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Abstract 

Recent shifts in the understanding of ecological roles of reef sharks have brought questions about 

overlapping similarities in functional influence on coral reefs and potential outcomes of their removal. 

Co-occurring predators with dietary similarities (including reef sharks and large teleost fish) are 

thought to have redundant functional roles on coral reefs, providing a potential explanation as to why 

coral reef food webs lack evidence of trophic cascades when removal or exploitation occurs. 

However, there are gaps in this information where conclusions are derived from inference without 

observation or fine-enough detail to confirm assumptions. These gaps create areas of contention and a 

need to resolve uncertainty. Expanding knowledge of resource use and distribution can provide useful 

detail in areas previously undescribed among co-occurring mesopredators.  

This thesis addresses gaps in understanding of reef sharks by identifying dietary relationships, spatial 

distribution, and abundance to better inform their functional roles in coral reef ecosystems. Integration 

of data collected using multiple methods from 2012-2017 addressed separate challenges in 

understanding ecology of reef sharks and other reef-dwelling species. Firstly, this thesis identified 

opportunities for improved application of trophodynamic studies on coral reefs (Chapter 2). I 

determined that trophodynamic studies will require more precise spatial and temporal data collection 

and analysis using multiple methods to fully explore the complex interactions within coral reef 

ecosystems. Based on this information, I used existing long-term survey data to characterize 

variability in diversity and abundance of fish and coral assemblages of coral reefs within the central 

Great Barrier Reef. Fish and benthic assemblages varied in density and diversity, but the proportion of 

fish functional groups was similar among reefs. While some post-disturbance recovery of the benthos 

was evident, changes in fish functional structure did not uniformly reflect benthic recovery patterns. 

(Chapter 3). This provided a view of potential reef resources for sharks, and verified that although 

reefs remain in degraded states, they are resilient to current pressures. By using fatty acid analysis, 

basal sources of nutrition and prey of mesopredators were identified to show important dietary 

differences between reef sharks and teleost fish within the study reefs (Chapter 4). Multivariate 

analysis identified significant dietary overlap between 2 shark species (whitetip reef sharks and grey 
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reef sharks), but whitetip reef sharks occupied a smaller niche area than grey reef sharks. Clear niche 

separation between sharks and teleost fishes (red throat emperor, coral trout and grass emperor) was 

also found. This dietary information was then used as a proxy to explore grey reef shark distribution 

related to specific prey abundance through use of acoustic telemetry and underwater surveys of prey 

resources (Chapter 5). From this chapter, caesionid and serranid distribution, both commonly reported 

in grey reef shark diet, were found to significantly influence the presence of grey reef sharks. 

Individual variation in proportion of grey reef shark detections and site use varied by specific receiver 

site across reefs within the array. Finally, a comparison of reef shark population abundances between 

management zones (open and closed to fishing) using both fishing and baited cameras were 

investigated to show potential resilience in the face of future negative impacts from increasing 

degradation pressures (Chapter 6). Grey reef sharks were the dominant species, with a proportional 

abundance of over 50 percent for each method used. BRUVS were more successful at capturing 

sightings of both whitetip and blacktip reef sharks. Our observations suggest that survey depths and 

probability of occurrence likely affect which species are detected or captured.  

Overall, spatial and dietary inter-species partitioning of reef shark resources were found, where grey 

reef sharks were the most abundant and had the broadest distribution and dietary breadth. Niche 

partitioning was also observed between reef sharks and teleost fish, showing that functional 

redundancy is not as widespread as previously assumed. This research highlights a need for higher 

resolution in dietary detail to confirm prey and basal sources of nutrition for reef sharks. To monitor 

populations, structured multi-method approaches would likely best inform true abundance and 

distribution of reef sharks on the GBR. Further information is also needed on direct observation of 

predator-prey interactions and nocturnal behaviour without measures of baited influence, likely 

requiring extended monitoring and technological advancements. While this thesis provides essential 

detail that better informs functional roles, further research will be necessary to identify fully how loss 

or exploitation of reef shark species can impact coral reefs in the future.  
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Chapter 1: General Introduction 
 

Rapid marine biodiversity loss and habitat degradation as a result of human-influenced pressures such 

as fishing, pollution, and climate change (Hughes et al. 2003; Nyström 2006) has solidified the 

importance of understanding factors that maintain ecosystems. Some of the most threatened marine 

ecosystems, such as coral reefs, contain the highest levels of biodiversity (Bellwood et al. 2004). The 

concept of pristine ecosystems is fading, and research focus has been placed on understanding factors 

contributing to coral reef resilience and maintaining ecosystem function (Bellwood et al. 2019a, 

Bellwood et al. 2019b). These factors are based in functional ecology, where species performance is 

used to determine functional importance in an ecosystem (Jax 2005, Bellwood et al. 2019b). In light 

of unprecedented ecological changes that threaten all aspects of coral reef ecosystem functioning, 

conservationists and ecologists are asking questions of what to conserve and why. Thus, the 

importance of understanding the role of species in maintaining ecological processes and function on 

coral reefs is at the forefront of current ecological research.  

 

However, definitions of ecosystem function and functional ecology are loosely expressed or poorly 

understood (S. Giller et al. 2004; Jax 2016, Bellwood et al. 2019b). Function is inherently linked to 

ecological processes and mechanistic patterns, where species traits are used to infer how an organism 

interacts with the environment. Species traits are defined as the “measurable features of an individual 

that potentially affect performance or fitness” (Cadotte et al. 2011). Hence, understanding these traits 

can assist in defining their ‘function’ or performance in an environment (e.g. functional role). These 

features or traits can relate to species morphology, biology, physiology, and behaviour, some of which 

are time dependent. Co-occurring species that share traits (regardless of taxonomy) can perform 

similar roles and are often categorised into groups or guilds that help generalise ecosystem structure 

and are considered functionally redundant (Steneck and Dethier 1994). These species are thought to 

share resources and overlap in ecological niche space. Alternatively, organisms with unique traits are 

considered functionally diverse from other species or groups, exploiting separate resources from other 
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co-occurring species (Bellwood et al. 2004). The idea of functional redundancy infers ecological 

resilience as there are multiple species that perform similar roles within the environment. Hence, if 

biodiversity loss occurs, there species occupying the same niche able to maintain that role or process 

within an ecosystem. However, research definitions of species (functional) roles can dramatically 

change depending on knowledge of species traits (Bellwood et al. 2003; Lucifora et al. 2009; 

Bierwagen et al. 2017) and the spatial or behavioural nature (Meyer et al. 2010; Streit et al. 2019) of 

their performance. Without understanding species performance in a specific environment, it is 

difficult to determine their influence on an ecosystem. Thus, detailed understanding of function is 

crucial in determining the influence of a species or guild and has direct links to how these species 

should be managed.  

 

The classification or functional organisation of fish communities are mostly trophic (dietary) in 

nature, where functional groups or guilds (e.g. herbivores, piscivores) identify trophic position of 

species in food webs (Bellwood et al. 2004; Aguilar-Medrano and Calderon-Aguilera 2016). The 

construct of functional groups helps to simplify and organise the understanding of food web links 

based off a guild’s contribution to energy flow in an ecosystem (trophodynamics). A more in-depth 

description and background of the use of trophodynamics in coral reef study is given in Chapter 2, 

where specific focus is placed on methods used to interpret diet and energy flow as well as important 

gaps to consider for future research. While dietary contribution is important in defining functional 

roles or species or groups, it is only one aspect of functional ecology. Some reef-dwelling species are 

known to derive energy from multiple trophic levels and shift diet in response to disturbance which 

complicates assignment of functional groups (Nyström 2006; Brandl et al. 2016). Additionally, the 

semi-open nature of reef systems allows for input from alternate source pools such as pelagic systems, 

further adding complexity to dietary roles as seen with mobile predators (McCauley et al. 2012b). As 

a result, interpreting species influence based on trophic roles can result in over-generalisation of 

species performance in ecosystems, and can ignore aspects such as differences in life history, 

biogeography, spatial distribution, and differing temporal scales (Chapter 2). Additionally, 
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assumptions of functional similarity of species performance based solely on trophic position can 

overlook key differences in the role species play for ecosystems (Chalcraft and Resetarits Jr 2003). 

Hence, trophic studies can help inform functional roles, but cannot entirely define the influence or 

contribution of a species to an ecosystem.  

 

The ecological uncertainties that come with defining species roles or importance to ecosystems 

unsurprisingly stimulates debate between researchers. One of the more debated species groups on 

coral reefs in both trophic and functional space are reef sharks. Reef sharks are assumed to play a vital 

role in the functioning of marine ecosystems as predators and, like most other species in coral reef 

habitats, are under increasing pressure from human stressors (Sandin et al. 2008; Chin et al. 2013; 

Roff et al. 2016a). Reef sharks until recently were classified as apex predators, where their ecological 

role and influence on an ecosystem was assumed to sit at the top of the food chain (Opitz 1996; 

Friedlander and DeMartini 2002). The authors suggested that removal of these apex predators could 

potentially trigger top-down cascading effects on ecosystems (Mumby et al. 2006; Sandin et al. 2008; 

Casey et al. 2017). Heupel et al (2014) originally challenged this notion by providing evidence that 

traditional classification of reef shark species is insufficient in recognizing factors such as dietary 

differences in ontogeny, feeding behaviour, and habitat characteristics. Following this research, others 

suggested reef sharks (Carcharhinus amblyrhynchos; grey reef shark, Triaenodon obesus; whitetip 

reef shark, Carcharhinus melanopterus; blacktip reef shark) be re-classified to mesopredator level 

based on trophic position estimates; below more mobile, larger bodied sharks such as bull sharks 

(Carcharhinus leucas) and tiger sharks (Galeocerdo cuvier) that also occur on reefs (Frisch et al. 

2016; Roff et al. 2016b). These authors also suggested that based on evidence of functional 

redundancy with reef teleost mesopredators such as coral trout (Plectropomus leopardus), that their 

ecological influence is likely less than previously thought. However, results of these studies are 

limited and focus mainly on the trophic influence of reef sharks, ignoring potential indirect 

behavioural effects such as feeding suppression (Rizzari et al. 2014b; Rasher et al. 2017), and direct 

effects such as combined or cooperative hunting (Mourier et al. 2016; Robbins and Renaud 2016). 

There is growing evidence in the literature that non-consumptive effects and landscapes of fear from 



21 
 

sharks impact food-web links by altering prey selection of other predators in the presence of high-risk 

scenarios (Lester et al. 2020; Mitchell and Harborne 2020). This literature highlights that functional 

roles should not purely be measured from diet and other factors should be considered when describing 

their ecological ‘importance’ or influence.  

 

The functional importance of sharks for coral reefs is also dependent on their abundance and 

distribution. For some areas, optimal habitat and population status is unclear due to limited research 

with differing methods, creating another area of debate surrounding reef sharks. Additionally, human 

activity can have large impacts on both the abundance and distribution of reef sharks and functioning 

of coral reef systems (Ferretti et al. 2010). These impacts can vary significantly by location (Nadon et 

al. 2012). For example, in the Caribbean there are strong declines in reef shark populations as a result 

of human activity (Ward-Paige et al. 2010). However, in remote locations such as Fakarava, French 

Polynesia, reef sharks occur in near-pristine conditions where high abundance has the potential to 

change the top-down influence of reef sharks based on differences in biomass pyramid structure 

(Mourier et al. 2016). In Australia, research within the Great Barrier Reef Marine Park (GBRMP) has 

aimed to explore the life history, ecology, and effects of management and human activity on 

population size of mobile species such as sharks (McCook et al. 2010; Ceccarelli et al. 2014). In the 

GBRMP, reef sharks have been found to remain resident to specific reefs (Espinoza et al. 2015), are 

genetically well mixed (Momigliano et al. 2015), and are associated with complex habitat such as 

coral cover (Espinoza et al. 2014; Rizzari et al. 2014c). Some research has indicated dramatic declines 

in reef shark populations in the past two decades (Robbins 2006; Robbins et al. 2006; Hisano et al. 

2011; Rizzari et al. 2014a), whereas other research indicates more stability (Heupel et al. 2009). Even 

after recent reef shark re-classification to as mesopredators, population models to investigate 

ecosystem stability are still using reef sharks in an apex framework which produces potentially 

conflicting arguments about status and functional roles (Casey et al. 2017). Much of this contention is 

based around methods used which identifies a need to standardise approaches to assessing 

populations. Although reef sharks are clearly linked to areas with high coral cover, there is not enough 

data on fine-scale distribution to determine what influences distribution for these species and whether 
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niche partitioning and effects of resource competition occur. In teleost predators, sympatric species 

have been found to partition resources by depth segregation (Matley et al. 2016), and spatial 

partitioning has also been observed between reef shark species on the Southern GBR likely due to 

competitive effects (Heupel et al. 2018).  

Even with improved understanding of functional roles and population status of resident reef shark 

populations, it would be difficult to measure influence or contributions without also understanding the 

whole of the reef community. This is of importance as history of human disturbance coupled with 

climate change and natural acute disturbance events such as cyclones/hurricanes has left many reefs in 

degraded states (Hoegh-Guldberg 1999; De'ath et al. 2012; Hughes et al. 2018). Since most reefs have 

been perturbed at some level, it is important to understand how this impacts community structure and 

function. This information can give insight into resource availability and competition, as well as post-

disturbance (human or natural) recovery potential of fish and coral assemblages where reef sharks 

occur. For example, do fish and coral assemblages change over time and how may that affect reef 

shark occurrence? Is there variability between reefs, particularly relative to recovery potential? 

Therefore, in order to understand functional roles of reef sharks within coral reef ecosystems, it is also 

important to know the resource availability predators have to sustain healthy populations. This can be 

accomplished by categorising the reef community assemblage as well as identify potential underlying 

competitive effects from other predators sharing that resource. Lack of robust data in these areas 

(Heupel et al. 2019) presents an opportunity to refine our understanding of reef shark species using a 

combination of methods to gain a comprehensive picture of how sharks use coral reefs and what 

resources are available to them. 

 

In general, without clear definitions of functional roles, population status, and relative distribution of 

reef sharks, it is difficult to interpret their influence and role on coral reefs. This thesis used a multi-

method approach to fill gaps in the understanding of reef community structure and the spatial 

distribution and trophic roles of reef predators on coral reefs of the Central Great Barrier Reef (GBR). 

The study region was chosen due to availability of long-term data as well as similarity in shape, size 

and aspect to prevailing winds and other known environmental patterns in the region. Four main reefs 
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(Rib, Helix, Knife, and Chicken) were the focus of reef-scale research within this thesis, with specific 

chapters also examining a larger suite of reefs to investigate the effects of reef zoning (i.e. open or 

closed to fishing) on predator populations. Grey reef sharks were the focal predator species for this 

work since they are commonly encountered and there is previous research in similar areas in the GBR 

to compare to. Other reef shark and large teleost species are included in some chapters where relevant.  

 

The overarching aims of the thesis are to use existing long-term data and multiple field methods to fill 

gaps in our understanding of the functional ecology and population status of grey reef sharks at focal 

reefs on the Central GBR by:  

(1) Identifying the necessary tools to fill gaps in energy flow in reef systems.  

(2) Using reef-scale data to describe variability of reef resources across a range of degraded 

states.  

(3) Resolving areas of uncertainty in the trophic ecology of reef sharks.  

(4) Determining whether prey availability influences grey reef shark activity space around 

reefs.  

(5) Assessing the persistence and relative abundance of reef shark populations over time.   

 

These aims will attempt to overcome previous limitations in interpretation of grey reef shark 

behaviour and ecology in the Central GBR. Thesis chapters (Chapters 2 - 6) address the above-

mentioned aims and are integrated to address the overarching aim to better understand functional roles 

and resource use of reef sharks. The chapter content is summarised briefly below. This thesis is 

structured as stand-alone scientific manuscripts of which some have been published in peer-reviewed 

journals. Any repetition in the chapters will be mostly limited to the study area and sampling methods.  

 

Chapter 1 (this chapter) introduces the broad importance of appropriately defining trophic roles and 

species-specific influence species on coral reef ecosystems. It introduces the aims of the 

research and approach as well as outlines thesis structure.  
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Chapter 2 is a literature review of traditional approaches in the study of trophodynamics of coral reef 

ecosystems. This review identifies the importance of appreciating the complexity of coral 

reefs in study design and approaches to investigating energy flow of coral reefs. This  

review also shows a need for multiple methods, collaboration, and long term-data within 

the same spatial scales are most appropriate for future study. This review has been 

published in Frontiers in Marine Science. 

Chapter 3 examines variability of reef resource by showing the capacity for reefs within the study site 

to recover and reassemble in both fish and coral assemblages post-disturbance. This study 

also determines the response of fish functional groups compared to benthic recovery. This 

data chapter defines the scale of the thesis and the importance of reef-scale information for 

ecological study. This chapter has been published in Marine Biology. 

Chapter 4 identifies differences in mesopredator diet through use of fatty acid analysis. Muscle tissue 

and blood plasma samples were used to determine dietary niche similarity and differences 

in co-occurring large bodied teleost fish and reef sharks. This chapter also provides 

method validation for faster processing and extraction techniques on tropical fish species. 

This chapter has been published in Marine Ecology Progress Series. 

Chapter 5 uses passive acoustic telemetry to determine long-term movement and activity space of 

grey reef sharks and underwater visual surveys to measure site-specific resource 

availability by quantifying prey abundance. This manuscript is in preparation for 

publication. 

Chapter 6 combines traditional angling methods and baited remote underwater video surveys to 

examine abundance and distribution of reef sharks and the effectiveness of zoning 

restrictions within the Central GBR. This manuscript is in preparation for publication. 

Chapter 7 consists of the general discussion which synthesises the components of each chapter in the 

context of ecological implications  
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Chapter 2: Trophodynamics as a tool for understanding coral 
reef ecosystems 

 

2.1 Introduction  

 

Understanding the biological organization and physical nature of an environment has enabled 

ecological research to play a central role in providing management and conservation advice for 

important ecosystems. While ecology comprises a wide array of components, food web structure and 

trophic links are fundamental aspects of biological organization (Odum and Barrett 1971; McIntosh 

1986) and encompass a large body of literature. Trophodynamics, “the dynamics of nutrition or 

metabolism”, was first proposed by Lindeman (1942) and is fundamental in understanding the flow of 

energy through food webs. Relationships within a community, energy flow, and linkages between 

biota and the environment are all encompassed in Lindeman’s approach. The idea of energy flow in 

an ecosystem strengthened earlier studies such as biomass pyramids (Elton 1927; Turney and Buddle 

2016), opening the way for incorporation of food webs into ecology to understand ecosystem 

processes (McIntosh 1986; Sale 2002). Definition of ecosystem processes is crucial to trophodynamic 

studies because they encompass biological, physical and chemical mechanisms that link species and 

facilitate energy flow. These processes explain the contribution of decomposition, production, and 

nutrient cycling to ecosystem function (i.e. the way an ecosystem distributes energy) (Libralato et al., 

2014). Although trophodynamics was not originally defined for marine ecosystems, researchers have 

applied this concept to marine food webs including coral reef ecosystems (Paine 1966; Ryther, 1969). 

Contemporary trophodynamic analyses integrate ecosystem processes and food webs within a 

spatially and temporally explicit context to understand energy flow and trophic relationships in coral 

reefs. In a conservation and management context, trophodynamics can be used to predict the 

ecological effects of disturbances or fishing, and trophodynamic patterns are used as indicators for the 

state of coral reef systems.   
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Incorporating trophodynamics in marine studies is difficult due to the degree of uncertainty in 

describing interactions within highly complex marine food webs. Traditionally, marine food webs 

were thought to be resource-driven systems based on phytoplankton availability to lower-level 

consumers (Verity and Smetacek 1996; Frank et al. 2007). For example, Odum and Kuenzler (1955) 

used trophodynamics to study coral reefs and identified energy pathways through both turf algae and 

fish to consumers, demonstrating that energy can be derived from both benthic and pelagic sources in 

a single system. Complex interactions among species also increase challenges in characterizing 

ecological functions within coral reefs (Huston 1983; Pinnegar et al. 2000; Hubert et al. 2011). This 

complexity increases the difficulty in defining the trophic position of an individual or species within a 

food web (Choat and Bellwood 1991; Choat et al. 2002; Frisch et al. 2014).  

 

An additional complicating factor is the high level of spatial and temporal variation in coral reef 

systems, adding to the complexity of mapping ecological functionality on larger scales (Newman et 

al. 1997). Interpretation of these interactions can be difficult without long-term data (McIntosh 1986; 

Sale 2002) and are challenging to apply in conservation and management (Alva-Basurto and Arias-

Gonzalez 2014). Physical and biological factors change over space and time in reef ecosystems (Sale 

2002). Therefore, even if trophic interactions have been well described for a species and reef system 

in one location, the key processes that regulate ecosystem dynamics can be missed if the system is not 

observed over appropriate temporal (Scheffer et al. 2008) or spatial scales (Heymans et al. 2016). 

While quantitative analytical techniques have improved, complexity of trophic variability within 

populations, tissue turnover rates, and limited understanding of source pools (e.g. benthic versus 

pelagic sources) can significantly affect interpretation of results (Layman 2007a; Layman 2007b; 

Layman et al. 2012). Furthermore, scaling issues limit the interpretability of trophodynamic data. Due 

to the complexity and variability of coral reef ecosystems, simplifications are often applied. For 

example, global databases [e.g. Fishbase (Froese and Pauly 2003)] may be used to source available 

data in lieu of extensive field collection to obtain site specific data (Bauman et al. 2010; Alva-Basurto 

and Arias-González 2014; Ashworth et al. 2014; Ceccarelli et al. 2014; Aguilar-Medrano and Barber 

2016). However, information within these databases is often limited to specific regions. Similarly, 
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reef fish feeding habits and trophic position can differ by population, so modelling over broad areas 

may not reflect interactions for an entire region unless spatial variation is understood and included 

(Michener et al. 2007).  

 

Current trends in coral reef management highlight both biodiversity and biomass as indicators of reef 

health (Huston 1983; Bellwood et al. 2004; Aguilar-Medrano and Calderon-Aguilera 2016; Turney 

and Buddle, 2016). Documented declines in top predators and keystone species from anthropogenic 

disturbance (Dulvy et al. 2004; Sandin et al. 2008; Estes et al. 2011) has resulted in exploration of 

trophic cascades and assessment of ecological roles of predators in coral reef reefs (Heupel et al. 

2014; Boaden and Kingsford 2015; Rizzari et al. 2015; Weijerman et al. 2015; Thillainath et al. 

2016). However, identifying trophic cascades is difficult in reef ecosystems. Only recently has there 

been evidence of a predator driven coral reef trophic cascade, but this was linked to tidal effects 

reducing predator occurrence rather than fishing effects (Rasher et al. 2017). Given the lack of 

examples of trophic cascades in coral reef habitats, it is necessary to ensure an appropriate framework 

is used to interpret data for these ecosystems. While applied research is a necessary step for improved 

conservation, misinterpretation of ecological roles can lead to poor conservation and management 

outcomes (Grubbs et al. 2016). 

 

This review explores: (1) the variables most considered in trophodynamics studies, (2) critiques the 

adequacy of methods used, and (3) contemplates whether recent publications applied methods suitable 

to support prominent theories in coral reef ecology. We discuss how recent research on drivers of 

coral reef trophodynamics often do not account for spatial and temporal variation and methodological 

issues and provide recommendations for future trophodynamic research.  
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2.2 Article selection 

 

Searches were performed through different bibliographic platforms to ensure access to the widest 

range of literature available. Web of Science, Scopus, and Google Scholar were used to explore and 

extract available published material (Falagas et al. 2008). Google Books NGram Viewer (Lin et al. 

2012), Scopus (Kähler 2010), and SciVal (Colledge and Verlinde 2014) metrics were used to analyse 

trends in keywords and publications to select articles for review (Table S2-a). Selection of 

publications was similar to Libralato et al. (2014) who showed increased frequency of key phrases 

such as “food chains”, “food webs”, and “trophic level” in publications since 1960 from Scopus and 

NGram searches. They established an historical timeline for the development of trophodynamics in 

research but did not link keyword searches to coral reefs. For this review, 347 abstracts were chosen 

from 1942 to 2016 and filtered for keywords with highest relevance to trophodynamics in coral reef 

ecology.  To evaluate recent trends in publications, additional searches were performed through Scival 

for “food web” and “trophic” relative to coral reefs to determine the top 50 keywords based on 291 

publications from 2011 to 2016. Herbivores and predators were the two most common trophic groups 

studied (Table S2-b). Predators outnumbered herbivores in the literature in the past 5 years with up to 

24 publications in 2016 (Table S2-b). For percent scholarly output, habitat, community structure, 

trophic level, and stable isotopes were among the top-ranking keywords in publication growth.   

 

2.3 Ecological concepts, trophodynamics, and coral reefs 

 

The foundation of trophodynamics is the understanding of how food webs contribute to energy flow. 

In ecology, food web dynamics are typically based on a hierarchical, pyramid structure where 

organisms requiring more energy are less abundant than lower level consumers and producers 

(Libralato et al. 2014). This structure is seen across terrestrial and aquatic environments and is 

attributed to biomass scaling where resource availability limits the number of large-bodied organisms 

and higher trophic levels (Trebilco et al. 2013; Hatton et al. 2015). Coral reefs typically follow this 
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classical food pyramid structure, however, due to complex food webs (Choat and Bellwood 1985) and 

variability in habitat structure (Cox et al. 2000), it has been difficult to define generalized ecological 

relationships.  

 

Identification of pathways linking sources of nutrition to consumer is essential for understanding 

ecological relationships in food webs (Table 1). Low-level organisms in a food web, known as 

producers (such as phytoplankton), provide energy to higher levels through consumption and 

assimilation. Large-bodied organisms typically hold higher positions in food pyramids as their 

energetic requirements require consumption of lower level producers and consumers (Lindeman 

1942). In biochemical ocean cycling, production occurs through: (1) fixing inorganic source pools of 

dissolved gases from nitrogen (i.e. nitrates, ammonia), carbon (CO2), and other essential elements 

(sulphur and hydrogen), or (2) particulate organic food uptake from nitrogen substrate, detritus 

(marine snow), and carbon into biological cycles (Michener et al. 2007). These sources of primary 

production are considered food-web baselines in trophic ecology and their availability is largely 

dependent on environmental and hydrodynamic variables unique to a region (Paulay 1997). Producers 

are the origins of bottom-up forcing which influence resource limitation and carrying capacity of 

higher trophic levels (Terborgh 2015). Biogeographic differences in reef resource availability are 

explained by factors such as: latitudinal and longitudinal gradients (Harmelin-Vivien 2002), distance 

from human disturbance, position on the continental shelf, degrees of isolation, and oceanographic 

variables such as sea surface temperature, upwelling, and currents (Paulay 1997). How each of these 

components affect food web production and resource availability should be considered in 

trophodynamic studies.  

 

Within a marine food web, an organism’s role in energy transfer is assigned a trophic position (Bowen 

1997; Layman et al. 2012). Interactions among organisms and energy flow are typically defined by 

resource control or “trophic forcing,” where energy flow within a system can be consumer-driven 

(top-down), resource-driven (bottom-up), or middle-driven (mid-level consumers) (Verity and 

Smetacek 1996; Frank et al. 2007; Young et al. 2015). The type of resource control can have major 
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impacts on communities at localized and/or large-scales via cascades or pyramid structures (Sandin et 

al. 2008; Estes et al. 2011; Sandin and Zgliczynski 2015). Therefore, it is important to examine how 

trophodynamics influence a community at a defined scale. Contributions from benthic and pelagic 

sources limit understanding of bottom-up processes on coral reefs because biogeochemical cycles are 

not well described over spatiotemporal scales (Young et al. 2015). Nutrient enrichment and herbivory 

have been recognized as crucial bottom-up and top-down processes respectively; influencing 

ecosystem function and community structure and providing competing hypotheses (Smith et al. 2010). 

Meanwhile some researchers describe the influence of multiple controlling forces on coral reefs 

(Lapointe 1999; Terborgh 2015), and others report higher importance of specific trophic groups on 

resource availability (Lewis and Wainwright 1985; Hughes et al. 1987; Hughes et al. 2007). 

Disruption of trophic levels through loss and mortality of organisms in a community alter the stability 

of a food pyramid which can lead to trophic cascades. 

 

For example, pressure exerted by higher trophic levels can control abundance of lower trophic groups 

preventing cascading effects across food webs. This assumes that keystone species and apex predators 

are the strongest controlling forces on food web dynamics (McClanahan and Branch 2008). A few 

cases have described inverse pyramids where the biomass of predators is greater than that of lower 

level consumers (DeMartini et al. 2008; Sandin et al. 2008; Sandin and Zgliczynski 2015), which is 

uncharacteristic of a typical marine environment. These examples have only been documented in 

near-pristine environments (Sandin and Zgliczynski 2015; Mourier et al. 2016; Simpfendorfer and 

Heupel 2016) and to date have not been reported outside of steep-sided, isolated atolls exposed to 

upwelling. Whether productivity subsidies supporting inverse pyramids in smaller isolated reefs can 

be possible for larger, continental environments is unknown. Continental reefs are also exposed to 

human activity, where high predator abundance is less common (Sandin and Zgliczynski 2015). 

Without long-term data, it is unclear whether inverse pyramids are more representative of a natural, 

balanced state than bottom-up pyramids.  
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Additionally, functional redundancy and diffuse predation may prevent degradation under 

disturbance, masking the potential controlling effects of trophic groups or individual species 

(Bascompte et al. 2005). For example, many reef ecosystems have multiple mesopredators feeding at 

a similar trophic level. Interactions within and among these species and available prey complicate the 

ability to define trophic pathways. Aside from the concept of “mesopredator release” caused by 

removal of apex predators (Stallings 2008; Ruppert et al. 2013; Roff et al. 2016a; b; Ruppert et al. 

2016), mesopredator influence on communities is largely unknown. Middle-driven systems caused by 

intermediate consumer influence have only been described for oceanic environments where small 

pelagic fish control the abundance of both the predator and their prey (Cury et al. 2000; Young et al. 

2015). To our knowledge, middle driven systems have not been explored for coral reefs. Beyond 

defining trophic position, the importance of understanding specific interactions between and among 

trophic groups is necessary to interpret ecological roles (Figures 2.1-2.2).  

 

 

Figure 2.1: Diagram of how necessary concepts contribute to informing ecological roles of a species 

 

The presence of multiple-food webs within coral reefs decreases our ability to understand mechanisms 

that regulate stability. Based on present knowledge, it is still unclear whether coral reefs behave 

similar to other marine ecosystems from a trophodynamic perspective. Defining which ecosystem 

processes contribute to the abundance and biodiversity of coral reefs is controversial (Karlson and 

Hurd 1993). While it is generally accepted that coral reef communities are stable, the interactions 
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among communities and connectivity from larval dispersal and recruitment are less well known 

(Forrester et al. 2002). More research is needed to outline consumer-resource interactions and identify 

knowledge gaps in food webs. While energy availability is an indicator of reef health evidenced by 

species richness, habitat is also an influential factor (Bellwood et al. 2005). Even at the reef scale, 

community food web length can differ with habitat (Kolasinski et al. 2016). The importance of 

understanding spatial dynamics within the study area, whether local or regional, is crucial to assessing 

ecological roles and energy contribution of a species to a population, community, or ecosystem. 

Additionally, more attention should be directed toward the influence of under-studied groups such as 

non-target, cryptic, nocturnal, and benthic macrofauna (Young et al. 2015). For instance, parasites are 

rarely included in trophodynamic study despite being the most common consumer type in ecological 

food webs (Demopoulos and Sikkel 2015). Recent reef food web models that include parasitism show 

insignificant changes to overall flow of models but can dramatically affect specific trophic pathways 

(Arias-González and Morand 2006). Parasites are also thought to affect feeding behaviour of 

herbivorous grazers (Fox et al. 2009). Other cryptic organisms can affect trophic links in consumer 

species with commonly accepted ecological roles. For example, consumption of copepods (Kramer et 

al. 2013) and high concentration of autotrophs (Clements et al. 2016) sourced within the epilithic algal 

matrix (EAM) by parrotfish raises questions about the main components of their nutrition. Exclusion 

of other trophic links such as connectivity to mangrove or seagrass habitats is also common, where 

grazers are known to make nocturnal migrations off coral reefs to avoid micropredation (Sikkel et al. 

2017), or exploit foraging opportunities (Nagelkerken et al. 2000). Limited time and resources prevent 

incorporation of every component of a food web into a study, but the composition of components 

included, or excluded, requires consideration when interpreting results. 
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Figure 2.2: Flow chart of suggested process to inform ecological roles from common methodology used in trophodynamic study for a species in coral reefs 
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Table 2.1: Benefits and disadvantages of methods commonly used in trophodynamic study and which 
ecological concepts they most relate to Table 1 

Type Method Benefits Disadvantages Ecological Concepts 

Diet 
Analysis 

Stomach Contents 

 Accurate interpretation of diet composition 
 Offers some taxonomic resolution compared 

to other methods 
 Can identify life stage of prey 

 Biased towards what has 
been eaten recently 
 Empty contents are 

common in larger 
animals, can lead to 
misinterpretation 
 Biased towards 

identification of larger 
prey items 
 May require lethal 

sampling 

Food web dynamics, food 
web pathways, consumer 
resource interactions, 
functional redundancy 

Molecular 
Barcoding 

 High taxonomic accuracy in degraded or 
digested samples 
 Assists resolution of stomach content analysis 
 Possible to be non-lethal 
 (from fecal samples) 

 Can’t interpret without 
sequence database 
 DNA extraction bias 
 Does not distinguish size 

or life stage 

Food web dynamics, food 
web pathways, consumer 
resource interactions, 
functional redundancy 

AA-CSIA 

 Accounts for diet assimilation (tissues) in 
addition to recent diet (blood) 
 Possible to be non-lethal 
 Does not require ecological baseline for 

source 

 More expensive than 
traditional SIA 

 
 

Trophic position, species 
biogeographic differences, 
diffuse predation, functional 
redundancy 

Stable Isotope 
Analysis 

 Accounts for diet assimilation (tissues) in 
addition to recent diet (blood) 
 Possible to be non-lethal 
 

 Need ecological baseline 
with temporal 
consideration 

 
 

Primary Production, trophic 
position, biogeographic 
differences 

Fatty Acid 
Analysis 

 Can be used to compare diet profiles 
 Does not require ecological baseline for 

source  
 Possible to be non-lethal 

 Low taxonomic 
resolution without 
extensive reference 
database 

Primary Production, trophic 
interactions, diffuse 
predation, functional 
redundancy 

Total Lipid 
Content 

 Interprets energy allocation and life-history 
strategy 
 Community metabolic processes 

 Composition can differ 
between tissues and 
species 
 Requires greater 

understanding of 
metabolic roles of a 
species 
 Best sample type is liver 

which requires lethal 
sampling 

Ecosystem health, trophic 
cascades, functional 
redundancy, diffuse 
predation 

Ecological 
Modelling 

Multi-species 
Dynamic Models 

(i.e. Ecopath)/ 
Aggregate Models 

 Good for predictions  
 Accommodate for multi-species 
 Can account for behavior over a  
 time-series 

 Difficult for 
heterogeneity in data 
 Increases untestable 

assumptions 
 Often includes averaged 

categorical data 

Trophic cascades, diffuse 
predation, functional 
redundancy, ecosystem 
processes 

Individual-based 
models 

 Explores underlying mechanisms 
 May include predator-prey interactions with a 

defined spatial scale 
 Ease in coupling with physical models 

 Difficult to incorporate 
whole ecosystem 
 Statistical cost to 

increased coupling 

Trophic cascades, diffuse 
predation, functional 
redundancy, ecosystem 
processes 

Process-
based/Mechanistic 

models 

 Founded in ecological theory which makes 
for easy application to known systems 
 Clearly defined assumptions 

 Compromises in scale 
and resolution in spatial-
temporal processes  
 Experimental design 

may not match 
management scales 

Trophic cascades, diffuse 
predation, functional 
redundancy, ecosystem 
processes 

Telemetry Acoustic electronic 
tagging 

 Accurate assessment of movement of 
organisms within the environment, leads to 
understanding habitat use and predator-prey 
interactions 

 Expensive, which limits 
sample size 
 Limited battery life 
 Increased model 

performance from more 
robust analytical tools 
available 

Consumer resource 
interactions, nocturnal 
organisms 
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2.4 Methods used to study trophodynamics in tropical coral reefs 

 

The main focus of trophodynamic research is determining spatially and temporally appropriate 

consumption and interactions across trophic groups (Figure 2.2). Paine (1980) demonstrated the effect 

of interaction strength of food webs on communities in aquatic systems, and new techniques are 

constantly being developed to better describe these interactions. Most methods for identifying food 

web relationships are limited by spatiotemporal scales and variable biological and environmental 

conditions (Sale 2002; Chabanet et al. 2010; Layman et al. 2012; Young et al. 2015). Fortunately, new 

techniques in methodology and analysis are available to enhance ecological study (Table 2.1). Most of 

the methods in this section have already been well reviewed or described by other authors (Layman 

2007a; Ilves et al. 2011; Layman et al. 2012; McCauley et al. 2012b; Gilby and Stevens, 2014; Young 

et al., 2015), so this text highlighted publications that used these methods to describe common 

ecological roles and functions of coral reef ecosystems. Much of the current research focuses on 

specific groups such as higher trophic levels or herbivores. While this focus helps define the roles of 

certain aspects of the food web, research is still needed to incorporate under-represented components 

of ecosystems to develop a more comprehensive view of coral reef ecosystems. 

 

2.4.1 Diet analyses 

 

Diet analysis is one of the most common methods in trophodynamic study along with direct 

observation of predator prey-relationships (Choat et al. 2004; Fox et al. 2009; Kramer et al. 2013; 

Young et al. 2015; Wen et al. 2016). Stomach contents can directly inform what a consumer ingests 

by examining the frequency of occurrence of species in stomach samples (Cortes 1999). This method 

can work well to uncover trophic interactions for commonly occurring and abundant species. 

However, there is often uncertainty in prey identification and metabolic requirements of a consumer 

(Young et al. 2015). For species of conservation concern, sample sizes for study can be low as there 

are limitations to lethal sampling. Non-lethal methods such as gastric lavage show what has been 
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recently consumed (Cortes 1997; Frisch et al. 2016), but may be unreliable for determining the full 

scope of the diet of an individual. For larger species such as sharks, angling may also induce gastric 

emptying before landing (Frisch et al. 2016), which can affect results. In fact, many studies using 

gastric lavage and baited capture report high proportions of empty stomachs in predators. Due to these 

limitations, biochemical tracers and immunological testing through molecular identification of prey 

(Symondson 2002) have been used to supplement stomach content studies. Taxonomic molecular 

barcoding can supplement gut content study and assist in characterization of diet (Paula et al. 2016). 

Molecular barcodes designed to identify diet specialization on invasive macroalgae by coral reef 

grazers has uncovered trophic links previously unknown in herbivorous fishes in Hawai’i (Stamoulis 

et al. 2017). Combination of multiple methods in diet analysis can identify trophic position and food 

web links for trophodynamics, but care is needed when using these methods to identify ecological 

roles. Habitat is known to be an important consideration in most ecological studies, and it is 

mentioned most frequently in studies examining stomach contents (98 percent, Table 2.2). Yet even 

recent studies have ignored potential effects of habitat by combining samples across regions without 

understanding community composition and available prey. Spatial scale and habitat variables are 

crucial elements to defining diet analysis in trophodynamics research. Seasonal (i.e. temporal) 

variability in prey abundance or availability must also be considered. While these aspects are present 

in some studies, they must be more widely applied to help define ecological processes and 

trophodynamics in coral reefs and other marine habitats.  

