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Abstract: Soil-transmitted helminths, including hookworms and whipworms, infect billions of
people worldwide. Their capacity to penetrate and migrate through their hosts’ tissues is influenced
by the suite of molecules produced by the infective developmental stages. To facilitate a better
understanding of the immunobiology and pathogenicity of human hookworms and whipworms,
we investigated the metabolomes of the infective stage of Nippostrongylus brasiliensis third-stage larvae
(L3) which penetrate the skin and Trichuris muris eggs which are orally ingested, using untargeted
liquid chromatography–mass spectrometry (LC-MS). We identified 55 polar metabolites through
Metabolomics Standard Initiative level-1 (MSI-I) identification from N. brasiliensis and T. muris infective
stages, out of which seven were unique to excretory/secretory products (ESPs) of N. brasiliensis L3.
Amino acids were a principal constituent (33 amino acids). Additionally, we identified 350 putative
lipids, out of which 28 (all known lipids) were unique to N. brasiliensis L3 somatic extract and four
to T. muris embryonated egg somatic extract. Glycerophospholipids and glycerolipids were the
major lipid groups. The catalogue of metabolites identified in this study shed light on the biology,
and possible therapeutic and diagnostic targets for the treatment of these critical infectious pathogens.
Moreover, with the growing body of literature on the therapeutic utility of helminth ESPs for treating
inflammatory diseases, a role for metabolites is likely but has received little attention thus far.

Keywords: metabolites; infective stage; Nippostrongylus brasiliensis; Trichuris muris; parasites; LC-MS;
metabolomic; lipidomic

1. Introduction

Infection with parasitic helminths is one of the most common and detrimental of the neglected
tropical diseases [1]. Indeed, eight out of the 17 recognised neglected tropical diseases are caused by
parasitic helminths [2]. More than 1.5 billion people (approximately 24% of the world’s population) are
infected with soil-transmitted helminth infections (STHIs) [3] and contribute to a substantial burden
of human disease and disability worldwide. The roundworm (Ascaris lumbricoides), the whipworm
(Trichuris trichiura), and hookworms (Necator americanus and Ancylostoma duodenale) are the major
Soil-transmitted helminths (STHs) that infect humans. Unlike T. trichiura and A. lumbricoides,
which are prevalent among young children, N. americanus and A. duodenale tend to infect older
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children and adults [4,5]. Soil-transmitted helminths are ubiquitous in tropical climates and rural
temperate areas with inadequate sanitation facilities—that is, mostly poverty-stricken areas across
the world. There is no vaccine for any human helminth infections, and current control efforts
focus on mass drug administration, which is only partially effective [6]. Currently, the World Health
Organization recommends that anthelmintic drugs such as mebendazole and albendazole are commonly
used for mass administration to control STHIs [7], but they do not give lasting protection against
re-infection. Meanwhile, other treatment drugs such as niclosamide (for Taenia saginata), piperazine
(for A. lumbricoides), and ivermectin (for Strongyloides stercoralis) [8] are not suitable for mass control.

Eradication of helminths is challenging, mainly due to their complex life-cycles. Hookworms enter
the human hosts when their infective stage 3 larvae (L3) penetrate the skin. Initially, L3 migrates through
subcutaneous venules and lymphatics and then subsequently enters the afferent circulation to reach inside
the lungs [4]. From there, L3 break through the alveolar spaces and are coughed up and swallowed into
the gastrointestinal tract as they mature into L4 and adulthood. Maturation proceeds in the small intestine,
where L3 moult twice to become adult male and female hookworms. After mating, female worms produce
thousands of eggs that exit the body in the faeces. Whipworms, on the other hand, enter the human host
through the ingestion of embryonated eggs from the environment. First-stage (L1) larvae hatch from the
eggs and penetrate the epithelial cells at the crypt base to undertake an intracellular existence, where larvae
grow and moult through the larval (L2, L3 and L4) and adult stages [9]. Examining helminth eggs in
stool samples by Kato-Katz thick-smear technique is the only widely used diagnostic tool in helminth
epidemiology [10,11], but this technique is less sensitive in the case of low-intensity helminth infections.
Alternative sensitive diagnostic tools such as FLOTAC (a multivalent faecal egg count technique) and
McMaster are available [7,12], but they are not adequate. It is, therefore, essential to understand these
helminths holistically and devise precise diagnostic tools and effective treatment regimens that would
provide long-term protection against diseases caused by STHs.

While there are numerous published studies on STH genomes [13–17] and proteomes [18–20],
less attention has been afforded to their metabolomes [21,22] and, specifically, the lipidome [23]. A number
of studies [24,25] have shown the importance of STH excretory/secretory products (ESPs) in host–parasite
communication, including parasite survival and host protection against immunopathology. For example,
ESPs such as TT47 and TM43 produced by whipworms are important for invasion of the gut wall by
forming a pore in the epithelial cell membrane [26], and the major ESP, p43m, suppresses secretion of
IL-13, a cytokine with anti-helminth properties [27]. Adult Necator and Ancylostoma hookworms release
proteases [28] and anti-coagulant peptides [29] into the infection site to digest the host’s mucosal tissues
and secrete abundant netrin-like proteins to suppress inflammatory responses by inducing regulatory
T cells [30]. Moreover, a small-molecule linoleic acid, used by the cercariae of Schistosoma mansoni
to produce prostaglandin, PGE2, helps them to successfully migrate inside their host [31]. However,
very little is known about the small-molecule complement of STHs, particularly of their infective stages.

Since it is challenging to obtain parasite material from humans, in this study, we used the rodent
model STH parasites, N. brasiliensis (model organism for the human hookworms Ancylostoma and
Necator spp.) and T. muris (model organism for whipworm T. trichiura) to characterise and identify
small-molecule components of their infective stages. Previously, we reported the ESP metabolomes of
their adult developmental stages, both of which reside in the gut [21]. In this study, we hypothesised
that the capacity of hookworms and whipworms to establish infection successfully might be related
to the types of metabolites produced by their infective stages in the lung and gut, respectively.
These findings would shed light on whether the metabolomes of infective-stage hookworms and
whipworms are conserved or display stage-, species- or niche-specific molecules. Moreover, some of
the metabolites discovered herein might be useful as potential diagnostic biomarkers.
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2. Results

2.1. MSI Level-1 Identification of Polar Metabolites Present in the Infective Stages of N. brasiliensis and T. muris

Using an untargeted LC-MS protocol, we analysed the metabolome composition of the infective
stages of N. brasiliensis and T. muris as outlined in the Methods (Figure 1). From the infective L3
stage of N. brasiliensis, we prepared two biological samples—somatic tissue extract and ESP—and
each biological sample had five replicates. The replicates of the L3 somatic tissue extract were named
NB_SE_1 through NB_SE_5; ESP replicates were named NB_ESP_1 through NB_ESP_5. From the
infective embryonated eggs of T. muris, we prepared five replicates of the somatic tissue extract,
which were named TM_SE_1 through TM_SE_5. For the quality control, we prepared a pooled quality
control from the samples (QC_P_1–QC_P_3) and media control (QC_Media_1–QC_Media_3) from
the same media used for the experimental cultures. Using Metabolomics Standards Initiative level-2
(MSI-II) identification based on accurate mass and predicted retention time, using the open-source
software IDEOM (an Excel interface for analysis of LC-MS-based metabolomic data), we identified a
total of 164 putative polar metabolites altogether (i.e., after subtracting media peak area values from
each metabolite) (Supplementary Table S1 from three different samples (NB_SE, NB_ESP and TM_SE).
Most of the polar metabolites were the products of amino acid metabolism, followed by carbohydrate
metabolism and nucleotide metabolism (Figure 2A–C).
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Figure 1. Schematic flowchart of the metabolomic and lipidomic profiling strategy applied for the
infective stages of the N. brasiliensis (L3) and T. muris (embryonated eggs).

