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Abstract 

This thesis presents a new methodology and evidence for the stochastic behaviour of financial 

asset returns and the relationship between return volatility and expected returns. This thesis 

deals with both univariate and multivariate financial volatility model specifications and 

modelling issues encountered in both theory and applications. Starting with univariate volatility 

models, this study estimates and predicts standard generalised autoregressive conditional 

heteroscedasticity (SGARCH) models. Extension of the univariate GARCH to Glosten–

Jagannathan–Runkle (GJR) allows exploration of the effects of return shocks on volatility 

generally known as GJR-GARCH. The asymmetric effects of volatility risk premiums are 

investigated within GJR-GARCH-in-mean (GJR-GARCH-M) models allowing the asymmetric 

conditional volatility to be a determinant of expected returns. The parameters of the univariate 

models are estimated by the maximum likelihood (ML) method under the assumptions of a 

normal distribution and Student-t and skewed Student-t distributions with unknown degrees of 

freedom. Models are tested for adequacy using univariate Ljung–Box statistics. Asymmetric 

‘news’ effects on the volatility, sign and size bias of asymmetry and the existence of risk 

premiums are tested in these models using the Student-t test and F tests. This study analyses the 

effects of long-run and short-run return shocks on conditional volatility models for policy 

decision analysis. 

Since the univariate study is incomplete with respect to financial security markets, there is a 

need for multivariate models for the analysis of financial securities, for three main reasons. 

First, univariate models are incapable of assessing market interactions and causality in a 

Granger sense. Second, in the univariate case, it is not known explicitly how the movement of 

forecast error variance of an asset is due to its own shocks as opposed to shocks from other 

assets. Third, co-volatility, partial co-volatility and full co-volatility spillovers of return shocks 

on volatility cannot be assessed in general. To allow dynamic interdependence of assets across 

countries, I formulated conditional volatility models within a multivariate time series 

framework. 

Multivariate volatility models commonly used in the literature include the full Baba–Engle–

Kraft–Kroner (BEKK), the dynamic conditional correlation (DCC)-parameterised BEKK 

volatility model, and the diagonal vectorization (VEC) model. The univariate GARCH is not a 

special case of these multivariate models. These multivariate models have no underlying 
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stochastic process, regularity conditions or asymptotic properties. The quasi-likelihood 

estimates (QMLEs) for the above multivariate models have no asymptotic properties. 

Consequently, no valid test of co-volatility spillovers exists for these models. However, 

multivariate volatility models derived from multivariate random coefficient vector 

autoregression (VAR) of the return shocks of order one provides diagonal BEKK (DBEKK) 

have the required asymptotic properties of the QMLE and classical statistical tests of volatility 

spillovers derived from DBEKK are statistically valid.  

This study analyses DBEKK-GARCH, DBEKK-GJR-GARCH and DBEKK-GJR-GARCH-M 

models to investigate volatility spillovers and develop Wald-type tests for asymmetric volatility 

spillovers. The definition of partial co-volatility is extended to DBEKK-GJR-GARCH models 

for testing and modelling financial volatilities within a multivariate framework for the stock 

returns of 12 countries grouped as developed, advanced emerging and emerging financial 

markets. 

Dynamic interrelationships of stock returns and bond returns are investigated within classical 

VAR model with crash events, called VAR-X and panel VAR with the crash event, called 

PVAR-X models. The VAR-X is estimated by employing Cholesky’s factorisation technique 

and the PVAR-X is estimated utilising the generalised method of moments. The estimated 

models are utilised to test for financial market crash events and a new severity index (SI) is 

created using Fisher’s p-value for determining the degree of severity of events occurring during 

the financial crash of 1987, the Asian Financial Crisis (AFC) and the Global Financial Crisis 

(GFC). Variance decomposition and impulse response analyses are conducted to examine the 

effects of assets’ own shocks, as well as shocks of other assets, on return volatility and 

prediction analysis. Model stability is tested using the eigenvalue approach to VAR-X and 

PVAR-X models. This study conducts nonparametric Kendall’s tau correlation tests and 

Spearman’s rank correlation tests on the return series to determine both linear and nonlinear 

dependence between asset returns. Pearson’s linear correlation is also considered for 

comparison purposes with chi-square tests of covariance dependence calculated for all pairs 

jointly. Finally, the Gumbel copula with Student-t marginal distributions is utilised as an 

alternative to GARCH for volatility dependence analysis. In general, this thesis provides a wide 

range of methodologies for dynamic dependence of asset returns and volatilities of returns in the 

multivariate context. 
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This study finds evidence of asymmetric co-volatility spillovers, significant long- and short-run 

effects of return shocks on volatility, the existence of Granger type causality, co-volatility 

spillovers and significant risk premiums, with some reservations. Further, evidence suggests 

that the severity of the 1987 crash is the highest, followed by the GFC and Asian Financial 

Crisis (AFC) in the stock markets of the five selected countries, namely Australia, France, 

Japan, Singapore, and US. The severity of the GFC experienced by the five countries across 

Stock, Bond, and Money markets is in the order of Stock T-bill >BondGfc Gfc Gfc . Nonparametric 

correlation tests and covariance dependence tests find significant correlations and covariance 

dependence among returns in the stock market for US, UK, Japan, Australia and Hong Kong. A 

simulated copula reveals significant dependence in the conditional volatility of stock returns. 

The approach employed in this thesis is expected to find the relationship between asset 

markets volatility, contagion and expected returns that best meet the objectives of researchers, 

investors and policy makers in the real world of business. 
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Chapter 1: Introduction 

1.1 Background of the Study 

Stock market returns and volatility (risk) of returns has been a highly researched area in 

theoretical and empirical finance since the publication of the seminal paper ‘Portfolio 

Selection’ of Markowitz (1952). This is the basis of the development of the first capital asset 

pricing model, introduced by Sharpe (1964), Lintner (1965) and Mossin (1966) among others. 

Fama (1970) developed the efficient market hypothesis (EMH) and Black (1976) reported the 

existence of ‘predictive asymmetry between stock returns and future volatility’ in financial 

returns series. Further, Mandelbrot (1963) identified the heavy-tailed and non-normal 

properties of return series. The considered ideas of the efficient market hypotheses, 

asymmetry in volatility and heavy-tailed properties of financial returns attracted researchers to 

continue the journey of the original researchers in the hope of developing new ideas involving 

uncertainty in the volatility of financial returns. In finance, a return is the amount of money an 

investor receives from an investment and volatility of returns is a term that refers to 

fluctuations of returns over a period. 

My main objective in this thesis is to present a new methodology and novel evidence on the 

stochastic behaviour of asset returns and the relationship between asset market volatility and 

expected returns, which led me to develop and apply econometric and statistical techniques 

for modelling and testing for causality and volatility spillovers among assets across countries 

in a multivariate context. The purpose of this analysis is to identify models that best meet the 

objectives of researchers, investors and policy makers in the real world of business. 

Much of the finance literature describes various aspects of financial transactions; delayed 

transactions; and portfolio diversification and management issues. Most importantly, the time-

varying conditional volatility (risk) of return models of Engle (1982) and Bollerslev (1986) 

have gained popularity with diverse applications in the fields of finance and elsewhere. These 

models are known as autoregressive conditional heteroscedasticity (ARCH) and generalised 

ARCH (GARCH) respectively, in the econometrics and finance literature. Engle and Ng 

(1993) incorporated a news impact curve in estimating and modelling risk. They suggested 

three new diagnostic tests for ‘news’ asymmetry, which are generally known as the sign 

(positive and negative) and size bias tests. These tests are widely used in financial data 
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analysis to study the so-called news effects of asset returns volatility. Nelson (1991) and 

Glosten et al. (1993) provided a statistically testable form of asymmetric return shocks on 

volatility, and Beg and Anwar (2014) dealt with sources of volatility in exchange markets. 

Schwert (1990) investigated the US stock market crash of October 1987 and raised the issue 

of financial market stability and economic surges. However, Officer (1973) had previously 

noticed that stock return variability was unusually high during the 1929–39 Great Depression. 

Schwert (1989) tried to establish a relationship between business cycles, financial crises and 

stock volatility in the US for the period 1834–1987 (known as the Industrialised Economic 

Period of the US). He observed that stock volatility increases after stock prices fall, during the 

recession and around major financial crises. The issue of stability after a crash is of great 

concern for future economic growth. He provided empirical evidence that crises in financial 

institutions are linked to economic activities. He applied linear autoregression (AR) for both 

the conditional mean and standard deviation of stock returns. He further used a nonlinear 

regime switching model for stock returns along the lines of Hamilton (1988). He observed 

that stock volatility was higher during financial crises; in the post-World War I recession of 

1925–34; the 1937–38 depressions; and the 1973–74 OPEC (Organization of the Petroleum 

Exporting Countries) recession. This information is useful for financial decision making 

purposes. 

Schwert (2011) further used monthly returns from 1802 to 2010, daily returns from 1885 to 

2010 and intraday returns from 1982 to 2010 in the US to show how stock volatility changes 

over time. He found that the crisis of 2008 did not live longer, in contrast to the Great 

Depression of 1929. For the United Kingdom (UK) and Japan stock, volatility in the 2008 

crisis was relatively short-lived. Hartman et al. (2001, 2004), by employing an extreme 

dependence measure, characterised asset return linkages during stress across five countries. 

They evaluated the degree of simultaneous crashes in bond and stock markets, both domestic 

and global. 

To understand the interdependence among time series, Engle and Kroner (1995) proposed the 

Baba–Engle–Kraft–Kroner (BEKK) model and multivariate BEKK-GARCH-type model for 

volatility. Engle (2002) provided a re-parameterised BEKK-GARCH known as a dynamic 

conditional correlation (DCC) model and Bollerslev, Engle and Wooldridge (1988) proposed a 

diagonal vectorization (VEC) model of conditional volatility. The reviews of multivariate 

GARCH models by Silvennoinen and Terasvitra (2009) and of multivariate volatility models 



3 
 

by Tsay (2006), and the multivariate survey of Bauwens et al. (2006) among others are useful 

references for multivariate volatility models. In applications, Akhtaruzzaman and Shamsuddin 

(2015) used dynamic volatility models to test and forecast financial returns, and volatilities of 

returns during normal and crisis periods. Dias (2017) proposed an estimation strategy for 

time-varying risk premium parameters and Alsalman (2016) developed a GARCH-in-mean 

(GARCH-M) model to examine the oil price uncertainty of US stock returns and found no 

significant effect of oil price volatility in stock returns. A variety of modifications and 

extensions of the theory of returns and volatility of returns have opened up further research 

opportunities in the flourishing field of financial volatility modelling and testing. Very 

recently, Chang et al. (2018), Chang et al. (2017), Chang and McAleer (2018), Caporin and 

McAleer (2013), Chang and McAleer (2014), McAleer et al. (2009) and Massimillano and 

McAleer (2006) have shown that the standard stated full BEKK of Engle and Kroner (1995) 

and the DCC of Engle (2002) have no valid statistical properties for estimation and statistical 

hypothesis tests of volatility spillovers. 

Despite the vast literature dealing with domestic and global financial market interactions, 

three key issues remain largely unsolved. The first is the specification of conditional volatility 

models and modelling issues such as estimation and statistical hypothesis testing. This is 

important because a misspecified model can lead to mistaken conclusions from both 

theoretical and statistical points of view. Second, the dynamics of returns and co-volatility of 

returns spillovers issues require further investigation to examine whether causality and 

spillovers change during financial crises. It is important for policy makers to understand the 

sources of asymmetric effects of return shocks on volatility; differences in patterns of 

volatility spillovers from one market to another; and return volatility from one country to 

another. Third, the severity of market crash events and crash dependence require deeper 

investigation as it is important to know whether big asset markets are prone to the more severe 

crisis than are small ones in global financial markets, which can in turn influence asset 

holders’ portfolio selection, allocation and management. Finally, it is useful to investigate 

whether a time-varying risk premium exists in international financial markets in a multivariate 

framework. This will help determine the applicability of the EMH theory in the multivariate 

context. 

Motivated by the work of Caprion and McAleer (2013), Chang and McAleer (2014), Chang et 

al. (2017), Allan et al. (2018) and Hartman et al. (2014), among others, this thesis explores 

modelling and testing issues relating to conditional volatility for assessing interdependence, 



4 
 

co-volatility spillovers and causality among stock, bond and money markets across countries. 

The thesis also examines dynamic interrelationships among multiple asset returns utilising 

Sims’s (1982) vector autoregression (VAR) model and VAR-X framework, and Abrigo and 

Love’s (2015) panel VAR-X (PVAR-X) model of financial crisis. Finally, I employ Kendall’s 

tau, Spearman rank correlation and product moment correlation to investigate the covariance 

dependence among multiple stock returns series. The Gumbel copula with Student-t marginal 

distributions undertaken in this thesis provides another source of dependent analysis among 

stock returns. 

This chapter is organised as follows. The research questions and research hypothesis are 

stated and discussed in Section 1.2. Data, models and methodology are outlined in Section 

1.3. Contributions of this research are explained in Section 1.4. Section 1.5 discusses the key 

findings, and thesis structure is revealed in Section 1.6. 

1.2 Research Questions 

This study involves the money, bond and stock markets of Asia, Europe and the US to 

evaluate global asset market linkages in a multivariate context. This study focuses on 

understanding the dynamics of financial asset market movements caused by uncertain and rare 

events occurring in financial markets. Further, the study examines volatility spillovers, 

causality, contagion and interdependence and flight to quality (i.e. where a crash in one 

market leads to a boom in another) in relation to both domestic and international financial 

assets markets. To achieve the objectives of this study I address the following research 

questions in order. 

RQ1: Do volatilities of returns spillover symmetrically? 

Addressing this research question is important to understand how asymmetric (or leverage) 

effects change the pattern of co-volatility spillovers in international stock markets across 

countries for agents’ asset allocation and diversification strategies. 

RQ2: Do risk premiums hold in international financial markets? 

Addressing this research question is important in regard to international asset diversification 

as it is important to understand how risk premiums work in dealing with cross-country asset 
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allocations. This information is useful for investment decision making in international bond 

markets and to test for the applicability of the EMH in multiple bond markets. 

RQ3: Does the severity of crisis affect asset markets globally? 

This research question is vital for its role in global financial market stability and 

predictability. Stability is a major issue in the current era for two main reasons. First, if 

financial markets are not stable and crash jointly, this will have a more harmful (contagion) 

influence on those markets that hold widely diversifiable portfolios. Second, from a regularity 

point of view, a strong policy recommendation is required to tackle unstable situations. 

RQ4: Are financial returns dependent across countries? 

This research question is important because it is useful to know whether large or small asset 

markets are interlinked for portfolio management. 

1.3 Data, Models and Methodology 

In this section I briefly introduce the data, models and methodology used to address the 

research questions to achieve the objectives of this thesis, walking the reader through 

empirical determination of returns, volatilities of returns and dynamic dependence analysis. 

1.3.1 Data 

This study utilises data from US, European and Asian financial centres. The country selection 

process was based on FTSE Annual Country Classification Review report on the Global 

Equity Index Series. Seventeen countries are selected from three blocks of countries; these are 

America (North and South), Europe, and the Asia Pacific. Each of the 17 countries is 

individually analysed using univariate time series techniques. These countries are then 

categorised as developed, advanced emerging and emerging countries for multivariate time 

series analysis. Three financial market datasets namely the stock, bond, and money market 

Treasury-bill (T-bill) data series for 30 January 1985–30 December 2016 are analysed. The 

data are collected from the Bloomberg database. From the stock market I use stock index 

return; from the bond market I use the 5-year bond rate; and from the money market I use the 

3-month T-bill rate. Continuously compounded returns of each of the financial securities are 

used. Returns rather than asset prices were chosen because (i) the return of an asset is a 

complete and scale-free summary of the investment opportunity, and (ii) a return series is 
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easier to handle than is a price series because of the attractive statistical properties of return 

series. The selection of countries was made according to maximum availability of sample 

data. 

1.3.2 Research models and methodology 

The empirical analysis begins with calculations of basic statistics for the data, followed by 

univariate and multivariate Ljung–Box (LB)-Q tests (the Q test is a chi-square test) for serial 

dependence of the series and squared series. Next, I test the series for unit roots using the 

augmented Dickey–Fuller [ADF; Dickey and Fuller, (1979, 1981)], Phillips–Perron [PP; 

Phillips and Perror (1989)] and Kwiatkowski–Phillips–Schmidt–Shin [KPSS; Kwiatowski, 

Phillips, Schmidt, and Shin, (1992)] tests for financial returns series. Univariate GARCH-type 

volatility models, namely standard GARCH (SGARCH), Glosten–Jagannathan–Runkle (GJR;  

GJR-GARCH; Glosten, Jagannathan, and Runkle, 1993) and GJR-GARCH-in-mean (GJR-

GARCH-M) models are estimated under normal, Student-t and skewed Student-t innovation 

distributions for the selected 17 countries. I conduct tests for asymmetric return shocks on 

volatility and for risk premiums utilising Student-t tests, and sign and size bias tests using the 

t and F tests, and provide predictions for return and volatility. 

In the absence of normality, I estimate DBEKK-GJR-GARCH-type models for conditional 

volatility utilising quasi-maximum likelihood estimates (QMLE). McAleer (2008), Chang and 

McAleer (2014), and Allen et al. (2017) derived DBEKK models from vector random 

coefficient autoregressive process of order one of the vector return shocks.  The QMLEs of 

DBEKK are asymptotically normal. Statistical tests are valid for inference and hypothesis 

tests. I extend the DBEKK-GARCH to DBEKK-GJR-GARCH and DBEKK-GJR-GARCH-M 

models for co-volatility spillovers and risk premium analysis. Partial dynamic 

interdependence of Sims’s (1980) VAR with crash events denoted, VAR-X is estimated by 

Cholesky decomposition. The panel VAR with GFC event denoted, PVAR-X is estimated 

utilising generalised method of moments (GMM) estimation. The severity of crisis is 

measured by employing the modified Fisher’s p-value. The tools employed by VAR-Granger 

causality, forecast error variance decomposition, and impulse response analysis are used to 

examine the dynamic interdependence of global stock markets. The covariance dependence 

test of the asset returns is conducted via chi-square tests based on the correlations computed 

by nonparametric Kendall’s tau and Spearman rank correlation, and parametric correlation by 

Pearson product moment correlation of the return series. Another approach used for the 
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dependence of stock returns is the Gumbel copula with Student-t marginal distribution of the 

financial returns series. 

1.3.3 Econometric packages used in the empirical analysis 

The models are estimated and tested using the STATA, RATS and R econometric and 

statistical packages whenever required for empirical data analysis. 

1.4 Key Findings 

I examined the stochastic behaviour of asset returns of stock, bond and T-bill series for 17 

countries. Most of the return series were found to be negatively skewed, heavy-tailed and non-

normal. The return series were also found to be serially dependent in both level and squared 

return series. The series exhibit volatility clustering as confirmed by the LB-Q and kurtosis 

tests. I established relationships between return volatility and expected return in univariate and 

multivariate frameworks utilising the GARCH-type models of Bollerslev (1986) within a 

univariate time series framework. I found a significant effect of return shock on volatility in 

all of the series, with the exception of those for the China, Indonesia and Malaysia stock 

returns. This implies that any return shock persists in these stock markets for the sample 

periods. In other countries, shocks were found to be statistically transitory. I predicted 

volatility under normal, Student-t and skewed Student-t innovation and found skewed 

Student-t return shock dominating the other two which is a reflection of the heavy-tailed data 

property. 

I fitted the GJR-GARCH model and found significant asymmetric volatility in the stock 

returns series. Both the SGARCH and GJR-GARCH models provided significant short- and 

long-run return shocks in almost all the series considered in this study. The asymmetric 

significance of news effects was found in all series except the China and Indonesia stock 

returns. I found the half-life of return shocks on volatility for the GJR-GARCH-M model was 

between 0.29 and 0.47 days for the daily returns. The risk premiums were found to be positive 

but not significant in most cases. A similar result was documented by Panayiotis and Lee 

(1995), Schewert (1989, 1990, 2011) using GARCH-M models. 

Multivariate derivation of GARCH (1,1) using a vector random coefficient autoregressive 

model produced the DBEKK-GARCH of Chang and McAleer (2017). I extended this 

approach to DBEKK-GJR-GARCH and DBEKK-GJR-GARCH-M. These models were 
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estimated utilising a QMLE with data from the developed, advanced emerging and emerging 

countries. The partial co-volatility spillover within the DBEKK-GJR-GARCH models was 

defined along the lines of Chang and McAleer (2017). I found significant partial co-volatility 

in the multivariate volatility models using the new Wald test, and significant Granger causality 

in the multivariate return models. Specifically, I found bi-directional causality running between 

the US and UK stock markets. Significant short-run and long-run volatility exists and was found 

to be significant in multiple stock markets. Significant asymmetric volatility spillovers exist in 

multiple stock markets. Interestingly, I found a significant volatility risk premium in the US 

and Japan bond markets but not the Australian bond market, which indicates EMH theory 

does not hold in general. This information is useful for investment decision making regarding 

asset allocation strategies in international bond markets. 

The Sims (1980) VAR-X model was estimated using Cholesky decomposition for the 10 

countries selected on the basis of availability of maximum number of data values. I found a 

significant effect of the 1987 crash, Asian Financial Crisis (AFC) and GFC in VAR-X. A 

significant effect of GFC was documented for 9 of the 10 selected countries; the Asian crisis 

was experienced by only 4 of these 10 countries (Canada, Hong Kong [HK], Indonesia and 

Malaysia). The 1987 crash was experienced by 7 of these 10 countries: Australia, Canada, 

Germany, HK, Malaysia, UK and US. Causal dependence was checked individually by the t 

test and jointly by the F test. The variance decomposition within the VAR framework 

revealed the proportion of movements in a sequence because of its own shocks, versus shocks 

in response to the other variables in the VAR-X. For example, the three principal factors 

driving the two-step forecast error variance for Australia were Australia (84.0%) itself, 

Canada (9.9%) and Germany (5.1%). Using the new severity index based on Fisher’s p-value, 

majority of the stock markets experienced higher severity in the 1987 crash and the GFC than 

the AFC. This is an important finding for both domestic and international stock market 

investors and decision makers in financial markets. I also estimated the stock, bond and T-bill 

markets within the PVAR specification for the selected five countries. The PVAR-X model 

was estimated using the GMM and evaluated the effects of GFC only. I found that the GFC 

most severely affected the stock market, followed by the T-bill. Less severely affected were 

the bond markets for the sample of five countries jointly. Dependence among global stock 

returns was investigated utilising parametric and nonparametric correlation tests, which revealed 

significant dependence of pairwise stock returns in the lists of Australia, HK, Japan and US. 

Chi-square tests showed that significant contemporaneous covariance exists among the assets 
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returns jointly. I examined the dependence of returns volatilities of the selected countries 

utilising the Gumbel copula and Student-t margins. I found significant dependence of the 

returns series by copula simulation. This thesis reports significant volatility spillovers, 

significant risk premiums, significant effects of financial crises, partial co-volatility spillovers 

and dependence among financial assets across countries in multivariate assets markets for the 

sample period. These are the main contributions of this thesis.  

1.5 Significance of the Thesis 

This research has important implications for investors, managers, stock market regulators, 

policy makers and forecasters in local and global financial markets for efficient policy 

decision analysis. In particular, it examines the transmission of returns and co-volatilities of 

returns shocks from one market’s return shocks to another, as well as the cross-market 

volatilities and correlations of volatilities. These are essential issues for financial market 

participants, both individuals and agents, in terms of domestic and international asset pricing, 

portfolio allocation and diversification strategies. Most importantly, understanding how one 

asset market transmits returns shocks and volatilities to other markets during stress is 

important for future decision making purposes. This will provide information for investors 

about ways to monitor and manage portfolio diversification among markets across countries. 

Therefore, financial market crash event analysis is important to investigate dependencies, 

stability and contiguity effects among financial markets locally and globally to uncover how 

systematic risks are related to stocks, bonds and money markets during crisis and non-crisis 

periods. This will determine the severity of crisis experienced by these markets during the 

crisis and peace times. Further, how returns and volatilities spill over among different markets 

across countries will indicate the role played by news information during a crisis in those 

markets to enable evaluation of convergence of returns and volatilities globally. These are 

useful issues for portfolio allocation, diversification and management for future asset trading 

strategies under uncertainty. 

1.6 Thesis Structure 

This thesis consists of seven chapters. This first chapter introduces the study; discusses the 

background to the study; and identifies research questions and methodological contributions 

to fulfil the research objectives, and the significance, main findings and structure of the thesis. 
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Chapter 2 presents an extensive review of the literature relevant to the objectives of the thesis. 

This includes theoretical and empirical findings on risk and return in global financial markets 

specifically, the dependence of asset returns and returns volatilities spillovers across countries. 

It reviews all statistical and econometric approaches to financial data analysis. The chapter 

ends by identifying gaps in the literature and research questions that need addressing. 

Chapter 3 deals with the theory of conditional volatility and modelling issues in a univariate 

and multivariate context. Further estimation methods are discussed in the context of 

conditional volatility models. 

Chapter 4 deals with methodological approaches, which include the theory of VAR and 

PVAR, to model the financial returns jointly. Multivariate volatility models such as 

multivariate generalised autoregressive conditional heteroscedasticity (MGARCH), MGJR-

GARCH, MGARCH-in-mean (MGARCH-M) and MGJR-GARCH-in-conditional mean are 

implemented within the multivariate DBEKK volatility spillovers and risk premium analysis. 

The models are estimated by employing ordinary least squares (OLS), GMM, maximum 

likelihood (ML) with normal, Student-t and skewed Student-t innovation, and QMLE in the 

absence of normality assumption. These methods have desirable statistical properties under 

the regularity conditions for valid statistical inference. 

Chapter 5 deals with empirical univariate volatility model estimation, prediction and statistical 

tests for model adequacy. 

Chapter 6 reports empirical results for the returns and volatility spillovers of different 

financial markets across countries under various specifications within the multivariate 

framework. The chapter reports the empirical findings highlighting the importance of the 

methodologies proposed by the research. 

Chapter 7 presents a summary of the major findings, implications and limitations of this 

thesis, along with directions for future research. 
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Chapter 2: A Review of Literature on Modelling Financial Asset 

Returns and Volatility of Returns Spillovers 

2.1 Introduction 

The theme of this research is linkages between asset markets volatility and expected returns in 

various financial markets across countries. It is important to study these linkages because the 

turmoil that occurs in some financial markets might have a corrupting influence on the prices 

of various assets among markets across countries. One such turmoil, the 1987 crash was not 

limited to the US stock market, but transmitted shock waves to the US bond and money 

market and further to other countries around the world (Ro 2013). Another turmoil, the Asian 

Financial Crisis (AFC) of 1997-1998, originated in Thailand and had similar impacts on many 

other emerging markets in Asia, Latin America and Eastern Europe. This resulted from the 

liberalisation of capital movements, together with advances in computer technology and the 

improved worldwide processing of ‘news’. It is clear in the modern era of technology that 

national and international financial markets react rapidly to new information coming from 

global stock exchange markets. Another crisis widely known as the global financial crisis 

(GFC) originated in the mortgage sector of the US dragged to collapse many large institutions 

in US. Thus, the purpose of this study is to investigate how dynamic interrelationships across 

different financial markets have evolved since 1985 because three major financial crises, 

namely 1987 Crash, AFC, and GFC had severely affected global markets. 

This study attempts to investigate the dependencies and stability of stock, bond and money 

markets jointly across countries. The main aim of the study is to investigate dependence 

among different financial market returns, volatilities of returns spillovers, contagion and 

convergence during the global crisis and non-crisis periods for effective forecasts and policy 

decision purposes. The study focuses on determining the causes and dynamic dependence of 

financial asset market crashes, and explores linkages between domestic and global financial 

markets both jointly and separately. Further, the study examines the severity of crisis in 

relation to the assets and locations of markets. 

This chapter provides a detailed literature review on theoretical and empirical linkages among 

asset markets across countries. This includes an overview of the risk-return nexus in Section 
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2.2. Section 2.3 examines international evidence regarding the issue of financial asset returns 

and volatility spillovers, and finally, Section 2.4 highlights research gaps in the literature. 

2.2 Overview of the Risk-return Nexus 

In traditional portfolio selection, investor behaviour was important to understand the pricing 

of assets in financial markets. Markowitz (1959) conjectured that assets’ expected returns 

should not only reflect their own risk because part of the risk could be diversified away. 

Therefore, the expected returns should reflect only the part of the risk that is non-diversifiable. 

Non-diversifiable risk is generally known as systematic risk as it is linked with market risk. 

Asset selection strategies were first introduced in the finance literature by Markowitz (1952) 

within utility maximisation theory. Modifying his own work, Markowitz (1959) then 

developed a testable form of asset allocation utilising the mean variance approach. The 

principle of the mean variance lies in the following optimisation rules: 

 minimise the variance of portfolio return given expected return. 

 maximise expected return, given variance. 

Thus, mean variance analysis is the core process in asset pricing, VaR calculations, asset 

allocation and asset diversification. Motivated by the work of Markowitz (1959), Sharpe 

(1964) and Lintner (1965) independently developed a model of ‘dependence’ between 

expected returns and risk in dealing with the risk-return nexus. Sharpe (1964) and Lintner 

(1965) introduced a model with an additional two key assumptions: 

 All investors are assumed to follow the mean variance rule; that is, they choose mean 

variance efficient portfolios. 

 There is unlimited lending and borrowing at the risk-free rate, fr , which does not 

depend on the amount borrowed or lent. 

This model is known as the capital asset pricing model (CAPM). The theory of CAPM states 

that the risk premium on a security is proportional to the risk premium on a market portfolio. 

That is, )( fmfi rrrr  , where ir and fr  are the returns on security i  and the risk-free 

rate, respectively, mr  is the return on the market portfolio, and the proportionality constant of 

the model is denoted by i , the i th security’s ‘beta’ value. A stock’s beta is important to 
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investors and policy makers because it reveals the stock’s volatility. This model has been 

extensively used in empirical finance. 

Although theoretically, the CAPM is sound, some of its assumptions are questionable. Results 

based on the theory are mixed in practice, perhaps because of its specification. Recent studies 

have not found support for the CAPM in observed phenomena in return series. Poor empirical 

performance of the traditional static CAPM has given rise to modifications of the CAPM. 

Basu (1977, 1983) gave evidence that when common stocks are sorted on earnings–price 

(E/P) ratios, the future returns on high E/P stocks are higher than predicted by the traditional 

CAPM. Banz (1981) documented a size effect when stocks are sorted by market capitalisation 

(price × shares outstanding), in which average returns on small stocks are higher than 

predicted by the CAPM. Stattman (1980) and Rosenberg et al. (1985) documented that stocks 

with high book-to-market equity ratios have high average returns that are not captured by their 

betas. Fama and French (1992) updated and synthesised the evidence on the empirical failures 

of the CAPM. Using the cross-sectional regression approach, Fama and French confirmed that 

size, E/P and debt-to-equity and book-to-market ratios added to the explanation of expected 

stock returns provided by market betas. Fama and French (1996) reached the same conclusion 

using time series regression applied to portfolios of stocks sorted by price ratios. 

Jaganathan and Wang (1996) included additional risk factors to Fama and French (1992), such 

as return on human capital, and found some support for the theory and practice of CAPM. 

Specifically, they found some improvements in the model for monthly rather than annual data. 

The Fama–French (1992) model is known as the three-factor asset pricing model in finance. 

They further extended the model by including several other exogenous variables. The 

resulting model is known as the Fama–French (2015) five-factor asset pricing model. This 

model is directed at capturing the size, value, profitability and investment patterns in average 

stock returns, and performs better than the three-factor model. The five-factor model’s main 

problem is its failure to capture the low average returns on small stocks whose returns behave 

like those of firms that invest a lot despite low profitability. Ratios involving stock prices have 

information about expected returns that are missed by market betas. Such ratios are thus prime 

candidates to expose shortcomings of asset pricing models in the case of the CAPM, and of 

the prediction, that market betas suffice to explain expected returns. These observations may 

be regarded as misspecifications of the traditional CAPM caused by omitted variables, with 

the consequence that the traditional CAPM might suffer from bias and inconsistency. 
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Another important issue in the lack of empirical support for CAPM might be the linearity 

assumption of expected returns. The linear model may perform badly in empirical applications 

if the linearity assumption is violated. It is well known that most asset returns exhibit stylised 

facts; for example, limit cycles, sudden jumps, amplitude frequency dependencies and 

nonlinearity. The inherent nonlinearity of the traditional linear CAPM may be a model 

specification problem. Therefore, the assumption of linearity in the CAPM needs to be tested 

before adopting such a model for policy decision analysis. One of the sources of inherent 

nonlinearity may enter into the model through the conditional second moment of a financial 

returns series. If linearity does not hold then the use of correlation as a measure of dependence 

between different financial assets is not appropriate for optimal portfolio selection by the 

CAPM. The linearity, however, implies normality. Therefore, the traditional static CAPM 

approach founded on the assumption of multivariate normality may not be appropriate. This 

could be regarded as functional misspecification of the traditional CAPM. The nonlinear 

dependence might be additive, multiplicative or both. 

Merton (1973) proposed the intertemporal capital asset pricing model (ICAPM), suggesting 

that the conditional expected excess return on the stock market is positively and linearly 

related to the market’s conditional variance. However, that ICAPM is not supported 

empirically, which makes the risk-return trade-off one of the main puzzles in finance. 

Specifically, empirical evidence about the risk aversion coefficient sign is mixed. Early 

studies conducted by French et al. (1987), Baillie and DeGennaro (1990) and Campbell and 

Hentschel (1992) among others showed a positive but mostly insignificant relationship 

between the conditional expected return and conditional variance, while Campbell (1987) and 

Nelson (1991) discovered a significantly negative relationship. Both a positive and a negative 

relationship were found by Turner et al. (1989), Glosten et al. (1993) and Harvey (2001). 

Recently, Jingzhen Liu (2019) investigated the impacts of lagged returns on the relationship 

between the conditional mean and conditional variance in the Chinese stock market. The 

results suggest that the risk-return trade-off is time varying and affected by lagged returns; 

however, the results are sensitive to the data frequency.  

The nonlinearity that may enter returns series was first cleverly modelled by the Nobel 

Laureate Robert Engle in 1982. The resulting ARCH model is widely used in finance and 

elsewhere. Engle showed that it is possible to model the conditional mean and conditional 

variance of a series of observations jointly. This theory makes a stronger additional 

contribution to the traditional static CAPM. Engle (1982) showed that the unconditional 
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forecast of a random process has greater variance than its conditional variance. This statistical 

property motivated a large number of researchers to model asset returns along this line. The 

model captures various stylised facts exhibited by financial asset returns, such as volatility 

clustering, asymmetry and a high degree of persistence. Bollerslev (1986) extended Engle’s 

(1982) ARCH by developing a technique that allows the conditional variance to be an 

autoregressive moving average (ARMA) process. This expanded conditional variance is 

widely known as the GARCH model. These two models are widely used in empirical finance 

for volatility modelling. 

The univariate ARCH and GARCH models of volatility, developed by Engle (1982) and 

Bollerslev (1986) respectively, form the basis of many extensions to conditional volatility 

models in the literature. Although popular, both ARCH and GARCH models are incapable of 

capturing asymmetric news arriving in the market during periods of the transaction and 

delayed transaction. Since news is unobservable and random, various proxies have been 

reported in the literature to tackle the unobservable. Since financial returns and volatility are 

news dependent, it is of interest to create a variable that can be used as a proxy for news. In 

this context, various extensions of ARCH/GARCH have appeared in the literature to 

overcome some inherent nonlinearity problems with the GARCH class of models. Since 

volatility clustering is a likely characteristic of financial returns, which are nonlinear by 

nature, they can be modelled using the asymmetric t-distribution, generalised error 

distribution (GED) and extreme value theory among others. A popular nonlinear extension of 

ARCH/GARCH is Nelson’s (1991) exponential generalised autoregressive conditional 

heteroscedasticity (EGARCH) model. It attempts to include the asymmetric impact of return 

shocks on volatility. In addition, this model does not require non-negativity restrictions on the 

parameters, unlike the ARCH/GARCH conditional volatility models. 

Another popular extension of the GARCH is the Glosten, Jagannathan and Runkle (1993) 

extension, known as the GJR volatility model in financial econometrics. These latter two 

models (EGARCH and GJR) allow for leverage effects (the tendency of volatility to decline 

when returns rise and to rise when returns fall), contrary to classical ARCH and GARCH 

models. The GJR is centred on 1t (shocks), but the slope is asymmetric about zero; that is, 

there are different slopes on the positive and negative sides of 01 t . Both the GJR and 

EGARCH models capture an interesting feature of asset prices, that so-called ‘bad news’ 

seems to have a more pronounced effect on volatility than does ‘good news’. This 
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phenomenon is often called the ‘leverage effect’. Both the GJR and EGARCH capture 

asymmetric effects of return shocks on volatility but their model specification is different. 

Other asymmetric models include the ‘news impact curves’ of Engle and Ng (1993), and the 

nonlinear asymmetric GARCH (NAGARCH) and vector AGARCH (VAGARCH) of Engle 

(1990). These models have different centres from the EGARCH and GJR. It is important to 

note that if a negative return shock causes more volatility than a positive shock of the same 

size, the classical GARCH model under predicts the amount of volatility following bad news 

and over predicts the amount of volatility following good news. Ding et al. (1993) 

investigated the ‘long-memory’ property of stock market returns, finding that the power 

transformation of the absolute return has quite a high autocorrelation for long lags, which 

argues against the use of ARCH-type volatility. The conditional volatility specification of 

Ding at al. (1993) is known as the asymmetric power ARCH (APARCH) model. Both the 

GJR and EGARCH models are special cases of APARCH model of Ding et al. (1993).  

Asset pricing theories agree that a high risk has to be compensated for by higher expected 

returns. It is, therefore, reasonable to include variance in an expected return model, to take 

account of risk premiums. The resulting models are known as ARCH-M and GARCH-M 

models in the ARCH/GARCH context. The ARCH-M model was introduced by Engle et al. 

(1987) and may be considered an extension of the CAPM. By employing this model one can 

estimate and test for the existence of a time-varying risk premium in financial markets. The 

presence of a risk premium is an issue that weakens the rational expectation (RE) hypothesis 

(see Shiller, 1978, 1981; Shiller, Campbell & Schoenholtz, 1983 and Campbell, 1986 among 

others in the univariate case). However, the above univariate volatility models are not capable 

of capturing returns and volatilities of returns spillovers and causality effects. 

2.3 International Evidence 

Over the years a vast literature has developed, reflecting the different objectives related to 

returns and volatilities of returns spillovers among financial markets across countries. Stock 

market returns and volatility spillovers have been a highly researched area in the theory and 

practice of finance. This has always been a focus of financial regulators, policy makers and 

scholars in relation to the issue of assets spillovers. Many researchers have studied the 

movements of aggregate stock market volatility. Studies on volatility in US and Japanese 

stock markets tend to dominate the literature. However, the literature on the volatility co-

movement of stock, bond and money markets within and across markets is sparse. The limited 
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nature of such work prompted the current investigation of asset market linkages and volatility 

co-movement in different financial markets and across countries. 

GARCH-M models have been widely used for identifying the risk-return relationship, 

including the research by Engle et al. (1987), French et al. (1987), Campbell and Hentschel 

(1992) and Glosten et al. (1993). All these studies estimated the model using monthly data. 

However, Glosten et al. (1993) considered different impacts of negative and positive lagged 

returns on the conditional variance and indicated that positive and negative innovations in 

returns have different influences on conditional volatility. One advantage of using GARCH 

family models is that the conditional returns and volatilities can be estimated simultaneously 

and 1-step-ahead forecasts for the conditional mean and variance are readily obtained. 

Moreover, the GARCH-M framework allows for an extension of the model by including extra 

regressors to control for any incremental information of implied volatility beyond the 

GARCH parameterisations in modelling variance (Blair et al., 2001). Lundblad (2007) used 

GARCH, EGARCH, quadratic ARCH (QARCH) of Sentana (1995), Threshold GARCH 

(TGARCH) of Zakoian (1994) and used the specifications of the conditional variance to 

investigate risk-return trade-offs in US and UK equity markets by using a large set of monthly 

data. He reported a significant positive risk-return trade-off for the above markets, although 

the relationship between risk and return is time varying. Skintzi and Refenes (2006) examined 

the dynamic linkages among European bond markets using an EGARCH model, which 

allowed for a dynamic correlation structure. The results suggest significant volatility 

spillovers exist from both the aggregate euro area and US bond markets to individual 

European markets. A negative correlation between current return and the future volatility of 

many stocks is often called the leverage effect. This concept of a leverage or threshold effect 

on volatility may be explored by utilising a threshold or asymmetric GARCH model. 

Recently, researchers have considered that the relationship between risk and return may be 

time varying and dependent on markets state. Cheng and Parvar (2014) used the bi-normal 

GARCH and several volatility estimators to examine the risk-return trade-off in the 14 Pacific 

Basin stock markets. Their results show significant positive risk-return relationship for 11 of 

the 14 markets studied. Salvador et al. (2014) investigated the risk-return trade-off in 11 

European markets and discovered significant evidence for a positive risk-return trade-off for 

low volatility states. However, this risk-return relationship is weak and may be insignificant 

during periods of high volatility. Kinnunen (2014) proposed a model that captures the 

dynamic relevance of the risk-return trade-off and autocorrelation and applied it to study the 
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relationship between the conditional mean and conditional variance of US aggregate stock 

returns. The result suggests a positive risk-return trade-off which depends on the level of 

information flow, measured by volatility. Specifically, during low volatility periods, the 

autocorrelation in returns increases, which creates a weak relationship between expected 

returns and conditional volatility. Christensen et al. (2015) applied the fractionally integrated 

exponential GARCH-M (FIEGARCH-M) model to daily US stock return data. They found a 

significant positive risk-return trade-off during financial crises, but this was insignificant 

during non-crisis periods. Malik (2015) used Monte Carlo simulations and real US stock 

market data to show that structural breaks and sample size as two important factors 

determining the estimation of the risk-return trade-off. 

Chang (2016) proposed a time series return state varying (TSV)-GARCH, risk-return model 

to capture the state dependent trade-off between risk and return in the Standard and Poor 

(S&P) 500 stock index. The result shows that the driving forces in mean and volatility are 

distinct and the risk-return trade-off is significantly positive in different market states. 

Specifically, risk-return tradeoff is significantly higher during periods of a bear market. Wang 

and Khan (2017) used a new mixed data sampling method to re-examine and estimate 

conditional variance in risk-return trade-off in the US stock market. Their results show that 

the risk-return trade-off in the US stock market and the six other G7 countries (Canada, 

France, Germany, Italy, Japan and the UK) is dynamic and dependent on market state. 

Further, the lagged market return was found to be the best indicator of market state. Guo 

(2006) using monthly data found a significant positive relationship between risk and return of 

the US market. Kanas (2012) highlighted that an implied volatility index (VIX) may carry 

important forward-looking information to explain the risk-return relationship. He found a 

significant positive relationship between risk-return for the S&P 100 market index. Kanas 

(2013) also found a significantly positive risk-return relationship for the S&P 500 market 

index for different data frequencies using GARCH (1,1) model. Huang et al. (2016) 

investigated 25 individual stocks traded on the Taiwan Stock Exchange and provided 

evidence that the herding behaviour of institutional investors strengthens the positive risk-

return relationship.  

Significant literature relates to theoretical and empirical issues involved with intermarket 

linkages among national and international asset markets. Early investigations of intra-

continental linkages among different capital markets were analysed using correlation analysis 

(see Hilliard 1979; Robichek, Cohn and Pringle 1972 and Solnik, Boucrelle, and Fur 1996 
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among others). Empirical results have frequently indicated that cross-country correlations are 

low, while certain countries in proximate geographical areas generally exhibit more 

substantive co-movement than do countries farther apart. Several early studies considered 

lead–lag relationships among world stock exchanges. Analysing monthly data, Agmon (1972) 

found that share prices in three non-US countries respond immediately to price changes in the 

US market index. Hilliard (1979) examined high-frequency daily data on the stock index 

prices of 10 countries during the energy crisis of 1973 and 1974. His spectral analysis 

indicated that stock markets sharing the same continent tend to move simultaneously, while 

markets located in different geographical areas are usually not related.  