 

2.4.2 Biochemical tracers  

 

Biochemical tracers identify dietary sources in a food web and what individuals directly consume 

(Post 2002; Young et al. 2015). Tracers quantitatively measure assimilation through tissues to define 

the diet of an individual without the uncertainty of species identification of stomach content studies 

(Post 2002; Layman et al. 2007a). Nitrogen and carbon isotopic enrichment in bulk tissue are 

examined through stable isotope analysis to define the relationship between a predator and its prey 
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(Post 2002; Layman et al. 2007b; McClanahan et al. 2011; Layman et al. 2012). For producers, carbon 

isotope proportions vary due to different methods of energy production through photosynthesis 

(Michener et al. 2007). Carbon (δ13C) is used to identify source pools as there is limited variation in 

values after trophic transfer, while nitrogen (δ15N) is used to identify trophic position as enrichment is 

progressive across trophic levels (Kolasinski et al. 2016). Spatiotemporal comparison of diet is also 

possible with fatty acid analysis. When a predator consumes a species, fatty acids are absorbed with 

little change in the unique signature, meaning that prey can be identified from adipose tissue and 

blood samples (Budge et al. 2006). Without a known database of fatty acid profiles, these studies can 

be limiting. For biochemical tracers, food web limitations mainly come from time and resources 

available to define an appropriate ecological baseline. Without understanding carbon sources, studies 

may lack context. For example, carbon flow is challenging to elucidate in coral reefs due to multiple 

end-members feeding from both benthic and pelagic sources. Application of compound specific 

amino acid analysis (AA-CSIA) and Bayesian mixing-model techniques can assist in defining these 

baselines (McMahon et al. 2015). AA-CSIA can provide better baselines by looking at specific amino 

acids that fractionate with each trophic step (Bradley et al. 2016). AA-CSIA can also reduce the 

number of samples for analysis by eliminating the need for an exhaustive baseline. But tissue turnover 

rates, functional redundancy, and complications in retention of nitrogen in certain organisms can also 

limit analysis (Post 2002; Layman et al. 2007a; McClanahan et al. 2011; Layman et al. 2012). 

Without species-specific study, improved techniques, and time-series baselines, it is difficult to get a 

true estimate of trophic position (Layman et al. 2012). Recently, Matley et al. (2016) showed that diet 

tissue determination factors and turnover rates measured for temperate species may not apply to 

tropical species, as δ15N enrichment was lower than published values for a slow-growing predatory 

reef fish. In larger predatory species such as sharks, care in sample preparation is also necessary as 

urea retention without extraction can severely affect values, which is often not a common method 

employed for stable isotope analysis (Li et al. 2016). The physical and biogeochemical nature of a 

habitat can also have large effects on trophic community structure even at a fine scale. For example, 

Kolasinksi et al. (2016) studied macro-invertebrate communities of coral reefs and found significant 

temporal and spatial differences in food web lengths indicating a variety of energy pathways which 
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complicate trophic level definition. Therefore, consideration should be given to understanding the 

data sources that may limit research to specific habitats or time periods. Recent studies use large-scale 

spatial and temporal differences in sample collection as caveats in the discussion (Frisch et al. 2016), 

as opposed to incorporation into the study design. From reviewed publications, only 42 percent of 

stable isotope analyses included a reference to carbon sources, and 21 percent for fatty acid analyses; 

50 percent of studies used a combination of stable isotopes and stomach contents, while 25 percent 

used a combination of fatty acid and stomach contents (Table 2.2). Stable isotopes contributed to 58 

percent of studies that assessed trophic levels of organisms and have been used in 39 percent of 

Ecopath studies. Refined analysis of trophic levels through biochemical tracers is likely to strengthen 

and improve trophodynamics research as applications of these methods expand. 

 

2.4.3 Ecological modelling  

 

Statistical models are widely used in ecological studies to understand energy flow and provide a 

whole of system interpretation. Due to the complexities of marine food webs, trophic relationships are 

often used to categorize interactions between trophic levels and among individuals within models 

(Bozec et al. 2005). While linear models often show patterns in specific relationships from 

quantitative study, they are not robust enough to handle complex food webs such as those on coral 

reefs (Evans et al. 2013). Dynamic models are required to describe ecosystem organization through 

networks of species that interact (Liu et al. 2009). In trophodynamic studies, species abundance and 

diversity are typically categorized by functional groups where diet and habitat similarities are shared 

by multiple species. This allows simplification of models to a tractable level where input parameters 

are determined by functional group and often include known values of productivity, biomass, and 

metabolic efficiency.  

 

While there are multiple dynamic food web models available, Ecopath (Polovina 1984) is the most 

commonly used for marine and aquatic study (Heymans et al. 2016) and has been applied to coral 
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reefs. Under the assumption of energy equilibrium, Ecopath uses mass balance equations to determine 

trophic relationships of biomass and productivity (Polovina 1984). Ecopath can be fitted for time 

series with Ecosim (EwE) (Gotelli and Entsminger 2001) and account for spatial differentiation of 

habitat with Ecospace (Opschoor 1995). While Ecopath is a popular method, few studies using this 

model in marine research include time series and spatial data, and even fewer are applied to coral reef 

ecosystems (Heymans et al. 2016).  

 

Table 2.2: Proportion of reviewed publications that use additional methods for trophodynamic study 
or mention common keywords in related literature (N=398). EndNote® (Thompson Reuters) was used 
to annotate documents for searches. [PUBS=proportion of total reviewed publications, ECOPATH 
(n= 22), LM: linear model (n=42), M=model (n=218), SIA=stable isotope analysis (n=72), 
SC=stomach content (n=44)] 2 

 Analytical Techniques 
Complementary Methods 
 N PUBS ECOPATH LM M SIA SC 

Stable Isotope Analysis 72 0.21 0.39 0.71 0.26 NA 0.50 
Ecological Baseline 96 0.28 0.54 0.45 0.39 0.42 0.27 
Fatty Acid Analysis 26 0.07 0.14 0.10 0.12 0.21 0.25 

Stomach Content 44 0.13 0.11 0.19 0.18 0.18 NA 
Model 218 0.63 NA NA NA 0.78 0.86 

Telemetry 33 0.10 0.04 0.17 0.14 0.18 0.11 
Common Keywords in Reviewed Literature 

 N PUBS ECOPATH LM M SIA SC 
Abundance 228 0.66 0.79 0.95 0.84 0.65 0.95 

Fishbase 70 0.20 0.39 0.43 0.28 0.08 0.25 
Ecological Role 47 0.14 0.36 0.19 0.18 0.28 0.27 

Habitat 238 0.69 0.89 0.90 0.86 0.71 0.98 
Community Structure 162 0.47 0.61 0.64 0.61 0.42 0.57 

Trophic Level 131 0.38 0.86 0.50 0.51 0.58 0.57 
Trophic Cascade 82 0.24 0.39 0.29 0.32 0.22 0.25 

Top-Down 59 0.17 0.39 0.21 0.24 0.22 0.23 
Bottom-Up 44 0.13 0.39 0.10 0.18 0.15 0.09 

Top-Down+Bottom-Up 35 0.10 0.25 0.10 0.14 0.13 0.07 
Caribbean 177 0.51 0.68 0.71 0.69 0.53 0.68 

Great Barrier Reef 166 0.48 0.54 0.69 0.61 0.44 0.68 
Management 174 0.50 0.93 0.76 0.68 0.50 0.52 

 

For Ecopath to be effective, thermodynamics and ecological knowledge behind fitting a model are 

required to prevent misuse (Evans et al. 2013; Young et al. 2015). Thirty-nine percent of reviewed 

Ecopath studies (Table 2.2) for coral reefs used Fishbase (Froese and Pauly 2003) as a source of data 
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for the model. While this resource is a reputable data repository with relevant diet and productivity 

information, there is considerable uncertainty in empirical data and regional species variation. 

Without understanding ontogenetic diet change, temporal and biological shifts in behaviour and 

foraging of a species, responses to disturbance may be poorly interpreted (Young et al. 2015). Even if 

an organism has a highly specialized diet and small home range, external stressors and biogeography 

vary (Sale 2002). Ecopath relies upon the strength of interactions between predators and prey and 

requires extensive knowledge of each species fitted into the model. While these models take diet into 

account, predator avoidance is less well described and parameters such as refuge availability and 

niche occupation are difficult to fit into a model. For mobile, large predators, effects on lower trophic 

groups are poorly understood as top-down forces often result in diffuse predation that is difficult to 

characterize with Ecopath parameters. Predator-prey structure in ecological models was recently 

examined and researchers found that more complex models do not necessarily invalidate predicted 

behaviours in simpler models, but care must be used when employing the latter (Walters et al. 2016). 

The authors showed how assumptions of feeding rates of predators, prey availability and other factors 

drastically change isocline patterns in predator-prey models. They note that uniform spatial 

assumptions should be avoided when using trophic models. Of the reviewed studies, habitat was 

referenced in 89 percent of Ecopath studies focused on coral reefs (Table 2.2), but many were not 

specific to a single area and assumed homogenous habitat across regional scales. Testing underlying 

assumptions is critical when employing predator-prey models (Heymans et al., 2016), and 

understanding interactions at an appropriate spatial scale will assist in increasing the efficacy of these 

models.  

 

While some scientists have urged that more process-based ecological models be developed to identify 

the underlying mechanistic behaviour of an ecosystem (Evans et al. 2013; Turney and Buddle 2016), 

recent articles still often ignore dynamics of spatial and temporal variability as well as historical 

baselines (Lamy et al. 2016). Some authors have moved past dynamic models such as Ecopath and 

explored individual-based predator-prey population models to account for spatiotemporal 

heterogeneity (Thierry et al. 2015). Others have tested vulnerability of reef ecosystems by measuring 
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overall entropy from bioenergetics (Arreguín-Sánchez and Ruiz-Barreiro 2014), interaction strength 

between trophic levels (Bascompte et al. 2005) and applied network analysis (Navia et al. 2016). 

Integration of unified models may also be beneficial. While unified models often are used to explain 

theories of biodiversity, recent developments of metacommunity analysis between labrid fishes and 

corals have identified patterns of species associations (Connolly et al. 2017). Species associations are 

critical in integration of trophodynamics into management. Critics of food web models for coral reefs 

highlight that any model will be a simplified version of real-time processes and caution should be 

taken when using them to inform management. Although management is mentioned in 98 percent of 

reviewed publications (Table 2.2), few articles using Ecopath in marine environments have been used 

for management purposes (Heymans et al. 2016). To better inform management, research is needed on 

spatiotemporal variability to better fit models. As Ecopath provides an informed snapshot of 

behaviour of a system, including variability over space and time may assist in reducing uncertainty.  

 

2.4.4 Telemetry 

 

Acoustic telemetry is widely used in aquatic ecology, but rarely incorporated into trophodynamic 

studies. Telemetry can be used to better understand the distribution, residency, and behavioural 

patterns of species and applied to understanding how predators interact with prey (McCauley et al. 

2012b; Young et al. 2015; Matley et al. 2016). Matley et al. (2016) determined that although two 

species of co-occurring reef fish had overlapping diets, space use differed between the two species 

suggesting niche separation. Studying movement can also show how behaviour may be affected by 

environmental stressors and conditions. Telemetry can also be used to supplement other methods to 

identify behavioural adaptions to resources such as targeting invasive species (Bierwagen et al. 2017). 

Improved analytical methods for ecology such as network analysis (Espinoza et al. 2015), Bayesian 

statistics (Johnson et al. 2010) and state-space models (Jonsen et al. 2005) are assisting predictive 

capability of movement relative to environmental variability. For example, telemetry has helped 

define population dynamics through focused mark-recapture models (Dudgeon et al. 2015). Other 
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applications such as identifying feeding patterns from movement and prey associations that may 

influence food web dynamics may play a role in future trophodynamic analyses. Despite the 

advantages of telemetry, the time and financial investment required may limit sample sizes and 

application to trophodynamics (Young et al. 2015). Telemetry was used in less than 10 percent of 

reviewed studies and less than 20 percent in combination with other empirical methods (Table 2.2). 

 

2.5 Challenges and Discussion 

 

The key challenges in trophodynamic study in coral reefs come from logistical difficulties, 

methodology limitations, and context of study design. Whether a study intends to identify an energy 

pathway, or consider management decisions relating to a species, the conclusions should not go 

beyond the limitations derived from the study. Sufficient information of reef ecology such as 

spatiotemporal abundance, distribution, habitat associations, environmental inputs, diet, and life 

history of a species is necessary to inform ecological roles and function (Figure 2.2). While recent 

examples of poor management decisions have created a need for standardizing approaches in the field 

of trophodynamics (Grubbs et al. 2016), studies are still omitting key concepts before implementing 

applied research. We have highlighted such studies in relation to popular methods, but also identified 

recent research that is incorporating and combining new methods to account for some of the 

challenges faced within the field. In addition to using combined methodology, researchers should 

consider concepts that better explain the organizational structure of coral reefs and how multiple food 

webs or communities interact.    

 

2.5.1 Accounting for variation in studies 

 

Habitat and community structure are well-documented to be important variables in ecosystem 

processes, particularly when examining trophodynamics. Yet, scientists often take a “one size fits all 
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approach” to food-web studies. Dornelas et al. (2006) demonstrated that coral reefs cannot be 

explained by widely-accepted theories of biodiversity, which suggests that spatiotemporal 

stochasticity observed in coral reefs is not well understood. This validates the need to understand 

process-based interactions. Most trophodynamic studies of coral reefs come from the Caribbean and 

Great Barrier Reef, which cover large spatial scales and latitudinal gradients. While biogeographic 

variability is constantly acknowledged, publications link conservation concern to broad topics such as 

management zones irrespective of reef variability or geographic position (Frisch et al. 2014; Rizzari et 

al. 2014; Boaden and Kingsford 2015), and perform large scale analyses based on databases that do 

not account for fine-scale variation (Campbell and Pardede 2006; Graham et al. 2008; Campbell et al. 

2011; Barneche et al. 2014; Alonso et al. 2015; Aguilar-Medrano and Barber 2016). While 

management zones are important to understanding human disturbance, many studies exploring fishing 

effects lack historical baselines, movement data, and diet relative to changing diversity and 

community structure (Greenwood et al. 2010; Edgar et al. 2011). Additionally, the influence of 

natural cycles is rarely considered (Kruse et al. 2016) although they can play an important role in 

ecosystem function. A review by Bijou et al. (2013) discussed the effect of natural cycles (diurnal, 

tidal, lunar, and seasonal variation) on fish movement where the authors found that studies ignoring 

natural cycles increased unexplained variation in the data thereby reducing their effectiveness in 

defining ecosystem processes.  

 

2.5.2 Controlling forces in trophodynamics 

 

In addition to lacking spatiotemporal context, researchers may be misinterpreting controlling forces in 

coral reefs. Across all ecosystems, biomass pyramids and the role of trophic subsidies are not well 

understood (Trebilco et al. 2013). Top-down versus bottom-up organization of coral reefs is debated 

in the field, particularly regarding the focus of conservation efforts (herbivore focused, or predator 

focused). Pyramids are the primary structure used to argue resource control but may oversimplify the 

unique and fine-scale interactions that occur at the reef level. Marine food webs have been described 
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as “ecological road maps” and the varying networks that link different trophic levels in coral reefs 

could explain their resilience to cascading effects (Turney and Buddle 2016). In coral reefs, the semi-

open nature of communities increases the difficulty in mapping food webs from source to consumer 

and the influence mesopredators may have on lower trophic levels. Trophic cascades were mentioned 

in 24 percent of reviewed publications, yet there is little empirical evidence documenting cascading 

effects in coral reefs. Even in the few cases documenting trophic cascades, the results are 

inconclusive. Estes et al. (2011) used the Northern Line Islands as an example of trophic cascade, but 

the original research by Sandin et al. (2008) showed no evidence of trophic cascade through use of 

principle component analysis. The work by Sandin et al. (2008) reflects conclusions made by 

Bascompte et al. (2005) who showed strength of trophic interactions on coral reefs buffer cascading 

effects but become weaker under pressure of external perturbations such as overfishing. This does not 

mean that cascading effects do not exist, but evidence is limited, and little is known outside of 

correlative associations regarding herbivore biomass increases due to predator removal or other 

effects of disturbance.  

 

In trophic cascades, if a trophic level is added or removed, coral-algal phase shifts and changes in 

ecosystem stability can occur (Terborgh 2015). The strongest evidence of cascades found in coral reef 

systems come from herbivory, where depletion of grazers such as echinoderms from overfishing or 

pathogens allowed for explosive population growth of macroalgae in the Caribbean (Hughes et al. 

1987, Mumby et al. 2005). Rasher et al. (2017) also described a trophic cascade via reduced exposure 

of herbivores to predators which resulted in variation in feeding patterns based on fear effects. 

Though the expected negative effects of cascades in reefs aren’t always clear. In cases where 

conservation efforts have maintained predator populations via reduced fishing, the expected cascading 

effect of macroalgal increase from a depletion of grazers as prey doesn’t always occur (Mumby et al. 

2007). Keystone species and functional redundancy are not always present in reefs with high 

biodiversity (Hoey and Bellwood 2009), which makes comparison across spatial scales all the more 

difficult. Even if assumed cascading events are observed such as phase shift, finding the cause of such 

patterns at large spatial scales is challenging (Dulvy et al. 2004). Attention should also be paid to 
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temporal gradients over which cascades occur, considering life-history and growth capabilities of 

populations as well as lagged effects from perturbations that can occur over extended time periods 

(Dulvy et al. 2004, Grubbs et al. 2016). The difficulty in linking trophic levels to the same event that 

categorizes a trophic cascade is difficult to support empirically, particularly when most reefs are 

already in a degraded state from external stressors. The fact that cascades have not yet been 

effectively documented for coral reefs undermines the assumed organization of coral reef food webs. 

High biodiversity complicates ecosystem models and trophodynamics but may be key to the 

functionality of reef ecosystems in a changing environment.  

 

Although pyramid structure is evident in coral reefs, there are high numbers of mesopredators 

representing intermediate trophic levels that are thought to exhibit functional redundancy. 

Mesopredators are considered to have less of an effect on the trophic structure of a system (Paine 

1980; Estes et al. 2011), but there is little empirical evidence to support this due to difficulty in 

defining predator-prey relationships. A recent meta-analysis of food web studies found that aquatic 

models produced a strong pyramid pattern, suggesting scale variance in predator-prey ratios according 

to biomass power laws consistent with Hatton et al. (2015) (Turney and Buddle 2016). The analysis 

also showed that on average aquatic communities have a higher diversity of mesopredator species 

than herbivores, with low abundance of top predators. Intermediate effects of mesopredators on 

aquatic systems are largely unknown and often grouped within many ecosystem types such as 

intertidal, pelagic, and reef (Hatton et al. 2015). Elasmobranchs and other fishes are known to feed at 

different trophic levels based on stage of maturity, where they exhibit high functional redundancy as 

mesopredators and limited redundancy as apex (Navia et al. 2017). Thus, assigning a single ecological 

role to a species is limiting and can affect the predictive nature of model capability. The role and 

effects of mesopredators requires further exploration and definition to refine where greatest predation 

and productivity sources occur in reef systems. Many researchers believe that coral reefs are 

influenced by both top-down and bottom-up processes, and it should not be a question of one versus 

the other (Terborgh 2015). Further exploration of middle-driven systems and consideration of the 

driving interactions between trophic groups should be considered.  
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2.5.3 The contributions of trophodynamics to coral reef ecology 

 

There are many components of trophodynamics that we are beginning to understand which can be 

used to inform ecosystem function and changes over time. Many of these components are shared 

among marine systems, but discretion should be used when assuming similar trophodynamics 

processes that are not fully described for coral systems. Current research validates that coral reefs 

fundamentally have:  

(1) Highly complex, semi-open systems (Sale 2002). 

(2) Resident species and mobile visitors that utilize reef habitats (Dudgeon et al. 2015).  

(3) Influence from both benthic and pelagic productivity sources (Michener et al. 2007). 

(4) High abundance and diversity which play a large role in ecosystem function (Choat et al. 

2004).  

(5) Spatiotemporal variability which is essential to assessing trophic position (Heymans et 

al. 2016).  

(6) Small areas with high diversity exhibiting functional redundancy between producers and 

consumers (Aguilar-Medrano and Calderon-Aguilera 2016).  

(7) Food web omnivory that can weaken chance of trophic cascades, even in the presence of 

exploitation of predators (Bascompte et al. 2005). 

(8) Predators that are known to exhibit diffuse predation, although their effect on lower 

trophic levels is still poorly understood (Heupel et al. 2014). 

(9) Cryptic, invertebrate, and nocturnal organisms which are often ignored in food webs 

(Marnane and Bellwood, 2002; Kolasinski et al. 2016). 

(10) Pyramids of species richness that are not generated by chance. (Turney and Buddle 

2016). 

 

These concepts need to be explicitly considered in study designs of trophodynamic research and 

uncertainty should be acknowledged before drawing conclusions regarding the ecological role of any 
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species. Additionally, the underlying trophodynamic processes describing these observations should 

incorporate long-term datasets that accurately reflect the scope of data used. Before describing 

ecological roles of reef organisms, it is necessary to determine which interactions may have the 

highest influence on the trophic structure of these complex systems. For researchers, this space is still 

largely under-studied, and collaborative efforts are likely needed to elucidate the mechanisms that 

contribute to the stability of these ecosystems.  

 

There are still many ecological unknowns in coral reef systems and there will likely never be a perfect 

approach to fully describe coral reef trophodynamics, but we can strive for better empirical data 

collection and analysis of patterns. Standardizing the approach to applied questions may help create a 

more cohesive space for collaboration in future studies. There is a need to apply multiple methods and 

clear definitions of spatial and temporal scale to meet the needs of trophodynamic research (Figure 

2.2). How a species contributes energetically and how they interact with other species within a 

community take different methodological approaches and clear synthesis between the two to identify 

ecological roles. Arguably, coral reef systems do not appear to energetically behave the same as other 

marine food webs, such as intertidal or pelagic systems, and trophodynamic study should consider 

different scenarios and models. Based on concepts in this paper, we suggest recent literature may not 

adequately acknowledge the unique differences in coral reef food webs against the broader literature 

in marine trophodynamics, particularly over varying spatiotemporal scales. While theories for coral 

reefs are constantly being modified, conclusions of many articles still resort to generic descriptions of 

standard pyramid structure to explain biodiversity. Predation and competition within predator-prey 

interactions should be further considered in addition to exploring the effects of both bottom-up and 

top-down approaches. Without a better understanding of essential reef processes that affect ecological 

roles of species over both space and time, caution should be used in applying results to management 

and conservation efforts.  
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Chapter 3: Reef-scale variability in fish and coral assemblages on 
the central Great Barrier Reef 

 

3.1 Introduction 

 

Coral reefs host nearly a third of worldwide marine fish species and despite widespread degradation, 

remain some of the most productive and diverse marine ecosystems (Moberg and Folke 1999; 

Sheppard et al. 2017). Yet, the persistence of reef productivity is reliant on recovery from disturbance, 

which have both natural and anthropogenic causes. The increasing frequency and severity of events 

are leading to widespread coral loss and degradation of coral reef ecosystems (De'ath et al. 2012, 

Cheal et al. 2017; Hughes et al. 2017). The compounding effects of disturbance are seen at varying 

scales across systems such as the Great Barrier Reef (GBR). Previous research shows most coral and 

reef fish communities on the GBR recover following disturbance (Halford et al. 2004; Emslie et al. 

2008; Johns et al. 2014), with relatively few experiencing phase shifts (Cheal et al. 2010). While the 

GBR has a positive record of recovery and re-assembly (Done et al. 1991; Halford et al. 2004; Emslie 

et al. 2008; Johns et al. 2014), future disturbance may negatively influence recovery through 

increasing severity of disturbances (Cheal et al. 2017; Hughes et al. 2017). Additionally, research has 

also shown that reefs at the sub-regional (10-100km) scale show variable recovery to localized 

disturbance events (Osborne et al. 2011). Amidst ongoing climate change, the coupled effects of 

natural disturbance with anthropogenic stressors impedes recovery potential. Even though reefs on the 

GBR thus far have remained relatively stable through disturbance pulses, it is important to monitor 

areas that may be most vulnerable to persistent stressors.  

 

The GBR is subject to acute and chronic disturbances that directly affect the biological organization 

of reefs and can cause structural damage that degrade essential habitat for associated fauna.  Key 

acute disturbances include mass coral bleaching (the expulsion of symbiotic zooxanthellae), tropical 

cyclones (including hurricanes and typhoons) and outbreaks of the corallivorous crown-of-thorns 
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starfish (COTS), Acanthaster cf. solaris (Osborne et al. 2011; De’ath et al. 2012; Hughes et al. 2017). 

Important chronic disturbances include higher sea surface temperatures (linked to coral bleaching and 

disease), reduced water quality from terrestrial runoff, coastal development and dredging, and 

overfishing. The primary negative effect of disturbance is coral mortality generally measured as 

reduction in percent hard (Scleractinian) coral cover, a common metric of reef health. Additionally, 

most disturbances cause differential mortality among coral taxa, which then fundamentally alters the 

composition of coral assemblages. The return of hard coral cover and re-assembly of coral 

communities back to pre-disturbance levels and configurations are important in determining reef 

recovery following acute disturbances.  

  

One way to determine whether habitats become degraded or remain healthy is to categorize their 

present status and susceptibility to changing conditions. Several biological and physical features can 

be quantified to determine reef condition and vulnerability to disturbance. In general, coral 

reproduction, recruitment and growth, habitat availability, and the presence of abundant and diverse 

herbivorous fish assemblages all contribute to maintaining a coral-dominated state (Graham et al. 

2011). For instance, herbivore grazing limits algal overgrowth, creating space for coral recruitment, 

which also provides more complex habitat for reef-dwelling fishes (Burkepile and Hay 2008). These 

features can be quantified into common metrics for determining reef condition through measure of 

percent hard and soft coral cover, algal cover, structural complexity (e.g. rugosity) species abundance, 

and species diversity (Smith et al. 2016).   

 

A growing literature on threats to coral reef stability highlights the need to assess mechanisms that 

maintain reef condition between disturbance events. As reefs are inherently dynamic systems 

punctuated by perturbations, recovery from disturbances requires the full range of processes be 

preserved. However, the strength and direction of change in a given process is determined by the 
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response diversity (the spread of change in numerical abundance of individual species) and functional 

redundancy (the number of species performing a given function) (Elmquist et al. 2003). Coral reefs 

have been well studied in recent decades, yet we still have limited understanding of the underlying 

interactions important to ecosystem stability.  

 

Fishes are a diverse component of coral reefs and perform many ecological functions, such as energy 

transfer (McMahon et al. 2016), bioerosion (Bellwood 1995), and herbivory (Green and Bellwood 

2009). Individual species perform ecological functions which drive ecosystem processes, where a 

greater array of functions (functional diversity) equate to a greater diversity of processes which 

promote reef health (Nyström 2006; Pratchett et al. 2011). Degradation of benthic communities can 

affect fish populations following acute disturbance (Pratchett et al. 2008; Graham et al. 2011), but 

long-term effects on community structure need to be identified. Few studies have examined functional 

differences in communities with similar habitat and disturbance exposure (but see Emslie et al. 2010, 

2012, 2017, Mellin et al 2016). Without long-term observations of functional group diversity within 

assemblages, recovery and productivity remain unknown (Berkstrom et al. 2013).  

 

Large scale studies of coral reefs on the GBR have shown general patterns in ecological response to 

degradation (Osborne et al. 2011; De'ath et al. 2012), but such studies tend to average over dynamics 

at coarse spatial scales and can miss impacts of disturbance to individual reefs (Done et al. 1991). 

Therefore, it is important to assess disturbances at different spatial and temporal scales. 

Understanding spatio-temporal differences among reefs is necessary to define how the response to 

disturbance varies among individual reefs and what effect local changes have on broad scale patterns. 

For example, reefs vary in size and shape, and are subject to differing environmental drivers and 

disturbance regimes (Williams 1982; Bellwood et al. 2004), which influence variability in community 
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structure. Thus, the role distinct disturbance events have on individual reef community structure and 

composition can be variable (Houk et al. 2014).  

 

Here we explore the functional structure of fish assemblages to determine spatial reef-level variability 

relative to benthic structure and community patterns associated with response to disturbance. The 

aims of this paper were to: (1) assess reef variability and community structure over time at four reefs 

with similar geomorphology and exposure to local disturbance, (2) investigate whether certain 

functional groups in reef assemblage structure contributed to variability and recovery among reefs; 

and (3) if any observed change in functional assemblage variation post-disturbance is an indicator of 

reef vulnerability or reassembly. We hypothesize that fish functional abundance and diversity differs 

with distance across the continental shelf position due to differences in human exposure and physical 

oceanographic features. Thus, we expect that reef reassembly post-disturbance will not be uniform 

across all reefs in the study area. Based on recent research showing large-scale study can mask fine-

scale changes (Ceccarelli et al. 2016), we also predict that fish functional changes reveal more detail 

about reef recovery than fish abundance and diversity.  

 

3.2 Materials and Methods 

3.2.1 Study Site and Surveys 

 

To quantify reef-scale community composition and the impact of disturbance, four individual reefs 

were surveyed biennially from 2006-2016 by the Long Term Monitoring Program (LTMP) at the 

Australian Institute of Marine Science (AIMS). Reefs were selected to be of similar size, orientation, 

location in the central section of the GBR (~18°S), and position across the continental shelf. Reefs 

were also paired depending on management zone (open or closed to fishing – Figure 3.1). Rib and 

Helix Reefs are on the mid-continental shelf, while Chicken and Knife are situated on the outer-shelf. 
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Distance from the coast (kms) was calculated for each reef. The LTMP surveys three sites in shallow 

reef-slope habitat (<15m) on the northeastern flank of each reef (Figure 3.1). Each site comprises five 

permanently marked 50 m transects between 6 and 9m depth (n = 15 per reef per year). The 

abundance of 216 species of diurnally active, conspicuous fishes were recorded using underwater 

visual census (Halford and Thompson 1994) and converted to density/1000m2. Pomacentrid fishes 

were counted on 1m belt transects while all other fishes were counted on 5m belt transects. The 

observer swam the transect recording the abundance of all 216 species encountered at a standard 

swimming speed of approximately 10m/minute, while a second diver deployed the transect tape 

behind the observer. Percent cover of corals and other benthic biota were then estimated from digital 

images taken concurrently along the same transects by separate observers following the fish surveys 

(Jonker et al 2008). Benthic organisms were subsequently identified to the highest taxonomic level 

possible under five points per image (n = 200 points per transect) with ‘ReefMon’ software and the 

data were converted to percent cover (Jonker et al 2008). In addition to survey data, environmental 

data is also taken. The LTMP collects water temperature (VEMCO temperature loggers), wind speed, 

tide, underwater visibility and depth for each survey site. During the study period, some reefs were 

impacted by COTS and severe TC Yasi (2011), which passed just to the north of study area.  
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Figure 3.1: Map of the Townsville sector of the central Great Barrier Reef (Queensland, Australia) 
overlaid with GBRMPA zoning information: Light blue=general use zone (open to all fishing), Dark 
Blue= habitat protection zone (open to fishing except trawling)-, Dark Green= marine national park 
zone ( closed to fishing ), Yellow= conservation park zone ( limited fishing ), Pink= preservation zone 
(no entry), marine park boundary, and locations of LTMP survey sites (red markers) on northeast reef 
slope habitat3 

 

3.2.2 Reef Community Characteristics 

 

Percent cover of benthic communities were recorded in seven categories; hard coral (Acropora and 

non-Acropora), soft coral, abiotic (i.e. dead coral, rubble, sand), coralline algae, macroalgae (e.g. 

Halimeda), turf algae, sponges, and other (Table S3-a). Fishes were assigned to one of 11 functional 
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groups similar to previous studies (Emslie et al. 2008; MacNeil et al. 2015) including, planktivores 

(some Pomacentridae), grazers (some Acanthuridae, Siganidae), detritivores (Acanthuridae, some 

Pomacentridae), omnivorous Pomacentrids (some Pomacentridae), Piscivores (Serranidae), 

excavators/scrapers (Scarine Labridae), browsers (some Acanthuridae), piscivorous invertivores 

(some Lethrinidae, Lutjanidae), corallivores (Chaetodontidae), micro-invertivores (some 

Pomacentridae, Labridae), and macro-invertivores (some Lethrinidae) (Table S3-a). Density of 

functional groups was calculated by summing the density of all species assigned to that group. 

 

3.3.3 Data Analysis 

Multivariate Analysis 

All analyses were conducted in R version 3.5 (R Core Team 2018). Multivariate analyses were used 

to examine spatial differences in (1) benthic cover and (2) fish community density to determine the 

most influential explanatory variables that contributed to community dissimilarity among reefs. To 

examine spatial variability in community structure among reefs, we used separate constrained 

distance-based redundancy analyses (db-RDA) based on a Bray-Curtis dissimilarity matrix using 

‘vegdist’ and ‘capscale’ functions in the ‘vegan’ package (Oksanen et al. 2017) for benthic and fish 

groups. Dissimilarity values from ordinations were tested for collinearity using ‘vif.cca’ diagnostic 

canonical correspondence analysis (CCA) and ‘ordistep’ model with pseudo-Aikake Information 

Criterion (AIC). The diagnostic function assessed potential linear dependencies among constraints 

before running the ‘ordistep’ model. Partial effects for each factor were used as predictors to 

determine the best performing model. The initial ‘ordistep’ models were used as an exploratory tool to 

see if any unexpected community variables may explain drivers of dissimilarity in assemblage of both 

benthic and fish groups. This involved including density of all fish functional groups as variables for 

benthic models and all benthic groups as variables for multivariate fish models. Additionally, 

constrained ordinations included reef characteristics and environmental explanatory variables such as 

tide, water temperature, shelf position, site and management zone. While we would have preferred to 

include additional physical variables such as wave exposure, this information was unavailable. 
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However, distance from land was used as a proxy as outer-shelf reefs are known to be areas that have 

stronger wave action and exposure to deeper depths. After running the initial model, any variable that 

did not make ecological sense or was determined to be collinear with other variables was dropped. 

Then, the ‘ordistep’ models were re-run with limited variables until the best model (with the lowest 

pseudo-AIC) was determined for both benthic group dissimilarity and fish functional group 

dissimilarity (Tables S3-b, S3-c).  

 

Ordination bi-plots associated with the best performing model of constrained variables were produced 

with canonical analysis of principal components (CAP), where the axes represent the distance and 

direction of higher abundance for site and species scores. Trajectory arrows in the bi-plot were fit for 

highest influence of reef variability from explanatory variables. Centroids were also plotted to 

visualize average assemblage differences between pre- and post- disturbance periods per reef. 

Permutational analysis of variance (PERMANOVA) using ‘adonis’ was used to characterize 

multivariate differences in benthic and fish assemblage structure among reefs and years (Table S3-d). 

Variance partitioning (‘varpart’) was also used to look at variance (adjusted R2) of each exploratory 

variable in the models.  

 

For benthic groups, multivariate analyses were performed with a community matrix of percent cover. 

Because the benthic groups were proportional data versus count data for fishes, they were not 

transformed prior to performing ordinations. Explanatory variables for the constrained ordinations 

initially included all fish functional groups, survey site, distance from land, and the reef and year 

interaction term. Management zone and shelf position were dropped due to collinearity and lower 

effect on variance than other factors. Fish functional groups were included as predictor variables to 

determine if any had potential top-down influence on benthic cover.   

 

For fishes, multivariate analyses were performed for two separate community matrices; one based on 

individual species and one based on functional groups. The mean density of fish species and 

functional groups were fourth root transformed to reduce the influence of highly abundant species and 
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functional groups before conducting ordinations (Andradi-Brown et al. 2016). The species ordination 

explained less variation than the functional group ordination and was dropped from further analysis. 

Explanatory variables for the functional constrained ordination initially included all benthic groups, 

survey site, distance from land, and the reef and year interaction term.  Management zone and shelf 

position were dropped due to collinearity and lower effect on variance than other factors. Benthic 

groups were included as predictor variables to determine if any had potential bottom-up influence on 

fish density.    

 

Pearson’s correlation was then used to examine pairwise relationships among trophic groups and 

benthic habitat by reef. Correlations were measured between fish and benthic groups to determine 

potential dependencies fish may have to benthic cover and vice-versa. Correlations were statistically 

tested with ‘cor.mtest’ function to generate Rho and p-values between each fish functional group and 

benthic cover per reef. 

 

Linear Models 

Spatio-temporal variation 

Linear modelling was used to determine the spatio-temporal effects of most influential explanatory 

variables on the distribution of each individual benthic and functional group. To compare spatial and 

temporal variation of percent cover of benthic groups, we used restricted maximum likelihood 

(REML) with the ‘lmer’ function in the ‘lme4’ package (Bates et al. 2013). Linear models were based 

on the best model derived from the multivariate analysis but with the addition of a random term of site 

nested within reef with the intercept conditional on categorical year (i.e. Year | Reef/Site). All models 

included the fixed terms of reef and year interaction, and distance from land. In the seven benthic 

models (one for each benthic group), corallivorous fishes were included as a fixed terms of were 

added for some groups (non-Acropora, coralline algae) to test for top-down effects on benthic 

assemblages (Table S3-e). 
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To compare spatial and temporal variation in overall fish density, species richness, and density of 

each fish functional group we used Poisson generalized linear mixed effect models (glmer) with 

‘lme4’ package (Bates et al. 2013). For each of the thirteen models (one for total density, species 

richness, and one each for the density of each fish functional group), reef and year interaction, 

distance from land, and hard coral (Acropora and non-Acropora) were fixed terms and site nested 

within reef with the intercept conditional on year (i.e. Year | Reef / Site) was included as a random 

term (Table S3-e). Hard coral was included to account for habitat complexity, which has been shown 

to be important driver of reef fish assemblage structure (Gratewick and Speight 2005; Graham et al. 

2009; Emslie et al. 2014). Additionally, for models investigating herbivorous fishes (i.e. detritivores, 

grazers, excavator/scrapers), macroalgae, and turf algae were added as fixed terms in the model 

comparison. These fishes graze on algae which may be reasonably be expected to exert bottom-up 

control of their populations.  

 

For both benthic and fish models, tests for temporal auto-correlation were performed with the ‘acf’ 

function on residuals in the “BASE” package. Overall, no temporal auto-correlation was found for 

benthic or fish groups. For each benthic and fish group, models were tested with AIC to choose the 

most parsimonious fit before choosing the most optimal for post-hoc testing. Tests of statistical 

significance of pairwise terms (Reef |Year) were conducted for benthic and fish groups using a 

Tukey’s post-hoc test adjusted for multiple comparison of means with ‘lsmeans’ (Lenth 2016). 

 

Disturbance 

Linear modelling was also used to look at the impacts of disturbance on each benthic and functional 

group, comparing benthic cover and fish functional density pre- and post- disturbance. To test for 

effects of disturbance on overall assemblage structure, benthic cover and fish densities were 

separately categorized as “pre” (2006-2010) and “post” (2012-2016) disturbance by aggregating 

transects within each time period (15 transects/reef per sampling year totalling n=45 per reef pre/post) 

to determine differences in community assemblage as a response to severe Tropical Cyclone Yasi. To 

investigate interaction terms, Tukey’s post-hoc in ‘lsmeans’ was used as a measure of statistical 
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significance, where the pairwise term (disturbance | reef) was compared for each benthic group (Table 

S3-e). 

 

For each benthic group, a generalized linear mixed effect model using restricted maximum likelihood 

(REML) was performed to examine benthic cover differences pre- and post- disturbance. All models 

had fixed terms of reef and year interaction, and distance from land with an included random term of 

site nested within reef with the intercept conditional on categorical year (i.e. Year | Reef/Site) (Table 

S3-g). 

