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GENERAL ABSTRACT 

Sponges constitute a diverse and functionally important element of coral reef systems. They 

are holobionts hosting a diverse array of macro and micro symbionts. The high symbiotic 

complexity in sponges makes them an ideal model for studying host-viral interactions. Viruses 

are ubiquitous entities that regulate diverse biological processes in marine ecosystems. 

Despite their high abundance and ecological relevance, there is limited knowledge about the 

role of viruses in sponges. The aim of this thesis was to understand the impact and function 

of viruses in coral reef sponge holobionts. Specifically, the objectives of this thesis were to 1) 

morphologically characterize viral-like particles (VLPs) associated with coral reef sponges, 2) 

assess the diversity and function of viruses inhabiting sponge species from two coral reef 

ecosystems, the Great Barrier Reef (GBR, Australia) and the Red Sea (RS, Saudi Arabia), 3) 

assess how host-specific factors (microbial abundance, presence of photosymbionts, sponge 

morphology and geographic location) correlated with viral community composition and 

function, and 4) investigate how the virome of a phototrophic sponge responded to heat-

stress.  

Viruses are ubiquitous in marine holobionts, and until recently there had only been a single 

visualization of VLPs in sponges and this occurred over 40 years ago. Chapter 2 of this thesis 

represents the first comprehensive visualisation of VLPs in sponges, showing that coral reef 

sponges associate with a diverse array of VLPs, dominated by bacteriophages. Amongst the 

eight GBR and seven RS sponge species investigated, 50 different VLP morphologies were 

visualized within sponge cells, extracellular mesohyl matrices, ectoderm and within/on 

sponge-associated microbes. The findings from this chapter confirmed that sponges harbour 

diverse communities of viruses, which interact with both prokaryotic and eukaryotic 

components of the sponge holobiont.   

Viruses have been proposed to play key roles in modulating the microbial community of 

marine holobionts, contributing to the host ecology through viral encoded auxiliary metabolic 

genes (AMGs). Chapter 3 of this thesis addresses some of the knowledge gaps regarding the 

roles of viruses in sponge holobionts, investigating whether the sponge viromes are 

influenced by the host strategy for microbial symbiosis or whether sponge-viral communities 

and functions respond to geographic variation. Metaviromic sequencing of 15 representative 

sponge species from the GBR and RS coral reefs established that the sponge metaviromic 

community and functional profiles are influenced by the following factors: host species 
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specificity, site specificity, host sponge microbial abundance and the presence of 

photosymbionts within the host sponge. The metaviromic approach reinforced the TEM 

results, showing that the sponge virome is dominated by bacteriophages of the order 

Caudovirales, but also contain representatives from the nucleocytoplasmic large DNA virus 

families. This chapter also revealed that sponge-viral functional profiles had several AMGs, 

including those associated with herbicide resistance, heavy metal resistance and nylon 

degradation which may provide competitive advantage for the host environmental 

acclimatisation. 

Future climate scenarios are forecast to shift the community structure of coral reefs. In this 

context, sponges have been proposed as potential ‘winners’, since several species are more 

tolerant than reef building corals to climate change related stressors, including ocean 

warming (OW). The role of viruses in the thermal tolerance of sponges is poorly understood. 

In order to address this knowledge gap, a heat-stress experiment was conducted on 

Carteriospongia foliascens to assess sponge-viral responses to short (3 days) and long (21 

days) term heat-stress (31 °C, representing a sub-lethal/stress temperature for C. foliascens). 

Metaviromic analysis revealed that the viral community of C. foliascens is influenced by 

elevated seawater temperature. Specifically, after 21 days exposure to 31 °C an increase in 

Inovirus was detected, correlating with bleaching of C. foliascens. Functional differences 

between control and heat stressed sponges included a reduction in genes associated with 

heavy metal resistance and an increase of virulence-related genes in the viral communities of 

sponges exposed to 31 °C. These results indicate that viral infections may play a role in C. 

foliascens thermal sensitivity, particularly in sponges displaying a phenotypic bleaching 

response. 

This thesis has shown that viruses are diverse and ubiquitous components of sponge 

holobionts, are host-species and site-specific, correlating with the associated microbial 

communities and respond to changes in ambient environmental conditions. This thesis also 

revealed that coral reef sponge viruses carry AMGs, including those associated with herbicide 

resistance, heavy metal resistance, nylon degradation and antimicrobial activity, all of which 

may assist the sponge host or associated microbiome in acclimatizing to its surrounding 

environment. 
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Chapter 1. GENERAL INTRODUCTION  

1.1. CORAL REEF ECOSYSTEMS 

Coral reefs are among the most diverse ecosystems on Earth and although their area is less 

than 0.2 % of the worlds ocean, they are home to 35 % of the all marine species (Reaka-Kudla, 

2005). These marine ecosystems are ecologically, culturally and economically relevant, being 

an important source of goods and services (Hoegh-Guldberg, 2011) representing a value over 

350,000 US$ ha-1 year-1 (Glynn & Ault, 2000). Furthermore, the Great Barrier Reef is valued 

at $56 billion as an Australian economic, social an iconic asset, contributing with over 64,000 

direct and indirect jobs (O’Mahony et al., 2017). Coral reefs also play key roles in oceanic 

nutrients cycling (Rädecker et al., 2015), atmospheric gas fixing (Wiebe, Johannes & Webb, 

1975) and provide shelter for millions of marine species (Moran & Reaka, 1988). There is an 

increasing concern of coral reefs declining due to overexploitation, habitat destruction, 

impacts of pollutants and anthropogenic climate change (Hughes, 2003). Over recent years, 

several studies have been carried out whose goals were to understand the functioning of coral 

reefs, investigating the ecological roles of macro and microscopic communities (Webster & 

Reusch, 2017; Stuart-Smith et al., 2018; Weynberg, 2018) in an effort to identify new 

management and restoration strategies which may mitigate the impacts of these stressors on 

these important ecosystems. 

Sponges constitute an abundant and functionally important component of coral reef system 

(Diaz & Rützler, 2001; Bell, 2008). They can be found in distinct habitats, including intertidal 

zones, shallow, mesophotic and deep reefs (Roberts & Davis, 1996; Barnes, 1999; Olson & 

Mccarthy, 2005) and are often resistant to extreme conditions of temperature, salinity, 

current, radiation and pollutants (Richelle-Maurer et al., 1994; Barnes, 1999; Taylor et al., 

2007a). Additionally, it has been demonstrated that several sponge species are more tolerant 

than corals to climate change impacts and have been proposed as potential “winners” in 

future coral reefs scenarios (Bell et al., 2018). Several  sponge biological functions, including 

nutrition, defence and development, can be partially attributed to their associated 

microorganisms (Richelle-Maurer et al., 1994; Shieh & Lin, 1994; Walters & Pawlik, 2005; 

Taylor et al., 2007a; Webster & Taylor, 2012), which may influence the way sponges respond 

to environmental shifts. The roles prokaryotes play in marine sponges have been extensively 
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studied (Thomas et al., 2010; Webster & Thomas, 2016; Lurgi et al., 2019), however, there is 

still a big knowledge gap on the roles of viruses within marine sponges. Describing the sponge-

viral association in coral reefs is the core of this thesis, which adds to what is known about 

viruses in coral reef organisms and characterises how viruses contribute to the sponge 

response to environmental disturbances.  

1.2. CORAL REEF SPONGES 

Sponges (phylum Porifera) are conspicuous and biodiverse members of marine benthic 

communities (Rützler, 2001) and the most primitive extant metazoan group, comprising 

approximately of 8500 known species (Van Soest et al. 2012). Sponges perform many 

ecological roles that structure biological communities from polar to tropical regions, in both 

shallow and deep waters (Bell, 2008; Van Soest et al., 2012). Most sponge species are 

suspension filter feeders with a complex aquiferous system composed of channels and 

chambers that enable the filtration of large volumes of seawater (Figure 1.1.), in some 

instances, sponge species can filter more than a thousand times their own volume per day 

(Patterson et al., 1997). A unidirectional (ostia-chamber-atrium-oscula) water flow is driven 

by flagellated choanocyte cells that are also responsible for capturing and retaining small 

particles (<0.1 µm) with high efficiency (Thomassen & Riisgård, 1995). In a study investigating 

the role of sponges in coral reef nutrients cycling, de Goeij and colleagues (2013) suggested 

that sponges can make dissolved organic matter available to other reef species via rapid 

cellular turnover and expulsion of detritus, in a process termed the “sponge-loop”. While this 

flux of energy and nutrients has been experimentally demonstrated, the mechanisms of the 

rapid cell turnover have not been clarified, although it was suggested that sponge symbionts 

play a role in this process. These filter feeders are also notable for their remarkable efficiency 

in removing microbial and viral particles from seawater (Hadas et al., 2006). In addition to 

digesting and metabolizing seawater filtrate, sponges also incorporate foreign organisms in 

their structure and harbor a diverse community of microbial symbionts, and are usually 

defined as ‘holobionts’. 

The term ‘holobiont’ was coined in 1993 by the scientist Lynn Margulis to define the entire 

organism comprised of various bionts  living in symbiogenesis (Margulis, 1981). Holobiont has 

been commonly used to refer to coral reef organisms, including marine sponges, since they 
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often host a wide diversity and abundance of Bacteria, Archaea and unicellular Eukaryotes in 

their mesohyl (collagenous matrix within the sponge). These microorganisms can comprise 

up to half of the sponge biomass (Cuvelier et al., 2014), and play a variety of roles in marine 

sponges with established symbiotic relationships ranging from mutualism to commensalism 

and parasitism (Webster & Taylor, 2012). Among those interactions, nutritional functions, 

such as contributions by nitrogen-fixing bacteria and autotrophic symbionts (Wilkinson & Fay, 

1979; Shieh & Lin, 1994), are particularly important. It is estimated that 80% of intertidal 

sponge species benefit nutritionally from compounds produced directly by photosynthetic 

symbionts (Steindler, Beer & Ilan, 2002). In addition, sponge symbionts provide UV 

protection, protein recycling and production of photosynthates (Wilkinson, 1980; Arillo et al., 

1993; Steindler, Beer & Ilan, 2002; Yahel et al., 2003; Taylor et al., 2007a). Sponges also rely 

on microbes for production of secondary metabolites, often used in defence mechanisms 

against predation and competition pressure (Walters & Pawlik, 2005), and have hence  been 

a major focus of bioactivity studies (Taylor et al., 2007a; Perdicaris, Vlachogianni & 

Valavanidis, 2013). Symbiotic relationships are so intrinsically linked that it has been 

suggested the holobiont genomic repertoire (or hologenome) is a unit of natural selection 

and evolution (Rosenberg et al., 2007). The intimacy of sponge-microbial relations is also 

reflected in their life strategies, where sponges with microbial densities 2–4 orders of 

magnitude greater than that of surrounding seawater are referred to as ‘high-microbial 

abundance (HMA) sponges’, whereas those with microbial densities similar to seawater as 

‘low-microbial abundance (LMA) sponges’ (Wilkinson, 1978; Hentschel, Usher & Taylor, 

2006).  



5 
 

 

Figure 1.1 (a) Photo and (b; adapted from Taylor et al 2007) schematic representation of a Demospongiae. Arrows indicate 
water direction inside the sponge. 

 

Despite the dedicated effort to determine the ecological role that microorganisms play within 

marine sponges, there is a substantial knowledge gap with respect to the interaction of 

sponges with viruses; the most abundant biological agents in marine ecosystems. 

1.3. VIRUSES IN MARINE ECOSYSTEMS 

Just over 70 years ago, viruses were acknowledged as natural components of aquatic 

ecosystems (Kriss & Rukina, 1947), but it wasn’t until the early 90’s that their widespread 

impact was understood, once  their high abundancy and key roles in structuring marine 

planktonic communities was revealed  (Borsheim, Bratbak & Heldal, 1990; Fuhrman & Suttle, 

1993; Proctor, 1997). From that time, studies in this field have attempted to characterize 

marine viral diversity, distribution and interactions with a targeted focus on  oceanic seawater 

(e.g., Jover et al. 2014; Danovaro et al. 2008; Gregory et al. 2019). Viruses are the most 

abundant biological entities in marine environments, with up to 1010 viruses per l-1 of 

seawater and 1010 per g-1 dry weight of marine sediment (Monier et al. 2008; Danovaro et al. 

2011). Marine virus communities are notably diverse, with over 195,728 known viral 

populations (Gregory et al., 2019). Viruses are small (20-100 nm) intracellular obligate 

parasites, consisting of DNA or RNA based genetic material (both single or double stranded), 

and surrounded by a protein coat (Gelderblom, 1996). Viruses do not self-propel, respire or 

grow outside a host environment and to survive, they must infect a host cell (Fuhrman, 1999; 

Wommack & Colwell, 2000; Danovaro et al., 2008; Rohwer & Thurber, 2009; Breitbart et al., 
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2018). They have several infection strategies (Roberts & Compans, 1998; Steward, Culley & 

Wood-Charlson, 2013) including: lytic, chronic and lysogenic life stages (Howard-Varona et 

al., 2017). In the lytic cycle, viruses inject the nucleic acid into a host’s cell, taking over regular 

cellular processing, and prioritising the production of numerous virions (infectious particles 

produced inside the host) that are released upon the bursting of host cells. In the chronic life 

cycle, produced viral copies are extruded from the cell by a non-lethal exclusion. In the 

lysogenic cycle, the viral nucleic acid stays inside the host cell and reproduces as genetic 

material during normal cell division processes, without releasing virions. Eventually, either 

spontaneously or trigged by environmental shifts, lysogenic viruses can switch to a lytic or 

chronic phase, releasing virions (Hobbs & Abedon, 2016). Moreover, viruses can remain in a 

free virion state (i.e., not associated with a host cell) (Allers et al., 2013) and drift across 

ecosystems with notable stability for extended periods (Pirtle & Beran, 1991). 

