensen 2008), and key components of the trophic 

network of these ecosystems (Vermeiren et al. 2015; Werry and Lee 2005). 

Seventeen different taxa – mostly gastropods and a few crabs – were found uniquely or 

predominantly in soft sediment habitats (Figure 30). Most are deposit feeders and rely on the 

presence of mud for foraging and survival, such as the mud whelk B. australis (Hughes et al. 2014; 

Schneider et al. 2015), dog whelk Nassarius sp. (McKillup and McKillup 1995), mangrove slug O. 

damelii (Camilleri 1992), and horn snail T. telescopium (Rodelli et al. 1984). Presence of soft 

sediment also provides essential services for several crab species of the genus Uca and Sesarma 

as foraging ground and terrain to build their burrows (Slatyer et al. 2008; Vermeiren et al. 2015). 

All these species play key roles in the trophic web of estuaries by processing leaf litter and 

increasing the particulate organic matter in the sediment (Camillieri 1992; Hughes et al. 2014), as 

well as providing a source of food for many vertebrate species (Abrantes and Sheaves 2009; 

Beumer 1978). Changes in sediment characteristics associated with coastal development and, 

particularly reduction in the extent of soft sediment habitats, resulting in a shift from soft to hard 

sediments and structures would greatly disadvantage these taxa and likely result in a decrease in 

their occurrence, abundance and distribution, with repercussions on the services and functions 

they provide (Abrantes and Sheaves 2009). In addition, it should be pointed out that lack of changes 

in overall species richness or in presence of native species following the structural modification of an 

estuary for urban expansion do not necessarily mean that the anthropogenic modifications performed 

have had no negative impact on the local biotic community. Decline in the abundance of certain 

species, reduced functioning or alterations in species distribution linked to development could still 

have occurred without any noticeable impact on overall species richness/presence values." 

Presence of vegetation has also been recorded as essential for numerous taxa, particularly 

terrestrial invertebrates (Hegerl and Davie 1977). Several ant and spider species like C. laeviceps, 
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H. halys, and O. smaragdina were observed to inhabit predominantly, and in some cases uniquely, 

mangrove habitats (Figure 27). Many marine taxa showed apparent dependency on the presence 

of vegetation, often regardless whether the sediment is soft or hard: C. wardi, Helice sp., L. filosa, 

L. scabra, O. verruculatum, and P. messa (Figure 31). Mangrove trees provide shelter and foraging 

grounds to many invertebrates, intent and non-transient. They also contribute to sediment 

retention thus providing opportunities for burrowing species (Nielsen 1997), and their above-

water structures offer refuge for arboreal ones during high tide (Clay and Andersen 1996). Several 

species, some of which recorded in this study like O. glaber, Camponotus spp. and C. wardi, are 

known to inhabit saltmarsh meadows (Taylor and Allanson 1993; Trave and Sheaves 2014) and 

have shown to prefer such vegetation and occur in higher frequency where in its presence. Similar 

to the species described for soft sediment, these taxa play key roles in the health and functioning 

of estuaries, be it by processing plant matter and cycling nutrients (Richoux and Froneman 2008; 

Uday Ranjan and Ramesh Babu 2014), as part of the food web (Sheaves and Molony 2000), or as 

ecosystem engineers (Mchenga et al. 2007). The decline or disappearance of mangrove-specialists 

from the ecosystem related to vegetation clearing or thinning would thus result in the loss of these 

services and functions within the immediate area, but also possibly more broadly in the seascape.  

Presence of mangroves and soft sediments therefore represents key elements ensuring the 

occurrence and resilience of native species in estuaries subjected to urban and industrial 

development. The transition from soft sediments to hard structures and the reduction in native 

vegetation due to urban/industrial development are major drivers of changes in species 

assemblages and ecosystem dynamics (Heery et al. 2017; Lee et al. 2006; Lowe and Peterson 

2014). Although the resulting increase in habitat types might correspond to an increase in the 

overall number of taxa (McKinney 2008), the species composition of the ecosystem would be 

altered and likely transition (partially or fully) from native soft-sediment communities and 

mangrove-specialists to a mixed community including sessile encrusting colonies of filter feeders 

and potentially invasive species. If the goal in coastal planning is merely to ensure the presence of 

a high number of species in the affected ecosystem, then the changes caused by development are 

likely to facilitate that outcome. By contrast, if the goal is to ensure the preservation/restoration 

of native communities and natural ecosystem functioning, a trend now common to many coastal 

development practices around the world (e.g. Bilkovic et al. 2016; Burt and Bartholomew 2019; 

Firth et al. 2014a; Sutton-Grier et al. 2018),  then priority needs to be given to maintaining as much 

as possible the relevant conditions that favour native organisms and prevent irreversible changes 

in the species composition of the ecosystem. As such, the inclusion of structural parameters such 
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as vegetation, sediment type, and artificial features in assessment criteria and protocols for 

monitoring of ecosystem status appears essential. Information collected on the structural habitat 

composition of an ecosystem and its effects on the biotic communities is in fact imperative for 

appropriate landscape planning and management of coastal areas, particularly in face of 

increasing urban and industrial expansion that is accelerating in tropical areas. 
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5.1 Introduction 
 

This thesis presents a novel and easily applicable tool for managers and landscape developers to 

assess the structural composition of coastal ecosystems that are under pressure from sprawling 

coastal development (past, present or future). The data chapters outlined above expand on the 

current understanding of tropical coastal wetland ecosystems exposed to urban and industrial 

development and provide new insight for best practices and appropriate management strategies 

aimed at ecological conservation and restoration.  

 

5.2 The classification scheme for structural habitats in coastal ecosystems 

Urban and industrial expansion cause structural changes in the ecosystems where they take place, 

often with repercussions on faunal communities and on the ecological functions and services they 

provide (Alberti 2005; Bulleri and Chapman 2010; Connell and Glasby 1999; Mayer-Pinto et al. 

2018). Such changes need to be appropriately assessed and managed to minimise degradation 

and adverse effects on the ecosystem (Crowder and Norse 2008; Douvere 2008; Long et al. 2015). 

This is both for areas that have already been developed and for those that are yet to be modified 

(Burt 2014; Diegues 1999; Yeung 2001). The standardised assessment of presence, extent, and 

distribution of structural components (both natural and artificial in origin) at the scale where 

coastal development takes place is a first essential step for a complete understanding of the 

composition and status of an ecosystem and, subsequently, for the selection of appropriate 

management protocols (Airoldi and Beck 2007; Morrissey et al. 2012; Wegscheidl et al. 2017; Zajac 

1999). 

Existing classification criteria, while adept at classifying natural coastal ecosystems, present a few 

key disadvantages in characterising ecosystems that have been structurally modified by 

urban/industrial expansion, or in providing information to be applied in the context of future 

coastal development or restoration (see Chapter 1). For example, while broadly applicable these 

classifications frequently focus on large scales or have quite coarse resolution (e.g. Butler et al. 

2017; Davies et al. 2004; Howes et al. 2002). While this can simplify the assessment of large 

territories and potentially even reduce costs associated with remote-sensing and mapping 

(Verburg et al. 2011), it increases the risk of misrepresentation of the actual composition of an 

ecosystem, as any element smaller than the minimum mapping unit would, in fact, not be 

perceived or recorded (Verburg et al. 2011). This is particularly relevant in the context of 

development if we consider that existing classifications often operate at scales where the 
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minimum mapping unit corresponds to a few hundred meters or a kilometre (e.g. Butler et al. 

2017; Davies et al. 2004; Howes et al. 2002; Spalding et al. 2007), while many developments or 

structural alterations in coastal ecosystems occur at smaller scales (sometimes even down to a 

few meters). Unlike the classification tool developed here, other classifications are thus unsuitable 

to provide the level of detail on the composition of an ecosystem that is usually associated with 

small or local-scale works. Such misrepresentation could not only lead to a skewed perception of 

the actual status and composition of an ecosystem, but also potentially affect decision-making 

processes (Estes et al. 2018). 

Another gap in current classification schemes is the lack of inclusion of anthropogenic 

modifications as independent physical components of the classification itself (Appendix 1b). Most 

classifications focus predominantly on hydrologic and geomorphic parameters (e.g. 

Commonwealth of Australia 2005; FGDC 2012; FGDC 2013; Spalding et al. 2007; Valentine et al. 

2005) or on physical, chemical, and biological parameters (e.g. Butler et al. 2017; DEHP 2017; 

Madden et al. 2005). Anthropogenic features are rarely present, and often merely as further 

‘attributes’, ‘qualifiers’, or ‘modifiers’ of other components (e.g. Auster et al. 2009; Butler et al. 

2017; DEHP 2017; FGDC 2012; FGDC 2013; Lund and Wilbur 2007) rather than as independent 

layers/levels (for hierarchical classifications) or classes (Guarinello et al. 2010). For example, 

Seamap Australia (Butler et al. 2017) has put a little more focus on anthropogenic elements 

compared to other classifications available. However, the anthropogenic layer is still presented as 

a qualifier for substratum rather than as an individual component categorising different artificial 

structures integrated in an ecosystem. Guarinello et al. 2010 present a model where 

anthropogenic features are introduced as a separate component of the classification, alongside 

benthic and water column characteristics. However, the ‘Human Component’, as it is called in that 

model, focuses on human actions performed on the ecosystems and the ‘use’, rather than on 

physical constructions or structural elements of anthropogenic origin (Guarinello et al. 2010). 

While this can put more emphasis on the effect of human actions on the ecosystem, it makes this 

classification more descriptive than categorical, and does not provide a way to characterise and 

map the composition of an ecosystem in a clear and consistent way. This is further complicated 

by the lack of clearly defined classes/sub-components for the individual elements belonging to the 

Human Component (Guarinello et al. 2010) which could result in reduced consistency in 

classification when the assessment is performed by different users (Strong et al. 2018). 