 

Generalized linear mixed effect models with a Poisson distribution were performed for overall mean 

fish density, species richness, and the density of each fish functional group to examine pre- and post- 

disturbance differences. For each model (13 total- one for overall mean fish density, species richness, 

and the density of eleven fish functional groups), reef and year interaction, distance from land, and 

hard coral (Acropora and non-Acropora as a proxy for structural complexity) were fixed terms and 

site nested within reef with the intercept conditional on year (i.e. Year | Reef/Site) was included as a 

random term (Table S3-h). Additionally, similarity of percentages (SIMPER) analysis was used to 

determine which species per functional group had the highest contributions to decline or increases in 

density post- disturbance (Table S3-i).  
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3.3 Results  

3.3.1 Spatial and temporal patterns in benthic assemblages 

 

There were distinctions in benthic assemblages among the four reefs with main differences 

between mid-shelf and outer-shelf reefs (Figure 3.2). Management zone had little effect on 

assemblage structure of the benthos from ordination models and was dropped from 

subsequent linear models. The biggest driver in distinction of benthic assemblages was the 

reef and year interaction (R2=0.30, p<0.001, Table S3-d) followed by distance from land 

(R2=0.14, p<0.001, Table 3.1, Table S3-d). Acropora sp. and turf algae were characteristic of 

mid-shelf reefs while coralline, non-Acropora sp. and soft coral characterized outer-shelf 

reefs (Figure 3.2, Table 3.1). All other benthic categories had minimal influence on reef 

variability except for soft coral cover which contributed to community differences between 

Knife and Chicken. Spatially, the most dissimilar reefs were Rib and Knife Reefs and 

temporally the years 2012 (year immediately following disturbance) and 2016 were most 

influential in distinction among sites. Corallivores had a small significant effect on percent 

cover of benthos between sites (R2=0.02, p<0.001, Table S3-d) contributing to vertical 

separation between Rib Reef and outer-shelf reefs. Chicken and Knife reefs had the strongest 

structural changes pre- and post-disturbance compared to Rib and Helix reefs (Figure 3.2, 

Table 3.2).  
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Figure 3.2: Distance based constrained ordination biplot using Bray Curtis capscale dissimilarity. Benthic groups divided between Acropora and Non-
Acropora hard coral to view recovery versus re-assembly. See Table 3.1 for dissimilarity scores. Top panel includes site ordination with arrow trajectory fit 
for multivariate model explanatory variables and years with the highest percent cover dissimilarity. Each “X” denotes centroids for percent cover pre- and 
post-disturbance of each reef. Each point is a transect survey (~N=360) where sizes indicate species richness and colour indicates Reef (Yellow: Helix, Blue: 
Rib, Red: Knife, Pink: Chicken). Bottom panel represents the benthic group percent cover 4  
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Overall, there were no significant differences in percent cover between reefs at each year 

during the survey period (Table S3-e), but the structure of benthic assemblages changed 

through time and the nature of change varied among reefs due to the differential impact of 

disturbances. These include a crown-of-thorns outbreak at Helix Reef and the passage of a 

severe Tropical Cyclone Yasi in 2011. Changes were strongly driven by declines in hard and 

soft coral cover (Table S3-g) pre- and post- disturbance, although the magnitude varied 

among reefs (Figure 3.3). For example, Acropora spp. was significantly higher post-

disturbance at Rib Reef than all other reefs (Table S3-g). The strong recovery of both tabulate 

and branching Acropora and branching Non-Acropora at Rib Reef were the strongest 

contributors to hard coral cover differences between Rib and other reefs (Figures S3-a, S3-b). 

Similarly, coralline algae increased following Cyclone Yasi on the outer-shelf reefs (Table 

S3-e), but there was no detectable difference on mid-shelf reefs. There were also marked 

declines in branching Acropora at Helix Reef and sub massive Acropora at Knife Reef post-

disturbance (Figures S3-a). Additionally, significant differences in soft coral cover on Helix 

and Chicken Reefs were evident pre-disturbance but were indistinguishable post-disturbance. 

Turf algae was the only benthic component to show no difference pre- and post- disturbance 

(Table S3-g). There was evidence of rapid recovery following Tropical Cyclone Yasi, 

particularly in hard coral cover (Figure 3.3).  
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Table 3.1: Capscale (canonical analysis of principal components) benthic scores (8 benthic groups) 
for best performing model explaining dissimilarity for distance-based redundancy plots (Fig 2). 
Dissimilarity for explanatory variables and centroids are also listed 3 

 
 

Benthic Explanatory CAP1 CAP2 Benthic Group CAP1 CAP2 

Land Distance 0.71 -0.31 Turf_Algae -3.50 -1.05 

Corallivore -0.07 0.30 Coralline 1.87 -1.99 

2012 -0.41 -0.39 Non-Acropora 1.19 0.87 

2016 0.44 0.21 Acropora -0.23 1.45 
Chicken.post 0.22 -0.18 Soft Coral 0.55 0.11 
Chicken.pre 0.16 -0.11 Abiotic -0.24 0.25 

Helix.post -0.21 -0.06 Macroalgae 0.25 0.15 

Helix.pre -0.27 0.16 Sponge 0.01 0.16 

Knife.post 0.26 -0.25       
Knife.pre 0.31 0.21       
Rib.post -0.25 0.26       
Rib.pre -0.22 0.06       

 
Table 3.2: Capscale (canonical analysis of principal components) fish functional scores (11 fish 
groups) for best performing model explaining dissimilarity for distance-based redundancy plots (Fig 
4). Dissimilarity for explanatory variables and centroids are also listed 4 

 

Trophic Explanatory CAP1 CAP2 Trophic Group CAP1 CAP2 

Land Distance 0.89 -0.02 Planktivore -1.96 -1.79 
Acropora -0.30 -0.14 Grazer 1.16 -0.05 

Non-Acropora 0.05 -0.22 Omniv_Pom -1.06 -0.20 
2012 0.06 0.24 Excavator/Scraper -0.22 0.03 
2016 -0.06 -0.58 Corallivore -0.10 0.02 

Chicken.post 0.07 -0.09 Macro-invertivore -0.05 0.01 

Chicken.pre 0.16 0.08 Detritivore -0.01 0.03 

Helix.post 0.13 -0.06 Piscivore 0.03 -0.01 

Helix.pre -0.29 0.33 Pisci-invertivore -0.02 0.00 

Knife.post 0.34 -0.08 Micro-invertivore -0.01 0.00 

Knife.pre 0.47 0.11 Browser -0.01 0.00 

Rib.post -0.48 -0.10       
Rib.pre -0.18 -0.01       
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Figure 3.3: Percent benthic cover by year (95% CI). Red: Outer-Shelf, Blue: Mid-Shelf. Dashed line & open circles: Open Fishing, Closed line & closed 
circles: Closed Fishing. Grey mid-line: disturbance event Cyclone Yasi. Each reef was impacted by severe Cyclone Yasi in 2011. The only reef with an active 
crown of thorns outbreak (Acanthacaster plancii) during survey years was Helix. See Tukey’s results for multiple comparisons of benthic groups for 
interactions (Reef x Year, Disturbance x Reef) (Tables S3-e, S3-g)5
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3.3.2 Spatial and temporal patterns in reef fish assemblages 

 

Despite substantial overlap in reef fish assemblage among individual reefs, differences in assemblage 

structure were largely attributed to distance from the coast (land distance, R2:0.09, p<0.001), reef and 

year interaction (R2:0.18, p<0.001). Hard coral cover also had a small contribution to assemblage 

dissimilarity (Acropora: R2:0.01, p<0.001, non-Acropora: R2:0.02, p<0.001 (Figure 3.4, Table 3.1, 

Table S3-d). Management zone contributed little to variation in fish assemblage (Table S3-c). Mid-

shelf reefs tended to have higher total density and species richness than outer-shelf reefs (Figure 3.5). 

Additionally, the density of five out of eleven functional groups of fishes showed significant 

differences among reefs. For example, planktivores were the most abundant functional group at all 

reefs, with density highest at Rib Reef (Figure 3.4, Table S3-f). Similarly, omnivorous pomacentrids 

and excavator/scrapers were more abundant on mid-shelf reefs, and while grazers were a conspicuous 

component of fish assemblages at all reefs, their density was higher on outer-shelf reefs (Figure 3.4). 

Browsing fishes, piscivores, and piscivorous-invertivores were observed in low numbers and formed a 

small proportion of density in the total assemblage at all reefs (Figure 3.6, Table 3.3). 

 

While the structure of reef fish assemblages was indicative of a reef’s position across the continental 

shelf (Figure 3.4), there were temporal fluctuations in the density of functional groups that varied 

among reefs (Table S3-f). Moreover, there were significant changes in the mean total density and 

species richness of fishes through time which varied among reefs (two-way ANOVA density: 

Reef*Year df=15, F=4.1, p<0.05, species richness: Reef*Year df=15, F=3.3, p<0.05) (Figure 3.5). 

Total density generally declined at all reefs until 2012, after which there were strong increases to the 

highest levels recorded at all reefs except Helix (Figure 3.5). Similar patterns were apparent for 

species richness, although the year of lowest richness varied among reefs and there was no recovery at 

Helix Reef (Figure 3.5). 
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Figure 3.4: Distance based constrained ordination biplot using Bray Curtis capscale dissimilarity for fish communities. See Table 3.2 for dissimilarity scores. 
Top panel includes spatial ordination with arrow trajectory fit for multivariate model explanatory variables. Each “X” denotes centroids for percent cover pre- 
and post-disturbance of each reef and years with the highest abundance dissimilarity. Each point is a transect survey (~N=360) where sizes indicate species 
richness and colour indicates Reef (Yellow: Helix, Blue: Rib, Red: Knife, Pink: Chicken). Bottom panel represents the fish group (~11 total) abundance 
dissimilarity. Scale of fish is not related to ordination importance, but to general differences in body size 6 
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Multiple comparisons of means using Tukey’s test showed densities of excavators/scrapers, 

detritivores, and planktivores had the strongest significant differences among reefs through time 

(Table S3-f), where there were no general patterns in density among reefs and years. Planktivore 

density varied among reefs and through time (Table S3-f) and appeared closely related to changes in 

hard coral cover (rho>0.6, p<0.05) (Figure 3.3). Furthermore, hard coral cover had a significant effect 

on all functional groups except for excavators/scrapers and browsers (Table S3-f). The strongest 

effect of excavator/scraper abundance was driven by macroalgae cover, while turf algae was the 

strongest driver for detritivores. Planktivores were the only group to consistently have higher mean 

density post-disturbance across all reefs (Table S3-f). Disturbance effects were considerably greater at 

Helix reef with impacts evident in 6 out of 11 functional groups post-disturbance (Table S3-h). Of 

these functional groups, planktivore and corallivore density significantly increased post-disturbance at 

other reefs, and most prominently for Rib and Chicken reefs. Rib fish densities of corallivores, 

omnivorous pomacentrids, planktivores, and micro-invertivores were higher than all other reefs in 

2016.  

 

Figure 3.5: Local variation of mean fish density/1000m2 and (95% CI). Red: Outer-Shelf, Blue: Mid-
Shelf. Dashed line & open circles: Open Fishing, Closed line & closed circles: Closed Fishing. Grey 
mid-line: disturbance event Cyclone Yasi. ANOVA (formula=Density~Reef*Year) df=15, F=4.05, 
p<0.01 and mean fish species richness ANOVA (formula=Species Richness~Reef*Year) df=15, 
F=3.26, p<0.01 by year 7 



67 
 

Differences in fish assemblage structure among reefs and through time resulted from variation in the 

proportion of individual functional groups (Fig. 4, Table 3.3). Planktivores, grazers, and 

excavator/scrapers were the most abundant functional groups across all reefs. While changes in mean 

density of functional groups occurred during the study period, most proportions of abundance stayed 

relatively stable through time with a few exceptions. Grazers remained dominant at all reefs except 

Rib Reef where their proportional abundance declined from 2006-2016 (14.3-4.98%) (Table 3.1). 

Additionally, at Helix Reef, numbers of piscivores, excavator/scrapers, macro-invertivores, 

piscivorous-invertivores, and detritivores decreased between 2014 and 2016. Conversely, some 

functional groups became more dominant in the years post-disturbance. Percent of total abundance of 

planktivores increased from 2012 (~25-36%) to 2016 (~56-65%) at all reefs. At mid-shelf reefs, 

omnivorous pomacentrids increased from 2012 (~6-12%) to 2016 (~8-17%), but percent of abundance 

did not change for outer-shelf (Figure 3.4, Table 3.1). From the SIMPER analysis, the highest 

combined contribution (59.9%) to omnivorous pomacentrid recovery at Rib stemmed from increase in 

abundance of two species; Acanthochromis polyacanthis (21.59) and Pomacentrus moluccensis 

(38.28). Planktivore recovery at all reefs except Helix was due to an increase in Neopomacentus 

azysron. Conversely, decline in abundance at all reefs for macro-invertivores were mainly from 

Hemigymnus fasciatus and Hemigymnus melapterus, and decline in grazers was due to 

Plectroglyphidodon lacrymatus (Table S3-i). 
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Figure 3.6: Mean fish density/1000m2 of functional groups by year (95% CI). Red: Outer-Shelf, Blue: Mid-Shelf. Dashed line & open circles: Open Fishing, 
Closed line & closed circles: Closed Fishing. Grey mid-line: disturbance event Cyclone Yasi. See Tukey’s results for multiple comparisons of functional 
groups for pairwise interactions (Reef*Year, Disturbance*Reef) (Table S3-f , S3-h)8 
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Table 3.3:  Functional group relative proportions (% of total abundance) by reef and year for study site 5 

Functional Group 2006 2008 2010 2012 2014 2016 2006 2008 2010 2012 2014 2016 
 Rib Chicken 

Planktivore 44.45 55.73 48.98 36.1 53.03 64.34 50.37 42.98 40.46 25.3 46.85 65.94 
Grazer 14.3 10.75 11.18 11.53 10.98 4.98 23.21 25 28.01 26.64 22.29 15.62 
Detritivore 3.24 4.23 3.17 6.79 4.15 1.99 4.13 6.65 7.88 8.03 5.11 2.9 
Omnivorous Pomacentrid 12.52 7.32 10.5 11.87 7.52 17.37 2.15 2.55 3.17 4.77 3.86 4.21 
Piscivore 0.32 0.24 0.15 0.82 0.2 0.19 0.56 0.57 0.79 0.89 0.59 0.73 
Excavator/Scraper 16.53 14.82 16.96 20.59 18.3 6.18 12.91 14.19 10.51 28.2 15.5 6.33 
Browser 0.24 0.31 0.3 0.69 0.28 0.23 0.42 0.31 0.45 0.58 0.1 0.58 
Piscivorous Invertivore 0.89 0.73 0.76 1.17 0.69 0.28 0.49 0.42 0.94 0.36 1.29 0.23 
Corallivore 1.94 1.32 1.7 2.13 1.26 1.46 0.95 1.72 1.19 0.71 0.46 0.53 
Micro-invertivore 1.82 1.93 3.06 3.16 1.87 1.97 2.26 3.38 3.57 2.9 1.62 1.77 
Macro-invertivore 1.26 0.83 1.17 1.58 0.41 0.28 0.74 0.62 0.64 0.18 0.23 0.1 
  Helix Knife 
Planktivore 36.81 29.62 31.12 32.78 56.41 56.14 41.55 36.4 38.87 35.29 33.98 60.68 
Grazer 18.86 24.83 18.8 20.52 20.03 20.58 25.82 37.89 35.76 29.9 36.21 19.71 
Detritivore 5.67 6.9 7.15 5.78 2.66 2.27 3.85 3.05 3.81 6.55 5.54 1.72 
Omnivorous Pomacentrid 10.09 6.97 7.09 6.35 2.42 8.02 0.88 2.05 1.13 3.33 4.56 3.94 
Piscivore 0.39 0.12 0.33 0.7 0.7 0 0.84 0.8 0.75 0.63 0.71 0.74 
Excavator/Scraper 16.62 19.32 23.47 24.59 12.25 8.99 18.37 10.93 10.72 15.58 12.92 8.05 
Browser 0.39 0.67 0.6 0.25 0.25 0 0.33 0.45 0.27 0.11 0.22 0.14 
Piscivorous Invertivore 0.64 1.21 0.93 0.7 0.53 0.05 0.46 1.05 0.59 0.53 0.33 0.53 
Corallivore 3.87 3.69 2.91 1.78 0.82 0.83 2.47 1.6 2.25 1.64 1.14 0.74 
Micro-invertivore 3.39 3.39 4.01 2.48 1.64 2.23 3.22 3.34 3.65 4.12 2.61 1.72 
Macro-invertivore 1.12 0.97 1.15 1.33 0.53 0.42 0.46 0.3 0.43 0.58 0.38 0.39 
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3.3.3 Reef Community Relationships 

 

Changes in the proportions of fish functional groups were not uniformly correlated with changes in 

benthic habitat characteristics. Most comparisons within and among functional groups and benthic 

habitats demonstrated low levels of correlation (rho<0.3, Figure S3-c), but there were some 

exceptions. Links between species and biota varied, but some patterns were consistent across reefs. 

For example, there was an inverse relationship between turf algae and non-Acropora coral cover 

(Rho=|0.46-0.58|) at all reefs (Figure 3.3 & Figure S3-c), and similarly, between turf algae and 

Acropora coral cover (rho: |0.35-0.64|) at all reefs except Knife (Figure 3.3 & Figure S3-c). Also, turf 

algae showed significant inverse relationships with coralline algae (Rho=|0.37-0.67|) and macroalgae 

(rho=|0.31-0.54|). While there were consistent relationships across reefs for some benthic taxa, the 

relationships between the benthos and fish functional groups were more variable. For instance, 

planktivores were positively related to Acropora at Rib Reef, to non-Acropora at Chicken and Knife, 

but showed no relationships with any form of hard coral at Helix (Figure 3.3 & Figure S3-c). 

Omnivorous pomacentrids had a significant positive correlation with hard coral cover, but only at 

reefs open to fishing (rho=|0.35-0.47|). Rib Reef represents the highest number of significant 

correlations between omnivorous pomacentrids and planktivores and their relationships to benthic 

Acropora/non-Acropora. Fish functional groups were not strongly related to each other, but 

corallivores had a positive association with omnivorous pomacentrids at Rib and micro-invertivores at 

Helix. Whether these underlying relationships in the reef community contributed to strong recovery 

post-disturbance rather than similar patterns in temporal abundance at these sites are unclear.  

 

3.4 Discussion 

 

As coral reef ecosystems continue to be exposed to disturbance regimes, increased and improved data 

are required to define recovery potential. Our detailed study of four similar size and shape reefs at 

varying distances across the shelf revealed reef-level differences in community composition and 
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response to disturbance. This suggests reef-scale (i.e. single individual reefs) data may be crucial to 

understanding the capacity of reefs to recover from ongoing disturbance and that this level of 

examination should be nested within large-scale or regional analyses.  

 

Benthic assemblages were variable among reefs and years, with a strong distinction between mid- and 

outer-shelf sites. This distinction could be explained largely by natural variations in wave exposure, 

water clarity, and sources of productivity consistent with large-scale studies on the GBR (Halford et 

al. 2004; Emslie et al. 2008; Johns et al. 2014). However, more clearly defined shelf separation 

occurred in higher fish density and species richness on mid-shelf reefs, with clearest spatial 

differences in the density of functional groups such as planktivores and grazers. Distance from coast 

was also stronger predictor than mid- and outer- shelf position on benthic and fish assemblages. As 

shelf position is an arbitrary categorical predictor, use of a continuous distance variable of reef 

position more readily explained distinctions across the shelf. While cross-shelf variation in fish 

density on the GBR was incorporated in early studies of community assemblages (Done 1982; 

Williams 1982), recent studies focus on specific guilds (e.g. herbivores; (Hoey and Bellwood 2008) or 

use categorical shelf variables (Emslie et al. 2012). This study highlights observation of spatial 

differences in functional density from an across-shelf perspective may provide detailed information 

about which functional groups are most influential in variation among reefs.  

 

Natural variability of bio-physical conditions is a prime driver of benthic community dynamics (Done 

1982; Emslie et al. 2010), and some components of the fish assemblage responded to that variation. 

For instance, Rib Reef exhibited the highest Acropora coral cover and planktivore density of all reefs. 

This result was surprising since strong wave exposure and proximity to pelagic upwelling at outer-

shelf sites (Fabricius 1995) increase plankton and nutrient availability. Since planktivores were most 

prominent at a mid-shelf reef, density was likely driven by dependence on Acropora coral cover, 

particularly for tabulate and bottlebrush. Hard coral cover has previously been reported as a strong 

driver of planktivore density and diversity due to the shelter it affords (Pratchett et al. 2014). 

Recovery of non-Acropora at all reefs post-disturbance could explain the high density of Pomacentrus 
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lepidogenys and Neopomacentrus azysron, as non-Acropora dominated reef-scape has been found to 

be associated with high abundance of these two fish species (Arias-González et al. 2006). Although 

planktivores were highest at Rib reef, they recovered strongly at all reefs. This could be due to their 

smaller body size leading to faster growth rates and recruitment pulses than larger fish. Though other 

small-bodied fish such as omnivorous pomacentrids did not uniformly recover across all reefs. 

Browsing fishes were observed in low numbers across all reefs despite their known commonality in 

shallow reef slope habitats (Russ 1984), and low numbers may reflect the lack of macroalgae at these 

sites.  

 

While there was an observable link between some benthic assemblage components with functional 

groups, other relationships between benthic biota and fish assemblage were not as apparent. Results 

indicate environmental drivers had more influence on some functional groups than benthic 

relationships. For example, large-bodied predators showed no significant correlation with any other 

functional group or benthic category. While some studies have revealed fish population declines 

following coral loss (Jones et al. 2004; Wilson et al. 2006), others present evidence that specific 

functional groups remain stable or increase post-disturbance (Ceccarelli et al. 2016; Hempson et al. 

2017). For instance, herbivore abundance is commonly linked to algal availability (Wilson et al. 

2006), and corallivores are known to decrease following coral loss (Pratchett et al. 2014). Here results 

show that characteristics contributing to individual reef variability may promote stability as there was 

no common pattern in decline post-disturbance among reefs, particularly for piscivores, 

excavator/scrapers, and detritivores.  

 

Despite global coral loss (Hughes 1994; Jackson et al. 2014), this study shows recovery of hard coral 

equal to or surpassing pre-disturbance levels consistent with large-scale studies for the GBR (Halford 

et al. 2004; Emslie et al. 2008; Johns et al. 2014). Although all reefs showed benthic recovery, 

grazers, detritivores, corallivores, and macro-invertivores continued to decline post-disturbance. Few 

studies link loss of fish functional density (outside of herbivory) with increasing coral cover, a key 

bottom-up finding from the present study generally and for Helix Reef specifically. Loss of density of 
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functional groups showed no clear pattern across reefs, which could mean that unknown stressors are 

a stronger influence on decline. Alternatively, this decline could mean that some of the larger fish 

groups have moved to areas outside of survey sites in response to changes in environmental 

conditions outside of acute stressors (Currey et al. 2015); such as deeper reef areas, or areas that 

provide greater refugia. Further study is required to delineate some of these differences.  

 

Helix Reef had the largest changes in fish functional group density relative to disturbance. For 

instance, the density of functional groups such as corallivores, micro-invertivores, and detritivores had 

significant differences in mean density pre- and post- disturbance and showed general overall patterns 

in decline throughout the study period. This could mean that patterns in settlement and density are 

more dependent on the level of food resources than total habitat availability for some functional 

groups. Alternatively, lack of specific coral types that are preferred habitat for some fish functional 

groups could deter settlement. The loss of branching coral at Helix Reef over the duration of the study 

could explain decreased density of corallivores. For example, Brooker et al. (2013) found that 

corallivorous fish abundance was more significantly associated with Acropora branching coral over 

any other coral morphology or preferred prey. This aligns with conclusions from Pratchett et al. 

(2014) that ecological specialization predominantly contributes to response variability of fishes to 

disturbance. Those authors also concluded that corallivores will be most affected by habitat loss over 

other fish functional groups which is consistent with these results. Even though hard coral recovery 

occurred for Helix Reef, there has been re-assembly of the benthic community with changes to the 

dominant species from loss of branching Acropora to recovery of tabulate Acropora and sub massive 

non-Acropora, which could explain why previously dominant benthic dwelling groups such as 

corallivores have declined post-disturbance. 

 

The Rib Reef fish assemblage was distinct from outer-shelf reefs due to variation in density of 

planktivores, omnivorous pomacentrids, corallivores, and cover of Acropora corals. Despite marked 

declines in these functional groups post-disturbance, recovery of density at Rib Reef surpassed the 

other reefs. The disproportionately high density of some benthic dwelling fish functional groups such 
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as corallivores and omnivorous-pomacentrids at Rib Reef may be due to the higher reassembly of 

tabulate and bottlebrush Acropora coral and branching non-Acropora than other reefs. This could also 

explain lagged recovery of omnivorous pomacentrids at other reefs since Acropora had not yet 

recovered. Omnivorous pomacentrid recovery at Rib Reef appears related to an increase of Acropora 

as this benthic group creates suitable habitat for Acanthochromis polyacanthus and Pomacentrus 

moluccensis (Arias-González et al. 2006). Results from this study also suggest tabulate and foliaceous 

coral re-assembly post-disturbance is stronger at mid-shelf than outer-shelf reefs (Johns et al. 2014).  

 

Outer-shelf reefs may have sustained more structural damage from Cyclone Yasi due to higher 

exposure to swells than mid-shelf reefs, which might explain lagged recovery of fishes at those sites. 

However, all reefs sustained similar levels of damage to benthic groups, so fish functional differences 

could be explained by other factors such as loss of complex structure, though rugosity was not 

collected for the study period. Research by Gilmour et al. (2013) showed that distance from human 

stressors contributed to rapid benthic recovery and coral recruitment at isolated reefs. Here we show 

that while distance from land is a strong driver of variation in both benthic and fish communities in 

the central GBR, benthic and fish community recovery can occur in areas closer to human activity 

such as mid-shelf reefs. Moreover, expectations for faster recovery from disturbance, such as reef 

depth and high density of herbivores (Graham et al. 2015), did not increase fish density at outer-shelf 

sites. Additionally, particular fish groups (larger fish such as piscivores and pisci-invertivores) 

showed no pattern of response to disturbance and may carry greater resistance towards acute stressors 

than others. Detritivore and some invertivore densities declined at all reefs post-cyclone and it is too 

early to determine whether any long-term recovery will take place. Hence, it is not clear whether these 

are lagged effects in recovery occurring in the study area which will require future monitoring.  

 

Other factors that have been attributed to reef recovery, such as management zone (Mellin et al 2016), 

did not influence this study. For example, recovery of both benthic and fish groups was not distinctive 

between management zone showing recovery potential is not uniform for protected areas. This 

somewhat contradicts findings from Mellin et al (2016) who showed that marine protected areas on 
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the GBR are more resilient to effects of disturbance. The difference in findings may be to the large 

latitudinal area of coverage in these studies or the fact that in the early periods of their study reefs 

were subject to a broader range of disturbance types. In another study, Emslie et al. (2015) showed 

that while reef protection status does not affect some fish groups, it had a large impact on abundance 

of large piscivores, a result not reflected in the present study. However, those authors also noted that 

Townsville reefs showed the lowest biomass of piscivores in their study on the whole of the GBR. 

Thus, it is possible that the low overall density of piscivorous fishes in the Townsville sector may not 

be large enough to tease out differences by protection status. The reef level variation in functional 

group responses to disturbance in our study also shows that drivers in density and functional stability 

may vary across biogeographic areas even at the local scale. Since our study takes a fine-scale 

approach on a small number of reefs, future study should consider a larger sample size.  

 

While this study shows that benthic communities have recovered post-disturbance, it is unclear 

whether fish communities will also recover functionally post-disturbance. Although environmental 

effects drive some functional variability among reefs, there is a need to understand factors beyond 

benthic recovery to interpret community response to future disturbance events. This study provided 

evidence that reef–level data produce a different level of detail in community dynamics than seen at 

regional and large-scales. This aligns with sub-regional results from Osborne et al (2011) showing 

that there is no net decline post- disturbance on the GBR as a whole, but there was substantial 

variability in recovery from disturbance at finer spatial scales. This can be important to the application 

of management strategies, which are often implemented at the reef level (e.g. zoning). While regional 

studies identify variation between locations, more subtle ecological processes may be missed that 

could reveal future resilience to disturbance. It was interesting to note that there was recovery of some 

benthic groups at Rib Reef compared to other reefs. Rib Reef is closest to shore and is open to fishing. 

Future studies should compare a larger number of reefs that are open and closed to fishing and collect 

additional environmental characteristics such as structural complexity (e.g. rugosity) or water quality, 

to test the generality of the patterns in recovery identified in this study. This could assist in identifying 
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more specific contributors to variation in communities between management areas and provide 

guidance on how directed management may improve and promote resilience and recovery. 

 

When examining total density of fishes pre- and post-disturbance, there were no significant 

differences among reefs, which masked the underlying effects of disturbance to individual functional 

groups. Furthermore, without including interactions between reef and year, the level of impact to 

individual reefs would be missed in large scale approaches. From this study, it is clear that Helix Reef 

has undergone a level of functional degradation that is not reflected in other focal reefs, potentially 

showing increased vulnerability to future disturbance events. This may warrant further study as to 

whether species carrying a high degree of specialization were differentially impacted at Helix Reef 

(Villéger et al. 2010; Plass-Johnson et al. 2016). This result exposes questions about the level of detail 

and scale applied to defining reef variability, community patterns and recovery. With some acute 

disturbances (e.g. cyclones and bleaching) expected to increase in frequency and severity in the future 

Hoegh-Guldberg 1999, Rosenzweig et al 2008; IPCC 2014; Wolff et al. 2018), it is important to 

examine the response of coral reefs to such disturbances at various spatial scales. While broad scale 

approaches (e.g. 10s to 100s kilometres) will generalise the responses of reef communities to acute 

disturbances, fine scale (e.g. 100s metres to kilometres) appraisals will give a more nuanced 

understanding of the reef level variability in fish and benthic community dynamics following acute 

disturbances.  
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Chapter 4: Trophic niches determined from fatty acid profiles of 
sympatric coral reef mesopredators 

 

4.1: Introduction 

 

Despite a large body of trophic research about coral reef ecosystems, surprisingly little is known 

about ecological processes (i.e. nutrient cycling, energy flow) among high-order predators. These 

knowledge gaps are derived from difficulty in identifying dietary sources and predator-prey 

interactions of mobile species such as sharks. High-order predators are assumed to limit population 

growth of lower trophic (dietary) levels through consumption (direct effects) and suppressed 

predatory activity (indirect effects) via top-down influences (Heithaus et al. 2008; Ripple et al. 2016). 

Due to the complexity of reef systems, it is difficult to characterise discrete trophic levels above 

primary consumers due to high-levels of omnivory (Thompson et al. 2007). Generally, fishes are 

categorized into functional groups (Root 1967) or guilds which cluster species based on ecological 

traits in relation to diet, morphology, and competition (Reecht et al. 2013). Previous studies have 

hypothesized that the semi-open nature of reefs (connectivity, energy subsidies) and functional 

redundancy (species sharing similar functional roles) are the reason disruptions such as predator-

mediated trophic cascades are uncommon in reef systems, a topic regularly debated among 

researchers (Roff et al. 2016; Ruppert et al. 2016). Moreover, omnivory (Bascompte et al. 2005) and 

diffuse predation (consumers feeding on multiple dietary resources) among predators (Heupel et al. 

2014) are thought to weaken cascading effects that can be observed with low functional diversity 

(trait-based species richness) in degraded reefs (Thompson et al. 2007). Fish ecological function in 

general can often be defined in one-dimension (discrete groupings based on a specific ecological trait) 

or equated solely to trophic (dietary) position (Rosenfeld 2002) which can lead to oversimplification 

of an organism’s influence on a community, particularly when relying on functional redundancy to 

maintain an ecosystem after a loss in diversity (Reecht et al. 2013; Mouillot et al. 2014). 

Conceptually, if multiple species in a community share ecological roles or prey on multiple resource 

types, there is a greater opportunity for dietary gaps to be filled if there is a loss of biodiversity. 
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However, the functional roles of some reef fishes have been shown to transition following persistent 

habitat degradation (Brandl et al. 2016). Additionally, trophic roles for many reef-dwelling species is 

limited or context-dependent (small spatial scales, limited methods), meaning that without this 

information, functional roles of similar species remain largely unknown. For these reasons, it is 

important to understand functional redundancy at all trophic levels in a community and their 

relationship to ecosystem stability, particularly when such ecosystems are already vulnerable to 

degradation.   

 

Biochemical tracers are increasingly used in a range of ecosystem types to determine the energy flow 

through a system and the functional role of species. While stable isotope analysis is most commonly 

used in trophic studies, lipid and fatty acid (FA) analysis is gaining traction largely due its greater 

ability to identify basal food chain dependencies and quantify carbon-based energy flows (Bierwagen 

et al. 2018b; Pethybridge et al. 2018). For example, Arai et al. (2015a) found functional redundancy in 

three species of parrotfish in coral reefs in the South China Sea due to similar FA profiles. In the same 

study area, FA profiles showed bigeye snapper (Lutjanus lutjanus) may undergo diet and habitat shifts 

with changing stages of ontogeny (Arai et al. 2015b). In northern Australia, Nichols et al. (2001) 

revealed inter-specific polyunsaturated FA (PUFA) differences in liver oils between shark species. 

The authors also determined intra-specific spatial and seasonal differences in FA profiles in blacktip 

reef sharks (Carcharhinus melanopterus), while tiger sharks (Galeocerdo cuvier) showed less 

variability. Application of FA analysis to tropical shark species is limited but has been used to 

distinguish species and populations in subtropical areas such as the southeast United States (Ackman 

2000) and South Africa (Davidson et al. 2011). These spatial, temporal, and species level differences 

are important in distinguishing functional roles and understanding how organismal responses to 

impacting factors such as environment may change due to anthropogenic pressures and natural 

variability. Despite FA applicability to these types of studies and the higher level of detail over stable 

isotope analysis due to number of potential tracers, sample processing takes time and often comes at a 

high cost. Due to recent research by Parrish et al. (2015), faster methods have been applied to analysis 
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of fish tissues of pelagic species such as albacore tuna (Thunnus alalunga) and white sharks 

(Carcharadon carcharias) that have been found to be comparable to traditional FA extraction 

methods. However, the method of direct transmethylation has yet to be applied to tropical fish 

species, presenting an opportunity to explore potential differences in approach. 

 

The Great Barrier Reef (GBR) is under threat and vulnerable to degradation due to various pressures, 

including climate change impacts (e.g. coral bleaching) amplified by disturbance events (De'ath et al. 

2012; Hughes et al. 2017). These pressures that may negatively impact the reef such as anthropogenic 

(fishing, runoff) and natural (cyclones, crown of thorns starfish, Acanthacaster plancii) fuel the need 

for better understanding of the ecological factors that contribute to stable, healthy reefs. Near-pristine 

reef ecosystems often have trophic structures connecting energy pathways flowing from primary 

producers to top-level consumers, supporting biodiversity and populations (Houk & Musburger 2013). 

In general, coral reef food webs, like most ecosystems, are thought to be structured as pyramids of 

species richness where each subsequently higher trophic level reduces in biomass and richness due to 

energy availability (Trebilco et al. 2013; Hatton et al. 2015). This type of structure implies that a 

smaller number of high-level predators such as sharks with large biomass can be supported by reefs 

over smaller-bodied teleost predators. Species can be distinguished into functional groups (i.e. 

detritivores, herbivores, invertivores, piscivores, omnivores) based on dietary and morphological 

traits. Functional characteristics of reef-dwelling species have been shown to change spatially 

(Hemingson & Bellwood 2016) and with ontogeny (Tilley et al. 2013). Reef sharks and large-bodied 

teleost fish are often categorized as piscivores and pisci-invertivores with a high degree of generalized 

feeding in some species (Emslie et al. 2008; Speed et al. 2012; MacNeil et al. 2015; Frisch et al. 

2016). Therefore, it is important to determine if there is similarity or separation in diets of organisms 

classified with similar functional roles.  
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Reef sharks have often been assumed to be apex predators in coral reef systems (Friedlander & 

DeMartini 2002; Rizzari et al. 2014; Casey et al. 2017), but the significance of their functional role is 

not well defined. Reef-associated sharks most common to the GBR are blacktip reef (Carcharhinus 

melanopterus), whitetip reef (Triaenodon obesus), and grey reef (Carcharhinus amblyrhynchos) 

(Chin et al. 2010). Conclusive dietary studies of reef sharks are minimal (but see Cortes 1999, 

Papastamatiou et al. 2006; Frisch et al. 2016), where different methods can lead to different 

interpretations about long-term diet, basal source dependencies, and nutrient pathways (Chapter 2; 

Pethybridge et al. 2018). Recent research using stable isotope and stomach content analyses (Frisch et 

al. 2016; Roff et al. 2016; Bond et al. 2018) re-classified reef sharks as mesopredators having similar 

trophic levels as large predatory teleosts (e.g. coral trout (Plectropomus leopardus), red throat 

emperor (Lethrinus miniatus)). These results raise questions about the ecological importance and top-

down influence of reef sharks compared to other smaller-bodied mesopredators, such as snappers, 

groupers, and emperors (i.e. teleost fish) (Roff et al. 2016). Researchers have assumed a degree of 

functional redundancy occurs among reef sharks and predatory teleost fish. However, these 

conclusions are the subject of contention (Ruppert et al. 2016) warranting the need for further 

research. Ecological models also show weak top-down effects from reef sharks on the GBR (Casey et 

al. 2017), but these models characterize sharks as apex predators which may contradict recent findings 

of their ecological roles as mesopredators. Since species such as grey reef and whitetip reef sharks are 

found to be more resident (Espinoza et al. 2015) than larger bodied transient predators such as tiger 

sharks (Meyer et al. 2010) and bull sharks (Carcharhinus leucas) (Heupel et al. 2015), it is possible 

that reef sharks are more dependent on reef-derived resources than larger apex predators. Conversely, 

some studies show that grey reef sharks are more dependent on pelagic carbon resources (Frisch et al. 

2016; Williams et al. 2018). Furthermore, assumptions about the inter-specific trophic interactions of 

high-order predators on coral reefs are rarely backed by empirical evidence; behavioural influence and 

activity space have only recently been compared among predators (Speed et al. 2012; Rizzari et al. 

2014; Matley et al. 2016b; Heupel et al. 2018).  
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Here, we apply FA analysis to a selection of reef-dwelling mesopredators on the GBR to compare 

basal source, habitat dependencies and dietary preferences among species. The aims of this study 

were to: (1) determine applicability of FA analysis, including a new rapid extraction method, to 

tissues of tropical mesopredators, and (2) determine the degree of inter- and intra-specific dietary 

overlap among reef mesopredators. Based on previous research showing overlaps in both diet (Frisch 

et al. 2016) and space use (Heupel et al. 2018), we test the hypothesis that functional redundancy 

occurs for mesopredators on the GBR.   

4.2 Methods and Materials 

 

4.2.1 Sampling 

Samples were collected from four reefs on the central GBR (~18° S) between May 2016 and April 

2017 (Figure 4.1). Benthic habitat of these reefs is generally comprised of high hard coral cover (~30-

50%) (Sweatman et al. 2008), but recent disturbance and bleaching events have since affected these 

areas. At the time of the study, reefs were comprised mainly of turf algae (42.9%), non-Acropora 

(branching) hard coral cover (17%), crustose coralline algae (16.6%), and Acropora (tabulate) coral 

cover (11.1%) (Chapter 3).  

Muscle tissue and blood samples from 51 reef-dwelling individuals representing six families (2 

carcharhinids, 2 lethrinids, and 1 serranid) were used for analysis (Table 4.1). Additional species were 

sampled (1 carcharhinid, 5 teleosts), however due to their low sample size they were not included in 

the statistical analysis (Table S4-a). Individuals were captured using traditional angling methods on 

rod and reel, hand line, or float lines. Any individual captured regardless of size or sex within permit 

requirements were sampled. For reef shark samples, captured individuals were placed in tonic 

immobility and a section of dorsal muscle tissue taken with scalpel and forceps from the base of the 

dorsal fin or anal fin. For a subset of sharks, blood was taken ventrally from the caudal vein. Sharks 

were released in good condition post capture. For bony teleost reef fish, dorsal muscle biopsies of up 

to 1.5 g were performed post-lethal capture and blood (1-3 mL) was taken from the caudal vein or 

gills. Due to poor condition of bony teleost fish post-sampling, all individuals for the study were 
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retained after capture. All muscle samples were immediately frozen on board the vessel and stored at -

20°C until lipid extraction. Blood plasma was separated with a portable centrifuge and extracted on 

the vessel and subsequently frozen.  