Viruses play several important roles in marine ecosystems affecting: biogeochemical cycles, 

microbial community composition, horizontal gene transfer between cells and metabolic 

reprogramming of the host. Viral infections are responsible for the death of 20% of total 

marine microbial biomass each day (Suttle, 2007), converting and trapping the biomass into 

particulate and dissolved organic carbon, and inorganic nutrients in a process called the ‘viral 

shunt’. This process is responsible for cycling these organic and inorganic nutrients, making 

this matter available to other organisms (Middelboe & Lyck, 2002; Suttle, 2005; Shelford et 

al., 2012). Thus, viruses are key organisms in the microbial loop, directly affecting the flux of 

matter and energy in marine food webs (Azam, Fenchel & Field, 1983; Bratbak, Thingstad & 

Heldal, 1994). In marine oligotrophic ecosystems, such as coral reefs, this process is 

particularly relevant, as a major source of organic compounds (Dell’Anno, Corinaldesi & 

Danovaro, 2015; Thurber et al., 2017). In addition, this viral-induced mortality can be 

selective, thereby determining host community composition and acting as an important 

bottom-up ecological driver of microbial community composition (Bouvier & Del Giorgio, 

2007; Hewson & Fuhrman, 2007). An example of how viruses can manipulate microbial 

community composition was presented by Lehahn and colleagues (2014) showing that viruses 

likely regulate algal blooms by infecting coccolithophore cells, highlighting the environmental 

relevance of viruses as mortality agents (Lehahn et al., 2014). 
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Another role of viruses is their capacity to reprogram the metabolism of their host by the 

introduction of viral-encoded auxiliary metabolic genes (AMGs) (Jiang & Paul, 1998; Hurwitz, 

Brum & Sullivan, 2015). The acquisition of genes from their hosts can influence the way host 

genes are expressed, modifying the host metabolism, often redirecting the host energy and 

resources to optimise viral production (Thompson et al., 2011). For instance, it has been 

suggested that ‘Bacterial-like’ genes found in cyanophages, produce the energy needed for 

cyanophage DNA replication (Lindell et al., 2007). Nevertheless, it has been proposed that the 

combination of viral and host genes during infection may concomitantly benefits the hosts by 

boosting its metabolism (Breitbart et al., 2007; Paul, 2008; Rosario & Breitbart, 2011; 

Crummett et al., 2016). For example, it has been suggested that phages (ie. microbe-infecting 

viruses) that infect Synechococcus and Prochlorococcus bacteria can help to maintain the 

host’s photosynthetic activity during infection through genes coding for photosystem 

proteins (psbA, hliP) (Lindell et al., 2004; Sullivan et al., 2005). Likewise, 34 microbial gene 

families encoding different energy metabolism pathways (such as electron transport, 

photosystem and carbohydrate metabolism genes) were detected within the 452 viral Global 

Ocean Survey assembled viral genomic scaffolds, suggesting that marine phages can influence 

their host fitness by translation and post-translation control (Sharon et al., 2011). Another 

comprehensive study on global ocean viromes (viral genome) identified 243 viral-encoded 

AMGs, revealing that viruses may manipulate nitrogen and sulfur cycling in the epipelagic 

ocean (Roux et al., 2016). In lysogenic cells, the expression of viral genes have shown to 

promote host fitness, enabling antibiotic resistance, toxin production and immunity 

responses (Williamson, McLaughlin & Paul, 2001; Howard-Varona et al., 2017; Tsao et al., 

2018). Thus, most of the suggestions of the viral impact on host metabolism still lack 

validation through experimental studies (Warwick-Dugdale et al., 2019).    

Viruses are found everywhere, and a recent study divided viral communities into five 

ecological zones ( Arctic, Antarctic, temperate and tropical epipelagic (1-150 m), mesopelagic 

(150-1000 m), and bathypelagic ( >2000 m)), each forming a discrete genotypic cluster, with 

tropical surface waters being a hotspot of viral diversity (Gregory et al., 2019).  It has also 

been demonstrated that viral  and microbial distribution cluster together , suggesting that 

physicochemical structuring of marine microbial communities is the main factor structuring 

marine viral communities (Gregory et al., 2019). Furthermore, it has also been suggested that 
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viral assemblages show higher richness at lower latitudes, caused by the proportions of 

different taxa found in these locations rather than by their presence /absence at particular 

sites (Angly et al., 2006). Given coral reefs are highly diverse ecosystems, viruses may play an 

important role in maintaining their complexity by influencing the structure of prokaryotic and 

eukaryotic populations, regulating the composition, diversity and functions of these 

communities, modulating their interactions (Rohwer & Thurber, 2009; Thurber & Correa, 

2011; Levin et al., 2017; Sweet & Bythell, 2017; Weynberg, 2018). Considering that viruses 

potentially infect all living cells (Fuhrman, 1999), the high diversity of symbionts in sponges 

make them an ideal model for characterising the role of viruses in marine holobionts. Sponges 

are also a relevant model to investigate viral functions, due to their unique ability in 

promoting benthic-pelagic coupling in the ocean through seawater filtration.  

 

1.4. SPONGE-VIRAL INTERACTIONS  

The most common viral-host interaction in marine environments is assumed to occur 

between prokaryotes and phages (Breitbart, Miyake & Rohwer, 2004; Weinbauer, 2004; 

Flores, Valverde & Weitz, 2013; Perez Sepulveda et al., 2016), as prokaryotes represent about 

90% of the biomass in the ocean (Worden, 2006). Examples of marine phage-prokaryote 

interactions have been extensively described and these studies have highlighted that phages 

influence prokaryote abundance, diversity and evolution (Proctor & Fuhrman, 1990; Noble & 

Fuhrman, 1998; Prangishvili, Forterre & Garrett, 2006; Weitz & Wilhelm, 2012). Phage-

prokaryote interactions can be highly specific with the same virus species infecting only one 

prokaryote genus, species or strain (Brussaard, 2004a; Duffy, Burch & Turner, 2007; Atabekov, 

2011). However, some phage have also been shown to infect multiple distinct prokaryote 

types in natural environments (Holmfeldt et al., 2007; Malki et al., 2015; Kauffman et al., 

2018), forming a complex host range web pattern (Flores, Valverde & Weitz, 2013). The 

phage-prokaryote interaction patterns can be influenced by several factors, such as 

geographic variations (Flores, Valverde & Weitz, 2013), seasonal fluctuations (Parsons et al., 

2012), temporal dynamics (Winget & Wommack, 2008), nutrient concentrations (Bratbak et 

al., 1996; Jover et al., 2014; Finke et al., 2017) or temperature and photic regimes (Coutinho 

et al., 2017). However, characterizing these interactions at large scales is challenging since 

phage and prokaryote communities are extremely dynamic (Breitbart, 2012) and such studies 
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would require a massive sampling effort (Weitz et al., 2013). A possible way of minimizing this 

effort would be to investigate the phage-prokaryote interactions within macro-organisms 

(eukaryotes), which are relatively closed systems, with structural stability, and are often 

subjected to distinct environmental conditions.  

Virus-eukaryote association in marine ecosystems have been reported from numerous 

species including sponges, corals, molluscs, arthropods, echinoderms, and urochordates 

(Table 1.1.). The majority of studies investigating viral-eukaryote interactions describe viruses 

associated with commercially important taxa (Shapiro, 2003; Suttle, 2007; Abdullah et al., 

2017; Arzul et al., 2017; Doan et al., 2017; Flowers et al., 2018). One of the most frequently 

studied eukaryotic viral pathogen is the White Spot Syndrome Virus, a Nimaviridae that 

typically infects shrimp, and has substantially impacted the aquaculture industry worldwide 

(Sánchez-Paz, 2010; Bir et al., 2017). Herpesviridae is a viral family commonly associated with 

diseases in marine eukaryotes and  have been correlated with high mortality rates in the 

maricultured abalone Haliotis spp. (Pen et al., 2005; Bai et al., 2019) and the oyster 

Crassostrea gigas (Sauvage et al., 2009; {Merging Citations} et al., 2014; Fuhrmann et al., 

2016; Nguyen, Alfaro & Merien, 2018). Viral diseases have also been described for uncultured 

marine species. Multiple studies have suggested that coral diseases, including black band 

disease and white plague disease, as well as physiological disfunctions including bleaching, 

may involve viral infection as a part of disease pathogenesis (Soffer et al., 2014; Yvan et al., 

2014; Sweet & Bythell, 2017). Additionally, recent experiments revealed Parvovirus as the 

etiological agent of sea-star wasting disease, which is responsible for mass mortalities of 

Asteroides sp. (Hewson et al., 2014).  

Table 1.1 Families of viruses associated with marine organisms. Taxa for which marine isolates have been described are 
labelled with *. 

Host Type Marine Host Genome 

Type 

Taxonomy of major associated viral 

groups 

Reference 

Bacteria Cyanobacteria 

 

dsDNA Caudovirales* (Myoviridae, Podoviridae, 

Siphoviridae) 

(Suttle & Chan, 1993; Perez 

Sepulveda et al., 2016) 

Bacteria dsDNA Caudovirales* (Myoviridae, Podoviridae, 

Siphoviridae) Corticoviridae*, Plasmaviridae 

Tectiviridae, Corticoviridae 

(Casjens, 2005)  

(McDaniel et al., 2002)  

(Leigh et al., 2018) 

(Proctor, 1997) 

(Breitbart et al., 2004) 
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Bacteria 

Protist 

 

Cyanobacteria ssDNA Inoviridae*, Microviridae* (Gokushovirinae),  (Roux et al., 2019)  

(Roux et al., 2012)  

 

Bacteria 

Heterotrophic 

protist 

Microalgae 

ssRNA Leviviridae (Bollback & Huelsenbeck, 

2001) 

dsDNA Mimiviridae*, Marseilleviridae* 

 

(Monier, Claverie & Ogata, 

2008) (Boyer et al., 2009) 

dsDNA Phycodnaviridae* 

Reoviridae* (Sedoreovirinae) 

Picornavirales 

(Correa, Welsh & Vega 

Thurber, 2013) 

(Schroeder et al., 2002) 

Plantae 

Invertebrate 

 

Macroalgae  Phycodnaviridae (Wilson, Van Etten & Allen, 

2009) 

Sponge dsDNA Caudovirales (Myoviridae, Podoviridae, 

Siphoviridae), Mimiviridae, Phycodnaviridae, 

Ascoviridae, Baculoviridae, Herpesviridae, 

Irdoviridae, Marseilleviridae, Poxviridae 

(Laffy et al., 2018) 

Plantae Macroalgae ssDNA Microviridae, Circoviridae, Macroviridae, 

Parvoviridae, Nidoviridae, Potyviridae 

(Laffy et al., 2018) 

Invertebrate 

Vertebrate 

Cnidarians dsDNA Caudovirales (Myoviridae, Podoviridae, 

Siphoviridae) Mimiviridae, Phycodnaviridae, 

Parvoviridae, Inviridae, Herpesviridae 

(Laffy et al., 2018) 

(Weynberg et al., 2017a) 

(Thurber et al., 2017) 

(Grasis et al., 2014) 

ssDNA Circoviridae, Bidnaviridae (Laffy et al., 2018) 

(Weynberg et al., 2017a) 

(Thurber et al., 2017) 

Cnidarians 

Molluscs 

dsRNA Totiviridae (Gudenkauf & Hewson, 

2016) 

dsDNA Papovaviridae, Birnaviridae, Herpesviridae*, 

Malacoherpesviridae*, Papillomaviridae 

(Renault & Novoa, 2004) 

(Meyers et al., 2010) 

(Meyers, 1981) 

(Sauvage et al., 2009) 

dsRNA Birnaviridae Reoviridae* (Renault & Novoa, 2004) 

(Meyers, 1979) 

(Kitamura et al., 2002) 

Molluscs 

Echinoderms 

ssRNA Picornaviridae, Togaviridae (Renault & Novoa, 2004) 

(Rasmussen, 1986) 

dsDNA Caudovirales (Myoviridae, Podoviridae, 

Siphoviridae), Asfaviridae, Iridoviridae, 

Parvoviridae* 

(Gudenkauf & Hewson, 

2016) 

(Hewson et al. 2014) 

ssDNA circular rep-encoding single-stranded (CRESS) (Jackson et al., 2016) 
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Arthropods  dsDNA Caudovirales (Myoviridae, Podoviridae, 

Siphoviridae), Baculoviridae, Nimaviridae* 

(Clark, 2016) 

(Gudenkauf & Hewson, 

2016) (Sánchez-Paz, 2010; 

Bir et al., 2017) 

ssDNA Circoviridae (Dunlap et al., 2013) 

Arthropods  

Urochordates 

ssRNA Arteriviridae (Gudenkauf & Hewson, 

2016) 

dsDNA Caudovirales (Myoviridae, Podoviridae, 

Siphoviridae), Nimaviridae 

(Gudenkauf & Hewson, 

2016) 

ssDNA Circoviridae (Gudenkauf & Hewson, 

2016) 

Fish dsDNA Iridoviridae*, Herpesviridae*, (Crane & Hyatt, 2011) 

dsRNA Birnaviridae* (Wolf et al., 1960) 

Vertebrate Fish 

Reptiles 

Mammals 

ssRNA Nodaviridae, Orthomyxoviridae*,  

Togaviridae*,Rhabdoviridae*, 

Paramyxoviridae*, Picornaviridae 

(Glazebrook, Heasman & 

Beer, 1990) 

(Mori et al., 1992) 

(Alavandi & Poornima, 

2012) 

(Fichtner et al., 2013) 

 

dsDNA Herpesviridae*, Papillomaviridae (Jones et al., 2016)  

(Herbst et al., 2009) 

dsDNA Herpesviridae*, Papillomaviridae*, Poxviridae  (Ng et al., 2015)  

(Varsani et al., 2014) 

(Colegrove et al., 2010)  

Reptiles ssRNA Togaviridae*, Orthomyxoviridae*, 

Astroviridae*, Caliciviridae*, 

Paramyxoviridae* 

(Van Bressem, Van 

Waerebeek & Raga, 1999) 

(La Linn et al., 2001) 

(Lvov et al., 1978) 

(Rivera et al., 2010) 

(Di Guardo et al., 2005) 

Sea birds ssRNA Orthomyxoviridae*, Flaviviridae, 

Coronaviridae  

(Chastel et al., 1985) 

(Lebarbenchon et al., 2015) 

(Traavik, Mehl & Kjeldsberg, 

1977) 

 

Recent metaviromic (viral metagenomic) studies have shown that viruses are important 

components of coral reef organisms, potentially interfering in their host functions through 

AMGs (Levin et al., 2017; Weynberg et al., 2017a; Laffy et al., 2018). However, only a few 

studies have described sponge viruses. The first report of viruses associated with sponges was 
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published 40 years ago, demonstrating isometric particles similar to adenoviruses in cells of 

the sponge Verongia cavernicola, through Transmission electron microscopy (TEM) analysis 

(Vacelet & Gallissian, 1978). Recently, metagenomic studies have provided compelling 

evidence that viruses are important components of the sponge holobiont (Laffy et al., 2016, 

2018, 2019).The sponge virome has demonstrated to be notably diverse, species-specific and 

greatly represented by bacteriophage groups (Laffy et al., 2018; Jahn et al., 2019). 

Additionally, sponge-viruses possess genes that encode host auxiliary metabolic functions, 

such as herbicides resistance genes (Laffy et al., 2018) and ankyrin repeat protein, which have 

been proposed to aid bacterial hosts in evading eukaryotic immune responses within sponge 

holobionts (Jahn et al., 2019). However, even though the first insights regarding sponge-

virome roles have been revealed, many facets of the association remain unknown. For 

instance, how does the sponge virome vary under distinct geographic locations and across 

different sponge-microbial association strategies? Moreover, since viruses are key organisms 

in modulating marine communities (Rohwer & Thurber, 2009; Mojica & Brussaard, 2014), it 

is important to understand how sponge viromes respond the acute anthropogenic impacts 

that substantially threaten marine ecosystems worldwide. 

Sponges are a noteworthy taxa to investigate the role of viruses in holobiont communities 

(Claverie et al., 2009) as they are ecologically important, evolutionary significant and they 

host a diverse array of macro- and micro-symbionts (Thomas et al., 2016). The ecological role 

of sponges and their associated viruses is likely to influence marine biogeochemical cycling as 

they have both been characterised to contribute to the cycling of organic and inorganic 

matter in seawater (Wilkinson & Fay, 1979; Shieh & Lin, 1994; Fuhrman, 1999; Steindler, Beer 

& Ilan, 2002).  