Including artificial features in ecosystem classification and mapping is essential to achieve a truly 

comprehensive understanding of the composition and status of an ecosystem (Guarinello et al. 
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2010; Zajac 1999), as well as the implications of structural modification on the biotic communities 

and functions (Alberti 2005; Bulleri and Chapman 2010; Connell and Glasby 1999; Martin et al. 

2005). Coastal areas that have undergone agricultural, industrial, and urban expansion are 

characterised by the presence of different (and often widespread) artificial structures and 

anthropogenic modifications (Bulleri and Chapman 2010; Holland et al. 1995; Yeung 2001). As 

such, a distinct lack of inclusion of these elements in classification schemes would contribute to a 

misrepresentation of the ecosystem’s composition, with potential repercussions on the 

understanding of the ecosystem’s functioning and services (Cortina et al. 2006; Lamont 1995) 

and/or on policy or decision-making processes (Estes et al. 2018; Moberg and Rönnbäck 2003). 

Secondly, being able to accurately map and characterise the type, extent, and distribution of 

different artificial features present in an ecosystem would create a baseline dataset that could be 

used to track over time (with repeated assessments) patterns of change or progressive 

modifications linked to new development works, thus facilitating ecological monitoring for 

urban/industrial expansion. Moreover, the assessment of presence, extent, and distribution of 

modification could assist in determining where to target further sampling to collect the 

information required to decide if/where/how to intervene for repair/restoration or even to plan 

for further development (see Chapter 3 and 4). And finally, including artificial features in 

classification schemes for coastal ecosystems would also provide information useful for planning 

eco-engineering (Chapman et al. 2018), particularly when such practices are aimed at restoring or 

enhancing an ecosystem that has been impacted by the introduction of permanent artificial 

structures (e.g. Browne and Chapman 2014; Dyson and Yocom 2015; Evans et al. 2016; Firth et al. 

2016b; Lundholm and Richardson 2010; Paalvast et al. 2012). Knowledge of the type, extent, and 

distribution of different artificial structures and substratum present in an ecosystem could, in fact, 

facilitate planning for the introduction of suitable eco-engineering structures (Chapman et al. 

2018). 

Despite the apparent need for detailed knowledge on the presence and distribution of artificial 

structures and anthropogenic modifications in coastal ecosystems, current classification schemes 

do not include such features as independent and clearly defined physical components, nor do they 

consider them as individual structural elements present in an ecosystem alongside substratum 

and vegetation. Moreover, the level of detail and resolution required for the characterisation of 

individual anthropogenic structures is rarely matched by broad classification schemes. This does 

not mean that the existing classification schemes are invalid or not exhaustive, but merely that 

they have been developed with scopes and purposes that might not adequately match the context 
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of local-scale coastal management or ecosystem restoration in face of urban/industrial 

development (Lund and Wilbur 2007; Strong et al. 2018). The classification scheme presented in 

this thesis had been developed to address the issues listed above and provide an alternate 

methodology to be applied for coastal development and management at a small/local scale. It was 

created with the intention of complementing existing broader classification schemes by providing 

high resolution information at a small local scale that can be integrated into a much larger 

landscape perspective. It represents a rapid and standardised way to characterise and map the 

structural composition of an ecosystem, and assess type and extent of structural modification 

linked to coastal expansion (Chapter 2). Thanks to its simple structure, clearly defined classes, and 

straightforward applicability this classification scheme can be utilised by any manager, scientific 

technical officer or potentially community groups. No specific knowledge of coastal ecology or 

environmental sciences is required for someone to successfully apply this classification and to map 

the structural habitat composition of an ecosystem (see sections 2.2.5 and 2.2.6). The subdivision 

of the three structural attributes in clear-cut classes and the sequential approach in habitat 

identification (see sections 2.2.6 and 3.2.2) also assists in minimising classification errors caused 

by overlaps between classes or subjective assessments/nomenclature (Strong et al. 2018). The 

sequential nomenclature for structural habitats allows also for identification of potential 

hierarchical connections between structural habitat types formed by similar combinations of 

structural classes (e.g. Ch.2 - Figure 6). Such information, if complemented with the position and 

distribution of habitats in the study area and historical information (where available), could allow 

the identification of patterns of change linked to development works, such as the introduction and 

possible degradation over time of artificial features, or patterns of natural change in the structural 

composition of the study area (e.g. vegetation re-colonisation/recruitment, sediment 

accumulation). Knowledge of the changes occurring over time can be integrated in landscape 

management for restoration/repair of affected areas to prioritise areas for intervention based on 

the extent of modification and rate of change over time. The information on patterns of change 

can also be complemented with data on the effect of different structural features on biotic 

assemblages and used to hypothesise/predict subsequent effects on biodiversity and connectivity 

in areas where development has yet to occur. This knowledge can then be integrated in 

development planning to identify the best strategies to minimise adverse impacts of on the 

environment of structural changes associated with development, thus focusing on prevention 

rather than repair. It is an assessment tool that can be applied by different end-users, including 

researchers and managers, to collect information to be integrated in ecosystem-based 

management, planning, and monitoring. This classification scheme can provide information on the 
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presence and distribution of different structural elements (of natural or anthropogenic origin) in 

an ecosystem and classify them as easily identifiable and clearly defined units, called structural 

habitats (Chapter 2). The inclusion of artificial features as elements of the classification scheme 

adds further value to this assessment tool in its ability to detect, characterise, and map structural 

modifications associated with urban and industrial development, a feature frequently absent in 

other existing classifications, as previously detailed.  

The classification has been developed to provide fine-detailed information at a scale relevant for 

local-based management, which often occur in areas smaller than a few kilometres or even at a 

few meters. An example can be a city council addressing the introduction of stormwater drains, 

the construction of a new bridge, or the armouring of a section of the bank. Therefore, the 

applicability of this classification at a local scale (Level 3 ANAE or below) ensures the relevance of 

the information collected for ecosystem-specific or project-specific planning and intervention, 

while also considering the spatial range of movement of many sessile or non-transient species 

(Chapter 2 and 4). 

The information collected can then be subsequently used to measure and map extent of structural 

modification (Chapter 3), characterise habitat complexity and compare ecosystems (Chapter 3). 

Moreover, it also links structural elements with local fauna (Chapter 4), and assists in identifying 

priorities for management and conservation. 

 

5.3 Assessment of coastal estuaries exposed to different extent of 

development 

I applied the classification scheme developed in Chapter 2 to a series of estuaries exposed to 

different extents of development to habitat complexity and relative flora/fauna communities 

(Chapter 3 and 4).  

The resolution of the classification scheme for structural habitats allows for detailed measurement 

of the structural composition of an estuary. This provides in-depth information to be used for 

effective planning and decision making in face of development (past, present, or future). The 

results indicated a strong positive relationship between increasing urban development and habitat 

diversity and fragmentation, pointing to the dominance of modified structural habitats over 

natural ones as leading factors towards increase in diversity (Chapter 3). The high variety of 

structural habitats found in the estuaries was linked to changes resulting from progressive 

development works in the form of structural alterations, as shown by the many different 
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combinations of artificial features and artificially introduced substrata identified in the more 

heavily developed estuaries (Chapter 3). Development works in an ecosystem are rarely one-off 

events, but rather a series of progressive and extensive works carried out over years/decades that 

increase the structural complexity, patchiness and habitat richness of an ecosystem (Chapter 3; 

Airoldi and Beck 2007; Alberti 2005). As such, it is not surprising that each of the estuaries assessed 

in this study showed unique composition and distribution of structural habitats, and that greater 

habitat richness was recorded for the more heavily modified estuaries of Ross Creek and Ross 

River (Chapter 3). A Greater number of habitats therefore should not necessarily be considered as 

an indicator of ‘more naturally variable’ ecosystems (Chapter 3).  

The patterns of distribution and extent of structural habitats and/or individual structural classes 

can also assist in identifying the dominant features of an ecosystem. The comparison of the 

different structural habitats found in the four estuaries has provided a baseline assessment of the 

structural composition for estuaries, and assisted in identifying a common set of natural habitats 

shared by all of the estuaries comprising predominantly of a combination of mud, sand, mangrove, 

and saltmarsh (Chapter 3). 

Once I had a thorough understanding of the structural composition of those estuaries, I assessed 

the influence of the different structural elements on faunal communities and highlighted the 

direct relationship between many species and the presence of specific structural elements such 

as sediment types, vegetation or artificial features (Chapter 4). Sediment type (hard vs. soft), 

presence of vegetation, and presence of artificial structures resulted parameters that strongly 

affect species occurrence (Chapter 4), which means that changes in the presence of these 

structural elements would affect the composition of faunal communities, with likely consequences 

on biodiversity and functioning as well (Alberti 2005; Bulleri and Chapman 2010; Connell and 

Glasby 1999; Mayer-Pinto et al. 2018). With the role played by artificial features in influencing the 

occurrence of different species, the inclusion of artificial structures and artificially introduced 

substratum in the classification scheme for structural habitats provides a new insight in ecological 

assessment of modified ecosystems and represents an advantage compared to other 

classifications that omit such features (Chapter 1).  

Having confirmed the essential role that structural elements such as soft sediment (Anderson 

2008; Kristensen 2008) and native vegetation (Gopal and Junk 2000; Nagelkerken et al. 2008) play 

in ensuring the presence and density of many macro-benthic species of key ecological value 

(Chapter 4), their preservation or restoration in areas exposed to development seems even more 

relevant.  
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5.4 Further considerations in the context of coastal development and 

management 

The findings presented on the structural complexity of tropical coastal estuaries (Chapter 3) and 

on the influence of structural elements on faunal communities (Chapter 4) further highlight the 

need for the integration in development planning of ecosystem-based conservation/restoration 

strategies that focus on structural components to prevent ecological loss or irreversible changes 

in face of development, and to assist in the assessment and restoration of areas already impacted. 