 

Figure 4.1: Map of the four sampling locations off Townsville reefs on the central Great Barrier Reef. 
Light grey polygons are reef outlines. Green circles are study locations 9 

 

Wet tissues were used for analysis based on recent research from Sardenne et al (2019) which 

concluded that lipid degradation occurs in dry tissue samples stored longer than one month. Parrish et 

al. (2015) also demonstrated that FAs of wet tissue of bony fish and sharks can be extracted through 

direct transmethylation and are commonly used in full extraction. Any remaining dermal and 

connective tissue from samples were removed from muscle tissue prior to extraction. FA methyl ester 

(FAME) extractions from a subset of 36 samples (21 white muscle tissue, 15 blood) were compared 

through two processes for method validation: (1) total lipid extraction followed by transmethylation 

(traditional), and (2) direct transmethylation (Figures S4-a, S4-b). An additional 42 samples were 
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thereafter processed only with direct transmethylation. We compared these processes as the direct 

transmethylation method is a relatively new approach for determining fatty acids in fish tissues. 

Research stating this is a viable method was performed by Parrish et al (2015) but was only performed 

for albacore tuna and white sharks. Since this study examines tropical fish species, method validation 

was necessary to support use of direct methylation. 

4.2.2 Traditional Method: Total lipid extraction of fish tissue and transmethylation 

 

Samples of wet tissue (0.01-1.5 g) were extracted according to a modified Bligh and Dyer (1959) 

method. Before extraction all clean glassware was rinsed with nanograde dicloromethane (DCM). 

Tissues were mixed in 100 mL separatory funnels with a solvent mixture of DCM:methanol 

(MeOH):milliQ H2O (10:20:8 mL), shaken and left overnight. The following day, a second solvent 

mixture of DCM: saline milliQ H2O (9g NaCl/L) (10:10 mL) was added and left for at least two 

hours. The lower aqueous layer was then drained into a 50-100 mL round bottom flask and rotary-

evaporated in a 40 °C hot water bath. DCM was added to the extract and transferred into a pre-

weighed glass 2 mL vial. Each vial was placed on a heated block and blown down under nitrogen gas 

where the extract was rinsed twice with DCM and transferred into the vial. After the extract was 

thoroughly dried, an internal standardized solvent of 1,000 µl 23:0 FAME:DCM was added and stored 

in -20 °C until processing.  
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Table 4.1: Species included the study with common names, sample size (N), sample size per study site, and fork length range of samples 6  

Order Family Species Common Name N Rib Grub Knife Chicken Fork Length 
Range (cm) 

Carcharhiniformes Carcharhinidae Carcharhinus amblyrhynchos Grey reef shark  26 2 - 18 6 61-151   
Triaenodon obesus Whitetip reef shark 6 - - - 6 100-123 

Perciformes Lethrinidae Lethrinus miniatus Red throat emperor 26 - - 9 17 31-52 
  Lethrinus laticaudus Grass emperor 6 - -  6 10-50  

Serranidae Plectropomus leopardus Common coral trout 12  1 5 6 38-56 
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4.2.3 Fast Method: Direct transmethylation 

For each sample, 0.01-0.4 g wet fish tissue or plasma was transferred into clean pre-weighed and tared 

glass test tubes. The direct transmethylation method described above was then used to extract FAs 

from the lipid backbone, protein, and carbohydrates.  

 

Fatty acid analysis  

FA peaks were identified through gas chromatography using an Agilent Technologies 6890N GC 

(Palo Alto, California, USA), with an HP-5 cross-linked methyl silicone fused silica capillary column 

(50 x 0.32 mm i.d.), an FID, a splitless injector, and an Agilent Technologies 7683 Series auto-

sampler and injector. Helium was used as the carrier gas. Selected FA samples were further analysed 

using gas chromatography-mass spectrometry (GC-MS) to validate peak identifications. A Finnigan 

Thermoquest system fitted with an on-column injector was used to perform GC-MS with 

Thermoquest Xcalibur software (Austin, Texas, USA). Analytical (GC) error, using replicate analysis 

of an internal (tuna oil) standard, was low with a mean coefficient of variation (CV) of 12% (ranging 

from 0 – 92% for different FAs). Error associated with the direct transmethylation method, based on 

the GC analysis of replicate tissue sub-samples taken for a subset of individuals was slightly higher 

with a mean CV of 28% (ranging 0-97% for individual FAs).  

 

4.2.4 Statistical Analysis 

From the 58 FAs detected through GC, 32 FAs (average proportion of total FAs >0.1%) were used for 

analysis. For direct transmethylation versus traditional full extraction methods, linear regressions were 

used to compare cross-validity of methods for specific FA groups that were the principle drivers in 

dissimilarity among species. As values for each principle FA detected varied in significance between 

the direct transmethylation method and the traditional method (total lipid extraction followed by 

transmethylation), only extractions through direct transmethylation were used for comparison in 

multivariate analysis for consistency. The sum of saturated FAs (SFA), mono-unsaturated FAs 
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(MUFA), polyunsaturated FAs (PUFA), and branched isomer saturated FAs (Iso-SFA) were 

calculated for each species and sample type. 

  

Because of low sample size of some species, proportional mean percentages of essential FAs relative 

to each species were compared only between grey reef sharks, whitetip reef sharks, coral trout 

(Plectropomus leopardus), red throat emperor (Lethrinus miniatus), and grass emperor (Lethrinus 

laticaudis) using ‘vegan’ in R (R Core Team 2018; Oksanen et al. 2016). These species comprised the 

main focus of the study. FA profiles were compared between extraction (direct and total) and tissue 

type (muscle and blood). Additionally, due to limited size and volume of some samples, only three 

species (grey reef shark, coral trout, red throat emperor) were used for tissue type comparison. 

Analysis of similarities (ANOSIM), similarity of percentages (SIMPER), and redundancy analysis 

(RDA) were used to define species differences in basal dietary sources by identifying the primary FAs 

that contribute to sample variation. RDA was chosen to constrain FA explanatory variables on 

distance-based (Euclidean) ordinations over principal components. Additionally, RDA was used to 

compare the degree of separation of each species based on FA profiles obtained by the direct 

transmethylation method compared to traditional full-extraction method. Statistical differences 

between the analytical methods were tested using PERMANOVA in vegan. Due to the spatial and 

sampling limitations of the study, no environmental variables were fit to the ordinations as 

constraints. Variance was measured from dissimilarity matrix values and tested for significance with 

permutational analysis of variance (adonis-PERMANOVA) using tissue type cross-compared with 

species. Fork length (all) and sex (reef sharks only) were tested as response variables. Niche overlap 

and width were calculated between species FA profiles in R using SPAA (species association 

analysis; Zhang 2016) and EcoSimR packages (Gotelli et al. 2015) to determine the degree of 

similarity or separation in ecological niche space. Niche overlap was calculated using Pianka variance 

derived from competition coefficients that determine shared resource by multiple species returning 

values between 0 and 1; where 0 suggests no shared resources and 1 as complete overlap in resource 
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utilization (Gotelli et al, 2015).  Niche width was determined using the Shannon Index which is the 

main index to quantitatively measure diet diversity (Petraitis 1979; Brower et al. 1998). 

 

Post-hoc multilevel comparisons on PERMANOVAs including comparisons between tissue type (i.e. 

blood plasma versus muscle tissue) were tested using a pairwise adonis function with Bonferroni 

correction (Martinez 2017). Additionally, regressions were performed by species including summed 

proportions of all essential FAs. Finally, FA trophic biomarkers (FATM) commonly seen as indicators 

of differences in primary production and basal dietary sources were plotted as ratios by muscle and 

blood type of directly transmethylated samples. Some accepted markers in literature indicative of 

diatoms are 16:1ω7 and 18:1ω7, and markers of dinoflagellates are 16:0 and 22:6ω3 (Dalsgaard et al. 

2003; Parrish 2013). While all species can biosynthesise 16:0, separation between species can also 

show habitat differences (Meyer et al. 2019). Certain biomarker ratios can provide information on 

long-term diet. For instance, a ratio of 16:1ω7/16:0 can distinguish between diatom and dinoflagellate 

feeding (Pethybridge et al. 2014). Ratios have also been used to interpret differences in trophic 

position (20:5ω3/22:6ω3) and degree of carnivory (18:1ω7/18:1ω9) (Dalsgaard et al. 2003).  

 

4.3 Results 

 

4.3.1 Traditional Full Extraction versus Direct Methods 

No statistical differences were found in mean overall FA profiles of muscle tissue between traditional 

and direct transmethylation methods (PERMANOVA, perm=999, p>0.05, r2=0.04). However, FA 

proportions of blood plasma samples between methods were statistically different (p<0.05, r2=0.19). 

These differences were principally derived from high concentrations of 16:0 (palmitic acid) (SIMPER 

14.1% dissimilarity contribution), 22:6ω3 (DHA, docosahexaenoic acid, 13.6%) and 18:0 (10%) 

(stearic acid) estimated from direct compared to traditional methods (Tables 4.2 & 4.3). Muscle tissue 

FA profiles for both methods consisted primarily of PUFA (mainly DHA and ARA, 20:4ω6 
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arachidonic acid) for each species except grey reef sharks, where PUFAs comprised less than SFA 

and MUFAs using direct methods (Table 4.2). PUFA proportions (percent ± standard deviation) were 

also higher using traditional extraction methods (37 ± 4  ̶  56 ± 6 %) over direct methods (28 ± 3  ̶  47 

± 5%) except in whitetip reef sharks. Blood plasma FA profiles showed generally higher 

concentrations of SFA, MUFA, and PUFA with direct methods (39± 5  ̶  48 ± 7%) compared to 

traditional (38 ± 5  ̶  42 ± 4%) (Table 4.2). PUFAs were generally found in the highest proportions in 

both methods followed by SFAs (28 ± 5  ̶  40 ± 8%).  

Linear regressions of overall mean FA profiles (essential FAs) by species (grey reef shark, coral trout, 

red throat emperor) between traditional and direct methods (for both blood plasma and muscle tissue) 

showed high statistical significance passing through the origin (p<0.005) with r2 values ranging from 

0.82 - 0.91 and slopes from 0.63 - 1.03 (Figure 4.4). However, regressions for six of the major FA 

contributors varied in statistical significance (p value range >0.5 - <0.001) with r2 values ranging from 

0.04 - 0.4 and slopes from 0.02 - 0.7 for muscle tissue (Figure S4-a). Furthermore, regressions of 

essential FAs comparing extractive methods for blood plasma were not statistically significant (S4-b). 

These results indicate that for this study estimation of essential FA contributions to muscle resulting 

in high concentrations are less reliable for direct comparison between methods and that blood plasma 

methods could not be compared. 

 

4.3.2 Muscle versus Plasma Tissue 

 

Muscle and blood plasma were analysed using only direct transmethylation results due to concern 

around cross-comparison based on the extraction method used. Additionally, muscle and blood 

plasma comparisons were only tested for grey reef sharks, coral trout and red throat emperor due to 

volume of the sample and availability. There was a statistical difference in overall mean FA profiles 

between muscle and plasma using direct transmethylated (PERMANOVA, perm=999, p=0.05, 

r2=0.20). Furthermore, crossed PERMANOVAs showed a significant effect from the interaction 

between species and tissue sample type (p<0.005, r2=0.42) prompting further post-hoc pairwise 
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comparisons. There were no statistical differences between muscle and blood FA profiles for red 

throat emperor (pairwise Adonis, perm=999, p>0.05, r2=0.09) and coral trout (p>0.05, r2=0.12), but 

grey reef sharks were statistically distinct (p=<0.05, r2=0.22). ANOSIM tests also showed that FA 

profiles of individual grey reef sharks overlapped but showed statistical separation between muscle 

and blood plasma (ANOSIM-R=0.49, p<0.005), whereas coral trout (R=0.15, p>0.05) and red throat 

emperor (R=-0.08, p>0.05) were difficult to separate between tissue types. The differences in tissue 

type of grey reef sharks were mainly from 18:0 (SIMPER dissimilarity, 17.3%), DHA (16.8%), and 

18:1ω9 (13.8%) (Table 4.3). 
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Table 4.2: Mean relative proportions (% ± standard deviation) of essential fatty acids (FAs) (>0.1%). TLEFA: total lipid extraction followed by 
transmethylation, TMFA: extraction by direct transmethylation. Bold indicates FAs with high concentrations greater than 3 7   
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Table 4.3: SIMPER (Similarity of Percentages) % dissimilarity contribution between species and pairwise PERMANOVA (Adonis-vegan R, perm=999) r2 
values of muscle tissue and blood plasma. Global statistical significance between species determined by pairwise PERMANOVA denoted by *adjusted p 
value<0.05, bold values indicate strongest FA contribution to dissimilarity per species group comparison. Bold values indicate primary FA contribution to 
dissimilarity for each species comparison 8 
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4.3.3 Species-Specific Differences in FA Profiles 

 

Blood plasma comprised mainly PUFA (DHA and ARA) for grey reef sharks (46 ± 5%) and coral 

trout (48 ± 7%). Grey reef shark muscle composition was primarily SFA (35 ± 7%) and MUFA (33 ± 

4%), whereas PUFA was still dominant for coral trout. Red throat emperor composition was 

dominated by PUFA and SFA, but SFA was slightly higher in plasma(40 ± 8%) than in muscle (34 ± 

6.4%) (Table 4.2).  

 

Figure 4.2: Redundancy analysis (rda) of fatty acid profiles from muscle tissue across sampled reef 
fishes. Eigenvalues are the total variance (%) explained by each axis (RDA1/RDA2) 10 
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Of the 32 FAs (average proportion of total FAs >0.1), those commonly found with highest 

concentrations in all species and tissue types were DHA, ARA, 16:0, and 18:0 (Table 4.2). ANOSIM 

tests showed that samples were more related within tissue type (muscle vs. plasma). Shark muscle 

tissue FA contributions for both grey reef and whitetip reef sharks were statistically different from 

muscle tissue of bony teleost fishes (coral trout, red throat emperor, grass emperor) (pairwise 

PERMANOVA, perm=999, adjusted p><0.05, r2 range=0.2 - 0.6), but not statistically distinct from 

each other (adjusted p>0.05, r2=0.14) (Table 4.3, Figure 4.2). However, whitetip reef shark muscle 

occupied a smaller niche space than grey reef sharks even though there was a degree of overlap 

(Figure 4.2). Differences in grey reef shark muscle tissue compared to coral trout and red throat 

emperor were largely driven by concentrations of DHA (SIMPER dissimilarity 16.3 and 18.5% 

respectively), whereas red throat emperor separated out based on 18:0 (14.3%). Conversely, whitetip 

reef shark differences in muscle were primarily from 16:0 acid when compared to coral trout and red 

throat emperor (15.6 and 18.54% respectively) and DHA for grass emperor (18.1%). Overall, 16:0 

values were lowest for sharks and highest in red throat emperor and coral trout. Redundancy analysis 

showed that clustering was driven by species differences in FA concentrations [coral trout/grass 

emperor (DHA), red throat emperor (16:0 and ARA), grey reef/whitetip reef sharks (18:0, 18:1ω9, 

18:1ω7) (Figure 4.2)]. The percent overlap calculations ranged from 0.62-0.92 with the closest niche 

space between coral trout and grass emperor, and the most distinct were between whitetip reef sharks 

and coral trout (Table 4.4). Comparing the RDA of fatty acid values derived from the traditional 

method, this same clustering was observed per species (df=3, F=2.3, p<0.005). This shows that even 

though there are degrees of variation in proportional values of FA groups between the FA analytical 

methods, the ecological distinctions are the same. There was no effect of fork length or sex on FA 

composition in any of the Adonis models.   

Blood plasma FA profiles were not statistically distinct between grey reef shark and coral trout 

(pairwise Adonis, perm=999, p>0.05, r2=0.46), indicating differences in relatedness between tissue 

types for certain species. For blood plasma in red throat emperor, similar contributions of SFAs 

dominated by 16:0 acid (40.34±8.1) and PUFAs (mainly DHA and ARA, 39.27±4.65) were found. 
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There were no statistical differences between plasma FA profiles of coral trout and red throat 

emperor.  

Table 4.4: FA niche breadth calculations for each of the five species compared using ‘spaa’ and 
EcoSimR. Niche overlap percentage (spaa; Pianka variance), Niche widths (EcoSimR; Shannon 
diversity index).  

 

 

4.3.4 Trophic Biomarkers  

 

FATM ratios varied among species where muscle ratios of whitetip reef sharks showed tight 

groupings indicative of smaller dietary niches while the other species had a broader range of values 

(Figure 4.3). Mean muscle and plasma ratios differed between species, as did the degree of separation. 

For the 16:1ω7/16:0 (diatoms/zooplankton), there was clear separation and in general, tight grouping 

within species. The 16:0/18:0 biomarker was higher in sharks than in teleosts within this study. 

DHA/EPA ratios also clustered in tight groupings within species with low ratios in sharks compared 

to teleosts with the main differences coming from the proportion of DHA. Finally, there was a linear 

trend in the 18:1ω7/18:1ω9 ratio, where sharks had higher concentration in these FAs than teleosts. 

Common coral trout Grass emperor Grey reef shark Red throat emperor
Grass emperor 0.92
Grey reef shark 0.72 0.75
Red throat emperor 0.88 0.90 0.79
White-tip reef shark 0.62 0.69 0.86 0.73

Common coral trout Grass emperor Grey reef shark Red throat emperor White-tip reef shark
2.00 1.99 2.06 2.06 1.99

Niche Overlap Percentage

Niche Widths
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Figure 4.3: Common trophic biomarker ratio comparisons between species by muscle (top) and blood plasma (bottom) 11 
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Figure 4.4: Linear regressions comparing traditional to direct methods of extraction of 32 FA values for muscle (top row) and plasma (bottom row) of coral 
trout (left), grey reef shark (middle), red throat emperor (right). Grey area are smoothed confidence intervals and p-values are the difference to the 1:1 line 
ratio 12
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Figure 4.5: Convex hulls distinguishing total FA niche breadth of each species 13 

 

4.4 Discussion:  

 

This study demonstrated that there were differences in trophic niches, from calculating degree of 

overlap, between five species of coral reef mesopredators as indicated by FA profiles and biomarkers. 

Reef shark FA profiles (grey reef shark, whitetip reef shark) were found to be distinct from teleosts. 

These results offer a higher resolution of dietary distinction than stable isotope analysis between 

species due to a larger number of potential markers. However, results from our study can help 
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supplement stable isotope analysis which gives a better understanding of trophic position (Post 2002). 

Recent research by Espinoza et al (2019) using stable isotope analysis in the Townsville region 

showed similar dietary overlap to our study (Figure 4.5) between whitetip reef sharks, grey reef 

sharks, red throat emperor, and coral trout. Additionally, grey reef sharks were found to occupy a 

higher relative trophic position than whitetip reef sharks, coral trout, and red throat emperor. This is 

converse to findings by Roff et al. (2016) and Frisch et al. (2016) who showed significant overlap in 

isotopic niche space among sharks and high-order teleosts on coral reefs. The authors also found 

trophic redundancy among grey reef sharks, whitetip reef sharks, and blacktip reef sharks 

(Carcharhinus melanopterus). The distinction between mesopredators in our study was driven 

primarily by prevalence of 18:1ω9 and 18:1w7 in sharks compared to prevalence of 16:0 in teleosts. 

All species occupied a similar FA niche breadth. However, grass emperor and whitetip reef sharks 

occupied the smallest breadth which may be characteristic of a more specialized diet range. This can 

be further verified by more specific resource utilization and least amount of niche overlap of whitetip 

reef sharks. Previous stomach content studies of whitetip reef sharks reveal high numbers of teleost 

fishes (~80-91%) (Cortes 1999; Frisch et al. 2016) supporting our results that whitetip reef sharks are 

possibly less generalist feeders than grey reef sharks.  

 

We also demonstrated the direct transmethylation procedure is appropriate for trophic studies of 

tropical species, but more research is necessary before comparing analyses across tissue types. This 

result contributes to a growing pool of literature that validates direct transmethylation methods and 

questions future use of blood plasma. Studies incorporating cross-tissue differences in the future 

should include an experimental phase in order to investigate an individual’s trophic ecology at shorter 

time scales compared to muscle. For example, this type of study would need knowledge of potential 

effects such as timing of last meal for better interpretation of differences between blood plasma and 

muscle turnover rates related to FA. 
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We found the main FAs separating species were DHA, 16:0, and 18:0. These three FAs have been 

used in other studies as strong indicators of prey differences (Iverson et al. 2001, Beckmann et al. 

2013). Additionally, differences in FA profiles between mesopredators found in this study can be 

linked to specific basal sources that have not previously been documented for coral reef species. For 

example, DHA is linked to symbiotic dinoflagellates in some species of coral (Zhukova & Titlyanov 

2003), suggesting that fishes with high levels of DHA (such as coral trout) in their tissues are 

supported by coral derived carbon. Such differences can help to characterise sympatric species, but 

also give insights into habitat use and basal sources of food webs (Piché et al. 2010; Arai et al. 

2015b).  

 

Other FAs important in characterizing species in this study were 18:1ω9, 18:1ω7, and ARA which are 

the principal components separating fish and sharks. ARA has been found to be high in omnivores 

and benthivores in Australia (Dunstan et al. 1988). Furthermore, ARA is a primary component of 

coral, mucus and crustose coralline algae (CCA) on coral reefs in the Caribbean (van Duyl et al. 2011) 

and soft coral in the South China Sea (Imbs et al. 2009). These inferences can assist in determining 

prey types that utilize these specific benthic resources. Piscivorous reef fish such as coral trout 

(Emslie et al. 2008) largely consume labrid, pomacentrid and caesionid fishes (Frisch et al. 2014, 

Matley et al. 2018), which is reflective of high DHA found for planktivores in the Northwestern 

Hawaiian Islands (NWHI) (Piché et al. 2010) as well as coral trout in our study. Other large reef fish 

such as grass and red throat emperors are often considered piscivorous-invertivores (MacNeil et al. 

2015), and the high proportion of ARA found in these species align with a diet consisting of 

cephalopods and crustaceans (Piché et al. 2010). Conversely, variable results have been reported for 

indicator types of other FAs. For example, 18:1ω9 has been used as an indicator for carnivory 

(Pethybridge et al. 2011) but has also been linked to macroalgae in other instances (Parrish 2013). 

Though more research is needed to identify specific prey resources for predatory fishes on coral reefs, 

high levels of ARA and DHA in teleosts could indicate a stronger link to prey that rely on coral and 

algal habitat types than for sharks. Studies have also found that some reef dwelling sharks, such as 
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grey reef sharks, can bring pelagic inputs (nutrients) to reefs (McCauley et al. 2012; Frisch et al. 2016, 

Williams et al. 2018). MacCauley et al. (2012) determined that reef sharks differ in derived carbon 

resources (pelagic) and habitat use from large teleost fish (reef-based) on Palmyra Atoll. The 

dominant FAs characteristic of pelagic clupeids is 18:1ω9 in sprat and 18:1ω7 in herring (Keinänen et 

al. 2017), aligning with both stomach contents and FA profiles of reef shark species. As 18:1ω9 and 

18:1ω7 were two of the most distinguishing FAs between sharks and teleost fish in our study, it is 

possible that these FAs could be a dietary indicator for clupeids as well as some reef fish and 

cephalopods; which have all been found in previous stomach content analysis of reef sharks (Cortes 

1999, Frisch et al. 2016). Given that these linkages are important to identify in ecological 

interpretation, focus on basal sources will benefit future study. 

 

While research on FA composition on coral reefs in Australia is minimal, results for FA profiles here 

were similar to a study on the Southern GBR (~23°S) where high proportions of PUFA in coral trout 

(mainly DHA) were reported (Belling et al. 1997). Only one other study has reported FA profiles of 

reef sharks (liver samples) in northern Australia (Nichols et al. 2001) where whaler sharks off 

Townsville reefs showed similarly high proportions of 18:1ω9 and 16:0 as observed in the current 

study. A study on coral reefs in the Northwestern Hawaiian Islands (NWHI) found that five FAs 

accounted for ~60% of total FA found in reef fish (Piché et al. 2010). Four of these FAs (16:0, 

18:1ω9, ARA, and DHA) were the strongest indicators for distinction between species in our study. 

The authors found 18:1ω9 (marker for production) to be highest in conspicuous fishes such as 

armourhead (~26%) and squirrelfish, unicornfish, squid, some eels, and shrimp compared to other 

species. 16:0 was highest in herbivores (~30%) while planktivores and cephalopods were high in 

DHA (~26%) and EPA (~10%). Crustaceans and cephalopods also contained the highest proportion of 

ARA (~11%). This information from the NWHI is useful as their results align with stomach content 

studies (Wetherbee et al. 1997; Cortes 1999) that have revealed potential prey items for our study 

species. In the GBR and NWHI reef sharks have consistently been found with a high proportion of 

largely unidentifiable teleost (including remains of cardinalfish, surgeonfish, and parrotfish) with 
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cephalopods, clupeids, eels, and crustaceans also identified (Wetherbee et al. 1997; Cortes 1999, 

McCauley et al. 2012b; Frisch et al. 2016). These results specifically for sharks can help to refine our 

interpretation of distinction from teleost predators. For example, the main dietary components of 

stomach contents of coral trout sampled in Townsville reefs (same to our study) are pomacentrids and 

clupeids (Matley et al. 2018). Though we found limited functional redundancy between reef sharks 

and teleosts in our study, the varying degree of overlap could be due to species in families such as 

Caesionidae of which are known to be a common prey type between reef sharks and coral trout.  

 

In addition to dietary differences, results of this study also indicate potential functional differences 

between mesopredators. Reef sharks are more mobile than red throat and coral trout based on 

previous habitat and movement studies indicating that they have access to a broader range of prey 

types (Currey et al. 2015; Espinoza et al. 2015; Matley et al. 2016). Therefore, sharks likely occupy 

different habitats in addition to dietary distinctions. This is corroborated by a recent study from Meyer 

et al (2019) showing that 16:0, 18:0 and DHA indicate different habitat types which are the main 

components of distinction between sharks and teleost fish in this study. A conceptual representation of 

the reef food web, including habitat and dietary differences between the study species, based on this 

and existing research are displayed in Figure 4.6.



102 
 

 

Figure 4.6: Conceptual food web diagram of the study species combining the results of this study with current research drawn from both biochemical and 
dietary studies in the GBR region (Frisch et al. 2016; Matley et al. 2018, Espinoza et al. 2019) as well as broader understanding of basal sources  and trophic 
levels  from FA (Pethybridge et al. 2018, Meyer et al. 2019) and stable isotope study (Layman et al. 2012; Munroe et al. 2018). Grey lines indicate diet, green 
lines indicate niche similarity between study species, silhouettes indicate potential dietary pathways 14 
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In addition to exploring the trophic ecology of reef mesopredators, this study also examined 

the utility of using different analytical methods and tissues for future work. We determined 

that full FA profiles of muscle tissue (but not blood plasma) are directly comparable between 

traditional full extraction and direct transmethylation methods, although certain FAs 

(including 16:0 and DHA) are statistically variable. This result differed from Parrish et al. 

(2015) who showed that direct transmethylation was a viable method to assess specific 

individual FAs in muscle tissue in addition to FA profiles of two pelagic marine species 

(albacore tuna and white sharks). Differences in lipid class composition between tropical and 

pelagic species (not determined in this study) may be a driving factor for these inter-study 

differences given that the same laboratories and procedures were used. These results indicate 

that species level responses to the direct method compared to the traditional method should 

be performed, particularly for blood plasma. Though there was statistical variation with some 

individual FAs, analysing samples only from the traditional method showed the same FA 

separation by species as the direct method. Hence, there are no differences in the overall 

ecological implications of species distinction seen between analytical methods for muscle 

tissue extraction 

 

The statistical distinctions between FA profiles of muscle and blood plasma for most species 

in this study further demonstrate the need for more research into use of blood plasma in FA 

trophic studies. However, similarity in plasma profiles to muscle between red throat emperor 

and coral trout compared to the distinct plasma profile relative to muscle of grey reef sharks 

is an interesting observation. Matley et al. (2016a) examined differences in blood plasma to 

muscle tissue in stable isotope ratios of coral trout and found that differences in nitrogen 

tissue turnover rates were mainly due to metabolism. Additionally, blood plasma 

discrimination factors were indicators of recent diet versus long-term assimilation in muscle. 
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The difference between muscle and plasma of grey reef sharks could be due to different 

functional roles the tissues play with plasma thought to transport newly obtained FA 

throughout the body. Hence, plasma profiles may be more closely related to FAs from recent 

feeding compared to long-term assimilation in muscle tissue. Furthermore, the opportunistic 

nature of grey reef shark feeding and access to a broader range of diet over teleosts could also 

be a reason plasma is distinct from muscle. For example, if grey reef sharks successfully 

forage an area not often visited, the recent diet may differ from that assimilated. 

Alternatively, considering these results in relation to our study, the differences between FA 

muscle and blood plasma of grey reef sharks could also mean that reef sharks are 

metabolising PUFA at a greater rate than teleosts. This result is similar to findings from 

Meyer et al. (2019) who showed that physiological distinctions among species should be 

accounted for in diet studies when comparing across species. Future studies with 

experimental validation should incorporate blood plasma of multiple species of sharks and 

teleosts to determine whether this was an isolated occurrence based on a small sample size of 

grey reef shark plasma or commonly seen across elasmobranchs.  

 

4.4.1 Conclusions 

 

A broader suite of literature is available for FA trophic biomarkers in coastal and pelagic 

habitats than for tropical coral reefs making our research an important contribution to 

understanding reef-specific FA composition. This study greatly expands our limited 

knowledge of the functional role of coral reef mesopredators and can be used as a baseline for 

future work on the GBR and other tropical reef systems. FA analysis is being increasingly 

applied in ecological studies, and while more validation of methods is needed, our study 

shows that FA profiles can be used to identify distinctions at the mesopredator level on coral 
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reefs. These results can offer a finer degree of dietary detail than other biochemical tracers, 

although ideally FA profiles would be used in combination with other methods such as stable 

isotopes or molecular metabarcoding, to further improve our understanding of the ecology of 

mesopredators. Ecologically, there was a degree of overlap among species compared in this 

study, but the distinct clustering observed indicates varied habitat and dietary use within reef 

systems. This needs to be considered when describing the trophic organization of food webs 

and more research should be done to fully define the roles of mesopredators in coral reef 

systems before inferring ecological importance of species and implications for ecosystem 

stability.  
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Chapter 5: Activity space and residency of a coral reef 
mesopredator reveal influence of prey density on reef-scale 

distribution  
 

5.1 Introduction 

A fundamental aspect of ecology is understanding physical and biological factors that influence 

movement of organisms (Baker 1978; Nathan et al. 2008). These factors are key in understanding 

habitat selection and can be used to improve the expectations and outcomes of how changes in such 

factors may impact spatial distribution of a species (Robinson et al. 2011). Activity space is the spatial 

extent of an animal’s movement in a given time period and is a measurable feature that can be used to 

infer movement behaviour of a species. Ecological factors such as competition, prey availability, and 

predation risk can influence habitat selection (McCauley et al. 2012b). Therefore, small activity space 

must satisfy needs of the individual including resource availability, predator avoidance, and 

reproductive behaviour. Inevitably, if some individuals are using small areas, there is an expectation 

that specific factors influence site-selection and fidelity to that area. Reef-associated sharks on the 

Great Barrier Reef (GBR) have been well-studied in certain locations, showing variation in movement 

capacity and behaviour based on underlying environmental and biological factors. Common areas of 

occurrence and residency variation have been explained for grey reef sharks (Carcharhinus 

amblyrhynchos) through influence of some extrinsic (e.g. hard coral cover, degree of isolation) 

(Heupel et al. 2010; Espinoza et al. 2014) or intrinsic factors (e.g. sex, life stage) (Espinoza et al. 

2015a), affecting abundance and movement behaviour of this species. However, understanding 

movement behaviour and activity space in the context of resource availability is rarely applied to such 

approaches (Speed et al. 2012). This information can be useful to expand predictive capability of 

defining movement and hence spatial ecology, as well as designing appropriate conservation 

approaches.  

For example, grey reef sharks occurring on the GBR have generally been shown to remain highly 

resident to specific reefs across the continental shelf throughout the year (central and Southern GBR) 
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(Heupel and Simpfendorfer 2014b; Espinoza et al. 2015a). However, grey reef sharks are also 

genetically well-mixed on the GBR (Momigliano et al. 2015), meaning that some degree of 

movement outside of resident reefs occurs for reproductive purposes. A single incidence of a grey reef 

shark moving over large-scale distance has been recorded in the GBR (~134km, Coral Sea - Northern 

GBR) (Heupel et al. 2010). This example shows the capability of the species to move relatively large 

distances even though populations mostly remain resident to small-scale features. However, many 

parameters have not been tested, particularly at the reef-scale. While environmental factors can help 

explain larger-scale patterns, ecological level factors such as prey distribution and habitat are likely to 

explain more of the variation in home ranges than other factors. 

 

Productive habitats with high availability of prey resources are likely attractive to marine predators 

(Sih 2005; Dupuch et al. 2009), however, these predator-prey dynamics have rarely been tested 

empirically outside of ecological theory predictions (Sih 2005). Theory such as the ideal free 

distribution (IFD) dictates that predator distribution is proportional to prey availability (Fretwell and 

Lucas 1969). However, this concept is difficult to test as there are additional factors to this theory that 

can influence distribution. For instance, indirect predator avoidance effects and capture probabilities 

due to habitat structure can affect spatial distribution of prey resources. IFD also relies on the concept 

that predators have perfect knowledge of the best resources in their environment (Hakoyama 2003). In 

order to formally test this theory directly, distribution and direct observation of predator-prey 

interactions in situ across a time series would be needed. As coral reef environments contain a 

complex array of habitat features with high species diversity (Bellwood and Wainwright 2002; 

Hughes et al. 2002), this type of ecosystem would be difficult to directly test IFD hypotheses but is 

ideal to apply basic concepts of foraging theory in terms of distribution of predators and prey. For 

example, IFD also states that optimal habitat or high resource areas are distributed in patches where 

predators compete. As patches deplete or become overrun with competition, predators are expected to 

utilize the next best resource. To test these concepts, it is important to first see whether the predator 

can freely move between resources as well as gain an idea of what resources are available within a 
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home range. Understanding these features would assist in examining whether prey availability is a 

primary influencing factor in the distribution of predators and provide insight as to whether predators 

commonly occur in areas that have a high density of resources. 

 

Complex habitats such as coral reefs support a higher abundance of reef fish species; meaning that 

foraging and competition of reef sharks should be considered as factors influencing distribution. Yet, 

correlative study between predator and prey abundance are often mentioned as possible drivers in the 

literature, but rarely tested (Torres et al. 2006). Even though these biological parameters are difficult 

to test in situ for mobile species, strong correlations have been found between seabird predators and 

prey distribution at fine scales in marine environments (Parrish et al. 1998; Heithaus 2005). Some 

studies have aimed to explore whether prey abundance influences shark distribution. Prey abundance 

was found to have little effect on shaping inshore shark distribution within a known nursery (Heupel 

and Hueter 2002), or at small spatial scales for inshore mature sharks (Torres et al. 2006) in bay areas 

of Florida, USA. However, Torres et al. (2006) noted that there were likely regional effects of teleost 

abundance on shark distribution. The strongest predictor of grey reef shark distribution on the GBR to 

date has been found to be complex habitat from hard coral cover (Espinoza et al. 2014), which is also 

known to provide shelter and food for many reef-dwelling fishes (Friedlander and Parrish 1998; 

Wilson et al. 2008). Thus, studies that examine the relationship between the distribution of key groups 

of teleosts that are prey for reef sharks could improve predictions of reef shark distribution and 

movement.  

 

To understand predator distribution in relation to prey, detail is also needed on predator diet. Reef-

associated sharks are often found with a large percentage of unidentifiable teleost fish in their diet in 

addition to molluscs and cephalopods (Wetherbee et al. 1997; Cortes 1999; Frisch et al. 2016). 

However, stable isotope studies have revealed conflicting importance in the level of dietary 

partitioning found between reef sharks (grey reef shark, whitetip reef shark, and blacktip reef shark) 
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and other large bodied teleost predators such as red throat emperor (Lethrinus miniatus) and coral 

trout (Plectropomus leopardus) (Frisch et al. 2016; Roff et al. 2016; Espinoza et al. 2019). Grey reef 

sharks are often classified as generalist and opportunistic feeders, but little is known about how prey 

seeking behaviour affects their movement patterns. Therefore, it is necessary to understand how their 

distribution compares to potential prey abundance to better understand how sharks use their 

environment. 

 

On the GBR, indirect predatory effects from grey reef sharks have been previously shown to affect 

herbivore foraging behaviour (Rizzari et al. 2014), but the literature does not address whether overall 

predator density is affected by prey distribution. Hence, one of the difficult issues with predator-prey 

comparison is the ability to determine prey resource availability and distribution in time and space. 

Here we examined the spatial ecology of grey reef sharks using passive acoustic telemetry at the reef-

scale level on the central Great Barrier Reef and compared their activity space and distribution to prey 

density from surveys conducted during the same time period to show: (1) relationship of predator 

distribution to prey distribution, (2) whether grey reef sharks display common areas of use, and (3) 

whether any patterns in distribution are reproducible across multiple reefs in similar areas. We 

hypothesize that grey reef shark movements are influenced by prey resources and hence specific sites 

with higher prey abundance around the reef are subject to common use by the population. 
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5.2 Methods 

 

5.2.1 Study Design 

Acoustic Telemetry 

An array of 33 VR2W acoustic receivers (Vemco, Bedford, Nova Scotia, Canada) were used to 

observe grey reef shark movements (n=46) across four semi-isolated coral reefs from January 2012 to 

February 2017. Based on the assumption that maximum detection range of each acoustic receiver in 

this area is 250 m (Espinoza unpubl. data), the total possible detection area covered for the four reefs 

was ~6,480 km2 These reefs (Figure 5.1) are of similar latitudinal position (~18°S), located on the 

mid- and outer-shelf regions of the Townsville (TSV) Coastline (Queensland, Australia). These reefs 

are also subject to different fishing management through zoning by the Great Barrier Reef Marine 

Park Authority (GBRMPA). Two reefs (Rib and Chicken) are open to fishing, and two are closed to 

fishing (Helix and Knife). Receivers were deployed at depths between 12 and 20 m, anchored directly 

to hard substrate with a chain and suspended in the water column using a mooring rope (1-1.5 m) 

connected to a buoy. Receivers were placed around the perimeter of each reef, positioned away from 

substrate that could potentially limit detection range. Receivers were downloaded every 6 months and 

mooring materials were replaced if needed.  

 

Sharks were captured using drop lines and rod and reel fishing. Drop lines consisted of 20-40 m 

polypropylene float lines attached to a 5-15 m sinking lead line (based on fishing depth) connected to 

a surface buoy. Tackle consisted of single gangions per drop line with 16/0 or 14/0 Mustad tuna circle 

hooks. Gangions were constructed with nylon cord, one metre wire leader, and stainless-steel snap 

longline clips that connect to spliced eyes from the sinking line. Hooks were baited with thawed fish 

(e.g. squid, pilchard, butterfly bream). Individuals targeted with rod and reel were captured using 

monofilament line attached to leader line or wire trace. Hooks used were 7/0 and 8/0 octopus or circle 

hooks baited with smaller offcuts from drop line fishing. Upon capture, individuals were immediately 



111 
 

placed in tonic immobility, measured (pre-caudal length; PCL, fork length; FL, and stretch total 

length; STL), sexed, internally implanted with a coded Vemco V16P-4H (69 kHz) acoustic transmitter 

equipped with depth-sensing, and externally tagged with a unique rototag in the dorsal fin. Individual 

condition was noted as well as sexual maturity of males (calcified claspers). Acoustic transmitters 

were surgically placed into the peritoneal cavity through a small incision (2 cm) along the ventral 

midline and closed with dissolvable surgical sutures. Animal capture and surgical methods were 

performed by trained individuals under the James Cook University Animal Ethics permit (A1933). 