1.5. SPONGE HOLOBIONT UNDER HEAT-STRESS 

In a global context, coral reef ecosystems have been increasingly compromised by climate 

change and deterioration in water quality (Doney et al., 2012). Shifts in seawater 

temperature, circulation, stratification and nutrient content, have all led to alterations in 

physiological tolerances, population dynamics, species interactions and disease susceptibility 

in coral reef species (Doney et al., 2012). Rising seawater temperatures are one of the most 

significant and direct impacts of climate change (Levitus, Antonov & Boyer, 2005; Lyman et 
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al., 2010). Increases in accumulated heat stress events have resulted in massive coral 

bleaching (Skirving et al., 2019), and during the period from 2014–2017 coral reefs 

experienced the most severe, widespread and longest-lasting global-scale bleaching event 

ever recorded (Eakin, Sweatman & Brainard, 2019). During this time, it was reported that 

bleaching had occurred on 91% of the reefs within the Great Barrier Reef (GBR), following 

heat-stress events that occurred in 2016 (Hughes et al., 2017).  

The effects of ocean warming and heat-stress events have been extensively investigated in 

marine sponges (Webster et al., 2011; Lesser et al., 2016; Bennett et al., 2017; Bell et al., 

2018) and although most of the species have shown to be negatively affected by higher 

temperatures (Rubio-Portillo et al., 2016; Bennett et al., 2017; Carballo & Bell, 2017), others 

could tolerate or even benefit from a heat stress condition (Vicente, 1990; Carballo et al., 

2013; Kelmo, Bell & Attrill, 2013; Marlow et al., 2018). The adaptative advantage of certain 

sponge species over other reef-building organisms has lead to the proposal that sponges may 

dominate coral reefs in future climate change scenarios (Bell et al., 2018). The effects of 

thermal stress in sponges can be reflected on their physiology (Bennett et al., 2017), gene 

expression (López-Legentil et al., 2008; Webster et al., 2013b), feeding ecology (Massaro et 

al., 2012), and microbial symbiosis (Webster, Cobb & Negri, 2008; Strand et al., 2017). 

Additionally, thermal stress can trigger disease-like syndromes, such as necrosis, bleaching 

(Fan et al., 2013; Bennett et al., 2017; Whalan, 2018), and also promote an imbalance in the 

holobiont community structure (Lemoine et al., 2007; López-Legentil et al., 2008; Webster, 

Cobb & Negri, 2008), which has been suggested to lead to opportunistic infections in marine 

sponges (Pita et al., 2018a). The occurrence of diseases and disease-like syndromes in sponges 

is often associated with shifts in their microbial community (Blanquer et al., 2016; Luter et al., 

2017; Whalan, 2018), however, the etiological agents of these diseases have not been 

elucidated, with exception of pathogenic Pseudoalteromonas agarivorans strain isolated from 

infected Rhopaloeides odorabile (Webster et al., 2002; Choudhury et al., 2015). Specific 

bacterial clades are rarely identified as etiological agents of disease (Mouchka, Hewson & 

Harvell, 2010), indicating that other contributing factors are driving these dynamics (Littman, 

Willis & Bourne, 2011). As viruses are considered important disease drivers in marine 

ecosystems (Patten, Seymour & Mitchell, 2006; Suttle, 2007; Thurber et al., 2009b; Sánchez-
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Paz, 2010; Crane & Hyatt, 2011; Jones et al., 2016), it is necessary to also investigate the role 

of viruses in sponge stress responses, including thermal-stress events. 

Despite our current understanding of how sponge microbial communities are influenced by 

environmental stressors, only one study has focused so far on the description of the sponge-

viral responses to a heat-stress event, where it was demonstrated that thermal stress can 

promote shifts in viral population associated with the marine sponge R. odorabile, including 

an enrichment in endogenous retro-transcribing viruses (Laffy et al., 2019). As different 

sponge species exhibit unique responses to environmental stressors (Bennett et al., 2017), 

there is a need to better characterise the role that viruses may be playing in thermally stressed 

sponges, and it is important investigate distinct species, particularly those whom exhibit a 

clear physiological responses to the heat stress.  

1.6. METHODOLOGICAL APPROACHES TO STUDYING SPONGE-VIRAL INTERACTIONS  

Substantial efforts have been made to improve and standardize the techniques that can be 

used to describe viruses in marine ecosystems (Weinbauer 2004). However, there are still 

many technical challenges that hinder our ability to obtain a comprehensive picture of 

sponge-viral communities (Hurwitz et al., 2013). The different approaches for characterizing 

viral communities all have inherent strengths and limitations and can often be 

complementary. Currently, sponge-virus interactions have been observed using two 

complementary techniques: Transmission electron microscopy (TEM) and metagenomics.  

1.6.1. Transmission electron microscopy  

Viruses are generally structurally simple, primarily composed of genetic material surrounded 

by a protein coat and this lack of distinct morphological variations between viruses means it 

is often difficult to characterize of these biological entities (Perez Sepulveda et al., 2016). 

Historically, the morphology of sponge viruses was characterised using the most common, 

and time-consuming method to assess viral diversity in aquatic ecosystems: transmission 

electron microscopy (TEM) (Wommack & Colwell, 2000). Viral classification is largely based 

on capsid morphology and size, and TEM is a powerful tool for visualization and putative 

identification of viruses, with TEM providing the first evidence of high viral abundance and 

diversity in marine systems (Bergh et al., 1989), revealing the morphological diversity and 

relative abundance of virus-like particles in marine hosts (Borsheim, Bratbak & Heldal, 1990; 
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Wilson & Chapman, 2001; Patten, Harrison & Mitchell, 2008; Pollock et al., 2014; Hewson et 

al., 2014). Interpretation of TEM analyses can be hindered by technical issues including the 

frequent low representation of samples, uneven staining, removal of viruses during washing 

steps, low detection limits and lack of recognition of non-typical viruses (Weinbauer & Suttle, 

1997; Bettarel et al., 2000). 

The following TEM preparation methods have been used to assess viruses associated with 

marine hosts: i) density gradient purification and isolation (Weynberg et al., 2014); ii) direct 

ultracentrifugation of samples in liquid medium onto Formvar-coated electron microscopy 

grids (Pollock et al. 2014; Borsheim et al. 1990), iii) filtration method (Wommack et al., 2010) 

and iv) preparation of ultrathin sections from the host tissue (Wilson & Chapman, 2001). The 

first two methods allow the concentration of VLPs, which increase visualization rates via TEM, 

but can be problematic in tissue sections, as they can provide an inaccurate and incomplete 

viral representation. Initial filtering steps within the first three methods often exclude specific 

viral groups and mask relationships between the virus and host. The most successful way to 

identify direct viral-host interactions (including host specificity and reproductive mode) is 

through analysis of histological sections  (Wilson et al., 2005). Thus, it is important to use 

multiple isolation methods in order to have a broad description of host virus relationships.  

1.6.2. Metagenomic analysis of viral assemblages 

Metaviromics is the study of viral genome communities obtained directly from environmental 

samples by viral purification and subsequent shotgun sequencing (Kim, Whon & Bae, 2013). 

The metaviromic approach is an important tool to describe viruses, considering that many 

viral hosts are not amenable to cultivation (Edwards & Rohwer, 2005) and that viruses do not 

contain a universal marker gene to facilitate identification (Rohwer & Edwards, 2002; Rohwer 

& Thurber, 2009). The use of molecular approaches, combined with advances in Next 

Generation Sequencing (NGS) technologies has greatly reduced the cost of obtaining genomic 

data, accelerating the development of viral community sequence-based studies (Wommack, 

Bhavsar & Ravel, 2008). Metaviromics was first used to describe marine viruses in 2002 

(Breitbart et al., 2002) and was considerably impactful on viral diversity exploration, 

quadruplicating the number of known sequenced viral genomes (Roux, 2019). However, the 

analysis and interpretation of metaviromic data can be challenging, due to the high diversity 

of viruses in natural environments (Rosario & Breitbart, 2011) and the limited number of viral 
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genomes present within reference databases (Kim, Whon & Bae, 2013). Thus, the use of 

appropriate bioinformatic tools is an essential component in interpreting metaviromic 

sequencing datasets. 

Holovir is an effective pipeline to assess the taxonomic composition and function of 

metaviromic data, specifically designed to characterize viral metagenomes from host-

associated holobiont communities (Laffy et al., 2016). As a part of this computational 

workflow, the taxonomic assignment of the metaviromic data is performed utilising BLAST 

analysis to search for homology between predicted gene data and known viral reference 

sequence within the NCBI RefSeq database (Pruitt, Tatusova & Maglott, 2007). Taxonomic 

assignment is then performed using a lowest common ancestor scoring system based on the 

best significant matches to viral reference database. To perform functional analysis of the 

metaviromic data, this pipeline utilises BLASTP sequence similarity searches of predicted 

genes against the Swiss-Prot manually curated UniprotKB protein database (The UniProt 

Consortium, 2015), and assigns Swiss-Prot Keywords based on the best significant BLASTP 

match. Furthermore, potential cellular contamination of these host associated viromic 

communities is performed to evaluate sample purity. 

Metaviromics has greatly expanded our understanding of the diversity and function of viruses 

associated with marine hosts (Willner & Hugenholtz, 2013; Laffy et al., 2016). Additionally, 

the improvement of techniques used to isolate and purify the viral nucleic acid has been  

fundamental in the generation of good quality viromes associated with marine holobionts 

(Weynberg et al., 2014; Wood-Charlson et al., 2015). A key benefit of utilising this 

methodology is the capacity to isolate viromes associated with both eukaryotic and 

prokaryotic components of marine holobionts, expanding the understanding of the viral roles 

within these host associated communities. Several studies have validated the use of these 

viral purification techniques and have utilised the Holovir protocol in describing the diversity 

and function of viruses within marine holobionts (Laffy et al., 2016, 2018, 2019, Weynberg et 

al., 2017a,b; Weynberg, 2018). Thus, these methodological approaches would greatly 

complement the TEM analysis in efforts to characterize viruses and their roles in coral reef 

sponges. 
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1.7.  THESIS OUTLINE 

Our limited knowledge of host-viral association in marine communities has hindered our 

broader understanding of oceanic dynamics and our ability to predict ecological responses to 

environmental change. Marine sponges represent an ecologically important model for 

exploring host-viral dynamics as they are ancient metazoans with a wide geographic 

distribution and host dense, diverse and stable microbial symbiont communities.  With recent 

developments in sequencing technologies, computational pipelines and microscopy, we are 

now well placed to explore the diversity and function of sponge viruses and determine how 

they influence host health in a rapidly changing climate.  

This thesis aims to characterise viral communities of coral reef sponge species that utilize 

distinct symbiotic strategies, collected from different biogeographic regions, and to 

determine the effect of ocean warming on sponge-associated viral communities. This thesis 

is organized in three data chapters, presenting a 1) morphological characterization of sponge 

viruses, 2) a molecular description and characterisation of multiple sponge viromes, and 3) an 

experimental work revealing the impacts of heat-stress events on viral community 

composition and function within a phototrophic sponge species. 

Chapter 2 reports on three transmission electron microscopy (TEM) preparation methods that 

provide the first morphological characterization of viruses associated with 15 different coral 

reef sponge species, validating the spatial localization of these VLPs within the sponge 

holobiont. 

In Chapter 3, comparative analyses of the viromes associated with the same 15 sponge 

species that underwent TEM analysis were explored. Variations in the viral communities and 

their associated functions have been correlated with the sponge species, geographic location, 

host nutritional modes (photosymbionts vs no photosymbionts) and strategies for microbial 

symbiosis (high microbial abundant vs low microbial abundant sponges).  

Chapter 4 investigate the sponge virome response to elevated temperatures, describing two 

experiments where the photosynthetic sponge Carteriospongia foliascens was exposed to a 

short (3 days) and longer term (21 days) heat-stress event. A metaviromic approach was used 

to assess the shifts in the community and functional composition across these treatments. 
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Finally, Chapter 5 presents and discusses the main findings of this thesis and gives suggestions 

on the future direction of sponge-viral research.  
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Chapter 2. MORPHOLOGICAL CHARACTERIZATION OF VIRUS-LIKE 

PARTICLES IN CORAL REEF SPONGES 

2.1. ABSTRACT 

Marine sponges host complex microbial consortia that vary in their abundance, diversity and 

stability amongst host species. While our understanding of sponge-microbe interactions has 

dramatically increased over the past decade, little is known about how sponges and their 

microbial symbionts interact with viruses, the most abundant entities in the ocean. In this 

study, we employed three transmission electron microscopy (TEM) preparation methods to 

provide the first comprehensive morphological assessment of sponge-associated viruses. The 

combined approaches revealed 50 different morphologies of viral-like particles (VLPs) 

represented across the different sponge species.  VLPs were visualized within sponge cells, 

within the sponge extracellular mesohyl matrix, on the sponge ectoderm and within sponge-

associated microbes. Non-enveloped, non-tailed icosahedral VLPs were the most commonly 

observed morphotypes, although tailed bacteriophages, brick-shaped, geminate and 

filamentous VLPs were also detected. Visualization of sponge-associated viruses using TEM 

has confirmed that sponges harbor not only diverse communities of microorganisms but also 

diverse communities of viruses. 

2.2. INTRODUCTION 

Sponges are abundant and ecologically important members of marine benthic communities 

(Van Soest et al., 2012). Most sponges are suspension filter feeders (Thomassen & Riisgård, 

1995), with complex aquiferous systems capable of manipulating the seawater composition 

at both macro and micro scales (Vacelet & Boury-Esnault, 1995; Patterson et al., 1997; de 

Goeij et al., 2013a). A unidirectional (ostia-chamber-atrium-oscula) water flow driven by 

flagellated choanocyte cells is responsible for capturing and retaining small eukaryotes, 

prokaryotic cells and viral particles (Hadas et al., 2006). Sponge filtration of large quantities 

of seawater represents an important nutrient link between the pelagic and benthic 

environments (Pile & Young, 2006), especially in oligotrophic ecosystems such as coral reefs 

(de Goeij et al., 2013b). 
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Sponges form intimate partnerships with diverse microbial consortia, and these relationships 

range from mutualism to commensalism to parasitism (Webster & Taylor, 2012; Thomas et 

al., 2016). The sponge microbiome is often highly conserved across individuals of the same 

sponge species but varies considerably across species (Thomas et al., 2016). It is because of 

these functionally important symbiotic partnerships that sponges are considered a typical 

example of a marine ‘holobiont’, an organism comprised of various ‘bionts’, living in 

symbiogenesis (Margulis & Fester, 1991; Webster & Thomas, 2016). However, while the 

symbiotic association between sponges and their bacterial / archaeal symbionts has been 

extensively studied (Maldonado 2007; Thomas et al. 2016; Pita et al. 2018), the role of viruses 

in the sponge holobiont remain largely unknown, despite TEM images from the 1970s alluding 

to viral-infected sponge cells (Vacelet & Gallissian, 1978), a demonstration of phage infection 

in a sponge-associated bacterium (Lohr, Chen & Hill, 2005), and a few recent metagenomic 

studies providing insights into sponge virus diversity and function (Butina et al., 2015; Laffy et 

al., 2016, 2018). 