Mapping and measure of extent of modification can be used to evaluate the level of change 

occurred in an ecosystem over time and create a ranking scale for the comparison of ecosystems 

exposed to development (example provided in Table 21). This information should then be 

complemented with data on the species composition, distribution and functioning of the 

ecosystem to provide a comprehensive evaluation of the overall status and health of the 

ecosystem. Information on the type, extent, and distribution of modification collected with the 

classification scheme proposed could be also applied for the assessment of the resilience or the 

potential for recovery of an ecosystem and to calculate related thresholds and shifting points, if 

complemented with extensive knowledge of factors such as presence and type of concurrent stressors, 

other direct human interventions, connectivity of the ecosystem, hydrology, other abiotic/biotic 

parameters. 

Table 21. Example of potential ranking scale to be used for the evaluation and definition of ecosystems 
exposed to different extent of structural modification. 

Extent of structural 
modification (%) 

Category/Definition Class 

0% ‒ 10% Minimally modified or Negligible A 

11% ‒ 30% Moderately modified B 

31% ‒ 50% Partially modified C 

51% ‒ 70% Substantially modified or 
Extensively modified 

D 

71% ‒ 90% Highly modified E 

91% ‒ 100% Completely modified F 

 

In addition, mapping the distribution of the different structural classes can assist in predicting 

patterns of change of accessibility and connectivity for different species throughout the entire 

ecosystem and adjacent areas. However, addressing the impact of a development work in coastal 

areas requires a level of understanding, analysis, and consideration that is not limited solely to the 

area directly affected, but focuses on a scale that includes other biologically or physically 
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connected sections of the ecosystem and neighbouring ecosystems as well (Bishop et al. 2017; 

Crooks and Sanjayan 2006). Development works performed in an area can have radical effects on 

adjacent sections (e.g. upstream or downstream) or other ecosystems through changes in 

hydrology (Wolanski and Elliot 2015), morphology (Dallas and Barnard 2011; Surian and Rinaldi 

2003) and connectivity (Bishop et al. 2017). This is particularly relevant considering many species 

utilise different habitats and ecosystems throughout their lives and need to move freely among 

them (Bradley et al. 2017; Sheaves 2009). Targeted planning based on accurate knowledge of the 

structural composition of an ecosystem can reduce the extent of habitat fragmentation and 

patchiness, ensuring the preservation or restoration of connectivity. 

Information on the extent and distribution of individual structural habitats, or even the individual 

structural classes, can be used to select the most appropriate locations and strategies to carry out 

development works while minimising adverse/extensive changes in the structural composition of 

the ecosystem and subsequent effects on its overall health and functioning. The identification of 

a baseline set of natural habitats typical of tropical coastal ecosystems could provide insight in 

determining areas to focus further research and identify habitats to be prioritised in conservation 

and restoration. Information collected on the structural composition of an ecosystem and on the 

influence of structural components on local fauna occurrence can be used to select appropriate 

strategies for conservation of faunal communities and the many functions and services they 

provide (Airoldi and Beck 2007; Moberg and Rönnbäck 2003; Morrissey et al. 2012). Considering 

that shifts from soft to hard sediment are the most common and extensive structural alterations 

occurring with development, new strategies need to be devised to ensure the presence of mud, 

sand and vegetation in the ecosystem. Based on the results obtained in this work, I propose a few 

strategies that can be considered/integrated in the planning phase of a development to address and 

prevent the potential negative impacts of structural modification in estuarine ecosystems in the form 

of shift from soft to hard sediment and reduction of native vegetation. Selection and implementation 

of such strategies should be made on a case-by-case basis, depending on the characteristics of the 

development planned. This can be achieved by:  

a) Minimisation of sediment substitution 

Reducing as much as possible the extent of areas where the natural sediment is fully 

replaced by artificial sediment/structures or limiting natural vegetation clearing (McAlpine 

et al. 2002). Radical changes in sediment type and presence of vegetation have shown to 

lead to an overall decrease in species richness (often such areas are bare and exposed; 
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Figure 35) or alteration in the composition of faunal assemblages, moving from soft-

sediment dwellers and mangrove specialists to communities dominated by sessile species.  

 

 
Figure 35. Examples of sections of Ross Creek where vegetated soft sediment has been completely 
replaced by artificial pavement for bank erosion mitigation. 

 

To avoid such shifts in ecosystem composition, careful consideration needs to be given 

during the planning phase of development to reduce the extent of replacement of soft 

sediment with hard structures. Moreover, since complete sediment replacement in 

coastal development is predominantly linked to mitigation of progressive erosion, the use 

of alternative eco-engineering techniques (e.g. natural oyster beds, reefs, sediment-

retaining vegetation) can further assist in fulfilling the requirement of coastal protection 

while also ensuring the preservation of natural ecological functioning (Borsje et al. 2011). 

 

b) Implementation of partial changes 

Instead of completely changing the sediment type of the intertidal zone, the introduction 

of hard sediment alongside/on top of the existing soft sediment (Figure 36) can prevent 

the loss of species associated with mud/sand while still providing the services required by 

the presence of hard substrate. Additionally, ensuring the presence of soft sediment 

facilitates the re-colonisation of the area by native wetland vegetation, such as mangroves 

and saltmarsh, and subsequently of wetland fauna.  

 

 
Figure 36. Examples of sections of Ross Creek where natural soft sediment (mud) has been preserved 
alongside the introduction of hard sediment such as gravel and boulders.  
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c) Recreation of natural habitats and eco-engineering 

Another option is to create the conditions for soft sediment to naturally accumulate in 

front of artificial structures and thus gradually re-create a natural habitat (Figure 37). This 

would best achieve the balance between having a structure which provide a service to 

humans, along with ensuring the presence of a natural section of the ecosystem, with its 

native biotic communities and ecological services. 

 

 
Figure 37. Examples of sections of Ross Creek where soft sediment (mud) has naturally accumulated in 
front of artificial structures such as bridges and anti-erosion walls, thus creating new natural habitats to 
be utilised by the native fauna communities.  

 

The rehabilitation of natural habitats in a modified ecosystem, be it by artificially re-creating them 

or by creating the conditions for soft sediment to naturally accumulate and be colonised by 

vegetation and then fauna, needs to be carefully planned to ensure the maximum result with 

minimum intervention (both in terms of effort, money and time). Many species inhabit and utilise 

predominantly the first few meters from the waterfront side of mangrove ecosystems due to 

several physicochemical and environmental factors (Huxham et al. 2004; Mattone and Sheaves 

2017), so the re-creation of a 2.0 m – 5.0 m strip of mangrove habitats in front of pre-existing 

extensively modified sections may just be sufficient to increase the ecological value and use of 

that part of the bank, with hard engineering features behind the mangrove edge.  

These principles for ecologically sustainable development and soft engineering have already been 

introduced in some guidelines and best practices for small-scale development (e.g. NSW 

Government 2012), but their application has so far been limited to few regions around the globe 

(De Jong et al. 2014; Department for Environment and Heritage 2005; Luo et al. 2015). 

Knowledge of the original/natural composition of the ecosystem needs to be considered as well. 

The introduction of an artificial rocky reef or an oyster bed in an area that was once characterised 

by muddy wetlands does not constitute ‘restoration’, even if it has the potential to increase the 

species richness and productivity of the area. However, if the ultimate objective is not the 
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restoration of ‘natural’ habitats but rather the conservation/restoration of ecosystem functioning 

and services (Moberg and Rönnbäck 2003), then (re)creating appropriate habitats that support 

biotic communities performing different ecological functions (Borsje et al. 2011) is a viable 

strategy to improve the overall ecosystem status. Interventions in the form of ecological 

rehabilitation, remediation, and mitigation (Abelson et al. 2015; Elliott et al. 2007) all focus on the 

improvement/restoration of functionality and biodiversity of an ecosystem without necessarily 

trying to return it to its past 'natural' state (i.e. prior to the changes and degradation caused by 

development; Dobson et al. 1997) (Abelson et al. 2015). These frameworks are the most suitable 

for urbanised areas (since in these instances reverting to a past 'natural' state is not really a 

feasible endeavour) and utilise information on ecosystem composition (including biotic and 

structural) and known ecological dynamics to select the most suitable strategy for the 

improvement of biodiversity and functioning (Elliott et al. 2007). The value of artificially-

introduced sediment and structures as novel habitats for many species should not be dismissed 

(e.g. Connell 2001; Dugan et al. 2011). The increased structural complexity and coverage offered 

by modifications offer many opportunities for benthic and nektonic species to utilise (Barwick et 

al. 2004; Chapman and Bulleri 2003; Connell 2001). Artificial structures can also assist in creating 

novel habitats through the retention of sediment (e.g. Waltham and Sheaves 2018) or water (e.g. 

Claassens 2016; Evans 2016).  Additionally, there are several eco-engineering techniques that have 

already proven to be successful in increasing species richness and abundance in developed areas 

(Chapman and Underwood 2011; Dyson and Yocom 2015; Firth et al. 2014b; Lundholm and 

Richardson 2010; Perkol-Finkel et al. 2008). In this case it is important however to determine 

whether this increase in species richness does not include invasive or fouling species and does not 

result in an irreversible ecosystem shift. Moreover, enhancement of species richness may not be 

a desirable goal since it does not necessarily consider whether the trophic dynamics, functioning 

and services of the ecosystem are preserved/restored (Hillebrand et al. 2018; Simmonds et al. 

2019), so biodiversity and functional diversity should be priorities instead. Ensuring the presence 

of the ‘right’ species based on their functional roles and place in the overall network and dynamics 

of the ecosystem (Benayas et al. 2009; Dafforn et al. 2015) rather than having ‘many’ species 

should be a priority in coastal management and ecosystem-based planning. 