Bertoneche (1979) performed spectral and co-spectral analysis on the weekly index of seven 

stock markets Germany, France, Italy, Netherlands, Belgium, the UK and the US from 

January 1969 to December 1976. He found evidence suggesting some leads and lags among 

the weekly returns, but found little relationship between any of these countries with the US. 

Koch and Koch (1991) used a dynamic simultaneous model to investigate contemporaneous 

and lead–lag relationships among eight national stock markets. The results highlight growing 

regional interdependence over time and an increasing influence of the Tokyo market at the 

expense of the New York market. However, Miyakoshi (2003) examined the magnitude of 

return and volatility spillovers from Japan and the US to seven Asian equity markets and 

found that Asian markets’ returns were influenced only by the world factor of the US market, 

not by the regional factor of the Japanese market. He found that Asian returns increase when 

the US returns increase, but that this was totally the opposite in the case of volatilities. Wang 

et al. (2005) examined returns and volatility spillovers from the US and Japanese stock 

markets to three South Asian capital markets using a univariate EGARCH spillover model. He 

studied local shock, a regional shock from Japan and a global shock from the US to identify 

the most influential market-driven shocks for any particular South Asian market. The study 

discovered returns spillovers in all three markets; and volatility spillovers from the US to the 

Indian and Sri Lankan markets, and from the Japanese to the Pakistani market. Further, they 

highlighted there were no volatility spillovers during the Asian Financial Crisis, whereas 

spillovers of great intensity were identified during the post-crisis period. Additionally, a sub-

period analysis revealed that before the crisis, regional factors were more important than their 

world factor counterparts. However, after the crisis, world factors dominated regional factors; 

that is, the US stock market had a larger impact on small South Asian stock markets. Krause 

and Tse (2013) used a VAR model and found significant lead–lag relationships among US 
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and Canadian firms. Further, by using a bi-variate EGARCH, they found that spillovers occur 

only from the US to Canada.  

Marinela et al. (2017) studied contemporaneous volatility spillover effects focusing on the US 

and UK stock markets. They used a structural VAR model and compared its dynamic 

relationships, impulse responses and variance decomposition with those of a reduced-form 

VAR model. They provided evidence of asymmetric contemporaneous spillover effects and 

demonstrated that ignoring contemporaneous relationships led to different conclusions 

regarding the magnitude and direction of volatility spillovers between the two stock markets. 

Xiaoye Jin (2015) compared return and volatility spillover effects between China’s interbank 

and exchange T-bond markets. The empirical findings suggested that good news originating 

in the exchange market leads to higher interbank returns while bad news has no significant 

impact. In contrast, both good and bad news from the interbank market leads to higher 

exchange returns, albeit in different sizes. Tolikas (2017) examined the relative informational 

efficiency of bonds and underlying stocks through the lead–lag relationship between their 

daily returns and found that stock returns lead the returns of high yield bonds but not those of 

investment grade bonds, which indicates that the stock market is relatively more information 

efficient than the bond market. This finding implies trading opportunities for bonds are highly 

sensitive to the release of new information. 

Another branch of research has focused on the transmission of international equity 

movements by studying the spillover of return and volatility across markets. Empirical 

research on volatility spillovers largely began by examining spillovers across markets trading 

the same asset class. The phenomenon of financial market crises spilling over to other 

countries was first systematically studied by Morgenstern (1959). He examined the effects of 

23 stock market panics on foreign markets and explicitly referred to the ‘statistical extremes’ 

of stock market movements. Schwert (1990) analysed data from 1857 to 1987 and found that 

stock volatility remained very high for weeks after the 1987 crash. He observed that stock 

volatility increases when the stock price falls; that is, during the recession. His research also 

highlighted weak evidence that macroeconomic volatility can help to predict stock and bond 

return volatility.  

Hamao et al. (1990) studied three major stock markets (London, New York and Tokyo) using 

univariate GARCH-M models. They identified volatility spillovers from New York to Tokyo 

and London, and from London to Tokyo. Baillie and Bollerslev (1991) found little evidence in 
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favour of volatility spillovers between the US dollar exchange rate and the (British) pound 

sterling, German mark, Swiss franc and Japanese yen. A natural extension, therefore, is to 

examine the degree of interdependence between stock returns and exchange rates, with early 

studies including those of Smith (1992) and Ajayi and Mougoué (1996). Further research in 

this vein includes that of Laopodis (1998), who reported significant volatility spillovers 

among a range of Deutsche mark exchange rates prior to Germany’s reunification, while also 

noting asymmetric spillover effects, whereby a bad news spillover has a greater impact than a 

comparable good one. Hong (2001) found evidence of simultaneous interactions between the 

German mark and the Japanese yen. Huang and Yang (2002) reported that volatility in 

London and New York causes volatility in Tokyo, with volatility in New York causing only 

slight volatility in London. Bubák et al. (2011) reported the presence of significant volatility 

spillovers among the Central European (Czech, Hungarian and Polish) foreign exchange 

markets. Further, Malik (2005) found that the euro is considerably more volatile than the 

pound sterling, while Nikkinen et al. (2006) pointed out that the volatility of the euro 

significantly affects the expected volatility of the pound sterling and the Swiss franc. 

Kanas (2000) analysed interdependencies between exchange rate and stock return volatilities 

for six industrialised countries. Evidence of such spillovers arising from stock return to 

exchange rate return variations was reported for five of these countries (US, UK, Japan, 

France and Canada), with the exception being Germany. This finding is consistent with the 

growing integration of international financial markets. Similarly, Kanas (2002) found that 

stock return volatility is a significant determinant of exchange rate volatility in the US, UK 

and Japan. In contrast, Apergis and Rezitis (2001) reported spillovers from the foreign 

exchange market to the stock market, but not in the reverse direction. Meanwhile, Wu (2005), 

studying seven developed and emerging Asian countries, reported the presence of a two-way 

feedback relationship between stock return and exchange rate volatility. Yau and Nieh (2006) 

noted that Taiwanese and Japanese stock prices interact with each other but there is no 

comparable relationship between exchange rates and stock prices. Fu et al. (2011) reported 

significant volatility transmission between Japanese stock and foreign exchange markets. 

Antonakakis (2012) and Kitamura (2010) reported the presence of volatility spillovers 

running from the euro to the pound sterling. In a study of three euro exchange rates (against 

the US dollar, Japanese yen and pound sterling), McMillan and Speight (2010) reported that 

the US dollar rate dominates the other two rates in terms of volatility spillovers.  
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Following the analysis of exchange rate spillovers, researchers examined stock markets for the 

presence of similar effects. Bonfiglioli and Favero (2005) detected no long-term 

interdependence between German and US stock markets; however, there are short-term 

fluctuations in the spillover of US share prices to German ones. Caporale et al. (2006) found 

evidence of volatility spillovers in all cases for US, European, Japanese and South-east Asian 

daily stock market returns and Chinzara and Aziakpono (2009) revealed the presence of both 

return and volatility transmission between South African and major world equity markets. In 

turn, Beirne et al. (2013) identified volatility spillovers from mature to emerging stock 

markets. 

Susmel and Engle (1994) examined price and volatility spillovers between New York and 

London using hourly returns and established the short duration of these spillovers using 

nonlinear GARCH. The results highlighted minimum evidence for volatility spillovers 

between these markets, with a duration of only an hour or so. Using multivariate EGARCH 

(1,1), Andrew and Higgs (2004) examined the transmission of equity returns and volatility 

among Asian equity markets and investigated the differences in this regard between 

developed and emerging markets. The results generally indicate the presence of large and 

predominantly positive mean and volatility spillovers. Diebold and Kamil (2009) studied the 

interdependence of asset returns and volatilities using VAR variance decomposition. They 

measured financial asset return and volatility spillovers, with application to global equity 

markets. Nineteen global equity markets were studied and striking evidence for divergent 

behaviour in the dynamics of return spillovers versus volatility spillovers was reported. 

Priyanka et al. (2010) examined price and volatility spillovers across North American, 

European and Asian stock markets. They found that return spillover takes place from US to 

the Japanese markets; Korean markets to Singapore; Taiwan markets to HK; and HK to 

European markets and the US. Volatility spillovers were estimated by Liu and Pan (1997) 

using a two-step AR-GARCH model and the same-day effect was captured using the same 

method as used in return spillovers.  

Karunanayake et al. (2010) studied the effects of financial crises on international stock market 

volatility transmission. Using an MGARCH model, they showed that country-specific past 

shocks (lagged ARCH effects) have a stronger effect on their own future volatility than do 

past volatility shocks arising from other markets. Syllignakis and Kouretas (2011) applied the 

DCC multivariate GARCH model of Engle (2002) to examine time-varying conditional 

correlations in the weekly index returns of seven emerging stock markets in Central and 
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Eastern Europe (CEE). The main finding was a significant increase in conditional correlations 

between the US and the German stock returns and the CEE stock returns, particularly during 

the 2007–09 financial crisis, implying that these emerging markets are exposed to external 

shocks with a substantial regime shift in conditional correlation. Duncan and Kabundi (2014) 

studied volatility co-movement in world equity markets between 1994 and 2008. They arrived 

at two conclusions: first, developed markets have a higher degree of average volatility co-

movement than do emerging markets; and second, peaks in volatility co-movement are 

correlated with the timing of financial crises. Lyócsa et al. (2019) studied the connectedness 

of a sample of 40 stock markets across five continents using daily closing prices and return 

spillovers based on Granger causality. The possible 1,560 return spillovers among the 40 

markets create a complex network of relationships between equity markets around the world. 

Results show that the temporal proximity between closing hours is important for information 

propagation; therefore, choosing markets that trade during similar hours creates additional risk 

for investors because of the probability of return spillovers increases. 

A number of researchers have addressed the question of whether the quantity of news (i.e. the 

size of innovation) and the quality of the information (i.e. the sign of an innovation) are 

important determinants of the degree of volatility spillover across markets. This question has 

been motivated by the findings of an ‘asymmetric’ or ‘leverage’ effect associated with equity 

returns. This asymmetric effect has been examined in studies of volatility spillovers across 

markets. Bae and Karolyi (1994) examined the joint dynamics of overnight and daytime 

return volatility for the New York and Tokyo stock markets over the period 1988–92. They 

found that the magnitude and persistence of shocks that originated in stock markets 

transmitted to other markets is significantly understated if this asymmetric effect is ignored. 

However, bad news from domestic and foreign markets appears to have a much larger impact 

on subsequent return volatility than does good news. Koutmos and Booth (1995), using 

multivariate EGARCH on daily open-to-close returns across the New York, Tokyo and 

London markets, found strong evidence for an association between news and volatility 

spillovers. They revealed linkages among these three country-specific markets before, during 

and after the crash of 1987 and concluded that the quantity and quality of news could be 

important determinants of the degree of volatility spillovers across markets. In all instances, 

the volatility transmission mechanism was asymmetric; that is, negative innovations in one 

market increased volatility in the other market considerably more than their positive 

counterparts.  
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Booth et al. (1997) analysed four Scandinavian markets and found asymmetric volatility 

spillovers among Swedish, Danish, Norwegian and Finnish securities using an EGARCH 

model. They further reported that spillovers were more pronounced for bad than for good 

news. Similar evidence was found for other European markets (London, Paris and Frankfurt) 

by Kanas (1998). Andersen et al. (2003) pointed out that US macroeconomic news in 

particular has a significant effect on the US dollar–euro exchange rate. Jondeau and 

Rockinger (2006) investigated the dependency structure between daily returns of major stock 

market indices. They found a negative return has a stronger effect on subsequent volatility 

than a positive return of the same magnitude; and a crash is more likely to be followed by a 

subsequent large return (of either sign) than by a boom. The Student-t copula fit the data very 

well in that study. Andersen et al. (2007) measured cross-market linkages and spillovers 

between the US, UK and German stock markets using a high-frequency dataset. Their result 

qualified earlier work suggesting that bond markets react most strongly to macroeconomic 

news; in particular, when conditioning on the state of the economy, the equity and foreign 

exchange markets appear equally responsive. Adrangi et al. (2014) investigated the daily 

volatility spillovers between the S&P 500 and equity indices of Brazil, Argentina and Mexico 

from August 2007 to August 2012. Bi-variate GARCH estimation indicated bi-directional 

spillovers and there was evidence of a leverage effect as positive and negative shocks to each 

market have unequal impacts on the volatility of the other market. Further, the effects of 

negative shocks are much more intense than those of positive shocks. 

Financial contagion receives considerable attention throughout the literature. The term 

emerged from the Asian Financial Crisis, triggered by the flotation of the Thai baht in 1997. 

Thereafter, the subject gained attention as more crises occurred that caused negative 

repercussions across nations. The presence of contagion as a threat to the stability of the 

global economy was highlighted during the sub-prime mortgage crisis of 2007. This financial 

market turbulence, like previous crises, produced strong price movements in securities 

markets worldwide. This directly affected the general reassessment of credit risk and then 

dried the liquidity even of some of the largest and most mature securities markets. As a result, 

cross-market return correlations temporarily underwent dramatic changes, challenging 

portfolio allocation and risk management strategies, which rely on constant historical co-

movements of asset prices.  

Against this background, researchers have been interested in exploring linkages across 

countries to determine whether there exists financial contagion during crises. Domanski and 
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Kremer (2000) measured the dynamics of international asset price linkages by employing bi-

variate GARCH models to analyse the co-movements between weekly stock and bond market 

returns across US, Japan and the Eurozone. Their results show that if the US market switches 

to a high volatility regime (while Germany remains in the low volatility state), the correlation 

between German government bonds and US Treasury bonds almost doubles, irrespective of 

the maturity of the former. Kristin and Roberto (2002) examined stock market co-movements 

and contagion during financial crisis. In each of these cases, tests based on unadjusted 

correlation coefficients provided evidence for contagion in several countries, while tests based 

on adjusted for bias of coefficients found virtually no contagion. Hartmann et al. (2004) 

studied asset return linkages during periods of crisis. Their estimates for the five countries 

(Brazil, China, India, Mexico and South Africa) suggest that simultaneous crashes in stock 

markets are around two times more likely than in bond markets. Moreover, stock–bond 

contagion is about as frequent as a flight to quality, where a crash in the stock market is 

accompanied by a boom in the government bond market.  

Dungey and Martin (2007) studied financial market linkages during crisis. Their results 

provide strong evidence that cross-market links are important and spillovers have a larger 

effect on volatility than does contagion, although both were significant in their study. The 

results also show that US financial markets can act as a conduit in transmitting crises across 

countries, implying particularly for Australia that there are both direct and indirect channels 

for contagion from the US. By applying EGARCH, Choi et al. (2009) studied volatility 

spillovers between stock market returns and exchange rates to investigate volatility behaviour 

in New Zealand stock returns and currency movements. They reported significant volatility 

spillovers from exchange rate changes to stock market returns, while volatility spillovers from 

the stock market return to exchange rate were marginally significant and changed from 

negative before the 1987 stock crash to positive after the crash.  

Further, leverage effects have been identified in the stock market. Go and Hamori (2016) 

studied co-movements and volatility spillovers among financial sectors in the UK. They found 

contagion among three sector credit default swap indices, evidenced by sharp increases in the 

DCCs for all pairs following the Lehman Brothers bankruptcy. They examined the dataset for 

the DCCs using the DCC–GARCH model developed by Engle (2002). Dua and Tuteja (2016) 

investigated contagion across the stock and currency markets of China, the Eurozone, India, 

Japan and the US during the GFC and the Eurozone Sovereign Debt Crisis. The results 

indicate significant contagion as well as the flight to quality effects both across and within 
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asset classes. A DCC–GARCH model was used to estimate conditional correlation among the 

assets and test for contagion/flight to quality effects during the crises.  

Akhtaruzzaman and Shamsuddin (2016) studied international contagion (the spread of market 

disturbances from one country to the other) through financial versus nonfinancial firms using 

the DCC–GARCH model introduced by Engle (2002). Monthly data were analysed from 

January 1990 to March 2014. Results include a positive spillover effect from the US market to 

developed, emerging and frontier markets, and that nonfinancial firms play a more prominent 

role in the transmission of information across countries than do financial firms. Kenourgios et 

al. (2016) investigated the contagion effects of the GFC and Eurozone Sovereign Debt Crisis 

on Islamic equity and bond markets utilising the asymmetric dynamic conditional correlation 

(A-DCC) model developed by Cappiello et al. (2006). The results fail to provide strong 

evidence of contagion between conventional and Islamic equity and bond indices, supporting 

the decoupling hypothesis for Islamic securities.  

The above issues of interdependence and contagion among assets across countries may be 

fruitfully explored utilising the PVAR approach. Luchtenberg and Vu (2015) provided strong 

evidence using logistic regression suggesting that during a crisis contagion can be transmitted 

among nations, regardless of the level of development. Jin and An (2016) employed the 

volatility impulse response approach for addressing the extent of contagion effects between 

the stock markets of Brazil, Russia, India, China and South Africa association (BRICS) and 

the US. The empirical results show that during the period of the GFC there are significant 

contagion effects from the US to the BRICS stock. However, the degree of stock market 

reactions to such shocks differs from one market to another, depending on the level of 

integration with international economy markets. BenMim and BenSaïda (2019) used a regular 

vine copula approach to model the dependence dynamics between major US and European 

stock markets by distinguishing effects during crisis and tranquillity periods. The empirical 

results include a significant change in the connectedness and shock transmissions during both 

periods, providing strong evidence for financial contagion with the Eurozone at its origin. 

Very recently, Chang et al. (2018) in modelling volatility spillover between energy and 

agricultural markets, drew attention to the use of commonly applied full BEKK specification 

for estimating conditional volatility. They argued that QMLE-based parameter estimates of 

the full BEKK model have no asymptotic properties and hence there are no valid statistical 

tests for volatility spillover effects in the full BEKK. This is similar in the case of DCC 
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volatility models. A DCC represents the dynamic conditional covariances of standardised 

residuals and has no moments or any testable regularity conditions. Further, a DCC has no 

asymptotic properties and the two step procedure of estimation of DCC is not consistent. 

Chang et al. (2018) argued for the use of a DBEKK rather than a full BEKK because DBEKK 

models have stochastic validity for the likelihood function and QMLEs have desirable 

statistical properties for developing statistical inferences and tests. Chang et al. (2018) 

suggested that the existence of multivariate eighth moments cannot be verified for the 

existence of distributional properties of the full BEKK specification. Hence, there are no valid 

tests for volatility spillover effects. McAleer et al. (2008) showed that the QMLEs of the 

parameters are consistent and asymptotically normally distributed. Chang et al. (2017, 2018a, 

2018b), McAleer (2014, 2019) and Allen and McAleer (2018) are only a few of the important 

articles discussing statistical distributional issues for estimating and testing full BEKK, 

DBEKK and triangular BEKK (TBEKK) models for volatility spillovers. It is stated in the 

above papers that the full BEKK and TBEKK have no verifiable asymptotic properties. 

As financial markets have become increasingly integrated, both domestically and 

internationally, the nature of this integration and the transmission channels through which 

shocks dissipate are, however, still not well understood. Michael et al. (2005), presented a 

framework to analyse the degree of financial transmission between money, bond, equity 

markets and exchange rates within and between the US and the euro area. They found that 

asset prices react most strongly to other domestic asset price shocks and that there are 

substantial international spillovers both within and across asset classes. They show that 

spillovers are stronger from the US to the euro area market, but that spillovers in the opposite 

direction have been present since the introduction of the euro in 1999. They highlighted US as 

the main driver of global financial markets spillovers. Further, they explained the US markets 

on average accounts for 30% movement in euro markets, while euro markets explain only 6% 

in US market. 

Beirne and Bricco (2014) assessed interdependence and contagion across three asset classes 

(bonds, stocks and currencies) over 60 economies from 1998 to 2011. Using global VAR, 

they tested for changes in the transmission mechanism within and across markets during 

periods of global financial turbulence. Within-market contagion effects are notable in Latin 

American and emerging Asian equities. In addition, Beirne and Gieck (2014) found that in 

times of financial crisis, US equity shocks lead to risk aversion by investors in equities and 

currencies globally, as well as bonds in some emerging markets. Euro area shocks were 
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significant mainly within the bond market. Bienkowski et al. (2014) examined co-movements 

of stock markets in the CEE3 (Poland, the Czech Republic and Hungary) countries using the 

VAR-GARCH-BEKK model over the period 2005–13. Their research indicates that in the 

CEE3 countries, volatility spillovers play a dominant role and that the stock exchanges in 

Poland, the Czech Republic and Hungary did not react similarly to the global shocks from the 

subprime mortgage crisis. They used a dynamic version of the Diebold–Yilmaz (2009) 

volatility spillover index to examine the evolution of volatility transmission over time. The 

results show that the CEE3 countries are volatility takers in the period under analysis and that 

the volatility spillovers are extremely high during periods characterised by market uncertainty.  

Clements et al. (2015) studied the transmission of volatility in global foreign exchange, equity 

and bond markets. Using a multivariate GARCH framework, significant volatility and news 

spillovers were found to occur on the same trading day between Japan, Europe and the US. 

All markets exhibit significant degrees of asymmetry in terms of the transmission of volatility 

associated with good and bad news. Ehrmann and Fratzscher (2017) analysed the integration 

of euro area sovereign bond markets during the Eurozone Sovereign Debt Crisis. They tested 

for contagion (i.e. intensification in the transmission of shocks across countries), 

fragmentation (a reduction in spillovers) and flight to quality patterns, exploiting the 

heteroscedasticity of intraday changes in bond yields for identification. They found that euro 

area government bond markets were well integrated prior to the crisis, but there was 

substantial fragmentation from 2010 onwards. Flight to quality was present at the height of 

the crisis, but has largely dissipated following the European Central Bank’s announcement of 

its Outright Monetary Transactions program in 2012. 

2.4 Research Gaps and Contributions 

Comparatively, little attention has been given to exploring the linkage between stock, bond 

and money markets within individual nations and across countries at regional levels. This is 

somewhat puzzling as the nature of the linkage provides an important and rich information 

source for financial practitioners in terms of arbitrage opportunity, financial risk management, 

capital market regulation and portfolio management. Nonetheless, very little is known about 

the dynamic linkage between these three markets. The purpose of this study is to fill this void 

by investigating the interdependence of stock, bond and money markets across 17 countries. 

No study has investigated the stock, bond and money market linkages jointly within the 

context of VAR-DBEKK-GJR-GARCH, VAR-DBEKK-GJR-GARCH-M, VAR-X, PVAR-X. 
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Transmission of returns and volatilities of returns among three financial markets (stock, bond 

and money) across countries and their predictions are mostly silent within these 

specifications. One empirical result was provided by Aftab et al. (2019), who analysed stock, 

bond and money market interactions in the case of Australia. They found pairwise significant 

co-volatility in stock, bond and T-bill returns. Specifications of the conditional volatility and 

prediction thereof are important for various reasons. Any conclusion based on a misspecified 

model will be misleading. Most importantly, how the different asset market returns and 

volatilities of returns spillover to another financial market will provide information for 

investors and institutions about the ways to monitor and manage portfolio diversification. 

The contribution of this study is threefold. First, while most previous studies have focused on 

the relationships between equity markets and bond markets, I investigate the interaction 

between stock, bond and money markets within and across countries using DBEKK. The 

multivariate empirical covolatiltity analysis within DBEKK-GJR-GARCH is not presented in 

the literature. I develop a Wald-type test for covolatility and asymmetry within DBEKK-GJR-

GARCH. Second, this study provides fresh evidence to support the rationale for financial 

contagion, risk-return trade-off, lead–lag relationships, the leverage effect and asymmetric 

news effect that may be used to explain financial market interdependence. Third, this study 

employs a range of methodological approaches including non-parametric correlation and 

copula links to identify linkages between financial markets. 
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Chapter 3: Theory of Conditional Volatility and Modelling Issues 

3.1 Introduction 

In the finance area, asset price volatility is an important concern among researchers. As such, 

estimation and prediction of price volatility are useful in financial decision making for pricing 

securities; measurement of value-at-risk (VaR); allocation and diversification of assets; and 

assistance for financial regulators in policy implementation. There are three main areas of 

volatility modelling: (i) implied volatility, (ii) realised volatility and (iii) conditional volatility 

(Tsay, 2010). 

These areas can be understood first if prices are governed by an econometric model such as 

the Black–Scholes formula (Tsay, 2010); one can then compute the conditional standard 

deviation ( t ) by solving the Black–Scholes formula for t . This value of t  is called the 

implied volatility of the underlying stock. The implied volatility is derived under the 

assumption that the price of the asset follows a geometric Brownian motion (Ross, 2010). 

Second, when high-frequency data such as intraday log returns, itr , are available they can be 

used to compute the daily log returns of an asset, as 2

1

n

t it
i

r r


 , where n is the equally spaced 

intraday log return. The quantity 2

1

n

it
i

r

 is called the realised volatility and is in fact a quadratic 

variation of tr . Finally, the volatility of returns can be modelled conditionally on all available 

information on past returns within the mean variance framework. 

The basic idea behind a conditional volatility model relies on the fact that the return series is 

either serially uncorrelated, or has minor low order serial correlations but the return series is 

dependent. This form of conditional volatility modelling is popular in economics and finance. 

There are two strands of modelling volatilities: univariate and multivariate financial return 

volatility modelling. In this chapter, I discuss conditional volatility models in the univariate 

and multivariate context. 

This chapter is organised as follows. Section 3.2 deals with the econometrics of univariate 

volatility models and Section 3.3 discusses multivariate approaches to conditional volatility 

models. Estimation approaches are discussed with their statistical properties in Section 3.4. 
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Finally, Section 3.5 outlines the empirical analysis of the proposed volatility models in 

Chapter 4. 

3.2 Univariate Conditional Volatility Models  

A special feature of stock volatility is that it is not directly observable. The four most popular 

univariate conditional volatility models are the autoregressive (generalised) conditional 

heteroscedasticity (ARCH/GARCH) models of Engle (1982) and Bollerslev (1986); the GJR 

(often alternatively termed as asymmetric or threshold) GARCH of Glosten, Jaganathan and 

Runkle (1993); the EGARCH of Nelson (1991); and quality and quantity effects of the news 

volatility model of Engle and Ng (1993). Note that the data properties determine the choice of 

different variants of the GARCH model. I treat GARCH as the base model and continue 

searching for appropriate models for return volatility. Various univariate volatility models 

have been used to evaluate the risk, size and sign effects of volatility and to compute VaR in 

economics and finance. I use the following notations in the next sections: 

tr : return or log return of an asset over time t  

1tF : set of information available at time t-1 

t : innovation or returns shock variable 

(. | .)E : conditional expectation of the argument. 

3.2.1 The ARCH model of volatility 

Engle (1982) developed the ARCH model to capture time-varying conditional volatility of a 

series of observations. Let us assume that a financial return series is generated as: 

 1|t t t t t tr E r F                                                      (3.1) 

We usually assume that the conditional mean ( t ) of tr in Equation (3.1) follows an 

autoregressive moving average (ARMA) process of order, say k and m, denoted by ARMA 

(k,m). The conditional mean may include past values of tr , current and past values of the 

innovation and other exogenous variables. Under this description the specification of tr  can 

be expressed as: 
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1 0
1 1

|
k m

t t i t i j t j t
i j

r F r      
 

                                            (3.2)  

The unknown order of ARMA can be determined by utilising the Akaike Information 

Criterion (AIC), Schwarz Bayesian Criterion (SBC), Hannan and Quinn information criterion 

(HQ) and ML methods, among others. The parameters 0, , , 0 , ,i   and i  are the intercept, 

autoregressive (AR) and moving average (MA) parameters, respectively. The second and third 

terms on the right-hand side of Equation (3.2) are known as autoregressive and MA processes, 

respectively. 

The stationarity of the return series tr can be tested by a series of unit root tests including the 

ADF, PP and KPSS tests. Herman Ole Andreas Wold (1938) established a link between the 

autoregressive of order k  denoted AR ( k ), and moving average of order m denoted MA 

(m). This link is generally known as the Wold decomposition theorem, which states that any 

covariance stationary process can be decomposed into two mutually uncorrelated component 

processes; one that is purely deterministic and one that is purely indeterministic. The 

innovation or returns shock t  in Equation (3.2) is assumed to be conditionally 

heteroscedastic as: 

1/2
t t te h                                                               (3.3) 

where te  is an independent identically distributed (iid) random variable with mean 0 and 

variance 1 and th is the conditional variance of order q, which takes the following form: 

2
1 0

1

|
q

t t i t i
i

h F w   


                                                   (3.4) 

Equation (3.4) requires that 0 0w  , 1 2, ,......, 0q     while 1||
1




q

i
i  and is generally 

known as an ARCH model of order q, denoted ARCH(q) (see Engle, 1982). If we assume that 

the te  are iid and normal, then the conditional distribution of t | 1tF  is a Gaussian process 

with mean 0 and conditional variance th . The standardised residual can be obtained from 

Equation (3.3) as /t t te h . Tsay (1987) derived the ARCH (1) model of Engle (1982) 
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from the random coefficient autoregressive process of order one of the return shock t . 

Equations (3.2) and (3.4) are collectively known as the conditional mean and conditional 

volatility models of the random variable tr . The conditional distribution of tr  can be 

expressed under normality as follows: 

1| ~ ( , )t t t tr F N h                                                      (3.5) 

Equation (3.4) cannot be estimated independently of Equation (3.2). Therefore, Equations 

(3.2) and (3.4) need to be estimated jointly by the ML or quasi-maximum likelihood (QML) 

method in the absence of normality. The prediction of Equation (3.4) provides volatility 

prediction, which is useful for financial asset allocation and portfolio management. 

The financial return series has a variety of characteristics including thick tails, leptokurtosis, 

variance change over time and the property that large/small changes tend to follow 

large(small) changes of either sign (volatility clustering). Therefore, the usual assumption of 

iid for the tr  is violated for financial returns data. These characteristics make conditional 

volatility models complicated but attractive for real applications in economics and finance. 

Although popular, ARCH models cannot distinguish between the effects of positive and 

negative return shocks on volatility. Further, they cannot identify the source of volatility of a 

financial time series. 

3.2.2 The GARCH model of volatility 

The next milestone was the development of Bollerslev’s (1986) GARCH model, which is 

famously popular among researchers, financial analysists and decision makers trading 

securities in financial markets, for modelling volatility of financial security returns. The 

conditional innovation, 1| tt F  is assumed to be distributed normally with mean 0, and the 

conditional variance is assumed to be generated by: 

2
0

1 1

q p

t i t i j t j
i j

h w h   
 

                                                   (3.6) 
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where 00 w , 0i , and j  0  are required for positivity of variance and 1
q

i
i




 ,

1

1
p

j
j




 , and 
1 1

1
q p

i j
i j

 
 

   for invertibility and stability of the conditional variance 

function. 

If 
1 1

1
q p

i j
i j

 
 

   , then the GARCH model is called an integrated GARCH (or IGARCH) 

model. In this case, return shocks persist. Although the conditional innovation distribution is 

normal, the unconditional distribution of the innovation has been found to be non-normal in 

empirical finance; for example, by Mandelbrot (1963) and Black (1976) among others. The 

volatility Equation (3.6) is known as GARCH (p,q). The choice of the order p and q  in a 

GARCH model can be determined by utilising AIC, SBC, HQ and ML approaches. Equation 

(3.6) has an ARMA interpretation (see Bollerslev, 1986). In this form, volatility is generated 

by both short- and long-run return shocks. Various forms of the mean model can be used on 

the grounds that the investor’s expected future income changes. On this basis I treat the 

returns as a random variable and volatile. 

ARMA-ARCH/GARCH models of asset returns and volatility of returns are widely used in 

modelling of the mean variance relationships of financial asset returns for low-, medium- and 

high-frequency data (see, e.g., French et al., 1987 and Engle et al., 1987). The advantage of 

GARCH is that the returns are not assumed to be independent, and unconditionally they are 

not Gaussian, because volatility clustering generates leptokurtosis. GARCH has the same 

advantages and weaknesses as does ARCH. However, one additional advantage with GARCH 

is that it describes the volatility evaluation. A list of GARCH class models is available in 

Bollerslev (2008) and Silvennoinen and Terasvitra (2009). In finance, the GARCH model can 

be treated as the base model with respect to any variant of GARCH and can be compared with 

the SGARCH as is done universally with the normal distribution in the statistics. 

3.2.3 The GARCH-M model of risk premium 

A widely used extension of ARCH is the ARCH-M model proposed by Engle et al. (1987); 

see also Bollerslev et al. (1992), Bera and Higgins (1993). The (G)ARCH-M model allows the 

conditional mean to depend on its own conditional variance. This model is suitable for 

studying the asset markets’ time-varying risk premiums. The basic intent of this model is to 



35 
 

consider situations where risk-averse agents require compensation for holding a risky asset. 

Engle et al. (1987) assumed that the risk premium is an increasing function of the conditional 

variance of innovation. Engle et al. (1987) provided a novel approach by which one can 

estimate and test for a time-varying risk premium. Mathematically, if th  is the conditional 

variance (see Equation 3.6) of innovation, the risk premium can be expressed as: 

( )t t t tr g h                                                          (3.7) 

The function ( )tg h  is a monotonically increasing function of the conditional variance with

0( ) 0g w  ; t  can take the form of (3.2). The Equation (3.7) can be treated as the volatility 

risk premium model. In finance, ( )tg h represents the risk premium. The parameter   

measures the increase in the expected rate of return due to an increase in the variance of the 

return. A significant   supports the existence of a risk premium. In most applications, 

( )t tg h h  has been used; see, for example, Domowitz and Hakio (1985) and Bollerslev et 

al. (1988). There are, however, some issues relating to the form of the specification ( )tg h . 

Pagan and Hong (1988) argued against using ( ) log( )t tg h h  because for 1, ( )t th g h  will be 

negative and when 0th   the effect of volatility on tr  will be infinite; see Bera and Higgins 

(1993). 

Asymmetric volatility models provide a rich class of volatility models. There are a number of 

asymmetric volatility model available in the literature: for example, the asymmetric GARCH 

model of Engle (1990), asymmetric power ARCH (APARCH) model of Ding et al. (1993), 

threshold ARCH model of Zakoian (1994) and Nelson (1991) and the GJR model of Glosten 

et al. (1993). Among many variations of GARCH specification, the next sections describe the 

two most popular models of asymmetric GARCH. 

3.2.4 The EGARCH model of volatility 

Although ARCH/GARCH models are popular and extensively used in the finance literature, 

they are restricted to use with symmetric information. Various extensions of ARCH/GARCH 

have appeared in the literature to overcome some inherent nonlinearity problems with ARCH 

and GARCH models. This is because volatility clustering is the likely characteristic of 

financial returns that are nonlinear and can be modelled by Student-t distribution, skewed 
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Student-t distribution, GED and extreme value distribution, among others. A popular 

nonlinear extension of ARCH/GARCH is Nelson’s (1991) EGARCH model, which attempts 

to include the asymmetric impact of return shocks on volatility. In addition, this model does 

not require non-negativity restrictions on the parameters, unlike ARCH/GARCH conditional 

volatility models. The univariate EGARCH model takes the following form: 

0 1
1 1 1

ln ln | | 2 /
p q q

t j t i t i i t i
j i i

h w h e e     
  

                                (3.8) 

The coefficient i  of t ie   measures the sign effect and the coefficient i  measures the 

magnitude (or size) effect on the conditional asymmetric variance shift. Under the formulation 

(3.8), the variance th  remains positive as required by a variance function. Therefore, the 

forecasts of the conditional variance are non-negative. Note that for the Gaussian random 

variable te , | | 2 /tE e  . The term in |.| represents the absolute value function,  and  te  is 

the standardized residuals. 

3.2.5 The GJR-(asymmetric)-GARCH model of volatility 

Another popular asymmetric extension of GARCH is Glosten, Jagannathan and Runkle’s 

(1989) GARCH volatility model, GJR-GARCH, which takes the following form: 

1|t t t tr F     , 

2 2
1 0

1 1 1

|
p q p

t t i t i i t i i t i t i
i i i

h F w h d        
  

                                    (3.9) 

where t is as defined in (3.2) and 


 

 
 otherwise

if
d it

it 0

01 
. Order selection can be achieved by 

employing the AIC, SBC, HQ or likelihood ratio test, among others. The EGARCH and GJR-

GARCH models allow for leverage effect (the tendency of volatility to decline when returns 

rise and to rise when returns fall), in contrast to classical ARCH and GARCH models. 

ARCH/GARCH themselves cannot capture asymmetric information. The GJR is centred at

1t  but the slope is asymmetric about 0; that is, there are different slopes on the positive and 

negative sides of 01 t . We expect i > 0, which implies that a negative return shock 

increases the conditional volatility more than does a positive shock. Therefore, negative return 
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shock increases volatility by i i   while positive return shock increases volatility by i . 

Thus, a test for the asymmetry effect of return shocks on volatility may be based on the null 

hypothesis that 0i  , versus the alternative hypothesis 0.i   A comparison of EGARCH 

and GJR-GARCH can be made by applying the tests provided by Engle and Ng (1993). Both 

models are asymmetric volatility models but their specifications are different. 

Thus far I have considered univariate analysis of returns and volatility of returns. The 

univariate ARCH, GARCH, GARCH-M, EGARCH and GJR-GARCH models cannot provide 

information about causality among the portfolio of assets returns and cannot capture full co-

volatility and partial co-volatility as recently defined by Chang et al. (2018). To capture 

interdependence among assets returns and volatility of returns, modelling volatility must be 

undertaken within a multivariate framework. Multivariate volatility models are useful for 

exploring spillovers and causal effects of the returns and volatilities of returns among assets 

across countries. The linkages among multiple asset markets give more detailed joint 

information on the asset trading behaviour of financial markets. This information is vital for 

asset allocation and portfolio diversification strategies. 

3.3 Multivariate Conditional Volatility Models 

In general, by multivariate volatility, I refer to the conditional variance–covariance matrix of 

multiple asset returns. Multivariate volatility jointly examines the linkages among multiple 

asset markets domestically and globally. These models have many important financial 

applications such as in volatility spillover, co-volatility and causality among multiple financial 

assets. These are useful pieces of information informing agents’ strategic decision making 

tools for asset pricing, asset allocation and diversification to achieve optimal returns. In this 

section I describe multivariate models dealing with the data inherent phenomenon; that is, 

volatility clustering, asymmetry, leverage effects, sudden jump, time-varying dynamic co-

volatility and DCC, and nonlinearity. I use the same notations as used in the descriptions of 

univariate volatility models as above, but here the components are now vectors and matrix 

representations of the conditional mean and volatility models. Let 1 2( , ,......., ) 't t t Ntr r r r  be an 

( 1N ) vector of N  returns or log returns for the time index 1,2,......,t T  generated by the 

following structure: 

t t tr    , 0.5
t tH e                                                 (3.10) 
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where 1( | )t t tE r F   is the conditional expectation of the vector tr  given the past 

information 1tF ; 1 2( , ,......., ) 't t t Nt     is an ( 1)N   vector of shock, or innovation or noise 

at time t ; tH is an ( N N ) covariance matrix of the innovation vector t  of order ( 1N ); te

= ( 1 2, ,......,t t Nte e e )’ is a vector of ( 1N ) iid random variables with an ( 1N ) vector of mean 

0 and covariance matrix NI  of order ( N N ). 

The probability distribution of te  is G (0, )NI , where G is assumed to be a continuous 

probability density function. The information set may contain past values of returns and past 

innovations, or some exogenous vector of variables. The conditional mean is assumed to have 

the following form: 

t = 
1 1

k m

i t i j t j
i j

r   
 

                                              (3.11) 

where each i  and j is an ( N N ) matrix of the mean model. In this form, Equation (3.11) 

is generally known as a VARMA model. Note that Equation (3.11) may include other 

exogenous vectors of variables (X), in this situation I call the resulting process a mixed 

VARMA-X process. Equation (3.11) is a multivariate VAR if it does not have the lagged 

errors vectors; that is, if j  is a zero matrix for all 1,2,.....,j m . The conditional covariance 

matrix of t  given 1tF  is defined as follows: 

1( ' | )t t t tE F H                                                   (3.12) 

where tH  is an ( N N ) unknown but symmetric positive definite matrix. I refer to Equation 

(6.12) as a multivariate volatility model, which is needed to be specified for the multivariate 

vector of return series tr . The multivariate relationship between the univariate t  and te is as 

t = t tD e  and the conditional correlation matrix of t  is expressed as: 

1/2 1/2
1( | )t t t tcorr F D H D   
                                    (3.13) 
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where ,diag( )t ii tD h  and ,ii th  is the ii-th diagonal element of the matrix tH  and the ij-th 

element of t = ( 1,2,..., ; 1, 2,..., )ij i N j N   . An ideal multivariate volatility model should 

allow covariance spillovers and feedback. Equation (3.13) can be expressed equivalently as: 

t t t tH D D                                                     (3.14) 

Equation (3.14) expresses the relationship between the time evolution of tH  and t . Further, 

the relationship between the conditional variances ,ii th  and correlations ,ij t  of t  can be 

estimated directly or by applying the exponential smoother. Because tH  is a symmetric and 

positive definite matrix, there exists a lower triangular matrix L with unit diagonal matrix and 

a diagonal matrix *tD  with positive diagonal elements, such that the following equality holds: 

* 't t t tH L D L                                                   (3.15) 

This decomposition of tH  in (3.15) is known as Cholesky decomposition (Tsay, 2010). 

Equations (3.14) and (3.15) are a kind of reparameterisation of the matrix tH . This 

reparameterisation is required for manageable statistical inference of the covariance matrix 

tH , which is the main purpose of volatility modelling. I discuss below some common 

specifications for tH . 

3.3.1 Approaches to multivariate conditional volatility 

There are a few approaches to modelling the conditional covariance in the multivariate 

context. These approaches can be distinguished as follows: 

1. direct generalisation of the univariate GARCH model 

2. linear combinations of the univariate GARCH model 

3. nonlinear combinations of the univariate GARCH model. 

Among these classifications, the direct generalisation of GARCH is popular among 

researchers. Under this generalisation, I describe the volatility specification as the VEC-

GARCH model of Bollerslev et al. (1988); the BEKK model proposed in Engle and Kroner 

(1995); and factor models, which are motivated by economic theory. The factor-GARCH (F-

GARCH) model was introduced by Engle et al. (1990). It is motivated by the fact that the 
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arbitrage pricing theory states that returns are generated by a number of common unobserved 

components, or factors; see Silvennoinen and Terasvitra (2008) for a general exposition. 

3.3.2 The VEC-GARCH model 

The VEC-GARCH model of Bollerslev et al. (1988) is a diagonal vectorisation of the 

multivariate tH , and takes the following form: 

0
1 1

( ' )
q p

t i t i t i j t j
i j

H W A B H   
 

                                   (3.16) 

where 0W , iA  and jB  are symmetric matrices of order N N and  represents Hadamard 

product matrices (i.e. an element-by-element multiplication of the matrices). Because of the 

success of GARCH (1,1) in univariate analysis, I assume the multivariate GARCH (p = 1, 

q = 1) holds. However, the order of a multivariate GARCH can be chosen using the 

multivariate AIC, Bayesian Information Criterion (BIC) or likelihood criteria. Since tH  is a 

symmetric matrix I consider the lower triangular part of tH  and the associated right-hand side 

terms of the matrices. In this form, each element of tH  follows a univariate GARCH-type 

model that depends only on its past value and the corresponding product term in the lower 

triangular matrix '
1 1t t   . In this general form the multivariate conditional GARCH 

(MGARCH) is simple, but has the vital drawback that it may suffer from a loss of positive 

definiteness of the tH  matrix. Another drawback is that the tH  does not allow for dynamic 

dependence between multiple asset class; that is, no spillovers and causality analysis is 

possible under the VEC specification of multivariate GARCH or MGARCH. The model is 

very flexible but has severe disadvantages. The number of parameters in the variance function 

appears to be 2( )( ( 1) / 2) ( 1) / 2p q N N N N     . This number increases with N , the 

number of assets. 