Viruses are the most abundant biological agents in marine ecosystems, with about 1010 

viruses per liter of surface seawater and 1010 per gram dry weight of marine sediment (Suttle, 

2007; Danovaro et al., 2011). Importantly, viruses have the ability to regulate the prokaryotic 

and eukaryotic populations responsible for maintaining metabolic cycling in complex 

ecosystems such as coral reefs (Seymour et al., 2005; Thurber & Correa, 2011; Mojica & 

Brussaard, 2014). Viruses modulate microbial-driven processes through mortality, horizontal 

gene transfer and metabolic reprogramming by viral-encoded auxiliary metabolic genes 

(AMGs) (Bergh et al., 1989; Thurber et al., 2009b; Danovaro et al., 2011; Hurwitz et al., 2014; 

Breitbart et al., 2018).  Recent years have seen an increased focus on the diversity and 

function of viruses associated with reef invertebrates including sea anemones (Wilson & 

Chapman, 2001); starfish (Hewson et al., 2014); scleractinian corals and their associated 

microbial communities (Patten, Harrison & Mitchell, 2008; Weynberg et al., 2014, 2017b; 

Laffy et al., 2018). However, while viruses have been described as essential components of 

coral reef ecosystems, capable of controlling microbial community dynamics, playing a role in 

coral bleaching / disease, and mediating reef biogeochemical cycling (Thurber et al., 2017), 

there is a paucity of research exploring viruses associated with ecologically important reef 

sponges. 
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Metagenomic analysis of purified viral fractions (metaviromics) recently provided the first 

insights into the composition and function of viruses inhabiting reef sponges  (Laffy et al., 

2016, 2018). Consistent with the pattern reported for sponge-associated microbial 

communities, the viral communities were found to be highly conserved within each sponge 

species, and displayed functional repertoires clearly distinct from viruses inhabiting the 

surrounding seawater (Laffy et al., 2018). Sequence analysis revealed that the virome 

assignments were dominated by viromes from the order Caudovirales but also contained 

representatives of the Mimiviridae, Phycodnaviridae, Circoviridae, Parvoviridae, Bidnaviridae 

and Microviridae. Unique viral adaptations to specific host microenvironments were also 

evident, with viral auxiliary genes being differentially represented across sponge species 

(Laffy et al., 2018).   

While molecular approaches have substantially improved our understanding of viral-host 

interactions (Breitbart et al., 2002; Rosario & Breitbart, 2011; Laffy et al., 2016), biases 

associated with DNA /RNA extraction methods (Wood-Charlson et al., 2015) and the limited 

genomic resources available for most environmental viruses (Roux et al., 2015a) can still 

constrain our understanding of host-associated viral ecology. Transmission electron 

microscopy (TEM) is a powerful approach that has helped to reveal the morphology and 

distribution of virus-like particles (VLPs) in many marine hosts as well as deciphering patterns 

of host-viral interactions (Wilson & Chapman, 2001; Patten, Harrison & Mitchell, 2008; Brum, 

Schenck & Sullivan, 2013; Pollock et al., 2014; Hewson et al., 2014; Weynberg et al., 2017a). 

Here we use TEM to provide the first morphological characterization of viruses associated 

with 15 different coral reef sponge species and confirm the spatial localization of these VLPs 

within the sponge holobiont. 

2.3. METHODS 

2.3.1. Sponge collection and identification 

Sampling was conducted on coral reefs of Orpheus Island, Great Barrier Reef, Australia 

(18°35’34’’S, 146°28’53”E) and Al Fahal, Red Sea, Saudi Arabia (22°13’95”N, 39°01’81”E), 

between December 2015 and February 2016. Sampling in Australia was conducted under 

the Great Barrier Reef Marine Park Authority permit G12/35236.1, and sampling in Saudi 
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Arabia was authorized by the Saudi Arabian coastguard as the study did not involve 

endangered or protected species. 

Triplicate specimens of 13 sponge species were collected by scuba diving between three and 

15 meters depth. Two sponge species, Stylissa carteri and Carteriospongia foliascens were 

found at both locations, and sampling was performed in triplicate at both sites. Sponge 

specimens were photographed in situ before being individually placed within sterile Falcon® 

tubes and kept on ice until processing. All sampling materials were sterilized prior to and 

between each sampling. Morphological characterization of sponge species was performed as 

described in (Hooper & Van Soest, 2002) and DNA barcoding was additionally performed 

using mitochondrial cytochrome oxidase I (COI) gene primers and internal transcriber spacer 

2 (ITS2) region of nuclear ribosomal DNA as described in (Erwin & Thacker, 2007; Andreakis, 

Luter & Webster, 2012; Wörheide et al., 2012). Sponge species are described in Table 2.1. and 

can be seen in Appendix 2 (Figure A2.1). 

Three different sample preparation methods for TEM imaging of sponge-associated viruses 

were trialed: i) ultrathin sectioning of sponge tissue (Cheville & Stasko, 2014); ii) purification 

of viral fractions via density gradient ultracentrifugation (Lawrence & Steward, 2010; 

Weynberg et al., 2014) and iii) filtration of sponge mucus. All samples were examined using a 

Titan Cubed TEM and images were analysed on the Cs-corrected Titan™ 80-300 platform at 

the Imaging Characterization Core Lab in KAUST. TEM search time was standardized to 1 hr / 

sample. 
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Table 2.1 Collection details for all sponge species examined by TEM. GBR refers to the Great Barrier Reef collection site and 
RS refers to the Red Sea collection site. 

Sponge Species Location Depth (m) 

Carteriospongia foliascens, P.S. Pallas (1766) GBR, RS 3 – 10 

Stylissa carteri,  A. Dendi (1889) GBR, RS 10 – 15 

Xestospongia sp. GBR 5 – 15 

Lamellodysidea herbacea, C. Keller (1889) GBR 5 – 10 

Cymbastela marshae, J.N.A.Hooper & P.R. Bergquist (1992) GBR 10 – 15 

Cinachyrella schulzei, C. Keller (1891) GBR 3 – 7 

Pipestela candelabra, B. Alvarez et al. (2008) GBR 7 – 15 

Echinochalina isaaci, J.N.A. Hooper (1996) GBR 7 – 15 

Xestospongia testudinaria, J.B.P. Lamarck (1815) RS 7 – 15 

Amphimedon ochracea, C. Keller (1889) RS 7 – 15 

Hyrtios erectus, C. Keller (1889) RS 5 – 15 

Crella (Grayela) cyathophora, H.J. Carter (1869) RS 7 – 15 

Mycale sp. RS 5 – 15 

 

2.3.1.1 Preparation of ultrathin sections of sponge tissue 

Histological sections were prepared from fresh sponge tissue based on standard procedures 

for TEM (Cheville & Stasko, 2014). Briefly, each fragment of approximately 1mm³ was fixed in 

2.5% glutaraldehyde in 0.2M cacodylate buffer and kept at 4°C for 2-24 h. After fixation, 

samples were immersed in 1% osmium tetroxide in 100 mM phosphate buffer for 1-2 h, 

washed in distilled water and stained in the dark with 2% aqueous uranyl acetate for 2 h at 

4°C. Stained tissue was dehydrated through a series of ethanol and propylene oxide then 

embedded in epoxy resin. Ectosome-choanosome oriented sections (about 65 nm thick) were 

prepared using a Leica EM UC7 ultramicrotome and placed on TEM copper grids. 

2.3.1.2 Viral purification via density gradient solution 

Viral purification was performed according to the fraction separation method by 

sedimentation in density gradients (Meselson, Stahl & Vinograd, 1957), following the pre-

processing approach established to isolate viruses from coral and sponge tissue (Weynberg 

et al., 2014; Laffy et al., 2018). In order to eliminate contaminants present in the aquiferous 
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system, sponges were partially dried via repeated gentle squeezing alternated with rinses of 

filtered (0.02µm) seawater. Sponge tissue was then dissected into small pieces (~5 mm3) and 

covered with 15 µL of 0.02 µm filter-sterilized (Anotop, Whatman) SM buffer (100 mM NaCl, 

8 mM MgSO4, 50 mM Tris pH 7.5), then homogenized with a Craig's HS30E homogenizer 

(Witeg, Germany) for 5 to 10 minutes (min). Tissue homogenate was filtered through a 

Falcon® 100 µm Cell Strainer (Corning, USA), then centrifuged at 500 g for 15 min at 4°C to 

pellet the majority of cell debris.  The supernatant was used to purify the VLP via 

centrifugation in Cesium Chloride solution, with density varying from 1.2 g/mL to 1.6 g/mL 

(Weynberg et al., 2014). After ultracentrifugation, sponge VLPs were collected from the 

fractions with densities between 1.2 g/mL and 1.5 g/mL. In order to exchange the buffer and 

remove CsCl salts, samples were loaded onto 30 KDa Amicon centrifugal spin columns 

(Millipore, EUA) and centrifuged at 4000 g for 30 min at 4°C.  This process was repeated four–

six times per sample.  Filter- sterilized SM Buffer was added to the concentrate and all flow-

through was discarded. The concentrate was fixed in 0.5% glutaraldehyde and kept at 4°C 

until TEM analysis. TEM preparation involved applying a droplet of sample onto a TEM Copper 

grid, rinsing with sterile water, staining with 1% uranyl acetate for one min, washing with 

sterile water, followed by removal of excess liquid from the grid by touching filter paper to 

the edge. 

2.3.1.3 Viral purification via filtration of sponge mucus 

To describe the VLPs associated with sponge mucus and the external ectoderm, the sponge 

surface was carefully scraped with a sterile scalpel blade followed by rinsing three times with 

filtered (0.02µm) seawater. This TEM preparation method was based on a viral purification 

method described for marine hydras (Grasis et al., 2014). Extracted mucus was added to 

filtered (0.02 µm) Milli-Q® water (1:4) and centrifuged at 4000g for 10 minutes. Mucus 

supernatant was filtered through 0.45 µm filters (EMD Millipore, EUA) and fixed in1.5% 

glutaraldehyde. TEM imaging of mucus preparations was performed as described above for 

CsCl purified samples. 
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2.4. RESULTS 

2.4.1. Sponge associated viruses 

TEM analysis revealed that viral particles are diverse constituents of the sponge holobiont. 

Fifty VLP morphotypes (Figs. 2.1-5; Table A2.1, Morphotypes: M-I – M-L) were found in 

association with eight coral reef sponge species from the Great Barrier Reef:  Carteriospongia 

foliascens, Stylissa carteri, Xestospongia sp., Pipestela candelabra, Lamellodysidea herbacea, 

Cymbastella marshae, Echinochalina isaaci and Cinachyrella schulzei; and seven sponge 

species from the Red Sea: Carteriospongia foliascens, Stylissa carteri, Xestospongia 

testudinaria, Hyrtios erectus, Mycale sp., Amphimedon ochracea and Crella cyathophora. VLPs 

were observed within sponge cells, in the extracellular mesohyl matrix, in the mucus/surface 

biofilm and within sponge-associated microbes. A diverse range of viral morphologies were 

observed, including hexagonal (tailed and non-tailed), spherical, filamentous, brick-shaped, 

beaded and geminate VLPs. While we detected numerous viral morphotypes, most were rare 

and often obscured by vesicles, cell debris and particulate organic matter. 

Most sponge-associated VLP morphotypes possessed an icosahedral/polyhedral symmetry 

(~75%), ranging from 60-205 nm in diameter (Fig. 2.1; 2; 3; 4a). Tails were evident on some 

VLPs, confirming the presence of viruses from the bacteriophage order Caudovirales. Tailed 

VLPs were tentatively assigned to the three Caudovirales families based on their capsid 

symmetry and tail size/shape. VLPs characteristic of the Podoviridae presented a short tail 

attached to a non-enveloped icosahedral capsid and these VLPs were observed in the sponges 

C. foliascens (Fig. 2.1a), Xestospongia sp. (Fig. 2.1b), E. isaaci (Fig. 2.1c) and S. carteri (Fig. 

2.1d). VLPs characteristic of the Siphoviridae presented an icosahedral head with a long non-

contractile tail and these VLPs were detected in the surface biofilm of C. schulzei (Fig. 2.1e). 

VLPs characteristic of the Myoviridae presented an icosahedral head and a long contractile 

tail and these VLPs were observed in the sponges E. isaaci (Fig. 2.1f, g), S. carteri (Fig. 2.1h) 

and A. ochracea (Fig. 2.1i). 
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Figure 2.1 Representative morphotypes of virus-like particles associated with GBR and Red Sea sponges. GBR sponge species: 
(a, j, k, l) C. foliascens, (B) Xestospongia sp., (c, f, g) E. isaaci, (e) C. schulzei. Red Sea sponge species: (d, h) S. carteri, (k) 
Amphimedon ochracea. TEM preparation method: (a, j, k) ultrathin sections of sponge tissue, (b–i, l) viral purification via 
filtration of sponge mucus. Scale bar: 200 nm. Black arrows indicate the viral tail and white arrows indicate the VLPs. 
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Non-tailed icosahedral/polyhedral VLPs were observed using all three TEM preparation 

methods. Particle sizes ranged from 60 to 205 nm in diameter and some presented an 

electron dense core inside the viral capsid (35-124 nm in diameter). The majority of VLPs did 

not show an envelope outside the capsid, however an envelope was observed in association 

with a small proportion of VLPs (Fig. 2.2e; 3k-l; 5h). A typical example of an enveloped VLP 

was observed in Hyrtios erectus where a group of four virions were observed within a vacuole 

in the mesohyl matrix (Fig. 2.3l) and another free virion was captured merging its envelope 

into the cell membrane of the host (Fig. 2.3k).  

In addition to the polyhedral VLPs, eight morphotypes of filamentous virus-like particles 

(FVLPs) were observed in the sponge mucus, mesohyl matrix, within sponge cells and 

associated with sponge-associated microorganisms (Fig. 2.4c-i; 5a). These morphotypes 

varied greatly in size (100-1300 nm length, 12-60 nm width) and shape. Rod-shaped FVLPs 

were detected in the CsCl purified viral fraction of Xestospongia sp. (Fig. 2.4c, d) and the 

mucus of S. carteri (Fig. 2.4i). Although similar, the S. carteri bacilliform VLPs were longer than 

those observed in Xestospongia sp. (230 nm long, 19 nm wide in S. carteri; 120-130 nm long, 

18 nm wide in Xestospongia sp.). In C. foliascens, a FVLP was frequently observed attached to 

cyanobacteria and within the sponge mesohyl, (Fig. 2.4f-g). This FVLP resembled viruses of 

the family Inoviridae due to their shortened body (100-130 nm length, 50-60 nm width) and 

electron-translucent core with outer membrane structures consistent with a glycoprotein 

coat surrounding the entire membrane (Ploss & Kuhn, 2010). In X. testudinaria, a FVLP 

morphotype was observed within cells and dispersed throughout the mesohyl (Fig. 2.4j-l). 