5.5 Conclusions 
 

The classification scheme for structural habitats presented in this thesis has not been developed 

with the intent to replace other existing classifications, but rather to complement them in 

providing a more suitable way to characterise the structural composition of coastal ecosystems in 
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the context of development and management. Most importantly, the focus on small/local-scale 

(1:5000 to 1:10000) and the inclusion of anthropogenic features as individual structural 

components of the classification provide an advancement in addressing the conceptual gaps and 

issues identified for other classification schemes regarding their relevance and applicability for 

EBM and coastal development (see sections 1.3 and 5.2). This classification is in fact a tool that 

can be applied in research but also management, conservation and restoration. Its simple 

structure, clearly defined classes, and straightforward applicability ensures that this classification 

scheme can be easily adopted by stakeholders with different professional backgrounds without 

compromising the quality and standard of the data collected (see sections 2.2.5 and 2.2.6). It is a 

rapid and cost-effective tool that can provide information at a scale relevant to local-based 

management, which is advantageous in the context of the budgets and timelines involved in 

coastal development and management. It provides information on the composition and 

complexity of ecosystems, which can then be integrated in development planning and EBM to best 

decide the course of action to take, based on the set objectives. Understanding how development 

can impact the environment (composition and function) and devising new strategies to mitigate 

these impacts that is supported by scientific evidence are the core elements for a much needed 

science-based decision-making process (Crowder and Norse 2008; Douvere 2008; Elliott et al. 

2007; Long et al. 2015). This would maximise the conservation of natural habitats and faunal 

communities, resulting in a healthy and functioning ecosystem (Crowder and Norse 2008; Long et 

al. 2015). The inclusion of artificial features as components of the classification assists in bridging 

a conceptual gap currently present in other existing classifications. Not accounting for the 

presence of artificial features as integrated components of an ecosystem could lead to inaccurate 

assessments of its actual status and composition, particularly considering the number and variety 

of artificial structures present in coastal areas to this day and the many that will be introduced in 

the future. The inclusion of artificial structures in classification schemes for the assessment of 

habitat composition is therefore essential also considering the effects that these structures have 

on the local biotic communities. Furthermore, the characterisation and quantification of artificial 

features in an ecosystem can be used to map development and extent of modification, a 

fundamental starting point to understand the status of an ecosystem and plan for adequate 

conservation/restoration strategies. The possibility to add further classes to suit other ecosystems 

that differ from those addressed in this work (e.g. coastal ecosystems from different climates, 

latitudes, or continents; ecosystems with different artificial features linked to development or eco-

engineering) without affecting the structure, consistency, or stability of the classification 

highlights its broad applicability and versatility. Finally, the classification scheme for structural 
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habitats can also facilitate the linking of structural elements with the presence and distribution of 

local biota, and act accordingly for the preservation of ecosystem functioning and services.  

Overall, this simple and rapid assessment tool will allow managers to be in a stronger position to 

avoid wasted resources and/or time and increase the success of restoration works or to 

adequately plan for future development. The methodology, information and suggestions 

presented above are key steps forward and provide useful tools for managers and end-users to 

better approach the challenge of sustainable ecological development. 
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Glossary 
 

Armouring: engineering coastline/river/estuary against erosion and collapse by introducing 

structural elements such as sandbags, boulders, walls or cement slopes to protect from 

water/wave action. 

Artificial structure: structural element not naturally present in an environment and introduced to 

provide a specific service to humans. 

Artificial feature/modification: a change performed on the structural composition of an 

ecosystem as consequence of development in the form of introduction of artificial features (e.g. 

piers, pontoons, bridges, and ramps) or artificially placed substratum (e.g. boulders, cement walls, 

pavement). 

Attributes: descriptive characteristics or features of an ecosystem. 

Banks/Riverbanks: the land (flat or inclined) bordering the edge of a river. 

Biodiversity: an attribute of an area which specifically refers to the variety within and among living 

organisms, assemblages of living organisms, biotic communities, and biotic processes, whether 

naturally occurring or modified by humans. Biodiversity can be measured in terms of genetic 

diversity and the identity and number of different types of species, assemblages of species, biotic 

communities, and biotic processes, and the amount (e.g., abundance, biomass, cover, rate) and 

structure of each. It can be observed and measured at any spatial scale ranging from microsites 

and habitat patches to the entire biosphere. (DeLong 1996). 

Classes: see “Structural classes” 

Classification scheme: assessment tool used to identify distinct ecological units (e.g. ‘structural 

habitat’) based on the presence of specific descriptive characteristics, often following a 

hierarchical or sequential order. 

Coastline: the margin that forms the boundary between the land and the ocean. (Merriam-

Webster dictionary). 

Conservation: the act of preserving the natural environment including its ecological communities 

and the services and functions they provide. 
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Dominant habitat(s): the habitat(s) with the highest measure of habitat extent in the entire 

ecosystem or area assessed. 

Ecological Engineering (Eco-engineering): the design of sustainable ecosystems that integrate 

human society with its natural environment for the benefit of both. (Mitsch and Jørgensen 2003) 

Ecological enhancement: the improvement of the ecological biodiversity, productivity and 

functioning of a specific area. This can be achieved through different means: 1) increase of species 

richness and/or abundance, 2) increase in the availability of habitats or other resources, 3) 

promotion of spatial connectivity.  

Ecosystem: a geographic area with distinct geo-morphological characteristics where a community 

of organisms (flora and fauna) interact with the environment (e.g. rivers, lakes, coastlines, 

wetlands, reefs). 

Ecosystem-Based Management (EBM): A management approach that considers the relationships 

between ecosystems, the consequences of impacts on ecosystems and informs decision-making 

around initiatives and actions to successfully manage ecosystems (Foley et al. 2010). 

Ecosystem functioning: the sum of physical resources and processes involving fluxes of energy 

and matter between living organisms within the environment (Ghilarov 2000). 

Ecosystem services: the components of nature, directly enjoyed, consumed, or used to yield 

human well-being (Boyd and Banzhaf 2007). 

Estuary: the section of a river connected to the open sea and through which the sea water enters 

with the rhythm of the tides. 

Fragmentation: the progressive reduction of a continuous area in smaller separate and distinct 

sections. 

Frequency of occurrence (Relative): proportion of occurrence of a species across habitats 

characterised by a specific structural parameter. 

Frequency of occurrence (Total): proportion of occurrence of a species across the entire sampling 

pool (all habitat types collectively). 



 

111 

Geomorphology: the geological and morphological characteristics of a specific area at a given 

time. 

Habitat/Structural habitat: the specific combination of one or more of sixteen classes belonging 

to the three structural attributes (substratum, vegetation, and artificial features) found in the 

intertidal range (mean low water spring to mean high water spring) of an estuary. 

Habitat complexity: the combination of habitat composition and habitat configuration of an 

ecosystem or area. 

Habitat composition: the list of different types of (structural) habitats found in an ecosystem or 

area. 

Habitat (mosaic) configuration: the spatial distribution or arrangement of habitats in an 

ecosystem or area. 

Habitat extent: the combined extent of all patches belonging to a single habitat type in an 

ecosystem or area. 

Habitat patch: A ‘habitat patch’ is defined as a continuous spatial unit with clearly defined 

boundaries that is occupied by a single structural habitat. On maps habitat patches are 

represented by polygons. 

Habitat patch extent: the measurement in meters (m) of the distance between the two vertical 

boundaries that define the start and end of each habitat patch, in linear length following the 

riverbank meandering. 
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Intertidal zone: the area between land and sea which is regularly exposed to the air by the tidal 

movement of the sea. The shore zone between the highest and lowest tides. (Davies et al. 2004)  

Minimum mapping unit (MMU): The smallest size areal entity to be mapped as a discrete entity 

(Lillesand and Kiefer 1995) 

Modified: a natural area that has been physically and/or chemically altered by anthropogenic 

activities. 

Natural: a geographical area that has not been physically/structurally disturbed by anthropogenic 

activities. 

Non-transient organisms: species that are sessile or with a relatively small range of movement in 

their adult life (i.e. less than 20m). Predominantly benthic invertebrates. 

Resilience: measure of the persistence of systems and of their ability to absorb change and 

disturbance and still maintain the same relationships between populations or state variables (Holling 

1973) 

Restoration: the action of bringing an area or ecosystem back to a previous historical or natural 

state.  

Scale: the parameter that describes the level of geographic resolution and extent, the context of 

space and time and helps define the positional accuracy (Quattrochi and Goodchild 1997)  

Sector: a specific section of an ecosystem that delimits the spatial area where field assessment is 

carried out. 

Sediment: naturally occurring material (mineral) that is broken down by processes of weathering 

and erosion, and is subsequently transported by the action of wind, water, or ice, and/or by the 

force of gravity acting on the particles. (Wang and Yang 2014). 

Shoreface: the narrow littoral zone from the low watermark in which sediment is affected by 

waves and currents. 

Species composition: the list of all different species recorded in a given location (e.g. single habitat 

type) or area (e.g. entire estuary). (Davies et al. 2017). 
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Species richness: the total number of species recoded in a given location (e.g. single habitat type) 

or area (e.g. entire estuary) at a specific time. (Davies et al. 2017). 

Structural attributes/components: the constituting elements of an ecosystem forming physical 

and distinct structures and grouped based on whether they are biotic or abiotic as well as whether 

they are natural or artificial in origin. The main structural attributes identified in an ecosystem are: 

sediment (abiotic; natural or artificial), vegetation (biotic; natural), and artificial features (abiotic; 

artificial). 

Structural classes/Classes: list of distinct and mutually exclusive elements belonging to a common 

structural component in a classification for structural elements. 

Substratum: a base or a solid surface in which living things can adhere to while they grow. 

Transient organisms: species with a wide range of movement in their adult life (i.e. more than 

20m). Predominantly vertebrates and flying invertebrates. 

Urban area/Urbanised: natural area converted partially or totally into an urban centre and 

characterised by the presence of artificial structural elements. 

Waterway: a defined channel where water can flow. 

Wetland: Areas of marsh, fen, peatland or water, whether natural or artificial, permanent or 

temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine 

water the depth of which at low tide does not exceed six metres (RAMSAR, Iran, 1971). 