Of these 164 putative polar metabolites, authentic chemical standards were available for
55 metabolites, allowing confident identification of 55 polar metabolites by accurate mass and
retention time (MSI-I identification) (Table 1). Of the 55 metabolites, 21 were common to all three
samples (NB_SE, NB_ESP, and TM_SE), comprising mostly products of amino acid metabolism,
followed by carbohydrate and nucleotide metabolism. Based on the intensity of peak areas, adenosine,
betaine, adenine, lactose, and choline were the top five compounds present in NB_SE. In NB_ESP,
betaine, (S)-malate, L-glutamine, isocitrate, and 5-oxoproline were present as the major compounds.
TM_SE contained L-leucine, lactose, adenosine, L-proline, and urocanate as the major metabolites
(Table 1).
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Table 1. Polar metabolites (MSI-I identified) of infective stages of N. brasiliensis (L3) and T. muris (embryonated eggs).

Polar Metabolites Formula a Mass (m/z) Rt (min) c KEGG ID d Log2(FC) e Chemical
Taxonomy b

Reported Pharmacological
Activities

Average Peak Area (mz/rt)

NB_SE NB_ESP TM_SE

Adenine C5H5N5 135.054 8.32 C00147 5.23 6-aminopurines Anti-inflammatory [32] 103,160,746 309,024 101,274

Adenosine C10H13N5O4 267.096 8.23 C00212 5.21 Purine nucleosides Anti-inflammatory [33] 327,057,005 0 347,270

Inosine C10H12N4O5 268.080 10.32 C00294 4.77 Purine nucleosides Anti-inflammatory [34,35] 14,631,676 0 18,472

L-Carnitine C7H15NO3 161.105 12.32 C00487 4.56 Carnitines Anti-inflammatory [36] and
anti-oxidant [37] 81,471,762 1,911,162 125,132

Choline C5H13NO 103.099 20.72 C00114 4.53 Cholines Anti-inflammatory [38] 82,418,790 0 129,808

N(pi)-Methyl-
L-histidine C7H11N3O2 169.085 11.58 C01152 3.86 Histidine and

derivatives N/A 5,268,444 2,170,489 13,260

Xanthine C5H4N4O2 152.033 11.08 C00385 3.62 Xanthines Proinflammatory [39] 37,256,722 3,609,773 103,264

L-Aspartate C4H7NO4 133.037 14.57 C00402 3.52 Aspartic acid and
derivatives

Anti-inflammatory and
neuroprotective [40,41] 3,886,437 402,353 9321

Succinate C4H6O4 118.026 15.15 C00042 3.14 Dicarboxylic acids
and derivatives

Activate inflammatory
pathways [42,43] 29,148,318 5,130,431 99,396

5-Aminolevulinate C5H9NO3 131.058 13.74 C00430 3.11 Delta amino acids
and derivatives Anti-inflammatory [44] 8,231,888 0 33,627

Adenosine
5′-monophosphate C10H14N5O7P 347.063 13.03 C00020 3.05

Purine
ribonucleoside

monophosphates
Anti-inflammatory [45,46] 9,485,566 0 43,938

Hypoxanthine C5H4N4O 136.038 9.56 C00262 2.84 Hypoxanthines Anti-inflammatory and
wound healing [47] 48,567,229 425,871 230,726

Lactose C12H22O11 342.116 15.25 C00243 2.61 O-glycosyl
compounds N/A 94,498,840 420,550 552,215

L-Glutamate C5H9NO4 147.053 14.24 C00025 2.30 Glutamic acid and
derivatives Antioxidant [48] 16,940,920 4,993,538 104,717

L-Methionine C5H11NO2S 149.051 10.81 C00073 2.06 Methionine and
derivatives

Anti-inflammatory [49] and
antioxidant [50] 2,078,174 890,947 15,017

L-Histidine C6H9N3O2 155.069 14.25 C00135 1.82 Histidine and
derivatives Anti-inflammatory [51] 14,964,799 1,089,738 135,916

4-Hydroxybenzoate C7H6O3 138.031 10.37 C00156 1.73 Hydroxybenzoic
acid derivatives Neuroprotective [52] 1,566,927 1,019,203 13,620
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Table 1. Cont.

Polar Metabolites Formula a Mass (m/z) Rt (min) c KEGG ID d Log2(FC) e Chemical
Taxonomy b

Reported Pharmacological
Activities

Average Peak Area (mz/rt)

NB_SE NB_ESP TM_SE

L-Tyrosine C9H11NO3 181.074 12.44 C00082 1.09 Tyrosine and
derivatives N/A 3,708,634 6,686,668 58,822

Deoxyadenosine C10H13N5O3 251.101 7.48 C00559 −1.03 Purine
2′-deoxyribonucleosides

Cell growth inhibitor and
cytotoxic [53] 628,485 0 39,096

(S)-Malate C4H6O5 134.021 16.18 C00149 −1.28 Beta hydroxy acids
and derivatives N/A 51,344,999 43,880,026 0

D-Glucose 6-phosphate C6H13O9P 260.029 15.83 C00092 −1.66 Hexose phosphates N/A 402,720 0 42,982

2-Oxoglutarate C5H6O5 146.021 15.77 C00026 −1.80 Gamma-keto acids
and derivatives

Anti-inflammatory [54] and
antioxidant [55] 249,067 2,843,652 0

L-Pipecolate C6H11NO2 129.079 11.42 C00408 −1.94 L-alpha-amino acids N/A 139,920 0 16,319

Mannitol C6H14O6 182.079 13.30 C00392 −2.08 Sugar alcohol Anti-edema [56] 299,808 0 37,781

L-Alanine C3H7NO2 89.047 14.12 C00041 −2.27 L-alpha-amino acids Anti-inflammatory [57–59] 3,102,359 3,529,005 0

Betaine C5H11NO2 117.079 10.39 C00719 −2.39 Alpha amino acids

Neuroprotective [60];
improves intestinal barrier

function [61];
hepatoprotective [62];

anti-inflammatory [38]

261,777,360 56,072,188 0

L-Lysine C6H14N2O2 146.105 22.50 C00047 −2.45 L-alpha-amino acids Anti-inflammatory [63,64] 2,260,735 1,941,102 0

L-Arginine C6H14N4O2 174.111 24.05 C00062 −2.47 L-alpha-amino acids Anti-inflammatory [65–67] 30,934,546 3,589,173 0

L-Glutamine C5H10N2O3 146.069 14.44 C00064 −2.48 L-alpha-amino acids Anti-inflammatory [57–59] 45,487,251 39,780,748 0

L-2-Aminoadipate C6H11NO4 161.068 14.47 C00956 −2.49 L-alpha-amino acids N/A 137,122 0 22,389

L-Phenylalanine C9H11NO2 165.079 9.35 C00079 −2.50 L-alpha-amino acids Anti-diabetic [68] 1,534,294 18,355,000 0

3’,5’-Cyclic AMP C10H12N5O6P 329.052 8.72 C00575 −2.54 3′,5′-cyclic purine
nucleotides Anti-inflammatory [69] 281,873 0 57,179

N-Acetylputrescine C6H14N2O 130.110 21.02 C02714 −2.58 Carboximidic acids Lung cancer biomarker [70] 125,036 0 22,355

Thymine C5H6N2O2 126.043 6.96 C00178 −3.62 Hydroxypyrimidines N/A 169,388 0 64,297

L-Leucine C6H13NO2 131.094 9.97 C00123 −4.14 Leucine and
derivatives

Analgesic and
anti-inflammatory [71,72] 1,593,314 10,121,672 735,972

Urocanate C6H6N2O2 138.043 10.49 C00785 −4.16
Imidazolyl

carboxylic acids and
derivatives

Chemoattractant [73] 452,897 169,049 232,883
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Table 1. Cont.