Bollerslev et al. (1988) further presented a simplified version of (3.16) by restricting iA  and 

jB  to diagonal matrices. In this form the estimation is less difficult, with only 

( 1)( ( 1) / 2p q N N    parameters to estimate. Also, the positivity of tH  may be maintained, 

although it lacks spillovers as a consequence of financial market interactions. This model is 

known as diagonal VECH (DVECH). 
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3.3.3 The BEKK-GARCH model 

Engle and Kroner (1995) proposed the BEKK model, which overcomes the non-positive 

definiteness of the VEC-GARCH. The model has the following form: 

' ' '

1 1 1 1

'
q pK K

t ki t i t i ki kj t j kj
i k j k

H CC A A B H B   
   

                                 (3.17) 

where C is a lower triangular matrix and both kiA and kjB  are N N  matrices. The first term 

on the right-hand side of Equation (3.17) ensures the positive definiteness of tH . The BEKK 

model is covariance stationary only if the modulus of the ' '

1 1 1 1

1
q pK K

ki ki kj kj
i k j k

A A B B
   

      

and   denotes the Kronecker product of two matrices. For 1K  , an identification problem 

arises; see Silvennoinen and Terasvitra (2008). Engle and Kroner (1995) gave conditions for 

eliminating redundant, observationally equivalent representations. The restricted version of 

the DBEKK model is the scalar BEKK with A = a1 and B =b1, where I is the identity 

matrix. A simpler form of BEKK obtained from (3.17) by setting 1K   is the following: 

' ' '

1 1

'
q p

t i t i t i i j t j j
i j

H CC A A B H B   
 

                                        (3.18) 

The number of parameters increases rapidly with p and q. Tsay (2010) showed that many of 

the estimates of BEKK parameters are insignificant in applications. Reparameterisation by the 

use of correlations and Cholesky decomposition as described above may be adopted for 

feasible multivariate volatility models.  

3.3.4 The constant conditional correlation model 

Bollerslev (1990) considered the special case of t t t tH D D  (see Equation [3.14]), which 

assumes that t  ; that is, the conditional correlation is assumed to be time invariant. This 

model is generally known as the constant conditional correlation (CCC) model of volatility. 

Note that
1 for ( , 1,2,......, )

( )
1 1,ij

ij

i j i j N

i j
 


 

      
. Therefore, the off-diagonal elements of 

the conditional covariance matrix are as follows: 
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  1/2 1/2 ,ij it jt ijt
H h h i j                                                  (3.19) 

The th  in (3.19) is usually modelled as univariate GARCH ( , )p q . In that case the conditional 

volatility model takes the following form: 

2

1 1

q p

t i t i j t j
i j

h w A B h  
 

                                                 (3.20) 

where th , 2
t and w  are vectors of order ( 1N ) and iA  = ( )ij and jB = ( )ij  are matrices of 

order ( N N ). The existence of 2
tE  requires that the eigenvalues of A B  are positive but 

<1 and the 2
t  is weakly stationary. If 0ij ij   , then the volatility of it  does not depend 

on the jt  ( i j ). If iA  and jB  are diagonal, then the model reduces to N  volatility models 

that are not dynamically related. 

A major drawback of the CCC model is that the correlation coefficient tends to change over 

time in real applications (see Tsay, 2010). Parsimonious models for t  in Equation (3.19) to 

describe the time-varying correlations are generally known as DCC models. Two such models 

were developed by Tse and Tsui (2002) and Engle (2002). 

3.3.5 DCC models 

For N dimensional returns, Tse and Tsui (2002) assumed that the conditional correlation 

matrix t (see Equation [3.14]) follows the model: 

1 2 1 1 2 1(1 )t t t                                                    (3.21) 

where 1  and 2  are scalar parameters and  is an ( N N ) diagonal positive definite matrix 

with unit diagonal elements. 1t is an ( N N ) sample correlation matrix using shocks or 

innovations from ,......, 1t n t  for a pre-specified n . The assumptions 1 20 1 , 1i       

and 1p q   are required for the matrix t  to be positive definite. Retaining the previous 

decomposition, Tse and Tsui (2002) assumed that the conditional correlation matrix is time 

varying. In this case the positive definiteness of tH  follows if t  is positive definite at each 

point in time. To overcome the difficulties inherent in this situation, Tse and Tsui (2002) 
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imposed GARCH-type dynamics on the conditional correlations. The conditional correlations 

in their varying correlation (VC)-GARCH model are functional correlations of the previous 

period (see Silvennoinen & Terasvitra, 2008). The estimated correlations can be obtained 

from the following: 

1 2 1 1 2 1(1 )t t tG G                                               (3.22) 

where G  is a constant positive definite matrix with values of 1 on the main diagonals; 1  and 

2  are non-negative scalar parameters such that 1 2 1   ; 1tG  is the sample correlation 

matrix of the past n standardised residuals , 1,2,....,t j j n   ; and 1 , 1, 2,....,t j t j t jD r j m 
   


. 

Engle (2002) introduced a DCC-GARCH, the specification of which is similar to the VC of 

Tse and Tsue (2002). Engle’s DCC takes the following form: 

'
1 2 1 1 1 2 1(1 )t t t tQ Q Q                                            (3.23) 

where 1  and 2  are non-negative scalar parameters such that 1 2 1   ; Q  is the 

unconditional correlation of the standardised error t ; and tQ  is positive definite for a valid 

correlation: 

1/2 1/2( ) ( )t t t tI Q Q I Q                                          (3.24) 

Very recently Chang et al. (2018) and Chang and McAleer (2018) have shown that the full 

BEKK, CCC and DCC multivariate volatility models estimated by QMLEs do not have the 

asymptotic statistical properties required for valid statistical tests of volatility spillover effects. 

Chang et al. (2017) showed that the full, triangular and Hadamard BEKK models cannot be 

derived from any known underlying stochastic processes. This means that there are no valid 

asymptotic properties of the QMLEs of the parameters of the above multivariate models. The 

only valid multivariate extension of univariate volatility model is the DBEKK derived from a 

vector random coefficient autoregressive process of order one has asymptotic validity of the 

QMLE (see Chang et al., 2018). I deal with multivariate volatility model specification issues 

in Chapter 4. 
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3.3.6 Estimation and inference in conditional volatility models 

Univariate model estimation is comparatively easy to undertake jointly for the conditional 

mean and the conditional volatility specification by the likelihood function approach under the 

assumption of normality, Student-t, skewed Student-t, skewed normal and generalised error of 

the innovation distribution. However, for the multivariate case the estimation is not so simple 

and a good model requires statistical properties to hold at least asymptotically. In most of the 

multivariate volatility models, some conditions are put on the model parameters to make the 

estimation manageable and feasible. In most nonlinear cases the estimation involves using the 

normal distribution. However, under misspecification, the MLEs based on normality do not 

have standard statistical properties. In the absence of normality, the QMLEs of DBEKK-

GARCH parameters are asymptotically normally distributed, under regularity conditions; see 

McAleer et al. (2008), Ling and McAleer (2003), Chang et al. (2017). The tests related to the 

specifications, co-volatility and partial co-volatility of the multivariate DBEKK model and its 

variation models have valid regularity conditions and asymptotic properties for statistical 

estimation and inference. 

3.4 Conclusion 

This chapter provides an overview of the univariate and multivariate time series models of 

financial volatility and volatility spillovers. Autoregressive (AR) and moving average (MA) 

processes are usually entertained for time series analysis in general. In this context the Wold 

(1938) decomposition theorem is a useful technique which describes that an infinite order 

autoregressive process can be approximated by smaller order ARMA process. The advantage 

of this theory is to unify the unobserved stochastic dynamics with observed dynamics. This 

concept is applied to larger order autoregressive conditional heteroskedastic (ARCH) model to 

arrive at a lower order generalized autoregressive conditional heteroscedastic (GARCH) 

model of financial volatility. However, the order selection of GARCH is an empirical issue, 

can be resolved by AIC, BIC, HH or other criteria. In the empirical finance GARCH (1,1) is 

the most popular for modelling and forecasting volatility. Although popular, GARCH cannot 

capture asymmetric information of the financial markets. Consequently, various extensions of 

ARCH/GARCH have appeared in the finance literature to cope with asymmetric information. 

Most notably the GJR-GARCH and EGARCH models are widely used in finance. Another 

model, quite popular in measuring and predicting volatilty, is generally known as GARCH-in-

mean (GARCH-M) model which measures the risk premium in financial markets with various 
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specifications of conditional volatility. The univariate conditional volatility models are simple 

and have closed-form solutions.  

However, the univariate conditional volatility models are incapable of capturing the 

interrelationship among financial markets, both domestic and international. This motivates 

researchers to explore the multivariate asset market analyses. Multivariate study is useful for 

extracting joint information on the trading behavior of financial assets, volatility of return 

shocks and spillover effects. This provides useful information for financial strategic decision 

making, asset allocation and diversifications issues. Since the univariate GARCH cannot be 

directly generalized to multivariate GARCH, the multivariate GARCH has been derived from 

the random coefficient autoregressive processes of multivariate return shocks. In this context 

the multivariate GARCH and GJR-GARCH are introduced within the diagonal BEKK 

(DBEKK) framework. The estimation of the univariate model has the desirable statistical 

properties under the conditional normality. However, the estimation of Full BEKK 

multivariate volatility model does not have asymptotic statistical properties. The quasi-

maximum likelihood estimates (QMLE) of the DBEKK are consistent and asymptotically 

normal. This information is useful for statistical inference. The next chapter describes the 

methodology and data used for empirical analyses of the research questions of this thesis. 
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Chapter 4: Data and Methodology 

4.1 Introduction 

This chapter develops the research methodologies required to address the research questions 

stated in Chapter 1 of this thesis. I use both univariate and multivariate financial return 

volatility modelling approaches as discussed in Chapter 3. In addition to those developed in 

Chapter 3, my research methodology includes econometric techniques within the multivariate 

VAR originally developed by Sims (1980). The VAR is extended to include the qualitative 

variables VAR-X and PVAR-X to gain insights into financial market crash events such as the 

1987 crash, the AFC and the GFC. I undertake nonparametric correlation analysis and copula-

based dependence between assets returns and volatility of returns to explore asset dependence 

across countries. Because of some specification issues with multivariate GARCH volatility 

models, I extend the multivariate GARCH methodologies to understand the dynamics of 

partial co-volatility spillovers, Granger causality, impulse response functions (IRFs), variance 

decomposition, nonparametric dependence and copula dependence approaches. These 

approaches extract information about the sources of volatility generated by data generating 

processes (DGPs). Under impulse response and forecast error variance decomposition, I am 

able to determine the proportion of volatility movements in a series because of its ‘own’ 

shocks versus shocks to other variables. This rich class of forecast error variance 

decomposition is an important and useful source of volatility spillovers and causality issues 

among securities traded in the local and global financial markets. 

In this chapter, I provide a detailed description of the methodologies employed in the data 

analyses to fulfil the objectives of this thesis. Within the univariate and multivariate context I 

formulate model specification and modification; and develop tests for co-volatility spillovers 

and the existence of contemporaneous correlation among financial assets across countries. 

This chapter is organised as follows. In the next section, I outline sources of data, variable 

descriptions and data transformation. Section 4.3 describes the univariate models of returns 

volatility, estimation and volatility predictions, model adequacy, strength and weakness of the 

univariate models and methodology. Multivariate models of volatility, specification issues, 

estimation, test strategies, model adequacy and prediction are discussed in Section 4.4. 
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4.2 Univariate Financial Return Model 

I assume that the conditional mean in ‘return’, tr , generated by the DGP 1tF  can be 

described by the following stochastic process: 

1( | )t t t tr E r F                                                               (4.1) 

I assume that  1|t t t tF h e   , where 1tF is the set of information available at time t and the 

random variable te  is an iid random variable with mean 0 and variance 1. Specifically, model 

(4.1) can be expressed as: 

1 0
1 1

|
k m

t t i t i j t j t
i j

r F r      
 

                                                (4.2) 

Model (4.2) is an autoregressive moving average process of order k and m denoted ARMA 

(k,m). The parameters 0 1( , ,....., ) 'k    and 1 2( , ,......, ) 'm     are respectively the AR 

and MA vectors of parameters. The stability condition of the process (4.1) requires that 

1

| | 1
k

i
i




 and 
1

| | 1
m

j
j




 . These two conditions are respectively known as the stationarity 

and invertibility conditions of the stochastic process tr . The random variable r  is a 

conditionally heteroskedastic error term, known as return shock in finance. In this study the 

univariate return volatility models take the following forms: 

1| ~ ( , )t th F GARCH p q                                                   (4.3) 

1| ~ ( , )t th F GJR GARCH p q                                                 (4.4) 

where 1tF is the information set available at time t–1. The extended condition mean model 

(4.1) is: 

1| (k,m)+ ( )t t t tr F ARMA g h                                                    (4.5) 

Since GJR is popular in empirical finance, I use GJR-type asymmetry in conditional volatility 

models in both univariate and multivariate analysis in this thesis. Equation (4.5) is generally 

known as the GARCH-M model. The term ( )tg h  is called risk premium in finance. To study 
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the statistical properties of the risk-return ( , )t tr h  relationship I jointly model both the mean 

and variance of the return series. Under the assumption of conditional normality of the 

innovation distribution, the mean variance model parameters can be jointly estimated using 

the nonlinear MLE method. In the absence of normality, I use QMLEs. 

I define a generic set of parameters as  , which includes all the parameters of the mean 

variance model. Under the conditional normality assumption of the return shock distribution, 

the MLEs of the parameters are strongly consistent. Further, under the correct specification 

the MLEs are efficient and normal. Note that different probability distributions of the return 

shock t  are possible for example, Student-t, skewed Student-t, Cauchy, GED and Laplace 

distributions among others depending on the data property. Since the Gaussian GARCH 

model as stated in (4.1 and 4.3) cannot explain the inherent stylised fact of leptokurtosis in 

financial data, Bollerslev (1987) suggested replacing conditional normality by the conditional 

Student-t distribution. The univariate distribution of the t-innovation takes the following form: 

(1/2)( 1)2
1/2

1 1/2

[( 1) / 2]
( | ) [( 2) ] 1

( / 2) ( 2)

v

t
t t t

t

v
f F v h

v v h




 




  
      

               (4.6) 

This distribution is always fat-tailed and produces a better fit than the normal distribution for 

most asset return series. The distribution is well defined only if 2v  . Note that the variance 

of a Student-t distribution with 2v  is infinite. The distribution of the GED innovation is 

also useful in modelling the stylised facts of return series, which has the following form: 

1 ( 1)/2

exp (1/ 2)

( | )
2 (1/ )

v

t

t

t t v
t

v
h

f F
h v





 

 
 
 
 



                                       (4.7) 

2/2 (1/ )
where =

(3 / )

v v

v


 


 

This is a fat-tailed distribution when 2v  and is thin-tailed when 2v  . The variance is 

infinite when 1v . Another useful distribution introduced by Hansen (1994) is the skewed 

Student-t distribution, which allows for skewness (third moment) in the returns. This 

distribution, in fact, allows for both time-varying shapes and skewness in financial data. Let 
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te  be the standardised innovation (i.e. /t t te h ); thus the skewed Student-t takes the 

following form: 

 

(( 1)/2)2

(( 1)/2)2

1 (1 / ( 2)) if /
1

( | , )

1 (1 / ( 2)) if /
1

v

t
t

t v

t
t

be a
bc v e a b

f e v
be a

bc v e a b






 

 

               
             

           (4.8) 

Where 2 and 1 1v      . The constants a,b,c are as follows: 

2 2 22 ( 1) / 2
4 , 1 3 , and

1

v v
a c b a c

v
          

 2 2 22 ( 1) / 2
4 , 1 3 , and

( 2) ( / 2)

v v
a c b a c

v v
  

    
 

. This density of te  has mean 0 and 

variance 1. If 0   we have the usual Student-t distribution. The skewed Student-t density 

(see [4.8]) is continuous and has a single mode at /a b . If 0   then the model is on the 

left of 0 (implying a right-skewed density) and when 0  , the density is left-skewed. In my 

empirical analysis of stock returns in Chapter 5, I employ normal, Student-t and skewed 

Student-t distributions. 

4.2.1 Univariate model estimation 

Under the normality assumption, I estimate the unknown parameter  by maximising the log-

likelihood function of T independent observations as follows: 

2

1 2

1 1
( | ) ln 2 ln

2 2 2

T
t

t
t

l r h
h

 


 
    

 
                                   (4.9) 

where ( | )l r  is the log-likelihood function of the parameters. The maximisation principle 

involves the following two conditions: 
( | )

0
l data







 and 
2 ( | )

0
'

l Data
 




 
. The MLE is 

consistent when the first moment of the likelihood is  < and the first derivative of the first 

moment <. If the variance is finite and the likelihood is well behaved then the MLE is 

asymptotically normal. The QMLE is, however, consistent and asymptotically normal under 

the assumption of iid tz , where tz is the standardised return shock (see Lamsdaine, 1991). 
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4.3 The Multivariate Volatility Models 

In this section, I explore the BEKK proposed by Engle and Kroner (1995) for the multivariate 

GARCH model. 

4.3.1 The BEKK-GARCH model for multivariate conditional volatility 

Engle and Kroner (1995) proposed the BEKK model for modelling multivariate conditional 

volatility. The QMLEs of the full BEKK do not have stochastic properties; see Chang et al. 

(2018), Chang and McAleer (2017). Moreover, the full BEKK method requires additional 

parameter estimation and the number of parameters increases as the number of assets 

increases. Many of the parameter estimates of the full BEKK are not significant in real 

applications and the estimates have no interpretation (see Tsay, 2010). 

I utilise the DBEKK model, a variant of the full BEKK for volatility estimation as suggested 

in a series of papers by Chang et al. (2018), McAleer et al. (2009), Allen et al. (2017) and 

Allen and McAleer (2018) (see also McAleer, 2005). The QMLEs of a DBEKK model are 

consistent and asymptotically normally distributed. The normality of the estimates means that 

I can test a variety of linear and nonlinear hypotheses regarding co-volatility spillovers with 

valid statistical properties of the tests. The determination of co-volatility spillovers is 

important for risk management and asset diversification in financial markets in general. 

4.3.2 The DBEKK-GARCH volatility model 

I start with the DBEKK-GJR-GARCH model because in the univariate analysis (see Chapter 

5) I found that significant GJR-type leverage exists for return volatility. For the empirical 

analysis of the relationship between stock market volatility and expected returns, I consider 

the following model specifications. 

 Multivariate conditional mean model  4.3.2.1

I use the following multivariate return model 

1 0 1 1| ,t t t tr F r                                                  (4.10) 

where tr is an (N1) vector of asset returns, 1tF  is the set of information available at time t-

1; The parameters 0 1and   are to be estimated; The (N1) vector t  is the vector of return 
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shock assumed to be a vector random coefficient autoregressive process of order one. The 

multivariate standardized residuals t
t

t

e
h


 or 

1/2
t t th e  , where  the (N1)  random vector

te is assumed to be iid with zero mean and covariance matriz CC'  and th  is the (N ×N )  

diagonal matrix comprising the univariate conditional volatilities. Let tH be the conditional 

covariance matrix of  t . 

  Conditional variance–covariance model 4.3.2.2

I use the following multivariate extension of GJR-GARCH(1,1) obtained from the vector 

random coefficient autoregressive process of order one of the return shocks 

' ' ' '
t t-1 t 1 t 1 t-1 t-1 t 1 t 1H |F CC' A A BH B D '                                (4.11) 

where A, B and Γ are each (NN) diagonal matrices; C  is an (NN) lower triangular matrix; 

t is an ( 1)N   vector of return shocks; and t-1D is an indicator matrix that determines the 

asymmetric effect of return shocks on volatility. The matrix variable t-1D  is defined as: 

1
t-1

1

1 if 0
D

0 if 0
t

t








  

 

Equation (4.11) is known as the DBEKK-GJR-GARCH (model of conditional volatility). In 

my analysis I use the stock indices from developed, advanced emerging and emerging markets 

and transform the series into log returns. Equations (4.10) and (4.11) are estimated jointly by 

the QML method. The QMLE has the desirable statistical properties for developing tests for 

the co-volatility spillover effects of return shocks on volatility. 

4.3.3 Volatility spillovers, estimation and tests 

Three definitions of volatility spillovers are provided in the literature (see Chang et al., 2017): 

(i) full volatility spillovers, (ii) full co-volatility spillovers, and (iii) partial co-volatility 

spillovers. I extend the partial co-volatility spillover definition of Chang et al. (2018) to the 

multivariate DBEKK-GJR-GARCH and DBEKK-GJR-GARCH-M models. I estimate the 

asymmetric effect of return shocks on volatility and develop a novel Wald-type test for co-

volatility spillover effects of return shocks on conditional volatility models. I noted in the 
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multivariate context that the number of parameters increases as the number of assets 

increases. For this reason, I limit the co-volatility analysis to three assets to optimise 

computation and ease interpretation of the multivariate volatility model parameter estimates. 

Multivariate DBEKK-GJR-GARCH volatility model specification takes the following form: 

'2
1 1 1 2 1 1 1 3 111 11

2
t 22 2 1 1 1 2 2 1 3 1 22

2
33 333 1 1 1 3 1 2 1 3

0 0 0 0

H =CC' 0 0 0 0

0 0 0 0

t t t t t

t t t t t

t t t t t

a a

a a

a a

    

    

    

   

   

   

    
         
    

    

+
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11, 1 12, 1 13, 111 11
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2
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                   (4.12) 

where matrix A = 
11

22

33

0 0

Where the matrix A 0 0 reflects  the short-run effects of return shock on volatility.

0 0

a

a

a

 
   
 
 

 reflects the short-run effects of return shock on volatility; C = 

11

21 22

31 32 33

0 0

C 0

c

c c

c c c

 
   
 
 

 is a lower triangular matrix; B = 
11

22

33

0 0

B 0 0

0 0

b

b

b

 
   
 
 

 is a weight matrix that represents 

the long-run volatility persistence; and matrix  = 11

22

33

0 0

0 0

0 0






 
 
 
 
 

 reflects news effects. I apply the 

QML method to Equations (4.10) and (4.11) jointly and compute the QMLEs of the matrix 

parameter of Equation (4.12). 

 Partial co-volatility spillovers 4.3.3.1

I have extended the partial co-volatility definition of Chang et al. (2018) to DBEKK-GJR-

GARCH and DBEKK-GJR-GARCH-M models. It is to be noted that Chang et al. (2018) used 

DEBKK-GARCH. The use of the DBEKK-GJR-GARCH model here thus extends the risk 

premium model. The partial co-volatility is computed as follows: 

,
1 1
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23,
33 22 3 1 11 22 3 1

2, 1

H t
t t

t

a a    
  




 


 or 23,

33 22 2 1 11 22 2 1
3, 1

H t
t t

t

a a    
  




 


 

The co-volatility spillovers are evaluated at the average return shocks. For a simple 

multivariate DBEKK-GARCH volatility specification, ‘pure’ co-volatility spillover tests are 

of interest. Thus, I develop a Wald-type test of co-volatility spillover: 

1. H0 : 11 22a a  = 0 

If the null hypothesis is rejected then there is volatility spillover from the return shock of 

stock (bond) to the co-volatility between stock and bond return: 

2. H0 : 11 33a a  = 0 

If the null hypothesis is rejected then there is volatility spillover from the return shock of 

stock (T-bill) to the co-volatility between stock and T-bill: 

3. H0 : 22 33a a  = 0 

If the null hypothesis is rejected, then there is spillover from the return shock of bond (T-bill) 

to the co-volatility between bond and T-bill. 

The above definitional theory of co-volatility is extended to the multivariate DBEKK-GJR-

GARCH and DBEKK-GJR-GARCH-M models. In the absence of normality, the DBEKK-

GARCH type model is estimated by the QML method. The QMLEs are consistent and 

asymptotically normally distributed. Asymptotic normality means that in general, I can test

0H consistently using classical statistical test approaches. 

 Wald-type test 4.3.3.2

I perform the Wald-type test for the existence of co-volatility spillover of return shocks. I test 

the null hypothesis against the alternative in a multivariate DBEKK-GARCH model in which 

0H : ( , ) 0ii jj ii jjg a a a a    and 1H : ( , ) 0ii jj ii jjg a a a a   . I estimate ( , )ii jj ii jjg a a a a   
 by 

the QMLE. Let 0 11 22 11 22: ( , ) 0H g a a a a    (a case of single nonlinear combination of 
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parameters) be a regular function of parameters. Then, the variance of 11 22( )g a a can be 

computed using the delta method as follows: 

11 22var ( , )g a a  
 

2 2

11 22 11 22 11 22 11 22
11 22 11 22

11 22 11 22

( , ) ( , ) ( , ) ( , )
var( ) var( ) 2 cov( , )

g a a g a a g a a g a a
a a a a

a a a a

          
                  

  (4.13)  

=    2 2

22 11 11 22 11 22 11 22var( ) var( ) 2 cov( , )a a a a a a a a           . 

The derivatives are evaluated at the solution points and similarly computed for all other 

pairwise cases. In general, when ( )g   is a vector of nonlinear functions of parameters, when 

testing for 0 : ( ) 0H g   versus 1 : ( ) 0H g   , the Wald test statistic takes the following form in 

matrix notations: 

1W = [ ( )]'[cov( ( ))] [ ( )]g g g  
  

                                     (4.14) 

where ( )g   is a nonlinear function of unknown parameter vector ; ‘ ' ’ is transposed 

notation; 


 is a QMLE-estimated parameter vector under the alternative hypothesis; and 

cov(.)


 is the estimated variance–covariance matrix evaluated under the alternative 

hypothesis. The QML method is used to estimate the objective function. The test statistic, W, 

follows an asymptotic χ2 distribution with k (number of restrictions under the null hypothesis) 

degrees of freedom. In Chapter 6, I apply the QML method of estimation for Equation (4.10) 

and (4.11) parameters jointly for computing return spillover effects in the Granger sense and 

the asymmetric news effect in the Glosten et al. (1993) sense; and evaluate the short- and 

long-run effects of return shocks on volatility. Conditional return volatility models are popular 

in the field of finance because they have data-relevant statistical properties: for example, 

heavy tails, volatility clustering, limit cycle and sudden jumps. Thus, I employ conditional 

volatility models for computations in relation to various issues related to policy decision 

objectives. 

I categorise financial markets as (i) developed, (ii) advanced emerging and (iii) emerging 

markets (following the FTSE 100 Index) for estimation and empirical analysis of multivariate 

VAR-DBEKK-GJR-GARCH models (4.10) and (4.11) jointly. I then estimate an extended 
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form of Engle et al.’s (1987) univariate risk premium model for the multivariate VAR-

DBEKK-GJR-GARCH-M framework. Further, I extend Sims’s VAR to VAR-X and PVAR-

X to take account of exogenous variables (X) (financial crash events), and finally utilise 

nonparametric dependence using Kendall’s tau, Spearman rank correlations, and Gumbel 

copula with Student-t margins to explore the financial asset return dependence. 

4.3.4 VAR and PVAR models 

In the multivariate formulation, I consider more than one asset and treat them as a vector of 

variables. The vector 1 2( , ,........, ) 't t t Ntr r r r  is an ( 1)N   vector of financial asset returns. The 

VAR model of Sims (1980) treats all variables as endogenous and interdependent. To 

formulate a VAR, let tr  be an ( 1)N  vector of endogenous variables say asset returns. Then 

the VAR for tr  takes the following form: 

0
1

( )
p

t t l t
l

r A A l r u


                                                 (4.15) 

where  '( ) 0, ( )it it it uE u E u u    and '( ) 0 for allit isE u u t s  ; ( )A l  is the matrix of 

parameters at lag l ; tu is an ( 1)N  vector of errors; u is the variance–covariance matrix of 

the error vector tu ; and 0A is an ( 1)N   vector of intercept parameters. Only the time 

dimension is considered in this formulation. Under the assumption of linearity, stationarity 

and invertibility, the Wold (1938) decomposition theorem provides an MA representation of 

the VAR process. In this form it is useful to analyse the IRF and forecast error variance 

decomposition of the time series of returns. The IRF visually represents the behaviour of the 

{ }itr  in response to various shocks. The forecast error variance decomposition tells us the 

proportion of movements in a sequence due to its ‘own’ shocks rather than shocks due to 

other factors. The estimation can be based on the ML method under the iid normal or QML 

method. The QMLEs and MLEs are consistent and asymptotically normally distributed. Order 

selection for VAR is conducted using the multivariate AIC, BIC, and HQ and lilelohood 

ration (LR) criteria. Model adequacy tests are conducted for further statistical inference and 

policy decision purposes. When a cross-sectional dimension is added to the VAR 

representation (4.15), the resulting model is known as a PVAR model, which takes the 

following form: 
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1

( )
p

it i it l i it
l

r A l r u 


                                              (4.16) 

where the index i  could indicate countries, sectors, markets and so on, and t  is the time 

index. The variable itr is an ( 1)N   vector of dependent variables; iu and it are ( 1)N 

vectors of dependent variable-specific panel fixed effects and idiosyncratic errors, 

respectively. The 1 2( , ,....., ) 'it t t Nt     is such that ( ) 0,itE   '
it itE     and '( ) 0it isE     

for all t s . Further extension of Equation (4.16) would be useful to include other exogenous 

variables; for example, dummy variables capturing specific events, which may take the 

following form: 

1

( )
p

it i it l i t i it
l

r A l r X u 


                                        (4.17) 

where itr  is a vector of N variables for each unit 1,2,....,i N ; i are N K matrices and tX

is a 1K  vector of exogenous variables common to all unit i . In this form Equation (4.17) is 

known as a PVAR-X model. In both Equations (4.16) and (4.17), the it  values are generally 

correlated across i  (situation of static dependence), and the it  values are correlated with lags 

of all endogenous variables entering the model for unit i  (situation of dynamic 

interdependence). Equation (4.17) could be useful for testing the existence of international 

CAPM within a system equations (seemingly unrelated regression [SUR]) framework. 

Equation (4.17) is useful for investigating contemporaneous dependence among financial 

returns. 

I further utilise the nonparametric Kendall’s tau and Spearman rank correlation for 

dependence analysis among the asset returns and perform a covariance dependence test to 

examine the contemporaneous dependence between the covariances among the asset returns 

jointly. I also conduct dependence in volatility tests utilising the Gumbel copula with Student-

t margins. 

4.4 Data 

This study utilises data from 17 countries from America (North and South), Europe, and Asia 

Pacific financial centres. The selection process for countries is based on the FTSE Global 

Equity Index Series report. The data series from three financial markets, namely stock, bond 
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and money markets are collected for the period 30 January 1985–30 December 2016 from the 

Bloomberg database. From the stock market I use stock index; from the bond market I use the 

5-year bond rate; and from the money market I use the 3-month T-bill rate. The continuously 

compounded returns of each of the financial securities are used for this study. I chose to use 

returns instead of prices of assets because (i) the return of an asset is a complete and scale-free 

summary of the investment opportunity; and (ii) a return series is easier to handle than a price 

series because of its attractive statistical properties. Table 4.1 shows the selected countries, 

chosen on the basis of data availability. 

Table 4.1: Selected countries for data collection 

Developed Advanced 
emerging 

Emerging 

US Brazil China 
Japan Mexico India 
UK Malaysia Indonesia 
Germany  Thailand 
France   
Canada   
South Korea   
Australia   
HK   
Singapore   
10 3 4 

 

4.5 Methodology 

The research questions for this thesis posed in Section 1.3 are addressed here as follows. 

RQ1. Do volatilities of returns spillover symmetrically? 

RQ1 is addressed by jointly estimating the conditional returns and conditional volatilities of 

returns in the multivariate context. I allow the multivariate conditional DBEKK volatility of 

the VAR model to include the conditional asymmetric volatilities, constituting a multivariate 

DBEKK-GJR-GARCH model. This model is suitable for revealing the asymmetric volatility 

spillover effects and causality tests. The model is estimated by the QML method of estimation 

for the data from the developed, advanced emerging and emerging market stock returns. The 

QMLEs are consistent and asymptotically normally distributed. These statistical properties are 

useful for developing valid statistical tests. The estimated model is used to test for model 

adequacy and causality in the vector of returns series, via t and F tests. The partial co-
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volatility spillovers tests are conducted using Wald tests. This adds a novel methodological 

development to the literature. 

RQ2. Do risk premiums hold in international financial markets? 

RQ2 is important to address because a vast number of researchers are involved in CAPM 

modelling of univariate financial returns on securities. The complexity of the traditional 

CAPM arises when I use a variant of the CAPM that allows a time-varying risk premium in 

the return generating process. This risk premium is governed by the DBEKK-GJR-GARCH-

M model. The model is estimated by the QMLE and used to test for the presence of risk 

premiums in multimarket asset utilising student-t tests and Wald chi-square tests. This is a 

novel empirical addition to the literature. 

RQ3. Does the severity of crisis affect asset markets globally? 

RQ3 is addressed by investigating financial returns utilising VAR-X and PVAR-X models. 

However, before estimating and testing for VAR, it is useful to present basic descriptive 

statistics for the data and some preliminary tests on the time series of interest. The unit roots 

for the data series are tested for stationarity by applying the ADF, PP and KPSS tests. For 

PVAR models the corresponding panel unit root tests applied are (i) the Im, Pesaran and Shin 

(IPS) (2003) test; (ii) the Maddala and Wu (1999) Fisher-type test; and the Hadri (2000) 

Lagrange multiplier (LM) test. These are tests of the null hypothesis of panel unit root (i.e. 

panel nonstationarity) against the alternative of no panel unit root (i.e. panel stationarity). The 

only exception is the KPSS and Hadri LM tests which consider stationarity as the null versus 

nonstationarity as the alternative. The panel unit root tests are based on the ADF model; 

however the constructions of the tests are different. The return series are found to provide 

overwhelming support for stationarity using these unit root tests. 

I analyse the return series using VAR-X and PVAR-X models. The estimated VAR-X and 

PVAR-X models are investigated for Granger causality, variance decomposition and impulse 

responses, as applied to VAR-type models. One important property of VAR and PVAR is that 

they only deal with short-run dynamic dependence of return series. Further, VAR allows for 

aggregation of spillover effects across markets; thus I apply statistical tests for market crashes 

based on the estimated VAR-X and PVAR-X to determine whether financial markets crash 

jointly across countries during crisis. 
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The VAR-X model is estimated using the ML method under the assumptions of normality, or 

by OLS estimation. The PVAR-X model is estimated using GMM estimation. The VAR-X 

model includes event-specific dummy variables indicating crisis periods. Three financial 

crashes the 1987 crash, AFC, and the GFC are considered to address this research question. 

However, for the PVAR-X model I examined only the GFC effect on the asset markets for a 

block of five countries jointly. The estimated model is tested for model adequacy using 

various tests including LB and ARCH tests. Model evaluation is based on Granger causality, 

variance decomposition and impulse response analysis. The return spillovers in the Granger 

sense are tested using Wald F tests. Further, I employ impulse responses or forecast error 

variance decomposition on the VAR-X model to identify interdependence among the 

securities across markets. In particular, variance decomposition provides information about 

the proportion of movements in a sequence that is due to its own shocks versus shocks to the 

other variables. Variance decomposition also determines the exogeneity status of variables 

under shocks. This research question addresses how many financial markets are in danger 

during crises, by utilising the SI. This makes an additional methodological contribution to the 

literature. 

RQ4. Are financial returns dependent across countries? 

RQ4 is important to address to understand how many financial markets are closely dependent 

on each other for asset management policy analysis purposes. This question is addressed by 

nonparametric test approaches employing Kendall’s tau and Spearman rank correlation tests. 

These approaches can capture both linear and nonlinear dependencies between asset returns. I 

also perform covariance dependence tests utilising 2 test statistics. Tests for pairwise bi-

variate GARCH-type volatility dependence are conducted by the Gumbel copula with 

Student-t margins. Application of this methodology is a novel addition to empirical 

dependence analysis in the finance literature. 

The empirical analyses employing the proposed methodologies outlined in this chapter are 

described in Chapter 5 for univariate and Chapter 6 for multivariate cases. 

4.6 Conclusion 

This chapter discusses the methodologies used for empirical analyses of the research 

questions and the sources of data. I have discussed the full volatility spillover, full co-
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volatility spillover and partial co-volatility spillovers. I have also introduced a novel Wald-

type test approach to test for partial co-volatility within DBEKK model demonstrated using 

three variables cases. Furthermore, in this chapter I have introduced the VAR, PVAR and 

PVAR-X models. The Granger causality, variance decomposition and impulse responses 

functions are the tools used for empirical analyses of the multivariate return volatility models. 

The DBEKK and DBEKK-GJR-GARCH-M models are estimated by the QMLE and the 

PVAR models are estimated by the GMM estimation. Nonparametric approaches to test for 

dependence among assets are also utilized in this thesis for empirical analysis. 

For empirical analysis, seventeen countries’ data have taken from Bloomberg database. The 

countries are classified as developed, advanced and emerging countries based on the FTSE 

Global Equity Index series report. The return series are constructed using logarithmic 

differenced series. This chapter links the methodology to the specific research questions of 

this thesis. The empirical results of the univariate and multivariate volatility models are 

provided in the next two chapters. 
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Chapter 5: Empirical Analysis of Univariate Asset Return and 

Volatility of Return 

5.1 Introduction 

In this chapter I present an empirical analysis of 17 global share markets’ stock returns 

individually for three classes of volatility models: (i) the SGARCH, (ii) GJR-GARCH and 

(iii) the GARCH-M model of risk. These conditional volatility models have been found to be 

useful in real applications, with some reservations. Differences in the predictions from the 

normal GARCH, Student-t GARCH and skewed Student-t GARCH are investigated, as is the 

risk-averse behaviour of investors by GARCH-M, for each of the 17 countries individually. 

This chapter also provides basic summary statistics and diagnostic tests for checking the data 

properties and evaluating each market’s stylised facts in financial return series. To achieve a 

basic understanding of the markets I first analyse only the financial stock markets of all 17 

countries. The stock, bond and money markets are jointly analysed in Chapter 6 using 

multivariate DBEKK-GJR-GARCH, DBEKK-GJR-GARCH-M, VAR-X and PVAR-X 

approaches to evaluate linkages. 

5.2 Univariate Volatility Models 

In finance, risk is measured as the standard deviation in financial asset returns. Since the 

volatility of returns is unknown, three measures of volatility are proposed in the literature: (i) 

realised volatility, (ii) implied volatility and (iii) conditional volatility. In the previous chapter 

I defined the theoretical basis of these definitions. In relation to these definitions a vast 

literature discusses the analysis of conditional volatility of the return generating process. In 

this chapter I take the opportunity to explore the conditional volatility definition. Since the 

volatility generating function is unknown, I consider important issues of conditional volatility 

to investigate the sources of volatility in different financial markets. Specifically I investigate 

17 countries’ stock returns empirically to determine suitability of the various functional forms 

of the unknown return volatility function for measuring and predicting the risk of holding and 

trading assets in financial markets. The models are estimated by the ML method under the 

assumption of (i) conditional normality, (ii) Student-t and (iii) skewed Student-t innovation 
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distribution of the return generating process. In the absence of normality, however, the QML 

method was found to have asymptotic properties for statistical estimation and inference. 

5.2.1 Descriptive statistics and data properties 

In this section, I provide basic statistics for the stock return series of the 17 countries. 

Stationarity tests on the return series were conducted utilising ADF, PP, KPSS tests. I also 

performed LB-Q tests on the level series and the squared level series to examine serial 

correlation and presence of volatility. The Jarque–Bera (JB) test was conducted for the 

normality of series to evaluate stylised facts such as skewness, heavy tails, sudden jumps and 

volatility clustering of financial time series. Time plots of the stock returns of 17 countries are 

provided in appendix A. These properties provide vital information for modelling and 

predicting the first two moments jointly for policy decision analysis. The following tables 

describe the data properties as mentioned. 

The sample size differs among countries depending on the availability of data. The basic 

statistics in Table 5.1 provide useful numerical information about the properties of the data. 

Means of the stock return series are mostly significant at the conventional level, with the 

exception of those for France, Japan and Thailand. Ten returns series are positively skewed 

and seven are negatively skewed. Fourteen out of the 17 stock returns series depart 

significantly from symmetry. The excess (with reference to normality) kurtosis of all the 

return series is significantly leptokurtic. The stock returns series were found to be non-normal 

by the JB test. These properties of stock returns are consistent with stylised facts for financial 

returns series such as volatility clustering, asymmetry and heavy tails. All of the series are 

serially correlated according to the LB-Q test, and LB-Q2 tests confirmed significant 

dependence in the second moment of all series except for China. I further conducted 

stationarity tests on the return series using the ADF, PP and KPSS tests. The stationarity of 

the stock return series was confirmed by all three tests with the exception of Brazil, the stock 

returns are stationary according to both the ADF and PP test but not the KPSS test (see Table 

5.2). 
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Table 5.1: Descriptive statistics and preliminary test results for global stock returns 

Country Sample 
start date 

Sample 
size 

Mean SD Min Max Skewness Excess 
Kurtosis 

LB-Q (10) LB-Q2
 (10) JB 

Australia 1/1/1985 8099 0.030*** 0.942 –24.995 6.257 –2.771*** 66.908*** 92.617*** 415.870*** 1520858.536*** 
Brazil 21/8/1991 6273 0.238*** 2.745 –32.609 41.199 1.240*** 29.511*** 144.338*** 2591.029*** 229167.448*** 
Canada 2/1/1985 8051 0.031*** 1.066 –12.401 18.821 –0.094*** 23.618*** 42.158*** 4637.635*** 187106.579*** 
China 19/2/1990  6367 0.089*** 2.774 –27.170 104.173 9.379*** 327.764*** 40.345*** 10.145 28588936.467*** 
France 9/7/1987 7465 0.026 1.458 –12.473 10.592 –0.285*** 5.554*** 60.260*** 3031.535*** 9695.170*** 
Germany 2/1/1985 8079 0.042*** 1.393 –9.860 10.623 –0.248*** 5.136*** 35.765*** 4079.805*** 8960.492*** 
HK 2/1/1985 7907 0.050*** 1.637 –33.330 14.817 –1.400*** 31.827*** 54.779*** 656.004*** 336269.318*** 
India 2/1/1985 7530 0.077*** 1.816 –11.302 13.507 0.018 4.661*** 28.757*** 3450.920*** 6821.741*** 
Indonesia 2/1/1985 7762 0.069*** 1.637 –20.172 49.645 4.491*** 132.139*** 420.625*** 1105.092*** 5672508.229*** 
Japan 4/1/1985 7870 0.016 1.370 –14.871 13.234 0.009 6.882*** 49.103*** 2330.126*** 15532.797*** 
Malaysia 2/1/1985 7878 0.031** 1.366 –22.121 21.519 0.309*** 36.313*** 119.065*** 5923.750*** 432912.147*** 
Mexico 19/1/1994 5734 0.062*** 1.498 –13.139 13.471 0.270*** 7.405*** 68.962*** 1269.338*** 13169.723*** 
Singapore 10/6/1987 7270 0.038* 1.722 –11.029 14.248 0.076*** 4.370*** 33.488*** 3027.127*** 5790.736*** 
SK 2/7/1987 7236 0.037* 1.666 –15.961 13.543 0.008 7.343*** 89.392*** 1603.183*** 16228.928*** 
Thailand 31/8/1999 4554 0.014 1.264 –13.135 15.944 0.156*** 14.041*** 46.471*** 2447.937*** 34954.806*** 
UK 1/4/1986 7774 0.025* 1.149 –13.797 10.956 –0.253*** 9.263*** 72.307*** 2648.561*** 27871.081*** 
US 2/1/1985 8068 0.041*** 1.081 –13.420 10.949 –0.294*** 11.535*** 40.894*** 3701.731*** 44843.084*** 

 
Note 1. Returns are in percentages.  
Note 2. ‘***’, ‘**’, ‘*’ indicate significance at the 1%, 5% and 10% levels respectively.  
Note 3. ‘LB-Q(m) ’and, ‘LB-Q2 (m)‘ are the m-th lag Ljung–Box test statistics applied to the original and squared series.  
Note 4. JB is the 1987 Jarque-Bera chi-square test with 2 degrees of freedom for normality tests of the original series.  
Note 5. The data end date for all series is 30/12/2016, except for Brazil, which has a data end date of 29/12/2016.  
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Table 5.2: Stationarity test for the stock returns series 

Country Size ADF PP KPSS 
Australia 8099 –36.057** –83.390** 0.173 
Brazil 6273 –33.379** –80.572** 5.833** 
Canada 8051 –37.969** –92.323** 0.053 
China 6367 –31.566** –81.758** 0.303 
France 7765 –37.688* –93.107** 0.081 
Germany 8079 –38.599** –88.627** 0.068 
HK 7907 –36.497** –85.763** 0.229 
India 7530 –36.608** –87.581** 0.202 
Indonesia 7762 –37.056** –74.186** 0.828 
Japan 7870 –37.765** –84.764** 0.140 
Malaysia 7878 –35.541** –81.346** 0.059 
Mexico 5734 –31.314** –68.607** 0.081 
Singapore 7270 –36.547** –82.042** 0.052 
SK 7236 –34.538** –78.547** 0.124 
Thailand 4554 –27.687** –68.150** 0.081 
UK 7774 –38.690** –91.199** 0.096 
US 8068 –37.945** –92.642** 0.210 

 
Note 1. KPSS tests the null hypothesis of stationarity versus the alternative hypothesis of nonstationarity.  
Note 2. ‘**’, ‘*’ indicate significance at the 1%, and 5% levels respectively.  
Note 3. 5 lags used for the tests. 