Total processing time of each individual in tonic immobility was a maximum of 10 minutes. 

Transmitters were programmed to stop after 835 days to eliminate the possibilities of error close to 

the end of battery life.  

 

Figure 5.1: (a) Map of Queensland, Australia showing the location of fish survey locations and 
acoustic receiver array in (b) Townsville mid- and outer-shelf reefs (c) Rib Reef, (d) Helix Reef, (e) 
Chicken Reef, (f) Knife Reef 15 
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Underwater Surveys 

Fish surveys were conducted through simultaneous underwater surveys of belt transects by a pair of 

divers over two seasons. One diver conducted a visual census of fish (UVC) and the other performed 

a diver-operated stereo video (DOV) survey. The camera system of the DOV consists of two GoPro® 

Hero 4 Silver cameras mounted inside waterproof underwater housings at fixed angles to an 

aluminium bar with handles (manufacturer SeaGIS), allowing accurate measurements of fish lengths 

that were used to estimate biomass. The diver conducting UVC applied the fish counting Standard 

Operating Procedures of the Australian Institute of Marine Science Long Term Monitoring Program 

(AIMS LTMP). The AIMS LTMP counts 216 species of diurnal fish that associate with the benthos 

(Halford and Thompson 1994; Bierwagen et al. 2018). The DOV video acts as a video record of the 

fish counted for future reference for a UVC counter. Additionally, given SOP limitations on actively 

counting of schooling and other fishes that aggregate in the water column, DOV surveys for this study 

were used to include these types of water column fishes as they are not normally included in the 

standard UVC. 

 

UVC and DOV surveys were conducted at six sites around each of four focal reefs (Rib, Helix, Knife, 

Chicken Reefs; Figure 5.1). At each site, three (50 m) belt transects were deployed, totalling 18 

surveys per reef. Of the six sites per reef, two were at AIMS LTMP locations for the purposes of 

comparison and standardisation of fish counts. For each survey, the fish counter laid the belt transect 

while counting large fish 2.5 m either side of the transect. The second diver swam beside and to the 

left of the UVC diver angling the DOV horizontally across the transect. On return, the UVC diver 

counted small fish 0.5 m either side of the transect and the second diver followed angling the DOV 

downward to record the benthos. Two separate survey periods were conducted at the same sites in 

January and July 2016.  
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5.2.2 Video Processing 

 

Before each sampling period, the DOV system was calibrated using a calibration cube, measurement 

bar, camera parameters, and CAL software package (SeaGIS) that calibrates DOV measurement 

lengths to high accuracy (SE ± 5mm). Calibrated files were then loaded into Event Measure (stereo) 

(hereafter EM) software (SeaGIS) allowing the user to count abundance and complete length 

measurements. A user-defined species code file allowed for appropriate logs and identification of 

individuals on the transect. To stay consistent with UVC standards, identification and measurement 

limits were defined to 2.5 m either side of the transect within the software. Videos were synchronised 

in EM and fish were identified to the highest taxonomic level possible. While the UVC fish counter 

limited surveys to the LTMP SOP, the DOV video reviewer counted and measured every individual 

within the 5 m transect area. Individuals swimming into the frame behind the cameras were not 

counted to reduce double counting. For schooling species, up to 40 individuals were measured in 

single or multiple frames that contained the entire school, and each individual in the frame were 

identified and marked for appropriate counts. 
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5.2.3 Statistical analysis 

 

Residency Patterns and Shark Movement 

Residency and roaming indices were calculated for all individuals at each reef. A shark was 

considered present in an area if greater than five detections were recorded in a single day. Residency 

index was calculated by dividing the number of days detected by the total monitoring days of each 

individual. Roaming index was calculated by dividing the number of receivers an individual was 

detected on by the total number of receivers in the array (Espinoza et al. 2015a). Residency index was 

calculated for two levels at the reef-scale (reef residency); by individual and averaged by sex for each 

reef. Per Espinoza et al., (2015), residency and roaming indices (± SD, standard deviation) range from 

0 to 1, where high residency and high roaming is indicated by values closest to 1. Maximum number 

of days detected were also calculated by determining the highest number of consecutive days recorded 

for each individual and average by sex per reef for the monitoring period (± SD). Analysis of variance 

(ANOVA) in R software version 3.5.2 (R Core Team 2018) was used to determine differences in 

residency by sex per reef.  

 

A previous study conducted by Espinoza et al. (2015) overlapped with the acoustic array and time 

period used for this study, so certain temporal environmental factors such as water temperature, wind 

speed and tidal height were removed from final models as no significant effects were found in the 

previous study. This allowed us to limit explanatory variables, reducing the degree of uncertainty in 

our model structure. Generalised linear mixed effect models (GLMER) using “lme4” (Bates et al. 

2013) were used to determine influencing factors in weekly and monthly reef residency of grey reef 

sharks. Capture depth and biological factors (sex, size) were tested against weekly and monthly 

residency patterns of individuals tracked over a six-year period (2012-2017). Current strength was 

also considered but removed as preliminary analysis showed no direct association with movement. 

Days monitored were determined by the maximum life of the transmitter (835 days) or number of 

days possible if the array was removed before the life of the transmitter ended. Models were fitted 
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with a binomial distribution due to the proportional nature of indices in this study. In order to account 

for variation in sample size among reefs and years, a random term of (Year | Reef / Tag ID) was 

included in each model. Models were tested against a null model including the same random term.  

 

Activity space was determined using centres of activity (COA) defined by the mean position of 

latitude and longitude binned into hourly detections per receiver (Heupel and Simpfendorfer 2014a; 

Espinoza et al. 2015a; Udyawer et al. 2018). Reef-level, Brownian Bridge 2-dimensional kernel 

utilization distributions (KUD, 50 and 95%) and inter-reef trajectories were calculated from Universal 

Transverse Mercator projection (UTM) converted COAs (m) using “adehabitatHR” and 

“adehabitatLT” packages in R (Calenge 2006). Data filtering and date/time conversions were 

completed with “TidyR” (Wickham 2017) and “lubridate” (Grolemund and Wickham 2011) packages. 

Mapping was performed with both “ggmap” using Google® satellite imagery (Kahle et al. 2019) with 

“ggplot2” (Wickham 2016) for graphical KUD output (Figures S5-a - S5-d) and ArcMap 10.6.1 

(ESRI) for additional graphics. Percent KUD overlap of individuals per reef was also calculated in 

ArcMap 10.6.1.  

 

Site specific use was examined using a Chi-Squared test of independence to test the null assumption 

that there is no difference in distribution of sharks by receiver location. Additionally, mean proportion 

of total shark detections per receiver at each reef were calculated. To further investigate influence of 

specific sites on space use, weekly residencies by receiver site per reef were modelled with binomial 

GLMER using the explanatory variables (capture depth, size, sex) and random term (Year | Reef / Tag 

ID) as with previous models to account for variability in sample size among reefs and years.  
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Fish abundance and biomass 

Fish abundance was determined by collating data from the UVC and DOV surveys. The UVC surveys 

were used as the main dataset and the DOV supplemented this dataset by adding species (such as 

water column and schooling fishes) that were not counted on the AIMS LTMP UVC standard surveys 

to give a much larger basis for determining fish abundance and diversity at study locations. To 

determine differences in abundance between survey periods, a Chi-Squared test of independence was 

performed against the null assumption that there is no difference in fish abundance and community 

composition between survey times. A Chi-Squared test was also used to determine fish differences 

(by family) between 2016 data from the AIMS LTMP surveys and fish surveys from this study for 

that year for standardisation purposes. To determine the most influential species that contribute to 

dissimilarity among sites and reefs, constrained distance-based redundancy analysis (db-RDA) based 

on a Bray-Curtis dissimilarity was performed using the “vegan” package in R (Oksanen et al. 2016). 

Fish abundance was fourth root transformed to account for naturally abundant species. Fish 

communities were modelled against explanatory variables such as survey site, reef, zone, and 

sampling period using a permutational analysis of variance (PERMANOVA).  

 

Fish biomass was calculated using only the DOV data from the length-weight relationship equation 

𝑊𝑊 = 𝑎𝑎𝐿𝐿𝑏𝑏 (Froese and Binohlan 2000), where W=weight (g), L = length (cm), and ‘a’ and ‘b’ are 

coefficients of standardized regression equations taken from Kulbicki et al. (2005) representing the 

intercept and the slope respectively for each species surveyed. The UVC data was not used for 

biomass as lengths were not estimated. Length calculations were taken from average lengths 

measured per species from the EM software. Biomass was determined by the summed weights of each 

number of individuals (N) per species in each survey site (6 per reef) and averaged by fish family and 

converted to kg/1000 m2.  
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To determine inter-reef variability, generalized linear models were used for overall abundance and 

biomass between sites and reefs. Fish family abundance and biomass were compared by reef and 

survey site. Tukey’s post-hoc pairwise comparisons with survey site conditional on reef were 

performed using “lsmeans” in R (Lenth and Lenth 2018).  

 

Predator distribution and prey availability  

Due to location and limited surveys of prey availability, survey sites were treated as patches and 

paired to the closest receiver. By using similar metrics of receiver detections of sharks as a proxy to 

compare to fish abundance, relationships between prey density and predator distribution were 

calculated. These were fitted with a GLMER by maximum likelihood using a Poisson distribution to 

compare detection frequency with overall fish abundance, fish family, reef, and distance from tag 

location. Receiver location and tag ID were included as random terms conditional on the intercept to 

account for variation in number of receivers and individuals per reef. Overdispersion was calculated 

by dividing the residual sum of squares by the number of observations subtracted from fixed effects 

and random effects. Autocorrelation was tested for using the auto-correlation function ‘acf’ in R. To 

determine the effect of significance of fish families on individual receiver sites per reef, a Poisson 

model of total receiver detections per shark were fitted with an interaction between each fish family 

and receiver serial number using reef and tag ID as random terms. 
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Table 5.1 Residency of Carcharhinus amblyrhynchos monitored in the central Great Barrier Reef 9 

Tag Sex FL Tagging 
Date 

Tagging 
Reef 

Days 
Monitored 

Days 
Detected 

Max d 
detected 

Reefs 
Detected 

Roaming 
Index 

Residency 
Index 

GR1 M 80 15/01/2012 Helix 835 670 441 1 0.89 0.80 
GR2 M 69 15/01/2012 Helix 835 19 18 1 0.44 0.02 
GR3 F 72.7 24/04/2012 Helix 835 829 742 1 0.89 0.99 
GR4 M 84 24/04/2012 Helix 835 538 21 2 0.11 0.64 
GR5 M 66.5 24/04/2012 Helix 835 696 382 1 0.89 0.83 
GR6 F 139 12/02/2013 Helix 835 604 223 1 1.00 0.72 
GR7 M 118 14/02/2013 Rib 835 590 69 1 0.75 0.71 
GR8 M 107 15/02/2013 Rib 835 785 262 1 0.75 0.94 
GR9 M 59 20/02/2013 Helix 835 162 161 1 0.56 0.19 
GR10 M 51.9 20/02/2013 Helix             
GR11 F 62.8 21/02/2013 Helix 835 241 141 1 0.89 0.29 
GR12 F 146 17/06/2015 Helix             
GR13 F 132 17/06/2015 Helix 595 224 138 1 0.89 0.38 
GR14 F 59 18/06/2015 Helix 594 177 118 2 0.11 0.30 
GR15 M 55.5 18/06/2015 Helix 594 215 93 1 0.78 0.36 
GR16 F 135 19/06/2015 Knife             
GR17 F 88 19/06/2015 Knife 593 577 123 1 0.40 0.97 
GR18 F 71.5 19/06/2015 Knife 593 182 132 1 0.80 0.31 
GR19 F 67 19/06/2015 Knife            
GR20 F 61 19/06/2015 Knife 593 110 57 1 0.90 0.19 
GR21 F 59 19/06/2015 Knife 593 286 16 1 0.90 0.48 
GR22 F 0 19/06/2015 Knife 593 196 28 1 1.00 0.33 
GR23 M 89 19/06/2015 Knife 593 82 4 1 0.20 0.14 
GR24 M 65 19/06/2015 Knife 593 587 308 1 1.00 0.99 
GR25 M 64 19/06/2015 Knife 593 148 52 1 0.90 0.25 
GR26 F 135 20/06/2015 Chicken 592 521 92 1 0.80 0.88 
GR27 F 134 20/06/2015 Chicken 592 548 115 1 0.70 0.93 
GR28 F 123 20/06/2015 Chicken 592 279 91 2 0.20 0.47 
GR29 F 122 20/06/2015 Chicken 592 527 135 1 0.90 0.89 
GR30 F 122 20/06/2015 Chicken 592 437 109 2 0.60 0.74 
GR31 F 60 20/06/2015 Chicken 592 66 21 2 0.20 0.11 
GR32 F 10 20/06/2015 Chicken 592 205 34 1 0.90 0.35 
GR33 M 102 20/06/2015 Chicken 592 424 67 1 1.00 0.72 
GR34 M 58 20/06/2015 Chicken 592 285 155 2 0.40 0.48 
GR35 M 113 21/06/2015 Rib 591 138 12 1 1.00 0.23 
GR36   120 22/06/2015 Rib 590 475 69 1 1.00 0.81 
GR37 M 135 17/05/2016 Chicken 260 261 260 1 0.90 1.00 
GR38 F 123 18/05/2016 Chicken             
GR39 F 90 19/05/2016 Knife 258 157 13 1 0.40 0.61 
GR40 F 82 19/05/2016 Knife 258 6 1 1 0.20 0.02 
GR41 M 88 19/05/2016 Knife 258 61 5 1 0.50 0.24 
GR42 M 73 19/05/2016 Knife 258 29 3 1 0.20 0.11 
GR43 M 66.5 19/05/2016 Knife 258 206 25 1 0.30 0.80 
GR44 F 61 20/05/2016 Knife 257 82 6 1 0.30 0.32 
GR45 F 61.5 17/06/2015 Helix 595 307 241 1 1 0.52 
GR46 M 66 24/04/2012 Helix       

 

Sex: M males, F females. FL: Fork Length. Max d: maximum number consecutive days detected in monitoring period.  
Residency Index: the number of days a shark was detected divided by the number of days monitored in the reef tagging array 
Roaming Index: the number of receivers detected per reef divided by the total number of reef receivers 
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5.3 Results 

5.3.1 Shark Movement 

 

A total of 46 grey reef sharks (26 female, 20 male) were implanted with acoustic transmitters. Size of 

individuals (FL) ranged from 52- to 146 cm, with no significant differences found between FL of 

males (80.5 ± 23.5 cm) and females (88.7 ± 40.4 cm; t test = 1.68, df = 40, p > 0.05). One shark was 

never detected (GR19) and five individuals were detected less than five days (GR10, G12, GR16, 

GR38, GR46). The remaining 40 individuals represented a variable residency index range from 0.02 

to 1.00 within the tagging array (Table 5.1) with high mean residency to single reefs (0.48 ± 0.11 SE). 

Eighteen individuals were detected on greater than 50 percent of days monitored. Chicken and Rib 

reefs (open fishing, 0.62 ± 0.32 – 0.81) displayed higher mean residency of individuals than Knife and 

Helix (closed fishing, 0.4 ± 0.29 – 0.54 ± 0.31) (Table 5.2). Additionally, six individuals were 

recorded moving to other reefs in the study area, with three never returned to their tagging reef 

(Figure 5.2). Individuals that did not return were recorded at their original reef up to 20 days prior to 

moving away.  

 

Some sharks were found to use the whole reef (Table 5.1) with mean roaming activity >0.5 for all 

reefs (Table 5.2), which is comparable to extent of activity space (95% KUD) range of all individuals 

(0.27 - 7.53 km2). However, core activity space (50% KUD) of sharks stayed within a significantly 

smaller activity area (0.01 – 0.91 km2; t test=1.67, df=74, p<0.005) (Figures S5-a to S5-d). There 

were no significant differences in core or extent of activity space between FL and sex of grey reef 

sharks. However, there were reef-related differences in core and extent of activity space. Grey reef 

sharks exhibited lower core activity at Chicken Reef compared to others (glm; SE=0.64, t=3.5, 

p<0.005). Additionally, Rib Reef had the highest extent of activity space over other reefs (glm; 

SE=0.53, t=2.66, p<0.05). Despite high roaming activity at each reef, grey reef sharks occupied 

separate core activity space (50% KUD) with minimal mean overlap (0.05 - 0.14 km2) indicating 

partitioning at each reef by tagged individuals (Table 5.3, Figures S5-a to S5-d). The proportion of 
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overlap to overall mean core activity space was between 24 - 60 % showing reef-level differences in 

shared activity space (Table 5.3). However, the mean overlap of extent (95% KUD) of activity space 

was significantly higher (0.45 - 1.93 km2; t test=1.65, df=233, p<0.005) revealing areas of common 

use around each reef. Percent overlap of individuals in the mean extent of activity space across reefs 

ranged from 37 – 64 %. Overall, the lowest percent overlap of individual core and extent of activity 

space was at Knife Reef.  

 

Figure 5.2: Movement trajectories from the 6 tagged individuals that visited more than one reef in the 
acoustic receiver monitoring array (Townsville Reefs, central GBR). Stars are tagging locations 
coloured by individual. *Individuals GR30, GR14, and GR4 did not return to their tagging reef once 
foraying to the other reef16 
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Table 5.2: Reef-level activity by sex for residency and roaming 10 

N (46) Reef Sex FL (cm) Days Detected Max d. detected Roaming Residency 

8 
Chicken 

F 100.86 ± 
47.56 369 ± 187.77 85.29 ± 42.34 0.61 ± 0.3 0.62 ± 0.32 

3 M 98.33 ± 38.63 323.33 ± 88 160.67 ± 96.62 0.77 ± 0.32 0.73 ± 0.26 

7 
Helix 

F 93.1 ± 39.11 415 ± 287.45 272.4 ± 265.58 0.76 ± 0.36 0.54 ± 0.31 

8 M 69 ± 11.26 383.33 ± 287.72 186 ± 183.39 0.61 ± 0.31 0.47 ± 0.33 

10 
Knife  

F 64.06 ± 28.71 199.5 ± 173.77 47 ± 52.61 0.61 ± 0.32 0.4 ± 0.29 

6 M 74.25 ± 11.48 185.5 ± 206.75 66.17 ± 119.98 0.52 ± 0.35 0.42 ± 0.38 

1 
Rib 

F 120 475 69 1 0.81 

3 M 112.67 ± 5.51 504.33 ± 331.9 114.33 ± 131.02 0.83 ± 0.14 0.63 ± 0.36 

N: number of individuals. Sex: M males, F females. FL: Mean Fork Length. Max d: mean maximum number consecutive days detected in monitoring period.  
Residency Index: the mean number of days a shark was detected divided by the number of days monitored in the tagging array 
Roaming Index: the mean number of receivers detected per reef divided by the total number of reef receivers  
 

Table 5.3: Mean percent Brownian Bridge KUD area and Overlap (±SD) for core and extent of activity space of grey reef shark individuals per reef 11 

  KUD Area (km2) KUD Overlap (km2) Proportion of Total KUD 
Reef 50% (Core) 95% (Extent) N 50% (Core) 95% (Extent) 50% (Core) 95% (Extent) 

Chicken 0.09 ± 0.04 1.09 ± 0.58 34 0.05 ± 0.03 0.45 ± 0.29 0.60 0.41 
Helix 0.17 ± 0.10 1.07 ± 0.32 66 0.06 ± 0.04 0.68 ± 0.24 0.37 0.64 
Knife 0.24 ± 0.22 1.96 ± 1.72 28 0.06 ± 0.04 0.73 ± 0.52 0.24 0.37 
Rib 0.33 ± 0.39 4.53 ± 2.66 6 0.14 ± 0.05 1.93 ± 1.36 0.41 0.43 
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There were no significant effects in overall weekly and monthly reef residency by size and sex of 

individual (month; p>0.05, AIC =417.4 week; p>0.05, AIC=1507, Supp Table 5.1). While the 

modelling approach to examine reef-level biological factors overall revealed 21 models higher than 

the null model for month and 8 models for week, the best performing model only included week and 

month as meaningful factors (Table S5-a). However, the second-best performing model for each 

included size (FL). Contrary to reef residency of sharks over the entire study period, significant 

effects of size and sex were found for weekly residency of individuals by receiver site (Table S5-b, 

Figures S5-e to S5-h), indicating potential fine-scale interactions linked to biological factors. For 

example, there were higher proportions of females than males during certain weeks of the year at 

specific receiver locations at each reef (Figures S5-e to S5-h). Additionally, all models performed 

better than the null model for weekly residency to specific sites.  

 

In addition to reef-level patterns, site use at the receiver level was also compared. The mean 

proportion of detections of individuals per receiver site for each reef ranged from 0.0-0.69 (± 0.17 

SD), where the proportion of detections was significantly different from the expected null uniform 

distribution surrounding each reef (χ2=60 , p > 0.05, df = 54). There were significant differences in 

mean intra-reef proportion of detections of all individuals present between receiver sites, indicating 

that certain locations were subject to higher site use than others (Figure 5.3). However, residency and 

roaming indices (Figure 5.4) show that there was a large degree of variation in site use among 

individuals across all reefs. For example, there was a significantly larger mean proportion of total 

shark detections at the NW aspect of Rib Reef (>50%), but at Knife Reef the largest amount of mean 

total detections (>50%) occurred at the Western aspect (SE=0.01, z=3.32, p<0.005, Figure 5.3). These 

results in proportion of detections are consistent with KUD activity space (Figures S5-a to S5-d). 
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Figure 5.3: Fish abundance by survey site compared to shark receiver use (mean proportion of total detections) around reefs (a) Rib, (b) Helix, (c) Knife, (d) Chicken. Fish 
are scaled by fourth-root transformation. * indicates significant difference in receiver detection frequency of tagged individuals for each reef (Poisson GLMER: Receiver 
Detections ~ Family*Abundance + Tag Distance + Receiver + (1 | Tag ID / Reef). n=number of individuals detected per site. Ring plots surrounding survey sites indicate 
teleost family abundance where size of the ring is proportional to abundance. Size of shark is proportional to detection frequency 17 
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5.3.2 Fish Surveys 

The most abundant fish species were consistent through time across the survey area (Figure 5.5) and 

no significant differences in community composition or species abundance were found between the 

two survey periods. Based on this finding, abundance and biomass were averaged over the two survey 

periods. Additionally, there was no difference in fish abundance between the AIMS LTMP survey 

data for 2016 and the surveys for this study (X2=63, df=56, p>0.05) indicating fish abundance was 

consistent throughout a single year. Caesionids and pomacentrids were the main contributors to 

dissimilarity among sites and reefs with higher abundance on mid-shelf reefs compared to outer-shelf 

reefs (Figure 5.5). When comparing survey data between reefs, differences were apparent in 

community structure (df=3, F=2.46, p=0.05) and fish family biomass (df=58, F=2.91, p<0.05), 

showing reef-scale variability in assemblages. Biomass ranged from ~905-1775 kg/km2 per reef. 

Families Acanthuridae, Caesionidae, and Scaridae accounted for the highest biomass of fishes at each 

reef (Figure S5-i). When comparing sites across reefs, there were differences in total biomass and fish 

families (df=5, F=2.5, p<0.005), meaning that distribution of prey was specific to each reef. 

Additionally, within each reef, significant differences were found between sites in both abundance 

and biomass by fish family meaning that intra-reef community composition and biomass was not 

uniformly distributed. For example, the location of highest fish abundance for reefs were located at 

sites 2 (NE aspect, Rib Reef), 6 (W aspect, Helix Reef), 4 (SE aspect, Chicken Reef), and 5 (SW 

aspect, Knife Reef) (Figure 5.3). Site-specific differences in biomass were different to sites of highest 

abundance (Figure 6, Tables S5-c & S5-d) 



125 
 

 

Figure 5.4: Residency-roaming indices for grey reef sharks per reef in TSV. Each symbol represents a 
value for an individual shark. Residency Index=number days detected/number of days monitored, 
Roaming Index=number of receivers detected/total number of receivers in reef array 18 

 

5.3.3 Predator distribution and prey availability  

 

Mixed effect models revealed significant interactions between fish family and receiver detections of 

grey reef sharks in the study area. The strongest positive relationship between shark presence and fish 

family was with caesionids (glmer; z=2.5, p<0.05). Additionally, there were weak positive interactions 

with high serranid abundance and shark presence (z=1.9, p=0.06). These relationships were neither 

autocorrelated nor over dispersed. Significant differences in abundance and biomass of these two 

families between sites were present for each reef in the study area. There were no significant differences 

found for overall fish abundance and grey reef shark presence (z=0.02, p=0.98) or other highly 

abundant fish families such as pomacentrids. Significant negative effects of distance from tagging 

location and number of detections (z value=-2.13, p=0.03) were also found which show that grey reef 
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sharks captured are often within their core areas of activity (Supp Figs 1-4). This result implies that bait 

is most effective for sharks closest to the fishing area and suggests that sharks are spending time 

foraging in their core areas, linking shark presence to prey availability.   

 

Figure 5.5: Constrained ordination (Capscale dbRDA) of fish survey sites showing abundance 
dissimilarities among reefs and the two largest fish families contributing to differences. 
PERMANOVA(capscale : Fish Community Matrix ~ Reef + Site+ Sample Period + Reef : Site) 19 
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Figure 5.6: Fish biomass-Site/Reef (kg/1000 m2) Pareto barplot by fish family with cumulative biomass curve 20 
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5.4 Discussion 

 

Overall, this study examined predator and prey distribution to explore potential interactions and drivers of 

movement and habitat use by grey reef sharks at four similar reefs on the GBR. The variability in site 

distribution and abundance found in this study for both prey species and grey reef sharks indicate that 

neither predator nor prey are uniformly distributed, yet there are no obvious patterns in the variation 

among reefs. It should be noted that quantifying this variation is limited due to the small sample size (n=4 

reefs). There was no evidence that distribution of predators and prey were influenced by 

environmental/oceanographic features that affect all reefs in the study area. Prey distribution data also 

suggested that areas of high productivity are not consistent between reefs. Hence, site-specific variation 

should be considered in future surveys, particularly when a general assumption exists that reefs in 

regional areas and of similar sizes are the same in the terms of ability to support prey and predator 

populations. While there were differences at each reef in individual shark movement and site-use, there 

were also areas grey reef sharks used more consistently than the rest of the reef. These areas were 

significantly related to some fish families such as schooling species (caesionids) and reef-dwellers 

(serranids). However, future study will be needed to confirm these relationships.  

 

From this study we show that resident grey reef sharks can use the whole reef outlined by roaming 

activity, yet some individuals remain in smaller areas identifying potential costs of moving to other 

patches. Additionally, the level of intra-species partitioning found in this study supports that a population 

is well distributed around the reef in relation to general resource availability. This study also highlights 

some potential strategy as shark distribution was related to known abundant prey such as caesionids. This 

result differs from Heupel and Heuter (2002) who determined prey abundance was not an influential 

factor in juvenile blacktip reef shark (Carcharhinus limbatus) distribution. Future study should include 

more comparisons between predator and prey abundance as well as behavioural interactions between the 
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two as there are not many that currently do so (Heithaus et al. 2009; Rizzari et al. 2014). More research 

into this area could confirm potential hunting strategy and knowledge of prey distribution which can 

support or differ from IFD. The concept behind spatial dynamics of populations that meet IFD is that 

individuals are capable of selecting the best habitat suitable to occupy until some level of carrying 

capacity of the population is achieved (MacCall 1990; Sullivan et al. 2006). Other individuals in the 

population will then subsequently choose lower quality habitats to occupy. While the data in this study 

did not directly test IFD, we can use basic concepts to explore the relationships between predators and 

prey as well as competition. This study revealed reef patches with varying abundance and biomass, 

indicative of habitat-rich and poor areas. Grey reef shark distribution reflected this in some part by the 

differences in proportion of the population at each patch.  

 

Reef-level data revealed that sharks were highly resident to a single reef, with limited movement outside 

array areas. For example,  mean residency from each reef showed that most sharks spent at least 50% of 

their time at a single reef. This finding is lower than the overlapping study by Espinoza et al (2015b) that 

found grey reef sharks spent approximately ~80% of their time within a tagging array. This is possibly 

due to differences in specific reefs included in the author’s study and ours. Converse to Espinoza et al.’s 

findings, however, less inter-reef movements were documented during this study showing high 

attachment to individual reefs. It is possible that underlying environmental factors were influencing reef 

residency for our study, but no common inter-reef theme emerged. Future research should look into 

untested abiotic factors (Schlaff et al. 2014) as well as wave energy and currents to explore whether 

difference in these dynamics at the fine-scale level alter shark distribution and movement. Fish surveys 

taken during crepuscular or night hours at different depths would also benefit future research to 

complement patterns seen in passive telemetry studies (Vianna et al. 2013) compared to foraging and 

additional behavioural modes.  
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The finding of individual variability in distribution of reef shark populations is consistent with many other 

studies of coral reef predators (Speed et al. 2011; Espinoza et al. 2015a; Espinoza et al. 2015b; McCauley 

et al. 2016; Shipley et al. 2018), yet our study builds on these findings to also show individual variability 

in site-specific distribution at the reef-level that was not consistent across all reefs. Although reef sharks 

were found to be capable of using entire reefs, as seen by the extent of activity space and roaming, their 

core areas of use were small, and their location differed among reefs. For example, at Rib Reef the area 

with the highest proportion of shark use was the NE aspect of the reef. Yet, for Knife Reef it was the 

Western aspect. This suggests there are unexplained reef scale factors that should be investigated to 

explain the variability found in reef distribution. Additionally, mean size of activity space varied per reef. 

For instance, the mean extent of activity space ranged from 1.0 (Helix Reef) to 4.5 km2 (Rib Reef). These 

differences did not directly correlate with reef size and as such suggest there are specific areas at each 

individual reef that are subject to higher areas of use by grey reef sharks which relate to higher prey 

abundance. This result shows that future directed study may provide evidence to show grey reef sharks 

are conforming to IFD. 

 

The differences found between proportion of area used between sites within a reef was linked to both sex 

and size of individuals showing the benefit of investigating at fine-scales across multiple locations to 

better interpret movement of reef shark populations. While many studies indicate inter-reef and regional 

sex and size-based differences in spatial distribution (Klimley 1987; Sims 2005; Papastamatiou et al. 

2010; Bansemer and Bennett 2011), small-scale presence and absence of these biological factors could 

potentially indicate sex-specific behaviours. Individual behaviour of reef sharks was also apparent based 

on degree of overlap in core areas of activity, showing partitioning of core home ranges. However, the 

overlap found in extent of activity space (95% KUD) could indicate areas where individuals commonly 

forage outside their core areas of activity. Future research could determine level of activity and foraging 

behaviour within and outside of core areas through the addition of tools such as accelerometers in 
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telemetry study (e.g. Meese and Lowe 2020). Though there is limited research into spatial differences 

between shark species (Speed et al. 2011), inter-specific partitioning of reef sharks was identified in the 

Southern GBR (Heupel et al. 2018). Additionally, Heupel, Lédée et al. (2018) revealed grey reef sharks 

had larger space use and less clustering than other species such as blacktip reef sharks (Carcharhinus 

melanopterus). This finding, in conjunction with distinct separation in depth use indicated inter-species 

partitioning. The authors concluded that competition for prey was likely a factor in separation. The results 

of our study showed that individual grey reef sharks are using small ecological spaces to satisfy their 

biological needs which may reflect niche separation among individuals along the lines of that described 

between species by Heupel, Lédée et al. (2018). However, further direct testing of this hypothesis is 

required. 

 

The reef-level variability of fish assemblages found in our study is consistent with the AIMS LTMP 

surveys from this area and shows reef-level differences in community structure. Community structure was 

consistent from reef to reef outside of highly abundant species (Bierwagen et al. 2018). This variation 

between reefs was largely driven by caesionids and pomacentrids showing that the most abundant 

schooling and reef-dwelling species can drive changes in community structure. Acanthurids, caesionids, 

and scarids were the largest contributors to biomass and also well-distributed around each reef. This 

showed that there is potential prey availability for predators surrounding the entire reef. Each of these 

families have been found to be in the diet of grey reef sharks (Frisch et al. 2016), so there is potential that 

their variability in surrounding reef environments may shape grey reef shark presence. Both abundance 

and biomass of fish families occurring in the study area were found to vary from site to site surrounding 

each reef, furthering the potential of prey to shape shark distribution. There has long been an assumption 

that areas of high productivity are found on the most exposed side of GBR patch reefs due to wave 

exposure maintaining diversity (Huston 1985; Hamner et al. 1988) and influencing structure providing 

complex habitat (Duce et al. 2014). Considering long-term research on the GBR by the AIMS LTMP uses 
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only the NE flank in their surveys (believed to be the most productive), our findings contradict this 

assumption. However, intra-reef site variation was not consistent among reefs, meaning areas of 

productivity potentially change between reefs, revealing no evidence of regional patterns in distribution of 

prey. These findings also indicate that distribution and abundance of fish communities are reef-specific 

and should be considered in future surveys. Caesionids were found in high numbers at different 

directional aspects of reefs in our study area, thus including them in future surveys could help to indicate 

most productive areas around the reef perimeter. These fishes often occur in areas of high pelagic inflow 

(Hamner et al. 1988; Munday et al. 2007) and could potentially be used as an indicator species of areas 

outside windward locations that receive pelagic input. 

 

The findings from our study support the hypothesis that predator movement is directly related to prey 

abundance and distribution. For example, a direct association between high numbers of caesioinids and 

shark presence was found. Additional weak effects were found for serranids suggesting their distribution 

is also important to shark occurrence and movements. These findings were interesting because there was 

no direct association with shark distribution and overall fish abundance or biomass, meaning that finer 

detail is necessary to tease out important relationships with potential prey. Additionally, as caesionids and 

serranids have been shown to be prey of grey reef sharks through stomach contents and direct 

observation, (Cortés 1999; Frisch et al. 2016; Mourier et al. 2016), the correlation in distribution revealed 

in our study provide a basis for directly testing IFD on the GBR. However, due to the high diversity of 

potential prey, these associations likely do not paint the entire picture of distribution and movement of 

sharks resident to these areas. Additionally, a potential caveat resulting from this portion of the study is 

that the most optimal model selected through AIC comparing total detections to fish abundance is a 

cruder metric than other models tested for predator-prey influence. This metric may be more vulnerable to 

effects of error resulting in false detections, but are still considered rare with the equipment used 

(Simpfendorfer et al. 2015). Total detections also limit interpretation of high use of one individual over 
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another, but results compare to other metrics such as total proportion of detections in this sudy (Figure 

5.3). 

Presence of grey reef sharks upon capture within or near their core areas of activity could mean that food 

resources are sufficient within their activity space, where an increase or patches of higher prey density 

outside an individual’s normal foraging area do not have a significant impact on movement. However, 

there is limited research in this area (Sims 2003; Heupel et al. 2019). Alternatively, even though the 

biomass of fishes is well-distributed surrounding the reefs in this study, the biomass reported in this study 

falls far below pristine biomass (~1000-1400 kg/ha) considered to be benchmarks for reef carrying 

capacity (MacNeil et al. 2015; McClanahan 2019). It is possible that smaller activity space in this area 

could be related to limiting energy expenditure based on food availability (McNab 1963). Though the 

residency of individuals is high for a semi-open system, it is also possible that sharks forage away from 

detection areas to search for food. The larger extent of activity space of individuals supports this 

possibility. Considering that recent bioenergetics models suggests that reef sharks need approximately 

~1.5% body weight totalling approximately 110-180 kg fish per year per shark (Mourier et al. 2016), 

larger activity space would fit that model particularly when considering that total biomass reported for 

this study was less than 1000 kg per 1000 m2 at each site in the study area. Another possibility is that 

competition could limit the amount of opportunistic foraging, which would be consistent with the 

observation of small amounts of overlap in core areas of activity. However, evidence showing a non-

uniform distribution around each reef and larger overlap in extent of activity space makes this conclusion 

unlikely. Recent research has shown support that competition may influence movement based on species 

niche partitioning on a reef in the Southern GBR (Heupel et al. 2018). These findings show there are other 

potential behavioural reasons there are higher proportions of grey reef sharks around some areas of the 

reef. Other possibilities include influence of large predators such as great hammerheads (Sphyrna 

mokkaran) which are known to target grey reef sharks as prey (Mourier et al. 2013). Future studies would 

also benefit from use of hydrodynamic models (McInturf et al. 2019) and additional biologging tools such 
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as accelerometers and animal-borne cameras (Carrier et al. 2018; Andrzejaczek et al. 2019) to better 

understand foraging mode, energy expenditure, and fine-scale movement of this species.  

 

5.4.1 Conclusion 

 

Here we examined the fine-scale spatial distribution of sharks and their potential prey surrounding four 

reefs on the central GBR. We found that shark distribution was related to abundance of specific prey 

species such as caesionids and serranids, suggesting they may conform to the IFD. We also determined 

that there were no consistent patterns in distribution of sharks and teleost fish among reefs revealing 

variation in dynamics of reefs with similar size and exposure. The small core home ranges of grey reef 

sharks  showed small levels of overlap among individuals at each reef indicating partitioning within local 

populations. Future research should formally test concepts of IFD and prey-seeking behaviours. Even 

with the results of this study it would be difficult to dictate whether partitioned intra-reef core activity 

space mixed with broader common areas of use of reef sharks is related strictly to prey distribution, 

habitat suitability, or other unknown underlying factors without further investigation. 
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Chapter 6: Reef shark occurrence and population trends revealed 
from fishing and baited remote underwater video on the Great 

Barrier Reef 
 

6.1 Introduction 

 

Sharks play a vital role in ecological processes and provide socioeconomic benefit through tourism and 

food security (Dulvy et al. 2017). Despite this importance, many shark populations are in decline 

worldwide, and status of other shark populations remain unknown or data deficient (Heupel and 

Simpfendorfer 2010; Dulvy et al. 2014; Campana et al. 2016; IUCN 2019). Based on global concerns, 

surveys are being conducted to assess shark population vulnerability due to increased pressures from 

fishing, habitat degradation and climate change. Coral reefs are highly diverse and threatened with such 

pressures, creating a need to understand ecological roles and vulnerability of sharks in these ecosystems.  

 

Globally, species such as grey reef sharks (Carcharhinus amblyrhynchos), whitetip reef sharks 

(Triaenodon obesus) and blacktip reef sharks are listed as Near Threatened by the International Union for 

Conservation of Nature and Natural Resources (IUCN) (Heupel 2009; Smale 2009b; Smale 2009a) and 

require more research to clarify their ongoing status given the age of these assessments and recent 

evidence of decline in some regions. For example, in some areas such as Indonesia, reef shark populations 

have been heavily depleted from fishing activity, where their rare occurrence suggests ecological 

extinction (Sembiring et al. 2015). Compared to developing coastal nations where reef sharks contribute 

to economic gain and food security (White 2007; Sembiring et al. 2015), Australian reef shark landings 

are often a result of bycatch (Gribble et al. 2005; Heupel et al. 2009), and therefore may not be as 

threatened as other countries that target them directly. However, there is little detail outside of fisheries 

logbooks that can inform long-term reef shark population trends in Australia, and some research shows 
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evidence of depletion and rapid annual decline (Robbins et al. 2006; Rizzari et al. 2014a). In Australia 

many commercially targeted elasmobranchs are fished sustainably according to current management 

practice (Simpfendorfer and Dulvy 2017). However, compared to some pelagic and inshore sharks and 

rays, reef sharks are not a common fishery-targeted species group (Gribble et al. 2005; Heupel et al. 

2009), and need local information about their status in relation to human activity. Additionally, other 

human-mediated pressures may increase their vulnerability in the future. For instance, temperature 

increase from climate change, or degradation of habitat and prey availability can impact distribution and 

movement and amplify negative effects from fishing (Chin et al. 2010). These findings have increased the 

need to understand vulnerability of reef shark populations to potential threats and assess population status.  