Coastal wetlands include marine (coastal lagoons, rocky shores, seagrass beds and coral reefs) and 

estuarine (deltas, tidal marshes and mudflats, and mangrove swamps) wetlands.  
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Appendices 
 

Appendix 1a. Table listing the basic requirements and positive conceptual and practical attributes identified for the 31 different regional/national classification 

schemes for marine and/or coastal ecosystems around the word. 
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x x x x x x x x x x x x x x  x x x x x x x x x x x x x x x x x 
 

Clear terms and definitions x x   x x x x x x x x x x x x x x x x  x x x x x x x x x  x x 

Scientifically sound x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 

Flexible and accommodates 
changes 

 x  x  x x x    x x x x x x x   x x x x  x x x x  x x 
 

Compatible with existing 
classifications 

 x  x    x  x    x  x    x  x    x x x x     

Simple and user-friendly  x x   x   x  x x   x x x x x   x    x x x    x  

Easily mappable x x x  x x x x  x  x x x x  x x x x   x x x x x x x x  x x 

Not affected by differences in 
sampling techniques 

x    x x    x  x x  x       x    x x x  x  x 
 

Relevant for many aquatic 
ecosystems 

 x   x x  x x x  x x x x  x x x x x x x x x  x x  x  x 
 

Applicable at national or 
international level 

x x  x x x x x x  x x   x x x x  x x x x x   x x   x x 
 

Possible to integrate existing 
knowledge 

x x  x x  x x   x    x x x x    x  x   x x x x x x x 

Formed by repeatable 
environmental units 

x x  x - x x x x x x x x x -  x x x x  x  - x x x x x x  x 
 

Individual components can be 
used autonomously or 
combined 

 x     x x                   
 

x     
 

Considers temporal variation  x      x   x          x    x         

Anthropogenic elements 
included as classes 

                    x  x     
x    x 

 

Anthropogenic elements 
included as modifiers 

    x x x x   x   x             x  x     
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Appendix 1b. Table listing the different conceptual and practical issues or gaps identified for the 31 different regional/national classification schemes for marine 

and/or coastal ecosystems around the word. 
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ISSUES OR GAPS                                                                 

Not hierarchical or nested    -    -   x     x  -     -        -   

Prescriptive (user has to match 
data to pre-existing habitats)  

   x      x  x     x x  x     x      x   

Not exhaustive   x        x -    x  x x -     -     x    

Hierarchical scheme not (fully) 
described 

   x   x      x    -    x   x       x  x 

Attributes and their hierarchy 
not clearly defined 

      x      x    x x  x x   x x    x  x  x 

Inconsistencies within the 
document 

    x     x                        

Ambiguous terminology    x x                 x          x   

No real definition of 
environmental units 

  x  x x x   x     x x   x  x  x x  x 
 

x   x  x 

Sampling technologies and 
protocols not clarified (risk of 
inconsistency) 

 x  x     x     x  x   x  x     x 
 

 x  x x 
 

Variable measures and scales 
not clarified (risk of 
inconsistency) 

        x    x        x      
 

     
 

Requires multiple assessment 
methods 

x x  x x x x x  x x x  x x      x x x x x  x x x x x x x 

Costly (money and/or time) x x  x x x x x  x x x  x x      x x x x x  x x x x x x  

Requires the presence of pre-
existing datasets 

      x x  x  x x  x  x x  x   x  x  x   x x  x 

Some basic information is 
unavailable 

           x x                     

Not widely applicable 
(regional/subregional scale) 

  x           x     x          x x   x 

Scale not clearly defined  x x  x x       x   x    x x   x  x  x    x  

Depth thresholds/sectors not 
described 

                    x     x 
      x 

Arbitrary selection of 
hierarchical levels 

    x  x                         x 
 

Some classes overlap             x                 x     

Some classes not always 
present in all levels  

   x x   x    x           x   x 
  x   x 
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ISSUES OR GAPS                                                                 

Parallel levels are not 
equivalent 

   x        x         x        x     

Details are not defined but left 
to the decision of the user (risk 
for inconsistency) 

    x                      
 

    x 
 

Biogeographical elements 
insufficiently varied to 
represent diversity  

  x         x               
 

     
 

Focus on sediment and/or 
hydrology only 

              x x                 x 

Does not include many 
variables 

  x      x  x  x  x    x      x x 
 

x     x 

Combinations of different 
substrata are not addressed 

 x   x x   x   x            x     x x  x x 

Sediment and biota mixed and 
not as nested layers 

 x    x                x       x x    

Vegetation and sediment 
classes mutually exclusive 

 x   x                        x     

Does not consider biota x  x      x      x x                 x 

Focus on species or taxa 
individually, not on the mixed 
community as a whole 

      x    x x  x     x   x  x   
 

 x   x 
 

Modifiers not included x  x      x    x  x   x  x     x x    x    

Modifiers not equal or poorly 
described 

   x  x          x      x x x     x   x 
 

Does not consider 
anthropogenic elements 

x x x x     x x  x x  x x x x x x  x  x x x 
   x x  x 

Anthropogenic elements 
classified in a generic manner 

     x  x   x   x       x      x x x   x 
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Appendix 2a. Metadata of the structural composition and habitat mosaic configuration of Ross Creek. 

Layer group “Full List” contains the map of all structural habitats identified in the estuary. Layer group 

“NAT-MOD” presents the habitats divided in ‘natural’ and ‘modified’ based on whether they do/don’t 

at least one artificial feature or sediment. Layer group “Sediment” maps the presence of the different 

substratum classes (Mud, Sand, Gravel, Boulders, and Pavement) in the estuary. Layer group 

“Vegetation” maps the presence of the two Vegetation classes (Mangrove and Saltmarsh) in the 

estuary. Layer group “Artificial Features” maps the presence of the different artificial features 

(Armouring, Drain, Raised structure, Level structure, and Pillars) in the estuary. 

Link to the metadata: 

RossCreek_StructuralHabitat.zip 
https://cloudstor.aarnet.edu.au/plus/s/xpYaiNipNACws5C 
  
Metadata record: 
Citation: Trave, C. (2019): Structural habitat composition of Ross Creek (Townsville, QLD). James Cook 
University. (dataset). http://doi.org/10.25903/5d044035ce1b0 
Digital Object Identifier (DOI):10.25903/5d044035ce1b0 
 

 

 

 

 

 

 

 

 

 

Appendix 2b. Metadata of the structural composition and habitat mosaic configuration of Ross River. 

Layer group “Full List” contains the map of all structural habitats identified in the estuary. Layer group 

“NAT-MOD” presents the habitats divided in ‘natural’ and ‘modified’ based on whether they do/don’t 

at least one artificial feature or sediment. Layer group “Sediment” maps the presence of the different 

substratum classes (Mud, Sand, Gravel, Boulders, and Pavement) in the estuary. Layer group 

“Vegetation” maps the presence of the two Vegetation classes (Mangrove and Saltmarsh) in the 

estuary. Layer group “Artificial Features” maps the presence of the different artificial features 

(Armouring, Drain, Raised structure, Level structure, and Pillars) in the estuary. 

Link to the metadata: 

RossRiver_StructuralHabitat.zip 
https://cloudstor.aarnet.edu.au/plus/s/LmYDlAtRclTwxbb 
  
Metadata record: 
Citation: Trave, C. (2019): Structural habitat composition of Ross River (Townsville, QLD). James Cook 
University. (dataset). http://doi.org/10.25903/5d043c46647cd 
Digital Object Identifier (DOI):10.25903/5d043c46647cd 
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Appendix 2c. Metadata of the structural composition and habitat mosaic configuration of Alligator 

Creek. Layer group “Full List” contains the map of all structural habitats identified in the estuary. Layer 

group “NAT-MOD” presents the habitats divided in ‘natural’ and ‘modified’ based on whether they 

do/don’t at least one artificial feature or sediment. Layer group “Sediment” maps the presence of the 

different substratum classes (Mud, Sand, Gravel, Boulders, and Pavement) in the estuary. Layer group 

“Vegetation” maps the presence of the two Vegetation classes (Mangrove and Saltmarsh) in the 

estuary. Layer group “Artificial Features” maps the presence of the different artificial features 

(Armouring, Drain, Raised structure, Level structure, and Pillars) in the estuary. 

Link to the metadata: 

AlligatorCreek_StructuralHabitat.zip 
https://cloudstor.aarnet.edu.au/plus/s/7c4ySYCwoAovWW4 
  
Metadata record: 
Citation: Trave, C. (2019): Structural habitat composition of Alligator Creek (Townsville, QLD). James 
Cook University. (dataset). http://doi.org/10.25903/5d04389042aca 
Digital Object Identifier (DOI):10.25903/5d04389042aca 
 

 

 

 

 

 

 

 

 

 

Appendix 2d. Metadata of the structural composition and habitat mosaic configuration of Althaus 

Creek. Layer group “Full List” contains the map of all structural habitats identified in the estuary. Layer 

group “NAT-MOD” presents the habitats divided in ‘natural’ and ‘modified’ based on whether they 

do/don’t at least one artificial feature or sediment. Layer group “Sediment” maps the presence of the 

different substratum classes (Mud, Sand, Gravel, Boulders, and Pavement) in the estuary. Layer group 

“Vegetation” maps the presence of the two Vegetation classes (Mangrove and Saltmarsh) in the 

estuary. Layer group “Artificial Features” maps the presence of the different artificial features 

(Armouring, Drain, Raised structure, Level structure, and Pillars) in the estuary. 

Link to the metadata: 

AlthausCreek_StructuralHabitat.zip 
https://cloudstor.aarnet.edu.au/plus/s/x43Nr0FBk2OPAQ8 
  
Metadata record: 
Citation: Trave, C. (2019): Structural habitat composition of Althaus Creek (Townsville, QLD). James 
Cook University. (dataset). http://doi.org/10.25903/5d043206e7f4f 
Digital Object Identifier (DOI):10.25903/5d043206e7f4f 
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Appendix 3a. Percentage of overall extent of each of the 51 habitats identified in Ross Creek. 
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Appendix 3b. Percentage of overall extent of each of the 53 habitats identified in Ross River.  
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Appendix 3c. Percentage of overall extent of each of the 18 habitats identified in Ross River. 