I also evaluated the basic statistical properties of the bond return series, as provided in Table 

5.3. The mean of bond returns is significantly different from zero for all cases. The skewness 

of the Japan series is not significant, and non-significant excess kurtosis was encountered in 

the Brazil, France, India and Indonesia bond returns. Serial correlation up to lag 10 exists in 

each of the series. All of the bond return series were found to be fat-tailed as indicated by the 

LB-Q2 statistic and excess kurtosis. Each of the series is non-normal according to the JB test. I 

further tested stationarity of the bond returns using ADF, PP and KPSS tests. Table 5.4 

displays these test results. 
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Table 5.3: Descriptive statistics and preliminary tests results for global bond returns 

 
Country 

Sample 
start date 

Sample 
size 

Mean SD Min Max Skewness Excess 
kurtosis 

LB-Q (10) LB-Q2(10) JB 

Australia 2/01/1985 7727 6.6328*** 3.310 1.467 15.600 0.9291*** 0.1189** 77104.764*** 77036.973*** 1116.2302*** 
Brazil 5/01/2007 1684 12.090*** 2.011 8.444 19.004 0.4341*** 0.1093 16282.178*** 16141.604*** 53.7465*** 
China 8/6/2005 2575 3.1637*** 0.577 1.780 4.5700 0.3353*** –0.7886*** 25048.601*** 25081.300*** 114.9739*** 
France 6/08/1990 6799 3.9517*** 2.493 –0.456 10.570 0.4888*** –0.08201 67902.062*** 67869.642*** 272.7114*** 
Germany 7/08/1990 6789 3.6646*** 2.369 –0.623 9.1370 0.2210*** –0.3464*** 67814.551*** 67788.944*** 89.2204*** 
HK 11/06/2012 1127 97.459*** 3.593 89.059 104.535 –0.1457** –0.9000*** 10810.107*** 10812.139*** 42.0198*** 
India 24/05/2001 3560 7.3755*** 1.055 4.582 9.734 –0.7358*** 0.0624 34904.671*** 34813.004*** 321.8518*** 
Indonesia 6/01/2003 3361 8.9079*** 2.472 4.475 20.058 0.4934*** –0.0540 32940.54*** 32292.317*** 136.7827*** 
Japan 4/04/1988 7067 1.7672*** 2.004 –0.370 8.4900 1.4325 0.9816*** 70597.767*** 70521.055*** 2700.8762*** 
Malaysia 3/08/1998 4526 3.8422*** 0.821 2.444 9.9430 2.4957*** 7.9084*** 43123.898*** 42100.800*** 16493.2179*** 
Mexico 22/03/2011 1495 5.2254*** 0.525 3.943 7.2520 0.9000*** 1.8528*** 13858.084*** 13899.938*** 415.6778*** 
Singapore 2/01/1988 4762 2.1559*** 1.091 0.305 5.2600 0.2252*** –0.8884*** 47125.547*** 46872.483*** 196.8595*** 
US 2/01/1985 8271 4.7844*** 2.557 0.543 11.706 0.1333*** –0.9224*** 82487.856*** 82353.031*** 317.7055*** 

 
Note 1. Returns are in percentages.  
Note 2. ‘***’, ‘**’, ‘*’ indicate significance at the 1%, 5% and 10% levels respectively.  
Note 3. ‘LB-Q(m) ’and, ‘LB-Q2 (m)‘ are the m-th lag Ljung–Box test statistics applied to the original and squared series.  
Note 4. JB is the 1987 Jarque-Bera chi-square test with 2 degrees of freedom for normality tests of the original series.  
Note 5. The data end date for all series is 30/12/2016, except for Brazil, which has a data end date of 29/12/2016.  
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Table 5.4: Stationarity test for the bond returns series 

Country Size ADF PP KPSS 
Australia 7727 –37.396** –92.186** 0.347 
Brazil 1684 –17.913** –40.552 0.122 
Canada 62 –2.886(.) –7.104** 0.106 
China 2575 –18.002** –51.259** 0.070 
France 6799 –37.750** –92.633** 0.064 
Germany 6789 –38.994** –108.688** 0.025 
HK 1127 –13.471** –32.318** 0.110 
India 3560 –25.282** –62.728** 0.173 
Indonesia 3361 –22.749** –52.418** 0.120 
Japan 7068 –36.753** –111.272** 0.060 
Malaysia 4526 –31.655** –102.184* 0.196 
Mexico 1495 –15.681** –30.296** 0.439 
Singapore 4762 –28.892** –61.408** 0.900 
Thailand 118 –5.152** –8.993** 0.036 
UK 112 –13.427** –32.318** 0.110 
US 8271 –38.482** –96.664** 0.036 

 
Note 1. KPSS tests the null hypothesis of stationarity versus the alternative hypothesis of nonstationarity.  
Note 2. ‘**’, ‘*’ indicate significance at the 1%, and 5% levels respectively.  
Note 3. 5 lags used for the tests 

 

Based on the stationarity test results for the bond returns series, shown in Table 5.4, all series 

are stationary. However, in some cases, such as Thailand, Canada and UK, the reliability of 

the test is questionable because of the small sample size; in these cases, robust conclusions 

cannot be drawn. In general, I conclude that bond returns series are stationary but suffer from 

serial correlation and non-normality. These observations and tests indicate that appropriate 

modelling for bond returns volatility should consider these issues to ensure a good volatility 

prediction model for financial asset pricing. Finally, I considered the money market activities 

in the financial market. The results are based on the 3-month T-bill returns for 15 countries as 

shown in Table 5.5. 

The mean returns for the short-term T-bill are significant in some cases and not significant in 

others. This may be due to volatility and tranquillity in financial markets. However, all of the 

series have significant skewness. There is significant serial correlation in the series, except 

those of Japan and Thailand. Excess kurtosis indicates return distributions are heavy-tailed. 

Further, each of the series wasfound to be dependent by the LB-Q2 test, with the exception of 

Thailand and Canada. All series are significantly non-normal according to the JB test. I also 

tested each of the T-bill series for stationarity by the ADF, PP and KPSS tests. The test results 

are displayed in Table 5.6. 
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Table 5.5: Descriptive statistics and preliminary tests results for global T-bill returns 

Country  Sample 
start date 

Sample 
size  

Mean SD Min Max  Skewness  Excess 
Kurtosis 

LB-Q(10) LB-Q2(10) JB 

Australia 1/10/1996 5220 –0.022* 0.847 –10.089 12.970 –0.640*** 26.798*** 26.830*** 164.946*** 156517.569*** 
Brazil 28/3/2007 2282 0.006 0.922 –13.621 9.279 –1.793*** 56.220*** 161.950*** 109.926*** 301618.343*** 
Canada 25/8/2016 92 0.002** 0.008 –0.016 0.029 0.682*** 2.283*** 18.935** 2.434 26.548*** 
China 20/12/2005 2531 0.175 5.690 –50.495 81.166 1.994*** 30.787*** 488.234*** 461.645*** 101593.815*** 
France 15/6/1989 6872 –0.016 22.237 –405.000 993.023 20.221*** 915.668*** 312.329*** 76.030*** 237393347.41*** 
India 11/5/2000  3947 0.010 1.848 –23.522 42.151 4.545*** 121.238*** 41.760*** 91.807*** 2430303.776*** 
Indonesia 31/3/2003 270 –0.128 3.894 –13.554 47.592 7.068*** 88.630*** 236.105*** 40.314*** 90284.703*** 
Japan 5/10/1995 4343 8.807 486.453 –1.15e+03 3.18e+04 64.501*** 4215.776*** 5.465 1.789e–03 3210247083.588*** 
Malaysia 10/12/1996 3164 0.049 3.918 –58.333 76.923 4.673*** 130.973*** 519.467*** 408.553*** 2272264.345*** 
Mexico 19/11/1999 4122 –0.008 1.974 –17.422 25.647 0.649*** 20.204*** 198.374*** 471.773*** 70379.009*** 
Singapore 2/1/1998 4645 0.127* 5.097 –58.333 80.952 2.306*** 47.775 155.480*** 1240.925*** 445777.890*** 
SK 28/5/1999 2825 0.764*** 15.561 –87.507 260.441 9.720*** 136.104*** 278.410*** 82.506*** 2224158.194*** 
Thailand 13/1/2012 1171 0.059* 1.163 –11.730 9.016 –1.414*** 20.346*** 6.696 14.277 20569.644*** 
UK 7/10/2008 2077 –0.107* 2.582 –24.973 42.960 1.440*** 54.231*** 60.600*** 187.788*** 255114.732*** 
US 2/1/1985 8268 0.841** 35.655 –700.000 1166.667 9.021*** 335.618*** 121.088*** 57.437*** 38902356.569*** 
 
Note 1. Returns are in percentages.  
Note 2. ‘***’, ‘**’, ‘*’ indicate significance at the 1%, 5% and 10% levels respectively.  
Note 3. ‘LB-Q(m) ’and, ‘LB-Q2 (m)‘ are the m-th lag Ljung–Box test statistics applied to the original and squared series.  
Note 4. JB is the 1987 Jarque-Bera chi-square test with 2 degrees of freedom for normality tests of the original series.  
Note 5. The data end date for all series is 30/12/2016, except for Brazil, which has a data end date of 29/12/2016.  
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Table 5.6: Stationarity test for the T-bill returns series 

Country Size ADF PP KPSS 
Australia 5220 –28.114** –75.221** 0.372 
Brazil 2282 –18.785** –60.729** 0.501* 
Canada 91 –5.152** –8.871** 0.055 
China 2531 –26.129** –97.395** 0.064 
France 6872 –33.181** –112.751** 0.047 
India 3947 –26.758** –66.679** 0.088 
Indonesia 270 –5.995** –30.708** 0.031 
Malaysia 3164 –25.580** –89.188** 0.129 
Mexico 4122 –25.376** –77.295** 0.294 
Singapore 4646 –29.409** –63.370** 0.055 
Thailand 1171 –13.376** –35.517** 0.107 
UK 2077 –17.875** –49.476** 1.029** 
US 8268 –48.813** –114.885** 0.017 

 
Note 1. KPSS tests the null hypothesis of stationarity versus the alternative hypothesis of nonstationarity.  
Note 2. ‘**’, ‘*’ indicate significance at the 1%, and 5% levels respectively.  
Note 3. 5 lags used for the tests 

 

From Tables 5.1-5.6 it is clear that the stock, bond and T-bill returns of most of the countries 

are stationary but serially dependent. The JB tests revealed that the return series are non-

normal. Similar properties of financial series are reported in the literature. To develop good 

volatility models these properties of financial returns series must be considered. In the 

following section, I provide univariate volatility model fitting for the stock returns series of 17 

countries. 

5.2.2 Univariate conditional mean and conditional variance in stock returns 

In this section, I evaluate the three most popular models of volatility for the 17 global stock 

returns. The estimated univariate volatility models are reported in the following tables. 

 Univariate ARMA-GARCH model 5.2.2.1

The univariate ARMA-GARCH model estimated by the normal log-likelihood method is 

reported below. The standard ARMA (1,1)-GARCH(1,1) is as follows:  

0 1 1 1 1 1, |t t t t t t t tr r h h z             

In 2
1 1 1 1 1|t t t th F h        , 1tF  is the set of information available at time 1t  .
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Table 5.7: Univariate ARMA(1,1)-GARCH(1,1) model estimation and model adequacy tests 

Parameter Australia Brazil Canada China France Germany HK India 

0  0.080*** 
(5.553) 

0.116** 
(2.840) 

0.051*** 
(4.528) 

0.008(.) 

(1.766) 
0.047** 
(2.824) 

0.078** 
(2.723) 

0.071*** 
(4.126) 

0.097** 
(3.270) 

1  –0.306* 
(–2.136) 

–0.038 
(–0.126) 

–0.012 
(–0.088) 

0.738*** 
(20.608) 

0.087 
(0.354) 

–0.025 
(–0.074) 

0.117 
(0.822) 

–0.210 
(–0.732) 

1  0.410** 
(2.983) 

0.069 
(0.229) 

0.096 
(0.698) 

–0.752*** 
(–22.211) 

–0.139 
(–0.571) 

0.049 
(0.146) 

–0.031 
(–0.214) 

0.246 
(0.862) 

  0.034*** 
(7.761) 

0.056*** 
(5.757) 

0.012*** 
(6.870) 

0.047*** 
(7.260) 

0.045*** 
(7.693) 

0.027*** 
(7.532) 

0.057*** 
(8.406) 

0.044*** 
103.118 

1  0.171*** 
(15.866) 

0.097*** 
(12.725) 

0.093*** 
(13.749) 

0.169*** 
(15.064) 

0.107*** 
(13.789) 

0.091*** 
(14.041) 

0.117*** 
(15.494) 

0.116*** 
(14.229) 

1  0.799*** 
(60.996) 

0.894 
(114.033) 

0.897*** 
(125.179) 

0.852*** 
(101.932) 

0.872*** 
(97.147 

0.895*** 
(124.675) 

0.862*** 
(102.919) 

0.873*** 
(103.118) 

LL –9772.842 –13340.96 –10084.28 –12979.62 –12357.2 –12859.97 –13602.61 –13915.99 
AIC 2.415 4.256 2.506 4.079 3.312 3.185 3.442 3.696 
BIC 2.420 4.262 2.512 4.086 3.318 3.190 3.447 3.702 
HQ 2.416 4.258 2.508 4.081 3.314 3.187 3.444 3.698 
LB-Q(10) 
χ2 test 

22.727 
[0.012] 

30.773 
[0.0006] 

11.009 
[0.356] 

91.764 
[2.44210–15 ] 

7.435 
[0.683] 

16.895 
[0.076] 

22.099 
[0.014] 

24.163 
[0.007] 

LB-Q2(10) 
χ2 test 

8.217 
[.607] 

20.036 
[0.028] 

10.350 
[0.410] 

2.398 
[0.992] 

9.769 
[0.461] 

8.235 
[0.605] 

209.514 
[0] 

25.428 
[0.004] 

ARCH(10) 
LM test 

8.424 
[0.751] 

22.464 
[0.032] 

11.563 
[0.481] 

3.111 
[0.994] 

12.422 
[0.412] 

9.537 
[0.656] 

218.471 
[0] 

26.127 
[0.010] 

JB-(2) 
χ2 test 

27906.91 
[0] 

454.129 
[0] 

7038.756 
[0] 

148968.4 
[0] 

1788.207 
[0] 

4627.85 
[0] 

9538.851 
[0] 

446.2351 
[0] 

Mean prediction Step 1 
Step2 
Step5 

0.031 
0.070 
0.061 

0.166 
0.110 
0.112 

0.065 
0.050 
0.050 

0.042 
0.039 
0.035 

0.044 
0.051 
0.052 

0.082 
0.076 
0.076 

0.165 
0.091 
0.081 

0.077 
0.081 
0.080 

Volatility prediction Step 1 
Step 2 
Step 5 

0.658 
0.674 
0.719 

1.493 
1.505 
1.542 

0.581 
0.588 
0.610 

0.956 
0.992 
1.094 

0.757 
0.779 
0.839 

0.773 
0.786 
0.821 

1.006 
1.024 
1.075 

0.964 
0.982 
1.033 
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Parameter 
Indonesia Japan Malaysia Mexico Singapore South 

Korea 
Thailand UK US 

0  0.008 
(0.856) 

0.063*** 
(3.579) 

0.021** 
(2.763) 

0.085*** 
(4.475) 

0.039(.) 
( 1.787) 

0.043*** 
(3.813) 

0.009 
(1.400) 

0.003** 
(2.744) 

0.013* 
(2.0780 

1  0.209** 
(2.648) 

–0.055 
(–0.260) 

0.269*** 
(3.906) 

–0.090 
(–0.772) 

–0.080 
(–0.185) 

0.514*** 
(5.568) 

0.665*** 
(3.859) 

0.932*** 
(42.382 

0.773*** 
(7.332) 

1  –0.042 
(–0.517) 

0.111 
(0.526) 

–0.114 
(–1.609) 

0.195(.) 
(1.697) 

0.098 
(0.227) 

–0.429*** 
(–4.395) 

–0.639*** 
(–3.608) 

–0.950*** 
(–50.119) 

–0.791*** 
(–7.542) 

  0.015*** 
(9.359) 

0.035*** 
(6.697) 

0.016*** 
(6.785) 

0.019*** 
(5.024) 

0.014*** 
(5.028) 

0.064*** 
(7.563) 

0.009*** 
(3.813) 

0.020*** 
(6.530) 

0.017*** 
(7.436) 

1  0.138*** 
(19.318) 

0.127*** 
(14.439) 

0.138*** 
(13.367) 

0.097*** 
(11.312) 

0.070*** 
(11.825) 

0.166*** 
(15.096) 

0.097*** 
(11.656) 

0.100*** 
(13.897) 

0.083*** 
(13.503) 

1  0.879*** 
(179.196 

0.862*** 
(95.775) 

0.866*** 
(93.387) 

0.897*** 
(103.826) 

0.926*** 
(154.578) 

0.823*** 
(76.375) 

0.902*** 
(117.386) 

0.885*** 
(108.820) 

0.902*** 
(127.987) 

LL –12070.16 –12713.18 –10938.33 –9414.376 –12932.3 –12730.69 –6152.553 –10864.04 –10680.23 
AIC 3.112 3.232 2.778 3.286 3.559 3.525 2.829 2.796 2.649 
BIC 3.117 3.238 2.784 3.293 3.565 3.531 2.838 2.802 2.654 
HQ 3.114 3.234 2.780 3.288 3.561 3.527 2.832 2.798 2.651 
LB-Q(10) 
χ2 test 

53.518 
[5.965 10–8 ] 

13.455 
[0.199] 

19.008 
[0.040] 

13.553 
[0.194] 

17.284 
[0.068] 

24.919 
[0.005] 

12.518 
[0.251] 

14.382 
[0.156] 

14.587 
[0.147] 

LB-Q2(10) 
χ2 test 

9.392 
[0.495] 

10.282 
[0.416] 

5.707 
[0.839] 

17.992 
[0.055] 

18.635 
[0.045] 

12.825 
[0.233] 

19.009 
[0.040] 

13.180 
[0.213] 

11.803 
[0.298] 

ARCH(10) 
LM test 

10.063 
[0.610] 

11.752 
[0.466] 

6.2623 
[0.902] 

22.161 
[0.035] 

20.330 
[0.061] 

13.561 
[0.329] 

22.495 
[0.032] 

19.031 
[0.087] 

12.700 
[0.391] 

JB-(2) 
χ2 test 

241872.1 
[0] 

12045.53 
[0] 

118442.5 
[0] 

982.748 
[0] 

1281.081 
[0] 

7259.249 
[0] 

577.589 
[0] 

2236.109 
[0] 

6743.346 
[0] 

Mean prediction Step 1 
Step 2 
Step 5 

0.343 
0.080 
0.011 

–0.029 
0.064 
0.059 

0.106 
0.050 
0.030 

0.142 
0.072 
0.078 

0.0362 
0.0364 
0.0364 

0.175 
0.134 
0.095 

0.037 
0.034 
0.029 

0.012 
0.014 
0.021 

0.070 
0.067 
0.064 

Volatility prediction Step 1 
Step 2 
Step 5 

1.289 
1.306 
1.358 

0.960 
0.973 
1.012 

0.517 
0.534 
0.581 

0.863 
0.872 
0.898 

0.673 
0.682 
0.709 

0.778 
0.815 
0.914 

0.596 
0.602 
0.622 

0.629 
0.641 
0.674 

0.567 
0.578 
0.607 

 
Note 1. Value in parentheses ( ) is the Student-t test statistic.  
Note 2. Value in [ ] is the significance level of the LB-Q, ARCH and JB tests.  
Note 3. ‘LB-Q(m)’ and ‘LB-Q2(m)’ are the m-th lag Ljung–Box test statistics applied to the original and squared standardised residuals.  
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Note 4. JB is the 1987 Jarque–Bera chi-square test with 2 degrees of freedom for normality of the original series.  
Note 5. LL is the log-likelihood function evaluated at the maximum.  
Note 6. ARCH(m) is the Engle (1982) LM test, which tests for the remaining ARCH effect.  

The estimated ARCH/GARCH parameters namely 1̂  and 1̂  are significant at the 1% level 

and have a positive sign for all returns series. Stability conditions ( 1ˆ 0  , 1̂ 0   and 

1 1̂ˆ 1   ) are satisfied by all series except those for China, Indonesia and Malaysia. The JB 

test results indicate that the residuals are non-normal. The model diagnostic LB-Q test 

identifies no serial correlation in the standardised residuals of the ARMA-GARCH models for 

Canada, France, Japan, Mexico, Thailand, UK and US at any conventional significance level. 

The LB-Q2 tests show no significant serial correlation in the standardised squared residuals of 

the models for Australia, Canada, China, France, Germany, Indonesia, Japan, Malaysia, South 

Korea, UK or US at any conventional significance level. Thus, I conclude that the standard 

ARMA-GARCH model for US, UK, JAPAN, Canada and France adequately describes the 

return series individually at conventional significance levels. There is no remaining ARCH 

effect revealed by the LM test in the conditional volatility model, at least at the 2% level of 

significance except for India and HK. For other countries there are mixed responses on the 

issue of model adequacy. For example, in the case of Australia, the variance function is 

correctly specified and the LR test indicates no remaining ARCH effect in the model, while 

the mean function suffers from serial correlation in the standardised residuals at the 1% level 

of significance. 

The prediction of the conditional volatility increases as the forecast horizon increases. This 

finding is consistent with properties of the prediction function of conditional volatility. For the 

model section, I employed the minimum AIC (or BIC or HQ), maximum log-likelihood and 

the 
1

ˆmin
T

t
t

h

  criteria. However, the univariate analyses above do not account for the 

conditional volatility of correlation between stock returns across countries, which is the 

subject of Chapter 6. 

 Univariate ARMA-GJR-GARCH model 5.2.2.2

An important issue in financial asset markets is so-called news information. The above 

SGARCH model cannot distinguish between asymmetric news information and the leverage 

effect. I now consider commonly used latent news information measured by utilising the 

Glosten et al. (1993) GJR-GARCH model. 
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The first order ARMA conditional mean and first order conditional volatility GJR-GARCH 

model takes the following forms respectively.  

0 1 1 1 1 1, |t t t t t t t tr r F h z             

12 2
1 1 1 1 1 1 1 1

1

1 if 0
| ;

0 if 0
t

t t t t t t t
t

h F d h d


     



     




      

 

The parameters are described in Chapters 3 and 4. For example,   measures the asymmetric 

(or leverage) effect of return shocks on conditional volatility. Information about   is vital for 

investors’ decision making purposes. In this case, I explore the effect of the latent variable on 

predicting financial risk. To test the asymmetric/leverage effect, I test 0 : 0H    versus

1 : 0H   . I used one-sided t tests on the coefficient  for asymmetric effects of return shocks 

on conditional volatility. All the econometric and statistical packages by default reports two-

tailed test values. Thus, care is needed in interpreting the test results for one-tailed tests as 

required in the current case. Table 5.8 provides results for the upper, that is the right-tailed 

test, of the parameter  . The parameters 1 , 1  and w  are restricted to 1 0  , 1 0   and 

0w  because of non-negativity of the th function (see Chapters 3 and 4). 

Table 5.8 shows the empirical values of various statistics for the ARMA-GJR-GARCH 

models of returns and volatilities of returns, for the 17 countries. The short- and long-run 

volatility parameters are significantly positive for all series except for the short-run parameter 

1  for the Thailand returns. The leverage effect tests conducted by the t test are all 

significantly positive except that for Indonesia. The LB-Q2 tests on the squared standardised 

residuals revealed that the conditional volatility function is correctly specified for all series 

except those of HK, India and Thailand. The LB-Q tests on the standardised residuals of the 

models reveal that the mean model adequately describes the first moment for the US, UK, 

Singapore, Mexico, Japan, France and Canada series. No remaining ARCH effect exists in the 

volatility models, with the exception of Thailand, India and HK by the ARCH-LM test. The 

prediction of conditional volatility increases as the forecast horizon increases. These tests 

reveal the correctness of the ARMA-GJR-GARCH model for estimation and prediction. A 

model comparison could be undertaken by utilising the LL, AIC, BIC, HQ and 
1

ˆmin
T

t
t

h
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criteria. However, these statistics do not take account of the conditional correlation between 

series. In this chapter I evaluate specification issues within univariate conditional volatility 

models only.  
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Table 5.8: ARMA(1,1)-GJR-GARCH(1,1) model estimation and model adequacy tests 

Parameter Australia Brazil Canada China France Germany HK India 

0  0.043*** 
(3.323) 

0.068* 
(2.276) 

0.029** 
(3.024) 

0.007 
(1.539) 

0.017 
(1.404) 

0.038 
(1.531) 

0.039** 
(2.737 

0.076** 
(2.883) 

1  –0.261 
(–1.617) 

0.098 
(0.356) 

0.051 
(0.390) 

0.736*** 
(20.214) 

0.007 
(0.035) 

0.196 
(0.425) 

0.221 
(1.544) 

–0.195 
(–0.688) 

1  0.365* 
(2.342) 

–0.061 
(–0.221) 

0.037 
(0.283) 

–0.751*** 
(–21.879) 

–0.052 
(–0.238) 

–0.167 
(–0.362) 

–0.134 
(–0.920) 

0.233 
(0.826) 

  0.036*** 
(8.861) 

0.0491*** 
(5.379) 

0.014*** 
(7.860) 

0.048*** 
(7.307) 

0.048*** 
(8.606) 

0.031*** 
(8.440) 

0.067*** 
(9.591) 

0.045*** 
(6.768) 

1  0.126*** 
(13.004) 

0.094*** 
(12.501) 

0.073*** 
(11.303) 

0.171*** 
(15.205) 

0.076*** 
(10.187) 

0.072*** 
(11.708) 

0.103*** 
(13.797) 

0.117*** 
(14.540) 

1  0.816*** 
(69.306 ) 

0.897*** 
(116.057) 

0.905*** 
(132.221) 

0.852*** 
(102.331) 

0.882*** 
(106.124) 

0.899*** 
(132.605) 

0.862*** 
(103.108) 

0.871*** 
(103.621) 

  0.354*** 
(10.783) 

0.162*** 
(6.963 

0.292*** 
(7.546) 

0.014 
(0.773) 

0.446*** 
(8.640) 

0.369*** 
(8.880) 

0.264*** 
(8.356) 

0.092*** 
(4.156) 

LL –9676.649 –13316.37 –10038.13 –12979.32 –12270.73 –12789.96 –13554.98 –13907.25 
AIC 2.391 4.248 2.495 4.079 3.289 3.168 3.431 3.694 
BIC 2.397 4.256 2.502 4.087 3.296 3.174 3.436 3.701 
HQ 2.393 4.251 2.497 4.082 3.292 3.170 3.433 3.696 
LB-Q(10) 
χ2 test 

20.897 
[0.0218] 

30.819 
[0.0006] 

11.041 
[0.354] 

94.706 
[6.66110–15] 

7.976 
[0.631] 

18.531 
[0.046] 

22.270 
[0.014] 

24.716 
[0.006] 

LB-Q2(10) 
χ2 test 

6.750 
[0.748] 

13.905 
[0.177] 

6.170 
[0.801] 

2.347 
[0.992] 

6.343 
[0.785] 

9.720 
[0.465] 

108.599 
[0.0] 

21.208 
[0.019] 

ARCH(10) 6.998 
[0.857] 

16.449 
[0.171] 

6.986 
[0.858] 

3.046 
[0.995] 

10.173 
[0.601] 

11.609 
[0.477] 

112.068 
[0.0000] 

21.676 
[0.041] 

JB-(2) 
χ2 test 

12724.52 
[0] 

390.9262 
[0] 

4313.566 
[0] 

154572.5 
[0] 

1242.339 
[0] 

3109.656 
[0] 

6755.355 
[0] 

422.119 
[0] 

Mean prediction Step 1 
Step 2 
Step 5 

0.013 
0.039 
0.034 

0.1427 
0.082 
0.076 

0.047 
0.031 
0.031 

0.038 
0.036 
0.032 

0.008 
0.018 
0.018 

0.051 
0.048 
0.047 

0.138 
0.069 
0.051 

0.061 
0.064 
0.064 

SD prediction Step 1 
Step 2 
Step 5 

0.598 
0.616 
0.664 

1.528 
1.541 
1.576 

0.586 
0.593 
0.613 

0.960 
0.995 
1.098 

0.739 
0.762 
0.824 

0.735 
0.749 
0.788 

1.070 
1.087 
1.132 

0.952 
0.971 
1.025 
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Parameter Indonesia Japan Malaysia  Mexico  Singapore South Korea Thailand UK US 

0  0.017(.) 
(1.796) 

0.023 
(1.606) 

0.015 (.) 
(1.876) 

0.046* 
(2.564) 

0.015 
(1.019) 

0.020* 
(2.312) 

–1.6610–3 

(–0.795) 
0.008 
(1.257) 

0.034 
(0.933) 

1  0.205** 
(2.584) 

0.071 
(0.247) 

0.278*** 
(4.084) 

–0.096 
(–0.768) 

0.017 
(0.046) 

0.573*** 
(6.686) 

–5.49810–2*** 
(–3.638) 

0.584(.) 
(1.955) 

0.117 
(0.126) 

1  –0.038 
(–0.475) 

–0.009 
(–0.034) 

–0.121(.) 
(–1.732) 

0.207(.) 
(1.688) 

0.004 
(0.011) 

–0.484*** 
(–5.234) 

–9.97810–1*** 
(–2190.871) 

–0.607* 
(–2.073) 

–0.116 
(–0.125) 

  0.013*** 
(8.831) 

0.038*** 
(7.958) 

0.017*** 
(6.818) 

0.020*** 
(5.484) 

0.014*** 
(5.070) 

0.069*** 
(8.065) 

7.456102 
(0.887) 

0.020*** 
(7.537) 

0.021*** 
(8.655) 

1  0.139*** 
(19.520) 

0.106*** 
(13.418) 

0.139*** 
(13.191) 

0.080*** 
(10.150) 

0.067*** 
(11.308) 

0.161*** 
(15.433) 

1.00010–8 
(NA) 

0.070*** 
(11.019) 

0.065*** 
(10.341) 

1  0.879*** 
(183.780) 

0.864*** 
(107.629) 

0.862*** 
(88.883) 

0.904*** 
(110.589) 

0.926*** 
(153.625) 

0.819*** 
(78.290) 

7.67510–1** 
(0.003) 

0.901*** 
(127.962) 

0.902*** 
(126.801) 

  –0.106 
(–6.315) 

0.381*** 
(11.397) 

0.062** 
(3.207) 

0.346*** 
(9.653) 

0.189*** 
(6.750) 

0.192*** 
(8.620) 

3.43810–2 
(0.793) 

0.408*** 
(9.489) 

0.434*** 
(8.637) 

LL –12050.17 –12607.36 –10933.09 –9346.327 –12906.75 –12690.01 –23747.46 –10779.19 –10602.87 
AIC 3.107 3.206 2.777 3.262 3.553 3.514 10.914 2.775 2.630 
BIC 3.113 3.212 2.784 3.271 3.559 3.521 10.924 2.781 2.636 
HQ 3.109 3.208 2.779 3.265 3.555 3.517 10.917 2.777 2.632 
LB-Q(10) 

2  test 

53.139 
[7.01310–8 ] 

15.545 
(0.113) 

18.545 
[0.046] 

11.028 
[0.355] 

15.797 
[0.105] 

22.798 
[0.011] 

8060.123 
[0] 

6.753 
[0.748] 

11.418 
[0.325] 

LB-Q2(10) 
2  test 

9.081 
[0.524] 

10.819 
[0.371] 

4.873 
[0.899] 

7.095 
[0.716] 

15.047 
[0.130] 

10.769 
[0.375] 

9926.007 
[0] 

13.742 
[0.185] 

11.803 
[0.298] 

ARCH(10) 
LM test 

9.706 
[0.642] 

12.136 
[0.434] 

5.323 
[0.946] 

10.270 
[0.592] 

17.204 
[0.142] 

11.897 
[0.453] 

3349.887 
[0] 

18.849 
[0.092] 

12.800 
[0.384] 

JB-(2) 
2  test 

199370.7 
[0] 

6308.532 
[0] 

138536.9 
[0] 

757.851 
[0] 

1171.989 
[0] 

5002.046 
[0] 

378.521 
[0] 

1647.593 
[0] 

6127.524 
[0] 

Mean prediction Step 1 
Step 2 
Step 5 

0.350 
0.089 
0.022 

–0.073 
0.018 
0.025 

0.101 
0.043 
0.021 

0.112 
0.035 
0.042 

0.014 
0.016 
0.016 

0.147 
0.105 
0.058 

–69.110 
3.798 
–0.002 

0.006 
0.012 
0.018 

0.0388 
0.0389 
0.0390 

SD prediction Step 1 
Step 2 
Step 5 

1.344 
1.363 
1.418 

1.027 
1.038 
1.072 

0.525 
0.542 
0.592 

0.908 
0.916 
0.941 

0.686 
0.695 
0.722 

0.765 
0.804 
0.909 

56.631 
56.631 
56.631 

0.594 
0.606 
0.639 

0.566 
0.578 
0.612 

 
Note 1. Value in parentheses ( ) is the Student-t test statistic.  
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Note 2. Value in [ ] is the significance level of the LB-Q, ARCH and JB tests.  
Note 3. ‘LB-Q(m)’ and ‘LB-Q2(m)’ are the m-th lag Ljung–Box test statistics applied to the original and squared standardised residuals. 
 Note 4. JB is the 1987 Jarque–Bera chi-square test with 2 degrees of freedom for normality of the original series.  
Note 5. LL is the log-likelihood function evaluated at the maximum.  
Note 6. ARCH(m) is the Engle (1982) LM test, which tests for the remaining ARCH effect.  
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In the next section, I deal with risk premium modelling in the univariate context using the 

Engle et al. (1987) GARCH-M model extended to univariate GJR-GARCH-M. This model is 

useful for determining the effect of risk premiums on generating financial returns. 

 Univariate ARMA-GJR-GARCH-M model 5.2.2.3

The first order conditional volatility GJR-GARCH in first order ARMA mean model 

ARMA(1,1)-GJR-GARCH-M takes the following form: 

0 1 1 1 1 ,t t t t t t t tr r h h z              

12 2
1 1 1 1 1 1 1

1

1 if 0
;

0 if 0
t

t t t t t t
t

h d h d


     



    




      

 

The parameter   measures the risk premium demanded by agents for holding risky assets. I 

expect  >0. Table 5.9 presents the estimated ARMA-GJR-GARH-M model including results 

of sign and size bias tests, and some diagnostics for model adequacy and volatility prediction. 

The model was estimated by the ML method. The short- and long-run return shocks are all 

significantly positive, satisfying the positivity requirement for the conditional volatility 

function for all models. The LB-Q and LB-Q2 tests conducted on the standardised residuals 

and squared standardised residuals respectively show that not all of the models adequately 

describe the first and second moments of the series jointly, as is evident from the significance 

levels for the LB-Q and LB-Q2 tests. Only the Canada, France, Mexico and US risk premium 

models adequately describe the first and second model jointly. Thus I do not reject the null 

hypothesis of no ARCH effect at the 1% level of significance for the series. I tested whether 

heteroscedasticity depends on both the sign and size of previous shocks, utilising the Engle 

and Ng (1993) test. I found significant positive shocks in France, Germany, Thailand, UK and 

US models at the 10% level of significance. However, significant negative effects were found 

for Australia, Brazil, Canada, Germany, HK, Indonesia and Singapore at the 10% level of 

significance. In addition to the above discussion (the conditional volatility model 

specification, stochastic behaviour of stock returns, and the relationship between stock market 

volatility and expected returns) I am required to check whether the return shocks are persistent 

or transitory. This can be checked using the summary provided in Table 5.10. 
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Table 5.9: ARMA(1,1)-GJR-GARCH(1,1)-M model estimation and model adequacy tests 

Parameter Australia Brazil Canada China France Germany HK India 

0  0.030 
(0.879) 

–0.247*** 
(–3.577) 

0.001 
(0.033) 

0.026 
(0.258) 

–0.046 
(–1.088) 

0.038 
(1.000) 

0.070 
(1.244) 

0.064 
(1.356) 

1  –0.258 
(–0.933) 

0.091 
(0.403) 

0.058 
(0.455) 

0.066 
(0.494) 

–0.039 
(–0.240) 

0.316 
(0.545) 

0.196 
(1.148) 

–0.197 
(–0.743) 

1  0.362 
(1.346) 

–0.055 
(–0.242) 

0.031 
(0.242) 

–0.123 
(–0.786) 

–0.002 
(–0.016) 

–0.288 
(–0.492) 

–0.109 
(–0.620) 

0.234 
(0.887) 

  0.005 
(0.116) 

0.199*** 
(4.998) 

0.042 
(1.269) 

0.006 
(0.088) 

0.059 
(1.616) 

0.008 
(0.256) 

–0.016 
(–0.367) 

–0.0003 
(–0.009) 

  0.036*** 
(3.262) 

0.058*** 
(3.959) 

0.014*** 
(3.452) 

0.069 
(1.534) 

0.051*** 
(4.900) 

0.031*** 
(4.456) 

0.066*** 
(3.539) 

0.046*** 
(4.322) 

1  0.053*** 
(3.473) 

0.068*** 
(7.689) 

0.037*** 
(4.205) 

0.143** 
(2.195) 

0.023** 
(2.264) 

0.028*** 
(3.353) 

0.056*** 
(5.284) 

0.096*** 
(8.735) 

1  0.816*** 
(18.708) 

0.895*** 
(72.247) 

0.904*** 
(49.809) 

0.852*** 
(16.951) 

0.879*** 
(61.818) 

0.898*** 
(81.431) 

0.862*** 
(36.885) 

0.871*** 
(68.133) 

  0.179*** 
(2.824) 

0.054*** 
(3.523) 

0.085*** 
(3.287) 

0.007 
(0.180) 

0.135*** 
(6.561) 

0.107*** 
(5.471) 

0.109*** 
(2.981) 

0.043*** 
(2.752) 

LL –9676.68 –13301.83 –10037.59 –13008.81 –12269.57 –12790.35 –13555.17 –13907.24 
AIC 2.3919 4.244 2.495 4.089 3.289 3.168 3.431 3.694 
BIC 2.3988 4.253 2.502 4.098 3.297 3.175 3.438 3.702 
HQ 2.3942 4.247 2.498 4.092 3.292 3.171 3.433 3.697 
LB-Q(5) 
χ2 test 

11.670 
[0.0000] 

4.254** 
[0.034] 

1.605 
[0.995] 

49.32*** 
[0.0000] 

1.501 
[0.998] 

3.829 
[0.101] 

4.899*** 
[0.004] 

5.970*** 
(0.000) 

LB-Q2(5) 
χ2 test 

3.328 
[0.350] 

6.971* 
[0.053] 

1.375 
[0.771] 

0.356 
[0.977] 

2.584 
[0.488] 

6.928* 
[0.054] 

101.37*** 
[0.000] 

9.008** 
[0.016] 

ARCH(5) 1.516 
[0.587] 

5.557* 
[0.076] 

1.131 
[0.694] 

0.658 
[0.835] 

1.208 
[0.672] 

1.895 
[0.494] 

1.325 
[0.639] 

1.235 
[0.664] 

Sign bias 1.674* 
[0.094] 

0.936 
[0.349] 

0.546 
[0.585] 

0.291 
[0.770] 

1.546 
[0.122] 

2.571** 
[0.001] 

0.980 
[0.326] 

1.169 
[0.242] 

–ve sign 2.683*** 
[0.007] 

1.744* 
[0.081] 

2.204** 
[0.027] 

1.015 
[0.309] 

1.336 
[0.181] 

2.346** 
[0.002] 

2.783*** 
[0.005] 

0.079 
[0.936] 

+ve sign 1.204 
[0.228] 

0.305 
[0.760] 

0.885 
[0.376] 

1.195 
[0.232] 

1.750* 
[0.080] 

2.188** 
[0.003] 

1.425 
[0.154] 

0.297 
[0.766] 

Joint test 8.674** 
[0.033] 

9.066** 
[0.028] 

7.005* 
[0.072] 

2.553 
[0.465] 

11.380*** 
[0.009] 

23.150*** 
[0.0000] 

11.341** 
[0.010] 

2.340 
[0.504] 
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Parameter Australia Brazil Canada China France Germany HK India 
JB 3538100*** 

[ 162.2 10 ] 

267820*** 

[ 162.2 10 ] 

219470*** 

[ 162.2 10 ] 

3263100*** 

[ 162.2 10 ] 

11732*** 

[ 162.2 10 ] 

9658.1*** 

[ 162.2 10 ] 

883300 

[ 162.2 10 ] 

6852 

[ 162.2 10 ] 

 

Parameter Indonesia Japan Malaysia Mexico Singapore South Korea Thailand UK US 

0  –0.038 
(–1.062) 

0.102** 
(2.338) 

–0.032 
(–0.890) 

–0.025 
(–0.596) 

–0.042 
(–1.121) 

0.126** 
(2.241) 

–0.001 
[–0.028] 

–0.022 
(–0.777) 

–0.013 
(–0.441) 

1  0.219** 
(2.260) 

–0.016 
(–0.044) 

0.282*** 
(4.446) 

–0.063 
(–0.529) 

0.015 
(0.044) 

0.509*** 
(6.132) 

0.750*** 
(6.635) 

0.320 
(0.568) 

0.727*** 
(19.895) 

1  –0.056 
(–0.597) 

0.074 
(0.203) 

–0.125* 
(–1.892) 

0.176 
(1.463) 

0.005 
(0.016) 

–0.419*** 
(–4.762) 

–0.720*** 
(–6.141) 

–0.344 
(–0.615 

–0.730*** 
(–19.278) 

  0.081*** 
(2.685) 

–0.076 
(–1.912) 

0.074* 
(1.911) 

0.067* 
(1.734) 

0.052* 
(1.688) 

–0.066 
(–1.493) 

0.009 
(0.250) 

0.050 
(1.543) 

0.067* 
(1.880) 

  0.019 
(0.973) 

0.034*** 
(3.058) 

0.019** 
(2.326) 

0.022*** 
(3.194) 

0.015* 
(1.928) 

0.066*** 
(3.386) 

0.007** 
(2.493) 

0.021*** 
(4.867) 

0.022*** 
(4.518) 

1  0.138*** 
(4.629) 

0.040*** 
(3.816) 

0.120*** 
(4.293) 

0.034*** 
(3.591) 

0.044*** 
(3.319) 

0.105*** 
(6.152) 

0.039*** 
(3.518) 

0.024*** 
(2.575) 

0.021*** 
(2.771) 

1  0.883*** 
(24.424) 

0.867*** 
(35.389) 

0.862*** 
(32.352) 

0.901*** 
(53.539) 

0.925*** 
(47.325) 

0.820*** 
(28.572) 

0.913*** 
(75.175) 

0.898*** 
(70.411) 

0.899*** 
(65.490) 

  –0.045*** 
(–1.602) 

0.166*** 
(3.843) 

0.0326 
(0.832) 

0.109*** 
(4.441) 

0.049*** 
[3.414] 

0.125*** 
(3.201) 

0.087*** 
(4.852) 

0.115*** 
(5.980) 

0.110*** 
(4.818) 

LL –12065.87 –12605.03 –10931.02 –9344.938 –12905.4 –12691.81 –6124.009 –10778.45 –10601.22 
AIC 3.111 3.205 2.777 3.262 3.553 3.515 2.817 2.775 2.630 
BIC 3.118 3.212 2.784 3.272 3.560 3.523 2.829 2.782 2.637 
HQ 3.113 3.208 2.779 3.266 3.555 3.518 2.821 2.777 2.632 
LB-Q(5) 
χ2 test 

16.688*** 
[0.000] 

0.5591 
[1.000] 

12.294*** 
[0.0000] 

2.368 
[0.843] 

2.046 
[0.948] 

8.208* 
[0.000] 

2.839 
[0.574] 

1.763 
[0.987] 

1.993 
[0.959] 

LB-Q2(5) 
χ2 test 

9.560** 
[0.012] 

7.122** 
[0.048] 

2.365 
[0.535] 

2.925 
[0.420] 

6.501* 
[0.068] 

5.796 
[0.100] 

7.223** 
[0.0457] 

11.46*** 
[0.003] 

2.846 
[0.435] 

ARCH(5) 0.3489 
[0.927] 

0.2860 
[0.944] 

0.869 
[0.772] 

1.628 
[0.559] 

4.132 
[0.162] 

2.203 
[0.427] 

8.195** 
[0.018] 

0.446 
[0.899] 

1.3362 
[0.636] 

Sign bias 0.145 
[0.884] 

0.831 
[0.405] 

0.051 
[0.959] 

0.796 
[0.425] 

1.014 
[0.310] 

0.560 
[0.575] 

0.247 
[0.804] 

0.647 
[0.517] 

2.193** 
[0.028] 

–ve sign 1.782* 0.351 0.719 0.805 1.738* 0.036 0.545 0.636 1.484 
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Parameter Indonesia Japan Malaysia Mexico Singapore South Korea Thailand UK US 
[0.074 [0.724] [0.471] [0.420] [0.082] [0.971] [0.585] [0.524] [0.137] 

+ve sign 1.486 
[0.137] 

1.030 
[0.302] 

0.971 
[0.331] 

1.481 
[0.138] 

1.909* 
[0.056] 

0.464 
[0.642] 

1.999** 
[0.045] 

1.819* 
[0.068] 

2.157** 
[0.031] 

Joint test 5.569 
[0.134] 

5.957 
[0.113] 

1.507 
[0.680] 

9.731** 
[0.021] 

9.045** 
[0.028] 

0.454 
[0.928] 

4.638 
[0.200] 

10.534** 
[0.014] 

19.158*** 
[0.0002] 

JB(2) 1171200 
[2.210–16] 

18031 
[2.210–16] 

673100 
[2.210–16] 

13124 
[2.210–16] 

5684.8 
[2.210–16] 

16714 
[2.210–16] 

35598 
 [2.210–16] 

34100 
[2.210–16] 

50124 
[2.210–16] 

 
Note 1. Value in parentheses ( ) is the Student-t test statistic.  
Note 2. Value in [ ] is the significance level of the LB-Q, ARCH and JB tests.  
Note 3. ‘LB-Q(m)’ and ‘LB-Q2(m)’ are the m-th lag Ljung–Box test statistics applied to the original and squared standardised residuals. 
Note 4. JB is the 1987 Jarque–Bera chi-square test with 2 degrees of freedom for normality of the original series.  
Note 5. LL is the log-likelihood function evaluated at the maximum.  
Note 6. ARCH(m) is the Engle (1982) LM test, which tests for the remaining ARCH effect.  