This thin, elongated FVLP (340-1300 nm long and 15-30 nm wide) was observed at high 

abundance inside some choanocyte cells and lysed cells releasing virions were also evident 

(Fig. 2.4j-l). Another distinct FVLP morphotype was evident in the sponge mucus of C. 

cyathophora (Fig. 2.5a). It presented a tube-like shape indicating helical symmetry and size 

ranging from 150-154 nm in length and 22-25 nm in width.  
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Figure 2.2 Representative morphotypes of virus-like particles associated with GBR sponges. Sponge species: (a) C. foliascens, 
(b, c) S. carteri, (d) Xestospongia sp., (e–h) P. candelabra, (i–k) L. herbacea, (l) C. schulzei. TEM preparation method: (a, h–k) 
viral purification via filtration of sponge mucus, (b–f, l) viral purification via CsCl gradient centrifugation, (g) ultrathin sections 
of sponge tissue. Scale bar: 200 nm. 
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Figure 2.3 Representative morphotypes of virus-like particles associated with GBR and Red Sea sponges. GBR sponge 
species: (a, b) C. schulzei, (c) C. marshae. Red Sea sponge species: (d, e) C. foliascens, (f–h) S. carteri, (i) X. testudinaria, (j–l) 
H. erectus. TEM preparation method: (a, d–e, i–l) ultrathin sections of sponge tissue, (b, c, f–h) viral purification via 
filtration of sponge mucus. Scale bar: (a–c, e–l) 200 nm, (d) 500 nm. Black arrows indicate the VLPs. 
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Figure 2.4 Representative morphotypes of virus-like particles associated with GBR and Red Sea sponges. GBR sponge species: 
(a) Mycale sp., (b) C. foliascens, (c, d) Xestospongia sp., (e) C. schulzei. Red Sea sponge species: (f, g) C. foliascens, (h, i) S. 
carteri, (j–l) X. testudinaria. TEM preparation method: (a, b, d, e, h, i) viral purification via filtration of sponge mucus, (c) viral 
purification via CsCl gradient centrifugation, (f, g, j–l) ultrathin sections of sponge tissue. Scale bar: (a–e, h, i) 200 nm, (f, g, j–
l) 500 nm. 
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Geminate VLPs were observed in C. cyathophora mesohyl matrix (Fig. 2.5b), in L. herbacea 

mucus (Fig. 2.5c), and found infecting filamentous cyanobacteria associated with the sponge 

A. ochracea (Fig. 2.5d-g). The cyanobacteria associated VLPs shared morphological traits with 

viruses from the family Geminiviridae (Li, Ou & Zhang, 2013) and were typically twinned (81-

95 nm long, 37-48 nm wide), comprising two quasi-isometric particles (34-45 nm length). The 

VLPs were spread across the cytoplasm, thylakoid lumen, and vacuoles of the cyanobacterial 

cells and were often at high abundance surrounding the stellar bodies (Fig. 2.5f).  

A brick-shaped VLP morphotype, closely resembling viruses from the Poxviridae, was 

observed in sections of Crella cyathophora (Fig. 2.5h). This morphotype had a complex 

structure comprising a biconcave core encased within a double layer membrane with two 

lateral bodies surrounded by an ovoid envelope (Buller & Palumbo, 1991). Three 

representatives of this morphotype were observed within the sponge mesohyl matrix, and a 

single non-enveloped VLP was also observed in close proximity to a lysed sponge cell.  

A beaded VLP was observed in sections of the sponges C. foliascens (Fig. 2.5i) and H. erectus 

(Fig. 2.5j-l). In C. foliascens, the branched VLP was 340 nm long, and was comprised of six 

beads, each measuring 30-35 nm in diameter. In H. erectus, the VLPs varied from 80 to 350 

nm in length and were composed of 2-8 aligned beads with diameters ranging from 36-42 nm. 

This morphotype was observed as isolated VLPs, attached to extracellular vacuole 

membranes in the sponge mesohyl, and within intracellular vacuoles of archaeocyte cells. 
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Figure 2.5 Representative morphotypes of virus-like particles associated with GBR and Red Sea sponges. GBR sponge species: 
(c) L. herbacea, (i) C. foliascens. Red Sea sponge species: (a, b, h) C. cyathophora, (d–g) A. ochracea, (j–l) H. erectus. TEM 
preparation method: (a, c, d) viral purification via filtration of sponge mucus, (b, e–l) ultrathin sections of sponge tissue. Scale 
bar: (d) 100 nm, (a–c, e, h–l) 200 nm, (f, g) 5 µm. ECM: External Cell Matrix, om: outer membrane, im: inner membrane, cm: 
core membrane, lb: lateral bodies; c: core, e: external membrane; b: bacterium. Black arrows indicate the VLPs. 
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2.5. DISCUSSION 

Sponges are complex holobionts that host a diverse array of bacteria, archaea, and eukaryotic 

microorganisms (Fan et al., 2012, 2013; Webster & Thomas, 2016). Whilst previous 

publications have alluded to the potential importance of viruses in sponges (Claverie et al., 

2009; Webster & Taylor, 2012; Laffy et al., 2016, 2018), including in sponge disease (Luter, 

Whalan & Webster, 2010), this study provides the first visual evidence that viruses are diverse 

components of the sponge holobiont. The broad range of VLP morphologies visualised across 

the 15 different sponge species is consistent with recent molecular data showing sponges 

harbour diverse communities of viruses.  

The frequent detection of multiple viral morphotypes within a single sponge species most 

likely reflects the large number of potential hosts within the sponge holobiont (sponge cells, 

bacteria, archaea, microeukaryotes).  However, it is also possible that multiple viruses infect 

the same host, as has been observed in some bacterioplankton (Holmfeldt et al., 2007) and 

corals (Thurber & Correa, 2011). Similarly, the same viral morphotype may infect multiple 

hosts within the holobiont, as recently highlighted from phage-bacteria network analyses 

(Flores et al., 2011; Flores, Valverde & Weitz, 2013). This is particularly relevant considering 

the role of viruses in lateral gene transfer between hosts and their subsequent effects on host 

metabolism (Breitbart et al., 2018). Observed viral morphotypes may also not be native to the 

holobiont, as some may have been extracted from the virioplankton by the sponge’s 

aquiferous system. Although the isolation methods employed in this study unveiled a wide 

range of VLP morphotypes, no quantitative assessments were undertaken. To further our 

understanding of viral dynamics within the sponge holobiont, quantitative studies that count 

the number of VLPs per known tissue area, perform quantitative transmission electron 

microscopy (qTEM) (Brum, Schenck & Sullivan, 2013), flow cytometry (Brussaard, 2004b; 

Pollock et al., 2014) or fluorescent staining (Leruste, Bouvier & Bettarel, 2012; Pollard, 2012) 

should also be performed. 

Morphology is an important feature for viral classification according the International 

Committee on Taxonomy of Viruses (ICTV). However, there are also some limitations 

associated with using TEM to identify viruses. For instance, many viral groups lack 

morphological structures that characterize them as typical viral particles by TEM. Also, as 

many viruses are small and simple they can be mistaken for non-viral particles such as cellular 
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vesicles or organelles. Although the assignment of viral-like particles in this study was made 

by comparison to morphologically characterised viruses, the possibility remains that some 

VLPs may not represent true viruses. 

In this study, TEM analysis revealed a prevalence of polyhedral VLPs with characteristic 

bacteriophage morphology, consistent with what has been described for other marine 

invertebrates (Wilson et al., 2005; Davy et al., 2006; Davy & Patten, 2007; Patten, Harrison & 

Mitchell, 2008). The presence of Caudovirales-like morphotypes highlights the potential for 

these VLPs to target sponge symbionts and ultimately control microbial population dynamics 

within the sponge holobiont. Amongst them, a Siphoviridae VLP detected in the surface 

biofilm of C. schulzei presented similar morphology, although slightly smaller, to the 

previously described sponge-associated Phage ΦJL001 (Lohr, Chen & Hill, 2005). 

Surprisingly, relatively few tailed bacteriophages were detected within the reef sponges, 

despite the dominance of Caudovirales within the assigned sponge viromes (Laffy et al., 

2018). Although the dominance of tailed viruses in aquatic ecosystems is well characterised 

(Mizuno et al., 2013; Weynberg et al., 2017a; Thurber et al., 2017; Laffy et al., 2018), results 

from morphological analysis of uncultivated viruses vary with respect to the relative 

dominance of tailed (Cochlan et al., 1993; Colombet et al., 2006; Dutova & Drucker, 2013) 

versus non-tailed (Bergh et al., 1989; Wommack et al., 1992; Auguet, Montanié & Lebaron, 

2006; Brum, Schenck & Sullivan, 2013) VLPs. The reduced number of tailed VLPs in 

morphological descriptions has been attributed to the destruction of the delicate VLP 

structures during centrifugation and TEM sample preparation (Cochlan et al., 1993; Proctor, 

1997). However, Brum et al. (2013) have shown that sample preservation and preparation do 

not alter the morphological characteristics of seawater derived VLPs (Brum, Schenck & 

Sullivan, 2013) and non-tailed VLP have therefore been proposed as the dominant viral group 

in aquatic ecosystems (Brum, Schenck & Sullivan, 2013; Kauffman et al., 2018). Nevertheless, 

in this study, tailed VLPs were almost exclusively detected in samples purified via filtration of 

mucus or scraping of the external biofilm, the least disruptive of the three TEM preparation 

methods. This suggests that tailed VLPs are either more abundant on the external surface of 

the sponge or that TEM preparation method could bias the detection of tailed VLPs in sponges 

by mechanically damaging or distorting viral structures.  
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Filamentous viral-like particles (FVLP) were detected in both prokaryotic and eukaryotic cells 

within the sponge holobiont. In C. foliascens, multiple individual Inoviridae-like VLPs were 

observed attached to the surface of cyanobacteria, although no virions were observed inside 

the cells. The absence of intracellular FVLPs combined with the absence of a dense core in 

these morphotypes provides further support for their classification as putative Inoviridae, as 

the replication mechanism of this viral family often relies on the virus injecting its DNA into 

the host cell and getting extruded without inducing cell lysis (Bayer & Bayer, 1986; Russel, 

1991; Ploss & Kuhn, 2010). A previous study demonstrated that temperate viruses are 

relatively less abundant within host cells at high density (McDaniel et al., 2002).  

FVLPs with helicoidal symmetry resembling Spiraviridae were detected in the sponge C. 

cyathophora, with this viral family known to infect Archaea (Mochizuki et al., 2012). FVLPs 

were also observed infecting eukaryotic cells in X. testudinaria. Abundant elongated and 

flexible FVLPs were also detected in the archaeocytes and extracellular mesohyl matrix of X. 

testudinaria (Fig. 2.4j-l). The point of host cell lysis was captured with a recently burst cell 

releasing virions into the extracellular matrix (Fig. 2.4-k), characteristic of typical lytic viral 

infection (Dyson et al., 2015). Morphologically similar filamentous VLPs have been detected 

in coral mucus and associated Symbiodinium and were characterised as a coral-infecting RNA 

virus ((Davy et al., 2006; Weynberg et al., 2017b). There is a general lack of studies 

investigating filamentous viruses in marine invertebrates, although metaviromic sequencing 

recently detected sequences assigned as filamentous viruses of the family Inoviridae in Great 

Barrier Reef sponges (Laffy et al., 2018). 

VLPs morphologically consistent with viruses from the family Geminiviridae were observed in 

association with cyanobacteria in the sponge A. ochracea. Geminiviridae-like viruses have 

been isolated from infected freshwater cyanobacteria (Li, Ou & Zhang, 2013), and, with the 

exception of being slightly smaller (79 ± 5 nm in length, 28 ± 3 nm in diameter), the geminate 

VLPs from A. ochracea were morphologically similar. Most infected cyanobacterial cells had 

dense populations of these VLPs (Fig. 2.5d-g), although no lysed cells or free geminate VLPs 

were observed in the sponge mesohyl. However, several extracellular vesicles containing VLPs 

were observed, indicating that VLPs could use cell extrusion as part of their reproductive 

cycle. A geminate VLP has previously been isolated from mucus secreted by scleractinian 

corals (Davy & Patten, 2007), however the morphology differs from the A. ochracea VLP, since 
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it is notably bigger (about 145 nm in length, 82nm width), with each isomer being wider than 

they are long, contrasting with the isomer dimensions in the A. ochracea VLP. Beaded VLPs 

were also detected in sponges and their non-isomeric particles comprising a flexible filament 

strongly resembled the beaded VLPs previously reported from scleractinian corals (Davy & 

Patten, 2007; Lawrence et al., 2015). 

Brick-shaped VLPs closely resembling viral morphotypes from the family Poxviridae were 

observed within the mesohyl of Crella cyathophora, a (Fig. 2.5h). Typical of enveloped viruses, 

poxviruses use their envelopes to connect and fuse with their host membrane so that the viral 

capsid is injected directly into the host cell (Moss, 2012). Poxviruses are notable pathogens, 

infecting a wide host range among vertebrate and invertebrate taxa (Bracht et al., 2006; Haller 

et al., 2014; Grasis et al., 2014) In the marine environment, they have been reported 

associated with cetaceans and pinnipeds (Bracht et al., 2006) and more recently, analysis of 

sponge metaviromes detected sequences affiliated to Poxviridae in Amphimedon 

queenslandica and Ianthella basta (Laffy et al., 2018). 

2.6. CONCLUSION 

In this study we validated the efficacy of three different methods for TEM imaging of sponge-

associated viruses: i) ultrathin sections of sponge tissue, ii) purification via density gradient 

ultracentrifugation and iii) ectoderm scraping and filtration of sponge mucus.  While density 

gradient purification facilitated concentration and recovery of VLPs from different areas of 

the sponge holobiont, it also co-concentrated cellular debris, potentially masking many VLPs. 

Tissue sectioning enabled direct visualisation of spatial localisation and host-viral interactions 

but was labour intensive and some VLP structures were distorted during sectioning. Ectoderm 

scraping and collection of sponge mucus was most effective at preserving delicate viral 

structures and minimizing the amount of cellular debris, however, it was restricted to 

recovering VLPs associated with the sponge mucus or ectoderm. 

This first morphological characterisation of sponge-associated viruses revealed a wide 

diversity of VLPs infecting both the sponge cells and symbiont compartments of the holobiont. 

By confirming that viruses are a significant component of the sponge holobiont, this work 

paves the way for future metaviromic and cell culturing analyses that can characterise the 

taxonomy and function of the sponge viral community. 
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Chapter 3. VIRAL ECOGENOMICS ACROSS THE PORIFERA 

3.1. ABSTRACT 

Viruses directly affect the most important biological processes in the ocean via their 

regulation of prokaryotic and eukaryotic populations. Marine sponges form stable symbiotic 

partnerships with a wide diversity of microorganisms and this high symbiont complexity 

makes them an ideal model for studying viral ecology. Here we used morphological and 

molecular approaches to illuminate the diversity and function of viruses inhabiting nine 

sponge species from the Great Barrier Reef and seven from the Red Sea. Metaviromic 

sequencing revealed host-specific and site-specific patterns in the viral assemblages, with all 

sponge species dominated by the bacteriophage order Caudovirales but also containing 

variable representation from the nucleocytoplasmic large DNA virus families Mimiviridae, 

Marseilleviridae, Phycodnaviridae, Ascoviridae, Iridoviridae, Asfarviridae and Poxviridae. 