 

 

Appendix 3d. Percentage of overall extent of each of the 23 habitats identified in Althaus Creek. 
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Appendix 4a. Information on the total extent, number of patches, mean patch size, and percentage of 

total extent of each habitat type in Ross Creek. 
 ROSS CREEK 

Structural Habitat types Total extent (m) Patches Mean patch size (m) % total Extent 

BLD*      

BLD*-(A) 496.6 13 38.2 4.18 

BLD*-(A)-(D) 10.2 2 5.1 0.09 

BLD*-(A)-(R) 98.9 6 16.5 0.83 

BLD*-MG-(A) 443.3 4 110.8 3.73 

BLD*-PAV*-(A)-(D)       

BLD*-PAV*-(A)-(R)-(P)       

BLD*-SM-(A) 13.7 1 13.7 0.12 

BLD*-SM-(A)-(P)       

GRV*-(A)       

GRV*-BLD*-(A)       

GRV*-BLD*-(A)-(D) 25.1 3 8.4 0.21 

GRV*-BLD*-MG-(A)       

GRV*-BLD*-MG-(A)-(D)       

GRV*-BLD*-MG-SM-(A)       

GRV*-BLD*-SM-(A) 7.4 1 7.4 0.06 

GRV*-MG-SM-(A)       

GRV*-PAV*-MG-(A) 13.3 1 13.3 0.11 

GRV*-SM-(A)-(D)       

MUD 1991.5 13 153.2 16.77 

MUD-BLD*-(A) 366.4 5 73.3 3.09 

MUD-BLD*-MG-(A) 258.4 10 25.8 2.18 

MUD-BLD*-MG-(A)-(R) 43.4 5 8.7 0.37 

MUD-BLD*-MG-SM-(A)       

MUD-BLD*-PAV*-(A)-(D) 9.9 2 5.0 0.08 

MUD-BLD*-SM-(A) 24.4 2 12.2 0.21 

MUD-GRV* 813.4 16 50.8 6.85 

MUD-GRV*-(A)-(D) 21.7 4 5.4 0.18 

MUD-GRV*-(A)-(R) 37.4 3 12.5 0.31 

MUD-GRV*-BLD*-(A)       

MUD-GRV*-BLD*-(A)-(D) 6.0 1 6.0 0.05 

MUD-GRV*-BLD*-(A)-(R)       

MUD-GRV*-BLD*-MG-SM-(A)       

MUD-GRV*-BLD*-SM-(A) 15.3 2 7.7 0.13 

MUD-GRV*-MG 661.3 16 41.3 5.57 

MUD-GRV*-MG-SM 322.7 4 80.7 2.72 

MUD-GRV*-PAV*-(A) 58.6 3 19.5 0.49 

MUD-GRV*-SM       

MUD-MG 3094.0 27 114.6 26.05 

MUD-MG-SM 82.1 1 82.1 0.69 

MUD-PAV       

MUD-PAV*-(A)-(D) 16.7 2 8.4 0.14 

MUD-PAV*-(A)-(L)       

MUD-PAV*-(A)-(R) 12.7 1 12.7 0.11 

MUD-PAV*-MG-(A)-(D) 5.8 1 5.8 0.05 

MUD-SAN 123.5 2 61.8 1.04 

MUD-SAN-GRV* 76.9 2 38.5 0.65 

MUD-SAN-GRV*-BLD* 4.9 1 4.9 0.04 

MUD-SAN-GRV*-BLD*-(A) 24.8 4 6.2 0.21 

MUD-SAN-GRV*-BLD*-SM       

MUD-SAN-GRV*-MG 497.6 6 82.9 4.19 

MUD-SAN-GRV*-MG-(D) 12.0 1 12.0 0.10 

MUD-SAN-GRV*-MG-(R) 12.2 1 12.2 0.10 

MUD-SAN-GRV*-MG-SM 254.1 7 36.3 2.14 

MUD-SAN-GRV*-MG-SM-(R) 6.2 1 6.2 0.05 

MUD-SAN-GRV*-SM 14.9 2 7.5 0.13 

MUD-SAN-MG 294.1 3 98.0 2.48 

MUD-SAN-MG-SM 23.7 2 11.9 0.20 

MUD-SAN-SM 19.6 1 19.6 0.17 

MUD-SM 31.8 1 31.8 0.27 

PAV       

PAV*-(A) 1298.6 11 118.1 10.94 

PAV*-(A)-(D) 46.4 10 4.6 0.39 

PAV*-(A)-(L)       

PAV*-(A)-(P)       

PAV*-(A)-(R) 60.9 5 12.2 0.51 

PAV*-(A)-(R)-(P)       

PAV*-MG-(A) 41.3 7 5.9 0.35 

PAV-MG       

SAN 5.1 1 5.1 0.04 

SAN-BLD       

SAN-GRV*       

SAN-GRV*-BLD* 16.7 2 8.4 0.14 

SAN-GRV*-BLD*-MG-(A) 25.6 1 25.6 0.22 

SAN-GRV*-MG 14.7 2 7.4 0.12 

SAN-GRV*-MG-SM 9.8 1 9.8 0.08 

SAN-MG       

SAN-MG-SM-(P)       

SAN-SM 10.0 1 10.0 0.08 
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Appendix 4b. Information on the total extent, number of patches, mean patch size, and percentage of 

total extent of each habitat type in Ross River. 
 ROSS RIVER 

Structural Habitat types Total extent (m) Patches Mean patch size (m) % total Extent 

BLD* 
    

BLD*-(A) 1490.3 45 33.1 4.54 

BLD*-(A)-(D) 14.83 3 4.94 0.05 

BLD*-(A)-(R) 76.87 8 9.61 0.23 

BLD*-MG-(A) 1061.9 23 46.17 3.23 

BLD*-PAV*-(A)-(D) 41.1 4 10.28 0.13 

BLD*-PAV*-(A)-(R)-(P) 4.1 1 4.10 0.01 

BLD*-SM-(A) 18.6 1 18.60 0.06 

BLD*-SM-(A)-(P) 4.3 1 4.30 0.01 

GRV*-(A) 
    

GRV*-BLD*-(A) 
    

GRV*-BLD*-(A)-(D) 21.9 3 7.30 0.07 

GRV*-BLD*-MG-(A) 100.9 4 25.23 0.31 

GRV*-BLD*-MG-(A)-(D) 10.8 1 10.80 0.03 

GRV*-BLD*-MG-SM-(A) 90 3 30.00 0.27 

GRV*-BLD*-SM-(A) 
    

GRV*-MG-SM-(A) 55.7 3.0 18.57 0.17 

GRV*-PAV*-MG-(A) 
    

GRV*-SM-(A)-(D) 7.4 1 7.40 0.02 

MUD 2721.9 15 181.46 8.29 

MUD-BLD*-(A) 7.8 1 7.80 0.02 

MUD-BLD*-MG-(A) 838.9 13 64.53 2.56 

MUD-BLD*-MG-(A)-(R) 11.5 1 11.50 0.04 

MUD-BLD*-MG-SM-(A) 250.7 4 62.68 0.76 

MUD-BLD*-PAV*-(A)-(D) 
    

MUD-BLD*-SM-(A) 
    

MUD-GRV* 2074.97 15 138.33 6.32 

MUD-GRV*-(A)-(D) 
    

MUD-GRV*-(A)-(R) 
    

MUD-GRV*-BLD*-(A) 27.9 2 13.95 0.08 

MUD-GRV*-BLD*-(A)-(D) 29.9 4 7.48 0.09 

MUD-GRV*-BLD*-(A)-(R) 72.7 4 18.18 0.22 

MUD-GRV*-BLD*-MG-SM-(A) 63.1 3 21.03 0.19 

MUD-GRV*-BLD*-SM-(A) 103.4 3 34.47 0.32 

MUD-GRV*-MG 549 9 61.00 1.67 

MUD-GRV*-MG-SM 853.7 13 65.67 2.60 

MUD-GRV*-PAV*-(A) 11 2 5.50 0.03 

MUD-GRV*-SM 326.9 6 54.48 1.00 

MUD-MG 12075.2 69 175.00 36.79 

MUD-MG-SM 2634 28 94.07 8.02 

MUD-PAV 
    

MUD-PAV*-(A)-(D) 12 1 12.00 0.04 

MUD-PAV*-(A)-(L) 
    

MUD-PAV*-(A)-(R) 
    

MUD-PAV*-MG-(A)-(D) 
    

MUD-SAN 375.7 6 62.62 1.14 

MUD-SAN-GRV* 539.9 5 107.98 1.64 

MUD-SAN-GRV*-BLD* 
    

MUD-SAN-GRV*-BLD*-(A) 
    

MUD-SAN-GRV*-BLD*-SM 34.1 1 34.10 0.10 

MUD-SAN-GRV*-MG 17.3 1 17.30 0.05 

MUD-SAN-GRV*-MG-(D) 
    

MUD-SAN-GRV*-MG-(R) 
    

MUD-SAN-GRV*-MG-SM 212 1 212.00 0.65 

MUD-SAN-GRV*-MG-SM-(R) 
    

MUD-SAN-GRV*-SM 188.6 3 62.87 0.57 

MUD-SAN-MG 268.7 9 29.86 0.82 

MUD-SAN-MG-SM 68.2 4 17.05 0.21 

MUD-SAN-SM 503.2 10 50.32 1.53 

MUD-SM 1438.6 28 51.38 4.38 

PAV 63.3 1 63.30 0.19 

PAV*-(A) 541.3 18 30.07 1.65 

PAV*-(A)-(D) 32.1 4 8.03 0.10 

PAV*-(A)-(L) 133.9 10 13.39 0.41 

PAV*-(A)-(P) 7.8 1 7.80 0.02 

PAV*-(A)-(R) 
    

PAV*-(A)-(R)-(P) 106.9 7 15.27 0.33 

PAV*-MG-(A) 
    