Note 7. 1
1

1 if 0

0 otherwise
t

td
 




 


 is the sign bias variable; 1 1 1 1 1 11 , var var et t t t t td d d is the negative size bias iable and d is the ne    
        is the negative size bias variable; and1 1 1 1 1 11 , is the negative size biasvariable and is the nt t t t t tI I I d    

       is the negative size variable,  

2
0 1 1 2 1 1 3 1 1t̂ t t t t t ta a d a d a d     

         , where t  is the regression residuals 
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Table 5.10: Summary of the short- and long-run parameter effects of return shocks on 

volatility GARCH-M models 

Country GARCH 

1 1   
GJR-
GARCH

1 1 2

    

GJR-
GARCH-M 

1 1 2

    

GJR-
GARCH-M 

1   

Half-
life 

GJR-
GARCH-
M 
    

Australia 0.971 1.119 0.958 0.232 0.47 √ × 
Brazil 0.991 1.072 0.990 0.122 0.33 √ √ 
Canada 0.99 1.124 0.983 0.122 0.33 √ × 
China 1.02 1.030 0.998 0.150 0.36 × × 
France 0.979 1.182 0.969 0.158 0.37 √ × 
Germany 0.986 1.155 0.979 0.135 0.35 √ × 
HK 0.979 1.097 0.972 0.165 0.38 √ × 
India 0.989 1.034 0.988 0.139 0.35 √ × 
Indonesia 1.02 0.965 0.998 0.093 0.29 √ √ 
Japan 0.989 1.400 0.990 0.206 0.44 √ × 
Malaysia 1.00 1.030 0.998 0.153 0.37 × √ 
Mexico 0.994 1.157 0.989 0.143 0.36 √ √ 
Singapore 0.996 1.087 0.994 0.093 0.29 √ √ 
South Korea 0.989 1.076 0.988 0.23 0.47 √ × 
Thailand 0.999 0.780 0.996 0.126 0.33 √ × 
UK 0.985 1.175 0.979 0.139 0.35 √ × 
US 0.985 1.184 0.974 0.131 0.34 √ √ 
 
Note 1. The half-life of a volatility shock was computed using the formula 

1log (0.5) / log ( )e e   . The half-life 

of the return shock is the time required for half of the shock to decay.  
Note 2. √ indicates significance at the 1% level and × indicates insignificance. 

For the GARCH (1,1) model, 1 1   is fairly close to 1. This phenomenon is commonly 

observed in practice. However, 1 1 1    was documented for China, Indonesia and 

Malaysia, indicating return shocks to volatility persist for these countries. The GJR-GARCH 

model is violating convergence for all the return series except those of Indonesia and 

Thailand. The GJR-GARCH-M model, however, documented convergence for all returns. The 

risk premium parameter   is mostly positive, but not significantly so (×). A significant   

was found for Brazil, Indonesia, Malaysia, Mexico, Singapore and US. Theodossiou and Lee 

(1995) reported an insignificant risk premium in their GARCH-M model for Australia, 

Belgium, Canada, France and Italy. The half-life of a volatility shock is 0.47 days for 

Australia and 0.29 days for Singapore and Indonesia. All the other country half-life values are 

bounded by these two values. I now present graphs of volatility persistence of return shocks 
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for all 17 countries under three different volatility models. The graphs display volatility 

persistence with reference to GJR-GARCH, GJR-GARCH-M and GARCH models. 

 

Figure 5.1: GARCH volatility persistence ordered according to country 

 

 

Figure 5.2: GJR volatility persistence ordered according to country 
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Figure 5.3: GJR-GARCH-M volatility persistence ordered according to country 

Figure 5.1 show that Australia has the smallest volatility persistence of return shocks and 

Indonesia has the highest. UK and US show similar volatility persistence. Figure 5.2 shows 

that Thailand has the smallest volatility persistence and Japan has the highest, in the GJR-

GARCH model of return shock. All other countries’ volatility persistence lie between those of 

Thailand and Japan. Figure 5.3 displays volatility persistence patterns resulting from return 

shocks, which are the smallest for Australia and the largest for Malaysia in the GJR-GARCH-

M model. The issue of volatility persistence could be used to explore trading options in 

financial markets. 

So far I have discussed the results regarding univariate conditional volatility assuming normal 

innovation (shock) distribution. Bollerslev (1987) argued for the use of Student-t innovation 

for modelling the conditional volatility of stock returns series on the grounds that financial 

series often display thick-tailed distributions. Further to the choice of innovation distribution 

is consideration of both the skewness and kurtosis properties for volatility modelling of 

returns series. These two properties jointly can be modelled by the skewed Student-t 

distribution (see Hansen, 1994). In the following section I estimate ARMA-GARCH volatility 

models utilising Student-t and skewed Student-t innovation distributions and compare the 

predicted standard deviations for the three innovation distributions. 
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Table 5.11: ARMA-GARCH model estimation under Student-t innovation with unknown degrees of freedom 

Parameter Australia Brazil Canada China France Germany HK India 

0  0.064*** 
(4.859) 

0.134** 
(2.769) 

0.061*** 
(5.421) 

0.011** 
(2.860) 

0.018* 
(2.152) 

0.113*** 
(4.416) 

0.079** 
(2.689) 

0.095*** 
(3.367) 

1  –0.066 
(–0.410) 

–0.131 
(–0.375) 

–0.086 
(–0.734) 

0.824*** 
(29.327) 

0.721*** 
(5.838) 

–0.274 
(–1.146) 

0.046 
(0.147) 

–0.160 
(–0.597) 

1  0.156 
(0.979) 

0.160 
(0.460) 

0.174 
(1.502) 

–0.788*** 
(–29.716) 

–0.759*** 
(–6.548) 

0.301 
(1.265) 

0.008 
(0.027) 

0.199 
(0.746) 

w  0.014*** 
(5.359) 

0.055*** 
(5.142) 

0.008*** 
(5.213) 

0.055*** 
(5.032) 

0.027*** 
(5.174) 

0.014*** 
(4.839) 

0.034*** 
(5.986) 

0.038*** 
(5.539) 

1  0.083*** 
(10.146) 

0.091*** 
(10.828) 

0.072*** 
(10.046) 

0.150*** 
(10.050) 

0.090*** 
(10.894) 

0.082*** 
(11.951) 

0.078*** 
(10.603) 

0.112*** 
(12.513) 

1  0.898*** 
(91.363) 

0.899*** 
(9.163) 

0.918 
(117.607) 

0.856*** 
(71.026) 

0.898*** 
(100.378) 

0.912*** 
(130.893) 

0.906*** 
(109.380) 

0.879*** 
(96.805) 

shape  7.797*** 
(13.260) 

10.000*** 
(9.163) 

7.133*** 
(13.633) 

4.353*** 
(17.971) 

7.404*** 
(12.838) 

7.849*** 
(12.727) 

6.623*** 
(14.601) 

9.468*** 
(10.412 

LL –9494.069 –13273.07 –9866.347 –12391.27 –12197.95 –12667.65 –13324.77 –13830.83 
LB-Q(10)  18.609 

[0.045] 
32.552 
[0.000] 

10.899 
[0.365] 

33.588 
[0.000] 

17.838 
[0.057] 

16.748 
[0.080] 

31.593 
[0.000] 

23.231 
[.009] 

LB-Q2 (10) 10.398 
[0.406] 

23.956 
[0.007] 

17.483 
[0.064] 

1.622 
[0.998] 

13.563 
[0.194] 

8.240 
[0.605] 

348.250 
[0] 

27.328 
[0.002) 

ARCH(10) 10.541 
[0.568] 

25.959 
[0.011] 

18.122 
[0.112] 

2.032 
[0.999] 

16.945 
[0.151] 

9.598 
[0.651] 

366.204 
[0] 

28.165 
[0.005] 

AIC 2.346 4.234 2.453 3.895 3.270 3.138 3.372 3.673 
BIC 2.352 4.242 2.459 3.902 3.276 3.144 3.378 3.680 
HQ 2.348 4.234 2.455 3.897 3.272 3.140 3.374 3.676 
Mean prediction        
Step 1 0.063 0.170 0.073 0.028 0.066 0.099 0.136 0.079 
Step 2 0.060 0.112 0.055 0.034 0.066 0.086 0.085 0.083 
Step 5 0.060 0.119 0.057 0.046 0.066 0.088 0.083 0.082 
Volatility prediction        
Step 1 0.673 1.501 0.589 0.972 0.764 0.782 0.987 0.958 
Step 2 0.678 1.513 0.594 1.003 0.777 0.789 0.997 0.974 
Step 5 0.691 1.546 0.608 1.092 0.815 0.810 1.024 1.020 
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Parameter Indonesia Japan Malaysia Mexico Singapore South Korea Thailand UK US 

0  0.022*** 
(4.244) 

0.063** 
(3.261) 

0.032*** 
(4.115) 

0.094*** 
(4.914) 

0.046* 
(2.032) 

0.041*** 
(3.631) 

0.014 
(0.5270 

0.004* 
(2.215) 

0.014* 
(2.412) 

1  0.422*** 
(5.579) 

–0.107 
(–0.428) 

0.192* 
(2.290) 

–0.159 
(–1.442) 

–0.081 
(–0.203) 

0.495*** 
(4.859) 

0.660 
(1.036) 

0.914*** 
(25.533) 

0.799*** 
(9.921) 

1  –0.280*** 
(–3.488) 

0.149 
(0.596) 

–0.051 
(–0.602) 

0.257* 
(2.385) 

0.103 
(0.257) 

–0.424*** 
(–4.012) 

–0.657 
(–1.027) 

–0.934*** 
(–29.394) 

–0.825*** 
(–10.615) 

w  0.004*** 
(4.124) 

0.020*** 
(5.094) 

0.016*** 
(5.738) 

0.018*** 
(4.365) 

0.013*** 
(3.824) 

0.056*** 
(6.226) 

0.008*** 
(3.502) 

0.016*** 
(5.493) 

0.011*** 
(5.240) 

1  0.286*** 
(10.618) 

0.102*** 
(12.544) 

0.151*** 
(10.995) 

0.085*** 
(9.602) 

0.078*** 
(9.837) 

0.141*** 
(11.815) 

0.088*** 
(8.795) 

0.086*** 
(11.220) 

0.075*** 
(10.580) 

1  0.813*** 
(69.608) 

0.892*** 
(111.392) 

0.851*** 
(71.627) 

0.907*** 
(101.701) 

0.919*** 
(118.001) 

0.844*** 
(70.891) 

0.909*** 
(96.714) 

0.901*** 
(105.996) 

0.915*** 
(121.953) 

shape  3.297*** 
(23.181) 

7.643*** 
(13.116) 

4.899*** 
(18.516) 

6.736*** 
(11.596) 

8.564*** 
(11.314) 

6.142*** 
(14.671) 

6.926*** 
(10.008) 

7.867*** 
(12.319) 

5.884*** 
(15.185) 

LL –10949.1 –12495 –10373.69 –9292.6 –12811.73 –12473.38 –6066.577 –10706.14 –10409.46 
LB-Q(10)  49.624 

[0.000] 
17.702 
[0.060] 

33.219 
[0.000] 

15.267 
[0.123] 

16.701 
[0.081] 

34.508 
[0.000] 

17.808 
[0.058] 

15.214 
[0.124] 

19.473 
[0.034] 

LB-Q2(10)  2.416 
[0.992) 

11.817 
[0.297] 

4.957 
[0.893] 

23.643 
[0.008] 

15.075 
[0.129] 

14.255 
[0.162] 

22.412 
[0.013] 

22.388 
[0.013] 

11.897 
[0.292] 

ARCH(10) 2.755 
[0.997] 

12.968 
[0.371] 

5.542 
[0.937] 

27.273 
[0.007] 

17.253 
[0.140] 

14.795 
[0.253] 

26.073 
[0.010] 

28.334 
[0.005] 

12.917 
[0.375] 

AIC 2.823 3.177 2.635 3.244 3.526 3.454 2.790 2.756 2.582 
BIC 2.829 3.184 2.641 3.252 3.533 3.461 2.801 2.763 2.588 
HQ 2.825 3.179 2.637 3.247 3.529 3.457 2.794 2.758 2.584 
Mean prediction         
Step 1 0.377 –0.008 0.104 0.140 0.043 0.154 0.043 0.012 0.082 
Step 2 0.181 0.064 0.053 0.071 0.043 0.117 0.042 0.016 0.079 
Step 5 0.048 0.057 0.041 0.081 0.043 0.086 0.042 0.024 0.075 
Volatility prediction         
Step 1 1.599 0.952 0.502 0.886 0.652 0.776 0.605 0.636 0.550 
Step 2 1.678 0.959 0.518 0.894 0.661 0.806 0.611 0.645 0.558 
Step 5 1.938 0.983 0.565 0.916 0.687 0.889 0.629 0.671 0.573 
Note 1. Value in parentheses ( ) is the Student-t test statistic.  
Note 2. Value in [ ] is the significance level of the LB-Q, ARCH and JB tests.  
Note 3. ‘LB-Q(m)’ and ‘LB-Q2(m)’ are the m-th lag Ljung–Box test statistics applied to the original and squared standardised residuals.
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Note 4. JB is the 1987 Jarque–Bera chi-square test with 2 degrees of freedom for normality of the original series. 
Note 5. LL is the log-likelihood function evaluated at the maximum.  
Note 6. ARCH(m) is the Engle (1982) LM test, which tests for the remaining ARCH effect.  

 

 ARMA-GARCH with Student-t innovation 5.2.2.4

I use the following first order ARMA conditional mean and conditional volatility models 

under the Student-t innovation of the return series. The ARMA(1,1)-GARCH(1,1) model 

takes the following form: 

0 1 1 1 1t t t tr r         , 1| ~ Student with unknown shape parametert tF t  ~ Student-t with unknown shape parameter 

2
1 1 1 1t t th w h       

Table 5.11 provides the ARMA-GARCH model estimation under Student-t innovation with 

unknown degrees of freedom. The estimated ARCH/GARCH parameters 1̂  and 1̂  are 

significant at the 1% level and have a positive sign for all returns series. Stability conditions, 

that is, 1
ˆ 0  , 1̂ 0   and 1 1̂ˆ 1   , are satisfied by all series except those for China, 

Indonesia and Malaysia. The JB test indicates that the residuals are non-normal. The t-

innovation distribution produced similar findings to Gaussian innovation. The standardised 

residuals are serially uncorrelated for Japan, Mexico, Singapore, Thailand, UK and Canada. 

Also, the standardised squared residuals are serially uncorrelated for Indonesia, Japan, 

Thailand, UK, Australia, China, France and Germany. The volatility model adequately 

describes the conditional volatility. However noticeable differences were found in volatility 

prediction between the same models with different innovations. I consider the skewed-t 

innovation in the GARCH volatility model for all 17 countries in the next section. 

 ARMA-GARCH with skewed Student-t distribution 5.2.2.5

The skewed Student-t distribution was presented in Chapter 3. Table 5.12 describes the 

parameter estimates and diagnostic tests of the model. 
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Table 5.12: ARMA-GARCH-t model estimation and diagnostics 

Country Parameter  Diagnostic statistics 

0   1    1        1   1  Skewed 
Student
-t     

Student
-t shape 

ARC
H 

JB-Q 
(10)  

LB-
Q2(10) 

1-step 
mean 

1-step 
SD 

LL 

Australia 0.06*** –0.17 0.26 0.01*** 0.08*** 0.90*** 0.90** 8.2*** 10.63 22.45 10.48 0.04 0.67 –9477.45 
Brazil 0.13*** –0.26 0.28 0.05*** 0.09*** 0.90*** 0.94*** 10.0*** 26.12 34.02 24.10 0.15 1.50 –13267.76 
Canada 0.04** –0.14 0.23 0.008*** 0.07*** 0.92*** 0.9*** 7.5 18.14 13.08 17.47 0.06 0.59 –9847.60 
China 0.006 –0.82 –0.78 0.05*** 0.15*** 0.85*** .95*** 4.36*** 2.13 34.59 1.7 0.008 0.968 –12387.09 
France 0.01** 0.74*** –0.79*** 0.02*** 0.08*** 0.90*** 0.87*** 7.98*** 17.96 29.77 14.59 0.03 0.77 –12167.93 
Germany 0.09*** –0.34 0.36 0.01*** 0.08*** 0.91*** 0.90*** 8.37*** 9.69 18.12 8.47 0.08 0.79 –12646.96 
HK 0.08* –0.06 0.12 0.03*** 0.08*** 0.90*** 0.96*** 6.7*** 366.02 32.90 348.03 0.13 0.99 –13321.63 
India 0.09** –0.19 0.23*** 0.04*** 0.11*** 0.88*** 0.97*** 9.53*** 28.22 23.72 27.40 0.07 0.96 –13828.75 
Indonesia 0.02*** 0.42*** –0.28*** 0.004*** 0.28*** 0.81*** 0.99*** 3.30*** 2.76 50.16 2.42 0.37 1.60 –10948.92 
Japan 0.06** –0.22 0.26 0.02*** 0.10*** 0.89*** 0.95 7.76 12.82 20.07 11.68 –0.008 0.95 –12490.27 
Malaysia 0.04*** 0.20* –0.06 0.02*** 0.15*** 0.85*** 1.02*** 4.88*** 5.48 32.16 4.89 0.11 0.50 –10372.00 
Mexico 0.08*** –1.8 0.28* 0.02*** 0.08*** 0.90*** 0.96*** 6.85*** 26.82 16.34 23.11 0.13 0.89 –9290.41 
Singapore 0.04 –0.19 0.21 0.012*** 0.079*** 0.92*** 0.94*** 8.65*** 17.11 17.63 14.89 0.03 0.65 –12805.18 
SK 0.04*** 0.48*** –0.41*** 0.06*** 0.14*** 0.84*** 0.97*** 6.19*** 14.71 36.61 14.18 0.14 0.78 –12471.87 
Thailand 0.002 0.93*** 0.93*** 0.008*** 0.08*** 0.91*** 0.90*** 7.3*** 26.68 23.80 23.10 0.03 0.60 –6055.498 
UK 0.005* 0.86*** –0.89*** 0.02*** 0.08*** 0.90*** 0.90*** 0.82*** 30.01 25.80 24.14 –0.02 0.64 –10687 
US 0.010** 0.81*** –084*** 0.01*** 0.07*** 0.92*** 0.93*** 6.1** 13.34 25.87 12.36 0.07 0.55 –10396.87 
Note 1. Value in parentheses ( ) is the Student-t test statistic.  
Note 2. Value in [ ] is the significance level of the LB-Q, ARCH and JB tests.  
Note 3. ‘LB-Q(m)’ and ‘LB-Q2(m)’ are the m-th lag Ljung–Box test statistics applied to the original and squared standardised residuals. 
Note 4. JB is the 1987 Jarque–Bera chi-square test with 2 degrees of freedom for normality of the original series. 
Note 5. LL is the log-likelihood function evaluated at the maximum.  
Note 6. ARCH(m) is the Engle (1982) LM test, which tests for the remaining ARCH effect.  
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The estimated shape parameter is significant in all cases. Similar to the previous distributions, 

the skewed-t-innovation GARCH model 1 1̂̂   is quite close to 1. This phenomenon is 

commonly observed in practice. However, those of China, Indonesia and Malaysia exceed 1 

indicating volatility persistence, i.e. any return shock persists for these countries. The 

skewness parameter  of the skewed-t innovation GARCH model is significant for all 

countries. The models adequately describe the data with some reservations. In the case of 

Japan the parameter   is insignificant. However, a significant difference is evident in the 

volatility predictions. The graphs in Figure 5.4 compare the volatility prediction of the 

SGARCH under different innovation distributions. 

Figure 5.4: Forecast comparison GARCH models of stock returns under different 

innovations 
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Note 1: n indicate normal, t for student-t and skt indicate skewed student-t 

 Figure 5.4 compares the forecast volatility using GARCH with normal, Student-t and skewed 

Student-t innovation for stock returns series, which reveals the following characteristics. 

Forecast volatility of the Australia stock returns captures most of the variation with skewed-t 

innovation. Volatility converges to approximately 3% for the chosen 200 forecast horizon, 

whereas under the normal innovation prediction, volatility converges to 1 as the forecast 

horizon increases. For the HK volatility prediction, skewed-t captures most of the tail 
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thickness of the return series. Prediction volatility converges to approximately 4.5% as the 

forecast horizon increases, in the skewed Student-t distribution. For Japan, volatility 

prediction under skewed Student-t innovation increases as the forecast horizon increases and 

converges to approximately 5% as the forecast horizon increases. Volatility prediction for UK 

stock returns converges to around 3.5% as the forecast horizon increases. For US stock returns 

the prediction volatility converges to approximately 3.2% as the forecast horizon increases, 

according to skewed-t-innovation. 

Among the five advanced stock markets, according to the return volatility predicted using the 

GARCH specification with skewed-t-innovation, Japan has the highest volatility as its 

forecast horizon increases, followed by HK, UK, US and then Australia. The other innovation 

distributions, such as the Gaussian and Student-t distributions capture comparatively less 

volatility. Financial volatility is an unobservable phenomenon and the return series have 

second and fourth moments with the highest concentration in the tail of the probability 

distribution with excess kurtosis, which indicates that the skewed Student-t distribution might 

have captured the volatility clustering and asymmetry of returns series by the GARCH 

skewed-t in all five advanced financial stock market volatilities. However, one important 

limitation with the GARCH is that leverage effects cannot be isolated by the GARCH skewed 

Student-t distribution. One could use GJR-GARCH for forecasting volatility considering 

leverage effects under a skewed Student-t innovation distribution. However, the results did 

not consider interactions among the stock markets. The interdependence among financial 

markets is discussed in Chapter 6. 

5.3 Conclusion 

This chapter dealt with univariate GARCH-type return volatility models. I considered three 

popular models of volatility: SGARCH, GJR-GARCH and GJR-GARCH-M models. I dealt 

with model specification issues including the functional form of unobservable volatility and 

modelling issues in joint description of the relationship between stock market volatility and 

expected stock returns for 17 stock markets. I estimated models using the ML method. In all 

cases I found volatility persistence. The implications of these findings are that any return 

shock on volatility persists. The short- and the long-run volatility parameters are statistically 

significant. The asymmetry or leverage parameter of the models was found to be significant, 

implying a significant leverage effect in the GARCH model. I tested for sign bias and size 

bias of the asymmetric volatility and found mixed results using F tests. 
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The leverage parameter   in the GARCH-M model is significant for all countries except 

China and Malaysia. However, the risk premium parameter   in the GARCH-M model is 

statistically non-significant; nevertheless, it has a positive sign (as volatility increases returns 

also increase), consistent with theory. The volatility predictions from each country’s returns 

were found to be finite. I also compared the prediction volatility of GARCH specification 

with different return innovation distributions. The skewed Student-t captures more volatility 

than the Student-t and normal innovations. One drawback with the univariate analysis of 

financial markets is that the interdependence between volatilities and correlation of volatilities 

cannot be understood. This is the subject of Chapter 6. 
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Chapter 6: Multivariate Asset Returns and Volatility 

6.1 Introduction 

In this chapter, I extend the univariate financial asset to a multivariate set of assets and 

empirically investigate patterns of dependence among assets returns across financial markets 

locally and globally. Specifically, the first and second conditional moments of the DGP are of 

interest for joint investigation of the multivariate financial data for two reasons. First, at least 

the first two moments of a DGP are required to construct the probability distribution of a 

stochastic process statistically. Second, from the financial applications point of view, the first 

conditional moment determines a vector of ‘returns’ and the matrix of second central 

moments determines a measure of ‘risk’ of holding and trading assets in financial markets. 

Since variance is usually unknown, various types of measure of volatility are addressed in the 

literature. These include implied volatility, realised volatility and conditional volatility as 

mentioned in Chapter 4. Starting with the Engle–Kroner BEKK model developed in 1995 for 

the multivariate volatility (i.e. second central moment) and multivariate VARMA mean (i.e. 

first moment). This chapter specifies various forms of conditional expected returns and 

volatility of returns for addressing financial market issues for example, interdependence, 

causality, co-volatility and spillover effects, both locally and globally by applying valid 

statistical inference. 

A range of methodological novelties are applied here to the multivariate context namely, 

conditional DBEKK volatility, VAR, PVAR, nonparametric dependence and copula links to 

specify and estimate multivariate risk-return (or mean variance) models in real applications. 

The models are estimated and hypotheses tested using highly sophisticated statistical methods 

for inferential purposes to address the research questions of interest as presented in Chapter 1. 

Various estimation techniques are utilised for estimation purposes; in particular the QML, 

GMM, OLS and SUR methods. I extend the definition of co-volatility to multivariate 

asymmetric volatility models. The volatility risk premium model of the conditional mean is 

tested for the applicability of the general concept of the RE hypothesis in finance. I develop a 

variant of the Wald test for partial co-volatility and asymmetric co-volatility spillover tests 

jointly by utilising a novel asymptotic chi-square test. I conduct covariance dependence tests 

using asymptotic chi-square tests. Granger causality-type return spillovers; aggregate forecast 
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volatility spillover effects across markets; nonparametric correlation and covariance tests; and 

contagion effects tests are conducted in the multivariate framework. 

This chapter is organised as follows. Section 6.2 addresses RQ1: ‘Do volatilities of returns 

spillover symmetrically?’ I address RQ2, ‘Do risk premiums exist in international financial 

markets?’ in Section 6.3. RQ3, ‘Does the severity of crisis affect asset markets globally?’ is 

discussed in Sections 6.4 and 6.5. Section 6.6 explores RQ4: ‘Are financial returns dependent 

across countries?’ and finally, Section 6.7 summarises the chapter. 

6.2 The VAR-DBEKK-GJR-GARCH Model 

To address RQ1, I specify a multivariate risk-return model as follows. The conditional mean 

model is: 

1 0 1 1|t t t tr F r                                   (6.1) 

where tr  is a vector of asset returns of order (N  1); 1tF is the set of information available at 

time 1t ; tz is a vector of random variables of order (N  1) that are assumed iid with zero 

mean vector and identity variance–covariance matrix of order (N×N) ; the parameters 0 1and and 

0 1and   are to be estimated along with the unknown parameters in the H t ; and t  is a random 

(Nх1) vector of variables often called the shock, noise or error variable is a vector of random 

coefficient autoregressive process of order one. Following Chang and McAleer (2017) and 

Engle and Kroner (1995), the multivariate extension of the univariate relationship between 

return shocks and standardised residuals t
t

t

e
h


  (see Chapters 4 and 5) is a useful 

multivariate relationship given by 1/2
1 2[( ( , ,...., )]t t t Nt tdiag h h h e  . The random  vector e  is 

assumed is an iid process with mean zero and covariance matrix CC' . Let the covariance 

matrix of  tε  be tH . 

Then I specify the conditional variance–covariance model as: 

' ' ' '
t t-1 1 1 t-1 t-1 1 1H |F CC' A A BH B D 't t t t                                     (6.2) 
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where t-1D  is an indicator matrix that determines the asymmetric effect of return shocks on 

volatility, defined as 1

1

1 0

0 0
t

t

if
D

if









  

; C is a (N N) lower triangular matrix; and A, B and 

Γ are each (NN) diagonal matrices. Model (6.2) is the DBEKK-GJR-GARCH model used 

here. 

In model (6.2) I have used DBEKK because the QMLEs of the full BEKK parameters do not 

have asymptotic statistical properties. Hence the classical statistical tests are not valid in the 

full BEKK-GARCH for statistical inference model (Chang et al., 2018). However, the 

QMLEs of the DBEKK-GJR-GARCH parameter are consistent and asymptotically normally 

distributed. Models (6.1) and (6.2) are estimated jointly by the QML method for each block of 

countries; that is, developed, advanced emerging and emerging. 

6.2.1 Developed markets 

I considered the US, UK, HK, Japan and Australian stock markets to explore the dependence 

among stock markets for the block of developed markets. A sample of 5,767 useable 

observations for the period 2 April 1986–30 December 30 2016 was collected. I first tested 

the return series for stationarity using the ADF, PP and KPSS tests, with results as shown in 

Table 6.1. This is followed by descriptive summary statistics of the stock returns series for the 

developed countries in Table 6.2. I then tested for returns spillovers using the Granger 

causality test and tests for asymmetric partial co-volatility using a Wald-type test. 

The test results shown in Table 6.1 indicate the return series are stationary, while the results in 

Table 6.2 show that all the return series have heavy-tailed distributions and are significantly 

negatively skewed. The normality of the series is rejected by the JB test. I estimated the model 

by QMLE. For analysis purposes I formed three groups of triplet countries returns. To address 

RQ1, I analysed the three triplet models for the developed markets followed by those for the 

advanced and emerging markets. 
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Table 6.1: Unit root test of stock returns for the developed countries 

Country  ADF PP KPSS 
US –35.5064*** –78.2112*** 0.152673 
UK –35.5735*** –78.2792*** 0.112562 
HK –33.3865*** –76.4015*** 0.226608 
Japan –35.0132*** –74.5989*** 0.112724 
Australia –34.4008*** –70.6468*** 0.066812 

Note. ***, ** and * indicate significance at the 1%, 5% and 10% level. 

Table 6.2: Descriptive summary statistics 

Country  Min Max Mean  SD Skewness Excess kurtosis JB-statistic 
US –19.207 11.172 0.042** 1.266 –0.764*** 16.363*** 64889.958*** 
UK –31.167 9.145 0.0250 1.346 –2.122*** 53.448*** 690670.793*** 
HK –40.542 19.0415 0.045* 1.981 –1.826*** 43.057*** 448606.683*** 
Japan –17.457 14.597 0.003 1.615 –0.607*** 9.881*** 23812.608*** 
Australia –41.589 5.597 0.028* 1.185 –7.810*** 266.025*** 17061072.5*** 

Note. ***, ** and * indicate significance at the 1%, 5% and 10% level.
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 Mean models for developed markets 6.2.1.1

For multivariate analysis of developed markets, I jointly estimated models (6.1) and (6.2) 

using the QML method of estimation. The results are reported in Table 6.3. 

Table 6.3: Mean model for developed markets 

Dependent variable 
(stock returns) 

Independent variable (lagged returns) 
    

 Constant  Japan UK US 
US 0.04790*** 

(0.0087) 
0.00605 
(0.0075) 

0.02423** 
(0.01050) 

0.0004 
(0.0104) 

UK 0.0244** 
(0.0100) 

–0.0089 
(0.0091) 

–0.1712*** 
(0.0119) 

0.2790*** 
(0.0115) 

Japan –0.0067 
(0.0124) 

–0.0114 
(0.0137) 

0.0399*** 
(0.0143) 

0.1513*** 
(0.0128) 

 Constant  Australia UK US 
Australia 0.0178*** 

(0.0058) 
–0.0223** 
(0.0110) 

0.1318*** 
(0.0065) 

0.1879*** 
(0.0101) 

UK 0.0139 
(0.0096) 

0.0186 
(0.0126) 

–0.1087*** 
(0.0130) 

0.2026*** 
(0.0131) 

US 0.0641*** 
(0.0107) 

0.0128 
(0.0114) 

0.0562*** 
(0.0119) 

–0.0358*** 
(0.0130) 

 Constant  HK Japan US 
HK 0.0721*** 

(0.0147) 
0.0153 
(0.0102) 

–0.0209** 
(0.0092) 

0.0914*** 
(0.0140) 

Japan 0.0002 
(0.0124) 

0.0319*** 
(0.0077) 

–0.0038 
(0.0108) 

0.1332*** 
(0.0113) 

US 0.0582*** 
(0.0086) 

0.0116** 
(0.0054) 

0.0168*** 
(0.0059) 

–0.0144 
(0.0102) 

Note 1. Values in parenthesis are the standard errors of the estimate.  
Note 2. ***, ** and * indicate significance at the 1%, 5% and 10% level respectively.  
Note 1 and Note 2 of significance apply in the following results unless stated otherwise. 

In Table 6.3 for every block of developed markets significant causality is observed. Causality 

running from the UK to the US stock market and vice versa indicates bi-directional causality 

(interdependence; i.e. mutual dependence) between these two markets; whereas the Japan 

stock market shows unidirectional causality running from each of the US and UK stock 

markets. Similarly, there is significant causality running from both US and UK stock returns 

to the Australian stock market, but the Australian stock market does not influence UK or US 

stock markets. Both Japan and HK have a significant casual effect on the US stock market 

with varying degrees of significance. There is bi-directional causality running from HK to 

Japan and vice versa, and from Japan to the US and vice versa. This is an important finding in 

relation to portfolio diversification strategies for optimal expected stock returns. 
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Table 6.4: Conditional volatility models for developed markets 

Conditional volatility model for Japan, US and UK 

0.1223*** 0 0

(0.0051)

0.0727*** 0.0875*** 0
C

(0.0050) (0.0039)

0.0526*** 0.0741*** 0.1903***

(0.0068)  (0.0084) (0.0075)

 
 
 
 

  
 
 
  
 


A


=

0.1104*** 0 0

(0.0087)

0 0.1908*** 0

(0.0014)

0 0 0.1184***

(0.0184)

 
 
 
 
 
 
 
  
 

0.9696*** 0 0

(0.0012)

0 0.9707*** 0
B

(0.0005)

0 0 0.9620***

(0.0016)

 
 
 
 

  
 
 
  
 


 

0.2768*** 0 0

(0.0079)

0 0.1973*** 0

(0.0040)

0 0 0.3084***

(0.0085)

 
 
 
 

   
 
 
  
 

  

Conditional volatility model for Australia, US and UK 

0.1931*** 0 0

(0.0061)

0.0643*** 0.1714*** 0
C

(0.0061) (0.0099)

0.0597*** 0.0861*** 0.1013***

(0.0053)  (0.0084) (0.0056)

 
 
 
 

  
 
 
  
 

 ,

0.2338*** 0 0

(0.0075)

0 0.1211*** 0
A

(0.0085)

0 0 0.2080***

(0.0102)

 
 
 
 

  
 
 
  
 



 0.9241*** 0 0

(0.0029)

0 0.9526*** 0
B

(0.0031)

0 0 0.9627***

(0.0024)

 
 
 
 

  
 
 
  
 


 

 0.4286*** 0 0

(0.0060)

0 0.3648*** 0

(0.0113)

0 0 0.1757***

(0.0108)

 
 
 
 

   
 
 
  
 


 

Conditional volatility model for HK, Japan and US 

0.2720*** 0 0

(0.0066)

0.1555*** 0.2006*** 0
C

(0.0028) (0.0043)

0.10267*** -0.0176*** 0.1174***

(0.0031)  (0.0028) (0.0019)

 
 
 
 

  
 
 
  
 


, 

0.3058*** 0 0

(0.0013)

0 0.1235*** 0
A

(0.0033)

0 0 0.1578***

(0.0043)

 
 
 
 

  
 
 
  
 



 0.9401*** 0 0

(0.0008)

0 0.9542*** 0
B

(0.0004)

0 0 0.9590***

(0.0003)

 
 
 
 

  
 
 
  
 

 , 

 0.1296*** 0 0

(0.0063)

0 0.3199*** 0

(0.0034)

0 0 0.2734***

(0.0047)
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 Conditional volatility models for developed markets 6.2.1.2

Estimation of the parameter matrices for the conditional volatility DBEKK-GJR-GARCH 

model is now described. 

In the conditional volatility model for US, UK and Japan reported in Table 6.4, the weight 

matrix A represents the short-run effects of return shocks for US, UK and Japan on volatility 

and matrix B represents the long-run persistence of the shocks. The short- and long-run effects 

are all significant for the three models. The parameter 


 represents the asymmetric effects of 

return shocks on volatility. The asymmetric return shocks are highly significant in all cases, 

indicating that asymmetric (leverage) effects of return shock exist in return volatility; that is, 

the return shocks asymmetrically influence the conditional volatility. This data-inherent 

information on the volatility-generating process is useful for determining the effects of the 

risk of holding assets in financial markets. The concept of risk premiums in multiple asset 

markets in multivariate asset return volatility is treated in the next section. 

 Adequacy of mean and volatility models for developed markets 6.2.1.3

Adequacy of the mean and volatility model was tested by the multivariate LB Q-statistic using 

the multivariate standardised residuals and squared standardised residuals. The null 

hypothesis was tested against the alternative hypothesis for the three variables jointly with 10 

lags for serial dependence. The hypotheses tested were: 

0 1 2 10H : ....      

1 1 2 10H : ....      

The LB-Q and LB-Q2 statistics follow a multivariate χ2 distribution with k2m degrees of 

freedom. In the current application, 3k   (number of assets) and m=10 (number of lagged 

serial correlations). The test results are provided in Table 6.5. 

The joint multivariate mean variance model reported in Table 6.5 shows no serial dependence 

of the residuals according to the LB-Q test. The test result indicates that the mean and 

variance matrix functions are correctly specified. Note that for HK–Japan–US case, serial 

correlation of the standardised and standardised squared residuals is not significant at the 1% 

level. Similarly, for the Australia–US–UK case, serial correlation of the standardised residuals 
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is not significant at the 1% level in the mean model. Therefore, models (6.1) and (6.2) jointly 

adequately describe the data for all the models, at least at the 1% level. 

Table 6.5: LB-Q test 

Model Multivariate Q(10) Sig. level (χ2 (90)) 

Japan, US and UK   
Mean  106.21749 0.11664 
Volatility  77.57355 0.8218 

Australia, US and UK   
Mean  137.34423 0.02976 
Volatility  86.32662 0.93829 

HK, Japan and US   
Mean  134.82827 0.04115 
Volatility  121.25550 0.01567 

 

 Asymmetric partial co-volatility 6.2.1.4

To test for asymmetric volatility spillovers, I tested the following hypotheses: 

0 11 22 33H : 0      

1 11 22 33H : 0      

Table 6.6: Asymmetric volatility 

Model χ2(3) 
Japan, US and UK 15341.231 (0.000) 
Australia, US and UK 6287.688 (0.000) 
HK, Japan and US 1078.994 (0.000) 

Significant asymmetric volatility spillovers were detected by the Wald chi-square tests 

reported in Table 6.6 for all three DBEKK-GJR-GARCH models.  

 Asymmetric partial co-volatility 6.2.1.5

Based on the definition of partial co-volatility (see Chapter 4), I estimated asymmetric partial 

co-volatility by estimating the asymmetric matrix coefficient ̂  and the computed average co-

volatility spillovers evaluated for the mean return shocks, as reported in Table 6.7. 
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Table 6.7: Asymmetric partial co-volatility 

Partial co-volatility between countries Average co-volatility 
spillovers 

US and UK at average UK return shock 
11 22 , 1

ˆ ˆ 0.000360uk t       

US and Japan at average US return shock 
11 33 , 1
ˆ ˆ 0.000605usa t       

UK and Japan at average Japan return shock 
22 33 , 1

ˆ ˆ 0.00018Japan t      

Australia and UK at average Australian return shock 
11 22 , 1
ˆ ˆ 0.0000572Aust t       

UK and US at the average UK return shock 
22 33 , 1

ˆ ˆ 0.000285UK t      

Australia and US at average US return shock 
11 33 , 1
ˆ ˆ 0.00168USA t       

HK and Japan at average Japan return shock 
11 22 , 1
ˆ ˆ 0.00129Japan t       

HK and US at average HK return shock 
11 33 , 1
ˆ ˆ 0.000577HK t       

Japan and US at average US return shock 
22 33 , 1

ˆ ˆ 0.0142USA t       

Note 1. Partial co-volatility spillovers: , ,ijt

kt

H
i j k




 


either i or j  (see Chapter 4) 

A negative sign indicates, for example, that a shock in US stock has a one-period delayed 

negative impact on the conditional co-volatility between the two markets concerned, and vice 

versa. A positive sign has the opposite effect. For example, the positive sign between UK and 

Japan co-volatility at the average Japan return shock indicates a one-period delayed positive 

impact on the conditional co-volatility between the two markets. 

6.2.2 Advanced emerging markets 

I considered the Brazil, Malaysia, Mexico, and Thailand stock markets to explore the dynamic 

dependence among the financial markets of advanced emerging markets using the mean 

model (6.1) and covariance matrix (6.2) jointly by utilising the QMLE. I used a tri-variate 

model for a sample of 5,011 useable observations for the sample period 19 January 1994–29 

December 2016. I also tested the return series for stationarity, and the results are reported in 

Table 6.8. Descriptive summary statistics are provided in Table 6.9. 
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Table 6.8: Unit root test of stock returns of the advanced emerging countries 

Country  ADF PP KPSS 
Brazil –34.8721** –67.6960** 0.652551 
Malaysia –31.3276** –67.8826** 0.138644 
Mexico –31.9973** –66.0708** 0.083322 
Thailand –30.9666** –66.6461** 0.457344 

Note. ***, ** and * indicate significance at the 1%, 5% and 10% level. 

Table 6.9: Descriptive statistics of stock returns of the advanced emerging financial markets 

Country  Min Max Mean  SD Skewness  Excess 
kurtosis 

JB-statistic 

Brazil –17.226 46.320 0.090** 2.495 2.216*** 44.640*** 420177.273*** 
Malaysia –25.001 36.873 0.007 1.462 2.410*** 109.585*** 2512249.699*** 
Mexico –14.086 12.638 0.057** 1.615 –0.107*** 9.125*** 17397.778*** 
Thailand –14.029 27.145 0.001 1.727 0.644*** 17.345*** 63165.181*** 

  Note. ***, ** and * indicate significance at the 1%, 5% and 10% level. 
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Table 6.8 shows that the return series are stationary, while the results of Table 6.9 show that 

all the return series have a heavy-tailed distribution and are significantly negatively skewed. 

All the series exhibit volatility clustering. Normality of the series is rejected by the JB test. 

For analysis purposes I created three tri-variate groups of advanced emerging countries. 