 

The number of studies to estimate shark population status have increased over the years yet methods used 

to monitor populations are limited in capacity to determine population size and trend over time. For 

example, the most common methods are extractive through line, net, and trawl fishing (Simpfendorfer 

and Dulvy 2017). While these methods provide valuable indices for population status and trends of 

species, line fishing relies on bait attraction and proximity, and all methods can result in mortality post-

release or involve lethal sampling (Dapp et al. 2016; Musyl and Gilman 2019). Additionally, fishery-

dependent data sources such as logbook information depend on the expertise and credibility of the 

recorder (Wetherbee et al. 1997; Heupel et al. 2009). Traditional angling also ignores behavioural factors 

such as avoidance of capture (Mourier et al. 2017). Due to limitations associated with catch data from 

traditional fishing methods, underwater survey techniques such as underwater visual census ( UVC ) are 

commonly applied (Friedlander and DeMartini 2002; Sandin et al. 2008; Rizzari et al. 2014b). These 

methods can both over- and under-estimate population trends based on encounter rates at different 

locations and are affected by factors such as visibility (Willis et al. 2000; Ward-Paige et al. 2010). Other 

non-extractive methods are now applied using both baited and non-baited remote camera systems to count 

animals (Cappo et al. 2003; Cappo et al. 2006; Cappo et al. 2007; Langlois et al. 2018). These methods 
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provide indices of relative abundance and distribution, but only recently have provided metrics for 

identifying individuals (Sherman et al. 2018) and hence the ability to generate absolute abundance. These 

authors showed that baited remote underwater video stations (BRUVS) can underestimate populations of 

elasmobranchs using the standard relative abundance ‘MaxN’ metric, which counts only the maximum 

number of individuals of each species in a single video frame. Due to the advantages and limitations of 

many survey methods, calls for future study indicate that multiple methods should be employed to 

provide a more comprehensive understanding of shark population status. 

 

Recent evidence suggests that no-take marine reserves are successful in leading to recovery of reef shark 

populations in Western Australia (Speed et al. 2018) and provide successful conservation measures for 

sharks within the Great Barrier Reef Marine Park (GBRMP) where abundance was found to increase after 

re-zoning of specific areas to be no-take (Espinoza et al. 2014; Rizzari et al. 2014c). However, 

management effectiveness and population assessments within the GBR are still an area of debate where 

reported rates of decline are highly variable (Robbins et al. 2006; Heupel et al. 2009; Hisano et al. 2011; 

Rizzari et al. 2014a). The main debate regarding population estimates and decline from these studies stem 

in part from the type of survey method used. For example, Robbins et al. (2006) using underwater diver 

surveys suggested that grey reef and whitetip reef sharks were at risk from overfishing and in severe 

decline from previously unfished states. This notion was contradicted by findings from Heupel et al. 

(2009) who used fishery logbook data to show stable reef shark populations on the Great Barrier Reef 

(GBR) over a ~17-year period. Additional studies then compared these findings with multiple underwater 

survey techniques (Rizzari et al. 2014a) and demographic models (Hisano et al. 2011) to show 

contradictory evidence to Heupel et al. (2009) of population decline. Despite ongoing controversy over 

population status, it is generally agreed by all authors that restricted fishing zones assist in supporting 

populations. 
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While many studies have examined distribution of coral reef associated shark species and population 

status on the GBR (Heupel et al. 2009; Espinoza et al. 2014; Heupel and Simpfendorfer 2014; Rizzari et 

al. 2014a; Rizzari et al. 2014c; Espinoza et al. 2015b), there is a need for continued monitoring of 

populations particularly when considering fishing management zones. In recent years, multiple shark 

survey studies have taken place in the region off Townsville, QLD on the central GBR (Espinoza et al. 

2014; Espinoza et al. 2015a; Bierwagen et al. 2019). These studies employed traditional fishing methods 

as well as BRUVS deployments which create an opportunity to examine fishing catch rates to understand 

relative population size as well as estimate relative abundance and distribution in the same area from 

BRUVS. Reef sharks are often highly resident (Papastamatiou et al. 2009; Barnett et al. 2012; Vianna et 

al. 2013; Espinoza et al. 2015a) and are closely associated with complex coral habitat (Espinoza et al. 

2014; Shipley et al. 2018). By employing multiple methods in a region over a number of years changes in 

reef shark abundance over time, and how they are locally distributed, can be determined. The aims of this 

paper were to determine whether fishing restrictions have had an impact on distribution and abundance of 

reef sharks, whether populations remained stable over the sampling period, and the likelihood of 

encountering reef sharks within the Townsville study region. Additionally, we looked to identify any 

localised sites where reef shark species are more likely to occur. Given recent increases in disturbance to 

coral reefs in the GBR (bleaching, storm frequency, etc.) we hypothesised that these may have resulted in 

population declines at reefs where these disturbances are more frequent. 
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6.2 Methods 

6.2.1 Study Site 

 

This study was performed with data collected from 2012-2017 in the Townsville sector of the central 

GBR including sampling at 14 reefs (14 fishing, 4 BRUVS) ranging from the mid-shelf to the outer-

continental shelf (Figure 6.1). The central GBR is a patch reef system with depths between reefs reaching 

~60m. The Townsville sector is within the GBRMP and reef zones regulate levels of fishing and entry 

which vary among study reefs. 

 

Figure 6.1: Study Location in the Townsville Sector (~18 S) of the Great Barrier Reef. Each reef outlined 
indicates the fishing locations for the study. Colours indicate management status where BRUVS 
deployments are also located at specific reefs (*Rib, Helix, Knife, Chicken) 21 
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Figure 6.2: Fishing locations represented as stars (top) and BRUVS deployments as triangles (bottom) for 
each reef in the study area. Bathymetry and hill shade data were obtained from the Deep Reef Explorer 
website. Depth (m) (http://deepreef.org; Beaman 2018). 22 

 

6.2.2 Fishing 

 

Fishing methods were similar to (Espinoza et al. 2015a). Sharks were caught using traditional angling 

methods, mainly from use of drop lines and rod and reel fishing. Drop lines were 20-40 m in length and 

consisted of polypropylene float line with a Styrofoam buoy attached to a lead line between 5 and 15 m 

depending on depth and location. Single gangions were attached to each drop line equipped with a 

Mustad tuna circle hook (14/0, 16/0) connected to wire leader. Hooks were baited with frames or offcuts 

of fresh (e.g. red throat emperor, coral trout, finger mark, grass emperor) and thawed fish (e.g. squid, 

butterfly bream, pilchard). Sharks were also captured through rod and reel fishing with monofilament line 

attached to leader line or wire trace. Captured sharks were processed in tonic immobility, measured, 

sexed, and externally tagged using a rototag on the dorsal fin. Condition of individual and maturity was 

also recorded. Animal capture and processing was performed under James Cook University Animal 

Ethics (A1933) as well as GBRMPA (G37987.1) and Queensland Fisheries (187250) permits. 
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6.2.3 Baited Remote Underwater Video  

 

Baited remote underwater video systems (hereafter BRUVS) were deployed at three reefs (Rib, Knife, 

and Chicken) over two sampling seasons in 2016; one in January (summer) and the other repeating 

deployments at the same locations in July (winter). Additional deployments in January also occurred at 

Helix Reef for one sampling season. The BRUVS were deployed during diurnal hours in reef habitat less 

than 40 m at all areas surrounding a reef. Housings for the BRUVS units were comprised of a GoPro 

Hero 4 Silver® camera in wide angle view (1920 x 1080 format, 30 frames s-1) secured in custom 

housings designed by the Australian Institute of Marine Science. Housings consisted of polyvinyl 

chloride (PVC) cylinders with a fixed internal mount for the camera facing a clear acrylic Perspex® 

window equipped with an O-Ring seal rated to a depth of 100 m. This housing was attached to a 4-leg 

lightweight collapsible aluminium frame. To reduce possibility of BRUVS impact to substrate and 

recovery potential, legs were attached with cable ties that break under pressure if snags occurred. Dive 

weights of up to 16 kg were attached evenly to the base to ensure upright placement and reduce impact of 

strong currents during deployment. The BRUVS contained an attachment for a bait arm 1 m in length 

extending outward in line with the camera and a mesh bag at the end used for bait. Bait used was 

approximately 1 kg of crushed pilchards (Clupeidae, Sardinella spp). Using surface boats, BRUVS were 

manually deployed to the seafloor bottom with a polypropylene floating rope attached to a surface buoy. 

BRUVS were randomly deployed in groups of five, spaced at least 500 m apart and left to soak for a 

minimum of one-hour as is standard for the Global FinPrint project (www.globalfinprint.com). Up to 24 

BRUVS were deployed in a single day, with a minimum of 50 deployments surrounding each sampling 

reef. Deployment methods were similar to (Sherman et al. 2018). As a component of the Global FinPrint 

project, many species are recorded and documented for later viewing. For the purposes of this study to 

understand shark relative abundance, datasets for the BRUVS drops were limited to shark species only.
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6.2.4 Annotation 

 

Video footage from BRUVS was observed by two independent, trained annotators using either Event 

Measure (www.seagis.com, v.4.43) or Annotator (www.globalfinprint.com) software. The highest 

number of individuals captured in a frame per species and sex is a standard measurement technique in 

video-analysis where underestimation is likely but limits re-counting of the same individual (see Willis 

and Babcock 2000; Cappo 2010).  To annotate a video, the observer marked entry into the frame of 

individuals for every new shark species and only re-marked a frame if the number of individuals per 

species increased, creating a maximum number of individuals per species (MaxN) of each BRUV drop. 

Habitat, approximate current strength, visibility, and time of first entry was also recorded by the video 

observer and marked. 

 

6.2.5 Data Analysis 

Fishing 

Catch per unit effort (CPUE) was calculated from fishing data where effort was measured in the form of 

fishing hours for each survey trip. CPUE was averaged over each survey trip for aggregate shark catch as 

well as per species and compared by management zone and plotted using ‘ggplot2’ (Wickham 2016) in R 

version 3.5.1 (R Core Team 2018). Gaussian linear mixed effect models (‘lmer’) by maximum likelihood 

with a response variable of log-transformed CPUE with a constant [log10(CPUE+0.001)] to account for 

zeros (Butterworth 1995; Maunder and Punt 2004) were used in ‘lme4’ (Bates et al. 2015) to assess 

influence management zone and time on catch. An interaction term of zone and year as well as a distance 

from land were included as fixed effects and a random effect of reef conditional on year was added to 

account for variability in number of reefs visited per survey year. For the purposes of this study, we 

grouped Great Barrier Reef Marine Park (GBRMP) management zones (Figure 6.1) to compare between 

no-take restricted (Marine National Park, hereafter green, N=5) and open (Habitat Protection 
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Area/Conservation Park, hereafter blue, N=10) zones as they are most common to the Townsville Region. 

During model selection, residuals were investigated for overdispersion by dividing the residual sum of 

squares by residual degrees of freedom. Autocorrelation was tested with the acf function in the ‘MuMIn’ 

(Barton 2019) package in R. Interaction effects were determined with “lsmeans” (Lenth and Lenth 2018) 

with management zone conditional on year.    

 

Mixed Effect Models 

 

To determine the effect of biological and environmental drivers on successful catch, logistic regressions 

by maximum likelihood (Laplace Approximation) were performed at the hook level using binary data 

(catch/no-catch) with the ‘glmer’ function in the “lme4” package (Bates et al. 2015) in R. An interaction 

term of management zone and year, land distance, depth, season, and wind were modelled against hook 

success of all shark species as well as grey reef sharks, whitetip reef sharks, bull sharks, blacktip reef 

sharks, and silvertip sharks. All models included the random terms of the intercept conditional on hook 

size to account for gear variability and “Reef/year” to account for variation in differences in reefs visited 

per year. Random terms of hook size and soak time were excluded from the models based on AIC 

performance. Post-hoc interaction effects were determined with “lsmeans.” Models were plotted using 

‘sjPlot’ (Ludecke 2019) in R. Model residuals were investigated by testing predicted values and were 

measured for overdispersion using the DHARMa package in R (Hartig 2017). Autocorrelation was tested 

by using the ‘acf’ function.  

 

BRUVS 

To determine the effect of biological and environmental drivers on relative abundance, conditional 

Poisson (log link) and zero inflated negative binomial generalised linear mixed models were performed 
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with ‘glmmTMB’ (Mollie E. Brooks 2017) in R. Management zone, visibility, hard coral cover, land 

distance, depth, and season were modelled against MaxN of total aggregate shark species as well as grey 

reef sharks, whitetip reef sharks, blacktip reef sharks, and tiger sharks. All models included the random 

term of the intercept conditional on soak time/reef name to account for variation in duration of BRUVS 

deployments and reef location. Model residuals were also investigated using the DHARMa package and 

‘acf’ function.  

 

Survey method comparison 

To compare abundance from fishing to BRUVS deployments, data was filtered for the same sampling 

season (summer) in 2016. Fishing sites were also filtered to only include the four reefs surveyed with 

BRUVS deployments. Species accumulation curves were constructed for each survey method using the 

‘vegan’ package (Oksanen et al. 2016) in R. For summer 2016, 40 fishing locations were used compared 

to 164 BRUVS deployments. One accumulation curve only used the first 40 locations of each survey 

method and a second included all location sites.  

 

Local Distribution (Reef-Scale) 

For BRUVS deployments, mean relative abundance per hour (Mean MaxN h-1) was calculated per species 

for each deployment reef and tested for reef level differences with log-transformed linear models. A 

minimum curvature spline interpolation with barriers and hotspot analysis with the Getis-Ord Gi* statistic 

in ArcMap (version 10.6) were used to analyse local distribution of aggregate and common species 

surrounding each reef based on BRUVs deployments. A fixed distance band with Euclidean distance was 

used where neighbouring features exert influence on the target feature to identify statistically significant 

hot and cold spots for the Getis Ord Gi* statistic. To reduce type I error (false positives), a false discovery 

rate correction was used (similar to Bonferonni). Moran’s I statistic was used to measure spatial 
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autocorrelation. Distribution was analysed with BRUVS data due to a more uniform coverage of 

deployments surrounding each reef compared to fishing effort distribution.   

 

6.3 Results 

A total of 1820 lines and 310 BRUVS were deployed for this study (Figure 6.2), comprising1062 hours of 

fishing effort and 453 hours of BRUVS footage. Nine different shark species (N=327, Table 6.1) were 

captured with traditional fishing whereas seven shark species were recorded on BRUVS (Sum of 

MaxN=413 occurrences, Table 6.2). Grey reef sharks were the most commonly occurring species with a 

total of 191 fishing captures, and MaxN sum of 213 on BRUVS (133 summer [164 drops], 80 winter [146 

drops]). Proportion of grey reef sharks was 55 and 52 percent of total for fishing and BRUVS 

observations, respectively. The highest mean relative proportion of abundance from the BRUVS data for 

grey reef sharks was at Knife Reef (59 %) and lowest at Rib Reef (9 %).  

 

Table 6.1: Fishing captures of species from 2012-2017 with mean fork length (FL), mean depth, and 
count of sex 12 

Common Name Species Captures FL (cm) ± SD Depth (m) M F 
Silvertip Shark Carcharhinus albimarginatus 35 116.7 ± 37.4 32.1 ± 8.5  14 20 
Grey Reef Shark Carcharhinus amblyrhynchos 191 107.6 ± 60.3 27.1 ± 7.7  87 103 
Bull Shark Carcharhinus leucas 38 203.7 ± 24.8 29.7 ± 10.0  8 30 
Blacktip Reef Shark Carcharhinus melanopterus 13 111.3 ± 5.8 24 ± 5.4  8 8 
Tiger Shark Galeocerdo cuvier 8 165.4 ± 60.8 33 ± 9.3 1 7 
Lemon Shark Negaprion acutidens 10 217.7 ± 11.7 27.1 ± 7.7 1 8 
Great Hammerhead Sphyrna mokarran 4 213 ± 54.3 29.7 ± 10.5 1 3 
Whitetip Reef Shark Triaenodon obesus 28 103.6 ± 18.2 23.8 ± 5.7 8 20 

 

Fishing data showed no significant differences in CPUE between fishing zones overall for aggregate and 

species CPUE (Figure 6.3, Table S6-a). Annual trends showed there were no significant differences in 

CPUE between open and closed zones for aggregate catch, where catch rates of each zone fluctuated year 

to year in a similar pattern (Figure 6.4, Table S6-a). Annual CPUE varied by species (Figure 6.4, Table 
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S6-a). For example, there were no significant differences in CPUE between zones for grey reef, bull, and 

silvertip sharks. However, annual CPUE was significantly higher in green zones for whitetip and blacktip 

reef sharks in certain years such as 2014 (whitetips) and 2014 and 2015 (blacktips). There was also no 

strong pattern in decline in CPUE for any species for either green or blue zones. The greatest effects of 

variability from random terms were observed in bull sharks (Table S6-a), where changes in fishing 

location between years likely influenced CPUE over time. Comparison of species accumulation curves 

between open and closed zones (Figure 6.5), indicate no difference in the number of species captured, 

meaning species richness was similar between management areas.  

 

Table 6.2: Counts for species encountered on an averaged 226 hours of baited remote underwater video 
(BRUVS), mean BRUVS depth, and counts for 342 total hours of fishing survey effort in the same 
sampling year (2016) 13 

Common Name Species Summer Winter Depth (m) Fishing 
Grey Reef Shark Carcharhinus amblyrhynchos 133 80 15.8 ± 7.5  24 
Bull Shark Carcharhinus leucas 0 0 - 0 
Blacktip Reef Shark Carcharhinus melanopterus 34 19 12.6 ± 5.8 3 
Tiger Shark Galeocerdo cuvier 1 2 21.5 ± 3.3 0 
Nurse Shark Nebrius ferrugineus 5 0 9.2 ± 1.5 0 
Lemon Shark Negaprion acutidens 4 3 20.1 ± 7.0 0 
Great Hammerhead Sphyrna mokarran 1 0 10.2 0 
Whitetip Reef Shark Triaenodon obesus 91 40 15.0 ± 7.3 7 

 

When considering successful capture of species (catch/no catch) at the hook level compared to abundance 

CPUE measures, species-specific logistic regressions (except grey reef sharks) produced wide confidence 

interval ranges and odds ratios so were excluded due to uncertainty in predicting and interpreting 

outcomes. For grey reef sharks, catch was most successful overall in green zones and during periods of 

moderate winds (Figure 6.6, Table S6-b). These results were affected by survey year where capture was 

more likely in blue zones. There were no zonal differences of aggregate species at the hook level except 

for 2016 where capture was more successful in green zones. Shallower depths also had a positive 

influence on grey reef shark capture success. Catch success of combined shark species was strongly 

influenced by the random term of hook size and reef fished (Table S6-b), likely due to size differences 
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between species. There was minimal influence of random terms for grey reef sharks which is likely due to 

their high abundance within the study site. No other factors had an impact on the response variable of 

catch success of each species. These models were neither auto-correlated nor over dispersed. 

 

Figure 6.3: Mean CPUE abundance from 2012-2017 separated by management zones. Bars: Standard 
Error. Images sourced from IAN Image Library (https://ian.umces.edu/imagelibrary/) 23 

 

Compared to fishing data, ZINB models for relative abundance of BRUVS deployments showed 

significantly higher MaxN proportional abundance of aggregate, grey reef, and whitetip reef sharks in 

closed zones (Figure 6.7, Table S6-c). Additionally, the winter season was an influencing factor for 

higher relative abundance of aggregate total and whitetip reef sharks. Distance from land and depth had a 

negative significant influence on grey reef shark relative abundance. Compared to other species, blacktip 

reef shark abundance was not affected by fishing zone but was significantly higher in depths lower than 

mean occurrence (Figure 6.7). As with the fishing data, models were not auto-correlated or over-dispersed 

(dispersion range 0.01-1.4). 
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Figure 6.4: Mean annual CPUE from total fishing catch data from 2012-2017 separated by primary 
management zones (green: closed, blue: open, bars: standard error) 24 

 

Figure 6.5: Species accumulation curves by fishing zone (green closed, blue open) for total fishing lines 
deployed from 2012-2017, bars=95 % confidence intervals 25
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Figure 6.6: Binomial logistic regressions (logit link) odds ratios of fishing data for total catch and species 
with significant fixed effects (random term conditional on Reef/Year). Red: Negative effect, Blue: 
Positive effect, * indicates significance with p<0.05 26 
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Figure 6.7: Zero-inflated negative binomial generalised linear mixed models for BRUVS deployments 
over two sampling seasons in 2016 showing significant fixed effects with a random term conditional on 
soak time/reef. Red: Negative effect, Blue: Positive effect, * indicates significance with p<0.05 27 
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When comparing survey methods, BRUVS deployments were more effective at measuring species 

diversity based on total deployments in the same sampling season (Figure 6.8). In one sampling season, 

seven total species were recorded on BRUVS compared to four species captured in fishing surveys. It 

should be noted however, that BRUVS survey periods were subject to better weather which enabled 

researchers to access the entirety of each reef compared to limited locations for fishing (Figure 6.2). 

BRUVS also, on average, were placed in shallower locations than fishing sites (Tables 6.1, 6.2).   

 

Figure 6.8: Species accumulation curves for total BRUVS drops (black) and fishing sites (green) in the 
same sampling season (Summer) in 2016, bars= 95% confidence intervals 28 

 

Reef-level analysis showed grey reef sharks were most abundant on Knife reef with a relative abundance 

of 1.57 MaxN h-1 but were not significantly different between reefs (Figure 6.9). BRUVS observations 

also showed whitetip reef sharks were most prominent in closed zones 0.65 – 0.93 MaxN h-1 and 

positively related to hard coral cover (SE=0.46, df=157, p<0.001). Blacktip reef sharks were reported in 

low numbers across all reefs (0.09 - 0.25 MaxN h-1). Spline interpolation with the Getis-Ord Gi* and 

Global Moran’s I statistics at the reef scale showed significant hotspots and spatial autocorrelation (non-

random clustering) at various locations surrounding each reef, particularly for aggregate species, whitetip 
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reef and blacktip reef sharks (Figure 6.10).Grey reef sharks showed no significant clustering as they were 

well dispersed across all reefs.   

 

 

Figure 6.9: Mean abundance per hour (MaxN h-1) of sharks per reef at BRUVS locations 29 
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Figure 6.10: CPUE and species distribution models from BRUVS data using minimum curvature spline interpolation and hotspot analysis with the 
Getis-Ord G statistic using false discovery rate correction. * indicates statistically significant hotspots and ∆ indicates a single cold spot with p<0.05.30 



154 
 

6.4 Discussion 

 

Through use of two different survey methodologies, we have shown that non-extractive BRUVS provide 

similar measures of species richness to fishing, yet BRUVS add insights to species occurrence that catch 

data did not reveal. BRUVS were more effective for identifying the occurrence of whitetip and blacktip 

reef sharks over traditional fishing methods with low CPUE. This is likely due to BRUVS dropped on 

average in shallower depths than fishing sites, which is consistent with the significant clustering of 

species like whitetips and blacktips in shallower areas. Heupel et al (2018) found strong evidence of 

species partitioning on a coral reef through use of telemetry, showing that species such as blacktips use 

shallower areas on the edge of reef crests. BRUVS also revealed differences in relative abundance 

between management zone and seasonal abundance for grey reef and whitetip reef sharks. This finding is 

consistent with studies that have better success in BRUVS for measuring diurnal relative abundance of 

species compared to fishing measures (Willis and Babcock 2000; Cappo et al. 2003), but whether baited 

scenarios reflect real-world presence is something to also consider. 

 

Neither BRUVS nor traditional fishing in later years of the survey has successfully observed bull and 

silvertip sharks, both of which had overall been low in catch numbers throughout the sampling period. 

This corresponded with changing reef sampling sites over time. However, low rates of observing bull 

sharks on BRUVS is consistent with findings by Espinoza et al. (2014) who also reported low numbers in 

the GBR. From movement studies, bull and silvertip sharks have been found to be more mobile than 

resident shark species such as grey reefs, either by making large scale coastal migrations (bulls) or 

moving between reefs (silvertips) (Espinoza et al. 2015b). This means the probability of occurrence of 

these species within fishing/BRUVS areas is likely less than other species such as grey and whitetip reef 

sharks that are resident in these areas. However, Espinoza et al. (2014) observed high numbers of silvertip 

sightings, particularly offshore. In their study, silvertips were consistently reported in depths deeper (21.2 

- 76.1 m) than most BRUVS deployments from our study (averaging ~14 m with a maximum depth of 37 



155 
 

m), which may also account for the disparity. These results highlight the need to understand space use and 

habitat preferences of species when conducting surveys that consider their abundance and stability over 

time and between open and closed areas.  

 

Analysis at the hook level showed that in one year more reef sharks were more successfully captured in 

open zones compared to closed zones. While this result could be due to a number of factors, hook level 

data shows that it is possible that blue zones create increased potential for shark behaviour to shift 

towards targeting hooks regardless of risk. For example, Mitchell et al. (2017) found that shark 

depredation (consumption of fish off hooks before capture) was greater in areas with greater recreational 

fishing pressure off Western Australia. However, due to an isolated year and to adequately understand our 

findings, more information is needed from fishing sectors to see if catch susceptibility is higher in blue 

zones, particularly in heavily fished areas. There is little information regarding whether sharks are more 

attracted to live fish caught by recreational fishers compared to dead bait (used in our fishing methods), 

New South Wales gamefish anglers who target sharks were more successful with dead bait then live 

(Lowry et al. 2006). Within the GBRMP, there is little data on recreational fishing activity particularly for 

depredation. Most information on landings come from the commercial fishery (Chin et al. 2019), where 

the annual Queensland Fisheries summaries report low catch for reef sharks as they are not targeted 

species and have bag limits, creating a knowledge gap in reporting on reef shark landings or interactions.  

 

Based on results from the central GBR collated here, reef shark CPUE showed no pattern of decline from 

2013 to 2017. Catch rates fluctuated between years, with low reported numbers for some species 

particularly in recent years such as blacktip reef, bull, and silvertip sharks. This study indicates that there 

were no differences in fishing based CPUE of any species between zones except in specific years for 

whitetip and blacktip reef sharks (2014/2015). Additionally, similar species richness between zones was 

observed. The differences in sampling effort and locations over the years could be a factor in low catch 
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rates of these species, or a result of fishing in areas that species are not likely to be found, as previously 

mentioned. These findings are backed by high abundance from the last year of survey from BRUVS. 

These trends contradict previous results presented by Robbins et al (2006) who estimates of ~17 percent 

annual decline rate of grey reef sharks and evidence of rapid decline using population growth estimates by 

Hisano et al (2011). The differences in results between studies suggest that there may be complex issues 

related to reef shark abundance with the potential that population size and trend varies by location and is 

thus not uniform across the GBR. However, these differences also show that there is still limited 

information as to how well survey methods reflect true levels of abundance (Willis et al. 2000; McCauley 

et al. 2012a, Rizzari et al. 2014a). The lack of difference in CPUE between blue and green zones for 

aggregated species data and particularly for grey reef sharks does contrasts findings from UVC surveys 

by Ayling and Choat (2008), who sighted grey reef sharks were four times more often in green zones than 

blue in the central GBR which was used as a proxy for abundance. Additionally, there were no 

differences in CPUE between blue and green zones for blacktip reef sharks and whitetip reef sharks 

except in specific years, also which differs from Ayling and Choat (2008) who found two times as many 

whitetip reef sharks in green zones over blue. This contradiction highlights that care should be used when 

comparing between studies that employ different survey methods of measuring abundance (e.g. SCUBA 

observations versus fishing versus BRUV) (McCauley et al. 2012a). It should be noted that catch of some 

species such as blacktip reef and silvertip sharks were minimal among years meaning that populations at 

the study location may have been low for a long period, were naturally low in abundance for these areas, 

or that fishing areas do not reflect preferred habitat of these species. Interspecific competition could also 

be a factor in low abundance estimates of some reef shark species (Heupel et al. 2018; Matich et al. 

2017). The CPUE was also highly variable between years in both open and closed zones, making 

determination of trends over time difficult.  

The observed year to year fluctuations in CPUE likely reflect other factors causing variation. For 

instance, the central region of the GBR was impacted by cyclones, crown of thorns (Acanthacatser 

plancii) outbreaks, and mass coral bleaching during the survey period of this study. These disturbances 
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resulted in coral cover being reduced to its lowest reported level (~14 percent) in 2017 (Sweatman et al. 

2018). However, the GBR has a documented capacity to recover and reassemble post disturbance (Emslie 

et al. 2008; Bierwagen et al. 2018). This means that while faced with disturbance pressures, reefs in the 

study area are likely to also have recovered to some degree during this period. Coral cover provides 

essential complex habitat for many reef-associated species (Graham et al. 2007; Pratchett et al. 2008; 

Bierwagen et al. 2018) including reef sharks (Espinoza et al. 2014) and their prey (Wilson et al. 2006; 

Komyakova et al. 2018). It is possible that changes in coral cover over the years influenced sharks to 

move from degraded areas to seek more optimal habitat and that shark occurrence may fluctuate with reef 

state and rates of reef recovery. If these redistributions are occurring, they could explain reported reef-

level changes in CPUE which are unlikely be due to mortality given the rapid increases observed in some 

year, but rather a change of presence in certain years. Conversely, results in our study from BRUVS data 

and hotspot distribution analysis showed grey reef sharks consistently occurred around the entire reef area 

including back reef habitat with low reported coral cover. This would suggest habitat type may not be a 

key driver for their distribution. Hence, reef sharks do not always associate solely with complex structure, 

relating back to their mobility potential. Another interesting result was that wind speed was an influential 

factor in capture success which partly aligns with grey reef shark telemetry data from (Heupel and 

Simpfendorfer 2014) that found wind speed to have weak effects on shark presence however the authors 

suggested wind speed may affect detectability of sharks on acoustic receivers rather than their occurrence. 

This result also differs from Espinoza et al (2015a) who found no positive effects of wind strength on 

shark occurrence on BRUVS. These finding highlights differences in the potential for a range of factors to 

influence catch success which ultimately may lead to variability of CPUE.   

 

The mixed effect models for both catch data and BRUVS showed that fishing zone had the highest impact 

over other factors on species relative abundance for aggregate catch, grey reef sharks, and whitetip reef 

sharks. However, this factor did not influence blacktip reef shark abundance. While the effect of sampling 

season (summer/winter) was negligible for catch data, relative abundance of aggregate species and 
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whitetip reef sharks was higher in winter months for BRUVS. When considering total catch as well as 

relative abundance from BRUVS in our study, the Townsville region appears to support high reef shark 

species richness and areas of high use by reef shark species. Grey reef sharks were uniformly distributed 

across all reefs in the BRUVS study with no significant clustering in any one area. Their abundance was 

higher than expected with one reef (Knife) recording one shark for every BRUVS deployment with the 

highest MaxN of five individuals. Compared to low reported MaxN h-1 numbers for limited Townsville 

reefs from 2000-2010 reported by Espinoza et al (2014) (supporting information), shark presence may 

have increased in recent years. Our study also showed that whitetip reef shark presence in the study 

region differs between MaxN h-1 and CPUE. These findings indicate that a single method may not be 

optimal for fully understanding abundance and distribution of these species, where survey location as well 

as capture method (extractive or non-extractive) likely influences understanding of relative abundance. 

Similar findings in CPUE versus BRUVS accuracy for fish populations have been reported (Parker et al. 

2016). We recommend future research in establishing baselines for population assessment using stereo-

BRUVS which can accurately identify individuals based on size (Harvey et al. 2012; Langlois et al. 

2018). We also show that different methods more accurately reflect species trends, meaning it is best to 

understand which method will work best for target species within a study. Employing multiple methods is 

likely the most optimal route as some are able to capture a clearer picture of distribution and abundance 

over others. Multiple methods would also make it easier to compare to other studies that incorporate one 

over another. 

 

Another interesting component of this study shows that local distribution from BRUVS surveys indicate 

species clustering for whitetip reef sharks, blacktip reef sharks, and total aggregate catch indicating that 

there are common areas of use around specific reefs. Although, no consistent pattern can be seen in reef 

aspect. Interestingly, blacktip reef sharks seemed to cluster in more central, shallow reef locations 

compared to other reef sharks which is supported by a study by Heupel et al. (2018) in the Southern GBR. 

Future study may benefit from targeting specific areas for surveys based on individual species 
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distribution. Considering that abundance between fishing zones may vary by species, it is important to 

structure management strategies to accommodate less abundant species that do not follow overall 

aggregate trends. This has been important when highlighting that aggregation of individuals within 

populations has been found to lead to loss of complex detail in species movement (Mourier et al. 2019). 

As such, similar approaches when considering abundance may not be beneficial for interpreting species 

trends as they tend to follow the most abundant species as seen in this study with grey reef sharks. 

 

6.4.1 Conclusions 

This study found that restricted fishing (closed) zones on the GBR are effective for supporting higher 

abundances of reef shark species overall, but low reported numbers of some species will need further 

investigation. We also found that species residing in open zones may be more susceptible to capture. This 

study demonstrated that angling estimates alone may not provide a true picture of population trends, and 

other methods such as BRUVS can be beneficial in determining presence and distribution of species. Our 

results contradict some previous findings of population decline, by indicating specific reefs support high 

numbers of species such as grey reef and whitetip reef sharks and there were no differences between open 

and closed zones. As this study presents findings that show a degree of uncertainty in trends, future study 

should incorporate continued long-term monitoring of abundance and species-specific distribution using 

multiple methods to more fully capture the status and trends of populations.  
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Chapter 7: General discussion 
 

7.1 Challenges in defining functional roles of reef sharks using trophodynamics 

 

In recent years there has been a shift away from oversimplification of marine food webs by realizing the 

potential of feeding interactions; such changes have altered previous perceptions of trophic influence in 

marine ecosystems (Bascompte et al. 2005; Trebilco et al. 2013; Hussey et al. 2014). This shift is 

apparent in research relating to coral reefs where reef shark species have been re-categorised as 

mesopredators, leaving the apex classification for larger-bodied species such as tiger, bull, and 

hammerhead sharks (Heupel et al. 2014; Frisch et al. 2016; Roff et al. 2016a; Espinoza et al. 2019). From 

a trophic ecology standpoint, evidence supports this shift through use of methods such as stable isotope 

and gut content analysis (Frisch et al. 2016; Espinoza et al. 2019), showing that reef sharks occupy a 

lower trophic position than apex predators, are functionally redundant and potentially exhibit diffuse 

predation (Heupel et al. 2014; Roff et al. 2016a). This conclusion is of importance as it provides possible 

explanations for why there is limited evidence for trophic cascades on coral reefs. Additionally, with this 

re-categorisation comes the assumption that the magnitude of top-down controlling influences of some 

reef sharks is much lower than previously considered, recognising that their functional role is different 

than hypothesized (Frisch et al. 2016; Roff et al. 2016a).  

 

These conclusions, however, come with a few caveats. Firstly, re-defining functional roles of reef sharks 

has placed three of the most common species in redundant feeding niches (grey reef, whitetip reef, and 

blacktip reef sharks) (Frisch et al. 2016). Secondly, there is a suggestion of functional redundancy with 

other reef predators such as larger teleost fish (coral trout, red throat emperor, Spanish mackerel; 

Scomberomorous commersoni) based on similar stomach contents and predictions from isotope mixing 

models which provide low resolution on specific diet (Roff et al. 2016a). Thirdly, this re-categorization 
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comes from direct predatory feeding effects since there is limited data on indirect behavioural effects such 

as feeding suppression of lower trophic organisms (i.e. herbivores) (Rizzari et al. 2014b). Lastly, there is 

lack of context in how these roles can change from a biogeographic or spatial standpoint. As identified in 

Chapter 2, substantial information is needed to identify functional or ecological roles of organisms, 

particularly when pertaining to complex systems such as coral reefs. Moreover, there is a need for clarity 

in population status and how feeding may influence movement and distribution of reef sharks. This thesis 

aimed to fill gaps in these areas where there has been no previous research, or where more detailed 

definition was required. Acquiring these details were nested in consideration of how the rest of the 

ecosystem is structured. Existing research relating to these factors is not often available within the same 

spatial scale over extended periods and require more detail (Figure 7.1).  
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Figure 7.1: Graphic showing how achieved aims and data chapter considerations of the thesis (numbered, blue) relate to gaps identified in Chapter 
2 (Figure 2.2) leading to outcomes that will assist in informing functional roles of reef sharks. (Blue outline– thesis elements; Green outline – 
taken from existing literature in same spatial scale; dashed outlines – Incomplete information) 
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7.2 Reef resilience and implications for predators 

 

Understanding how reef sharks fit in their current environment is essential to creating baselines to 

address implications of future changes to ecosystems. Without knowledge of the resources reef sharks 

require, it is difficult to determine whether potential resource depletion will impact survival and 

residence. This creates questions around how many predators degraded or non-pristine reefs can 

support. Therefore, it is necessary to measure the reef community and resilience to disturbance events 

as well as determine spatiotemporal variability in reef recovery. Reef recovery capacity can then be 

examined in the context of resilience of reef shark habitat. Chapter 3 revealed that coral re-growth at 

all reefs studied equalled or surpassed pre-disturbance levels, yet reef-level differences drove recovery 

of some fish functional groups. Additionally, some functional group abundance such as grazers, 

corallivores and macro-invertivores were not correlated with benthic recovery as their density 

continued to decline after coral recovery. This result highlights the need to understand lagged 

recovery effects and that coral health cannot always be used as a proxy for fish abundance and species 

richness.  

 

There were also unexpected findings framed around coral reef recovery and nutrient availability. For 

example, tabulate and bottlebrush coral species on mid-shelf reefs were found to have a higher 

capacity to recover over outer-shelf reefs, creating habitat and recruitment potential for species groups 

such as planktivores. This result was surprising as outer-shelf reefs are more exposed to upwelling 

and pelagic nutrients (Fabricius 1995). These nutrients such as nitrogen are utilised by coral for re-

growth which promotes recruitment of fish species. Chapter 4 showed that reef sharks are a source of 

these essential pelagic nutrients to reefs, where other research shows that reef sharks are egesting 

them at much higher rates than previously considered (Williams et al. 2018). Hence, as nutrient 

dynamics are primarily regulated by animal biomass on coral reefs (Allgeier et al. 2017) presence of 

sharks around mid-shelf reefs (Chapters 5, 6) could potentially assist in recovery of lower trophic 

organisms and benthic structure post-disturbance that were previously thought to have lower resource 
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potential compared to outer-shelf habitats. While other nutrient inputs such as terrestrial runoff should 

be considered, they reach mid-shelf regions of the GBR in much lower levels than inshore (Brodie et 

al. 2005). Overall, while Chapter 3 revealed reef-variability, recovery potential was seen across all 

reefs with similar abundance proportions of fish functional groups among them. This is a promising 

finding in terms of reef resilience.  