Polar Metabolites Formula a Mass (m/z) Rt (min) c KEGG ID d Log2(FC) e Chemical
Taxonomy b

Reported Pharmacological
Activities

Average Peak Area (mz/rt)

NB_SE NB_ESP TM_SE

Azelaic acid C9H16O4 188.105 10.69 C08261 −4.89 Medium-chain fatty
acids Anti-inflammatory [74] 131,028 874,645 116,635

Maleic acid C4H4O4 116.011 12.18 C01384 −5.67 Dicarboxylic acids
and derivatives

Inflammatory/Cytotoxic
[75] 98,623 0 154,549

D-Glycerate C3H6O4 106.026 11.85 C00258 ns Sugar acids and
derivatives N/A 343,824 0 8833

Homogentisate C8H8O4 168.042 9.42 C00544 ns 2(hydroxyphenyl)acetic
acids Pro-inflammatory [76,77] 0 640,416 0

Isocitrate C6H8O7 192.027 19.04 C00311 ns Tricarboxylic acids
and derivatives N/A 0 37,798,044 0

L-Citrulline C6H13N3O3 175.095 14.84 C00327 ns L-alpha-amino acids Anti-inflammatory and
antioxidant [78–80] 672,469 0 21,477

L-Proline C5H9NO2 115.063 11.96 C00148 ns Proline and
derivatives Anti-inflammatory [81] 9,760,345 1,106,588 269,125

L-Serine C3H7NO3 105.042 15.56 C00065 ns Serine and
derivatives

Modulates adaptive
immunity by controlling T
cell proliferative capacity
[82]; colon protection and

mucosal healing [81]

337,344 45,878 6178

L-Threonine C4H9NO3 119.058 14.14 C00188 ns L-alpha-amino acids Anti-inflammatory [83,84] 425,688 0 14,375

L-Tryptophan C11H12N2O2 204.090 11.03 C00078 ns
Indolyl carboxylic

acids and
derivatives

Anti-inflammatory [85–87] 2,002,647 1,435,161 127,849

L-Valine C5H11NO2 117.079 11.76 C00183 ns Valine and
derivatives Anti-inflammatory [85] 474,387 9,518,904 25,791

LL-2,6-DiaminoheptanedioateC7H14N2O4 190.095 17.63 C00666 ns Amino acid N/A 0 115,608 0

N6,N6,N6-Trimethyl-L-lysineC9H20N2O2 188.152 21.12 C03793 ns L-alpha-amino acids Cardiovascular disease
biomarker [88] 462,527 208,659 12,965

Orotate C5H4N2O4 156.017 10.27 C00295 ns Pyrimidinecarboxylic
acids N/A 0 437,266 0

Pterin C6H5N5O 163.049 10.30 C00715 ns Pterins and
derivatives

Biomarker of
exercise-induced stress [89] 0 460,935 0
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Table 1. Cont.

Polar Metabolites Formula a Mass (m/z) Rt (min) c KEGG ID d Log2(FC) e Chemical
Taxonomy b

Reported Pharmacological
Activities

Average Peak Area (mz/rt)

NB_SE NB_ESP TM_SE

Pyridoxal C8H9NO3 167.058 7.46 C00250 ns Pyridoxals and
derivatives N/A 323,537 0 10,226

5-Oxoproline C5H7NO3 129.042 9.82 C01879 ns Alpha amino acids
and derivatives

Promotes oxidative stress
in neuropathology [90] 0 32,495,730 0

2,5-Dihydroxybenzoate C7H6O4 154.026 8.30 C00628 ns Hydroxybenzoic
acid derivatives Anti-cancer activity [91] 0 1,377,617 0

4-TrimethylammoniobutanoateC7H15NO2 145.110 12.25 C01181 ns Straight chain fatty
acids N/A 217,954 0 2264

a Formula; b Chemical taxonomy = Formula and chemical taxonomy for compounds were taken from human metabolome database (HMDB, http://www.hmdb.ca); c Rt = retention time in
minutes; d KEGG ID (http://www.genome.jp/kegg/) contains information on biosynthetic and metabolic pathways of identified compounds; e log 2(FC) is a fold change between NB_SE
and TM_SE; Abbreviations: ns = not significant; ID = identity; NB_SE = the somatic extract of infective third-stage larvae (L3) of N. brasiliensis; NB_ESP = the excretory/secretory products
(ESP) of N. brasiliensis L3; TM_SE = the somatic extract of T. muris embryonated eggs. Note: peak areas values of media were subtracted from the samples.

http://www.hmdb.ca
http://www.genome.jp/kegg/
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Figure 2. Distribution of total putative metabolites by different metabolite classes (A) in the somatic
extract of infective third-stage larvae (L3) of N. brasiliensis (NB_SE); (B) in the excretory/secretory
products of N. brasiliensis L3 (NB_ESP); and (C) in the somatic extract of T. muris embryonated eggs
(TM_SE).

2.2. Metabolic Pathways of Putatively Identified Polar Metabolites

Based on the 164 putative polar metabolites identified from the three biological samples
(114 metabolites from NB_SE, 99 from NB_ESP, 70 from TM_SE), we deduced metabolic pathways
(MAPs) by mapping all the compounds against known metabolite pathways for helminths in the
Kyoto Encyclopedia of Genes and Genomes (KEGG), Human Metabolome Database (HMDB),
and MetaCyc Metabolic Pathway database. In all three sample groups, the highest number of
identified metabolites/compounds were products of amino acid metabolism, followed by carbohydrate
metabolism in NB_SE and NB_ESP, and nucleotide metabolism in TM_SE, as shown in Figure 2A–C.
For example, of 114 metabolites identified from the NB_SE, 57 metabolites were produced through
amino acid metabolism, 28 by carbohydrate metabolism, and 14 by nucleotide metabolism. A similar
pattern can be seen in its ESP. Of 70 polar metabolites identified from TM_SE, 36 of them were
the products of amino acid metabolism, 13 were from nucleotide metabolism, and 12 were from
carbohydrate metabolism.

2.3. Chemometric Analysis of the Polar Metabolites of N. brasiliensis L3 and T. muris Embryonated Eggs

We performed statistical analysis on the 55 polar metabolites identified in Table 1 (MSI-I
identification) using MetaboAnalysis 4 (http://www.metaboanalyst.ca) to determine metabolite
differences. First, the differences in the abundance of polar metabolites between NB_SE and TM_SE were
evaluated by univariate analysis (volcano plot analysis). NB_ESP was excluded from the univariate
analysis since there was no ESP from the infective stage of T. muris. Volcano plot analysis identified
differential metabolites using the t-test and fold-change (FC) methods, and we plotted log2 (fold-change
> 2) on the X-axis against -log10 (p-value) from the t-test on the Y-axis. Benjamini–Hochberg correction
or false discovery rate was applied to compute the number of false positives out of significantly
varied metabolic features. Table 1 shows the fold change and the p-values of these significantly
different metabolites. When we compared NB_SE metabolites against TM_SE, 38 of 49 (approximately
78%) metabolites showed significant differences (p < 0.05), where both the samples (i.e., NB_SE and
TM_SE) had 19 metabolites each with an absolute log2 fold change > 2 and an absolute p-value < 0.05
(represented as pink dots in Figure 3).
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differences between three sample groups (i.e., NB_SE, NB_ESP, and TM_SE). As expected, the PCA plot
(Figure 4) showed a clear separation among the three biological groups, indicating that the infective
stages of the two STHs (N. brasiliensis and T. muris) produce distinct metabolite profiles. The plot shows
that the variation of metabolites between the different helminth species and the difference shown on
PC1 was greater than the difference between somatic extract and excretory/secretory product.

Additionally, we used hierarchical clustering heat-map analysis (distance measured by Euclidean,
and clustering algorithm using ward.D) to evaluate the difference in the concentration of each
metabolite between sample groups. Clustered heat-maps allow easy visualisation of changing patterns
in metabolite concentrations across sample groups and experimental conditions. The metabolite
pattern of each biological replicate from three sample groups clustered, and individual clusters,
were distinct, indicating the uniqueness of the metabolome profiles of the two helminths. Unlike score
plots, heat-maps display the actual data values using carefully chosen colour gradients, as shown
in Figure 5, where blue bars indicate a low concentration and red bar denotes a high concentration.
Based on the colour intensity pattern in the heat-map, adenine (purine nucleobase), adenosine (purine
nucleoside), choline (amino acid), and hypoxanthine were notable features in the NB_SE. Amino
acids such as L-tyrosine, L-valine, 2-oxoglutarate, L-phenylalanine, and 4-hydroxybenzoate were
prominent in NB_ESP. In TM_SE, L-2-aminoadepate, L-pipecolate, and N-acetylputrescine (amino
acids), thymine (nucleic acid), and maleic acid (organic acid) were prominent.
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Figure 3. Volcano plot of untargeted metabolomics analysis of differential features (i.e., 49 MSI-I
(Metabolomics Standard Initiative level-1) identified polar metabolites from somatic extracts) between
the somatic extract of infective third-stage larvae (L3) of N. brasiliensis (NB_SE) and the somatic
extract of T. muris embryonated eggs (TM_SE). The volcano plot displays log2 fold changes versus
Benjamini–Hochberg adjusted p-values (−log10 transformed). Features that exhibited an absolute log2
fold change > 2 and an absolute p-value < 0.05 are coloured in pink. Most significant metabolites are
labelled with the corresponding name.
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and pooled quality control (QC_P) values were excluded from the analysis, as they were subtracted
from the samples.
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Figure 5. Hierarchical clustering analysis (HCA) of the three samples (the somatic extract of infective
third-stage larvae (L3) of N. brasiliensis (NB_SE), the excretory/secretory products (ESP) of N. brasiliensis
L3 (NB_ESP), and the somatic extract of T. muris embryonated eggs (TM_SE)) showing discrimination
between the sample types and differential abundances of 55 polar metabolites. Each column represents
sample groups with their replicates, and each row represents the expression profile of a metabolite
across sample groups. The scale bar represents the normalised intensity of metabolites, where blue
indicates a decrease/low and red an increase/high. Media (QC_Media) and pooled quality control
(QC_P) values were excluded from the analysis, as they were subtracted from the samples.