 Mean models for advanced emerging markets 6.2.2.1

For multivariate analysis of developed markets, I jointly estimated models (6.1) and (6.2) 

using the QML method of estimation (see Table 6.10). 

Table 6.10: Mean model for advanced emerging markets 

Dependent variable 
(stock return) 

Independent variable (lagged returns) 
    

 Constant  Brazil Malaysia Mexico 
Brazil 0.0382* 

(0.0206) 
0.0070 
(0.0125) 

–0.0743*** 
(0.0158) 

0.1029*** 
(0.0163) 

Malaysia 0.0042 
(0.0086) 

0.0276*** 
(0.0057) 

0.0836*** 
(0.0143) 

0.0529*** 
(0.0082) 

Mexico 0.0391*** 
(0.0142) 

0.0143* 
(0.0083) 

–0.0182* 
(0.0100) 

0.0641*** 
(0.0127) 

 Constant  Brazil Malaysia Thailand 
Brazil 0.0438* 

(0.0234) 
0.0127 
(0.0137) 

–0.0854*** 
(0.0225) 

0.6630*** 
(0.0876) 

Malaysia 0.0087 
(0.0079) 

0.0405*** 
(0.0053) 

0.0912*** 
(0.0141) 

0.0507*** 
(0.0075) 

Thailand 0.0447*** 
(0.0158) 

0.0245*** 
(0.0074) 

0.0574*** 
(0.0175) 

0.0441*** 
(0.0143) 

 Constant  Malaysia Mexico Thailand 
Malaysia 0.0106 

(0.0100) 
0.0775*** 
(0.0137) 

0.0666*** 
(0.0076) 

0.0524*** 
(0.0072) 

Mexico 0.0416*** 
(0.0125) 

–0.0217 
(0.0169) 

0.0767*** 
(0.0135) 

0.0288*** 
(0.0109) 

Thailand 0.0378** 
(0.0164) 

0.0328* 
(0.0184) 

0.0813*** 
(0.0111) 

0.03657** 
(0.0145 

Table 6.10 shows significant bi-directional causality running from Mexico and Malaysia to 

Brazil, and vice versa. Similarly, there is bi-directional causality running from Brazil and 

Thailand to Malaysia, and from Brazil and Malaysia to Thailand. Negative causality running 

from Malaysia to Brazil and Malaysia to Mexico indicates a trade-off in the short run between 

these countries. It is interesting to observe that Malaysia returns shocks negatively spillover to 

Brazil. Further, bi-directional stock returns spillover from Mexico and Thailand to Malaysia. 

However, only Thailand stock returns influence Mexico returns. Estimates of the parameter 

matrices of the conditional volatility DBEKK-GJR-GARCH model are shown in Table 6.11. 
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Table 6.11: Conditional volatility models for advanced emerging markets 

Conditional volatility model for Brazil, Malaysia and Mexico 
 0.2975*** 0 0

(0.0218)

 0.0066 0.0903*** 0

(0.0052) (0.0069)

0.1146*** 0.0222** -0.0855***

(0.0094)  (0.0096) (0.0115)

C

 
 
 
 

  
 
 
  
 


,

0.2363*** 0 0

(0.0126)

0 0.2311*** 0

(0.0116)

0 0 0.0527***

(0.0136)

A

 
 
 
 

  
 
 
  
 



0.9430*** 0 0

(0.0039)

0 0.9578*** 0

(0.0029)

0 0 0.9707***

(0.0017)

B

 
 
 
 

  
 
 
  
 



0.2986*** 0 0

(0.0175)

0 0.2449*** 0

(0.0178)

0 0 0.3101***

(0.0110)

 
 
 
 

   
 
 
  
 

  

Conditional volatility model for Brazil, Malaysia and Thailand 
 0.3360*** 0 0

(0.0279)

 0.0497*** 0.0987*** 0
C

(0.0083) (0.00778)

-0.0712*** 0.0795*** 0.2213***

(0.0255)  (0.0191) (0.0182)

 
 
 
 

  
 
 
  
 

 ,

0.3134*** 0 0

(0.0124)

0 0.1875*** 0
A

(0.0117)

0 0 0.2946***

(0.0129)

 
 
 
 

  
 
 
  
 



0.9336*** 0 0

(0.0056)

0 0.9540*** 0
B

(0.0027)

0 0 0.9345***

(0.0047)

 
 
 
 

  
 
 
  
 



-0.1615*** 0 0

(0.0316)

0 0.3143*** 0

(0.0156)

0 0 0.2186***

(0.0230)

 
 
 
 

   
 
 
  
 

  

Conditional volatility model for Malaysia, Mexico and Thailand 
 0.0905*** 0 0

(0.0072)

 0.0352*** 0.1356*** 0
C

(0.0117) (0.0111)

0.0501*** 0.1058*** 0.2266***

(0.0159)  (0.0197) 0.0144)

 
 
 
 

  
 
 
  
 

 ,

0.2388*** 0 0

(0.0112)

0 0.0625*** 0
A

(0.0197)

0 0 0.3168***

(0.0141)

 
 
 
 

  
 
 
  
 



0.9583*** 0 0

(0.0029)

0 0.9674*** 0
B

(0.0025)

0 0 0.9278***

(0.0051)

 
 
 
 

  
 
 
  
 

  

0.2165*** 0 0

(0.0198)

0 0.3328*** 0

(0.0136)

0 0 0.2158***

(0.0269)
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 Conditional volatility models for advanced emerging markets 6.2.2.2

Estimated conditional volatility models are reported in Table 6.11. The weight matrix A 

represents the short-run effects of return shocks for Brazil, Mexico and Malaysia stock on 

volatility; matrix B represents the long-run persistence of the shocks, and vice versa. The 

short- and long-run effects are all significant for the three models. The leverage matrix 


 

shows that significant leverage (or asymmetric) effects are generated by bad news for stock 

markets in the  case of Brazil, indicating that volatility decreases due to Brazil’s own stock 

return shocks. This internal data-inherent information on the volatility-generating process is 

useful for determining the effects of the risk of holding assets in financial markets. The 

concept of the risk premium in multiple asset markets in terms of multivariate asset return 

volatility is treated in the next section. 

 Adequacy of mean and volatility models for advanced emerging markets 6.2.2.3

Adequacy of the mean and volatility model was tested by the multivariate LB Q-statistic 

using multivariate standardised residuals and squared standardised residuals displayed in 

Table 6.12. The null hypothesis was tested against the alternative hypothesis for the three 

variables jointly with 10 lags for serial dependence. The hypotheses tested were: 

0 1 2 10H : ....      

1 1 2 10H : ....      

Table 6.12: LB-Q test 

Model  Multivariate Q(10) Sig. level (χ2(90)) 

Brazil, Malaysia and Mexico   
Mean  59.6237  0.9943 
Volatility  119.0673  0.0218 

Brazil, Malaysia and Thailand   

Mean 75.1193  0.8700 
Volatility  123.5696  0.0111 

Malaysia, Mexico and Thailand   

Mean 67.0527 0.9665 
Volatility  72.0556 0.9174 

The joint multivariate mean variance model reported in Table 6.12 shows no serial 

dependence, at least at the 1%  level, for the standardised squared residuals by the LB-Q test. 
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The test results indicate that the mean and variance matrix functions are correctly specified. 

Therefore, models (6.1) and (6.2) jointly adequately describe the data for all models. 

 Asymmetric partial co-volatility 6.2.2.4

I then tested for the effects of returns shocks on asymmetric partial co-volatility by testing the 

following hypotheses provided in Table 6.13: 

0 11 22 33H : 0      

1 11 22 33H : 0      

Table 6.13: Asymmetric partial co-volatility 

Model χ2(3) 
Brazil, Malaysia and Mexico 951.440 (0.000) 
Brazil, Malaysia and Thailand 693.265 (0.000) 
Malaysia, Mexico and Thailand 722.582 (0.000) 

I found significant asymmetric volatility spillovers by the Wald chi-square tests reported in 

table 6.13 for all three DBEKK-GJR-GARCH models.  

 Asymmetric partial co-volatility 6.2.2.5

Further, I computed asymmetric partial co-volatility (as defined in Chapter 4) (see Table 

6.14). As outlined above, a negative sign indicates that a shock, for example in Thailand 

stock, has a one-period delayed impact on the conditional co-volatility between the two 

markets concerned. A positive sign has the opposite effect. The partial co-volatility was 

computed for the return shocks. 
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Table 6.14: Asymmetri partial co-volatility spillovers 

Partial co-volatility between countries Parameter and value 
Brazil and Malaysia at average Malaysian return shock 

11 22 , 1
ˆ ˆ 0.000160Malaysia t       

Brazil and Mexico at average Brazil return shock 
11 33 , 1ˆ ˆ 0.00415Brazil t      

Malaysia and Mexico at average Mexico return shock 
22 33 , 1

ˆ ˆ 0.00100Mexica t      

Brazil and Malaysia at average Malaysia return shock 
11 22 , 1

ˆ ˆ 0.000251Malaysia t      

Brazil and Thailand at average Brazil return shock 
11 33 , 1

ˆ ˆ 0.001554Brazil t       

Malaysia and Thailand at average Thailand return shock 
22 33 , 1

ˆ ˆ 0.00318Thailand t       

Malaysia and Mexico at average Mexico return shock 
11 22 , 1

ˆ ˆ 0.000813Mexico t      

Malaysia and Thailand at average Malaysian return 
shock 

11 33 , 1
ˆ ˆ 0.000318Malaysia t       

Mexico and Thailand at average Thailand return shock 
22 33 , 1

ˆ ˆ 0.00299Thailand t       

6.2.3 Emerging financial markets 

I considered the China, India and Indonesia stock markets to study the dependence among 

emerging financial markets by estimating models (6.1) and (6.2) jointly utilising the QMLE. I 

used a tri-variate model for a sample of 5,565 useable observations, for the sample period 19 

December 1990–30 December 2016. I tested the return series for stationarity (see Table 6.15). 

Table 6.15: Unit root test of stock returns for the emerging countries 

Country  ADF PP KPSS 
China –31.5399** –76.0380** 0.326351 
India –32.8299** –76.5831** 0.099538 
Indonesia –33.4691** –65.2908** 0.129427 

Note. ***, ** and * indicate significance at the 1%, 5% and 10% level. 

Table 6.16: Descriptive statistics for the stock returns of the emerging countries 

Country Min Max Mean  SD Skewness  Excess 
Kurtosis 

JB-statistic 

China –31.703 74.968 0.062* 2.778 4.005*** 111.184** 2881295.115*** 
India –11.383 16.153 0.057** 1.914 0.012 5.629*** 7349.234*** 
Indonesia –12.893 18.830 0.046** 1.619 –0.022 11.849*** 32557.776*** 

Note. ***, ** and * indicate significance at the 1%, 5% and 10% level. 

Table 6.15 indicates that the return series are stationary while the results in Table 6.16 show 

that all the return series have heavy-tailed distributions and are significantly skewed. Only the 

China stock returns series is negatively skewed. Neither the India nor Indonesia stocks are 

skewed but both are heavy-tailed. All the series exhibit volatility clustering. The normality of 
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the series is rejected by the JB test. For analysis purposes I created one tri-variate group of 

advanced emerging countries. 

 Mean models for emerging markets 6.2.3.1

For multivariate analysis of China, India and Indonesia, I jointly estimated models (6.1) and 

(6.2) by the QML method of estimation and the results are reported in Table 6.17. 

Table 6.17: Mean model for emerging markets 

Dependent 
variable  

Independent variable (lagged returns) 
    

 Constant  China India Indonesia 
China 0.0447*** 

(0.0155) 
–0.0427** 
(0.0136) 

0.0124 
(0.0117) 

0.0078 
(0.0110) 

India 0.0608*** 
(0.0175) 

0.0010 
(0.0063) 

–0.0077 
(0.0116) 

0.0428*** 
(0.0108) 

Indonesia 0.0471*** 
(0.0143) 

–0.0059 
(0.0042) 

0.0478*** 
(0.0079) 

0.1763*** 
(0.0135) 

The mean model results in Table 6.17 show there are no return spillovers from India and 

Indonesia to China. However, there exists bi-directional causality between India and 

Indonesia. This result for the emerging stock markets of China, India and Indonesia indicates 

that participants in these markets should carefully consider their investment decisions. 

 Conditional volatility models for emerging markets 6.2.3.2

The conditional volatility DBEKK-GJR-GARCH model parameter matrices are provided in 

Table 6.18. 
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Table 6.18: Conditional volatility models for emerging markets 

 0.2436*** 0 0

(0.0146)

 0.0608*** 0.1575*** 0

(0.0139) (0.0146)

0.0562*** 0.0077*** 0.2134***

(0.0133)  (0.0145) (0.0145)

C

 
 
 
 

  
 
 
  
 

 , 

0.3560*** 0 0

(0.0097)

0 0.2253*** 0

(0.0121)

0 0 0.2274***

(0.0142)

A

 
 
 
 

  
 
 
  
 


 

0.9387*** 0 0

(0.0030)

0 0.9613*** 0

(0.0027)

0 0 0.9424***

(0.0051)

B

 
 
 
 

  
 
 
  
 


 

-0.0695*** 0 0

(0.0254)

0 0.2021*** 0

(0.0229)

0 0 0.3018***

(0.0191)

 
 
 
 

   
 
 
  
 


 

The short- and long-run conditional volatility parameters are also highly significant, with 

variation in the size of the coefficient. The asymmetric news effects on volatility are positive 

and significant, indicating leverage of news on volatility. 

 Adequacy of mean and volatility models for advanced emerging markets 6.2.3.3

Adequacy of the mean and volatility model was tested by the multivariate LB Q-statistic 

using the multivariate standardised residuals and squared standardised residuals. The null 

hypothesis was tested against the alternative hypothesis for the three variables jointly with 10 

lags for serial dependence. The hypotheses tested were: 

0 1 2 10H : ....      

1 1 2 10H : ....      

Table 6.19: LB-Q test for emerging markets 

Model for China, India and 
Indonesia 

Multivariate 
Q(10) 

Sig. level (χ2(90)) 

Mean  87.3459 0.5596 
Volatility  90.6380 0.4613 

The joint multivariate mean variance model reported in Table 6.19 indicates no serial 

dependence of the standardised residuals and squared standardised residuals by the LB-Q and 

LB-Q2 tests. The test results indicate that the mean and variance matrix functions are correctly 
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specified. Therefore, models (6.1) and (6.2) jointly adequately describe the data for all the 

models. 

 Asymmetric partial co-volatility 6.2.3.4

I then tested for the effects of returns shocks on asymmetric partial co-volatility by testing the 

following hypotheses: 

0 11 22 33H : 0      

1 11 22 33H : 0      

Table 6.20: Asymmetric partial co-volatility for emerging markets 

Model χ2(3) 
China, India, Indonesia 468.359 (0.000) 

The test results in Table 6.20 indicate that the China, India and Indonesia stock markets 

jointly explain significant asymmetric returns shocks effects that exist on conditional 

volatility. 

 Asymmetric partial co-volatility 6.2.3.5

I computed the partial co-volatility as reported in Table 6.21. 

Table 6.21: Asymmetric partial co-volatility for emerging markets 

Partial co-volatility between countries Parameter and value 
China and India at average India return shock 

11 22 , 1
ˆ ˆ 0.000058India t      

China and Indonesia at average China return shock 
11 33 , 1ˆ ˆ 0.000354China t       

India and Indonesia at average Indonesia return shock 
22 33 , 1

ˆ ˆ 0.00068Indonesia t       

A negative sign indicates that, for example a shock in China stock will have a one-period 

delayed impact on the conditional co-volatility between the two markets concerned. A 

positive sign has the opposite effect. Partial co-volatility transmission provides additional 

information about volatility movement in stock markets. 

6.2.4 Summary of DBEKK-GARCH model results 

The above analyses revealed significant Granger causality-type stock returns spillovers. I also 

found significant asymmetric news volatility spillovers in developed, advanced emerging and 
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emerging markets using chi-square tests. I also computed partial co-volatility spillovers across 

countries. This information is useful for portfolio management and asset diversification in 

global stock markets. 

6.3 The VAR-DBEKK-GJR-GARCH-M Model 

In this section, I develop the multivariate risk premium model by extending the univariate 

autoregressive ARCH-M to include the multivariate DBEKK-GJR-GARCH-M model 

volatility in the conditional mean return to address RQ2. In this form the mean model could 

be considered a multivariate extension of a time-varying CAPM-type model. The model is 

used for testing the appropriateness of the RE theory for financial markets. The VAR-

DBEKK-GJR-GARCH-M model is estimated by the QML method using the 5-year 

government bond data of US, Japan and Australia for a sample of 5,862 useable observations, 

starting on 31 August 1990 and ending on 30 December 2016. The estimated model is used to 

identify the co-volatility spillover effect according to the extended co-volatility spillover 

definition (see Chapter 4) and tested for the existence of co-volatility using a novel Wald-type 

test for this context. 

6.3.1 The VAR-DBEKK-GJR-GARCH-M model 

The following form of the risk premium model is well established in the univariate case (see 

Engle et al., 1987). The multivariate counterpart (DBEKK-GJR-GARCH-M model) takes the 

following form: 

1 0
1

|
k

t t i t -i t t
i

r F r h 


                                              (6.3) 

where 1/2
t t th z  , 1 2( , ,......,t t t Nth diag h h h )  (see Section 6 above),   is an ( 1)N   vector of 

risk premium parameters. The first-order DBEKK-GJR-GARCH model takes the following 

form: 

' ' ' '
1 1 1 1 1 1 1| ' ' ( )t t t t t t t tH F CC A A B H B D                           (6.4) 

where matrices A, B and are diagonal and matrix C is a lower triangular matrix.    
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6.3.2 Analysis of US, Japan and Australian bond data 

I estimate the multivariate DBEKK-GJR-GARCH-M Equation (6.3) with 1k  jointly for the 

US, Japan and Australian bond data using QML method. The QMLE of the trivariate 

DBEKK-GJR-GARCH-M are as follows: 

1 1 1 1 1,

1 1 1

-0.0592**-0.0329*** -0.0068** +0.0306** 0.00905*** (6.5.1)

( . ) (0.0206) (0.0126) (0.0032) (0.0138) (0.0044)

-0.1244*** 0.2510*** -0.0082 +0.0068 0.0009**

t t t t t t

t t t t

US US Japan Aus h

s e

Japan US Japan Aus

  

  

  

   2 2,

1 1 1 3 3,

(6.5.2)

( . ) (0.0270) (0.0146) (0.0132) (0.0196) (0.0004)

-0.0112 0.2495*** -0.0010 -0.1060*** -0.0031 (6.5.3)

( . ) (0.0194) (0.0065) (0.0017) (0.0110) (0.0111)

t t

t t t t t t

h

s e

Australia US Japan Aus h

s e



  



  

 

The above results indicate that the conditional mean process for US bond markets, see 

Equation (6.5.1), has a significant impact of return shock on its own return shock as well as 

the shocks of Japan and Australia bond markets. Return spillovers running from Japan and 

Australia to the US market. I found significant risk premium in the US bond market. For the 

Japan bond market, see Equation (6.5.2), I found significant return spillover running from US 

bond market to Japan bond market. Equations (6.5.1) and (6.5.2) indicate bidirectional return 

spillover exists between US and Japan. While Equation (6.5.3) indicates unidirectional spill 

over only running from US bond market to Australia bond market. Interestingly I found 

insignificant risk premium in the Australia bond market. This means that the full expectation 

theory does not hold for the US, Japan and Australia bond markets. This information is useful 

for investment decisions in international bond markets.  
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The components of the estimated conditional volatility model are as follows. 

0.0758*** 0. 0.

(0.0109)

0.0071 0.1896*** 0.

C (0.0732) ( 0.0209)

-0.0024 0.0398**      0.0501***

( 0.0111) (0.0192) (0.0186)

 
 
 
 
 

  
 
 
 
 
 



,

 0.0813*** 0 0

(0.0103)

0 0.4216*** 0
A

(0.0162)

0 0 0.1582***

(0.0076)

 
 
 
 

  
 
 
  
 


 

0.9830*** 0 0

(0.0013)

0 0.9211*** 0
B

(0.0032)

0 0 0.9833***

(0.0014)

 
 
 
 

  
 
 
  
 


, 

0.2407*** 0 0

(0.0012)

0 0.1607*** 0

(0.0743)

0 0 0.1282***

(0.0147)

 
 
 
 

   
 
 
  
 


 

The results of the weight matrices Â  and B̂  shows respectively that the short and long-run 

volatility parameters are all significant at the 1% level. Indicating significant return shocks on 

volatility. Note that there is a significant negative “news” effect in all three bond markets 

confirmed by the significant weight matrix ̂ . The news effect on volatility provides useful 

information for investors and agents regarding international investment strategies in bond 

markets.  

Average return shocks for the US, Japan and Australia are –0.00131, 0.09844, and –0.00445 

respectively.  I computed the partial covolatility spillovers using the following formula. 

,
, 1

 H , , either ;ij t
k t

i j k i or j
 


 


 

i,j,k = 1,2,3; US = 1, Japan = 2 and Australia = 3 

The pairwise partial co-volatilities at the average shocks are as follows: 

12,
11 22 2 1 11 22 2 1

1, 1

t
t t

t

H
a a    

  



 


 = 0.00718, or 12,

11 22 1 1 11 22 1 1
2, 1

t
t t

t

H
a a    

  



 


= 0.0000955 

13,
33 11 3 1 11 22 3 1

1, 1

t
t t

t

H
a a    

  



 


 = –0.000194, or 13,

33 11 1 1 11 22 1 1
3, 1

t
t

t

H
a a    

  



 


 = –0.000057 
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23,
33 22 3 1 11 22 3 1

2, 1

t
t t

t

H
a a    

  



 


 = –0.0003884, or 23,

33 22 2 1 11 22 2 1
3, 1

t
t t

t

H
a a    

  



 


 = 0.00859 

 A negative sign indicates, for example, that a shock in US bond has a one-period delayed 

negative impact on the conditional co-volatility between US and Australia, and vice versa. A 

positive sign has the opposite effect. For example, the positive sign between US and Japan co-

volatility at the average US return shock indicates a one-period delayed positive impact on the 

conditional co-volatility between US and Japan. 

Using the risk premium concept within the DBEKK-GJR-GARCH-M framework, the risk 

premium is measured by the estimated coefficient vector . The empirical results here 

indicate that a risk premium exists in both the US and Japan bond markets, but not in the bond 

market of Australia. The severity of the risk premium is very high in both US and Japan; 

however the severity in Japan is the highest based on the degree of likelihood of rejection of 

the risk premium. I performed a Wald-type test of asymmetric co-volatility spillover using the 

newly developed Wald-type test as follows. 

1. 11 22
0

11 22

0
H :

0

a a

 
 

  
 versus 11 22

1
11 22

0
H :

0

a a

 
 

  
 

The value of the test statistic was W = 7.67, with a p-value of 0.0216. I thus reject the null 

hypothesis of no co-volatility and no asymmetry jointly; that is, I conclude that there exists 

co-volatility and asymmetric news spillovers. 

2. 11 33
0

11 33

0
H :

0

a a

 
 

  
 versus 11 33

1
11 33

0
H :

0

a a

 
 

  
 

The value of the test statistic was W = 76.23 with a p-value of 0.0000. I thus reject the joint 

null hypothesis of no co-volatility and no asymmetry jointly in the conditional volatility 

model. This shows that there is a significant spillover from the return shock. 

3. 33 22
0

33 22

0
H :

0

a a

 
 

  
 versus 11 33

1
11 33

0
H :

0

a a

 
 

  
 

The value of the test statistic was W = 269.12 with a p-value of 0.0000. I thus reject the null 

hypothesis of no co-volatility and no asymmetry jointly in the conditional volatility model 
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and conclude that significant co-volatility and leveraged spillover effects exist for volatility, 

and hence risk premium. 

These test results indicate that there is a significant co-volatility spillover and asymmetry 

jointly in the US, Japan and Australian bond markets. This finding indicates the existence of 

co-volatility and asymmetry jointly in these three bond markets. This is useful information for 

decision making in these dynamic financial bond markets. The Wald-type test is an additional 

contribution of this thesis to the literature. 

6.3.3 Summary of VAR-DBEKK-GJR-GARCH-M model results 

I found significant asymmetric risk premiums in both the US and Japan bond returns; 

however, this is not significant in the case of the Australian bond market. Notably, there is a 

significant negative news effect in all three bond markets, which provides useful information 

for investors and agents regarding their diversification strategies in bond markets. 

6.4 VAR Models 

In this section I investigate interdependence among the financial markets across countries. 

Sims’s VAR is used to explore interrelationships within the set of assets by utilising Granger 

causality, variance decomposition and impulse response analysis. The variance 

decompositions allow me to aggregate spillover effects across markets. To explore the 

linkages among financial markets across countries during crises, the VAR model is extended 

to include market crash events (X), reflecting financial crises such as 1987 crash, the AFC 

and the GFC. I call this model a near VAR or VAR-X model. A measure of the severity of 

market crash events is developed here to address RQ3. 
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Table 6.22: Descriptive statistics for 10 countries’ stock returns 

Country Mean SD Min Max Skewness Excess kurtosis JB 
Australia 0.035** 1.141 –34.021 5.757 –4.86*** 140.82*** 4787113.22*** 
Canada 0.039** 1.252 –15.736 13.215 –0.51*** 16.18*** 63136.66*** 
Germany 0.049** 1.639 –18.183 11.213 –0.49*** 8.03** 15718.40*** 
HK 0.065** 1.955 –33.330 20.975 –0.78*** 27.14*** 177555.62*** 
India 0.087*** 2.035 –14.473 23.507 0.26*** 7.73*** 14440.19*** 
Indonesia 0.095*** 1.981 –20.172 49.644 3.69*** 90.14*** 1965335.29*** 
Japan 0.016 1.609 –16.018 15.716 –0.34*** 8.87** 19041.22*** 
Malaysia 0.051** 1.667 –32.181 44.590 2.20*** 126.95*** 3876731.04*** 
UK 0.034*** 1.331 –26.777 9.577 –1.26*** 32.54*** 255873.22*** 
US 0.050*** 1.262 –17.475 11.821 –0.45*** 13.98*** 47043.98*** 

Note. ***, ** and * indicate significance at the 1%, 5% and 10% level.
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6.4.1 Estimation of the VAR-X model 

I have selected 10 countries from developed, advanced emerging and emerging countries with 

5,776 observations for the period 2 April 1986–30 December 2016. First I report descriptive 

statistics (Table 6.22), unit root test results for each of the series and then multivariate LB test 

results and applied multivariate AIC, BIC and HQ criteria for VAR lag order selection. I 

settled on HQ, which produces a lag length of 2 for the VAR-X estimation. The return series 

were tested for stationarity using the ADF, PP and KPSS tests. Multivariate serial correlation 

was tested by utilising the multivariate counterpart of the LB test. The X in the model 

indicates the set of exogenous variables in the extended multivariate VAR model and the 

variables in X include the 1987 crash, AFC and GFC. The model was estimated by the OLS 

using Cholesky factorisation. 

Table 6.22 shows that the mean is statistically significant for all countries at the conventional 

(5%) level, with the exception of that for Japan stock returns. The log return series were found 

to be non-normal by the JB test. All the series are negatively skewed except those of India, 

Indonesia and Malaysia. All series have heavy-tailed distributions according to excess 

kurtosis tests. Table 6.23 reports the unit root test results for the stock returns series of each 

country. 

Table 6.23: Unit root test 

Country ADF PP KPSS 
H0 :Nonstationarity 
H1: Stationarity 

H0: Nonstationarity 
H1: Stationarity 

H0: Stationarity 
H1: Nonstationarity 

Australia –34.6170*** –70.8212*** 0.0932 
Canada –35.4875*** –74.8698*** 0.0461 
Germany –34.7017*** –75.9860*** 0.0429 
HK –33.7986*** –76.7160*** 0.2960 
India –33.6831*** –77.5397*** 0.1184 
Indonesia –34.0379*** –65.1605*** 0.1405 
Japan –35.1660*** –74.6639*** 0.1122 
Malaysia –34.2883*** –72.9430*** 0.2459 
UK –35.7600*** –78.3590*** 0.1182 
US –35.6770*** –78.5295*** 0.1515 

 
Note 1. ***, ** and * indicate significance at the 1%, 5% and 10% level.  
Note 2. KPSS tests stationarity vs nonstationarity while both ADF and PP test nonstationarity vs stationarity. 

Based on the results in Table 6.23, the log return series are stationary according to all three 

unit root tests. I further tested for multivariate serial dependence of the series for five lags 

using the multivariate LB test as follows: 
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0 1 2 3 4 5: 0H           

1 : 0iH    for all 1,2,3,4,5i   

The test statistic is 
m

2 ' 1 1
k 0 0

1

1
(m) T ( )

T j j
j

Q trace
j

 



 
      


   

, where m is the number of 

lags; k is the number of experimental units; T is the sample size, j


 is the sample cross-

covariance matrix; and (m)kQ is the test statistic, which has a χ2 distribution with 2k m 

degrees of freedom. 

Table 6.24: Multivariate Q-statistic at various lags 

Lags m m = 1 m = 2 m = 3 m = 4 m = 5 
Q10(m) 2533.039 2961.654 3250.548 3459.580 3725.284 
Degrees of freedom  100 200 300 400 500 
p-value 0.000 0.000 0.000 0.000 0.000 

Note. Where m = 5 and k = 10. 

According to Table 6.24 the multivariate 10(5)Q  statistic displays significant serial correlation 

at each lag, indicating a lag–lead relationship among the 10 stock index returns. I conducted 

AIC, BIC and HQ criteria to select the lag length for the VAR model. 

Table 6.25: Maximum lag selected by the information criteria 

Criterion Lag 
AIC 5 
SBC 1 
HQ 2 

I chose VAR lag 2 as suggested by the HQ criterion because it is lies the lags suggested by 

AIC and SBC criteria (Table 6.25). Thus I assume that VAR(2) captures the remaining serial 

correlations for the VAR system equations. After selecting the VAR order, I estimated the 

VAR-X model. 

6.4.2 VAR-X model 

I extend the Sims (1980) VAR model to include financial crisis events that are exogenously 

determined by the occurrence of market crash events. The nominal crash variables are time 

indicator vector of variables representing the 1987 crash, AFC, and the GFC, denoted by X. 

The VAR-X model takes the following form: 
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2 3

0
1 1

t l t l i it t
l i

y A A y B X 
 

                                                  (6.6) 

where '( , , , , , , , , , )ty Australia Canada Germany Hong Kong India Indonesia Japan Malaysia UK US is 

a (10 1)  vector of stock returns of the respective country; itX crash Asia crisis GFC includes the 1987 crash, AFC 

and GFC; 0A  is a (10 1)  matrix of intercepts; lA  is a (10 × 10) matrix of parameters of  the 

right-hand side vector of lag dependent variables t ly  ; B is a (10 × 3) matrix of parameters; Xt 

is a (3 × 1) vector of exogenous indicator variables reflecting crash events in the system 

equations; and t  is a random innovation vector of order (10 × 1). 
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Estimation of a VAR(2)-X model of stock returns for the selected countries in matrix 

form: 

0.0365**

(0.0145)

0.0519***

(0.0175)

0.0552**

(0.0229)

0.0876***

(0.0267)

0.1035***

(0.0286)

t

t

t

t

t

t

t

t

t

t

Aust

Canada

Germany

HK

India

Indo

Japan

Malaysia

UK

USA

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-0.1438*** 0.1788*** 0.1598*** 0.0139  0.0223*** 0.0052 -0.0267

0.0832***

(0.0271)

0.0221

(0.0217)

0.0554**

(0.0231)

0.0341*

(0.0179)

0.0667***

(0.0175)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*** -0.0012 0.0329** 0.0264  

(0.0156) (0.0142) (0.0121) (0.0090) (0.0071) (0.0074) (0.0101) (0.0092) (0.0157) (0.0165)

0.0376** -0.0461*** 0.0409*** -0.0245** 0.0039 -0.0088 -0.0151 0.0199* 0.0452** 0.02586

(0.0188) (0.01710) (0.0145) (0.0108) (0.0085) (0.0090) (0.0121) (0.0111) (0.0189) (0.0200)

-0.0991*** 0.1626***  -0.0088 0.0184 0.0096 0.0022 -0.0254 0.0056 -0.0365 -0.0425

(0.0246) (0.0223) (0.0190) (0.0142) (0.0112) (0.0117) (0.0158) (0.0145) (0.0247) (0.0261)

0.1799*** 0.2423*** 0.1423*** -0.1111*** -0.0304** -0.0162 -0.0923*** 0.0783*** 0.0523** -0.1636***

(0.0286) (0.0260) (0.0221) (0.0165) (0.0130) (0.0137) (0.0185) (0.0169) (0.0287) (0.03034)

0.0280 0.1739*** 0.0495** -0.0073 -0.0326** 0.0051 -0.0007 -0.0096 -0.0363 -0.1016***

(0.0307) (0.0278) (0.0237) (0.0177) (0.0139) (0.0146) (0.0198) (0.0181) (0.0308) (0.0325)

-0.0543* 0.2037*** 0.1336*** 0.0609*** 0.0064 0.1134*** -0.0212 -0.0008 -0.0533* -0.0656**

(0.0291) (0.0264) (0.0225) (0.0168) (0.0132 (0.0139) (0.0187) (0.0172) (0.0292) (0.0308)

-0.0073 0.2222*** 0.2277*** 0.0071 0.0179* 0.0059 -0.0829***   0.0254* -0.0825*** -0.0618**

(0.0233) (0.0212) (0.0180) (0.0134) (0.0106) (0.0112) (0.0150) (0.0138) (0.0234) (0.0247)

-0.0418* 0.1517*** 0.0638*** 0.0420*** -0.0033 0.0418*** -0.0235 -0.0193 -0.0218 -0.0338

(0.0247) (0.0225) (0.0191) (0.0143) (0.0113) (0.0118) (0.0159) (0.0146) (0.0248) (0.0262)

-0.1219*** 0.2292*** 0.0831*** 0.0474*** 0.0130 0.0071 -0.0313** -0.0251** -0.2023*** 0.0674***

(0.0192) (0.0175) (0.0148) (0.0111) (0.0087) (0.0092) (0.0124) (0.0114) (0.0193) (0.0204)

0.0085 0.1450*** 0.1129*** -0.0223** -0.0035 -0.0067 -0.0090 0.0274** 0.0013 -0.1979***

(0.0187) (0.0170) (0.0145) (0.0108) (0.0085) (0.0089) (0.0121) (0.0111) (0.0188) (0.0198)
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-0.0477*** 0.0366** -0.0009 0.0124 -0.0014 0.0112 0.0013 -0.0327*** 0.0047 0.0160

(0.0150) (0.0145) (0.0123) (0.0089) (0.0071) (0.0074) (0.0099) (0.0092) (0.0154) (0.0166)

0.0242 -0.0603*** -0.0057 -0.0295*** -0.0152* 0.0060



-0.00003 0.0165 -0.0172 0.0133

(0.0181) (0.0174) (0.0149) (0.0107) (0.0085) (0.0089) (0.0120) (0.0111) (0.0186) (0.0200)

0.0491** 0.0142 -0.0103 0.0039 -0.0124  -0.0047 0.0130 -0.0241* -0.0036 0.0270

(0.0236) (0.0228) (0.0195) (0.0140) (0.0112) (0.0117) (0.0157) (0.0145) (0.0243) (0.0262)

0.0084 -0.0149 0.0003 -0.0219   -0.0071 -0.0076 0.0075 -0.0486*** 0.0033 -0.0175

(0.0275) (0.0265) (0.0226) (0.0163) (0.0130) (0.0135) (0.0183) (0.0169) (0.0283) (0.0304)

0.0144 -0.0464 0.0274 -0.0079 -0.0053 -0.0021 0.0227 -0.0168 -0.0166 0.0789**

(0.0295) (0.0284) (0.0243) (0.0175) (0.0140) (0.0145) (0.0196) (0.0181) (0.0303) (0.0327)

 0.0273 -0.0027 0.0120 -0.0282* -0.0208 0.1012*** 0.0243 -0.0300* -0.0135 0.0111

(0.0279) (0.0269) (0.0230) (0.0165) (0.0132) (0.0138) (0.0185) (0.0172) (0.0287) (0.0309)

0.0153 0.0986*** 0.0113 -0.0085 -0.0065 -0.0185* -0.0109 0.0044 -0.0732*** -0.0216

(0.0224) (0.0216) (0.0184) (0.0133) (0.0106) (0.0111) (0.0149) (0.0138) (0.0230) (0.0248)

0.0469** 0.0356 0.0097 -0.0175 -0.0085 0.0118 -0.0079 0.0461*** 0.0268 -0.0054

(0.0238) (0.0229) (0.0196) (0.0141) (0.0112) (0.0117) (0.0158) (0.0146) (0.0244) (0.0263)

0.0118 0.0470*** -0.0064 0.0149 -0.0081 -0.0005 -0.0036 -0.0401***   -0.0414** 0.0381*

(0.0184) (0.0178) (0.0152) (0.0109) (0.0087) (0.0091) (0.0122) (0.0113) (0.0190) (0.0204)

0.0168 -0.0435** -0.0045 -0.0171 -0.0133  -0.0044 0.0153 -0.0116 0.0126  -0.0110

(0.0180) (0.0173) (0.0148) (0.0106) (0.0085) (0.0089) (0.0119) (0.0111) (0.0185) (0.0199)
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      +  

-5.1735*** -0.0652 -0.2512***

(0.4087) (0.0753) (0.0641)

-2.2963*** -0.1521* -0.2267***

(0.4920) (0.0907) (0.0772)

-2.9701*** -0.0156 -0.3229***

(0.6440) (0.1187) (0.1011)

-5.6312*** -0.3925*** -0.3109***

(0.7484) (0.1380) (0.1175)

0.0845 -0.1965 -0.3096***

(0.8031) (0.1481) (0.1261)

0.5084 -0.2794** -0.2080*

(0.7608) (0.1402) (0.1194)

-0.8524 -0.1319 -0.248***

(0.6103) (0.1125) (0.0958)

-3.8935*** -0.2936** -0.1669

(0.6478) (0.1194) (0.1017)

-

Crash 87

AFC

GFC

3.6698*** -0.0493 -0.2302***

(0.5028) (0.0927) (0.0789)

-2.3745 *** -0.0747 -0.3300***

(0.4899) (0.0903) (0.0769)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
   
   

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note 1. Standard error of the estimate in parenthesis. Note 2. ***, ** and * indicate significance at the 1%, 5% 
and 10% level.  
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A significant GFC crash effect was documented for nine of the ten selected countries. While 

the AFC is experienced by only four of the ten selected countries (Canada, HK, Indonesia and 

Malaysia), the 1987 crash is experienced by seven of the ten selected countries: Australia, 

Canada, Germany, HK, Malaysia, UK, US. Causal dependences were checked individually by 

the t test and jointly by the F test (see appendix C for detailed test results). The parameter 

stability of the VAR-X model was tested using the eigenvalue approach. 

According to Figure 6.1 all 20 eigenvalues (i.e. the characteristic roots of the determinant 

equation) for the VAR (2)-X lie inside the unit circle, which implies that the VAR(2) model is 

stable. Therefore, VAR (2)-X is a stationary stable specification. Documenting model stability 

is an important first step towards further inferences from the model. I developed a new 

severity index (SI) by which I can identify the severity (degree of contamination) of a 

financial market crash events. This criterion is based on the function of Fisher’s p-value. I 

define a criterion index   = 1  
, where ̂ is the estimated level of significance of the 

coefficient of a crash event. Table 6.26 provides ̂ values for each country. 

 

Figure 6.1: Eigenvalue plot of the VAR(2) 

A value of   closer to 1 indicates a strong market crash ; a value of  near 0 is fairly safe 

stock market. Any value of  between 0 and 1 explains the degree of severity. Thus, among 

the 10 selected countries seven of the stock markets experienced strong severity of 1987 
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crash. Six of the 10 countries experienced GFC crash and five countries experienced  AFC 

crises.Analyst (2018) published research analysing data from Bloomberg, which highlighted 

that during the 1987 crash, UK, US, Germany and HK were affected the most. Further, 

Richardson (1998) showed that during the Asian Financial Crisis, Asian countries including 

HK, Japan, Malaysia and Indonesia were affected the most. Long et al. (2012) highlighted 

that during the GFC, major developed countries and European emerging market countries 

were affected relatively early, and that Asian emerging market countries were affected later.   

The SI-based criteria support these findings. I found that during the 1987 crash UK, US, 

Germany, Canada and HK were affected the most. In the case of the GFC, the developed and 

developing countries were affected the most as this crisis was deeply rooted in developed 

countries. This is an important finding for both domestic and international stock market 

investors and decision markers. The SI developed in this thesis is an additional measure of 

severity for financial market crash events. This is an important information for the agent’s 

financial decision making strategies. Next I evaluated Granger causality among the asset 

markets returns. 
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Table 6.26: Severity of crash events measured as  

Crash  Country 
Australia Canada Germany HK India  Indonesia Japan Malaysia UK US 

1987 1 1 1 1 0.90  0.5 0.84 1 1 1 
Asia  .62 0.91 0.11 0.99 0.82  0.96 0.76 0.99 0.41 0.59 
GFC 1 1 0.99 0.99 0.99   0.92 0.99 0.90 0.99 1 
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 Granger causality of the variables 6.4.2.1

An important tool for VAR analysis is Granger causality. The importance of causality is that 

it improves the conditional forecast of returns due to their own shocks and the shocks of other 

returns series. When causality runs from one series to another it is called unidirectional 

causality. Unidirectional causality can be utilised to establish the existence of trade-offs 

between return series by applying t and F tests. When bi-directional causality exists among 

the returns of international series, those series are called interdependent (i.e. mutually 

dependent) at the global level. If a crash in a particular asset of a particular country spreads 

out and causally affects the other assets of other countries, we have a contagion 

(contamination transmission) effect. The effects of financial crah and contagion can be tested 

by creating a dummy variable of so-called ‘crash events’ involving the interaction of another 

country series in the VAR process, and testing the resulting interaction coefficient of this 

variable in the model of other variables. 