 

7.3 Dietary separation among reef mesopredators 

 

This thesis aimed to first understand reef resources, and second, confirm which components reef 

sharks utilise. While there has been an inference of evidence for functional redundancy from gut 

content and stable isotope studies, these findings lack fine detail and resolution. Reef sharks are found 

to have high percentages of teleost fish in their diet (Cortes 1999; Frisch et al. 2016), which is why 

most are considered to be functionally redundant. However, for some species such as grey reef sharks, 

teleost prey taxa are largely unidentifiable (Papastamatiou et al. 2006; Frisch et al. 2016). Stable 

isotope studies also employ a small number of tracers (δ15Nitrogen, δ13Carbon), limiting the level of 

resolution to identify basal food chain dependencies in isotopic niche space (Chapter 2). In Chapter 4, 

fatty acid analysis was used to gain a finer level of dietary detail for reef mesopredators. The main 

fatty acids that separated each species have been used in other studies as strong indicators of prey 

differences, where niche partitioning was found between reef sharks and teleost fish as well as tighter 

niche space for whitetip reef compared to grey reef sharks. Whitetip reef sharks have been previously 

suggested to be highly generalist feeders with the ability to target keystone species such as unicornfish 

(Naso spp) (Frisch et al. 2016). Findings from Chapter 4 suggest that whitetip reef sharks may be 

more specialist feeders than previously indicated and in addition to small niche space, whitetip reef 

shark trophic biomarkers for basal sources were provided to further support evidence of dietary 

specialisation. Conversely, grey reef sharks have long been shown to be generalist feeders which is 

consistent with findings here, providing support for diffuse predation. However, assumed functional 

redundancy with teleost reef fish (particularly for those such as coral trout that also feed from pelagic 
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resources) was shown in Chapter 4 to have less overlap than anticipated. This is of importance as both 

grey reef sharks and coral trout have been found to target similar species such as fusiliers. Chapter 4 

shows that there is also some level of specialisation and a larger basis for pelagic inputs by grey reef 

sharks over reef-dwelling teleosts. When combining results from Chapter 4 and existing stable 

isotope and gut content work, there is a much clearer picture in dietary specialisation between 

mesopredator species (Chapter 4, Figure 4.6). Stable isotope study confirms that there is redundancy 

with some basal separation from carbon isotopes between benthic and pelagic derived nutrients of 

mesopredators (Frisch et al. 2016; Roff et al. 2016b; Espinoza et al. 2019). Stable isotopes are highly 

effective at identifying trophic levels but are less beneficial in determining basal sources of nutrition 

and diet composition (Pethybridge et al. 2018). The benefit from adding fatty acids to this work is that 

a higher level of detail is seen in prey resources, showing significant differences in species consumed. 

Thus, while predatory reef sharks and teleost species remain at similar trophic levels, they likely have 

different functions. Functional differences have also been shown in movement studies, where co-

occurring reef sharks and teleost species have differing movement patterns and habitat use. One study 

on the southern GBR showed spatial separation between five shark species (Heupel et al. 2018). This 

has also been observed at Palmyra between species such as grey and blacktip reef sharks 

(Papastamatiou et al. 2018). On the GBR, co-occurring teleost species of coral trout also undergo 

depth and dietary niche partitioning revealing different functions within the same species complex 

(Matley et al. 2016). These results are not surprising due to complexity of reef systems and feeding 

opportunities. Though redundancy among mesopredators has been previously considered to limit 

cascading effects on reef systems, Chapter 4 shows that there are still possible negative consequences 

of predatory removal on coral reefs.  
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7.4 Space use and relative abundance of reef sharks 

 

The results of this thesis show that reef sharks were found to be distributed across all study reefs, with 

spatial separation of some species such as whitetip and blacktip reef sharks. Blacktip reef, silvertip, 

and bull sharks were reported in low numbers compared to whitetip reef and grey reef shark species 

(Chapter 6). As a case example, distribution and space-use of grey reef sharks was found in part to be 

related to prey abundance (Chapter 5). Grey reef sharks exhibited residency to the study reefs and 

individuals often overlapped in both core and extent of space use. While grey reef sharks were 

distributed around each reef, there were also areas where individuals were detected more often which 

was related to prey availability. Though there were shifts in abundance over time creating difficulty in 

identifying patterns in abundance, there was no evidence of decline in any species during the survey 

period. Additionally, there were no differences in CPUE of species between no-take and open 

management zones. These results differ from other studies on the GBR which have shown increase in 

shark abundance since re-zoning of the marine park in 2004 (Espinoza et al. 2014), and a significantly 

higher abundance of sharks in no-take or no access zones (Ayling and Choat 2008; Espinoza et al. 

2014; Rizzari et al. 2014a). These differences may depend on survey method use (e.g. fishing, 

BRUVS, diver survey), or scale of study. It is also possible that due to low reported take of reef 

sharks from Queensland fisheries in recent times (Heaven 2018), that the lack of difference between 

management zones reflects that strict fishing regulations (bag limits) offer similar protections for 

sharks in areas open to fishing. Additionally, shark distribution was found to differ from other studies 

that show importance of habitat type as an influence (Rizzari et al. 2014c; Papastamatiou et al. 2018). 

Chapter 6 demonstrates that species such as grey reef sharks are not only concentrated in reef slope 

habitats, and hard coral may not be the best predictor for abundance of reef sharks. The spatial 

separation and abundance differences observed between species shows there are differences in how 

reef sharks utilise reefs regardless of management zoning, where functional distinctions cannot be 

over-generalised. Spatial separation has also been observed in areas of the Southern GBR (Heupel et 

al. 2018) which indicates that spatial partitioning among reef mesopredators is not isolated to specific 
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regions of the GBR. Hence, probability of occurrence and distribution should always be considered 

when describing function of species on coral reefs.  

 

7.5 Ecological implications 

 

Overall, this thesis provides a snapshot of what reef shark populations look like on degraded reefs 

with differing recovery potential over time. In their current state, these coral reefs have a capacity to 

recover post-disturbance, yet some lagged effects should be considered for future study. This is 

important due to coupled effects from future stressors such as potential increased climate-mediated 

ecosystem impacts mixed with natural disturbance.  This thesis shows that some shark populations 

(e.g. silvertip, blacktip reef sharks) are reported in much lower in numbers over time than others (e.g. 

grey reef sharks) and therefore may not contribute the same level of functional influence due to their 

limited abundance. Habitat and resource use also differed between reef shark species. Species such as 

whitetip reef sharks had tight feeding niches and were distributed around the reef differently to grey 

reef and blacktip reef sharks. So even though they remain at the mesopredator level, their marginal 

niche and limited spatial overlap with other species at the same dietary position shows they may be 

more functionally distinct than other reef shark species. Grey reef sharks also have low dietary 

overlap with some mesopredators, but their isotopic niche space deriving nutrients from both pelagic 

and benthic resources give a much broader range of diet (Chapter 4), leading to possible feeding 

effects such as diffuse predation. Additionally, their common presence around all reefs within the 

study likely has behavioural implications for lower trophic organisms that have not yet been 

identified. As such, combined effects of direct predation by grey reef sharks mixed with indirect 

behavioural effects on lower trophic levels may carry a larger functional influence than other 

mesopredator species lower in abundance and less widely distributed. In some isolated near-pristine 

systems, grey reef sharks feed at a higher trophic position compared to more degraded systems due to 

their high abundance, changing their feeding capability beyond gape limitations due to cooperative 

hunting of high-level mesopredators such as gropers (Mourier et al. 2016). Adaptive feeding also 
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relates to food availability in this area where spawning aggregations subsidise local food webs, 

creating higher carrying capacity of predators compared to places such as the Great Barrier Reef 

where large spawning aggregations are rare. These spatial differences must be considered in 

describing species function in future studies. Species function should also be investigated in areas that 

are underrepresented by research such as Indonesia, where reef sharks are targeted and are heavily 

depleted (Momigliano 2016; Jaiteh 2017). Gaining insights into how reefs are affected in these areas 

from their loss compared to stable and pristine populations would help to understand functional 

influence of reef shark species. However, despite extensive research on the trophic ecology of reef 

sharks, it is incredibly difficult to link singular effects of whether loss of predatory species or human 

pressures has greater impact on the health of reef systems as seen in Caribbean reefs (Ward-Paige et 

al. 2010) and reefs outside the GBR in Australia (Ruppert et al. 2013).  

 

7.6 Future Directions  

 

While there are still areas of uncertainty, findings from this thesis have highlighted questions that 

require more information to resolve. One of which is whether roving or transient apex predators or 

species with low abundance on the central GBR have the same functional influence as resident and 

highly abundant mesopredators. For example, bull sharks are migratory and less resident than 

mesopredatory reef sharks (Espinoza et al. 2015). While they have been found to return to tagging 

reefs using acoustic telemetry, their movement networks are more complex than species such as grey 

reef sharks. Bull sharks were found to spend less than 20% of their time in habitats within the 

monitoring array and reported in low numbers for this thesis in certain locations (Chapter 6). Hence, 

for specific reefs within the GBR, are bull sharks resident enough to regulate abundance of lower 

trophic levels and are landscapes of fear from larger predators occurring? Existing suggestions of 

size-based functional classification (Heupel et al. 2014) may also need to look at how abundance and 

presence of species over time impacts these views. Conversely, the most abundant sharks on the 

sampled reefs were grey reefs that were also highly site attached. This raises questions as to whether 
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their ability to limit release of lower trophic levels is more influential than transient predators, where 

exploitation or mortality could have a larger impact on cascading effects on reef ecosystems. 

However, as apex predators such as bull sharks are highly mobile with higher energetic needs their 

influence on grey reef sharks and other mesopredators is not well known. Isolated cases of predation 

observations with hammerhead sharks feeding on reef sharks (Mourier et al. 2013) are rare and more 

information is needed in this area. Previous studies have been clear in the fact that functional 

redundancy of mesopredators with teleost fish possibly limits cascading effects when shark 

exploitation occurs (Frisch et al. 2016; Roff et al. 2016a; Casey et al. 2017), but often do not consider 

that loss of both mesopredator and apex sharks could create large areas where specialist roles are not 

filled and provide opportunities for release of faster growing mesopredators. Cryptic organisms on 

reefs are also understudied (Heupel et al. 2019), and their functional importance to limit cascading 

effects and trophodynamics (Chapter 2) should also be considered in the future. 

 

Additionally, care should be used when classifying sharks as mesopredators when considering trophic 

cascade models and mesopredator release. Reef sharks have slower growth rates (Chin et al. 2013) 

and lower fecundity (Hisano et al. 2011) than some larger bodied predators such as tiger sharks 

(Meyer et al. 2014). In cases where there is suggested mesopredator release, loss of apex predators 

such as tiger, bull, and hammerhead sharks are not sufficient to cause rapid growth of reef shark 

populations based on life history traits. Hence, population and biomass increases at the mesopredator 

level from cascading effects and lower-level prey suppression cannot be attributed specifically to reef 

sharks and other slow-growing elasmobranchs. This is a factor that has been ignored relative to 

cascading effects suggested to be caused between other elasmobranchs (Grubbs et al. 2016). There is 

also potential that loss of larger sharks (or transience) may in fact allow reef sharks to adaptively fill 

an apex role with lower risk of predation by larger shark species.  
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While this thesis addresses some gaps in the literature, there are many areas to direct future research 

which can further inform functional roles of reef sharks. These are based mainly on interactions 

among predators and between predator and prey. These interactions are difficult to observe in situ, but 

this information would help to understand behavioural effects predators may have on their prey. With 

new technologies, possibilities are arising to include non-consumptive effects such as landscapes of 

fear outside of experimental stages and may be beneficial to include in future food web and ecosystem 

models (Lester et al. 2020; Mitchell and Harborne 2020). Further analysis of the BRUVS data 

collected (Chapter 6) in this thesis may give insights into this area (Bierwagen, unpublished 

observations). However, baited influence can alter true natural behaviours and needs to be considered 

in the interpretation of these types of observations. Behavioural interactions have also helped to 

clarify instances where morphological traits such as gape size were assumed to limit capacity of reef 

sharks to consume large bodied mesopredators such as grouper (Mourier et al. 2016). New techniques 

in analysis of animal monitoring such as network analysis and individual based models will also help 

to reveal individual and species-level distinctions in behaviour around reefs. These analysis 

techniques have benefited the understanding of potential consequences of exploitation and social 

networks in areas such as French Polynesia (Mourier et al. 2017) and spatial separation of species in 

Palmyra (Papastamatiou et al. 2018) and the Great Barrier Reef (Heupel et al. 2018).  

 

Use of new techniques can also expand our understanding of the ecology of reef sharks (Carrier et al. 

2018; Heupel et al. 2019). Methods such as analysis of stomach contents through DNA 

metabarcoding combined with fatty acid or compound specific stable isotope analysis will provide a 

better picture of dietary preferences between and among reef-dwelling species. DNA barcoding has 

been used in other mesopredator species such as coral trout, giving much greater detail on diet 

composition (Matley et al. 2018). Application of this methodology would greatly improve our 

understanding of food web linkages as well as potential spatial differences in diet based on prey 

availability. One other area that is understudied is nocturnal behaviour and activities of reef-dwelling 

species. Nocturnal observations of reef sharks have provided new information on how reef sharks feed 
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both mechanistically and opportunistically (Mourier et al. 2016). Future efforts in researching diet and 

behaviour of reef sharks should consider including nocturnal data in their framework. 

 

7.7 Concluding Statement 

 

Overall this thesis provides evidence of both trophic and spatial separation of reef shark species with 

varying degrees of abundance across reefs in the central GBR. This provides new insights into how 

reef sharks use resources from a fine-scale perspective, indicating areas of more specialisation than 

previously considered. The range of variability found in many aspects of this thesis for reef 

communities and associated shark species should be considered in the future as they may have 

implications for management. Additionally,  employing multi-method approaches as described in this 

thesis will be beneficial in the future to understand how to best manage resilience of species and 

systems considering the compounding effects of negative climate impacts in the future. Finally, this 

thesis provides some positive conclusions that reefs under current pressure remain resilient, and 

abundance of some reef shark species are not declining at rates previously reported for the central 

GBR. However, future threats should be examined with caution as reef sharks are in decline in many 

regions across the world. 
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Appendices – Supplementary Materials 
Chapter 2 

Table S2-a: Table of search keywords and resulting numbers of publications from a search 
within: “tropical”  

Search Engine Search Terms **Publications 

Google 

Scholar 

trophic + coral reef + tropical 19600 

trophic forcing or trophic control + coral reef 5 

trophic role or trophic position + coral reef 98 

trophic dynamic or trophodynamic + coral reef  28 

Web of 

Science 

trophic + coral reef + tropical 97 

trophic forcing or trophic control + coral reef 10 

trophic role or trophic position + coral reef 685 

trophic dynamic or trophodynamic + coral reef  88 

Scopus 

trophic + coral reef + tropical 7409 

trophic forcing or trophic control + coral reef 216 

trophic role or trophic position + coral reef 784 

trophic dynamic or trophodynamic + coral reef  250 

**Initial searches took place October 6, 2015 and were re-performed on February 15, 2016 to 
include recent publications 
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Table S2-b: Number of publications (N=291) by year of top keywords returned from “food 
web” and “trophic” searches relative to coral reefs from 2011-2016 

Keyword 2011 2012 2013 2014 2015 2016 
Fish 22 19 24 22 34 34 
Habitat 12 10 16 17 15 23 
Herbivore 4 11 5 8 9 15 
Predator/s 8 3 9 13 29 24 
Caribbean 4 3 3 7 11 8 
Trophic Structure 4 6 3 10 1 10 
Community Structure 4 6 5 5 8 3 
Pomacentridae 3 5 4 1 6 6 
Trophic Cascade 3 3 0 1 3 9 
Trophic Interaction 2 3 6 3 4 0 
Great Barrier Reef 1 2 2 4 3 4 
Sponge 1 1 1 0 6 2 
Habitat Use 0 1 2 2 2 1 
Red Sea 0 0 1 2 3 2 
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Chapter 3 

Table S3-a: Fish taxa listed by genus/species, family, and trophic group used in analysis. 

Species Family Trophic Group Species Family Trophic Group 
Acanthurus albipectoralis Acanthuridae Planktivore Cephalopholus boenak Serranidae Pisci-invertivore 
Acanturhus auranticavus Acanthuridae Grazer Cephalopholus cyanostigma Serranidae Pisci-invertivore 
Acanthurus blochii Acanthuridae Grazer Cephalopholus microprion Serranidae Pisci-invertivore 
Acanthurus dussumeri Acanthuridae Grazer Cephalopholus miniata Serranidae Pisci-invertivore 
Acanthurus grammoptilus Acanthuridae Grazer Cephalopholus urodeta Serranidae Pisci-invertivore 
Acanthurus lineatus Acanthuridae Grazer Cetoscarus bicolor Scaridae Excavator/Scraper 
Acanthurus mata Acanthuridae Planktivore Chaetodon aureofasciatus Chaetodontidae Corallivore 
Acanthurus nigricans Acanthuridae Grazer Chaetodon auriga Chaetodontidae Micro-invertivore 
Acanthurus nigriofuscus Acanthuridae Grazer Chaetodon baronessa Chaetodontidae Corallivore 
Acanthurus nigricauda Acanthuridae Grazer Chaetodon bennetti Chaetodontidae Corallivore 
Acanthurus olivaceus Acanthuridae Detritivore Chaetodon citrinellus Chaetodontidae Micro-invertivore 
Acanthurus pyroferus Acanthuridae Grazer Chaetodon ephippium Chaetodontidae Micro-invertivore 
Acanthurus thompsoni Acanthuridae Planktivore Chaetodon falcula Chaetodontidae Micro-invertivore 
Acanthurus triostegus Acanthuridae Grazer Chaetodon kleinii Chaetodontidae Micro-invertivore 
Acanthrus xanthopterus Acanthuridae Grazer Chaetodon lineolatus Chaetodontidae Micro-invertivore 
Acanthrochromis polyacanthus Pomacentridae Omnivorous Pomacentridae Chaetodon lunula Chaetodontidae Micro-invertivore 
Amblyglyphidodon aureus Pomacentridae Planktivore Chaetodon melannotus Chaetodontidae Corallivore 
Amblyglyphidodon curacao Pomacentridae Omnivorous Pomacentridae Chaetodon mertensii Chaetodontidae Micro-invertivore 
Amblygliphidodon leucogaster Pomacentridae Omnivorous Pomacentridae Chaetodon meyeri Chaetodontidae Corallivore 
Amphiprion akindynos Pomacentridae Omnivorous Pomacentridae Chaetodon ornatissimus Chaetodontidae Corallivore 
Amphiprion chrysopterus Pomacentridae Omnivorous Pomacentridae Chaetodon pelewensis Chaetodontidae Micro-invertivore 
Amphiprion clarkii Pomacentridae Omnivorous Pomacentridae Chaetodon plebeius Chaetodontidae Corallivore 
Amphiprion melanopus Pomacentridae Omnivorous Pomacentridae Chaetodon puncatofasciatus Chaetodontidae Micro-invertivore 
Amphiprion percula Pomacentridae Omnivorous Pomacentridae Chaetodon rafflesii Chaetodontidae Micro-invertivore 
Amphiprion perideraion Pomacentridae Omnivorous Pomacentridae Chaetodon rainfordi Chaetodontidae Corallivore 
Anyperodon leucogrammicus Serranidae Piscivore Chaetodon reticulatus Chaetodontidae Corallivore 
Bolbometapon muricatum Scaridae Excavator/Scraper Chaetodon speculum Chaetodontidae Micro-invertivore 
Calotomus carolinus Scaridae Browser Chaetodon trifascialis Chaetodontidae Corallivore 
Cephalopholis argus Serranidae Pisci-invertivore Chaetodon trifasciatus Chaetodontidae Corallivore 
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Chaetodon ulitensis Chaetodontidae Micro-invertivore Coris gaimard Labridae Micro-invertivore 
Chaetodon unimaculatus Chaetodontidae Corallivore Cromileptes altivelis Serranidae Piscivore 
Chaetodon vagabundus Chaetodontidae Micro-invertivore Ctenochaetus spp Acanthuridae Detritivore 
Chelinus fasciatus Labridae Macro-invertivore Dascyllus aruanus Pomacentridae Planktivore 
Chelinus undulatus Labridae Macro-invertivore Dascyllus melanurus Pomacentridae Planktivore 
Chelmon rostratus Chaetodontidae Micro-invertivore Dascyllus reticulatus Pomacentridae Planktivore 
Choerodon fasciatus Labridae Micro-invertivore Dascyllus trimaculatus Pomacentridae Planktivore 
Chromis agilis Pomacentridae Planktivore Dischistodus melanotus Pomacentridae Detritivore 
Chromis amboinensis Pomacentridae Planktivore Dischistodus perspicillatus Pomacentridae Detritivore 
Species Family Trophic Group Species Family Trophic Group 
Chromis atripectoralis Pomacentridae Planktivore Dischistodus prosopotaeinia Pomacentridae Detritivore 
Chromis chrysura Pomacentridae Planktivore Dischistodus pseudochrysopoecilus Pomacentridae Detritivore 
Chromis iomelas Pomacentridae Planktivore Epibulus insidiator Labridae Pisci-invertivore 
Chromis lepidolepis Pomacentridae Planktivore Epinephelus coioides Serranidae Piscivore 
Chromis lineata Pomacentridae Planktivore Epinephelus cyanopodus Serranidae Piscivore 
Chromis margaritifer Pomacentridae Planktivore Epinephelus fasciatus Serranidae Piscivore 
Chromis nitida Pomacentridae Planktivore Epinephelus fuscoguttatus Serranidae Piscivore 
Chromis retrofasciata Pomacentridae Planktivore Epinephelus lanceolatus Serranidae Piscivore 
Chromis ternatensis Pomacentridae Planktivore Epinephelus macrospilos Serranidae Piscivore 
Chromis vanderbilti Pomacentridae Planktivore Epinephelus merra Serranidae Piscivore 
Chromis weberi Pomacentridae Planktivore Epinephelus ongus Serranidae Piscivore 
Chromis xanthura Pomacentridae Planktivore Epinephelus quoyanus Serranidae Piscivore 
Chlorurus bleekeri Scaridae Excavator/Scraper Epinephelus spilotoceps Serranidae Piscivore 
Chlorurus frontalis Scaridae Excavator/Scraper Epinephelus tauvina Serranidae Piscivore 
Chlorurus japanensis Scaridae Excavator/Scraper Epinephelus undulosus Serranidae Piscivore 
Chlorurus microrhinos Scaridae Excavator/Scraper Forcipiger flavissimus Chaetodontidae Micro-invertivore 
Chlorurus sordidus Scaridae Excavator/Scraper Forcipiger longirostrus Chaetodontidae Micro-invertivore 
Chrysiptera flavipinnis Pomacentridae Planktivore Gnathodon aureolineatus Lethrinidae Pisci-invertivore 
Chrysiptera rex Pomacentridae Omnivorous Pomacentridae Gomphosus varius Labridae Micro-invertivore 
Chrysiptera rollandi Pomacentridae Micro-invertivore Halichoeres hortulanus Labridae Micro-invertivore 
Chrysiptera talboti Pomacentridae Planktivore Hemigymnus fasciatus Labridae Macro-invertivore 
Hemigymnus melapturus Labridae Macro-invertivore Lutjanus vitta Lutjanidae Pisci-invertivore 
Hemiglyphidodon 
plagiometopon Pomacentridae Grazer Macolor spp Lutjanidae Pisci-invertivore 

Hipposcarus longiceps Scaridae Excavator/Scraper Monotaxis grandoculus Lethrinidae Macro-invertivore 
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Hemitaurichthys polyepis Chaetodontidae Planktivore Naso lituratus Acanthuridae Broswer 
Lethrinus atkinsoni Lethrinidae Pisci-invertivore Naso tuberosus Acanthuridae Planktivore 
Lethrinus erythropterus Lethrinidae Pisci-invertivore Naso unicornis Acanthuridae Browser 
Lethrinus erythracanthus Lethrinidae Pisci-invertivore Neoglyphidodon melas Pomacentridae Micro-invertivore 
Lethrinus harak Lethrinidae Pisci-invertivore Neoglyphidodon nigroris Pomacentridae Planktivore 
Lethrinus miniatus Lethrinidae Pisci-invertivore Neoglyphidodon polyacanthus Pomacentridae Planktivore 
Lethrinus nebulosus Lethrinidae Pisci-invertivore Neopomacentrus azysron Pomacentridae Planktivore 
Lethrinus obsoletus Lethrinidae Pisci-invertivore Neopomacentrus bankieri Pomacentridae Planktivore 
Lethrinus olivaceus Lethrinidae Pisci-invertivore Neopomacentrus cyanomos Pomacentridae Planktivore 
Lethrinus ornatus Lethrinidae Pisci-invertivore Pomacrhomis richardsoni Pomacentridae Planktivore 
Lethrinus rubrioperculatus Lethrinidae Pisci-invertivore Paracanthurus hepatus Acanthuridae Planktivore 
Lethrinus xanthochilus Lethrinidae Pisci-invertivore Plectroglyphidodon dickii Pomacentridae Micro-invertivore 
Lutjanus adetti Lutjanidae Pisci-invertivore Plectroglyphidodon jonstonianus Pomacentridae Corallivore 
Lutjanus argentimaculatus Lutjanidae Pisci-invertivore Plectroglyphidodon lacrymatus Pomacentridae Grazer 
Lutjanus bohar Lutjanidae Piscivore Plectropomus areolatus Serranidae Piscivore 
Species Family Trophic Group Species Family Trophic Group 
Lutjanus carponotatus Lutjanidae Pisci-invertivore Siganus doliatus Siganidae Grazer 
Lutjanus fulviflamma Lutjanidae Pisci-invertivore Siganus lineatus Siganidae Grazer 
Lutjanus fulvus Lutjanidae Pisci-invertivore Plectropomus laevis Serranidae Piscivore 
Lutjanus gibbus Lutjanidae Pisci-invertivore Siganus punctatissimus Siganidae Grazer 
Lutjanus kasmira Lutjanidae Pisci-invertivore Siganus punctatus Siganidae Grazer 
Lutjanus Lutjanidae Pisci-invertivore Siganus puellus Siganidae Grazer 
Lutjanus lutjanus Lutjanidae Pisci-invertivore Siganus vulpinus Siganidae Grazer 
Lutjanus monostigma Lutjanidae Pisci-invertivore Stegastes apicales Pomacentridae Grazer 
Lutjanus quinquelineatus Lutjanidae Pisci-invertivore Plectropomus maculatus Serranidae Piscivore 
Lutjanus rivulatus Lutjanidae Pisci-invertivore Pomacentrus adelus Pomacentridae Grazer 

Lutjanus russeli Lutjanidae Pisci-invertivore Pomacentrus amboinensis Pomacentridae Omnivorous 
Pomacentridae 

Lutjanus sebae Lutjanidae Pisci-invertivore Pomacentrus australis Pomacentridae Omnivorous 
Pomacentridae 

Pomacentrus moluccensis Pomacentridae Omnivorous Pomacentridae Pomacentrus bankieri Pomacentridae Grazer 

Pomacentrus nagasakiensis Pomacentridae Omnivorous Pomacentridae Pomacentrus brachialis Pomacentridae Omnivorous 
Pomacentridae 

Pomacentus philippinus Pomacentridae Planktivore Pomacentrus chrysura Pomacentridae Grazer 
Pomacentrus vaiuli Pomacentridae Grazer Pomacentrus coelestis Pomacentridae Planktivore 
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Pomacentrus wardi Pomacentridae Grazer Pomacentrus grammnorhyncus Pomacentridae Grazer 
Premnas biaculeatus Pomacentridae Omnivorous Pomacentridae Pomacentrus lepidogenys Pomacentridae Planktivore 
Scarus altipinnis Scaridae Excavator/Scraper Stegastes fasciolatus Pomacentridae Grazer 
Scarus chameleon Scaridae Excavator/Scraper Stegastes gascoynei Pomacentridae Grazer 
Scarus dimidiatus Scaridae Excavator/Scraper Stegastes nigricans Pomacentridae Grazer 
Scarus flavipectoralis Scaridae Excavator/Scraper Variola louti Serranidae Piscivore 
Scarus forsteni Scaridae Excavator/Scraper Zanclus cornutus Acanthuridae Micro-invertivore 
Scarus frenatus Scaridae Excavator/Scraper Zebrasoma scopus Acanthuridae Grazer 
Scarus ghobban Scaridae Excavator/Scraper Zebrasoma veliferum Zanclidae Grazer 
Scarus globiceps Scaridae Excavator/Scraper    
Scarus longipinnis Scaridae Excavator/Scraper    

Scarus niger Scaridae Excavator/Scraper    

Scarus oviceps Scaridae Excavator/Scraper    

Scarus psittacus Scaridae Excavator/Scraper    
Scarus rivulatus Scaridae Excavator/Scraper    
Scarus rubrioviolaceus Scaridae Excavator/Scraper    

Scarus schlegeli Scaridae Excavator/Scraper    

Scarus spinus Scaridae Excavator/Scraper    
Siganus argenteus Siganidae Grazer    
Siganus corallinus Siganidae Grazer    
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Table S3-b: Benthic Stepwise ordination model with pseudo-AIC output of constrained capscale ordination methods. Bold model is the best 
performing model (LTMP.diss~Reef:Year+Site+Corallivore+Land Distance, AIC: 819.97) 
Start: LTMP.diss ~ 1 Step 3: LTMP.diss ~ Site + Corallivore + Reef:Year 

 Df  AIC F Pr(>F)    Df AIC F Pr(>F)  
+ Reef:Year 23 828.12 11.9157 0.005 ** - Corallivore 1 823.31 3.8533 0.03 * 
+ Dist_Land 1 943.51 59.4782 0.005 ** - Site 2 826.3 4.2788 0.01 ** 
+ Corallivore 1 990.26 8.638 0.005 ** - Reef:Year 23 989.43 11.7758 0.005 ** 
+ Site 2 996.02 2.4077 0.03 *   Df AIC F Pr(>F)  
Step 1: LTMP.diss ~ Reef:Year + Dist_Land 1 819.97 2.9642 0.04 * 

 Df  AIC F Pr(>F)  Step 4: LTMP.diss ~ Site + Corallivore + Dist_Land + Reef:Year 
- Reef:Year 23 996.84 11.916 0.005 **   Df AIC F Pr(>F)  

       - Dist_Land 1 821.17 2.9642 0.055 . 
 Df  AIC F Pr(>F)  - Corallivore 1 822.42 4.1294 0.02 * 

+ Site 2 823.31 4.1355 0.005 ** - Site 2 823.68 3.5962 0.005 ** 
+ Dist_Land 1 825.88 3.969 0.01 ** - Reef:Year 23 936.32 8.2258 0.005 ** 
+ Corallivore 1 826.3 3.5674 0.015 *  
Step 2: LTMP.diss ~ Site + 
Reef:Year 

 Df  AIC F Pr(>F)  
- Site 2 828.12 4.1355 0.01 ** 
- Reef:Year 23 996.02 12.1381 0.005 ** 

 Df  AIC F Pr(>F)  
+ Corallivore 1 821.17 3.8533 0.015 * 
+ Dist_Land 1 822.42 2.6856 0.07 . 
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Table S3-c: Fish Stepwise ordination model with AIC output of constrained capscale ordination method. Bold model is the best performing 
model (LTMP.diss~Reef:Year+Acropora+Non-Acropora+Land Distance, AIC 680.84) 
 

Start: LTMP.diss ~ 1 Step 2: LTMP.diss ~ Non_Acropora + Reef:Year 
  Df AIC F Pr(>F)    Df AIC F  Pr(>F)  

+ Reef:Year 23 689.28 5.2842 0.005 ** - Non_Acropora 1 689.28  7.0325 0.005 ** 
+ Dist_Land 1 722.16 35.749 0.005 ** - Reef:Year 23 750.28  5.342 0.005 ** 
+ Zone 1 743.47 13.1194 0.005 **   Df AIC F  Pr(>F)  
+ Acropora 1 750.09 6.3566 0.005 ** + Dist_Land 1 681.13  4.3597 0.005 ** 
+ Non_Acropora 1 750.28 6.1662 0.005 ** + Site 2 682.86  2.2989 0.03 * 
+ Turf_Algae 1 751.29 5.1419 0.005 ** + Acropora 1 683.53  2.113 0.06 . 
+ Soft_Coral 1 753.07 3.3517 0.005 ** + Macroalgae 1 684.35  1.3446 0.285  
+ Site 2 754.29 2.0623 0.025 * + Soft_Coral 1 684.57  1.1357 0.375  
+ Macroalgae 1 755.37 1.0486 0.46  + Turf_Algae 1 685.29  0.4737 0.76  

       + Zone 0 683.8     

Step 1: LTMP.diss ~ Reef:Year Step 3: LTMP.diss ~ Non_Acropora + Dist_Land + Reef:Year 
Df AIC F Pr(>F) 

- Reef:Year  23  754.43  5.2842  0.005 ** 
Df AIC F  Pr(>F) 

+ Non_Acropora 1 683.8 7.0325 0.005 ** 
+ Site 2 687.63 2.6384 0.005 ** 
+ Dist_Land 1 687.47 3.5615 0.015 * 
+ Acropora 1 689.15 1.9858 0.12 
+ Soft_Coral 1 689.66 1.5069 0.18 
+ Turf_Algae 1 689.82 1.3549 0.24 
+ Macroalgae 1 689.92 1.2677 0.31 
+ Zone 0 689.28 

 
- 
- 
- 

 
+ 
+ 
+ 
+ 
+ 
+ 

 
Dist_Land 
Non_Acropora 
Reef:Year 

 
Acropora 
Soft_Coral 
Site 
Macroalgae 
Turf_Algae 
Zone 

Df 
1 
1 

23 
Df 

1 
1 
2 
1 
1 
0 

AIC 
683.8 

687.47 
716.14 

AIC 
680.84 
681.64 
682.37 
681.67 
682.63 
681.13 

F 
 
 
 

F 

 
4.3597 
7.8287 
3.6647 
 
2.1237 
1.3819 
1.2778 
1.3468 
0.4589 

Pr(>F) 
0.005 
0.005 
0.005 

Pr(>F) 
0.07 
0.26 
0.28 

0.285 
0.81 

 
** 
** 
** 

 
. 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table S3-d: Adonis PERMANOVA model output of benthic and fish communities formula: from best performing model produced by the 
ordination method  
Benthic: formula: adonis(Benthic Diss~Reef*Year+Site+Land Distance+Corallivore) 

Fish: adonis(Fish Diss~Reef*Year+Land Distance+Acropora+non-Acropora) 

 

Benthic Community Dissimilarity 

Predictors df SumsOfSqs MeanSqs F.Model R2 Pr(>F)  
Reef:Year 23 4.771 0.20743 8.226 0.30009 0.001 *** 

Land Distance 1 2.2651 2.26506 89.821 0.14247 0.001 *** 
Site 2 0.2099 0.10493 4.161 0.0132 0.001 *** 

Corallivore 1 0.2804 0.28036 11.118 0.01763 0.001 *** 
Fish Community Dissimilarity 

Predictors df SumsOfSqs MeanSqs F.Model R2 Pr(>F)  
Reef:Year 23 1.4276 0.06207 3.613 0.17608 0.001 *** 
Acropora 1 0.0814 0.08136 4.736 0.01003 0.001 *** 

non-Acropora 1 0.1427 0.14268 8.306 0.0176 0.001 *** 
Land Distance 1 0.7361 0.73614 42.854 0.09079 0.001 *** 
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Table S3-e: Tukey’s post-hoc results from generalized linear mixed effect models (Poisson distribution) for overall mean fish density, species 
richness, and 11 functional groups with a reef conditional on year pairwise comparison. Model structures, estimates, and p-values are listed in 
the table (p-value significance: 33 *=<0.05, **=<0.01) 

Benthic Cover 
Function Reef Comparison 2006 2008 2010 2012 2014 2016 Function Reef Comparison 2006 2008 2010 2012 2014 2016 

 lmer(Acropora~Reef:Year+Land Distance+(1|Reef/Site)    lmer(Coralline~Reef:Year+Land Distance+Corallivore+(Year|Reef/Site)  
 Chicken Helix -4.90 1.07 -1.20 10.38 4.65 5.35  Chicken Helix -63.47 -54.31 -49.76 -48.56 -41.23 -48.70 
  Knife -9.16 -8.75 -6.82 -0.29 -3.95 -1.18   Knife 19.62 21.28 23.13 23.48 26.47 20.50 

Acropora 
  

 
 Rib  9.77  10.12  7.05  13.69  15.61  1.94  Coralline       

Algae 
 Rib  -115.02  -108.85  -101.31  -99.90  -91.31  -96.70  

 Helix Knife -4.25 -9.82 -5.62 -10.67 -8.60 -6.54 Helix Knife 83.10 75.59 72.89 72.04 67.69 69.20 
  Rib  14.67  9.05  8.25  3.31  10.96  -3.41    Rib  -51.55  -54.54  -51.55  -51.34  -50.08  -48.00  

 Knife Rib 18.92 18.87 13.87 13.99 19.57 3.12  Knife Rib -134.65 -130.12 -124.44 -123.38 -117.77 -117.20 

lmer(Acropora~Reef:Year+Land Distance+Corallivore+(1|Reef/Site)     lmer(Turf Algae~Reef:Year+Land Distance+(Year|Reef/Site)   
 Chicken Helix -25.56 -25.54 -26.21 -28.23 -31.29 -31.38  Chicken Helix 52.66 36.79 32.17 30.25 27.23 38.96 
  Knife 3.01 5.07 4.20 8.47 7.81 5.52   Knife -1.22 -9.92 -14.21 -19.90 -19.66 -14.72 

Non-Acropora   
  

 
 Rib  -46.12  -47.30  -50.16  -55.08  -56.82  -55.32  Turf Algae   

  
 

 Rib  94.25  75.41  68.29  79.32  66.05  87.46  

 Helix Knife 28.57 30.61 30.40 36.70 39.10 36.90  Helix Knife -53.88 -46.72 -46.38 -50.15 -46.88 -53.68 
  Rib  -20.56  -21.76  -23.95  -26.85  -25.52  -23.94    Rib  41.59  38.61  36.13  49.07  38.82  48.50  

 Knife Rib -49.12 -52.37 -54.35 -63.54 -64.63 -60.84  Knife Rib 95.47 85.33 82.50 99.22 85.70 102.18 
 lmer(Soft Coral~Reef:Year+Land Distance+(1|Reef/Site)     lmer(Sponge~Reef:Year+Land Distance+(Year|Reef/Site)   
 Chicken Helix 46.5 47.3 49.1 40.6 42.3 41.7  Chicken Helix 4.30 4.35 4.44 5.14 5.21 5.11 
  Knife -9.8 -8.6 -7.5 -13.1 -11.2 -13.9   Knife -1.94 -1.87 -2.14 -1.50 -1.97 -1.47 

Soft Coral 
  

 
 Rib  77.7  82.2  82.1  74.4  76.9  74.3  Sponge 

  
 

 Rib  8.19  8.16  8.56  9.39  8.13  7.86  

 Helix Knife -56.2 -55.9 -56.5 -53.6 -53.5 -55.6  Helix Knife -6.24 -6.22 -6.57 -6.64 -7.17 -6.57 
  Rib  31.3  34.9  33.0  33.8  34.6  32.6      Rib  3.90  3.81  4.12  4.26  2.92  2.75  

 Knife Rib 87.5 90.8 89.5 87.5 88.1 88.2  Knife Rib 10.14 10.03 10.70 10.90 10.10 9.33 

  lmer(Macroalage~Reef:Year+Land Distance+(Year|Reef/Site)             

 Chicken Helix 2.06 1.11 2.94 0.34 2.11 -2.26          
  Knife 0.26 0.25 1.68 0.71 1.75 2.35          

Macroalgae 
  

 
 Rib  -10.04  -0.37  3.87  -1.33  2.44  2.37           

 Helix Knife -1.80 -0.86 -1.26 0.37 -0.36 4.61          
    Rib  -12.10  -1.48  0.93  -1.67  0.33  4.62           
 Knife Rib -10.30 -0.62 2.19 -2.04 0.69 0.02          
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Table S3-f: Tukey’s post-hoc results from generalized linear mixed effect models for benthic 
cover of 6 categories with a reef conditional on year pairwise comparison. Model structures, 
estimates, and p-values are listed in the table (p-value significance: *=<0.05, **=<0.01) 
 

Fish Densities 
Function Reef Comparison 2006 2008 2010 2012 2014 2016 

glmer(Fish Density~Reef:Year+Land Distance+Acropora+Non Acropora+(Year|Reef/Site), family=poisson) 
 Chicken Helix -1.63 -1.47 -1.45 -1.29 -1.39 -1.03  
  Knife 0.82 0.60 0.58 0.71 1.04 0.89  