While core viral functions related to replication, infection and structure were largely 

consistent across the sponge metaviromes, functional profiles varied significantly between 

species and sites largely due to differential representation of auxiliary metabolic genes 

(AMGs), including those associated with herbicide resistance, heavy metal resistance and 

nylon degradation. Furthermore, AMGs varied with the composition and abundance of the 

sponge-associated microbiome. For instance, AMGs associated with antimicrobial activity 

were enriched in low microbial abundance sponges, AMGs associated with nitrogen 

metabolism were enriched in high microbial abundance sponges and AMGs related to 

cellulose biosynthesis were enriched in species that host photosynthetic cyanobacteria. These 

results are consistent with our current understanding of sponge ecology and highlight the 

diverse functional roles that viruses can play in the marine sponge holobiont. 

3.2. INTRODUCTION 

Marine sponges (phylum Porifera) are an ecologically important component of the benthos, 

providing habitat for a diverse array of macro and microorganisms and mediating 

biogeochemical fluxes by filtering organic matter and facilitating the consumption and release 

of nutrients (Bell, 2008). As suspension feeders, sponges can filter up to 100, 000 times their 

own body volume in seawater every day (Weisz, Lindquist & Martens, 2008), which influences 
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the composition of the seawater at macro and micro scales (Thomassen & Riisgård, 1995; 

Patterson et al., 1997; Leys & Eerkes-Medrano, 2006). Sponges efficiently extract 

picoplankton, bacteria and archaea (Ribes, Coma & Gili, 1999), and can also retain viral-sized 

particles (Hadas et al., 2006). Moreover, most sponge species host diverse and stable 

communities of microbial symbionts, which contribute to a variety of host metabolic 

processes and produce a suite of secondary metabolites (Steindler, Beer & Ilan, 2002; Taylor 

et al., 2007b,a; Wilson et al., 2014). Although the complexity and composition of the 

microbiome varies across different sponge species, frequently enriched microbial phyla 

include the Proteobacteria (classes Alpha- and Gammaproteobacteria), Actinobacteria, 

Chloroflexi, Nitrospirae and Cyanobacteria, with Thaumarchaea being the major sponge-

associated archaeal taxa (Thomas et al., 2016). Additionally, the microbiome of cosmopolitan 

sponges, such as Carteriospongia foliascens and Xestospongia testudinaria, often shows 

biogeographic distinctions, likely responding to environmental variations (Luter et al., 2015; 

Swierts, Cleary & de Voogd, 2018). Sponges and their complex communities of microbial 

symbionts are therefore a typical example of a ‘meta-organism’ or ‘holobiont’ (Margulis, 

1981; Bosch & McFall-Ngai, 2011). However, while sponge-microbial interactions have been 

extensively studied over the past decades (Webster & Taylor, 2012; Gloeckner et al., 2014; 

Thomas et al., 2016; Lurgi et al., 2019), viruses represent the ‘dark matter’ in these 

ecologically important symbioses. 

Viruses are recognised as the most abundant entity in marine environments, likely infecting 

all organisms in the ocean (Suttle, 2005; Thurber et al., 2009a) and directly affecting energy 

flux in marine food webs via their regulation of prokaryotic and eukaryotic populations 

(Fuhrman, 1999; Weinbauer, 2004; Roux et al., 2015b). Despite the critical role of viruses in 

marine ecosystems, we are only just beginning to describe their diversity and contributions 

to host ecology. This is particularly important considering the recently recognised role of 

phages in manipulating their bacterial hosts due to alteration of host metabolism via auxiliary 

metabolic genes (AMGs) (Breitbart et al., 2018). 

Viral-like particles (VLPs) in sponges were first reported from transmission electron 

micrographs in 1978 (Vacelet & Gallissian, 1978), however it wasn’t until 2016 that 

computational tools were optimised to explore sponge- associated viruses using 

metagenomic sequencing (Laffy et al., 2016). A subsequent comparative metagenomic 
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analysis of coral and sponge-associated viruses revealed high intra species similarity in the 

viromes of four sponge species, with communities dominated by dsDNA bacteriophages of 

the order Caudovirales, and a diverse community of ssDNA viruses of the family Microviridae 

(Laffy et al., 2018). Viruses belonging to the order Megavirales were also consistently 

observed, including members of the Mimiviridae, Phycodnaviridae and Poxviridae families 

(Laffy et al., 2018). AMGs involved in cobalamin biosynthesis and herbicide resistance were 

detected in the viromes of these reef sponges (Laffy et al., 2018). To assess the ubiquity of 

these patterns and investigate how these viruses contribute to host ecology, we undertook 

deep metaviromic sequencing of 15 representative sponge species (Fig. 3.1) from two coral 

reef ecosystems, the Great Barrier Reef and the Red Sea. 



40 
 

 

Figure 3.1 Sponge species used for metaviromic analysis in the GBR and Red Sea: GBR sponges included  (a) Callyspongia sp., 
(b) Echinochalina isaaci, (c) Carteriospongia foliascens, (d) Ianthella basta, (e) Cinachyrella schulzei, (f) Cymbastella marshae, 
(g) Lamellodysidea herbacea, (h) Pipestela candelabra, (i) Stylissa carteri; and the Red Sea sponges included: (j) Amphimedon 
ochracea, (k) Carteriospongia foliascens, (l) Crella cyathophora, (m) Hyrtios erectus, (n) Mycale sp., (o) Niphates sp., (p) 
Xestospongia testudinaria. Scale bar = 10 cm. 
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3.3. METHODS 

3.3.1. Sample collection 

 As sampling criteria, we opted for collecting sponge species that represented the dominant 

sponge fauna (Allen, 2008; Sonnewald & El-Sherbiny, 2017) (Hooper, Kennedy & Quinn, 2002; 

Ilan, Gugel & Van Soest, 2004) at two distinct biogeographical regions with varying levels of 

anthropogenic impact. Triplicate samples of nine coral reef sponges species - Callyspongia 

sp., Carteriospongia foliascens, Cinachyrella schulzei, Cymbastella marshae, Echinochalina 

isaaci, Ianthella basta, Lamellodysidea herbacea, Pipestela candelabra, Stylissa carteri were 

collected from Orpheus Island, Queensland, Australia (18°35’34’’S, 146°28’53”E) and seven 

sponge species - Amphimedon ochracea, Carteriospongia foliascens, Crella cyathophora, 

Hyrtios erectus, Mycale sp., Niphates rowi, Xestospongia testudinaria were collected in Al 

Fahal, Saudi Arabia (22°13’95”N, 39°01’81”E), between December 2015 and February 2016 

(Fig 3.1; Supplementary Table 3.1). Sponges were collected on SCUBA between three and 

fifteen meters depth. All specimens were photographed in situ before being individually 

placed in sterile tubes and immediately transferred on ice to the laboratory for purification 

of viral particles. A seawater sample was collected from each sampling location (n=1 x 20l) as 

a comparative reference for the sponge samples. Seawater was collected using sterile 

containers and stored at 4°C for 2-24 hours prior to being filtered through a 0.22 μm Sterivex 

polyethersulfone filter.  

3.3.2. Viral concentration and purification  

Isolation and purification of sponge viruses was performed using a modified version of the 

protocol designed to isolate VLP from culture lysates and coral tissue (Lawrence & Steward, 

2010; Weynberg et al., 2014).  Approximately 25 g of fresh sponge tissue was cut into small 

pieces (5 mm), covered with 15 µl of 0.02 µm filter-sterilized (Whatman Anotop, Merck, 

Darmstadt, Germany) SM buffer (100 mM NaCl, 8 mM MgSO4, 50 mM Tris pH 7.5), and 

homogenized with a Craig's HS30E homogenizer (Witeg, Wertheim, Germany) for 5 to 10 

minutes (min). Tissue homogenates were filtered through a Falcon 100 µm Cell Strainer 

(Corning, New York, NY, USA), then centrifuged at 500 g for 15 min at 4°C to pellet the majority 

of cellular debris. Supernatant density was brought to 1.2 g ml-1 with the addition of Cesium 

Chloride (CsCl). In parallel, different density CsCl solutions in 0.02 μm filtered SM Buffer, were 

layered in the ultracentrifuge tube (3 mL of 1.6 g ml-1 solution; 2.5 ml of 1.45 g ml-1 solution; 
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2.5 ml of 1.3 g ml-1 solution; 2 ml of 1.2 g ml-1 solution). A 7.5 ml aliquot of each sample was 

dispensed on top of three gradient tubes (2.5 ml per tube), and centrifuged (Beckman Coulter 

Ultracentrifuge, Brea, CA, USA) in a swinging-bucket rotor (SW 40 Ti) for 2h 40 min at 40,000 

g, at 4°C. Following centrifugation, the tube content was fractionated by density into eighteen 

fractions. The density and nucleic acid concentration of each fraction was determined 

(Weynberg et al., 2014) and the fractions with density between 1.2 g/ml and 1.5 g/ml were 

pooled together and filtered (0.22 µm EMD Millipore filter, Merck) to remove any remaining 

cellular contamination.  Buffer exchange was performed to remove the CsCl salt from the 

samples by loading each sample into a 30 KDa Amicon centrifugal spin column (Millipore), 

centrifuging at 4000 g for 30 min at 4°C, discarding the flow-through and repeating this 

operation four to six times to ensure complete exchange of CsCl into filter-sterilised SM 

buffer. A final centrifugation step resulted in the concentration of VLPs into a 600 µl solution 

of filter-sterilised SM buffer. In total, 200 µl of this solution was used for DNA extraction. 

Viruses were purified from seawater using Tangential Flow Filtration (30 kDa, Pall 

Corporation, New York, NY, USA) (Sun et al., 2014), by concentrating viruses from 20 l of pre-

filtered (0.22 µm EMD Millipore filter) seawater into 20 ml seawater solution. Diafiltration 

was performed to replace seawater with SM buffer and samples were concentrated to a final 

volume of 500 µl using Amicon centrifugal spin columns (30kDa, Millipore) as described 

above. 

3.3.3. Viral DNA extraction and amplification for sequencing.  

To degrade any free nucleic acid residing outside the viral capsid, purified viral samples were 

treated with DNase and RNase (Ambion, Thermo Fisher Scientific, Waltham, MA, USA) prior 

to DNA extraction according to Manufacturer’s instructions. DNA was extracted using the 

FastDNA SPIN Kit for Soil (MP Biomedicals, Santa Ana, CA, USA) following the Manufacturer’s 

instructions. A modified Random Priming-mediated Sequence-Independent Single-Primer 

Amplification (RP-SISPA) approach was used to amplify viral DNA fragments (Weynberg et al., 

2014). Briefly, viral DNA was converted to dsDNA using a Klenow Fragment (3’–5’ exo-) using 

RP-SISPA primers with a 3’ random hexamer sequence. Eight µl of DNA was added to 6 µl of 

reaction mix containing 1.5 µl of 10× NEB buffer (New England Biolabs. Ipswich, MA, USA); 1 

µl of 2.5 mM dNTPs; 1.5 µl of primer FR26RV-N (GCCGGAGCTCTGCAGATATCNNNNNN, 10µM 

stock) and 2µl of DNase-free distilled water. Reactions were incubated at 94°C for 3 min, 
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placed on ice for 3 min (primer annealing) before 1 µl of Klenow Fragment was added to the 

mix and incubated at 37°C for 60 min. After incubation, 1 µl of dNTP and 1 µl of N primer was 

added to each tube, samples were incubated at 94°C for 3 min and placed on ice for 3 min. 

Lastly, 1 µl of Klenow was added to the solution and the reaction was incubated at 37°C for 

60 min then terminated at 75°C for 20 minutes. Triplicate PCR amplifications were performed 

using the SISPA template. Two µl of template was added to 23 µl of reaction mix containing 

2.5 µl of 10× reaction buffer, 4 µl of dNTP (2.5 mM stock), 2 µl of FR20RV primer 

(GCCGGAGCTCTGCAGATATC, 10µMstock) and 0.25 µl of TaKaRa LA HS Taq polymerase (5 

U/µl, Scientifix, South Yarra, VIC, Australia). Reactions were incubated at 95°C for 10 min, 

followed by 30 amplification cycles (95°C for 30 sec, 60°C for 60 sec, 72°C for 90 sec) and a 

final hold at 72°C for 13 min to enable completion of complementary strand synthesis. PCR 

reactions were loaded onto a 0.8% agarose gel in 1×TAE at 100V for 30 min. Amplifications 

with no visible PCR product were repeated by diluting the SISPA template 10 or 100 times. A 

reconditioning PCR was performed after pooling triplicate reactions to avoid sequencing 

artifacts (Thompson, 2002). 10 µl of pooled template was added in 90 µl of mix containing 

55.25 µl of PCR water, 10 µl 10× reaction buffer, 16 µl dNTP (2.5mM stock), 8 µl FR20RV 

primer (10µMstock) and 0.75 µl TaKaRa LA HS Taq. Reactions were incubated as per the PCR 

amplification protocol and cleaned using the MinElute PCR Purification Kit (Qiagen, Hilden, 

Germany). Samples were run on a 0.8% agarose gel in 1×TAE at 100V for 30 min and DNA 

quality (260:280 ratios) was assessed on a NanoDrop 2000 (Thermo Fisher Scientific).  

3.3.4. Viral DNA sequencing and bioinformatic analysis 

All purified viral DNA was sequenced using TruSeq SBS kit V4 s125 bp fragments paired-end 

sequencing (Illumina) at the Bioscience Core Lab at the King Abdullah University of Science 

and Technology- KAUST, Thuwal, Saudi Arabia.  

Sequence data was analysed based on the HoloVir protocol (Laffy et al., 2016), a 

computational workflow designed for assigning taxonomy and function to host-associated 

viruses. Quality control (QC) was performed on raw sequence data using CLC Genomic 

Workbench version 9.0 (Cambridge, MA, USA), where library adaptors, ambiguous 

nucleotides (n=2) and low-quality bases (0.01) were trimmed and reads below 40 bp were 

discarded. Viral metagenomes were assembled from the trimmed sequences using the De 

Novo Assembly function in CLC Genomic Workbench.  Contigs smaller than 500 bp in length 
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or with an average coverage-value below 3 were discarded. Gene prediction was performed 

on the contigs using MetaGeneAnnotator (Noguchi, Taniguchi & Itoh, 2008). Predicted genes 

were used for viral taxonomic assignment and functional annotation. Taxonomic assignment 

was performed using MEGAN6 (Huson et al., 2011), utilising BLAST analysis to search for 

homology between predicted gene data and the known viral reference genome within the 

NCBI RefSeq database (Pruitt, Tatusova & Maglott, 2007). MEGAN6 was run using a top-

percent parameter of 80, min-support value of five reads and a bit score threshold value of 

80. Assembled data was also compared to the HoloVir cellular and viral marker database to 

identify any cellular contamination (Laffy et al., 2016). Viral taxonomic classification was 

based on a lowest common ancestor scoring system using the best significant matches to viral 

reference sequences. However, it is important to acknowledge that mismatches may occur as 

a consequence of limited availability of adequate viral reference sequences. 

Functional analysis of predicted genes was performed as described in the HoloVir protocol 

(Laffy et al., 2016), utilising BLASTP sequence similarity searches of predicted genes against 

the Swiss-Prot manually curated UniprotKB protein database  (UniProt Consortium, 2015), 

using an e–value cutoff of 10-10 a cutoff range specifically chosen to capture and identify 

functional homology (Pearson, 2013). Swiss-Prot Keywords were assigned to each predicted 

gene based on the best significant BLASTP match. Overall keyword enrichment for each 

metavirome was calculated by adjusting for both contig coverage as well as keyword 

frequency within the Swiss-Prot database. 