2.4. Lipidomics Analysis of the N. brasiliensis and T. muris Infective Stages

After acquiring LC-MS data (mass and retention time) using open source software IDEOM,
lipids were putatively identified by accurate mass within 3 ppm. We putatively identified (MSI
level-2 identification) a total of 350 lipids (Supplementary Table S2) in all three samples (332 in
NB_SE, 256 in NB_ESP, and 283 in TM_SE), out of which 203 lipids were common in all three sample
groups. Of the vast array of lipids identified, glycerophospholipids such as phosphatidylcholine
(PC) and phosphatidylethanolamine (PE) were predominant in NB_SE. In NB_ESP and TM_SE,
glycerolipid triglycerides (TG) were present in higher intensities. Based on their intensity of peak areas,
glycerophospholipid species phosphatidylcholine (PC) such as PC(38:6), PC(40:5), PC(40:7), PC(40:8),
and PC(40:9) were the top five lipids in NB_SE. In NB_ESP and TM_SE, glycerolipid species such as
triglyceride (TG) were dominant. TG(48:1), TG(45:0), TG(50:2), TG(47:1), and TG(52:2) were the top
five lipids in NB_ESP and TG(30:0), TG(38:0), TG(38:1), TG(40:0), and TG(42:1) in TM_SE.
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2.5. Lipidomic Pathways of Identified Lipids

We mapped lipidomic pathways for putative lipids against known lipid pathways in lipid
databases such as LIPID MAPS Lipidomics Gateway (http://www.lipidmaps.org) and LipidBank
(http://www.lipidbank.jp). Most lipids in all three sample groups were the glycerophospholipid
metabolism pathway products, followed by glycerolipid and fatty acyl metabolism (Figure 6). Elements
of glycerophospholipid metabolism such as phosphatidic acid (PA), phosphatidylethanolamine (PE),
phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylinositol (PI) were major lipid
constituents in all three sample groups (NB_SE, NB_ESP, and TM_SE), followed by triacyl-glycerides
(TG), the product of the glycerolipid pathway (Supplementary Table S2).
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larvae (L3) of N. brasiliensis (NB_SE); (B) in the excretory/secretory products (ESP) of N. brasiliensis L3
(NB_ESP); (C) in the somatic extract of T. muris embryonated eggs (TM_SE).

2.6. Chemometric Analysis of Putatively Identified Lipids

We performed both univariate and multivariate chemometric analyses using Metaboanalyst 4.0
software, as described above for polar metabolites. For comparison of lipid profiles in the somatic
extracts of the infective stages of the two helminths, univariate analysis (volcano plot analysis)
between NB_SE and TM_SE yielded 204 significant features out of top 350 lipids (represented by pink
dots in Figure 7). All features presented possessed values above a given count threshold (>75% of
pairs/variable) and had a fold change of >2 and p-value of <0.05 (Supplementary Table S3). When the
NB_SE lipid profile was compared against TM_SE, 10 lipids in NB_SE and five lipids in TM_SE (labelled
pink dots in Figure 7) showed the most significant differences in their peak intensities (p < 0.05).
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Figure 7. Volcano plot of the untargeted lipidomics analysis of differentially regulated features between
the somatic extract of infective third-stage larvae (L3) of N. brasiliensis (NB_SE) and the somatic extract
of T. muris eggs (TM_SE). The volcano plot displays log2 fold changes versus Benjamini–Hochberg
adjusted p-values (-log10 transformed). Features that exhibited an absolute log2 fold change > 2 and
an absolute p-value < 0.05 are coloured in pink. Most significant features which could be structurally
annotated are labelled with the corresponding name. Gray dots represent features that were not
significantly altered (having fold change less than 2). The further its position away from the (0,0),
the more significant the lipid is.

A principal component analysis of the 350 putative lipids (listed in Supplementary Table S2)
showed clear segregation of the clusters among all three sample groups (NB_SE, NB_ESP, and TM_SE)
as presented in Figure 8. These results indicate a high level of heterogeneity in the lipidomes of the
two helminths.

We evaluated the diversity of lipidomic patterns across the three samples by cluster heat-map
analysis using Metaboanalyst 4.0 statistical analysis package. The variation in the intensities of
350 putative lipids between groups is shown in Figure 9. The somatic extract of N. brasiliensis
L3 contained a very high intensity of glycerophospholipids such as phosphatidylcholine (PC) and
phosphatidylethanolamine (PE) species. Meanwhile, NB_ESP and TM_SE both contained glycerolipids
such as triglycerides (TG) species in higher intensities. The Supplementary Table S2 contains the
individual intensity of all 350 lipids in each group.
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extract of T. muris embryonated eggs (TM_SE) (blue) with five replicates each. The amount of variance
explained is shown in parentheses on each axis. Media (QC_Media) and pooled quality control (QC_P)
values were excluded from the analysis, as they were subtracted from the samples.
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2.7. Common and Unique Metabolites in N. brasiliensis and T. muris Infective Stages

Out of 55 polar metabolites identified in this study, 21 were common to all three sample groups,
mostly amino acids. Seven (7) polar metabolites were unique to the ESP of the N. brasiliensis
infective stage (Table 1 and Figure 10A), and interestingly, two of them, namely isocitrate and
5-oxoproline/pyroglutamic acid, were also detected in their adult ESP [21]. The remaining five,
namely homogentisate, orotate, LL-2,6-Diaminoheptanedioate, pterin, and 2,5-dihydroxybenzoate,
were absent in the ESP as well as somatic extracts of both helminths. Meanwhile, out of 350 putative
lipids identified from all three samples (NB_SE, NB_ESP, and TM_SE), 203 lipids were common to
all three sample groups (NB_SE, NB_ESP, and TM_SE). A total of 62 lipids were common between
NB_SE and TM_SE, 39 lipids between NB_SE and NB_ESP, and 14 lipids between NB_ESP and TM_SE.
Twenty-eight (28) lipids were unique to NB_SE and four lipids to TM_SE (Table 2 and Figure 10B).
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Figure 10. Distribution of common and unique metabolites among the three sample groups: the
somatic extract of infective third-stage larvae (L3) of N. brasiliensis (NB_SE), the excretory/secretory
products (ESP) of N. brasiliensis L3 (NB_ESP), and the somatic extract of T. muris embryonated eggs
(TM_SE). (A) MSI-I identified polar metabolites; (B) MSI-II identified lipids.
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Table 2. Putative lipids unique to infective stages of N. brasiliensis (L3) and T. muris (embryonated eggs).