The lagged dependent variables in the VAR equations were tested for Granger causality using 

a series of F tests (see Table 6.27). For example, India, Japan, Malaysia and UK do not 

influence Indonesia stock returns, according to F test. HK stock returns are influenced by all 

stock returns except those of UK and Indonesia. The Australian stock market is not affected 

by Indonesia, UK or US. Similar conclusions could be made with some variation regarding 

Granger causality, by comparing the F test values with their corresponding p-values. This 

causality information reveals the spillover effects of return shocks. 
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Table 6.27: Granger causality among the 10 countries’ stock returns 

Variable F-statistic p-value Variable F-statistic p-value 

Dependent variable Australia Dependent variable Canada 
Canada 79.4775 0.0000 Australia 5.4287 0.0044 
Germany 87.4500 0.0000 Germany 4.2984 0.0136 
HK 3.2820 0.0376 HK 4.9725 0.0070 
India 3.7973 0.0225 India 1.9398 0.1438 
Indonesia 0.4396 0.6443 Indonesia 0.7578 0.4687 
Japan 4.9283 0.0073 Japan 1.0207 0.3604 
Malaysia 3.8573 0.0212 Malaysia 3.4528 0.0317 
UK 2.2908 0.1013 UK 3.9174 0.0199 
US 1.6374 0.1946 US 0.9862 0.3731 

Dependent variable HK Dependent variable India 
Australia 27.7951 0.0000 Australia 0.5084 0.6015 
Canada 46.2908 0.0000 Canada 22.9721 0.0000 
Germany 20.8990 0.0000 Germany 2.5636 0.0771 
India 3.5321 0.0293 HK 0.1762 0.8385 
Indonesia 1.7546 0.1731 Indonesia 0.0762 0.9266 
Japan 13.9206 0.0000 Japan 0.7414 0.4765 
Malaysia 15.4040 0.0000 Malaysia 0.5197 0.5947 
UK 1.7102 0.1809 UK 0.8047 0.4473 
US 14.5839 0.0000 US 9.4930 0.0001 

Dependent variable Japan Dependent variable Malaysia 
Australia 0.4556 0.6341 Australia 4.8994 0.0075 
Canada 59.6861 0.0000 Canada 23.3674 0.0000 
Germany 79.6987 0.0000 Germany 5.5796 0.0038 
HK 0.4018 0.6691 HK 6.0574 0.0024 
India 1.6429 0.1935 India 0.5468 0.5788 
Indonesia 1.4844 0.2267 Indonesia 5.9854 0.0025 
Malaysia 1.9547 0.1417 Japan 1.6178 0.1984 
UK 9.7891 0.0001 UK 1.0621 0.3458 
US 3.1889 0.0413 US 0.8418 0.4310 
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Dependent variable US Dependent variable UK 
Australia 2.0395 0.1302 Australia 16.7223 0.0000 
Canada 44.4305 0.0000 Canada 86.9083 0.0000 
Germany 31.0951 0.0000 Germany 16.3392 0.0000 
HK 2.5597 0.0774 HK 10.7405 0.0000 
India 1.6327 0.1955 India 1.5106 0.2209 
Indonesia 0.8351 0.4339 Indonesia 0.1511 0.8598 
Japan 1.0903 0.3362 Japan 4.1351 0.0160 
Malaysia 3.9009 0.0203 Malaysia 6.4803 0.0015 
UK 0.1982 0.8202 US 6.4486 0.0016 

Dependent variable Indonesia Dependent variable Germany 
Australia 2.5100 0.0814 Australia 10.7009 0.0000 
Canada 30.5821 0.0000 Canada 26.9741 0.0000 
Germany 17.5232 0.0000 HK 1.0778 0.3404 
HK 8.9100 0.0001 India 1.0930 0.3353 
India 1.3114 0.2695 Indonesia 0.2025 0.8167 
Japan 1.5984 0.2023 Japan 1.8779 0.1530 
Malaysia 1.5332 0.2159 Malaysia 1.1512 0.3163 
UK 1.7543 0.1731 UK 1.0292 0.3574 
US 2.5551 0.0778 US 2.3176 0.0986 

 

 Forecast error variance decomposition approach to modelling return volatility 6.4.2.2

interdependence 

In this section I present forecast error variance decomposition as a second tool for VAR-X 

analysis.
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Table 6.28: Decomposition of forecast error variance for Australia stock returns 

Step Standard 
error 

Australia Canada Germany HK India Indonesia Japan Malaysia UK US 

1 1.043 100.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 1.138 84.476 9.905 5.169 0.110 0.109 0.000 0.102 0.005 0.087 0.036 
3 1.140 84.209 10.057 5.182 0.119 0.121 0.001 0.112 0.074 0.086 0.040 
4 1.141 84.113 10.122 5.176 0.138 0.131 0.002 0.113 0.075 0.087 0.043 
5 1.141 84.112 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
6 1.141 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
7 1.141 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
8 1.141 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
9 1.141 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
10 1.141 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
11 1.141 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
12 1.141 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
13 1.141 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
14 1.141 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
15 1.141 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
16 1.141 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
17 1.141 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
18 1.141 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
19 1.141 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
20 1.141 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
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I now discuss the implications of the empirical results. In Table 6.28, the first column shows 

the standard error of the forecast error variance for the Australia stock returns variable in the 

VAR-X model. This is the first variable in the set of VAR. The remaining columns provide 

the decomposition of the forecast error variance of the Australia stock returns at various lags, 

as shown by each row of the table for all other countries. The first row indicates that the 

Australian stock return explains all (100%) of its own 1-step-ahead forecast error variance and 

84.11% of its 6–20-step-ahead forecast error variance. The four principal factors driving 

Australian returns volatility are itself, Canada, Germany and HK, up to 20-step-ahead 

forecasts. Similarly, at 15-steps ahead UK explains 45.22% of its own, 0.17% of the forecast 

error variance for the US and 19.59% for Australia respectively; the rest is due to the forecast 

error variances of others (see tables in appendices). In summary, I extracted information on 

the aggregate spillover effect across markets using forecast error variance decomposition in a 

series due to its ‘own’ shocks versus the shocks from other variables. If, for example, US 

shocks explain none of its forecast error variance for Australia at any forecast horizon, then 

Australian stock is exogenous; that is, Australia evolves independently of US return shocks. 

Conversely, if US shocks explain the entire forecast error variance in the Australian sequence 

at all forecast horizons, Australian stock is endogenous. Linkages among forecast error 

variance spillovers were detected (see appendix C for all other cases). The forecast error 

variance decomposition is important for investors’ portfolios of asset management decisions 

based on the riskiness of an asset in the portfolios. 

 Impulse response analysis 6.4.2.3

Since the VAR process is stable according to the eigenvalue test, the Wold (1938) 

decomposition of the VAR into an infinite order vector moving average (VMA) can be 

derived. Using this dual relationship between multivariate VAR and multivariate VMA, it is 

possible to extract the impact (immediate) effect and 1-step multiplier, two-step multiplier 

and progressively all-step multiplier effects. The time path of all such multipliers is the IRF, 

which traces how the entire time path of a variable is affected by a stochastic return shock. 

The impulse responses of Australian stock tracing the effects of a return shock can be 

computed using the impulse responses computed as , 1, 2,.....,t j t

t t j

Aust Aust
j

 




 
  

 
. When

0j  , we measure the immediate (or contemporaneous) effect. This is called the impact 

multiplier. Similarly, for all the stock returns in the VAR, impulse response analysis can be 
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utilised for portfolio diversification policy decision purposes. The impulses for shocks in 

Australia are shown in Table 6.29 below for periods 1-20 for each of 10 return shocks. Note 

that for other stock markets, similar calculations produced the IRFs provided in the 

appendices. 

 

Figure 6.2: Impulse response function 

Figure 6.2 shows responses to Australian stock return shocks: One standard deviation shock 

in Australian stock returns induces an increase of approximately 0.50 standard deviations in 

US returns for period 1. After period 1, UK induces a decrease of around 0.04; after period 2 

all responses decay towards zero. The decay of the coefficients of the impulse function 

indicates that the effects of changes in the various shocks are of short-term duration. In the 

above IRF I have compared all other responses to the Australian return shocks. It is clear that 

Australian shocks transmit to all others up to lag 2; thereafter the Australian shock effect 

diminishes. Thus, risk-taking investors may hold Australian stocks for the short term. This 

information is important for investor’s decision making purposes regarding the holding of an 

asset in the short term. 
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Table 6.29: Impulse responses to shocks for Australian returns 

No Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 1.043 0.424 0.504 0.619 0.311 0.268 0.506 0.522 0.594 0.501 
2 0.076 0.081 –0.058 0.258 0.037 0.089 0.110 0.062 –0.044 0.037 
3 0.000 –0.016 0.083 –0.027 0.042 0.056 0.001 0.133 0.055 –0.007 
4 0.018 0.0028 0.004 0.016 –0.003 0.0143 0.022 0.005 –0.001 0.006 
5 –0.005 0.002 –0.007 –0.005 0.000 0.003 –0.005 0.009 –0.010 –0.001 
6 0.000 0.000 0.003 0.000 0.001 0.002 0.000 0.001 0.003 0.000 
7 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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I analysed linkages among the stock returns of 10 countries for the 1987 crash, AFC and 

GFC. I tested the severity of these crisis events. The severity criteria revealed that the 10 

stock markets experienced a higher severity from the 1987 crash and GFC crashes than from 

AFC. This is an important finding for both domestic and international stock market investors 

and decision markers regarding portfolio allocation and diversification strategies. I further 

utilised Granger causality tests to uncover directional causality among the sampled countries. 

The impulse response analysis traced out the time path of various return shocks. Next I test 

the effect of GFC crash considering both time and country effects using PVAR-X. 

6.5 PVAR–X 

Since the VAR only considers the time dimension, it does not capture cross-sectional effects 

when considering the time paths of the DGP. To consider jointly the time and cross-sectional 

effects I employed the PVAR approach to analyse interrelationships among stock, bond and 

money markets. The PVAR is a rich class of models that deals with panel heterogeneity and 

panel serial correlations jointly among the variables of interest. The panel model provides 

more information, more variability, less collinearity and more degrees of freedom and is thus 

an important statistical technique for data analysis purposes. The PVAR model was estimated 

by the GMM. The GMM estimates are consistent and asymptotically normally distributed. 

The stock, bond and money market returns of Australia, France, Japan, Singapore and US 

were analysed for a period of almost 17 years starting on 31 August 1999 and ending on 30 

December 2016, with 3,311 useable observations, using the PVAR approach of Abrigo and 

Love (2016). I extend their approach in the finance area to identify linkages among asset 

markets across countries allowing financial market ‘crash’ events. This is a new application of 

the PVAR approach to modelling dynamic interdependence among financial markets 

specifically during financial crisis. The market ‘crash’ events are determined by the time of 

occurrence of the events. To apply the PVAR I tested each of the three return series for panel 

unit root by utilising Im, Pesaran and Shin (2003)  called IPS panel unit root test, Fisher-type 

Maddala–Wu (1999) panel unit root and Hadri (2000) nonparametric LM unit root tests. The 

IPS and Fisher-type Maddala–Wu test consider the null hypothesis of nonstationarity, 

whereas Hadri has stationarity as its null hypothesis (similar to the univariate KPSS test). I 

applied the PVAR-X approach to address RQ4. 
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6.5.1 Panel unit root tests 

I used the following model for the panel unit root tests of Im,Pesaran and Shin (IPS) and 

Maddala and Wu (m). Let itr be the i-th variable of interest at time t in the first difference 

generated by the following process: 

1
1

k

it i i t j t j i t it
j

r a r r t     


                                          (6.7) 

where ia is the i -th panel fixed effect; i  is the panel-specific parameter indexed by i ; i  is 

the time trend parameter; t  is a time-fixed effect; it  is random disturbance of the i-th panel 

at time t; and   represents the difference operator of the variable.  

For Hadri (2000) test, I use it it itr m   , where 1it it itm m u  . The random variable 

2~ (0, )it uu iid   and it is a stationary process. If 2 0u  , then itm  is a constant and itr is a 

stationary process. A test for 2
u =0 is equivalent to 0  , where 

2

2
u







 . 

The following hypotheses were of interest. 

 IPS. 0 : 0iH    for all i  vs. 1 : 0iH    for some panels are stationary 

 Fisher-type Maddala–Wu. 0 : 0iH    vs. 1 : 0iH    for at least one i  

 Hadri. 0 : 0H    for all i  vs. 1 :H 0   

The following test statistics were used: 

 0
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    for the IPS test, where    is the ADF statistic 

for panel .i    

 
1

2 ln
N

i
i

m 


    for Maddala–Wu, where i  is the p-value for the Dickey-Fuller 

statistic for panel i  obtained by the bootstrap procedure. The test statistic m follows a

2 distribution with 2N  degrees of freedom. 
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i tNT   . The limiting distribution of L̂M  follow normal distribution 

with mean zero and variance 1, Hadri (2000). 

Table 6.30: Stationarity test outcomes 

Variable  IPS unit root test ( t ) Fisher-type test Hadri–LM test 
Stock returns –62.5922(0.000) 360.4365(0.000) –2.0785(0.981) 

Bond returns –57.7085(0.000) 360.4365(0.000) –1.9117(0.972) 

T-bill returns –57.7936(0.000) 360.4365(0.000) –2.0510(0.979) 

 
Note 1. The p-value is in parentheses. 

Note 2. The lag length k  was selected by the AIC for IPS tests. 

The test results shown in Table 6.30 indicate that all of the three returns series (stock, bond 

and T-bill) are stationary for all of the five countries according to the ADF, PP and KPSS 

tests. 

6.5.2 Estimation and analysis of the PVAR-X model 

The PVAR-X model takes the following form: 

p

it i l it l it it
l l

r u A r x 


                                             (6.8) 

where itr  is an ( 1)N   vector of dependent variables; itx is a ( 1)k   vector of exogenous 

variables reflecting stock market crash events; iu is an ( 1)N   vector of fixed or random 

effects; it is an ( 1)N   vector of idiosyncratic errors; lA are ( N N ) parameter matrices to 

be estimated; and   is an ( N k ) parameter matrix of exogenous variables. 

In the current empirical application, itr  is a (3 × 1) vector of endogenous variables and itx (

1USAd ×stock
tt 

, where td is the time dummy for the GFC) is a single variable measuring the 

(GFC) contagion effect of the US stock market and its spread to the stock, bond and T-bill 

markets of Australia, France, Japan and Singapore for the study period. The sample period 
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starts from 31 August 1999-30th December 2016 with 16,549 number of observations in Panel 

VAR. 

The fixed-effects mean-corrected PVAR model was estimated by the GMM. The GMM 

estimators are consistent and asymptotically normally distributed (see Hansen, 1982). The 

estimation result is provided below: 

0.3587*** 0.0878*** -0.1256***

(0.0695) (0.0326) (0.0336)
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Note. Standard errors in parentheses. 

The results show significant US stock market contagion transmission to the stock, bond and 

T-bill markets of Australia, France, Japan, Singapore, and US jointly. However, the degree of 

contamination transmission to stocks, bonds and T-bills differs for different markets. The 

severity of contamination of the three asset markets among the five countries jointly can be 

ordered from most severe to least severe as GFC GFCstock T bill bondGFC    using the severity 

criterion developed in Section 6.4.2. The results of the PVAR-X model stability test and 

impulse response analysis are reported in the next section. The stability of the estimated 

PVAR was tested by the eigenvalue criterion, which is shown below. 

 

Figure 6.3: Location of panel unit roots 

-1
-.

5
0

.5
1

Im
ag

in
ar

y

-1 -.5 0 .5 1
Real

Roots of the companion matrix



135 

 

All the roots of the PVAR lie in the unit circle shown in Figure 6.3. Therefore, PVAR is 

stable and I can form the MA representation of the PVAR for impulse response analysis. 

6.5.3 The impulse response analysis of the PVAR-X model of a set of asset returns 

The impulse responses derived from the PVAR-X show that most markets rapidly transmit 

shocks across markets, but the most dramatic response is usually for one period (i.e. 1 day 

because the data are daily data) and later responses die out quickly. All are significant and lie 

within the 95% confidence band. The forecast error variance decomposition and IRF analysis 

are reported below.  

From the forecast error variance decomposition in Table 6.31, it can be seen that stock 

explains all of its 1-step ahead forecast variance and approximately 99% of its 3-step ahead 

forecast variance, and the trend is flat from 3 steps onwards. The bond explains 95% of its 5-

step ahead forecast variance and stock and T-bill explains approximately 46% and 0.02% of 

forecast error variance. A similar explanation applies to shocks for other variables. The 

impulse response analysis indicates that 1 standard deviation shock to stock is around 36%; 

this induces a contemporaneous increase in bond of approximately 9% and a 

contemporaneous decrease in T-bill of approximately 13%. Responses to shock to one 

variable in relation to others can be checked accordingly. The impulse response graphs in 

Figure 6.4 can be used to visualise the time path of return shocks. 
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Figure 6.4: Impulse response functions of returns with a 2 standard deviation limit 

Note. r1 = stock, r2 = bond and r3 = T-bill
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Table 6.31: Forecast error variance decomposition and impulse response function (IRF) 

Forecast error variance decomposition IRF 
Response variable Impulse variable Response variable Impulse variable  

Stock Stock Bond T-bill Stock Stock Bond T-bill 
0 0.0000 0.0000 0.0000 0 1.0000 0.0000 0.0000 
1 1.0000 0.0000 0.0000 1 0.3587 0.0878 –0.1257 
2 0.9903 0.0001 0.0096 2 0.0829 0.0238 –0.0305 
3 0.9897 0.0001 0.0101 3 0.0206 0.0069 –0.0067 
4 0.9897 0.0002 0.0101 4 0.0067 0.0028 –0.0017 
5 0.9897 0.0002 0.0102 5 0.0031 0.0015 –0.0005 
6 0.9897 0.0002 0.0102 6 0.0018 0.0009 –0.0003 
7 0.9897 0.0002 0.0102 7 0.0011 0.0006 –0.0001 
8 0.9897 0.0002 0.0102 8 0.0007 0.0004 –0.0001 
9 0.9897 0.0002 0.0102 9 0.0005 0.0002 –0.0001 
10 0.9897 0.0002 0.0102 10 0.0003 0.0002 0.0000 

Bond Stock Bond T-bill Bond Stock Bond T-bill 
0 0.0000 0.0000 0.0000 0 0.0000 1.0000 0.0000 
1 0.0538 0.9462 0.0000 1 0.7967 0.6094 0.0636 
2 0.2999 0.6994 0.0007 2 0.8300 0.4724 –0.0659 
3 0.4041 0.5947 0.0011 3 0.6134 0.3287 –0.0695 
4 0.4426 0.5558 0.0016 4 0.4178 0.2203 –0.0512 
5 0.4578 0.5405 0.0018 5 0.2782 0.1460 –0.0348 
6 0.4640 0.5341 0.0019 6 0.1841 0.0965 –0.0232 
7 0.4667 0.5314 0.0019 7 0.1215 0.0637 –0.0153 
8 0.4679 0.5302 0.0019 8 0.0802 0.0420 –0.0101 
9 0.4684 0.5297 0.0020 9 0.0529 0.0277 –0.0067 
10 0.4686 0.5295 0.0020 10 0.0349 0.0183 –0.0044 
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T-bill Stock Bond T-bill T-bill Stock Bond T-bill 
1 0.1126 0.4683 0.4190 0 0.0000 0.0000 1.0000 
2 0.4142 0.3649 0.2210 1 0.9215 0.4874 –0.0716 
3 0.4783 0.3403 0.1814 2 0.6529 0.3431 –0.0797 
4 0.4997 0.3320 0.1683 3 0.4342 0.2276 –0.0545 
5 0.5081 0.3287 0.1632 4 0.2869 0.1503 –0.0362 
6 0.5116 0.3273 0.1611 5 0.1893 0.0992 –0.0239 
7 0.5131 0.3267 0.1602 6 0.1249 0.0654 –0.0158 
8 0.5137 0.3265 0.1598 7 0.0824 0.0432 –0.0104 
9 0.5140 0.3264 0.1596 8 0.0543 0.0285 –0.0069 
10 0.5141 0.3263 0.1596 9 0.0358 0.0188 –0.0045 
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6.6 Measuring Dependence 

Analysing covariance is one of the ways to understand the dependence of risk in financial 

asset returns. A number of measures can be utilised to understand the dependence of financial 

market volatility. I address RQ 4 further without considering severity issues but undertaking 

dependence analysis by using a nonparametric approach and copula dependence. This 

includes the Pearson product moment correlation, Spearman rank correlation, Kendal’s tau 

and copulas. The product moment correlation is invariant to affine transformation of the 

variables of interest. However, Pearson correlation is not invariant to nonlinear 

transformation. As it is well known that the conditional volatility of financial returns is 

nonlinearly dependent on the return shock, linear correlation is insufficient for measuring the 

dependence of multiple series. The Spearman rank correlation is robust to certain nonlinear 

transformations and can assess the strength of a relationship nonparametrically. Kendall’s tau 

can also measure nonlinear dependence based on the idea of concordance and discordance. 

Both the Spearman and Kendal correlations are nonparametric statistics, whereas Pearson 

correlation is a parametric statistic. Copulas are useful to study dependence among series of 

interest. The copula is a link function linking the joint distribution function with its one-

dimensional margins. Based on information on the marginal the joint distributions of variables 

can be obtained by copula links. I focus on Spearman rank correlation, Kendall’s   and 

copula for pairwise dependence analysis of returns. Note that Kendall’s   and copulas are 

linked. However, this relationship depends on the choice of the copula. In this study I use the 

Gumbel copula. The sample includes Australia, HK, US, UK and Japan with 5765 

observations for the period 2nd April 1986-30th December 2016. 

6.6.1 Kendall’s   

Kendall’s   is a measure of dependence computed based on concordance and discordance. 

The pairs ( , )i ix y  and ( , )j jx y  are concordant if sgn ( , )i ix y  = sgn ( , )j jx y , where  

sgn(.) = 

1 for negative value

0 if 0

1 if 0

i j

i j

x x

x x




 
  

. 
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The population   is defined as [sgn( )sgn( )]i j i jE X X Y Y    . The sample counterpart of   

is 
, 1

2
sgn( )sgn( )

( 1)

n

i j i j
i j

x x y y
n n




  
 

, where is thesamplesize.n  

Table 6.32: Pairwise Kendall’s  on stock returns 

 Australia HK Japan UK US 
Australia 1.000 0.195 0.223 0.254 0.189 
HK 0.195*** 1.000 0.274 0.283 0.316 
Japan 0.223*** 0.274*** 1.000 0.262 0.274 
UK 0.254*** 0.283*** 0.262*** 1.000 0.346 
US 0.189*** 0.316*** 0.274*** 0.346*** 1.000 

Note. *** significant at the 1% level 

The results in Table 6.32 indicate significant dependence between pairs of returns by the z 

test. I also conducted nonparametric Spearman’s rank correlation s  test and Pearson’s 

parametric correlation 
s  test and found significant by both the tests at varying degrees of 

significance. The tests are in the appendix D. 

6.6.2 Multiple dependence using the copula 

The main idea of the copula is that it is a function that joins or links one-dimensional 

distributions in multivariate distribution functions. This is achieved by applying cumulative 

distribution function (cdf) transformation to all random variables in a common domain. The 

dependence analysis then takes place in the common domain and the random variables can be 

transformed back to their original distribution by inverse cdf transformation (see Nelson R.B., 

1999). Sklar’s (1959) theorem provides a connection between the copula and joint distribution 

of a number of random variables. The random variables X and Y with cdf ( )XF x  and ( )YF y  

are joint by copula C if their joint distribution can be written as: 

 ( , ) ( ), ( )XY X YF x y C F x F y                                                   (6.9) 

For continuous cdf, C is unique. Note that X = 1( ) and ( )X XF U U F X  ; we have ( )XF x u  

and ( )YF y v , where u  and v  are the realisation of uniform random variables U and V

respectively. Then  1 1( , ) ( ), ( )UV X YC u v F F u F y  . A link function C is defined in the two-

dimensional space. 2:[0,1] [0,1]C   is a copula if it satisfies (a) (0,0) 0C   for 0u  or 
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0v  ; (b) 
2 2

( 1) ( , ) 0i j
i j

i j

C u v  , for all ( , )i ju v  in [0,1]2 with 1 2 1 2u u and v v  ; and 

(c) ( ,1)C u u , (1, )C v v  for all u , v  in [0,1]. 

For the construction of the copula function from joint multivariate distribution functions, 

various families of copulas are available in the literature; see for example, Joe (1997), Nelson 

(1999) and Kurowicka and Cooke (2006). To model stochastic dependence in the common 

domain I used the following steps: 

 rank correlation calculated from the dataset; 

 a copula with given rank correlation was used as a dependence function between ranks 

of the random variable; 

 inverse cdf; the correlated ranks were transformed into the given marginal 

distributions. 

I used pairwise stock returns for dependence analysis by employing a bi-variate Gumbel 

copula with t margins. The rank correlation was computed from the univariate GJR-GARCH-t 

estimated standardised residuals. The choice of the Gumbel and t distributions was justified 

by the facts that the return series are non-normal and asymmetry is captured by the Gumbel 

distribution. The Gumbel parameter  ( 1 ) and Kendall’  are related according to 

1
( )

 



 . Table 6.33 provides measures of dependence for the pairs of returns in terms of 

Kendall’s  . 

Table 6.33: Pair of returns 

Pair of returns ( ) 


 
HK vs Australia 0.14 
Japan vs US 0.15 
UK vs US 0.17 

I found some dependence between the pairs used in the analysis as reported in Table 6.33. 

Note that there is significant dependence for the pair of returns (see Table 6.33) according to 

the Kendall’s tau function. 
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Figures 6.5, 6.6 and 6.7 display simulated dependence between returns using Gumbel copula 

with t margins. Specifically, the returns for the pairs US and UK, and Australia and HK are 

both tail dependent. Conversely, the Japan–US pair does not display tail dependence. 

 

Figure 6.5: Australia vs HK copula simulation distribution 

 

Figure 6.6: US vs Japan copula simulation distribution 

 

Figure 6.7: US vs UK copula simulation distribution 
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6.6.3 Tests for covariance dependence (or spatial dependence) between financial asset 

market returns 

The dependence of global financial markets was investigated using the correlation coefficients 

computed by the three methods: Kendall’s tau, Spearman rank correlation and Pearson 

product moment correlation. Squares of the correlations for the pairs were used to form 

asymptotic tests for the joint significance of the covariance matrix. I developed an asymptotic 

LM test to explore the existence of covariance jointly among the pairs of the sets of stock 

returns for Australia, HK, Japan, UK and US by testing the following null hypothesis versus 

the alternative hypothesis: 

0 21 31 32 , 1: ........ 0N NH           

1 21 31 32 , 1: ........ 0N NH           

Test statistic is 
1

2
,

2 1

N i

ij k
i j

T r


 

  . The test statistic   is asymptotically distributed as a χ2 

distribution with ( 1) / 2N N   degrees of freedom; N is the number of variables (stock returns 

of Australia, HK, Japan, UK and US); T is the sample size and k ={Kendall, Spearman, 

Pearson}. 

The test statistic used for testing 0H  versus 1H  was: 

1
2
,

2 1

( ) 5767 0.7063
N i

ij k
i j

Kendall T r


 

   =4073.2321(0.00000) 

1
2
,

2 1

( ) 5767 1.427
N i

ij k
i j

Spearman T r


 

   =8229.509(0.00000) 

1
2
,

2 1

( ) 5767 1.9171
N i

ij k
i j

Pearson T r


 

   =11055.9157(0.00000) 

Note. P value are in parenthesis 

The value of the test statistic computed was based on the correlations computed by each of the 

methods (Kendall, Spearman, Pearson; see appendix D). The results provide strong evidence 
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for covariance dependence between pairs of return series jointly by the LM-type chi-square 

test. This covariance dependence indicates co-volatility spillovers. 

6.7 Summary 

This chapter analysed the theory and application of an econometric methodology for 

modelling and predicting financial asset returns. The main aim was to jointly model the first 

and second moments of the return generating process. The returns of the financial markets 

(stock, bond and money) are of great interest. Here, the returns were constructed from price 

series and/or indices. The return is the main variable of interest to model for many financial 

decision making applications. In Chapter 5, univariate analysis was conducted for stock, bond 

and money markets for 17 countries individually. Based on this analysis alone, the 

interdependence of stock market volatility cannot be understood. To determine volatility 

spillover among assets across countries, the current chapter extended the univariate arena to 

multivariate analysis of financial market interactions. The theoretical development of the 

extended definition of asymmetric partial co-volatility and the Wald test for partial co-

volatility was reported in Chapter 4. In the multivariate case, a model of conditional volatility 

of assets return is quite popular, and is developed by BEKK as proposed by Engle and Kroner 

(1995).  

In Chapter 5, the univariate analysis revealed that ‘news’ in financial markets plays a very 

important role in dealing with volatility. It is to be noted that volatility is a measure of the risk 

of holding assets in financial markets. A significant effect of the presence of asymmetric news 

was found in the univariate volatility models. The stated Engle and Kroner (1995) full BEKK 

volatility model itself has an important statistical drawback as recently raised by Chang et al. 

(2018). The QMLE of the full BEKK model parameters do not have a statistical asymptotic 

distribution because BEKK is not derived from a stochastic process (see Chang et al., 2017). 

Therefore, the full BEKK is not valid for statistical inference in volatility spillover hypothesis 

testing. An operational form of full BEKK is the DBEKK derived from vector random 

coefficient autoregressive process of order one of the vector of return shocks, in which both  

the short and long run weight matrices  are diagonal as shown by Chang and McAleer (2017). 

In the absence of normality, the QMLEs are asymptotically normally distributed. Asymptotic 

normality means that statistical inferences on the estimated parameters and/or functions of 

parameters are valid for estimating co-volatility spillover effects and testing for asymmetric 
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co-volatility spillover. The returns and volatility of returns were tested for causality and 

asymmetric partial co-volatility spillovers. 

As indicated previously, the role of news has extended the model for volatility, which is of 

great interest for analysis and decision making purposes. This model is commonly known as 

the DBEKK-GJR-GARCH conditional volatility model. The conditional mean model is taken 

as a VAR along the lines of Box and Jenkins (1978). The conditional mean model is based on 

the multivariate asset returns of one kind (say stock) or of a mix of assets (say stock, bond, 

money). 

The vector conditional mean model, DBEKK-GJR-GARCH and DBEKK-GJR-GARCH-M 

models require estimation jointly for statistical inference. As mentioned in Chapters 4 and 5, 

the validity of the normality is in question; therefore, the QML method is an alternative for 

estimation. In the absence of normality, QMLEs are consistent and asymptotically normally 

distributed. This chapter contains five sections that deal with dependence analysis of returns 

in general. 

Section 6.2 dealt with jointly fitting VAR mean and DBEKK-GJR-GARCH conditional 

volatility models. The resulting estimated model provided tests for causality and spillover 

effects of return shocks on volatility, thereby addressing the research hypotheses. Here I 

extended the existing definitions of co-volatility within the DBEKK-GJR-GARCH model and 

developed a Wald-type test for co-volatility spillover effects. In this section I grouped 

financial markets into developed, advanced emerging and emerging financial market 

categories based on the classification of the FTSE 100 Index. I found significant short and 

long-run effects of return shocks on volatility and asymmetric volatility. For all three groups, I 

found significant causality including uni-directional and bi-directional causality or 

interdependence among the stock markets, signifying the existence of spillover effects of 

return shocks among these markets during the sample period. The test results are provided in 

Section 6.2. The significance of the leverage effect indicated the effect of return shock on 

volatility from two sources: its own effect and that due to the news effect. A news effect 

might be due to a market crash, government intervention policy and so on. 

In Section 6.3, I discussed an important issue relating to the international CAPM that helped 

to determine the existence of a risk premium in the multivariate asset market. This model is an 

extension of the previous mean model. The model is generally known as MGARCH-M 
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model. In this context I called it the DBEKK-GJR-GARCH-M model and estimated it by 

QMLE. The estimated model parameters have the desirable asymptotic statistical properties 

for jointly testing leverage effect and volatility spillovers, as well as the existence of effects of 

return shocks on volatility. I computed the leverage effects and tested the risk premium by 

estimating the model by QMLE. The test results indicate a significant risk premium exists in 

US and Japan bond markets, while no significant risk premium was documented in the 

Australian bond market during the sample period. However, I reported, in chapter 5, the 

presence of a risk premium in the bond market in the univariate analysis. The reason for this 

difference may be the vector of the series in the multivariate case. The applicability of the 

EMH is mixed. Therefore, the full rational expectation (RE) hypothesis does not hold in the 

bond market, which is a violation of the full EMH. This information is important for portfolio 

diversification and portfolio allocation strategies. 

In Section 6.4, I described the VAR approach to analysing dynamic dependence among a set 

of asset returns using Sims’s (1980) methodology. I extended the methodology to allow the 

model to include financial crash events. Crash events were identified by the calendar date of 

the occurrence of rare events. These events do not occur frequently but are very important and 

their effects last longer in the financial market. I classified these market crash events as 1987 

crash, AFC and the GFC. I modelled the return series using VAR-X, an extended form of 

Sims’s VAR. The X-variables are exogenously determined but their occurrence depends on 

unknown sources of information.  

The model was estimated by the OLS. The SUR of Zellner (1962) did not improve the 

efficiency because each equation in the system has the same right-hand-side variables. The 

estimated VAR coefficients were found to be stable by the eigenvalue of the determinantal 

equation. All roots of the VAR lie within the unit circle confining the stability of the VAR 

model. VAR order selection was conducted using multivariate AIC, BIC and HQ criteria. I 

used the estimated model and developed criteria to determine the severity of each crash event. 

The likelihood of rejection of the null hypothesis of no crash was used to compute an index 0 

≤ λ ≤ 1, where   is the value of the test statistic. A value of   closer to 1 indicates a strong crash 

due to news (unknown but estimable by the return shock variable). Based on the newly 

developed criteria I found that most global financial stock markets experienced more severe 

crash effects from the 1987 crash and GFC than from AFC. This is consistent with reality. 

Causality and variance decomposition were investigated within the context. This criterion can 

be used for decision making purposes to choose the optimal portfolio during a crash period. 
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In Section 6.5, I extended the VAR to include both the time and cross-section dimension of 

global financial asset markets. I analysed five countries, each with three assets namely stock, 

bond and T-bill using the Panel VAR (PVAR) approach to explore the interrelationships 

among asset classes. All series were found to be stationary using the IPS, Maddala–Wu and 

Hadri panel unit root tests. I considered the fixed-effects PVAR because fixed-effects 

estimates are consistent. The model was estimated by GMM estimation. The GMM method 

does not require distributional assumptions for estimation and GMM estimators are consistent 

and asymptotically normally distributed (see Hansen, 1982). The forecast error variance 

decomposition and IRF were examined by Monte Carlo simulation as in Abrigo and Love 

(2015). The estimated model produced stable PVAR solutions. The test was conducted on the 

parameter vector for the effect of a market crash on the return series. The test results indicated 

a significant effect of the GFC on bond, stock and T-bill markets for the sample periods. 

In Section 6.6, I further extended the dependence analysis by employing nonparametric 

approaches to the ranked correlation of Spearman, and Kendall’s tau criteria. I developed an 

asymptotic 2  test for the existence of contemporaneous covariance dependence. The 

asymptotic 2  test revealed the existence of covariance dependence among the assets. 

Finally,  I examined the dependence of multiple stock markets (pairwise) utilising the copula 

links that connect the multivariate joint distribution functions with their marginal. The copula 

link depends on the choice of copula function. I used the Gumbel copula with GJR-GARCH t-

errors to generate copula dependence for the Australia–HK, Japan–US and UK–US market 

pairings respectively. I used the ranked residuals obtained from the GJR-GARCH with t-error 

to form the bi-variate Gumbel distribution. The Gumbel parameter and Kendall’s tau ( ) are 

related by 
1

( )
 



 , where   1. Therefore, 0 ≤  ( ) <1. Values closer to 1 indicate the 

maximum dependence and those closer to 0 indicate non-dependence. I found some form of 

dependence between the pairs examined in the analysis. 

This chapter has provided novel methodological innovations in the area of financial volatility 

modelling, estimation of co-volatility spillovers, partial co-volatility tests, aggregate volatility 

spillover effects, causality, contagion effects and dependence analysis. These methodologies 

are the main contributions of this thesis. Future research may be undertaken by applying the 

novel methodologies of this thesis to global financial markets in general, and the 

methodologies can be adopted for other branches of research.  
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Chapter 7: Conclusion 

7.1 Introduction 

Volatility is a term that refers to fluctuations in a time series over a period. In the finance area, 

asset price volatility is an important concern among researchers, agents and academics. As 

such, estimation and prediction of price volatility are useful in financial decision making for 

pricing of securities; measurement of VaR; allocation and diversification of assets; and 

assisting financial regulators with policy implementation. There are three main areas of 

volatility modelling: (i) implied volatility, (ii) realised volatility and (iii) conditional volatility. 

Of these, the ARCH of Engle (1982) and GARCH of Bollerslev (1986) have been the most 

well researched among financial volatility models. 

Within the conditional volatility framework, this thesis proposes a new methodology and 

provides new evidence for the stochastic behaviour of asset returns and relationships between 

return volatility and expected returns. To provide a basic understanding I examined univariate 

volatility models utilising classical statistical distribution theories. In light of the recently 

developed theory of Chang and McAleer (2017) and McAleer (2019) among others, I 

extended the univariate situation to a multivariate analysis of financial asset returns and 

volatilities of returns across countries. I examined the daily return data of global stock, bond 

and money markets for 17 countries from 2 January 1985 to 30 December 2016. I investigated 

various methodologies and modelling issues to establish a good volatility model for effective 

policy decision making purposes. 

7.2 Summary of Key Findings 

Since the true specification of the DGP is never known completely, for a basic understanding 

of the DGP I first examined the basic properties of all 17 countries’ asset return series. The 

majority of the return series were found to be skewed, heavy-tailed and non-normal. The 

return series were also found to be serially dependent in the level and squared series. These 

findings directed me to then apply theory and data-inherent properties jointly to search for a 

tentative model of the DGP under study. The two properties of serial dependence and 

asymmetry of the data directed me to develop a model of the first and second moments of a 

financial time series jointly to examine the stochastic behaviour of asset returns and to 

establish the relationship between return volatility and expected return. I introduced three 
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probability distributions, namely the normal, Student-t and skewed Student-t distribution of 

return shock, to capture the volatility clustering encountered in the individual asset return 

series of the stock, bond and T-bill of 17 countries. Univariate and multivariate empirical 

results are reported in Chapters 5 and 6 respectively. 

In Chapter 5, the basic descriptive statistics and preliminary tests of the returns of stock, bond 

and market-bill series were examined. Overwhelming support for the stylised facts of 

volatility clustering of a typical financial series were documented. Overall, the return series 

for stock, bond and T-bill were found to be serially dependent. These series exhibit volatility 

clustering as confirmed by LB-Q2 and Kurtosis tests. Considering this fact of the data 

properties, I utilised the GARCH model of Bollerslev (1986) to model volatility clustering of 

the return series. It is to be noted that GARCH is a generalisation of the pioneering work 

represented by Engle’s (1982) ARCH volatility model. The ARCH/GARCH model lacks the 

asymmetric news effect that is a common phenomenon often encountered in financial 

markets. Consequently, I utilised the popular GJR-GARCH model (Glosten, Jaganathan, & 

Runkle, 1993) of asymmetric volatility to understand the asymmetric behaviour of financial 

markets. There are, however, other asymmetric models available in the literature.  

For a basic understanding, I examined univariate time series models of volatility and 

asymmetric volatility in Chapter 5. Both the GARCH and GJR models uncovered significant 

short- and long-run return shocks in almost all the series considered in this study. One 

additional piece of information extracted utilising the GJR-GARCH model was the news 

effects found to be significantly asymmetric in all series except the China and Indonesia stock 

returns. This information is useful for policy decision purposes in that an agent can 

distinguish ‘good’ and ‘bad’ news to trade assets effectively in global financial markets. So-

called unobserved good and bad news can be a proxy related to positive and negative return 

shocks, respectively. Theoretically, it is true that negative shocks have a larger effect than 

positive shocks of the same magnitude. With the GARCH volatility model, I found a 

significant effect of return shock on volatility in all of the series, with the exception of the 

China, Indonesia and Malaysia stock returns. This implies that any shock persisted in these 

stock markets in the sample periods. In other cases, shocks were found to be statistically 

transitory.  

I found the long-run effect of shock on volatility. This phenomenon is commonly observed in 

practice in GARCH volatility models. Volatility prediction under normal, Student-t and 
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skewed Student-t innovation showed that the skewed Student-t distribution had the largest 

standard deviation for prediction, followed by Student-t. The normal innovation GARCH 

model had the lowest standard deviation for prediction of volatility. I computed the half-life 

of return shocks on volatility for the GJR-GARCH-M model. In this model, the risk premiums 

were found to be positive but not significant in most cases. A similar result was documented 

by Panayiotis and Lee (1995) using the GARCH-M model. I found that the half-life of a 

return shock on volatility of GJR-GARCH-M model was the highest (0.47 days) for Australia 

and South Korea, and lowest (0.29 days) for Singapore and Indonesia.  

The inability of univariate volatility models to deal with interdependence and volatility 

spillovers among assets domestically or globally is of concern for investors. Information 

about interdependence, causality and volatility spillovers is vital for asset allocation and 

diversification strategies. I discussed modelling issues for multivariate specifications in 

Chapter 6. 

In Chapter 6, I modelled and tested for causality in returns and volatility spillovers between 

financial assets across countries. In the literature, multivariate volatility models have been 

typically based on the BEKK and DCC of Engle (2002). The QMLEs of the full BEKK and 

DCC have no asymptotic properties, as shown by Chang and McAleer (2017). The 

multivariate extension of GARCH (1,1) derived from a vector random coefficient 

autoregressive process of order one has a DBEKK representation (McAleer et al., 2008; 

Chang & McAleer, 2017). Following Chang and McAleer (2017) and McAleer (2019) among 

others, I formulated the VAR-DBEKK-GARCH, VAR-DBEKK-GJR-GARCH and DBEKK-

GJR-GARCH-M models for modelling multivariate conditional mean and volatility jointly for 

analysis of the return series for 12 countries categorised as developed, advanced emerging and 

emerging financial markets. The models were estimated utilising the QML method for data 

from the developed, advanced emerging and emerging countries. I extended the definition of 

partial co-volatility spillovers within the DBEKK-GJR-GARCH models. I estimated the co-

volatility spillover effects and tested for co-volatility spillovers utilising a new quasi-Wald-

type test. I found significant partial co-volatility in the multivariate volatility models and 

significant causality in the multivariate return models. I found significant causality running in 

the multiple stock markets with some reservations. Specifically, I found causality running 

from the UK to the US stock market and vice versa; that is, bi-directional causality between 

these two countries. Both Japan and HK have significant causal effects on the US stock 

market. Significant short and long-run volatility, and significant asymmetric volatility 
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spillovers, exist in multiple stock markets. I allowed the multivariate returns to include the 

multivariate DBEKK-GJR-GARCH specification for measuring risk premiums in the 

multivariate context. The DBEKK-GJR-GARCH-M model was estimated by the QMLE for 

the 5-year bond market data. I found that a significant risk premium exists in the bond 

markets of the selected countries. This result indicates that the full EMH does not hold for the 

global bond markets in the sample. The conditional mean return of US bond markets has 

significant Granger causality of its own shocks as well as those of the Japan and Australia 

bond markets. Importantly, I found a significant volatility risk premium for the US and Japan 

bond markets but not for the Australian market. This means that the full expectation theory 

does not hold for the Japan and US markets. This information is useful for investment 

decision making in international bond markets. 

I extended Sims’s (1980) classical VAR to include financial crash events to evaluate the 

impact of these events on volatility spillovers using forecast error variance decomposition and 

impulse responses. The VAR-X allowed the inclusion of more dimensions for example, 

country and time dimensions to examine the tastes of the PVAR-X model and evaluate the 

effects of the GFC. These specifications extract information contained in the data, revealing 

the contributions of the forecast error variance of the multiple financial asset returns series 

across countries. A significant GFC crash effect was documented for 9 of the 10 selected 

countries; while the Asian crisis was experienced by only 4 of the 10 countries (Canada, HK, 

Indonesia and Malaysia). The 1987 crash was experienced by 7 of the 10 countries: Australia, 

Canada, Germany, HK, Malaysia, UK and US.  

Causal dependence was checked individually by the t test and jointly by the F test. Variance 

decomposition within the VAR framework revealed the proportion of movements in a 

sequence that were due to its own shocks versus shocks to other variables. For example, in the 

sample, I found that 84.0% of the variance in the two-step forecast error was due to 

innovation in the Australia stock return itself. The three principal factors driving the two-step 

forecast were Australia (84.0%) itself, Canada (9.9%) and Germany (5.1%).  

A new SI was constructed to determine the severity of crash events and contagion effects of 

volatility spillovers among assets returns. The stock markets experienced higher severity from 

the 1987 and GFC crashes than from the 1997–98 Asian Financial Crisis. This is an important 

finding for both domestic and international stock market investors and decision makers. I also 

estimated the stock, bond and T-bill markets within the PVAR specification for five selected 
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countries using by the GMM to evaluate the effect of the GFC alone. I found that the GFC 

most severely affected the stock market, followed by T-bills and finally, bond markets in the 

sample of five countries jointly. Dependence among global stock returns was investigated 

utilising parametric and nonparametric correlation tests and revealed significant dependence 

of stock returns between two pairs of countries: Australia and HK; and Japan and US. 

Pairwise copula links were used to examine the dependence of returns volatilities of the 

selected countries by combining joint distribution functions with their marginals utilising the 

Gumbel copula and Student-t margins. I found significant dependence of the series via copula 

simulation. Application of the covariance dependence test of asset returns jointly revealed that 

there is significant contemporaneous covariance dependence among assets returns. Overall, 

this thesis has revealed significant volatility spillovers, significant risk premiums, effects of 

financial crisis, partial co-volatility spillovers and dependence among financial assets across 

countries within multivariate assets markets. 

7.3 Implications of the Findings 

Based on the research findings of this thesis, I realise that the univariate analysis of financial 

asset markets cannot provide any interaction effects between stock markets. Interactions 

among assets across countries are important for investment policy decision purposes. 

Therefore, there is a need to model multivariate asset markets domestically and 

internationally. However, multivariate conditional volatility model specification requires extra 

care to develop an adequate model that is valid for statistical inference and hypothesis testing 

of issues such as co-volatility spillovers and causality. This thesis provides the assets market 

dependence models that can be used for asset allocation and diversification. 

The overall implication of the research findings of this thesis is that investors, agents and 

policy makers would benefit from utilising a range of econometric techniques to develop good 

volatility models for effective and efficient policy decision analysis. 