3.3.5. Data analyses 

Permutational multivariate analysis of variance (PERMANOVA) was performed to identify 

significant differences in viral community composition and functional profiles between host 

species, sampling sites, host nutritional mode and microbial abundance. To visualise sample 

separation according to these host features, Non-metric Multidimensional Scaling (MDS) 

analyses were performed using Hellinger-transformed data to compare the viral community 

and viral function based on Bray-Curtis dissimilarity matrix using Primer v 6.1.7 (PRIMER-E 

Ltd., Plymouth, UK). Univariate tests to identify drivers of functional differences between 

each category were performed using the R package mvabund (Wang et al., 2012). 
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3.3.6. Data availability 

The data that support the findings of this study are available on the GenBank website 

https://www.ncbi.nlm.nih.gov/genbank through the accession numbers SAMN09948703- 

SAMN09948748. 

3.4. RESULTS AND DISCUSSION 

3.4.1. Community profile of the sponge virome 

In total, 575,118 contigs were assembled and 1,162,879 genes were predicted (Table 1; 

Supplementary table 3.1). On average, 19.24% of all predicted genes were taxonomically 

assigned and 27.29% of all contigs contained at least one taxonomically assigned gene (Table 

1; Supplementary Table 3.1 ). Cellular marker evaluation identified that an average of 0.25% 

of contigs contained cellular marker matches (Table 1; Supplementary Table 3.1), comparable 

to a previous study which reported that host-associated viromes with 0.1-0.3% of contigs 

containing cellular marker matches could be characterised as having negligible or low-level 

cellular contamination (Laffy et al., 2018). 

Table 3.1 Summary of sampling locations, sequencing statistics and cellular contamination evaluation of virome datasets. 
N50 values for each dataset were calculated based on evaluation of unfiltered contigs. * The raw reads values are presented 
in million of reads. 

Host species Sampling 

site 

# raw 

reads* 

Contig 

N50 

# 

contigs 

Longest 

contig 

# 

predicted 

genes 

% 

Taxonomically 

assigned 

genes 

% 

Taxonomically 

assigned 

contigs 

% of contigs 

with cellular 

marker 

matches 

Callyspongia sp. rep.1 GBR  11.06 899 23,339 58,159 63,281 23.5 38.7 0.0 

Callyspongia sp. rep.2 GBR  9.36 932 20,309 172,832 56,308 23.6 38.5 0.0 

Callyspongia sp. rep.3 GBR  8.97 810 21,236 69,654 56,363 24.0 38.2 0.0 

C. foliascens rep. 1 GBR  4.92 675 33,078 24,096 57,288 13.2 18.7 0.4 

C. foliascens rep. 2 GBR  1.78 698 14,225 46,996 25,768 11.0 16.6 2.1 

C. foliascens rep. 3 GBR  15.28 624 45,237 23,964 76,516 13.0 18.5 0.8 

C. schulzei rep. 1 GBR  7.95 467 9,621 80,905 17,001 14.8 19.2 0.9 

C. schulzei rep. 2 GBR  8.23 571 12,170 81,025 26,002 17.5 24.2 1.3 

C. schulzei rep. 3 GBR  19.59 660 50,864 80,778 95,389 14.4 17.1 0.1 

C. marshae rep. 1 GBR  1.53 434 4,549 9,804 7,975 16.2 26.0 1.2 

C. marshae rep. 2 GBR  3.75 398 5,419 7,498 6,585 16.6 18.2 0.6 

C. marshae rep. 3 GBR  3.12 405 6,751 12,455 10,427 16.1 22.0 0.5 

E. isaaci rep. 1 GBR  4.20 566 11,349 31,106 21,794 22.5 34.7 0.3 

E. isaaci rep. 2 GBR  4.50 510 13,898 49,604 28,567 23.3 35.2 0.1 

E. isaaci rep. 3 GBR  1.26 694 4,752 42,237 11,022 21.8 34.7 0.1 

I. basta rep. 1 GBR  6.58 504 11,600 60,819 24,285 19.3 30.7 0.1 
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I. basta rep. 2 GBR  4.63 495 12,591 39,149 23,850 22.2 34.1 0.0 

I. basta rep. 3 GBR  4.83 552 14,561 36,340 28,801 20.8 32.2 0.0 

L. herbacea rep. 1 GBR  7.96 457 11,693 43,955 21,907 20.2 31.4 0.1 

L. herbacea rep. 2 GBR  14.88 594 9,661 14,898 18,144 19.2 30.5 0.2 

L. herbacea rep. 3 GBR  3.02 504 16,931 43,769 30,283 20.2 30.5 0.2 

P. candelabra rep. 1 GBR  12.20 693 35,688 49,806 32,910 15.0 11.8 0.8 

P. candelabra rep. 2 GBR  7.74 557 27,010 58,681 48,732 14.4 20.0 1.2 

P. candelabra rep. 3 GBR  5.87 958 13,373 120,555 29,643 18.2 25.3 1.6 

S. carteri rep. 1 GBR  6.34 346 4,063 10,851 5,709 17.6 20.2 0.0 

S. carteri rep. 2 GBR  4.78 384 7,833 16,548 13,143 21.9 29.0 0.0 

A. ochracea rep. 3 Red Sea 3.38 720 7,706 26,892 18,040 25.6 40.9 0.7 

A. ochracea rep. 1 Red Sea 14.14 717 29,033 61,876 71,543 23.2 35.7 0.2 

A. ochracea rep. 2 Red Sea 2.79 694 7,692 20,756 10,981 21.1 15.8 0.4 

C. foliascens rep. 1 Red Sea 2.30 1,671 2,571 35,948 7,096 20.7 38.9 1.6 

C. foliascens rep. 2 Red Sea 1.64 1,135 3,913 49,410 10,708 19.7 33.6 1.7 

C. foliascens rep. 3 Red Sea 1.82 1,280 2,787 38,097 7,284 21.4 39.6 1.4 

C. cyathophora rep. 1 Red Sea 3.19 601 2,757 19,321 8,636 25.6 55.5 0.6 

C. cyathophora rep. 2 Red Sea 3.58 618 2,613 39,999 5,753 24.9 37.9 0.1 

C. cyathophora rep. 3 Red Sea 1.84 614 3,977 44,834 7,951 21.5 32.7 0.7 

H. erectus rep. 1 Red Sea 18.37 921 6,400 7,865 17,674 21.8 39.6 0.6 

H. erectus rep. 2 Red Sea 6.04 878 9,540 47,148 25,550 23.9 40.3 0.4 

Mycale sp. rep. 1 Red Sea 5.81 949 5,396 39,546 13,458 16.1 29.4 0.8 

Mycale sp. rep. 2 Red Sea 5.74 705 9,562 54,476 22,104 22.7 36.5 0.5 

Mycale sp. rep. 3 Red Sea 5.06 682 6,123 22,927 13,601 20.2 33.1 0.9 

N. rowi rep. 1  Red Sea 2.40 668 6,058 25,175 13,766 27.5 40.2 0.5 

N. rowi rep. 2 Red Sea 7.35 922 10,017 52,589 27,503 24.0 41.7 0.5 

X. testudinaria rep. 1 Red Sea 6.13 881 7,533 103,486 20,344 16.2 29.1 0.6 

X. testudinaria rep. 2 Red Sea 7.40 729 9,639 74,732 23,194 17.1 29.0 0.4 

Sea water - GBR GBR 21.64 406 11,008 20,625 19,950 22.0 32.2 1.2 

Sea water - RS Red Sea 9.51 523 10,568 52,589 36,395 35.1 75.1 0.1 

 

Sponge-derived viral sequences predominantly matched dsDNA viruses (88%), with a lower 

relative abundance of matches to ssDNA viruses (9%) and retroviruses (3%) (Fig. 3.2; 

Supplementary Table 3.2). In particular, matches to the tailed bacteriophage order 

Caudovirales, including representatives of the Podoviridae, Siphoviridae and Myoviridae, 

accounted for more than 80% of total viral taxonomic assignments (Fig. 3.2; Supplementary 

Table 3.2). The Caudovirales infect a wide range of bacteria and archaea (Ackermann & 

Kropinski, 2007), are the most abundant viruses in marine environments (Breitbart, 2012), 

and have been reported to dominate the virome of numerous other coral reef species (Patten, 

Harrison & Mitchell, 2008; Wood-Charlson et al., 2015; Correa et al., 2016; Weynberg et al., 

2017a; Thurber et al., 2017; Laffy et al., 2018). The predominance of bacteriophage matches 
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within the sponge metaviromes reflects the enormous abundance of microorganisms residing 

within the sponge holobiont, with as many as 109 symbiont cells per cm3 of sponge tissue 

(Reiswig, 1981; Webster & Hill, 2001; Hoffmann et al., 2005). The detection of retroviruses is 

not uncommon in metaviromic studies targeting DNA viruses (Willner et al., 2009; Wood-

Charlson et al., 2015; Correa et al., 2016; Laffy et al., 2018), and is possible because 

transcribed retroviral DNA can be present within retrovirus capsids, and this DNA can make 

up to 2.5% of the total virus nucleic acid (Byers et al., 1979). 
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Figure 3.2 Taxonomic summary of the viral communities for fifteen sponge species from the Great Barrier Reef and the Red Sea. Taxonomy is summarised at the family level based on MEGAN6 
LCA assignment using parameters defined in Laffy et al., 2016.
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Contigs taxonomically assigned to viral families that typically infect eukaryotes were also 

prevalent in sponges, particularly representatives of the nucleocytoplasmic large DNA virus 

(NCLDV) families Mimiviridae, Marseilleviridae, Phycodnaviridae, Ascoviridae, Iridoviridae, 

Asfarviridae and Poxviridae.  However, the presence and relative abundance of NCLDV 

assignments varied across sponge species (Fig. 3.2). Mimiviridae and Marseilleviridae are 

giant viruses that typically infect amoebae (Scola, 2003). While the sponge amoeba-like cells 

(amoebocytes and archaeocytes (Claverie et al., 2009)) may host these NCLDV, giant viruses 

also associate with marine cnidarians, echinoderms and protochordates that lack typical 

amoebocyte cells (Wegley et al., 2007; Thurber & Correa, 2011; Grasis et al., 2014; Wood-

Charlson et al., 2015; Leigh et al., 2018; Laffy et al., 2018) . The high relative abundance of 

Mimiviruses in marine waters (Monier, Claverie & Ogata, 2008) combined with their large 

genome sizes (~1.2 Mbp) may explain their prevalence in the sponge metaviromes. 

Conversely, sponge-derived Mimivirus-like contigs have low diversity and high species- 

specificity (Laffy et al., 2018), suggesting that the giant virus signature in sponges does not 

originate from seawater. 

Matches to Phycodnaviridae were consistently detected across all fifteen sponge species (Fig. 

3.2). This viral family typically infects algae and cyanobacteria (Yau et al., 2011) and has been 

reported from cnidarian, arthropod, echinoderm and urochordate holobionts (Hingamp et al., 

2013; Wood-Charlson et al., 2015; Weynberg et al., 2017a). In sponges, the Phycodnaviridae 

are likely targeting the associated photosymbionts, as cyanobacteria occur at high abundance 

in many of these sponge species (Webster et al., 2013a). Another NCLDV family detected in 

the viromes of all sponge species was the Poxviridae (Fig. 3.2). Poxviridae and the viral families 

Ascoviridae, Iridoviridae and Asfarviridae are associated with a wide range of invertebrate 

hosts (Bracht et al., 2006; Williams, 2008; Weynberg et al., 2014; Grasis et al., 2014; 

Gudenkauf & Hewson, 2016). The detection of Poxviridae-like viruses in marine sponges 

suggests an extension of their previously known host range, although cellular infection in 

sponges still needs to be validated. The NCLDV group of viruses pose considerable systematic 

and interpretative challenges due to horizontal gene transfer between different NCLDVs and 

their hosts, which can make taxonomic assignment hard to resolve (Iyer, Aravind & Koonin, 

2001). 
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Matches to the ssDNA viral families Microviridae, Circoviridae and Inoviridae were evident in 

most sponge species whereas the Parvoviridae and Bidnaviridae had a more restricted 

distribution and lower intra-species similarity than other viral taxa (Fig. 3.2). The most 

prevalent ssDNA viral sequence assignments within the sponge metaviromes were to the 

Microviridae, which typically infect Proteobacteria, Spiroplasma and Chlamydia (Brentlinger 

et al., 2002; Ackermann & Kropinski, 2007). Proteobacteria are abundant and diverse 

symbionts of marine sponges (Pita et al., 2018b), likely explaining the high relative abundance 

and diversity of sequences assigned to these small ssDNA viruses in the sponge metaviromes 

as well as in viral communities from other reef invertebrates (Weynberg et al., 2017b; Laffy 

et al., 2018). The Circoviridae typically infect mammals and birds (Delwart & Li, 2012) but 

viruses from this family were also frequently detected in sponges. This group of viruses is 

characterised by their small circular genomes (~2 kb) and high genetic diversity, which has 

underpinned a rapid expansion in their host range (Li et al., 2010; Delwart & Li, 2012) to 

include cnidarians, urochordates and other invertebrates (Dunlap et al., 2013; Laffy et al., 

2018). Retroviral sequences assigned to the families Caulimoviridae and Retrovirdae were 

also detected in just over one third of sponge species, including all replicates of the GBR 

sponges C. foliascens, C. schulzei, C. marshae and S. carteri (Fig. 3.2). Reverse-transcribing 

viruses infect a wide range of animal, algal and plant hosts (Bowser & Casey, 1993; Kim et al., 

1994; Zaki, 2003) and have recently been reported within Symbiodiniaceae cultures from 

coral (Weynberg et al., 2017a,b). 

3.4.2. Variation in the sponge viral community is driven by site-specific and host-

specific features.  

The composition of sponge-associated viral communities is strongly determined by host 

species and the geographical location of the host (Fig. 3.3a). A significant difference in viral 

community composition was found between the 15 sponge species (PERMANOVA, Pseudo-F 

value = 4.4534, df = 14, P-value = 0.001, Fig. 3.3a), consistent with previous reports of high 

intra-species similarity in the viral communities of sponges Amphimedon queenslandica, 

Rhopaloiedes odorabile, Xestospongia testudinaria and Ianthella basta (Laffy et al., 2018). 

Given the large volumes of seawater sponges filter to extract bacterioplankton and 

virioplankton, this species-specificity is particularly notable, and is likely attributed to the 

host-specificity of eukaryotic viruses (Drake, 1993; Duffy, Burch & Turner, 2007; Atabekov, 
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2011; Bandín & Dopazo, 2011; Chow et al., 2014; Grasis et al., 2014) and the high species-

specificity of the sponge-associated microorganisms (Thomas et al., 2016) that host the 

bacteriophage component of the community. While viral communities were also significantly 

different between sampling sites (PERMANOVA, Pseudo-F value = 4.8483, df = 1, P-value = 

0.001; Fig. 3.3a), this was not attributed to differences between seawater viromes from the 

GBR and the Red Sea. The geographic variation in sponge-associated viruses is consistent with 

findings by Brum and colleagues (Brum et al., 2015), who reported that marine viral 

communities can be locally structured by specific environmental conditions that affect host 

community structure. 