Putative Lipids Formula a Mass (m/z) Rt (min) c Chemical Taxonomy b LipidMAPS ID d Peak Areas (mz/rt)

NB_SE NB_ESP TM_SE

DG(41:7) C44H72O5 680.536 16.05 Glycerolipids LMGL02010545 124,404 0 0
FA hydroxy(12:0) dodecanoic acid C12H24O3 238.155 2.19 Fatty Acyls NA 0 0 51,014

LacCer(d38:0) C50H97NO13 919.696 18.98 Sphingolipids LMSP05010122 139,285 0 0
LacCer(d40:0) C52H101NO13 947.727 20.22 Sphingolipids LMSP05010124 182,175 0 0
LysoPE(22:2) C27H52NO7P 533.350 4.84 Glycerophospholipids LMGP02050024 136,295 0 0
PE-Cer(d40:1) C42H85N2O7P 760.610 13.49 Sphingolipids LMSP03020086 117,114 0 0
PE-Cer(d38:1) C40H81N2O7P 732.579 12.26 Sphingolipids LMSP03020064 112,168 0 0

PA(25:0) C28H55O8P 550.364 12.05 Glycerophospholipids LMGP10010001 0 0 374,621
PA(26:0) C29H57O8P 564.379 12.58 Glycerophospholipids LMGP10010980 0 0 1,921,006
PC(36:7) C44H74NO8P 775.514 10.73 Glycerophospholipids LMGP01012100 105,372 0 0

PC(P-32:2) C40H76NO7P 713.536 13.07 Glycerophospholipids NA 657,868 0 0
PC(P-36:2) C44H84NO7P 769.599 14.95 Glycerophospholipids LMGP01030137 138,297 0 0

PE(28:2) C33H62NO8P 631.422 7.68 Glycerophospholipids LMGP02011238 127,324 0 0
PE(48:2) C53H102NO8P 911.734 20.75 Glycerophospholipids LMGP02010893 466,471 0 0
PE(40:5) C45H80NO8P 815.542 12.76 Glycerophospholipids LMGP02010893 483,243 0 0
PE(48:1) C53H104NO8P 913.751 21.37 Glycerophospholipids NA 1,154,195 0 0

PE(O-20:0) C25H54NO6P 495.370 7.71 Glycerophospholipids LMGP02060005 108,008 0 0
PE(P-20:0) C25H52NO6P 493.354 7.86 Glycerophospholipids LMGP02070004 375,557 0 0
PE(P-36:4) C41H74NO7P 723.521 12.51 Glycerophospholipids LMGP02030093 195,178 0 0
PE(P-36:5) C41H72NO7P 721.504 11.93 Glycerophospholipids LMGP02030028 87,036 0 0
PE(P-38:6) C43H74NO7P 747.519 12.36 Glycerophospholipids LMGP02030001 308,137 0 0
PG(36:1) C42H81O10P 776.557 11.98 Glycerophospholipids LMGP04010037 699,995 0 0
PI(37:6) C46H77O13P 868.512 9.51 Glycerophospholipids LMGP06010790 119,218 0 0
PI(38:7) C47H77O13P 880.512 9.44 Glycerophospholipids LMGP06010792 168,877 0 0

PI(P-37:2) C46H85O12P 860.576 11.78 Glycerophospholipids LMGP06030067 94,153 0 0
PS(28:2) C34H62NO10P 675.412 6.97 Glycerophospholipids LMGP03010919 253,811 0 0
PS(36:4) C42H74NO10P 783.506 10.48 Glycerophospholipids LMGP03010038 141,937 0 0
PS(36:5) C42H72NO10P 781.491 10.06 Glycerophospholipids LMGP03010654 115,385 0 0

PS(O-38:0) C44H88NO9P 805.621 15.40 Glycerophospholipids LMGP03020051 86,582 0 0
PS(O-34:0) C40H80NO9P 749.558 12.46 Glycerophospholipids LMGP03020043 0 0 1883
SM(d41:2) C46H91N2O6P 844.667 14.55 Sphingolipids LMSP03010074 29,023 0 0
SM(d42:2) C47H93N2O6P 812.676 15.24 Sphingolipids LMSP03010007 78,211 0 0

a Formula; b Chemical taxonomy = Formula and chemical taxonomy for compounds were taken from LipidMAPS database (https://www.LipidMAPS.org); c Rt = retention time in minutes;
d LIPIDMAPS ID (https://www.LipidMAPS.org) contains information on biosynthetic and metabolic pathways of identified lipids; Abbreviations: ID = identity; NB_SE = the somatic
extract of infective third-stage larvae (L3) of N. brasiliensis; NB_ESP = the excretory/secretory products (ESP) of N. brasiliensis L3; TM_SE = the somatic extract of T. muris embryonated eggs.

https://www.LipidMAPS.org
https://www.LipidMAPS.org
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2.8. Reported Pharmacological Activities of Identified Compounds

A comprehensive literature search revealed that 42 out of the 55 polar metabolites were
associated with various pharmacological activities. Of the 42 polar metabolites, 31 metabolites
possess anti-inflammatory or antioxidant properties (Table 1). For example, polar metabolites such
as L-valine (prominent in N. brasiliensis ESP), adenine, choline, inosine, adenosine, hypoxanthine
(prominent features in N. brasiliensis somatic extract), and L-tryptophan (prominent feature in T. muris
eggs somatic extract) possess anti-inflammatory activity. A few of the detected metabolites were
unique to the extracts, such as homogentisate in the N. brasiliensis ESP and maleic acid in T. muris
eggs (embryonated) somatic extract, both (compounds) known for their inflammatory and cytotoxic
properties, respectively. Unlike polar metabolites, non-polar metabolites or lipids in helminths are the
least studied for biological activities. There is either limited or no record of studies for all putative
lipids identified in this study.

3. Discussion

Parasites have co-evolved with humans for millennia and produce ESPs that allow them to
navigate through circuitous pathways (for hookworm at least) to reach the gut, where they survive
for a prolonged period. STHs are masterful at modulating the host’s immune response to avoid
elimination from the body and facilitate the establishment of chronic infection [92]. Their ESP contain a
plethora of biomolecules, including proteins, peptides, lipids, and other small molecules [21]. However,
small molecules remain less-studied, especially those produced by the infective stages. In this study,
we show the metabolomes of the infective stages of N. brasiliensis and T. muris using untargeted
LC-MS for the first time. Our results also provide new insights into comparative metabolome profiles
of different developmental stages of the helminths. LC-MS is a preferred analytical technique for
metabolome profiling [93–95], especially when employing high-resolution accurate mass (HRAM)
detection. In this study, we applied HRAM mass spectrometer-Q-Exactive (Thermo Scientific) to detect
both polar metabolites and lipids.

Helminths are known to produce stage-specific metabolites [21]. Although both adult and
infective stages of N. brasiliensis had many fatty acids in common, interestingly, 44 of the polar
metabolites detected in the infective stage of N. brasiliensis were not detected in the ESP of their
adult stage [21]. Such differences in the metabolic profiles could have resulted partially due to the
different experimental conditions and analytical techniques used in two separate studies. Nevertheless,
such marked differences in the metabolic profiles of two different life-cycle stages of N. brasiliensis
suggest that there could be major metabolic changes accompanying the transition from one life-cycle
stage to the next in parasitic helminths. Moreover, according to Barrett [96], there are variations in the
distribution pattern and activity of enzymes and metabolite levels among the different developmental
stages of helminths. For instance, adult and larval stages of A. lumbricoides and S. mansoni possess
a marked difference in the isoenzyme patterns. When we compared metabolites identified from the
somatic extracts of N. brasiliensis and T. muris infective stages, the percentage similarity for both polar
and non-polar metabolites was quite low (34.5% and 18%, respectively) despite sharing some common
metabolites such as L-citrulline, L-threonine, deoxyadenosine, and pyridoxal. Metabolites such as
inosine, hypoxanthine, and L-pipecolate were comparatively higher in NB_SE and were also reported
significantly in high levels in the blood plasma samples of patients suffering from onchocerciasis
(caused by nematode Onchocerca volvulus) [97]. The lower percentage similarity of metabolites in the
somatic extracts of the two helminths could have resulted from the different conditions they were
exposed to, as N. brasiliensis L3 were incubated at 26 ◦C with activated charcoal and later at 37 ◦C,
5% CO2 in glutamax/Phosphate-buffered saline (PBS) media. At the same time, T. muris eggs were kept
in PBS at room temperature. Thus, suggesting that the different environmental niches in which they
survive—for instance, the L3 of human hookworms N. americanus and A. duodenale remain outdoors,
while their adult stage dwells inside the host gut [4]—could potentially influence the types as well
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as the level of metabolites produced. However, the effects of CO2 tensions and temperature on the
overall metabolic pathways are either complex or difficult to predict [96].