Overall Mean Fish  Rib -3.13 -3.72 -3.42 -2.71 -2.97 -3.24  

Density Helix Knife 2.45 2.07 2.03 2.00 2.43 1.92  
  Rib -1.50 -2.25 -1.97 -1.41 -1.59 -2.21  
 Knife Rib -3.95 -4.32 -3.99 -3.41 -4.02 -4.13  

glmer(Species Richness~Reef:Year+Land Distance+Acropora+Non Acropora+(Year|Reef/Site), family=poisson) 
 Chicken Helix 0.75 0.80 0.73 0.92 1.04 1.15 
  Knife -0.15 -0.12 -0.14 -0.24 -0.06 -0.12 
  Rib 1.47 1.43 1.52 1.72 1.81 1.62 

Species Richness Helix Knife -0.90 -0.91 -0.88 -1.16 -1.10 -1.27 
  Rib 0.73 0.63 0.79 0.80 0.76 0.47 
 Knife Rib 1.63 1.54 1.66 1.95 1.86 1.74 

glmer(Detritivore~Reef:Year+Land Distance+Acropora+Non Acropora+Turf Algae+Macroalgae+(Year|Reef/Site), family=poisson) 
 Chicken Helix 9.27 ** 9.51 ** 9.95 ** 10.39 ** 10.42 ** 10.46 ** 
  Knife -2.70 ** -2.35  -1.91 ** -2.71 ** -2.60 ** -2.01  
  Rib 18.17 ** 17.90 ** 18.76 ** 18.70 ** 18.63 ** 18.32 ** 

Detritivore   -  -  -  -  -  -  
 Helix Knife 11.96 ** 11.86 ** 11.86 ** 13.09 ** 13.01 ** 12.47 ** 
  Rib 8.90 ** 8.39 ** 8.81 ** 8.31 ** 8.21 ** 7.86 ** 
 Knife Rib 20.87 ** 20.25 ** 20.67 ** 21.41 ** 21.22 ** 20.33 ** 

glmer(Planktivore~Reef:Year+Land Distance+Acropora+Non Acropora+(Year|Reef/Site), family=poisson) 
 Chicken Helix -3.38 * -3.83 ** -3.93 ** -4.25 ** -4.26 ** -3.60 ** 
  Knife 2.09 ** 1.69 ** 1.70 ** 1.28  2.28 ** 1.84 ** 
  Rib -8.25 ** -9.19 ** -8.82 ** -8.30 ** -8.35 ** -8.35 ** 

Planktivore Helix Knife 5.47 ** 5.52 ** 5.63 ** 5.53 ** 6.54 ** 6.54 ** 
  Rib -4.87 ** -5.37 ** -4.89 ** -4.06 ** -4.09 ** -4.09 ** 
  

Knife 
 

Rib 
- 

10.34 
 

** 
- 

10.88 
 

** 
- 

10.53 
 

** 
 

-9.58 
 

** 
- 

10.63 
 

** 
- 

10.63 
 

** 
glmer(Grazer~Reef:Year+Land Distance+Acropora+Non Acropora+Turf Algae+Macroalgae+(Year|Reef/Site), family=poisson) 

 Chicken Helix -0.29 -0.44 -0.08 -0.02 -0.28 -0.39 
  Knife 0.20 -0.23 0.06 0.30 0.28 0.33 
  Rib -0.78 -0.79 -0.51 -0.07 -0.31 -0.35 

Grazer Helix Knife 0.49 0.21 0.14 0.32 0.56 0.72 
  Rib -0.49 -0.35 -0.43 -0.05 -0.03 0.05 
 Knife Rib -0.97 -0.56 -0.57 -0.37 -0.59 -0.68 

glmer(Omniv Pom~Reef:Year+Land Distance+Acropora+Non Acropora+(Year|Reef/Site), family=poisson) 
 Chicken Helix 2.36 2.84 3.06 3.91 4.76 3.87  
  Knife 0.01 -0.92 0.05 -0.55 -0.81 -0.69  

Omnivorous  Rib 5.37 5.46 5.64 6.84 7.04 5.59 ** 
Pomacentrid Helix Knife -2.35 -3.76 -3.01 -4.46 -5.57 -4.57  

  Rib 3.01 2.61 2.59 2.93 2.28 1.72 ** 
 Knife Rib 5.36 6.38 5.59 7.39 7.85 6.29 ** 

glmer(Piscivore~Reef:Year+Land Distance+Acropora+Non Acropora+(Year|Reef/Site), family=poisson) 
 Chicken Helix -4.5 -3.3 -4.0 -4.4 -4.9 13.9 
  Knife 1.4 1.2 1.7 2.1 1.9 1.9 
  Rib -8.8 -9.2 -8.1 -9.0 -8.2 -8.3 

Piscivore Helix Knife 5.8 4.5 5.8 6.5 6.9 -12.1 
  Rib -4.4 -5.9 -4.1 -4.6 -3.3 -22.3 
 Knife Rib -10.2 -10.4 -9.9 -11.1 -10.1 -10.2 

glmer(Excavator/Scraper~Reef:Year+Land Distance+Turf Algae+Macroalgae+(Year|Reef/Site), family=poisson) 
 Chicken Helix -6.67 ** -6.81 ** -7.21 ** -6.28 ** -6.30 ** -6.55 ** 
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  Knife 2.19 ** 2.44 ** 2.28 ** 2.89 ** 2.84 ** 2.35 ** 
Excavator/Scraper   -  -  -  -  -  -  

  Rib 13.28 ** 13.41 ** 13.48 ** 12.20 ** 12.81 ** 12.89 ** 
 Helix Knife 8.86 ** 9.25 ** 9.49 ** 9.17 ** 9.14 ** 8.90 ** 
  Rib -6.61 ** -6.61 ** -6.27 ** -5.92 ** -6.50 ** -6.33 ** 
 -  -  - -  -  -  

Knife Rib 15.47 ** 15.86 ** 15.76 ** 15.09 ** 15.64 ** 15.23 ** 
           

Function Reef Comparison 2006 2008 2010 2012  2014  2016  

glmer(Browser~Reef:Year+(Year|Reef/Site), family=poisson) 
 Chicken Helix 0.29 -0.61 -0.26 1.17 -0.68 17.78  
  Knife 0.39 -0.42 0.49 1.86 -0.36 1.72 * 
  Rib 0.68 -0.52 0.03 0.25 -0.85 0.71  

Browser  
Helix 

 
Knife 

 
0.10 

 
0.20 

 
0.75 

 
0.69 

 
0.32 

- 
16.05 

 

   
Rib 

 
0.40 

 
0.09 

 
0.29 

 
-0.92 

 
-0.17 

- 
17.06 

 

 Knife Rib 0.30 -0.10 -0.46 -1.61 -0.49 -1.01  

glmer(Pisc Invert~Reef:Year+Land Distance+Acropora+Non Acropora+(Year|Reef/Site), family=poisson) 
 Chicken Helix -1.40 -2.36 -1.43 -2.02 -0.59 0.59 
  Knife 0.90 -0.08 1.17 0.27 2.31 0.43 
  Rib -3.45 -4.04 -3.14 -3.87 -2.46 -3.18 

Piscivorous Invertivore Helix Knife 2.30 2.28 2.60 2.29 2.90 -0.17 
  Rib -2.06 -1.68 -1.71 -1.84 -1.86 -3.77 
 Knife Rib -4.36 -3.96 -4.31 -4.14 -4.77 -3.60 

glmer(Corallivore~Reef:Year+Land Distance+Acropora+Non Acropora+(Year|Reef/Site), family=poisson) 
 Chicken Helix 6.64  7.24  7.04 7.40 7.67 8.22 * 
  Knife -3.06 * -2.25  -2.88 * -3.27 * -2.86 * -2.35  
  Rib 14.08  14.41  14.17 14.09 14.05 13.70  

Corallivore  
Helix 

 
Knife 

 
-9.69 

  
-9.49 

  
-9.92 

- 
10.67 

- 
* 10.53 

- 
* 10.57 

 
* 

  Rib 7.45 * 7.17 * 7.13 * 6.68 6.37 5.49  
 Knife Rib 17.14 * 16.66  17.05 * 17.36 * 16.91 * 16.06  

glmer(Micro-invert~Reef:Year+Land Distance+Acropora+Non Acropora+(Year|Reef/Site), family=poisson) 
 Chicken Helix -2.43 -2.08 -2.24 -1.74 -2.09 -1.91 
  Knife 0.46 0.75 0.76 0.54 0.73 1.14 
  Rib -3.84 -4.19 -4.36 -3.94 -4.27 -4.57 

Micro-invertivore Helix Knife 2.89 2.83 2.99 2.28 2.82 3.05 
  Rib -1.41 -2.11 -2.12 -2.21 -2.18 -2.66 
 Knife Rib -4.30 -4.94 -5.12 -4.48 -5.00 -5.71 

glmer(Macro-invert~Reef:Year+Land Distance+Acropora+Non Acropora+(Year|Reef/Site), family=poisson) 
 Chicken Helix 1.60 1.55 1.34 0.23 1.36 1.10 
  Knife 0.03 0.08 -0.12 -1.61 -0.60 -1.62 
  Rib 3.13 2.71 2.66 1.79 3.22 2.32 

Macro-invertivore Helix Knife -1.58 -1.47 -1.46 -1.84 -1.96 -2.72 
  Rib 1.53 1.16 1.32 1.56 1.86 1.22 
 Knife Rib 3.10 2.63 2.78 3.40 3.82 3.94 
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Table S3-g: Tukey’s post-hoc results from generalized linear mixed effect models generalized 
linear mixed effect models (Poisson distribution) overall mean fish density, species richness, 
and 11 functional groups with a reef conditional on disturbance comparison. (Pre: years 
<2011, post years>2011) Model structures, estimates, and p-values are listed in the table (p-
value significance: *=<0.05, **=<0.01) 
 

Benthic Disturbance 
Function Reef Pre/Post  Function Reef Pre/Post  

lmer(Acropora~Reef:Year+Land Dist+(1|Reef/Site) lmer(Coralline~Reef:Year+Land Distance+(1|Reef/Site) 
 Chicken 1.55   Chicken 11.96 ** 

Acropora Helix -6.92 ** Coralline Algae Helix 2.11  
Knife -4.88 ** Knife 9.78 ** 

 Rib 0.11   Rib -0.42  

lmer(Non_Acropora~Reef:Year+Land Distance+(1|Reef/Site) lmer(Turf Algae~Reef:Year+Land Distance+(Year|Reef/Site) 
 Chicken -1.43   Chicken -8.21  

Non-Acropora Helix 2.64 * Turf Algae Helix 1.12  
Knife -4.72 ** Knife 0.66  

 Rib 6.57 **  Rib -0.14  

lmer(Soft Coral~Reef:Year+Land Distance+(1|Reef/Site) lmer(Sponge~Reef:Year+Land Distance+(1|Reef/Site) 
 Chicken -7.68 **  Chicken 0.22  

Soft Coral Helix -1.58 * Sponge Helix -0.57  
Knife -3.56 ** Knife -0.12 * 

 Rib -2.21 **  Rib 0.06  

lmer(Macroalage~Reef:Year+Land Distance+(Year|Reef/Site)  
 Chicken 2.09  

Macroalgae Helix 1.17  
Knife 0.56  

 Rib -4.63 * 
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Table S3-h: Tukey’s post-hoc results from generalized linear mixed effect models for benthic cover of 6 categories with a reef conditional on 
disturbance comparison. (Pre: years <2011, post years>2011) Model structures, estimates, and p-values are listed in the table (p-value 
significance: *=<0.05, **=<0.01) 
 

Function Reef Pre/Post Sig Function Reef Pre/Post Sig Function Reef Pre/Post Sig 
 Chicken 0.37 *  Chicken 0.88 **  Chicken -0.5 ** 

Mean Fish Density 
Helix 0.03  Omnivorous 

Pomacentrid 
Helix -0.23  

Corallivore 
Helix -1.09 ** 

Knife 0.22  Knife 0.94 ** Knife -0.46 ** 
 Rib -0.2   Rib 0.05 **  Rib -0.15  
 Chicken 0.54   Chicken 0.44 *  Chicken -0.1  

Species Richness 
Helix -0.28 ** 

Piscivore 
Helix -0.02  

Micro-invertivore 
Helix -0.44  

Knife 0.01  Knife -0.13  Knife -0.16  
 Rib -0.17   Rib 0.23   Rib -0.02  
 Chicken 0.07   Chicken 0.66 *  Chicken -1.12 ** 

Detritivore 
Helix -0.54 * 

Excavator Scraper 
Helix -0.11  

Macro-invertivore 
Helix -0.38 * 

Knife 0.51  Knife 0.17  Knife 0.15  
 Rib -0.13   Rib -0.4 *  Rib -0.66 ** 
 Chicken 0.78 **  Chicken 0.37   

Planktivore 
Helix 0.66 ** 

Browser 
Helix -1.13 * 

Knife 0.56 ** Knife -0.79 * 
 Rib 0.08   Rib 0.15  
 Chicken -0.1   Chicken 0.01   

Grazer 
Helix 0.05  Piscivorous 

Invertivore 
Helix -0.65 * 

Knife -0.21 * Knife -0.36  
 Rib -0.43   Rib -0.28  

 
model structures  

Mean Fish Density glmer(AB~Reef*disturb+Dist_Land+Acropora+Non_Acropora+(Year|Reef/Site),data=data.1, family=poisson) 
Species Richness glmer(SR~Reef*disturb+Dist_Land+Acropora+Non_Acropora+(1|Reef/Site),data=data.1, family=poisson) 
Detritivore glmer(Detritivore~Reef*disturb+Dist_Land+Acropora+Non_Acropora+Macroalgae+Turf_Algae+(Year|Reef/Site),data=data.1, family=poisson) 
Planktivore glmer(Planktivore~Reef*disturb+Dist_Land+Acropora+Non_Acropora+(Year|Reef/Site),data=data.1, family=poisson) 
Grazer glmer(Grazer~Reef*disturb+Dist_Land+Acropora+Non_Acropora+Macroalgae+Turf_Algae+(Year|Reef/Site),data=data.1, family=poisson) 
Omnivorous Pomacentrid glmer(Omniv_Pom~Reef*disturb+Dist_Land+Acropora+Non_Acropora+(Year|Reef/Site),data=data.1, family=poisson) 
Piscivore glmer(Piscivore~Reef*disturb+(1|Reef/Site),data=data.1, family=poisson) 
Excavator/Scraper glmer(Exc_Scraper~Reef*disturb+Dist_Land+Macroalgae+Turf_Algae+(Year|Reef/Site),data=data.1, family=poisson) 
Browser glmer(Browser~Reef*disturb+(1|Reef/Site) 
Pisc-invertivore glmer(Pisc_invert~Reef*disturb+Dist_Land+Acropora+(1|Reef/Site),data=data.1, family=poisson) 
Corallivore glmer(Corallivore~Reef*disturb+Dist_Land+Acropora+Non_Acropora+(Year|Reef/Site),data=data.1, family=poisson) 
Micro-invertivore glmer(Micro_invert~Reef*disturb+Dist_Land+Acropora+(1|Reef/Site),data=data.1, family=poisson) 
Macro-invertivore glmer(Macro_invert~Reef*disturb+(1|Reef/Site),data=data.1, family=poisson) 
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Table S3-i: SIMPER (Similarity of Percentages) comparisons by species with greatest contribution to decline or recovery post disturbance per 
fish functional group by reef 
 

   Rib   Helix  Knife  Chicken 
Functional Group Species Pre Post Contribution (%) Pre Post Contribution (%) Pre Post Contribution (%) Pre Post Contribution (%) 
Detritivore Acanthurus olivaceus 0.02 0.86 14.45 1.49 1.55 21.31    0.00 0.18 1.64 

 Ctenochaetus spp. 6.40 5.70 77.08 5.64 3.38 58.51 5.87 6.85 97.75 9.40 9.82 98.36 
 Dischistodus melanotus 0.22 0.11 6.59 0.98 0.08 14.59       
 Dischistodus prosopotaenia 0.04 0.00 0.89 0.02 0.03 0.64 0.00 0.03 0.99    
 Dischistodus pseudochrysopocilus 0.02 0.02 0.99 0.22 0.10 4.95 0.03 0.00 1.26    

Piscivore Lutjanus bohar 0.00 0.12 10.32 0.63 0.21 30.34 0.53 0.60 36.37 0.13 0.10 10.13 
 Plectropomus laevis 0.06 0.29 34.44 0.13 0.36 20.27 0.12 0.25 14.73 0.42 0.23 27.52 
 Plectropomus leopardus 1.06 0.88 55.24 0.88 1.36 49.39 1.35 0.80 48.90 1.21 1.77 59.74 
 Variola louti          0.00 0.03 2.61 

Omnivorous Pomacentrid Acanthachromis polyacanthus 4.27 6.84 21.59 3.50 3.32 31.46 1.85 4.95 63.27 2.67 5.31 56.75 
 Amblygliphidodon curacao 4.89 4.11 21.46 2.39 1.68 21.15 0.21 0.02 4.70    
 Amphiprion akindynos    0.20 0.08 2.25 0.06 0.20 6.33 0.16 0.13 3.81 
 Chrysiptera rex    0.05 0.24 4.10 0.21 1.07 19.38 1.21 3.20 38.94 
 Pomacentrus amboinensis 0.36 1.16 4.64          
 Pomacentrus brachialis 0.87 1.24 6.49          
 Pomacentrus moluccensis 6.98 11.62 38.28 4.36 3.16 36.69       

Browser Calotomus carolinus 0.00 0.05 4.37       0.11 0.00 6.64 
 Naso lituratus 0.27 0.05 29.42 0.05 0.14 22.11 0.13 0.30 37.79 0.22 0.81 38.03 
 Naso unicornis 1.33 1.30 66.21 1.43 1.29 77.89 1.33 0.70 62.21 1.17 1.63 55.33 

Excavator/Scraper Chlorurus microrhinos    1.91 1.56 8.71 1.00 1.76 9.39 1.33 4.80 13.15 
 Chlorurus sordidus 4.47 3.20 10.85 4.02 3.36 13.94 3.07 4.22 16.54 2.80 3.71 10.12 
 Scarus frenatus    2.76 2.22 9.36 1.53 1.47 8.12    
 Scarus globiceps    1.93 1.62 8.93 5.07 1.76 14.37 2.53 4.42 13.20 
 Scarus niger 3.89 2.84 8.21 5.31 3.78 16.94       
 Scarus psittacus 3.24 2.33 12.23    3.53 1.09 13.30 4.33 5.64 17.78 
 Scarus rivulatus 6.62 2.69 17.20          
 Scarus schlegeli 2.64 4.24 12.68       0.67 3.36 9.85 

Corallivore Chaetodon aureofasciatus 0.17 0.31 8.83          
 Chaetodon baronessa 0.88 0.43 19.23 1.12 0.81 23.62 1.24 0.37 26.68 0.47 0.27 19.86 
 Chaetodon melannotus       0.08 0.30 8.62 0.22 0.04 8.79 
 Chaetodon plebeius    0.51 0.23 11.14 0.16 0.44 9.90    
 Chaetodon rainfordi 0.68 1.17 22.92 1.39 0.62 22.88 0.55 0.11 13.64 0.89 0.77 27.89 
 Chaetodon trifascialis 0.41 0.17 9.18 0.54 0.04 12.32       
 Chaetodon trifasciatus 0.83 1.20 25.34 1.24 0.81 26.17 0.97 1.37 30.49 0.50 0.62 27.58 
 Plectroglyphidodon johnstonianus          0.17 0.08 8.62 

Micro-invertivore Chaetodon citrinellus    0.80 0.38 15.32 1.88 1.27 29.71 1.80 1.53 30.04 
 Chaetodon citrinellus 0.40 0.36 8.80          
 Chaetodon ulietensis       0.48 0.00 7.38 0.20 0.31 8.12 
 Chaetodon vagabundus 0.45 0.48 9.39          
 Choerodon fasciatus    0.16 0.30 7.18 0.07 0.17 4.41 0.24 0.22 7.08 
 Chrysiptera rollandi 1.14 1.57 22.91 0.38 0.20 7.64       
 Gomphosus varius 1.02 0.57 14.70 1.22 0.40 19.09 1.26 0.63 19.11 0.82 0.40 15.05 
 Halichores hortulanus 0.62 0.69 12.57 1.22 0.90 17.97 1.00 1.46 21.79 0.91 1.18 21.36 
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 Plectroglyphidodon dickii             

Macro-invertivore Hemigymnus fasciatus 1.14 0.83 47.75 1.21 1.19 50.40 0.83 0.67 42.08 1.18 0.64 49.08 
 Hemigymnus melapterus 0.49 0.42 35.19 0.59 0.14 32.07 0.44 0.33 30.61 0.11 0.36 26.53 
 Monotaxis grandoculis 0.16 0.17 17.06 0.10 0.29 17.53 0.11 0.44 27.31 0.36 0.18 24.39 

 Pisci-invertivore Epibulus insidiator 
Lethrinus erythracanthus 

0.90 0.21 31.86 0.52 0.31 27.08 0.23 0.13 26.78  
0.00 

 
0.10 

 
5.75 

 Lethrinus miniatus 0.05 0.16 7.75 0.29 0.77 34.86 0.00 0.07 6.33 0.53 0.50 25.91 
 Lethrinus nebulosus    0.14 0.00 4.33    0.11 1.50 20.03 
 Lutjanus carponotatus 

Lutjanus fulviflamma 
0.15 0.21 12.43     

0.08 
 

0.00 
 

6.66 
 

0.00 
 

0.30 
 

6.18 
 Lutjanus fulviflamma       0.08 0.20 15.18    

 Lutjanus lutjanus 
Lutjanus russelli 

0.35 0.16 11.83  
0.24 

 
0.08 

 
8.75 

      

 Macolor spp 0.00 0.16 7.16 0.19 0.23 14.49 0.62 0.93 45.05 0.58 1.50 32.78 
Planktivore Chromis atripectoralis 

Chromis weberi 
   23.24 0.51 12.09 9.93 0.00 4.34  

2.67 
 

1.93 
 

4.58 
 Neoglyphidodon nigroris 4.96 2.33 5.22          
 Neopomacentrus azysron 18.93 38.47 26.24 14.96 25.84 25.46 15.31 9.58 22.09 32.91 45.09 46.76 
 Pomacentrus coelestis 3.24 8.18 9.89 4.40 21.07 24.63 0.16 6.82 9.09 0.24 4.16 5.09 
 Pomacentrus lepidogenys 53.62 49.58 38.66 15.69 15.24 23.23 33.09 44.09 47.50 27.51 44.62 32.93 
 Pomacentrus phillipinus 7.67 6.27 8.48 3.04 3.42 6.95 3.00 3.58 7.87 4.20 3.40 5.92 

Grazer Acanthurus lineatus       1.93 2.20 6.92    
 Acanthurus nigrofuscus    1.00 1.96 6.37 7.09 7.53 13.74 7.64 9.16 17.11 
 Acanthurus triostegus       3.51 0.00 6.17    
 Plectroglyphidodon lacrymatus 3.71 1.53 15.01 7.31 4.02 17.57 13.13 8.82 23.89 9.02 4.71 15.05 
 Pomacentrus bankanensis 1.76 1.96 11.55 6.62 7.24 21.15 14.09 15.04 27.27 0.96 0.47 5.63 
 Pomacentrus wardi 10.29 6.62 31.19 3.44 4.62 12.64       

 Siganus corallinus 
Stegastes apicalis 

2.07 0.82 8.78  
1.22 

 
1.47 

 
6.65 

    
3.40 

 
2.53 

 
11.36 

 Stegastes fasciatus 
Zebrasoma scopus 

 
0.96 

 
0.47 

 
5.63 

      1.36 1.69 6.01 
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Figure S3-a: Percent benthic cover of Acropora coral sub-species by year (95% CI). Red: 
Outer-Shelf, Blue: Mid-Shelf, Dashed Line/Open Circles: Open Fishing, Dashed Line/Closed 
Circles: Closed Fishing, grey mid-line:disturbance event Cyclone YasiEach reef was 
impacted by severe Cyclone Yasi in 2011. The only reef withan active crown of thorns 
outbreak (Acanthacaster plancii) during survey years was Helix. 
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Figure S3-b: Percent benthic cover of Non-Acropora coral sub-species by year (95% CI). 
Red: Outer-Shelf, Blue:Mid-Shelf, Dashed Line/Open Circles: Open Fishing, Dashed 
Line/Closed Circles: Closed Fishing, grey mid-line: disturbance event Cyclone Yasi. Each 
reef was impacted by severe Cyclone Yasi in 2011. The only reef with an active crown of 
thorns outbreak (Acanthacaster plancii) during survey years was Helix. 
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Figure S3-c: Pearson’s correlations between relative density of trophic groups and benthic 
habitat. Biggest circles have the strongest rho values. Inversely related=Red gradient, 
Positive=Blue. P-Values (upper-half), Insignificant Blank (lower-half) 
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Chapter 4 

Table S4-a: Additional species sampled that were not included in the analysis 

 
Passionfruit 
coral trout 

Spangled 
emperor 

Spanish 
mackerel 

Blue-stripe 
snapper Blacktip reef shark Yellow spotted trevally 

  P. aerolatus L. nebulosus S. commerson L. kasmira C. melanopterus C. fulvogutattus 
  n=1 n=3 n=2 n=1 n=1 n=2 

  Muscle Muscle Muscle Muscle Muscle Muscle Plasma 

14:0 0.46±0 0.8±1.07 0.38±0.16 0.42±0 0.24±0 3.41±2.46 2.79±0.43 

15:0 0.59±0 1.04±0.87 0.45±0.08 0.41±0 0.4±0 1.04±0.83 0.83±0.42 

16:0 17.23±0 19.65±5.02 20.06±0.52 17.28±0 22.89±0 34.73±1.45 13.54±5.9 

16:0(FALD) 2.03±0 0.44±0.3 0.74±0.09 1.07±0 0.64±0 0.81±0.61 0.71±0.33 

17:0 1.06±0 1.53±0.77 1.08±0.19 0.8±0 0.79±0 1.54±0.84 1.6±0.58 

18:0 10±0 10.1±0.56 10.68±1.19 10.14±0 10.2±0 13.42±0.35 13.58±0.31 

19:0 0.4±0 0.45±0.11 0.36±0.03 0.34±0 0.26±0 0.65±0.16 0.42±0.18 

20:0 0.14±0 0.36±0.23 0.2±0.02 0.14±0 0.2±0 0.69±0.19 0.41±0.4 

22:0 1.93±0 1.07±0.57 1.3±0.43 1.13±0 1±0 1.45±0.74 1.42±0.04 

24:0 0.38±0 0.36±0.15 0.28±0.11 0.31±0 0.25±0 0.42±0.09 0.36±0.23 
16:1ꙍ7c 1.14±0 3.18±1.89 2.07±0.47 1.5±0 1.95±0 5.26±2.78 8.27±8.68 
17:1ꙍ8c+a17:0 0.84±0 1.18±0.63 0.69±0.27 0.59±0 0.54±0 0.52±0.07 0.66±0.49 
18:1ꙍ7 1.28±0 2.5±0.9 1.82±0.11 1.72±0 1.63±0 3.11±0.61 3.8±2.57 
18:1ꙍ9 8.84±0 10.53±1.13 9.01±0.3 9.16±0 10.26±0 13.06±4.91 7.07±2.86 
20:1ꙍ9 0.09±0 0.42±0.18 0.26±0.19 0.07±0 0.23±0 0.51±0.05 0.71±0.68 
24:1ꙍ11 1.93±0 1.07±0.57 1.3±0.43 1.13±0 1±0 1.45±0.74 1.42±0.04 

16:4 0±0 0.03±0.05 0±0 0±0 0±0 0±0 0.03±0.04 

17:1 0.87±0 1.06±0.82 0.83±0.12 0.59±0 0.73±0 0.24±0.12 0.07±0.1 
18:2ꙍ6 1.23±0 1.5±0.55 2.06±0.16 1.1±0 2.13±0 0.69±0.16 1.35±0.99 
20:2ꙍ6 0.25±0 0.43±0.17 0.37±0.12 0.23±0 0.26±0 0.18±0.02 0.28±0.18 
18:3ꙍ3 0.26±0 0.88±0.7 1.06±0.1 0.2±0 0.83±0 0.2±0.21 0.55±0.42 
20:4ꙍ3 0.44±0 0.51±0.2 0.63±0.08 0.39±0 0.5±0 0.27±0.22 0.36±0.12 
20:3ꙍ6 0.47±0 0.51±0.2 0.82±0.27 0.51±0 0.7±0 0.19±0.11 0.18±0.08 
20:4ꙍ6 14.73±0 10.86±5.75 9.75±5.58 12.75±0 17.02±0 1.27±0.49 3.22±0.49 
20:5ꙍ3 1.96±0 2.96±1.05 3.58±0.94 3.38±0 3.8±0 1.49±0.67 4.95±0.91 
20:1ꙍ11c 0.17±0 0.79±0.73 0.52±0.2 0.22±0 0.27±0 0.05±0.07 0.25±0.06 
22:1ꙍ7 0.36±0 0.23±0.14 0.26±0.16 0.17±0 0.19±0 0.14±0.04 0.17±0.06 
22:1ꙍ9 0.1±0 0.08±0.02 0.07±0.07 0.03±0 0±0 0.06±0.08 0.21±0.19 
22:4ꙍ6 4.61±0 3.42±1.81 3.01±0.85 3.37±0 3.65±0 0.33±0.11 1.94±1.51 
22:5ꙍ3 2.6±0 3.41±0.89 3.15±0.48 3.76±0 2.72±0 0.9±0.16 4.39±3.2 
22:5ꙍ6 4.18±0 2.17±1.32 2.73±0.46 3.43±0 1.83±0 1.02±0.52 1.49±0.25 
22:6ꙍ3 19.42±0 13.39±7.79 19.43±4.91 22.82±0 12.48±0 10.28±4.5 21.02±12.83 
24:1ꙍ7 0±0 0±0.01 0±0 0.03±0 0.02±0 0±0 0.01±0.01 

i17:0 0.27±0 0.48±0.24 0.3±0.1 0.3±0 0.21±0 0.28±0.13 0.29±0.13 

ΣSFA 30.51±6.08 34.75±6.7 33.76±7 30.08±6.15 35.49±7.82 56.32±11.46 33.88±5.61 

ΣMUFA 15.87±1.81 21.73±2.19 17.12±1.85 15.59±1.87 16.7±2.1 24.57±2.83 23.5±2.21 

ΣPUFA 50.38±5.98 40.66±4.11 47.15±5.26 52.14±6.44 46.24±5.09 16.98±2.65 40.59±5.46 

ΣIso-SFA 0.38±0.13 1.03±0.21 0.45±0.14 0.46±0.14 0.21±0.11 0.77±0.1 0.56±0.12 

ΣOther 2.86±1.17 1.82±0.21 1.52±0.41 1.73±0.6 1.36±0.33 1.38±0.45 1.48±0.38 
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Figure S4-a: Linear regressions of muscle tissue comparison of traditional (x-axis) and direct (y-axis) methods for essential fatty acids . Symbols are 
unique species categories. Grey area are smoothed confidence intervals.  
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Figure S4-b: Linear regressions of blood plasma comparison of traditional (x-axis) and direct (y-axis) methods for essential fatty acids. Symbols are 
unique species categories. Grey area are smoothed confidence intervals. 
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Chapter 5 

Table S5-a: Binomial glmer AICc ranked model selection based on monthly and weekly reef residencies. RI = residency index, FL = fork length, depth= 
capture depth. All models have a random term of (Year | Reef / Tag ID) and were compared to the null model RI ~ 1 + (Year | Reef / Tag ID) (Monthly null; 
df=30 , logLik=-277.8, AICc=567.7) (Weekly null; df=70, logLik=-801.6, AICc=1609.2)  

 

Rank Monthly df logLik AICc Rank Weekly df logLik AICc
1 RI ~ month 14 -191.9 412.7 1 RI ~ Week 55 -694.2 1501.3
2 RI ~ FL + month 15 -190.8 412.7 2 RI ~ FL + week 56 -693.9 1502.9
3 RI ~ month + depth 15 -191.4 413.9 3 RI ~ Sex + Week 57 -693.6 1504.5
4 RI ~ FL + month + depth 16 -190.8 414.8 4 RI ~ FL + Sex + Week 58 -693.5 1506.4
5 RI ~ month + sex 16 -191.7 416.7 5 RI ~ Sex + Depth + Week 69 -683.7 1510.1
6 RI ~ FL + month + sex 17 -190.7 416.8 6 RI ~ Depth + Week 68 -685.3 1511.3
7 RI ~ month + sex + depth 17 -191.2 417.9 7 RI ~ FL + Sex + Depth + Week 70 -683.5 1511.9
8 RI ~ month + sex + FL:Sex 18 -190.4 418.5 8 RI ~ FL + Depth + Week 69 -685.2 1513.1
9 RI ~ FL + month + sex + depth 18 -190.7 418.9 9 RI ~ FL 4 -801.5 1611.0
10 RI ~ FL + month + sex + depth + FL : sex 19 -190.4 420.4 10 RI ~ Sex 5 -801.0 1612.1
11 RI ~ FL + month + FL:month 26 -184.0 423.2 11 RI ~ FL + Sex 6 -800.9 1613.9
12 RI ~ FL + month + depth + FL : month 27 -183.7 425.0 12 RI ~ Sex + Depth 17 -791.1 1616.5
13 RI ~ FL+ month + sex + FL : month 28 -183.3 426.5 13 RI ~ FL + Sex + Depth 18 -790.6 1617.5
14 RI ~ FL+ month + sex + depth + FL : month 29 -183.2 428.4 14 RI ~ Depth 16 -793.2 1618.7
15 RI ~ FL + month + sex + FL : month + FL : sex 29 -183.2 428.5 15 RI ~ FL + Depth 17 -792.8 1619.8
16 RI ~ FL + month + sex + depth + FL : month + FL : sex 30 -182.9 430.2
18 RI ~ FL 4 -214.2 436.4
19 RI ~ depth 4 -214.6 437.3
20 RI ~ FL + depth 5 -214.1 438.3
21 RI ~ Sex 5 -214.9 439.9
22 RI ~ FL+ Sex 6 -214.1 440.3
23 RI ~ Sex + depth 6 -214.4 440.9
24 RI ~ FL + Sex + FL : sex 7 -213.9 442.0
25 RI ~ FL + Sex + depth 7 -214.0 442.2
26 RI ~ FL + Sex + depth + FL : sex 8 -213.7 443.8
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Table S5-b: Binomial glmer AICc ranked model selection based on weekly residencies by individual 
receiver site (Serial). RI = residency index, FL = fork length. All models have a random term of (Year | Reef 
/ Tag ID) and were compared to the null model RI ~ 1 + (Year | Reef / Tag ID) (df= 70, logLik=-3846.4, 
AICc=7706.7)  

Rank Weekly df logLik AICc
1 RI ~ FL + Serial + Sex + Week + FL : Serial + Sex : Serial 149 -2782.3 5870.6
2 RI ~ FL + Serial + Sex + Week + FL : Sex + FL : Serial + Sex : Serial 150 -2781.8 5871.7
3 RI ~ FL + Serial + Sex + FL : Serial + Sex : Serial 97 -2870.2 5937.8
4 RI ~ FL + Serial + Sex + Week +  FL : Serial 122 -2933.1 6115.5
5 RI ~ FL + Serial + Week + FL : Serial 120 -2937.4 6119.9
6 RI ~ FL + Serial + Sex + Week + FL : Serial 122 -2940.8 6130.9
7 RI ~ FL + Serial + Sex + Week + FL : Sex + FL : Serial 123 -2942.0 6135.4
8 RI ~ FL + Serial + Sex + FL : Sex + FL : Serial 71 -3032.1 6208.0
9 RI ~ FL + Serial + Sex + FL : Serial 70 -3033.3 6208.4
10 RI ~ Serial + Sex + Week + Sex : Serial 120 -3028.6 6302.4
11 RI ~ FL + Serial + Sex + Week + Sex : Serial 121 -3028.1 6303.4
12 RI ~ FL + Serial + Sex + Week + FL : Sex + Sex : Serial 122 -3040.0 6329.3
13 RI ~ Serial + Sex + Sex : Serial 68 -3109.8 6357.3
14 RI ~ FL + Serial + Sex + Sex : Serial 69 -3110.5 6360.7
15 RI ~ FL + Serial + Sex + FL : Sex + Sex : Serial 70 -3109.6 6361.0
16 RI ~ Serial + Week + FL : Serial 89 -3311.0 6802.9
17 RI ~ FL + Serial + Week 90 -3314.6 6812.0
18 RI ~ FL + Serial + Sex + Week 92 -3313.8 6814.6
19 RI ~ FL + Serial + Sex + Week + FL : Sex 93 -3313.6 6816.2
20 RI ~ Serial + Sex + Week 91 -3317.5 6820.0
21 RI ~ Serial 37 -3395.8 6866.1
22 RI ~ Serial + Sex 39 -3394.1 6866.8
23 RI ~ FL + Serial 38 -3395.6 6867.6
24 RI ~ FL + Serial + Sex 40 -3394.2 6869.0
25 RI ~ FL + Serial + Sex + FL : Sex 41 -3394.3 6871.1
26 RI ~ Serial + Sex + FL : Sex 41 -3397.5 6877.6
27 RI ~ 1 8 -3776.4 7568.8
28 RI ~ FL 9 -3775.8 7569.5
29 RI ~ FL + Sex + Week 63 -3729.5 7586.4
30 RI ~ Sex 10 -3784.0 7588.1
31 RI ~ Sex + Week 62 -3731.9 7589.3
32 RI ~ FL + Sex 11 -3785.2 7592.4
33 RI ~ FL + Sex + Week + FL : Serial 64 -3731.7 7592.9
34 RI ~ Week 60 -3737.8 7596.9
35 RI ~ FL + Sex + FL : Sex 12 -3788.1 7600.3
36 RI ~ FL + Week 61 -3740.5 7604.3
37 RI ~ Sex + FL : Sex 11 -3800.4 7622.8
38 RI ~ FL + Sex + Week + FL : Sex 63 -3750.0 7627.4
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Table S5-c: Post hoc reef site comparisons of abundance for common fish families from generalized linear models per reef using ‘lsmeans’ 
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Table S5-d: Post hoc reef site comparisons of biomass for common fish families from generalized linear models per reef using ‘lsmeans’ 

 



227 
 

 



228 
 

Figure S5-a: 50% (red) and 95% (white) Brownian Bridge KUDs (KUD areas in km2)  for each tagged 
individual shark at Rib Reef. Yellow point=tagging location. KUDs were only plotted if there were more 
than 5 detections of an individual 
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Figure S5-b: 50% (red) and 95% (white) Brownian Bridge KUDs (KUD areas in km2)  for each tagged 
individual shark at Helix Reef. Yellow point=tagging location. KUDs were only plotted if there were more 
than 5 detections of an individual 
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Figure S5-c: 50% (red) and 95% (white) Brownian Bridge KUDs (KUD areas in km2) for each tagged 
individual shark at Knife Reef. Yellow point=tagging location. KUDs were only plotted if there were more 
than 5 detections of an individual 
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Figure S5-d : 50% (red) and 95% (white) Brownian Bridge KUDs (KUD areas in km2) for each tagged 
individual shark at Chicken Reef. Yellow point=tagging location. KUDs were only plotted if there were 
more than 5 detections of an individual 
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Figure S5-e: Differences in weekly residency by sex for Rib reef  

 

Figure S5-f: Differences in weekly residency by sex for Helix reef 
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Figure S5-g: Differences in weekly residency by sex for Chicken reef 

 

Figure S5-h: Differences in weekly residency by sex for Knife reef 
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Figure S5-i: Fish biomass-Reef (kg/1000 m2) Pareto barplot with cumulative biomass curve by family 
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Chapter 6 

Table S6-a: Generalised linear models of log-transformed CPUE data for total catch and species by primary management zone and year 
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Table S6-b: Negative binomial generalized linear mixed effect models (logit link) of fishing data for 
total catch and species with significant effects of management zone (random term conditional on 
month/Reef) 
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Table S6-c: Poisson (log link) and zero inflated negative binomial generalised linear mixed models 
for BRUVS deployments over two sampling seasons in 2016 showing significant effects of 
management zone and season with a random term conditional on soak time/reef. 
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