PAV-MG 
    

SAN 2534.9 13 194.99 7.72 

SAN-BLD 
    

SAN-GRV* 
    

SAN-GRV*-BLD* 
    

SAN-GRV*-BLD*-MG-(A) 48.6 2 24.30 0.15 

SAN-GRV*-MG 14.4 1 14.40 0.04 

SAN-GRV*-MG-SM 
    

SAN-MG 
    

SAN-MG-SM-(P) 20.3 1 20.30 0.06 

SAN-SM 12.3 1 12.30 0.04 
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Appendix 4c. Information on the total extent, number of patches, mean patch size, and percentage of 

total extent of each habitat type in Alligator Creek. 
 ALLIGATOR CREEK 

Structural Habitat types Total extent (m) Patches Mean patch size (m) % total Extent 

BLD* 
    

BLD*-(A) 
    

BLD*-(A)-(D) 
    

BLD*-(A)-(R) 
    

BLD*-MG-(A) 28 3 9.33 0.09 

BLD*-PAV*-(A)-(D) 
    

BLD*-PAV*-(A)-(R)-(P) 
    

BLD*-SM-(A) 
    

BLD*-SM-(A)-(P) 
    

GRV*-(A) 
    

GRV*-BLD*-(A) 
    

GRV*-BLD*-(A)-(D) 
    

GRV*-BLD*-MG-(A) 
    

GRV*-BLD*-MG-(A)-(D) 
    

GRV*-BLD*-MG-SM-(A) 
    

GRV*-BLD*-SM-(A) 
    

GRV*-MG-SM-(A) 
    

GRV*-PAV*-MG-(A) 
    

GRV*-SM-(A)-(D) 
    

MUD 223.3 7 31.90 0.69 

MUD-BLD*-(A) 
    

MUD-BLD*-MG-(A) 148.1 4 37.03 0.46 

MUD-BLD*-MG-(A)-(R) 8.6 1 8.60 0.03 

MUD-BLD*-MG-SM-(A) 
    

MUD-BLD*-PAV*-(A)-(D) 
    

MUD-BLD*-SM-(A) 
    

MUD-GRV* 1079 2 539.50 3.32 

MUD-GRV*-(A)-(D) 
    

MUD-GRV*-(A)-(R) 
    

MUD-GRV*-BLD*-(A) 51.5 2 25.75 0.16 

MUD-GRV*-BLD*-(A)-(D) 
    

MUD-GRV*-BLD*-(A)-(R) 
    

MUD-GRV*-BLD*-MG-SM-(A) 
    

MUD-GRV*-BLD*-SM-(A) 25.5 1 25.50 0.08 

MUD-GRV*-MG 
    

MUD-GRV*-MG-SM 
    

MUD-GRV*-PAV*-(A) 21.5 2 10.75 0.07 

MUD-GRV*-SM 
    

MUD-MG 22657.7 79 286.81 69.76 

MUD-MG-SM 5943.3 81 73.37 18.30 

MUD-PAV 
    

MUD-PAV*-(A)-(D) 
    

MUD-PAV*-(A)-(L) 
    

MUD-PAV*-(A)-(R) 19.4 2 9.70 0.06 

MUD-PAV*-MG-(A)-(D) 
    

MUD-SAN 144.3 3 48.10 0.44 

MUD-SAN-GRV* 13.9 1 13.90 0.04 

MUD-SAN-GRV*-BLD* 
    

MUD-SAN-GRV*-BLD*-(A) 18.8 2 9.40 0.06 

MUD-SAN-GRV*-BLD*-SM 
    

MUD-SAN-GRV*-MG 
    

MUD-SAN-GRV*-MG-(D) 
    

MUD-SAN-GRV*-MG-(R) 
    

MUD-SAN-GRV*-MG-SM 
    

MUD-SAN-GRV*-MG-SM-(R) 
    

MUD-SAN-GRV*-SM 
    

MUD-SAN-MG 180 1 180.00 0.55 

MUD-SAN-MG-SM 
    

MUD-SAN-SM 
    

MUD-SM 1634.3 41 39.86 5.03 

PAV 
    

PAV*-(A) 58.9 2 29.45 0.18 

PAV*-(A)-(D) 
    

PAV*-(A)-(L) 
    

PAV*-(A)-(P) 
    

PAV*-(A)-(R) 
    

PAV*-(A)-(R)-(P) 
    

PAV*-MG-(A) 
    

PAV-MG 222.3 2 111.15 0.68 

SAN 
    

SAN-BLD 
    

SAN-GRV* 
    

SAN-GRV*-BLD* 
    

SAN-GRV*-BLD*-MG-(A) 
    

SAN-GRV*-MG 
    

SAN-GRV*-MG-SM 
    

SAN-MG 
    

SAN-MG-SM-(P) 
    

SAN-SM 
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Appendix 4d. Information on the total extent, number of patches, mean patch size, and percentage of 

total extent of each habitat type in Althaus Creek. 
 ALTHAUS CREEK 

Structural Habitat types Total extent (m) Patches Mean patch size (m) % total Extent 

BLD* 1.5 1 1.50 0.02 

BLD*-(A) 1.8 1 1.80 0.03 

BLD*-(A)-(D) 
    

BLD*-(A)-(R) 
    

BLD*-MG-(A) 
    

BLD*-PAV*-(A)-(D) 
    

BLD*-PAV*-(A)-(R)-(P) 
    

BLD*-SM-(A) 
    

BLD*-SM-(A)-(P) 
    

GRV*-(A) 5.5 2 2.75 0.08 

GRV*-BLD*-(A) 2.1 1 2.10 0.03 

GRV*-BLD*-(A)-(D) 
    

GRV*-BLD*-MG-(A) 
    

GRV*-BLD*-MG-(A)-(D) 
    

GRV*-BLD*-MG-SM-(A) 
    

GRV*-BLD*-SM-(A) 
    

GRV*-MG-SM-(A) 
    

GRV*-PAV*-MG-(A) 
    

GRV*-SM-(A)-(D) 
    

MUD 518.8 5 103.76 7.99 

MUD-BLD*-(A) 
    

MUD-BLD*-MG-(A) 
    

MUD-BLD*-MG-(A)-(R) 
    

MUD-BLD*-MG-SM-(A) 
    

MUD-BLD*-PAV*-(A)-(D) 
    

MUD-BLD*-SM-(A) 
    

MUD-GRV* 7.6 1 7.60 0.12 

MUD-GRV*-(A)-(D) 
    

MUD-GRV*-(A)-(R) 
    

MUD-GRV*-BLD*-(A) 
    

MUD-GRV*-BLD*-(A)-(D) 
    

MUD-GRV*-BLD*-(A)-(R) 
    

MUD-GRV*-BLD*-MG-SM-(A) 
    

MUD-GRV*-BLD*-SM-(A) 
    

MUD-GRV*-MG 17 2 8.50 0.26 

MUD-GRV*-MG-SM 3.1 1 3.10 0.05 

MUD-GRV*-PAV*-(A) 
    

MUD-GRV*-SM 3.9 1 3.90 0.06 

MUD-MG 3875.3 8 484.41 59.66 

MUD-MG-SM 5.3 1 5.30 0.08 

MUD-PAV 345.6 3 115.20 5.32 

MUD-PAV*-(A)-(D) 
    

MUD-PAV*-(A)-(L) 5.3 1 5.30 0.08 

MUD-PAV*-(A)-(R) 
    

MUD-PAV*-MG-(A)-(D) 
    

MUD-SAN 297.7 4 74.43 4.58 

MUD-SAN-GRV* 2.4 1 2.40 0.04 

MUD-SAN-GRV*-BLD* 
    

MUD-SAN-GRV*-BLD*-(A) 
    

MUD-SAN-GRV*-BLD*-SM 
    

MUD-SAN-GRV*-MG 
    

MUD-SAN-GRV*-MG-(D) 
    

MUD-SAN-GRV*-MG-(R) 
    

MUD-SAN-GRV*-MG-SM 
    

MUD-SAN-GRV*-MG-SM-(R) 
    

MUD-SAN-GRV*-SM 
    

MUD-SAN-MG 157.1 7 22.44 2.42 

MUD-SAN-MG-SM 
    

MUD-SAN-SM 
    

MUD-SM 
    

PAV 156.8 3 52.27 2.41 

PAV*-(A) 2.7 1 2.70 0.04 

PAV*-(A)-(D) 
    

PAV*-(A)-(L) 33.1 3 11.03 0.51 

PAV*-(A)-(P) 
    

PAV*-(A)-(R) 
    

PAV*-(A)-(R)-(P) 
    

PAV*-MG-(A) 
    

PAV-MG 
    

SAN 734.5 7 104.93 11.31 

SAN-BLD 51.5 1 51.50 0.79 

SAN-GRV* 37.7 3 12.57 0.58 

SAN-GRV*-BLD* 
    

SAN-GRV*-BLD*-MG-(A) 
    

SAN-GRV*-MG 
    

SAN-GRV*-MG-SM 
    

SAN-MG 229.2 4 57.30 3.53 

SAN-MG-SM-(P) 
    

SAN-SM 
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Appendix 5a. Mean monthly rainfall values of the Townsville region recorded in the period 2016 (dark 
brown) compared with the mean rainfall values for years 1940-2018 (light brown). Sampling rounds for 
the macrofaunal assessment carried out in Ross Creek (RCK, red). 
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Appendix 5b. Mean monthly rainfall values of the Townsville region recorded in the period 2017 (dark 
brown) compared with the mean rainfall values for years 1940-2018 (light brown). Sampling rounds for 
the macrofaunal assessment carried out in the three estuaries are indicated by coloured dots: Ross Creek 
(RCK, red), Ross River (RR, dark blue) and Alligator Creek (ALCK, light blue). 
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Appendix 6. Daily rainfall values of the Townsville region recorded around the sampling rounds carried 
in the period October 2016 – September 2017 for the three estuaries: Ross Creek (red), Ross River (dark 
blue) and Alligator Creek (light blue). 
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Appendix 6 (cont.). Daily rainfall values of the Townsville region recorded around the sampling rounds 
carried in the period October 2016 – September 2017 for the three estuaries: Ross Creek (red), Ross 
River (dark blue) and Alligator Creek (light blue). 
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Appendix 6 (cont.). Daily rainfall values of the Townsville region recorded around the sampling rounds 
carried in the period October 2016 – September 2017 for the three estuaries: Ross Creek (red), Ross 
River (dark blue) and Alligator Creek (light blue). 