More than half of the metabolites identified in all sample groups were amino acids. L-citrulline,
L-methionine, N(pi)-Methyl-L-histidine, succinate, and 4-hydroxybenzoate were the top five most
abundant metabolites (based on LC-MS peak intensity) in the somatic extract and excretory/secretory
products of N. brasiliensis L3. Succinate, one of the amino acids detected in the current study samples,
is known to be produced by the intestinal microbiota to induce intestinal tufT cells to trigger T-helper
cell type 2 (TH2) responses [98]. Somatic and ESP of the adult stage of N. brasiliensis also contained
succinate [21]. In the T. muris embryonated eggs, L-2-aminoadepate, N-acetylputrescine, L-pipecolate,
thymine, and maleic acid were present in the highest intensities. Betaine is another amino acid
detected in the infective stage of N. brasiliensis but not in their adult stage [21]. Betaine (a derivative
of amino acid glycine with three methyl groups), present in microorganisms, plants and animals,
is known to function as an osmolyte in their cells [99]. The plasma and spleen of rats infected
with the liver fluke Fasciola hepatica also contained a high level of betaine [100]. Another metabolite
that was prominent in both N. brasiliensis L3 ESP and T. muris embryonated eggs was L-glutamate.
The dormant infective eggs of other helminths such as A. lumbricoides also contained L-glutamate [101].
The relevance of betaine and L-glutamate (and glutamine) in this study should be interpreted with
caution, as it is possible that samples were contaminated by the sulfobetaine polymer (PSB) used for
the somatic extract preparation and the glutamax used in the media. Pyroglutamic acid (also called
5-oxoproline), reported as one of the major metabolites in the somatic extracts of the adult stage of
N. brasiliensis and T. muris [21], was a common metabolite in the infective stages of two helminths.
Somatic extract of adult Ancylostoma caninum (dog hookworm) also contained pyroglutamic acid as one
of the major metabolite constituents [102]. Pyroglutamic acid is formed as an intermediate product by
the enzyme γ-glutamylcyclotransferase in glutathione metabolism, and it is ultimately converted into
L-glutamic acid by 5-oxoprolinase [103]. It is also known to be produced due to disordered glutathione
metabolism [104] and usually tends to accumulate abnormally in the case of metabolic acidosis.

Another exciting difference among the samples from two helminths is the presence of
unique metabolites. Seven polar metabolites, namely orotate, pterin, 2,5-dihydroxybenzoate,
LL-2,6-Diaminoheptanedioate, isocitrate, 5-oxoproline, and homogentisate, were found unique to the
ESP of N. brasiliensis. Out of these seven, only isocitrate and 5-oxoproline were reported in their adult
ESP [21]. In mammals, orotate (orotic acid) is released by mitochondrial dihydroorotate dehydrogenase
for conversion to uridine monophosphate during pyrimidine metabolism [105]. Moreover, five main
enzymes involved in pyrimidine metabolism are present in many helminths, including N. brasiliensis
and T. muris [106], indicating that de novo pyrimidine biosynthesis could be the main source of orotate in
helminths. Pterins are found in all living organisms starting from tiny bacteria to mammals and serve as
a urine biomarker for hyperphenylalaninaemia [107]. Homogentisate is the central intermediate product
in the catabolism of phenylalanine and tyrosine [108]. Whilst we have not ruled out the possibility that
this feature could be another isomer of dihydroxyphenylacetate, it is most likely an intermediate in
tyrosine/phenylalanine metabolism. Tyrosine catabolism is considered as a critical metabolic pathway
in Rhodnius prolixus, a blood-sucking insect vector of Trypanosoma cruzi, because R. prolixus dies after a
blood meal if the pathway is disturbed by silencing two critical enzymes, tyrosine aminotransferase
and 4-hydroxyphenylpyruvate dioxygenase [109]. Thus, the presence of phenylalanine and tyrosine
in N. brasiliensis L3 ESP could mean that tyrosine catabolism may be important for the survival of
N. brasiliensis L3 when establishing a successful infection. Homogentisate also possesses antioxidant
activity higher than α-tocopherol and moderate anti-inflammatory activity [110]. Thus, the capacity
of ESP from many helminths, including N. brasiliensis, to reduce T-cell proliferation [111] and confer
protection against T-cell mediated immunopathology in a mouse model of colitis [102], are attributable
to the presence of such metabolites.

Identifying different metabolic pathways within a species is considered necessary, mainly to
understand any malfunctions or alterations that may occur during disease state [112]. Similarly,
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identifying metabolic pathways in soil-transmitted helminths might reveal a unique metabolic
pathway(s) critical in the infection process and, therefore, present as drug targets. The metabolic
pathway analysis revealed that the majority of the metabolic pathways are associated with amino acid
metabolism, a finding that aligns with earlier metabolic profiling of the ESP from adult stage STHs [21],
suggesting that both the infective and adult stages share similar (amino acid and carbohydrate)
metabolic pathways. Polar metabolites identified from the infective stages of both helminths mostly
belonged to common amino acid pathways such as aminoacyl-tRNA biosynthesis, arginine biosynthesis,
lysine degradation, alanine, aspartate, and glutamate metabolism. Amino acids, such as leucine,
lysine, and phenylalanine, are detected significantly in high concentrations in the herbivorous
youngstock acutely infected with helminths [113]. L-arginine is known to enhance intestinal mucosa
function by reducing tissue damage in intestinal ischemia of animal models [114,115]. We also found
purine, glyoxylate, and dicarboxylate metabolism as major pathways following amino acid pathways.
Glyoxylate metabolism, which is characteristic of free-living parasitic nematodes (but not in the adult)
and catalyses the conversion of lipids into carbohydrates [96], could be the source of isocitrate (organic
acid), which was one of the unique metabolites in the N. brasiliensis ESP.

Lipids and fatty acids are also known to play a crucial role in the maturation and completion
of different life-cycle stages of helminths and host–parasite interaction [23]. Generally, the parasitic
stage of helminths utilise lipids for the long-term adaptation inside their host and completion of
the life-cycle [116]. Lipids are also involved in essential biological processes such as apoptosis,
cell proliferation, angiogenesis, immunity, and inflammation [117]. Fatty acids, including the cis-form
of octadecenoic acid and other branched-chain and monoenoic acids (oleic acids and vaccenic acid),
are known to play a vital role in helminth infections by altering the physical properties of the host
cell membrane and ultimately causing it to rupture [118]. Thus, we presume that fatty acids, such as
octadecanoic acid detected in the ESP of N. brasiliensis L3, might be playing a key role during the
process of host invasion and infection. Fatty acids were also reported in other nematodes such as
Haemonchus contortus (in all stages of life-cycle) [119] and adult Caenorhabditis elegans [120], and in both
studies, fatty acids with 18 carbons (i.e., 18:1, 18:2, and 18:3) were commonest. We also obtained a
similar result, where ~7% of total lipids were fatty acids, and the above-mentioned fatty acids with
18 carbons were present in all three samples (i.e., NB_SE, NB_ESP, and TM_SE). Nematodes regulate
the saturation levels of fatty acids while adapting to the changing environmental temperature [121],
but the saturation level varies among different nematodes. For example, in C. elegans, the saturated
fatty acid level increases with increasing temperature [122]. In contrast, Wang et al. [119] observed the
opposite in H. contortus, where the level of fatty acid saturation tended to decrease as they transitioned
from their free-living stage to the parasitic stage.