7.4 Limitations and Recommendations for Future Research 

No research is complete on its own and this is also true for this thesis. This research may be 

extended by considering the microstructure of financial markets to evaluate specific individual 

market interaction effects. The spatial dependence of markets may be structured to examine 

spatial effects in the pattern of asset trading. Dependence analysis using the copula may be 
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extended by employing other copulas and additional assets because the choice of copula 

distributions and marginals can change the pattern of asset volatility dependence. The 

statistical validity of the tests for volatility spillover effects requires further investigation for 

correct statistical decision making purposes in financial markets. 
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Appendix A 

A1. Time plot of Stock of the selected countries 

 

 

Australia: Stock  vs  Stock returns volatility
Daily series: 2 january  1985 - 30 December 2016
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Brazil: Stock  vs  Stock returns volatility
Daily series: 2 August  1991 - 29 December 2016
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Canada: Stock  vs  Stock returns volatility
Daily series: 21 January  1985 - 30 December 2016
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China: Stock  vs  Stock returns volatility
Daily series: 19 December 1990 - 30 December 2016
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France: Stock  vs  Stock returns volatility
Daily series: 9 July 1987 - 30 December 2016

Stock index Return volatility

1987 1990 1993 1996 1999 2002 2005 2008 2011 2014
0

1000

2000

3000

4000

5000

6000

7000

-15

-10

-5

0

5

10

15

Germany: Stock  vs  Stock returns volatility
Daily series: 21 january 1985 - 30 December 2016
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Hong Kong: Stock  vs  Stock returns volatility
Daily series: 2 January 1985 - 30 December 2016
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India: Stock  vs  Stock returns volatility
Daily series: 2 January 1985 - 30 December 2016
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Indonesia: Stock  vs  Stock returns volatility
Daily series: 2 January 1985 - 30 December 2016
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Japan: Stock  vs  Stock returns volatility
Daily series: 4 January 1985 - 30 December 2016
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Malaysia: Stock  vs  Stock returns volatility
Daily series: 2 January 1985 - 30 December 2016
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Mexico: Stock  vs  Stock returns volatility
Daily series: 19 January 1994 - 30 December 2016
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Singapore: Stock  vs  Stock returns volatility
Daily series: 10 June 1987 - 30 December 2016
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South Korea: Stock  vs  Stock returns volatility
Daily series: 2 July 1987 - 30 December 2016
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Thailand: Stock  vs  Stock returns volatility
Daily series: 3 August 1999 - 30 December 2016
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U.K.: Stock  vs  Stock returns volatility
Daily series: 1 April 1985 - 30 December 2016
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A2. Time plot of Bond of the selected countries 

 

USA: Stock  vs  Stock returns volatility
Daily series: 2 January 1985 - 30 December 2016
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Australia: 5-year Bond  vs  bond returns volatility
Daily series: 2 january  1985 - 30 December 2016
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Brazil: 5-year Bond  vs  bond returns volatility
Daily series: 5 january 2007 - 29 December 2016
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China: 5-year Bond  vs  bond returns volatility
Daily series: 8 June 2005 - 30 December 2016
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France: 5-year Bond  vs  bond returns volatility
Daily series: 6 August 1990 - 30 December 2016
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Germany: 5-year Bond  vs  bond returns volatility
Daily series: 7 August 1990 - 30 December 2016
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Hong Kong: 5-year Bond  vs  bond returns volatility
Daily series: 11 June 2012 - 30 December 2016
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India: 5-year Bond  vs  bond returns volatility
Daily series: 24 May 2001 - 30 December 2016
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Indonesia: 5-year Bond  vs  bond returns volatility
Daily series: 6 January 2003 - 30 December 2016
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Japan: 5-year Bond  vs  bond returns volatility
Daily series: 4 April 2003 - 30 December 2016

Bond Price Return volatility

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
0

1

2

3

4

5

6

7

8

9

-200

-150

-100

-50

0

50

100

150

200



183 

 

 

 

Malaysia: 5-year Bond  vs  bond returns volatility
Daily series: 3 August 1998 - 30 December 2016
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Mexico: 5-year Bond  vs  bond returns volatility
Daily series: 22 March 2011 - 30 December 2016
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Singapore: 5-year Bond  vs  bond returns volatility
Daily series: 2 January 1998 - 30 December 2016
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USA: 5-year Bond  vs  bond returns volatility
Daily series: 2 January 1985 - 30 December 2016
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A3. Time plot of Tbill of the selected countries 

 

 

Australia: 3-month Tbill  vs  Tbill returns volatility
Daily series: 1 October 1996 - 30 December 2016
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Brazil: 3-month Tbill  vs  Tbill returns volatility
Daily series: 28 march 2007 - 29 December 2016
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China: 3-month Tbill  vs  Tbill returns volatility
Daily series: 20 December 2005 - 20 July 2016
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France: 3-month Tbill  vs  Tbill returns volatility
Daily series: 15 June 1989 - 30 December 2016
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India: 3-month Tbill  vs  Tbill returns volatility
Daily series: 11 May 2000 - 30 December 2016
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Japan: 3-month Tbill  vs  Tbill returns volatility
Daily series: 5 October 1995 - 30 December 2016
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Malaysia: 3-month Tbill  vs  Tbill returns volatility
Daily series: 10 December 1996 - 29 December 2016
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Mexico: 3-month Tbill  vs  Tbill returns volatility
Daily series: 19 November 1999 - 29 December 2016
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Singapore: 3-month Tbill  vs  Tbill returns volatility
Daily series: 2 January 1998 - 30 December 2016
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South Korea: 3-month Tbill  vs  Tbill returns volatility
Daily series: 28 May 1999 - 16 September 2016
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Thailand: 3-month Tbill  vs  Tbill returns volatility
Daily series: 13 January 2012 - 30 December 2016
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UK: 3-month Tbill  vs  Tbill returns volatility
Daily series: 7 October 2008 - 30 December 2016
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USA: 3-month Tbill  vs  Tbill returns volatility
Daily series: 2 January 1985 - 30 December 2016
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Appendix B 

Univariate Stock return and volatility of return model for 17 selected countries 

1 0 1 1 1 1| , 1,2,3,......17it t i i it i it itr r i              

2
1 0 1 1 1 1| , 1, 2,3,..........,17it t i i it i ith w h i          

suffix i is the country index  

 Country  
0i  1i  1i  0iw  1i  1i  Q (10) Q (20) 2Q (10) 

2Q (20) JB ARCH-
Test 

LL AIC 

1 Australia 0.079*** 
(0.015) 
 

-0.271* 
(0.158) 

0.373** 
(0.152) 

0.031*** 
(0.004) 

0.155*** 
(0.010) 

0.816*** 
(0.013) 

20.847** 
[0.022] 

34.196** 
[0.025] 

9.899 
[0.449] 

11.693 
[0.926] 

16605.65*** 
(0.000) 

10.168 
[0.601] 

-9734.68 
 

2.405 

2 Brazil 0.140** 
(0.047) 
 

-0.093 
(0.319) 

0.123 
(0.318) 

0.053*** 
(0.009) 

0.099*** 
(0.008) 

0.894*** 
(0.008) 

31.621*** 
[0.0004] 

68.368*** 
[0.000] 

15.739 
[0.107] 

35.510** 
[0.017] 

627.46*** 
(0.000)  

18.108 
[0.112] 

-13366.96 4.264 

3 Canada 0.053*** 
(0.011) 
 

-0.018 
(0.138) 

0.103 
(0.138) 

0.012*** 
(0.002) 

0.091*** 
(0.006)  

0.898 
(0.007) 

10.821 
[0.371] 

16.687 
[0.673] 

11.604 
[0.312] 

21.223 
[0.384] 

5272.79*** 
(0.000) 

12.902 
[0.376] 

-10065.94 2.502 

4 China 0.008* 
(0.004) 

0.721*** 
(0.035) 

-
0.761*** 
(0.032) 

0.055*** 
0.008 
 

0.221*** 
(0.014) 

0.824*** 
(0.009) 

142.268*** 
[0.000] 

177.767*** 
[0.000] 

1.025 
[0.999] 

2.066 
[0.999] 

622023.1*** 
[0.000] 

1.342 
[0.999] 

-13164.54 4.137 

5 France 0.052** 
(0.018) 
 

0.115 
(0.256) 

-0.169 
(0.254) 

0.045*** 
(0.005) 

0.106*** 
(0.007) 

0.873*** 
(0.009) 

7.620 
[0.665] 

13.838 
[0.838] 

9.840 
[0.454] 

17.541 
[0.617] 

1411.863*** 
(0.000) 

12.756 
[0.386] 
 

-12341.95 3.308 

6 Germany 0.086** 
(0.029) 
 

-0.048 
(0.329) 

0.073 
(0.329) 

0.026*** 
(0.003) 
 

0.090*** 
(0.006) 

0.896*** 
(0.007) 

16.962* 
[0.075] 
 

29.594* 
[0.077] 

9.364 
[0.498] 

14.188 
[0.821] 

3622.954*** 
[0.000] 

10.784 
[0.547] 

-12842.18 3.181 

7 Hong 
Kong 

0.078*** 
(0.018) 
 

0.104 
(0.150) 

-0.020 
(0.151) 

0.052*** 
(0.006) 

0.109*** 
(0.007) 

0.871*** 
(0.008) 

21.557** 
[0.017] 

35.037** 
[0.020] 

152.182*** 
[0.000] 
 

158.348*** 
[0.000] 

6371.96*** 
[0.000] 

157.127*** 
[0.000] 

-13567.35 3.434 

8 India 0.110*** 
(0.032) 
 

-0.226 
(0.290) 

0.261 
(0.288) 

0.044*** 
(0.007) 

0.116*** 
(0.008) 

0.874*** 
(0.008) 

24.251*** 
[0.007] 

39.513*** 
[0.006] 

24.837*** 
[0.005] 

30.656* 
[0.060] 

421.440** 
[0.000] 

25.361 
[0.013] 

-13918.76 3.697 

9 Indonesia 0.010 0.208** -0.043 0.017*** 0.139*** 0.877*** 54.688*** 119.218*** 9.235 208.281*** 251127.2*** 9.522 -12085.4 3.116 
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(0.009) 
 

(0.080) (0.082) (0.002) (0.007) (0.005) [0.000] [0.000] [0.510] [0.000] [0.000] [0.658] 

10 Japan 0.079*** 
(0.020) 
 

-0.140 
(0.211) 

0.194 
(0.210) 

0.033*** 
(0.005) 

0.124*** 
(0.008) 

0.866*** 
(0.009) 

14.107 
[0.168] 

20.409 
[0.432] 

12.182 
[0.273] 

17.885 
[0.595] 

8106.74*** 
(0.000) 

14.003 
[0.300] 

-12701.4 3.229 

11 Malaysia  0.025** 
(0.008) 
 

0.269*** 
(0.069) 

-0.113 
(0.071) 

0.015*** 
(0.002) 
 

0.135*** 
(0.010) 

0.868*** 
(0.009) 

17.759* 
[0.059] 

29.587* 
[0.077] 

7.467 
[0.680] 

11.175 
[0.941] 

80128.43*** 
[0.000] 

8.140 
[0.774] 

-10912.16 2.772 

12 Mexico 0.092*** 
(0.019) 
 

-0.094 
(0.116) 

0.198* 
(0.114) 

0.019*** 
(0.004) 
 

0.096*** 
(0.008) 

0.898*** 
(0.008) 

13.667 
[0.188] 

18.774 
[0.536] 

19.571** 
[0.033] 

32.310** 
[0.040] 

789.696*** 
[.000] 

23.806** 
[0.021] 

-9414.499 3.286 

13 Singapore 3.286* 
(0.025) 
 

-0.106 
(0.438) 

0.123 
(0.438) 

0.014*** 
(0.003) 

0.071*** 
(0.006) 

0.925*** 
(0.006) 

17.289* 
[0.068] 

27.042 
[0.134] 

19.346** 
[0.0361] 

26.741 
[0.142] 

1090.134*** 
[0.000] 

20.869* 
[0.052] 

-12929.5 3.559 

14 South 
Korea 

0.048*** 
(0.012) 
 

0.500*** 
(0.095) 

-
0.417*** 
(0.101) 

0.060*** 
(0.008) 

0.160*** 
(0.010) 
 

0.829*** 
(0.010) 

25.226*** 
[0.005] 

41.004*** 
[0.003] 

14.524 
[0.150] 

22.197 
[0.330] 

5449.359*** 
[0.000] 

15.417 
[0.219] 

-12717.78 3.522 

15 Thailand 0.011 
(0.007) 
 

0.656*** 
(0.182) 

-
0.631*** 
(0.186) 

0.007*** 
(0.002) 

0.096*** 
(0.008) 

0.903*** 
(0.007) 

12.489 
[0.253] 

17.423 
[0.625] 

20.296** 
[0.026] 

30.093* 
[0.068] 

498.852*** 
[0.000] 

23.782** 
[0.022] 

-6147.694 2.827 

16 U.K. 0.003** 
(0.001) 
 

0.934*** 
(0.020) 

-
0.953*** 
(0.017) 

0.020*** 
(0.003) 

0.100*** 
(0.007) 

0.886*** 
(0.008) 

14.825 
[0.138] 

22.406 
[0.319] 

10.484 
[0.399] 

23.697 
[0.256] 

2340.466*** 
[0.000] 

15.934 
[0.194] 

-10861.9 2.796 

17 U.S.A. 0.013* 
(0.006) 
 

0.787*** 
(0.100) 

-
0.808*** 
(0.099) 

0.016*** 
(0.002) 

0.082*** 
(0.006) 

0.903*** 
(0.007) 

14.473 
[0.152] 

31.346* 
[0.051] 

11.574 
[0.314] 

19.748 
[0.473] 

5296.673*** 
[0.000] 

12.639 
[0.395] 

-10664.55 2.645 
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Appendix C 

C1. Decomposition of forecast error variance 

Decomposition of forecast error variance for Australia stock returns 

Step Std Error Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 1.04389912 100 0 0 0 0 0 0 0 0 0 
2 1.13880164 84.476 9.905 5.169 0.11 0.109 0 0.102 0.005 0.087 0.036 
3 1.14060752 84.209 10.057 5.182 0.119 0.121 0.001 0.112 0.074 0.086 0.04 
4 1.14142566 84.113 10.122 5.176 0.138 0.131 0.002 0.113 0.075 0.087 0.043 
5 1.14145147 84.112 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
6 1.14145609 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
7 1.14145658 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
8 1.14145661 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
9 1.14145661 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 

10 1.14145661 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
11 1.14145661 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
12 1.14145661 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
13 1.14145661 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
14 1.14145661 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
15 1.14145661 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
16 1.14145661 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
17 1.14145661 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
18 1.14145661 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
19 1.14145661 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
20 1.14145661 84.111 10.122 5.177 0.138 0.131 0.002 0.113 0.076 0.087 0.043 
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Decomposition of forecast error variance for Canada stock returns 

Step Std Error Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 1.24152262 11.714 88.286 0 0 0 0 0 0 0 0 
2 1.24901949 11.999 87.234 0.453 0.047 0.002 0.015 0.015 0.085 0.122 0.029 
3 1.25198878 11.959 87.044 0.48 0.115 0.052 0.024 0.016 0.115 0.156 0.04 
4 1.25208518 11.957 87.034 0.48 0.122 0.052 0.024 0.017 0.117 0.157 0.04 
5 1.25211092 11.957 87.032 0.48 0.122 0.052 0.024 0.018 0.117 0.157 0.04 
6 1.25211183 11.957 87.031 0.48 0.122 0.052 0.024 0.018 0.118 0.157 0.04 
7 1.25211205 11.957 87.031 0.48 0.122 0.052 0.024 0.018 0.118 0.157 0.04 
8 1.25211207 11.957 87.031 0.48 0.122 0.052 0.024 0.018 0.118 0.157 0.04 
9 1.25211207 11.957 87.031 0.48 0.122 0.052 0.024 0.018 0.118 0.157 0.04 

10 1.25211207 11.957 87.031 0.48 0.122 0.052 0.024 0.018 0.118 0.157 0.04 
11 1.25211207 11.957 87.031 0.48 0.122 0.052 0.024 0.018 0.118 0.157 0.04 
12 1.25211207 11.957 87.031 0.48 0.122 0.052 0.024 0.018 0.118 0.157 0.04 
13 1.25211207 11.957 87.031 0.48 0.122 0.052 0.024 0.018 0.118 0.157 0.04 
14 1.25211207 11.957 87.031 0.48 0.122 0.052 0.024 0.018 0.118 0.157 0.04 
15 1.25211207 11.957 87.031 0.48 0.122 0.052 0.024 0.018 0.118 0.157 0.04 
16 1.25211207 11.957 87.031 0.48 0.122 0.052 0.024 0.018 0.118 0.157 0.04 
17 1.25211207 11.957 87.031 0.48 0.122 0.052 0.024 0.018 0.118 0.157 0.04 
18 1.25211207 11.957 87.031 0.48 0.122 0.052 0.024 0.018 0.118 0.157 0.04 
19 1.25211207 11.957 87.031 0.48 0.122 0.052 0.024 0.018 0.118 0.157 0.04 
20 1.25211207 11.957 87.031 0.48 0.122 0.052 0.024 0.018 0.118 0.157 0.04 
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Decomposition of forecast error variance for Germany stock returns 

Step Std Error Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 1.62484531 9.635 16.845 73.52 0 0 0 0 0 0 0 
2 1.6357311 9.633 17.539 72.624 0.014 0.005 0 0.088 0.003 0.052 0.044 
3 1.63946412 9.848 17.495 72.319 0.017 0.046 0.014 0.105 0.023 0.059 0.074 
4 1.63972898 9.846 17.492 72.318 0.018 0.046 0.014 0.105 0.028 0.059 0.074 
5 1.63977618 9.847 17.492 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 
6 1.6397838 9.847 17.493 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 
7 1.63978414 9.847 17.493 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 
8 1.63978419 9.847 17.493 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 
9 1.63978419 9.847 17.493 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 

10 1.63978419 9.847 17.493 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 
11 1.63978419 9.847 17.493 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 
12 1.63978419 9.847 17.493 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 
13 1.63978419 9.847 17.493 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 
14 1.63978419 9.847 17.493 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 
15 1.63978419 9.847 17.493 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 
16 1.63978419 9.847 17.493 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 
17 1.63978419 9.847 17.493 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 
18 1.63978419 9.847 17.493 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 
19 1.63978419 9.847 17.493 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 
20 1.63978419 9.847 17.493 72.314 0.019 0.046 0.014 0.105 0.029 0.059 0.074 
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Decomposition of forecast error variance for Hong Kong stock returns 

Step Std Error Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 1.89464978 10.702 11.035 3.964 74.3 0 0 0 0 0 0 
2 1.95313249 11.824 11.509 3.971 71.063 0.141 0.019 0.573 0.418 0.013 0.469 
3 1.95557336 11.814 11.482 3.961 70.887 0.141 0.041 0.576 0.563 0.017 0.517 
4 1.95570846 11.819 11.481 3.961 70.877 0.143 0.042 0.576 0.566 0.017 0.518 
5 1.95572791 11.82 11.48 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 
6 1.9557294 11.82 11.481 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 
7 1.95572952 11.82 11.481 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 
8 1.95572952 11.82 11.481 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 
9 1.95572953 11.82 11.481 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 

10 1.95572953 11.82 11.481 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 
11 1.95572953 11.82 11.481 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 
12 1.95572953 11.82 11.481 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 
13 1.95572953 11.82 11.481 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 
14 1.95572953 11.82 11.481 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 
15 1.95572953 11.82 11.481 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 
16 1.95572953 11.82 11.481 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 
17 1.95572953 11.82 11.481 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 
18 1.95572953 11.82 11.481 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 
19 1.95572953 11.82 11.481 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 
20 1.95572953 11.82 11.481 3.961 70.876 0.143 0.042 0.576 0.566 0.017 0.518 
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Decomposition of forecast error variance for India stock returns 

Step Std Error Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 2.02205634 2.373 3.252 1.978 2.435 89.962 0 0 0 0 0 
2 2.03142564 2.385 3.72 1.961 2.462 89.236 0.001 0.007 0.007 0.054 0.167 
3 2.03550824 2.419 3.708 2.074 2.452 88.879 0.002 0.051 0.017 0.058 0.341 
4 2.03568751 2.419 3.711 2.073 2.453 88.863 0.002 0.052 0.019 0.06 0.347 
5 2.03570327 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 
6 2.03570483 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 
7 2.03570512 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 
8 2.03570515 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 
9 2.03570515 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 

10 2.03570515 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 
11 2.03570515 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 
12 2.03570515 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 
13 2.03570515 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 
14 2.03570515 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 
15 2.03570515 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 
16 2.03570515 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 
17 2.03570515 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 
18 2.03570515 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 
19 2.03570515 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 
20 2.03570515 2.419 3.711 2.074 2.453 88.862 0.002 0.052 0.019 0.06 0.347 
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Decomposition of forecast error variance for Indonesia stock returns 

Step Std Error Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 1.91556328 1.957 1.172 0.605 4.443 0.946 90.877 0 0 0 0 
2 1.96892835 2.058 3.838 1.262 4.598 0.92 87.12 0.044 0.001 0.084 0.074 
3 1.98076827 2.115 3.804 1.26 4.552 0.919 87.111 0.057 0.026 0.083 0.073 
4 1.9816224 2.119 3.814 1.275 4.55 0.918 87.083 0.057 0.026 0.085 0.074 
5 1.98183396 2.118 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 
6 1.98184999 2.119 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 
7 1.98185333 2.119 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 
8 1.9818537 2.119 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 
9 1.98185376 2.119 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 

10 1.98185377 2.119 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 
11 1.98185377 2.119 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 
12 1.98185377 2.119 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 
13 1.98185377 2.119 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 
14 1.98185377 2.119 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 
15 1.98185377 2.119 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 
16 1.98185377 2.119 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 
17 1.98185377 2.119 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 
18 1.98185377 2.119 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 
19 1.98185377 2.119 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 
20 1.98185377 2.119 3.816 1.275 4.549 0.918 87.081 0.057 0.026 0.085 0.074 
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Decomposition of forecast error variance for Japan stock returns 

Step Std Error Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 1.53711693 10.859 3.27 3.371 3.358 0.086 0.087 78.967 0 0 0 
2 1.60404552 10.45 7.459 5.231 3.092 0.108 0.085 73.178 0.04 0.259 0.099 
3 1.60803213 10.398 7.528 5.354 3.133 0.124 0.132 72.839 0.045 0.341 0.106 
4 1.60913083 10.403 7.597 5.347 3.131 0.126 0.132 72.745 0.048 0.357 0.114 
5 1.60918686 10.403 7.599 5.348 3.131 0.126 0.132 72.74 0.049 0.358 0.114 
6 1.60919404 10.403 7.599 5.348 3.131 0.126 0.132 72.739 0.049 0.358 0.114 
7 1.60919559 10.403 7.599 5.348 3.131 0.126 0.132 72.739 0.049 0.358 0.114 
8 1.60919569 10.403 7.599 5.348 3.131 0.126 0.132 72.739 0.049 0.358 0.114 
9 1.6091957 10.403 7.599 5.348 3.131 0.126 0.132 72.739 0.049 0.358 0.114 

10 1.6091957 10.403 7.599 5.348 3.131 0.126 0.132 72.739 0.049 0.358 0.114 
11 1.6091957 10.403 7.599 5.348 3.131 0.126 0.132 72.739 0.049 0.358 0.114 
12 1.6091957 10.403 7.599 5.348 3.131 0.126 0.132 72.739 0.049 0.358 0.114 
13 1.6091957 10.403 7.599 5.348 3.131 0.126 0.132 72.739 0.049 0.358 0.114 
14 1.6091957 10.403 7.599 5.348 3.131 0.126 0.132 72.739 0.049 0.358 0.114 
15 1.6091957 10.403 7.599 5.348 3.131 0.126 0.132 72.739 0.049 0.358 0.114 
16 1.6091957 10.403 7.599 5.348 3.131 0.126 0.132 72.739 0.049 0.358 0.114 
17 1.6091957 10.403 7.599 5.348 3.131 0.126 0.132 72.739 0.049 0.358 0.114 
18 1.6091957 10.403 7.599 5.348 3.131 0.126 0.132 72.739 0.049 0.358 0.114 
19 1.6091957 10.403 7.599 5.348 3.131 0.126 0.132 72.739 0.049 0.358 0.114 
20 1.6091957 10.403 7.599 5.348 3.131 0.126 0.132 72.739 0.049 0.358 0.114 

 

  



201 

 

Decomposition of forecast error variance for Malaysia stock returns 

Step Std Error Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 1.63616353 10.208 1.517 1.206 4.959 0.019 1.605 0 80.485 0 0 
2 1.65724371 10.09 3.206 1.375 4.996 0.02 1.722 0.07 78.472 0.021 0.028 
3 1.66670888 10.616 3.254 1.385 4.945 0.033 1.734 0.082 77.868 0.055 0.028 
4 1.66720417 10.611 3.281 1.401 4.944 0.033 1.74 0.082 77.822 0.055 0.032 
5 1.66726366 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 
6 1.66726652 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 
7 1.667267 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 
8 1.66726704 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 
9 1.66726705 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 

10 1.66726705 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 
11 1.66726705 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 
12 1.66726705 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 
13 1.66726705 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 
14 1.66726705 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 
15 1.66726705 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 
16 1.66726705 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 
17 1.66726705 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 
18 1.66726705 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 
19 1.66726705 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 
20 1.66726705 10.613 3.282 1.401 4.944 0.033 1.741 0.082 77.817 0.055 0.032 
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Decomposition of forecast error variance for UK stock returns 

Step Std Error Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 1.27193188 21.865 8.316 20.067 1.11 0.085 0.003 0.809 0.403 47.342 0 
2 1.32695325 20.204 13.291 18.524 1.181 0.089 0.003 0.966 0.501 45.067 0.174 
3 1.33032003 20.278 13.274 18.533 1.211 0.15 0.028 0.964 0.545 44.842 0.174 
4 1.3309884 20.258 13.317 18.528 1.223 0.15 0.028 0.966 0.554 44.802 0.175 
5 1.33109826 20.26 13.319 18.526 1.225 0.151 0.028 0.965 0.556 44.795 0.175 
6 1.33110415 20.261 13.319 18.525 1.225 0.151 0.028 0.965 0.556 44.795 0.175 
7 1.33110494 20.261 13.319 18.525 1.225 0.151 0.028 0.965 0.556 44.795 0.175 
8 1.33110501 20.261 13.319 18.525 1.225 0.151 0.028 0.965 0.556 44.795 0.175 
9 1.33110502 20.261 13.319 18.525 1.225 0.151 0.028 0.965 0.556 44.795 0.175 

10 1.33110502 20.261 13.319 18.525 1.225 0.151 0.028 0.965 0.556 44.795 0.175 
11 1.33110502 20.261 13.319 18.525 1.225 0.151 0.028 0.965 0.556 44.795 0.175 
12 1.33110502 20.261 13.319 18.525 1.225 0.151 0.028 0.965 0.556 44.795 0.175 
13 1.33110502 20.261 13.319 18.525 1.225 0.151 0.028 0.965 0.556 44.795 0.175 
14 1.33110502 20.261 13.319 18.525 1.225 0.151 0.028 0.965 0.556 44.795 0.175 
15 1.33110502 20.261 13.319 18.525 1.225 0.151 0.028 0.965 0.556 44.795 0.175 
16 1.33110502 20.261 13.319 18.525 1.225 0.151 0.028 0.965 0.556 44.795 0.175 
17 1.33110502 20.261 13.319 18.525 1.225 0.151 0.028 0.965 0.556 44.795 0.175 
18 1.33110502 20.261 13.319 18.525 1.225 0.151 0.028 0.965 0.556 44.795 0.175 
19 1.33110502 20.261 13.319 18.525 1.225 0.151 0.028 0.965 0.556 44.795 0.175 
20 1.33110502 20.261 13.319 18.525 1.225 0.151 0.028 0.965 0.556 44.795 0.175 
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Decomposition of forecast error variance for USA stock returns 

Step Std Error Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 1.23712215 16.415 24.477 11.314 1.775 0.051 0.007 1.058 0.004 1.351 43.547 
2 1.25847898 15.952 24.451 11.229 1.969 0.066 0.017 1.126 0.115 1.351 43.724 
3 1.26183938 15.87 24.662 11.191 1.972 0.096 0.026 1.148 0.133 1.363 43.539 
4 1.26195984 15.87 24.668 11.19 1.973 0.096 0.026 1.148 0.134 1.365 43.531 
5 1.26197974 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.531 
6 1.26198317 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.53 
7 1.26198326 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.53 
8 1.26198327 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.53 
9 1.26198327 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.53 

10 1.26198327 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.53 
11 1.26198327 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.53 
12 1.26198327 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.53 
13 1.26198327 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.53 
14 1.26198327 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.53 
15 1.26198327 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.53 
16 1.26198327 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.53 
17 1.26198327 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.53 
18 1.26198327 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.53 
19 1.26198327 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.53 
20 1.26198327 15.869 24.668 11.189 1.973 0.096 0.027 1.148 0.134 1.365 43.53 
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C2. Impulse Response Function 
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C3. Granger Causality 

Responses to Shock in Australia 

Entry Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 1.04390 0.42491 0.50435 0.61980 0.31148 0.26796 0.50653 0.52275 0.59476 0.50123 
2 0.07628 0.08149 -0.05801 0.25865 0.03735 0.08937 0.11089 0.06206 -0.04488 0.03751 
3 -0.00045 -0.01611 0.08346 -0.02719 0.04272 0.05655 0.00144 0.13333 0.05584 -0.00701 
4 0.01808 0.00280 0.00416 0.01645 -0.00343 0.01430 0.02223 0.00563 -0.00106 0.00637 
5 -0.00574 0.00245 -0.00716 -0.00557 -0.00015 0.00375 -0.00538 0.00953 -0.01022 -0.00127 
6 -0.00029 -0.00049 0.00300 -0.00014 0.00146 0.00274 0.00059 0.00149 0.00314 0.00037 
7 0.00043 0.00051 -0.00077 -0.00025 -0.00069 0.00045 0.00125 0.00015 -0.00051 -0.00023 
8 -0.00020 -0.00012 -0.00009 -0.00007 0.00018 0.00024 -0.00044 0.00015 -0.00023 0.00002 
9 0.00000 0.00001 0.00007 -0.00003 -0.00005 0.00012 0.00010 0.00004 0.00009 -0.00001 

10 0.00001 0.00001 -0.00003 0.00000 0.00000 0.00002 0.00001 -0.00001 -0.00002 0.00000 
11 -0.00001 0.00000 0.00000 0.00000 0.00000 0.00002 -0.00001 0.00001 0.00000 0.00000 
12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
19 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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Responses to Shock in Canada 

Entry Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 0.00000 1.16654 0.66688 0.62937 0.36462 0.20737 0.27797 0.20154 0.36679 0.61205 
2 0.35841 -0.00795 0.15662 0.20718 0.14337 0.32525 0.33862 0.21780 0.31543 0.11240 
3 0.04873 -0.05926 -0.03110 -0.00849 -0.01101 0.02153 0.05221 0.04831 -0.02965 -0.07376 
4 -0.03230 0.00623 0.00880 -0.00283 0.01287 0.02223 -0.04522 0.02825 -0.03159 0.01261 
5 0.00152 0.00507 0.00605 0.00067 -0.00219 0.01167 0.00821 0.00681 0.00891 0.00488 
6 0.00232 0.00022 -0.00310 -0.00159 -0.00010 0.00211 0.00331 0.00026 -0.00025 -0.00242 
7 -0.00079 -0.00033 -0.00005 -0.00019 0.00048 0.00100 -0.00119 0.00070 -0.00101 0.00004 
8 -0.00007 0.00008 0.00021 -0.00003 -0.00023 0.00049 0.00017 0.00020 0.00019 0.00010 
9 0.00004 0.00004 -0.00009 -0.00004 0.00000 0.00012 0.00005 0.00000 -0.00003 -0.00004 

10 -0.00001 -0.00001 0.00000 -0.00001 0.00002 0.00006 -0.00003 0.00002 -0.00002 0.00000 
11 0.00000 0.00000 0.00000 0.00000 -0.00001 0.00002 0.00001 0.00001 0.00001 0.00000 
12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 
13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
19 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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Responses to Shock in Germany 

Entry Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 0.00000 0.00000 1.39320 0.37722 0.28439 0.14901 0.28224 0.17972 0.56977 0.41612 
2 0.25891 0.08408 -0.04596 0.09581 -0.00760 0.16346 0.23437 0.07394 0.03917 0.06846 
3 -0.01944 -0.02114 -0.02640 0.00176 0.07059 0.02264 -0.06208 0.02680 -0.04263 -0.01872 
4 -0.00443 0.00239 0.02428 -0.00471 0.00222 0.02498 0.00422 0.02138 0.01545 0.00244 
5 0.00399 0.00247 -0.00409 0.00246 -0.00246 0.00358 0.00574 0.00016 -0.00226 0.00091 
6 -0.00122 -0.00047 -0.00116 -0.00163 0.00056 0.00231 -0.00190 0.00181 -0.00154 -0.00080 
7 -0.00006 -0.00003 0.00062 0.00002 0.00002 0.00074 0.00033 0.00021 0.00055 0.00007 
8 0.00005 0.00013 -0.00022 -0.00006 -0.00013 0.00026 0.00011 0.00005 -0.00018 -0.00001 
9 -0.00003 -0.00003 0.00000 -0.00002 0.00004 0.00010 -0.00007 0.00004 -0.00001 0.00000 

10 0.00000 0.00001 0.00001 -0.00001 -0.00001 0.00004 0.00002 0.00001 0.00001 -0.00001 
11 0.00000 0.00000 -0.00001 0.00000 0.00000 0.00001 0.00000 0.00000 -0.00001 0.00000 
12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 
13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
19 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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Responses to Shock in Hong Kong 

Entry Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 0.00000 0.00000 0.00000 1.63314 0.31555 0.40377 0.28169 0.36437 0.13398 0.16481 
2 0.03780 -0.02705 0.01913 -0.20908 -0.04500 0.12343 -0.01434 0.06672 0.05339 -0.06347 
3 0.01118 -0.03280 -0.00885 -0.00762 0.00081 -0.01829 -0.03826 -0.01270 -0.02512 -0.01477 
4 -0.01568 0.01036 -0.00704 0.00066 -0.00673 0.00896 -0.00775 0.00689 -0.01514 0.00353 
5 0.00083 0.00069 0.00372 0.00016 0.00152 0.00200 0.00237 0.00091 0.00687 0.00140 
6 0.00152 -0.00008 -0.00117 -0.00044 -0.00075 0.00071 0.00188 -0.00044 -0.00030 -0.00099 
7 -0.00048 -0.00020 -0.00015 0.00003 0.00022 0.00002 -0.00087 0.00018 -0.00064 0.00008 
8 -0.00003 0.00005 0.00017 -0.00002 -0.00007 0.00020 0.00008 0.00007 0.00018 0.00004 
9 0.00004 0.00002 -0.00005 0.00000 0.00000 0.00001 0.00005 -0.00002 -0.00001 -0.00001 

10 -0.00001 -0.00001 -0.00001 0.00000 0.00001 0.00002 -0.00002 0.00001 -0.00001 0.00000 
11 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 
12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
19 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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Responses to Shock in India 

Entry Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 0.00000 0.00000 0.00000 0.00000 1.91789 0.18634 0.04511 0.02261 0.03709 0.02803 
2 0.03760 0.00528 0.01126 -0.07345 -0.06486 0.03045 0.02734 -0.00653 0.01360 -0.01631 
3 -0.01267 -0.02810 -0.03338 -0.00287 -0.00054 -0.02017 -0.02048 -0.01880 -0.03314 -0.02187 
4 -0.01167 0.00097 0.00177 -0.00780 -0.00267 -0.00019 -0.00782 -0.00020 -0.00246 -0.00050 
5 0.00097 0.00104 0.00026 0.00101 -0.00083 -0.00142 0.00147 -0.00328 0.00180 0.00137 
6 0.00030 -0.00018 -0.00096 -0.00043 -0.00021 -0.00031 0.00006 -0.00052 -0.00037 -0.00056 
7 -0.00012 -0.00018 0.00019 0.00011 0.00015 -0.00020 -0.00027 -0.00015 0.00006 0.00002 
8 0.00001 0.00005 0.00001 0.00002 -0.00007 -0.00002 0.00004 -0.00003 0.00001 0.00003 
9 0.00001 -0.00001 -0.00001 0.00001 0.00002 -0.00002 -0.00001 -0.00002 0.00000 0.00000 

10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
19 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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Responses to Shock in Indonesia 

Entry Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 0.00000 0.00000 0.00000 0.00000 0.00000 1.82609 0.04540 0.20727 0.00668 0.01056 
2 0.00131 -0.01515 -0.00114 -0.02662 0.00715 0.20673 0.01091 0.06580 0.00021 -0.01249 
3 0.00352 0.01181 -0.01928 -0.02955 -0.00523 0.20094 -0.03519 0.02984 -0.02130 -0.01218 
4 -0.00324 0.00091 0.00011 0.00251 0.00323 0.04340 0.00063 0.01335 -0.00087 0.00155 
5 0.00116 0.00176 -0.00163 -0.00396 -0.00302 0.02514 0.00078 0.00596 0.00006 -0.00219 
6 -0.00015 -0.00003 -0.00056 -0.00009 0.00044 0.00667 -0.00043 0.00169 -0.00090 -0.00006 
7 -0.00011 0.00020 -0.00015 -0.00051 -0.00034 0.00331 -0.00010 0.00097 -0.00017 -0.00017 
8 0.00001 0.00004 -0.00004 -0.00005 0.00002 0.00101 0.00002 0.00024 -0.00002 -0.00002 
9 0.00000 0.00003 -0.00004 -0.00006 -0.00003 0.00044 0.00000 0.00012 -0.00004 -0.00003 

10 0.00000 0.00000 0.00000 -0.00001 0.00000 0.00015 0.00000 0.00004 -0.00001 0.00000 
11 0.00000 0.00000 0.00000 -0.00001 0.00000 0.00006 0.00000 0.00002 0.00000 0.00000 
12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00000 0.00001 0.00000 0.00000 
13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
19 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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Responses to Shock in Japan 

Entry Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.36594 0.00242 0.11442 0.12728 
2 -0.03642 -0.01505 -0.04850 -0.14788 -0.01665 -0.04148 -0.13056 -0.04362 -0.06266 -0.04036 
3 -0.01132 -0.00517 0.02167 0.01229 0.04275 0.02232 -0.02476 -0.01925 -0.00643 0.02105 
4 0.00433 0.00449 -0.00332 -0.00256 -0.00748 0.00288 0.01158 -0.00123 0.00673 -0.00273 
5 0.00046 -0.00122 -0.00117 0.00063 0.00289 0.00126 -0.00242 -0.00210 -0.00091 -0.00082 
6 -0.00032 -0.00015 0.00041 -0.00010 -0.00043 0.00071 -0.00027 0.00048 -0.00014 0.00014 
7 0.00008 0.00002 -0.00002 0.00008 -0.00007 0.00018 0.00002 -0.00012 0.00010 0.00000 
8 -0.00001 0.00002 -0.00004 -0.00003 0.00002 0.00008 -0.00003 0.00002 -0.00004 -0.00002 
9 0.00000 -0.00001 0.00002 0.00001 0.00000 0.00003 -0.00001 0.00001 0.00001 0.00001 

10 0.00000 0.00000 0.00000 0.00000 -0.00001 0.00001 0.00001 0.00000 0.00000 0.00000 
11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
19 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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Responses to Shock in Malaysia 

Entry Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.46786 0.08075 0.00806 
2 0.00820 0.03640 0.00876 0.12622 -0.01732 -0.00593 0.03201 -0.02447 -0.04795 0.04194 
3 -0.02985 0.02177 -0.02344 -0.07484 -0.02040 -0.03107 0.01168 0.08887 -0.02865 -0.01698 
4 0.00471 -0.00573 0.01090 0.01079 0.00788 -0.00380 0.00854 -0.00525 0.01291 0.00418 
5 -0.00190 0.00321 -0.00546 -0.00441 -0.00486 -0.00467 0.00473 0.00281 -0.00626 -0.00164 
6 -0.00065 -0.00097 0.00112 0.00025 0.00167 -0.00081 -0.00196 -0.00028 0.00077 0.00065 
7 0.00017 0.00024 -0.00007 -0.00019 -0.00049 -0.00038 0.00096 -0.00012 0.00011 -0.00017 
8 -0.00004 -0.00003 -0.00009 0.00003 0.00012 -0.00021 -0.00020 -0.00009 -0.00012 0.00003 
9 -0.00001 -0.00001 0.00004 -0.00001 -0.00001 -0.00003 0.00002 0.00000 0.00003 0.00000 

10 0.00001 0.00000 0.00000 0.00000 0.00000 -0.00003 0.00001 -0.00001 0.00000 0.00000 
11 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00001 0.00000 0.00000 0.00000 0.00000 
12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
19 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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Responses to Shock in UK     

Entry Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.87516 0.14380 
2 0.03350 0.04363 -0.03714 0.02250 -0.04729 -0.05713 -0.08164 -0.02398 -0.16622 -0.02677 
3 -0.00129 -0.02313 0.01428 0.01251 0.01269 -0.00217 -0.04638 0.03076 0.00756 0.01727 
4 0.00232 0.00476 0.00127 0.00176 -0.00936 -0.00732 0.02088 -0.00322 0.00935 -0.00657 
5 -0.00085 0.00131 -0.00140 -0.00025 0.00246 -0.00297 -0.00357 0.00126 -0.00355 0.00154 
6 0.00023 -0.00066 0.00093 0.00040 -0.00024 -0.00017 0.00044 0.00028 0.00092 0.00028 
7 0.00006 0.00009 -0.00022 -0.00015 -0.00016 -0.00055 0.00035 -0.00014 -0.00005 -0.00025 
8 -0.00008 0.00001 0.00001 0.00003 0.00011 -0.00009 -0.00018 0.00000 -0.00009 0.00008 
9 0.00001 -0.00001 0.00003 0.00000 -0.00002 -0.00003 0.00005 0.00000 0.00005 0.00000 

10 0.00000 0.00000 -0.00001 0.00000 0.00000 -0.00002 0.00000 -0.00001 -0.00001 -0.00001 
11 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00001 -0.00001 0.00000 0.00000 0.00000 
12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
19 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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Responses to Shock in US 

Entry Australia Canada Germany HK India Indonesia Japan Malaysia UK US 
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.81638 
2 0.02171 0.02129 -0.03439 -0.13379 -0.08290 -0.05363 -0.05038 -0.02777 0.05529 -0.16129 
3 0.00669 0.01293 0.02846 0.04333 0.08510 0.00120 -0.01419 -0.00357 0.00550 0.02747 
4 0.00620 0.00208 -0.00004 0.00582 -0.01670 0.00467 0.01461 0.00994 0.00230 0.00389 
5 0.00046 -0.00292 -0.00075 -0.00139 0.00179 -0.00224 -0.00125 -0.00037 0.00061 -0.00310 
6 -0.00078 0.00057 0.00035 -0.00015 0.00017 0.00003 -0.00062 0.00049 -0.00096 0.00048 
7 0.00005 0.00008 0.00007 0.00016 -0.00008 -0.00005 0.00011 0.00006 0.00019 0.00021 
8 0.00006 -0.00002 -0.00006 -0.00007 0.00000 -0.00002 0.00011 -0.00002 0.00004 -0.00010 
9 -0.00002 -0.00001 0.00000 0.00001 0.00002 -0.00002 -0.00003 0.00000 -0.00003 0.00001 

10 0.00000 0.00000 0.00000 0.00000 -0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 
11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
19 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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Appendix D 

D1. Spearsman rank correlation test 

Australia Hong Kong Japan UK USA 
Australia 1 

    Hong Kong 0.282* 1 
Japan 0.323* 0.392** 1 
UK 0.363* 0.401** 0.375** 1 
USA 0.274 0.445** 0.391** 0.482*** 1 

Note. *** significant at the 1% level 

D2. Pearson correlation test 

Australia Hong Kong Japan UK USA 
Australia 1 
Hong Kong 0.338*** 1 
Japan 0.394*** 0.381*** 1 
UK 0.508*** 0.404*** 0.419*** 1 

 USA 0.408*** 0.491*** 0.413*** 0.574*** 1 

Note. *** significant at the 1% level 
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