 
 

 
 
 
 
 
 
 
 
 
 



 

182 



 

183 

Appendix 7. List of all species identified in the macrofaunal survey across the three estuaries: Ross Creek, 
Ross River, and Alligator Creek. 

Family Species Common name 

Vespidae Abispa splendida Large mud-nesting wasp 

Sergestidae Acetes australis Australian paste shrimp 

Nymphalidae Acraea andromacha Glasswing butterfly 

Nymphalidae Acraea terpsicore Tawny coster butterfly 

Culcidae Aedes aegypti Yellow fever mosquito 

Nymphalidae Agraulis vanillae Gulf fritillary butterfly 

Apidae Amegilla Sp. Blue-banded bees 

Anhingidae Anhinga novaehollandiae Australian darter 

Apidae Apis mellifera European honey bee 

Ardeidae Ardea Sp. White egret 

Araneidae Argiope keyserlingi St Andrew's cross spider 

Araneidae Austracantha minax Australian jewel spider 

Macrophtalmidae Australoplax tridentata Furry-clawed crab 

Tephritidae Bactrocera tryoni Queensland fruit fly 

Balanidae Balanus amphitrite Striped barnacle 

Batillariidae Batillaria australis Australian mud whelk 

Ardeidae Butorides striata Striated heron 

Cacatuidae Cacatua alba White cockatoo 

Formicidae Camponotus Sp. Carpenter ants 

Ellobiidae Cassidula angulifera Angulate shoulder ear shell 

Pieridae Catopsilia pomona Emigrant butterflies 

Acrididae Cedarinia Sp. Wingless grasshopper 

Cerithiidae Cerithium Sp. Diplip welk 

Chthamalidae Chthamalus antennatus Six-plated barnacle 

Ocypodidae Cleistostoma wardi Ward's hairy-legged crab 

Diogenidae Clibanarius Sp. Hermit crab 

Neritidae Clithon oualaniensis Dubious Nerite 

Coccinellidae Coelophora inaequalis Common Australian ladybug 

Artamidae Cracticus Sp. Butcherbird 

Ostreidae Crassostrea Sp.  Pacific oyster 

Formicidae Crematogaster laeviceps Black valentine ant 

Scincidae Cryptoblepharus virgatus Snake-eyed skink 

Ceratopogonidae Culiocoides Sp. Biting midges 

Alcedinidae Dacelo novaeguineae Laughing kookaburra 

Nymphalidae Danaus affinis Mangrove tiger butterfly 

Deinopidae Deinopis subrufa Rufous net-caster spider 

Heleomyzidae Diplogeomyza Sp. Heleomyzid fly 

Terebridae Duplicaria Sp. Auger snail 

Pyrrhocoridae Dysdercus sisae Pale cotton stainer 

Ardeidae Egretta novaehollandiae White-faced heron  

Ardeidae Egretta sacra Pacific reef heron  

Anomiidae Enigmonia aenigmatica Mangrove jingle clam 

Columbidae Geopelia placida Peaceful dove 
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Family Species Common name 

Monarchidae Grallina cyanoleuca Magpie-lark 

Plagusiidae Grapsus tenuicrustatus Natal lightfoot crab 

Gryllotaplidae Gryllotalpa pluvialis  Mole cricket 

Accipitridae Haliastur indus Brahminy kite 

Pentatomidae Halyomorpha halys Brown marmorated stink bug 

Grapsidae Helice sp. Tunnelling mud crabs 

Recurvirostridae Himantopus Black-winged stilt 

Hirundinidae Hirundo neoxena Welcome swallow 

Lycaenidae Hypochrysops apelles Copper jewel butterfly 

Lycaenidae Hypochrysops digglesii Silky jewel butterfly 

Ocypodidae Ilyoplax Sp. Semaphore crabs 

Formicidae Iridomyrmex purpureus Meat ants 

Ostreidae Isognomon ephippium Rounded toothed pearl shell 

Campephagidae Lalage sueurii White-shouldered triller 

Laridae Larus novahoellandiae Silver gull 

Meliphagidae Lichenostomus versicolor Varied honeyeater 

Ligiidae Ligia Sp. Sea slaters 

Littorinidae Littoraria articulata Articulated littorina 

Littorinidae Littoraria filosa Thin periwinkle 

Littorinidae Littoraria pallescens Polymorphic mangrove snail 

Littorinidae Littoraria scabra Mangrove periwinkle 

Calliphoridae Lucilia cuprina Australian sheep blowfly 

Macrophtalmidae Macrophthalmus latreillei Giant sentinel crab 

Ocypodidae Macrophthalmus pacificus Pacific blue-clawed sentinel 

Macropodidae Macropus agilis Agile wallaby 

Meliphagidae Manorina melanocephala Noisy miner 

Meropidae Merops ornatus Rainbow bee-eater 

Grapsidae Metopograpsus frontalis Mangrove climber crab 

Grapsidae Metopograpsus latifrons Purple climber crab 

Grapsidae Metopograpsus thukuhar Thukuhar shore-crab 

Accipitridae Milvus migrans Black kite  

Muscidae Musca vetustissima Australian bush fly 

Menippidae Myomenippe fornasinii Stone crab 

Braconidae N/A Braconid wasps 

Gerridae N/A Water striders 

Cerambycidae N/A Longhorned beetles 

Armadillidae N/A Garden slater 

Anomiidae N/A Red flat clam 

Nassaridae Nassarius Sp. Nassa mud snail 

Neritidae Nerita balteata Lined nerite 

Neritidae Nerita planospira Flat spire nerite 

Acrididae Nomadacris guttulosa Spur‐throated locust 

Scolopacidae Numenius madagascariensis Eastern curlew 

Formicidae Ochetellus glaber Black house ant 

Formicidae Oecophylla smaragdina Green tree ant 
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Family Species Common name 

Asilidae Ommatius Sp. Robber flies 

Onchidiidae Onchidina australis Onchidiid slug 

Onchidiidae Onchidium daemelii Onchidiid slug 

Onchidiidae Onchidium verruculatum Onchidiid slug 

Chitonidae Onithochiton Sp. Chiton shell 

Ellobiidae Ophicardelus ornatus Ornate mangrove snail 

Lymantriidae Orvasca aliena Tussock Moth 

Oxyopidae Oxyopes Sp. Lynx spiders 

Passeridae Passer domesticus House sparrow 

Pelecanidae Pelecanus conspicillatus Australian pelicans 

Panaeidae Penaeus merguiensis Banana prawn 

Gobidae Periophthalmus Sp. Mudskipper 

Phalacrocoracidae Phalacrocorax Sp. Cormorant 

Phascolosomatidae Phascolosoma arcuatum Peanut worm 

Pieridae Pieris rapae Small cabbage white butterfly 

Threskiornithidae Plegadis falcinellus Glossy ibis 

Myrmicinae Podomyrma gratiosa Muscleman tree-ant 

Formicidae Polyrhachis Sp. Golden tailed spiny ant 

Portunidae Portunus Sp. Swimmer crab 

Reduviidae Pristhesancus plagipennis Common assassin bug 

Pteropodidae Pteropus alecto Black flying fox 

Ptilonorhynchidae Ptilonorhynchus nuchalis Great bowerbird 

Vespidae Ropalidia revolutionalis Small brown paper wasp 

Ostreidae Saccostrea cucullata Hooded oyster 

Ostreidae Saccostrea echinata Black lip oyster 

Sphecidae Sceliphron laetum Mud-dauber wasp 

Scoliidae Scolia soror Blue hairy flower wasp  

Portunidae Scylla serrata Giant mud crab 

Grapsidae Sesarma erythrodactyla Red-fingered marsh crab 

Sesarmidae Sesarma longicristatum Saltmarsh burrowing crab 

Grapsidae Sesarma messa Mangrove crab 

Oriolidae Sphecotheres viridis Timor figbird 

Chrysididae Stilbum cyanurum Large cuckoo wasp 

Potamididae Telescopium Horn snail 

Muricidae Thais Sp. Rock murex 

Thalassinidae Thalassina Sp. Mud lobster 

Lycaenidae Theclinesthes sulpitius Samphire blue butterfly 

Threskiornithidae Threskiornis molucca Australian white ibis 

Alcedinidae Todiramphus sanctus Sacred kingfisher 

Ocypodidae Uca coarctata Orange-clawed fiddler crab 

Ocypodidae Uca perplexa Perplexing fiddler crab 

Ocypodidae Uca polita Polished fiddler crab 

Ocypodidae Uca seismella Shaking fiddler crab 

Ocypodidae Uca signata Signaling fiddler crab 

Ocypodidae Uca vocans Two-toned fiddler crab 

Charadriidae Vanellus miles Masked lapwing 
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Appendix 8. Occurrence of the 67 non-transient taxa across the three estuaries: Ross Creek (RCK), Ross 
River (RR), and Alligator Creek (ALCK). 
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Appendix 9. Species richness per structural habitat assessed in the estuaries of Ross Creek, Ross River, and Alligator Creek. Data includes only species occurring more 
than 5% of the total dataset. Marine species are represented by the colour light blue, while terrestrial species are represented by the colour green. 
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Appendix 9 (cont.). Species richness per structural habitat assessed in the estuaries of Ross Creek, Ross River, and Alligator Creek. Data includes only species 

occurring more than 5% of the total dataset. Marine species are represented by the colour light blue, while terrestrial species are represented by the colour green. 
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“E quindi uscimmo a riveder le stelle” 

(Inferno XXXIV, 139) 

Dante Alighieri – Divina Commedia  
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