Glycerophospholipids and glycerolipids were the major lipid groups in all three sample groups
(NB_SE, NB_ESP, and TM_SE), constituting approximately 83% of the total lipids. This is in congruence
with lipidomic studies in the muscle-stage larvae of Trichinella papuae (~63% glycerophospholipids) [123]
and in the H. contortus (all life-cycle stages), where more than 90% of the total lipids were
glycerophospholipids and glycerolipids [119]. The somatic extract of N. brasiliensis L3 contained
elements of glycerophospholipids such as phosphatidylcholine, PC(38:6), PC(40:8), PC(40:7), PC(40:9),
and PC(46:5). Wewer et al. [124] also reported PC as dominant lipid constituents in filarial nematodes
Onchocerca volvulus, O. ochengi, and Litomosoides sigmodontis but they have studied only their adult
stage. Meanwhile, glycerolpids such as TG(45:0), TG(48:1), TG(50:2), TG(30:0), TG(38:0), and TG(38:1)
were dominant in the excretory/secretory product of N. brasiliensis L3 and somatic extract of T. muris
embryonated eggs. TG constituted major lipids (80.9% of total 327 lipids) identified from the somatic
extract of the L3 stage of H. contortus and it decreases as they mature into L4 stage [119]. Lee [125]
also reported triglycerides as a major lipid constituent in the adult tissue of N. brasiliensis, which was
presumed to be due to reduced lipid metabolism under anaerobic conditions inside their host.
Triglyceride is the major neutral lipid in the majority of helminths [126]. According to Ward [118],
unlike mammals, helminths are capable of storing a large amount of energy in the form of glycerolipids
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as triglycerides or triacylglycerides have more energy content (9 kcal/g) compared to carbohydrates
(4 kcal/g). Thus, it is likely that infective stages of both helminths N. brasiliensis L3 and T. muris
embryonated eggs store energy in the form of triglycerides for their later developmental stages of the
life-cycle. Our findings complement a similar study where the Schistosoma mansoni infective stage
(cercariae) had a unique lipid profile compared to other stages of the life-cycle [23]. Interestingly,
although S. mansoni belongs to a different phylum (Platyhelminthes), it shares some behavioural
aspects with N. brasiliensis—notably, the penetration of host skin by the infective stage larvae. Although
we could not retrieve literature on pharmacological activities of specific triglycerides identified in
this study, a high level of triglycerides was associated with inflammation and inflammation-related
disorders [127]. T. muris embryonated eggs showed enrichment of species of phosphatidic acids (PA),
out of which PA(25:0) and PA(26:0) were completely absent in the infective stage L3 of N. brasiliensis.
Phosphatidic acid is a lipid of interest as a vital signalling molecule and a central intermediate in
the synthesis of membrane lipids and storage lipids [128,129]. Phosphatidic acid, such as lysoPA
(C14:2), was also detected in the surface coat of the infective stage of the parasitic nematode Trichinella
spiralis [130]. Other species of helminths such as Hymenolepis diminuta, A. lumbricoides, Dirofilaria immitis,
and Setaria cervi also contained phosphatidic acids [126]. Phosphatidylcholines (PC) reported to be
produced by all life-cycle stages of parasitic trematode [23] were also detected in both helminths studied
here. PC lipids are associated with the maintenance of gastrointestinal mucus barrier function [131],
besides their good anti-inflammatory properties [132,133]. PC lipids such as PC(36:7), PC(P-32:2),
and PC(P-36:2) were unique to N. brasiliensis L3 somatic extract.

4. Materials and Methods

4.1. Ethics, Source, and Housing of Mice and Rats

Mice strain B10.Br (5 weeks old, 5 mice per cage) and rat strain Sprague–Dawley (2 weeks old,
2 rats per cage) were purchased from Animal Resources Centre (Perth, Australia). All experiments
using these animals were approved by the animal ethics committee of James Cook University (JCU),
Cairns, Australia (animal ethics number: A2647). Mice and rats were kept in the JCU animal facility
centre in compliance with JCU approved protocols, Australian Code of Practice for the Care and Use of
Animals for Scientific Purposes, (7th edition, 2007), and the Queensland Animal Care and Protection
Act 2001. The animal facility room had an ambient temperature (20–22 ◦C) and humidity (60%),
and animals were exposed to a 12 h day/night cycle and fed irradiated mouse/rat chow (Specialty
Feeds, Glen Forrest, Western Australia) and autoclaved tap water ad libitum.

4.2. Collection of N. brasiliensis L3 and Its ESP

Sprague–Dawley rats were infected with N. brasiliensis L3 (~3000 larvae) by subcutaneous injection
and sacrificed on day seven post-infection [134]. We collected faecal pellets on day five and six
post-infection. Subsequently, faecal pellets were cultured with activated charcoal—untreated, granular,
8–20 mesh (Sigma-Aldrich, New South Wales, Australia). The culture plates were sealed inside an
airtight plastic container in an incubator (Binder, model: BD 115 #02-040007) at 26 ◦C for one week.
After one-week incubation, L3 were harvested, washed with warmed 5× pen/strep PBS, and then
transferred to a 12-well culture plate (1500 worms per well) containing warmed 2 mL 5× glutamax,
2× pen/strep PBS media. Plates were incubated in a CO2 incubator (Sanyo MCO-18AIC CO2 incubator,
SANYO Electric Co., Ltd., Moriguchi, Japan) at 37 ◦C supplied with 5% CO2. The supernatant (ESP)
was collected and replaced with fresh media twice daily (09:00 and 17:00) for four consecutive days.
The supernatants were centrifuged at 3000× g for 30 min, and then aliquot was transferred to Amicon®

Ultra-15, centrifugal 10 kDa filters (Merck Millipore, Victoria, Australia), and centrifuged at 4000× g
for 20 min. Concentrated ESP filtrate containing small molecules (<10 kDa) was collected and stored at
−80 ◦C until further analysis.
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4.3. Collection of Eggs (Infective Stage) from T. muris Adult Worms

B10.Br mice were infected with T. muris embryonated eggs (200 µL of PBS containing ~200 eggs)
through oral gavage. We euthanised mice with CO2 on day 30–33 post-infection to harvest adult T. muris
for egg collection. Caecum was collected, split longitudinally, and washed in warmed 5× pen/strep in
PBS. Adult worms were carefully pulled from the caecum of mice with fine forceps and washed with
5x pen/strep in PBS, and then transferred to 6-well culture plates (~100 worms per well) containing
4 mL of warmed 5× glutamax, 2× pen/strep in PBS media. Worms were incubated in a CO2 incubator
at 37 ◦C in 5% CO2. For egg collection, we replaced culture media with fresh media twice daily as
described above for three consecutive days. The supernatant was collected twice daily and centrifuged
at 3000× g for 30 min. Eggs from adult T. muris worms were resuspended in 40 mL milli-Q water and
filtered through a 100 µm nylon sieve before transferring to a fresh cell culture tube. Finally, for eggs to
become embryonated, eggs were kept in the sterile PBS and stored in the dark at room temperature for
approximately six weeks, and then stored at 4 ◦C.

4.4. Somatic Extract Preparation

Somatic extracts of N. brasiliensis L3 (five biological replicates named as NB_SE_1, NB_SE_2,
NB_SE_3, NB_SE_4, and NB_SE_5, each replicate containing ~17000 L3) and T. muris embryonated
eggs (five biological replicates named as TM_SE_1, TM_SE_2, TM_SE_3, TM_SE_4, and TM_SE_5, each
replicate containing ~17000 eggs) were suspended in 1 mL chilled sulfobetaine polymer (PSB) and
centrifuged at 1000× g for 5 min at 4 ◦C. The supernatant was discarded, and the remaining solid was
resuspended in 250 µL of chilled extraction solvent (CHCl3:MeOH:H2O, 1:3:1, v/v) containing 1 µM
of internal standards 3-(cyclohexyl amino)-1-propane sulfonic acid (CAPS), 3-[(3-cholamidopropyl)
dimethylammonio]-1-propanesulphonate (CHAPS), piperazine-N,N’-bis(2-ethane sulfonic acid (PIPES),
and Tris(hydroxylmethyl)amino-methane (Tris). A blank sample containing water instead of a tissue
pellet was extracted simultaneously as a control. After three freeze–thaw cycles, the samples were
mixed thoroughly for 30 min at 4 ◦C. The samples were centrifuged at 14,800× g for 10 min at 4 ◦C.
Supernatant (100 µL) was transferred to the vials for metabolomics analysis and analysed on the same
day. Another 100 µL was transferred to microfuge tubes for lipidomics analysis. The solvent was
evaporated using a centrifugal evaporator at 55 ◦C for 50 min. Dried extracts were frozen at −80 ◦C
until LC-MS analysis was performed. On the day of analysis, the samples were dissolved in 80 µL
of BuOH:MeOH:H2O (4.5:4.5:1, v/v). The samples were shaken for 30 min at room temperature and
sonicated for 1 h while maintaining the temperature below 25 ◦C. The samples were centrifuged at
14,800× g for 10 min at 20 ◦C, and then 70 µL was transferred to LC-MS vials.

4.5. ESP Extract Preparation

ESP from N. brasiliensis L3 was thawed on ice and 100 µL aliquots of ESP (five biological replicates
named as NB_ESP_1, NB_ESP_2, NB_ESP_3, NB_ESP_4, and NB_ESP_5) were transferred to microfuge
tubes kept on ice. Subsequently, 400 µL of extraction solvent (CHCl3:MeOH, 1:3, v/v) containing 1 µM
of internal standards CAPS, CHAPS, and PIPES was added to each replicate. The mixture was shaken
at 4 ◦C for 30 min and centrifuged at 14,800× g for 10 min at 4 ◦C. Then, 100 µL of supernatant was
transferred to the vials for metabolomic analysis and 10 µL was combined to make a pooled quality
control (QC) sample.

For the lipidomics analysis, 240 µL of supernatant was transferred to microfuge tubes and
evaporated at 20 ◦C under a stream of nitrogen and stored at −80 ◦C. On the day of analysis,
the samples were dissolved in 80 µL of BuOH/MeOH/H2O (4.5:4.5:1, v/v), shaken for 30 min at room
temperature, and sonicated for 1 h, keeping the temperature below 25 ◦C. The samples were centrifuged
at 14,800× g for 10 min at 20 ◦C and then 70 µL of the sample was transferred to LC-MS vials and the
leftover was combined to make a pooled QC sample.
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4.6. Metabolomics LC-MS Data Acquisition

LC-MS data were acquired on a Q-Exactive Orbitrap mass spectrometer (Thermo Fischer Scientific,
Waltham, MA, USA) coupled with high-performance liquid chromatography (HPLC) system Dionex
Ultimate® 3000 RS (Thermo Scientific, Waltham, MA, USA) [135] as outlined in the Figure 1. The samples
were analysed as a single batch to avoid batch-to-batch variation and randomised to account for the
LC-MS system drift over time. Chromatographic separation was performed on ZIC-pHILIC column
(5 µm, 4.6 × 150 mm, SeQuant®, Merck) (Merck Millipore, Victoria, Australia) equipped with a guard
(ZIC-pHILIC). The mobile phase (A) was 20 mM ammonium carbonate (Sigma Aldrich, New South
Wales, Australia), and (B) acetonitrile (Thermo Fischer Scientific, Melbourne, Australia). The needle
wash solution was 50% isopropanol. The gradient program started at 80% B and was decreased to
50% B over 15 min, then to 5% B until 18 min, kept at 5% B until 21 min, returned to 80% B by 24 min,
and equilibrated at 80% B to 32 min. The flow rate was 0.3 mL.min−1 and column compartment
temperature was 25 ◦C. The total run time was 32 min, with an injection volume of 10 µL. The mass
spectrometer was operated in full scan mode with positive and negative polarity switching at 35 k
resolution at 200 m/z with a detection range of 85 to 1275 m/z, AGC target 1 × 106 ions, maximum
injection time 50 ms. Heated electro-spray ionisation source (HESI) was set to 4.0 kV voltage for
positive and negative mode, and sheath gas was set to 50, aux gas to 20, and sweep gas to 2 arbitrary
units (AU), capillary temperature was 300 ◦C, and probe heater temperature was 120 ◦C.

4.7. Lipidomics LC-MS Data Acquisition

Chromatographic separation was performed on an Agilent Zorbax C8 (1.8 µm, 2.1 × 100 mm,
Agilent Technologies, Victoria, Australia) equipped with a guard column (C8, 2 × 2 mm, Phenomenex,
New South Wales, Australia) [136]. The mobile phase (A) was 40% isopropanol, 8 mM ammonium
formate, and 2 mM formic acid, and (B) 98% isopropanol, 8 mM ammonium formate and 2 mM formic
acid, and needle wash solution was 50% isopropanol. The gradient program started at 0% B and was
increased stepwise to 20% B over 1.5 min, to 28% B over 5.5 min, to 35% B over 1 min, to 65% B over
16 min, and 100% B over 1 min. Wash at 100% B was continued for 2 min before decreasing to 0% B
over the next 2 min, followed by equilibration at 0% B for 1 min. The flow rate was 0.2 mL.min−1

and column compartment temperature was 40 ◦C. The total run time was 30 min, with an injection
volume of 10 µL. The mass spectrometer was operated in full scan mode with positive and negative
polarity switching at 70 k resolution at 200 m/z with a detection range of 140 to 1300 m/z, AGC target
1 × 106 ions, maximum injection time 50 ms. Heated electro-spray ionisation source (HESI) was set
to 3.5 kV for both positive mode and negative modes, and sheath gas was set to 34 AU, auxiliary
gas to 13 AU, and sweep gas to 1 AU. Capillary and probe heater temperatures were set to 250 and
190 ◦C, respectively.

4.8. Data Processing Using IDEOM

The acquired LC-MS data were processed in untargeted fashion using open source software
IDEOM [137], which was initially used ProteoWizard to convert raw LC-MS files to mzXML format
and XCMS to pick peaks. Mzmatch.R was used to convert to peakML files [138], and for sample
alignment and the filtering of peaks using a minimum detectable intensity of 100,000, relative standard
deviation (RSD) of <0.5 (reproducibility), and peak shape (codadw) of >0.8. Mzmatch was also used to
retrieve missing peaks and annotate related peaks. Default IDEOM parameters were used to eliminate
unwanted noise and artefact peaks. The loss or gain of a proton was corrected in negative and positive
ESI mode, respectively, followed by putative identification of metabolites by accurate mass within
3 ppm mass error by searching against the Kyoto Encyclopedia of Genes and Genomes (KEGG),
MetaCyc, and LIPIDMAPS databases. Additional manual curation was performed to remove putative
lipids that did not elute at the expected retention time.
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4.9. Data Analyses and Statistical Interpretation

We performed chemometric univariate and multivariate statistical analyses using the
Metaboanalyst website (http://www.metaboanalyst.ca) [139]. Before chemometric univariate and
multivariate statistical analyses, data integrity was checked and filtered to ensure all data had
been included. The sample data (spectral data) were normalised, log transformed, and auto-scaled
before analysis. For univariate analysis, volcano plot analysis was performed to identify differential
metabolites using the t-test and fold-change (FC) methods, and plots log2 (fold-change > 2) on the
X-axis against −log10 (p-value) from the t-test on the Y-axis. Benjamini–Hochberg correction or false
discovery rate (FDR) was applied to compute the number of false positives out of significantly varied
metabolic features.

In multivariate analyses, we performed principal component analysis (PCA) unsupervised
method and hierarchical clustering analysis (HCA) with Euclidean measured distance, and the ward.D
clustering algorithm was used to evaluate the difference in the concentration of each metabolite
between sample groups.

Before the pathway analysis, IDs for the metabolites were obtained from the KEGG, LipidMAPS,
PubChem Compound ID (PubChem CID), Human Metabolome Database (HMDB), and the Chemical
Translation service (CTS; https://cts.fiehnlab.ucdavis.edu). Subsequently, we performed pathway
enrichment analysis using the Metaboanalyst website (http://www.metaboanalyst.ca) [139].

4.10. Literature Review on Pharmacological Properties of Identified Metabolites

We conducted a comprehensive literature search for the pharmacological properties of metabolites
identified in this study using various search engines, including PubMed, Medline, Google Scholar,
and SciFinder Scholar. Keywords such as “anti-inflammatory,” “bioactivity,” “pharmacological activity,”
and “anti-oxidant activity” were used to identify reported pharmacological activities of metabolites.

5. Conclusions

In summary, we show that the infective stages of two different STHs produce characteristic
metabolites. The current study identified many unique metabolites (both polar as well as non-polar
metabolites) present in the infective stages of N. brasiliensis (seven unique polar metabolites and
28 lipids in the somatic extract) and T. muris eggs (four unique lipids). Future studies should further
characterise their identity and bioactivity in more detail. The vast array of metabolites identified
from these two helminths’ infective stages could potentially serve as a database for the in-depth
understanding of helminth biochemistry, which is currently lacking. Moreover, the suite of metabolites
identified in this study presents a potential avenue for future research, particularly for the development
of metabolite-based diagnosis tools and the identification of novel targets for anthelmintic drugs.
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somatic extract (NB_SE) and T. muris embryonated egg extract (TM_SE).
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