Sponge populations contain a mixture of heterotrophic and phototrophic species as well as 

species with high (HMA) and low (LMA) microbial abundance (Moitinho-Silva et al., 2017). 

Microbial biomass in HMA sponges can comprise up to one third of the total sponge biomass, 

with microbial diversity generally being much higher than in sympatric LMA species 

(Hentschel, Usher & Taylor, 2006; Giles et al., 2013; Moitinho-Silva et al., 2017). Viral 

communities are more similar among sponges sharing similar traits in microbial ecology (Fig. 

3.3b; Appendix 3 Table 3A.1), with permutation-based analysis of variance revealing 

significant differences in viral community composition between HMA and LMA sponges 

(PERMANOVA, Pseudo-F value = 2.4228, df = 1, P-value = 0.001) and between sponges with 

and without photosymbionts (PERMANOVA, Pseudo-F value = 2.1002, df = 1, P-value = 0.001). 

These results further support the role of the sponge-associated microbiome (abundance and 

composition) in structuring the virome. 
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Figure 3.3 Endogenous and exogenous determinants of viral community composition within marine sponges. Non-metric 
multidimensional scaling plot based on Bray-Curtis similarity of genus-level taxonomy for predicted genes. Ordination 
displays similarities in the viral communities of the (a) fifteen sponge species (PERMANOVA, Pseudo-F value = 4.4534, df = 
14, P-value = 0.001) from the Great Barrier Reef and the Red Sea (PERMANOVA, Pseudo-F value = 4.8483, df = 1, P-value = 
0.001), and (b) discriminates between species classified as high microbial abundance (HMA) or low microbial abundance 
(LMA) (PERMANOVA, Pseudo-F value = 2.4712, df = 1, P-value = 0.001) and host nutritional modes, classified by the presence 
or absence of photosymbionts (PERMANOVA, Pseudo-F value = 2.1976, df = 1, P-value = 0.001). 
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3.4.3. Functional potential of the sponge virome 

An average of 14.6% of predicted genes from the sponge viromes were assigned functional 

SwissProt keywords, based on BLASTP matches to the UniProt-KB database (Supplementary 

Table 3.1). Ordination analysis based on the relative frequency of Swiss-Prot keywords 

revealed both species-specific and site-specific clustering in gene function (Fig. 3.4.), 

consistent with taxonomic analyses (Fig. 3.3a). Permutational analysis of variance confirmed 

significant differences in functional gene repertoires across species (PERMANOVA, Pseudo-F 

value = 5.067, P-value = 0.001) and locations (PERMANOVA, Pseudo-F value = 6.9506, P-value 

= 0.001). Each sponge species showed a unique functional profile (Fig. 3.5), however of the 

50 most enriched Swiss-Prot keywords, half were abundant across all sponge samples, while 

the remaining keywords were enriched only in specific sponge species (Fig. 3.5). Marked host 

specificity in functional genes reflected the distinct viral communities inhabiting each of the 

holobionts. For instance, the keyword for short tail ejection systems was particularly enriched 

in E. isaaci and it is notable that this species also hosted the highest relative abundance of the 

short tail bacteriophage family Podoviridae (Fig. 3.2). 

 

Figure 3.4 Non-metric multidimensional scaling plot based on Bray Curtis similarity of Swiss-Prot functional keyword 
assignment for predicted genes. Ordination displays similarities in the viral communities of the fifteen sponge species from 
the Great Barrier Reef and the Red Sea. 
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Figure 3.5 Swiss-Prot functional keyword assignment to predicted genes, normalised according to keyword frequency in the database using parameters defined in Laffy et al., 2016. Keyword composition was 
further adjusted to account for the coverage of the source contig within the metavirome. The top 50 most abundant keywords across all datasets were identified based on UniProt-KB BLASTP analysis of sponge 
metaviromes and an e-value cutoff of 1e-1
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Of the 50 most enriched viral keywords, 26% were associated with viral infection strategies 

including ‘genome ejection through the host cell envelope’, ‘attachment to host entry 

receptor’, ‘long flexible tail ejection system’ and ‘exiting from the host cell’ (Fig. 3.5). A further 

22% were involved in viral structure, including ‘t=1 icosahedral capsid protein’, ‘collagen’, ‘tail 

assembly’ and ‘tail protein’ (Fig. 3.5). Additionally, viral replication mechanisms comprised 

20% of the top 50 keywords, including ‘DNA replication’, ‘genome excision, ‘genome 

packaging’ and ‘bacteriolytic enzymes’ (Fig. 3.5). Finally, 6% of the 50 most enriched protein 

functions related to a suite of auxiliary metabolic genes (AMG), including ‘chromate 

resistance’, ‘cadmium resistance’, ‘nylon degradation’, ‘SOS mutagenesis’ and ‘host thylakoid’ 

(Fig. 3.5). 

Significant differences in specific viral functions between host species (Fig. 3.6) and sampling 

sites (Fig. 3.7) were identified using mvabund analysis of the Swiss-Prot functional keyword 

profiles. This analysis provided further support for the significant variations in AMGs between 

sponge species and sampling locations. For instance, the ‘host thylakoid’ Swiss-Prot keyword 

which is attributed to a protein located in or on the host thylakoid of chloroplasts of green 

algae (Kieselbach et al., 1998), was particularly enriched in Callyspongia sp., C. foliascens, C. 

schulzei, I. basta, S. carteri, C. cyathophora and N. rowi (Fig. 3.7). The ‘host thylakoid’ genes 

were identified as Photosystem II D2 proteins, and the majority of contigs with this gene 

originated from Synechococcus phages within the family Myoviridae (Supplementary Table 

3.3). While microbial community composition data is not available for all sponge species, both 

C. foliascens and C. cyathophora are known to host abundant populations of Synechococcus 

symbionts (Gao et al., 2014b, 2015; Luter et al., 2015). The enrichment of this keyword shows 

that viruses could potentially interfere with photosynthetic processes in their hosts. These 

auxiliary genes have also been observed in coral DNA viromes (Weynberg et al., 2017a) and, 

with the exception of C. marshae, P. candelabra and X. testudinaria, were present in all 

sponge species investigated (Fig. 3.6). 
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Figure 3.6 Viral functions that were significantly different between sponge species (P-value <0.02) from Swissprot Keyword abundance 
data from all samples, adjusted to account for coverage of the source contig within individual viromes using parameters defined in Laffy 
et al., 2016. 
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Figure 3.7 Viral functions that were significantly different between sampling sites (P-value <0.02) from Swissprot Keyword abundance 
data from all samples, adjusted to account for coverage of the source contig within individual viromes using parameters defined in Laffy 
et al., 2016. 
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Collagen was one of the most abundant SwissProt Keywords within the sponge viromes, being 

present in all sponge species (Fig. 3.5), and a significant driver of functional differences 

between host species (Fig. 3.6) and sampling locations (Fig. 3.7). A previous study also 

identified collagen as being an abundant component of sponge viromes, and a key driver of 

functional differences between sponge, coral and seawater viromes (Laffy et al., 2018). 

Contigs containing collagen proteins were consistently attributed to dsDNA viruses 

(Supplementary Table 3.3), and when assigned at the family level, they included members of 

the bacteriophage families Myoviridae, Podoviridae and Siphoviridae, the algal 

Phycodnaviridae, the crustacean-infecting Nimaviridae and the giant virus family Mimiviridae 

(Supplementary Table 3.3). Collagen is an integral structural component of the external capsid 

of members of the Mimiviridae (Shah et al., 2014) but is also used by sponges to form their 

skeletal structure (Simpson, 2011). While it is clear that collagen genes are an integral 

component of sponge-associated viruses, their functional role within the sponge virome 

remains unclear and warrants further investigation. 

Genes coding for ankyrin repeat proteins (ARPs) were found on 60 contigs within the C. 

schulzei viromes, and 65% of these were taxonomically assigned to contigs matching dsDNA 

viruses (Supplementary Table 3.3). It is likely that these ARPs originated from a member of 

the Megavirales, as the only family level taxonomic assignments made to contigs containing 

ARPs were to contigs belonging to the Phycodnaviridae, Iridoviridae, Mimiviridae or 

Poxviridae (Supplementary Table 3.3). The ankyrin repeat is an amino-acid motif that can 

disrupt protein–protein interactions in cellular processes (Mosavi et al., 2004; Díez-Vives et 

al., 2017). In a recent publication Jahn and colleagues shown that sponge bacteriophages 

encodes ankyrins that, upon bacterial expression, reduce the eukaryotic immune response 

and phagocytosis of bacteria thereby influencing bacterial survival (Jahn et al., 2019). 

Phylogenetic analysis of sponge-bacterial ARPs shows they are highly divergent from known 

protein sequences and are most closely related to proteins found in bacteria living in 

association with eukaryotes (Reynolds & Thomas, 2016). Horizontal gene transfer of ARPs 

amongst diverse symbionts has been proposed as a possible mechanism explaining their 

widespread distribution in sponges (Reynolds & Thomas, 2016) and their enrichment in the 

virome of some sponge species indicates that this horizontal transfer may be viral-mediated.  
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Heavy metal resistance genes, including mercury, molybdenum, chromate, cadmium, 

tellurium and arsenic resistance were significantly enriched in C. foliascens, X. testudinaria, C. 

schulzei, H. erectus and P. candelabra and more broadly in sponges from the Red Sea sampling 

site (Figs. 3.6 and 3.7). While heavy metals occur naturally and can be accumulated by sponges 

in the absence of anthropogenic pressure (Negri et al., 2006), levels can also be exacerbated 

by inputs from mining and industrial production (Negri et al., 2006; Pan et al., 2011; 

Tchounwou et al., 2012). In comparison to elevated levels of heavy metal contamination in 

the Red Sea, largely attributed to industrial and human activities in the coastal area (Badr et 

al., 2009), levels in the GBR are generally low, particularly within the GBR Marine Park (Haynes 

& Johnson, 2000). 

Arsenic is generally toxic to microbial communities (Tuulaikhuu, Romaní & Guasch, 2015), and 

genes associated with arsenic resistance (arsenite and arsenate reductase genes) were found 

to be significantly enriched in Red Sea sponges (Figs.3. 6 and 3.7), with the source contigs 

being almost exclusively assigned to bacteriophages (Supplementary Table 3.3). High levels 

of arsenic contamination has been identified in seawater, sediment and marine organisms 

from the Red Sea (El-Naggar & Al-Amoudi, 1989; El-Moselhy et al., 2014), and this has been 

primarily attributed to anthropogenic sources. Arsenic has also been shown to bioaccumulate 

in Red Sea sponges at levels exceeding 100 times the concentration in the surrounding 

environment (Mayzel, Aizenberg & Ilan, 2014). Arsenic tolerance in marine sponges has been 

attributed to a symbiotic bacterium, Entotheonella sp, that can mineralise the arsenic within 

intracellular vesicles (Keren et al., 2017). Tellurium resistance was also detected in all Red Sea 

sponges and was a significant driver of functional differences in the metaviromes between 

locations (Fig. 3.7). Tellurium resistance genes have previously been identified in yeast, fungi 

and bacteria (Ollivier et al., 2008; Tanaka et al., 2010; Boriová et al., 2014). Even though 

tellurium is usually present at low concentration in natural waters it is potentially harmful due 

to the recognised toxicity of some of its compounds and its association with anthropogenic 

sources (Belzile & Chen, 2015). Although there is no data available on the toxic effects of 

tellurium in the Red Sea, it has been hightlighted as an element of concern for the region 

(Ibrahim & Abdelmenam, 2015). Contigs carrying tellurium resistance genes were primarily 

assigned to the bacteriophage family Myoviridae (Supplementary Table 3.3).  
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With the exception of C. cyathophora, chromate resistance genes were significantly enriched 

in all Red Sea sponges, as well as in five of the nine GBR sponges. Analysis of fish collected 

near our Red Sea sampling site identified a 5-fold increase in chromate accumulation 

compared to fish at control sites (Mohamed et al., 2016), and a survey along the Saudi Arabian 

coast also identified elevated concentrations of chromate in several sponge species 

investigated here (Callyspongia sp., C. cyathophora, H. erectus and N. rowi) (Pan et al., 2011). 

The ‘chromate resistance’ keyword was assigned to multiple genes included in operons 

containing both chromate and molybdite resistance (Nies, Nies & Silver, 1990; Juhnke et al., 

2002) on contigs taxonomically assigned as Caudovirales (Supplementary Table 3.3). Similarly, 

cadmium resistance genes were significantly enriched in Red Sea sponges (Fig. 3.7), consistent 

with elevated cadmium levels reported in sponges sampled in the Red Sea off the coast of 

Israel (Mayzel, Aizenberg & Ilan, 2014). Cadmium is toxic to a wide range of bacteria and 

cyanobacteria (Trevors, Stratton & Gadd, 1986; Martelli et al., 2006). For the few contigs 

containing cadmium resistance genes that could be taxonomically assigned, matches were 

made to dsDNA viruses from the Caudovirales or Phycodnaviridae (Supplementary Table 3.3). 

Although cadmium accumulation in marine sponges is generally proportional to the 

concentration in the surrounding seawater (Müller et al., 1998), cadmium has also been 

detected in sponges from unpolluted environments where it can vary across sympatric 

sponge species (Patel, Balani & Patel, 1985). For this reason, without seawater chemistry from 

each collection site, it is not possible to unequivocally link the enrichment in cadmium 

resistance genes to anthropogenic cadmium contamination at the Red Sea sampling location. 

Some sponge species appear to have an exceptionally high tolerance for heavy metals and 

can bioaccumulate them from comparatively low concentrations in the surrounding 

environment. For instance, Tedania charcoti can accumulate and tolerate extraordinarily high 

concentrations of cadmium, even when environmental exposure is low (Capon et al., 1993). 

In the present study, C. foliascens samples from both the Red Sea and the GBR were enriched 

in multiple heavy metal resistance genes, highlighting the importance of determining 

naturally occurring concentrations of heavy metals in this species. The enrichment of 

cadmium, arsenic, tellurium and chromate resistance genes in Red Sea sponge metaviromes 

(assigned to bacteriophage contigs), in comparison to their absence or low prevalence in most 

GBR sponges, suggests that viruses may be contributing heavy metal resistance to their host 
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microbes. These findings suggest that viral genes linked to heavy metal resistance are selected 

for by sponge holobionts living in polluted environments in an effort to mitigate the effects 

of environmental heavy metal contamination. 

An enrichment of Swiss-Prot functional keywords for nylon degradation was also detected in 

the Red Sea sponge viromes. Pollution from synthetic plastic compounds has increased 

considerably in marine ecosystems (Worm et al., 2017), although surveys of surface water 

along the Arabian coast of the Red Sea reported lower levels of plastic contamination than 

what has been found in the Mediterranean Sea (Martí et al., 2017), despite detection of 

microplastics in the gastrointestinal tracts of Red Sea fish (Baalkhuyur et al., 2018). Genes and 

enzymes (carboxylesterases) associated with nylon degradation have previously been 

characterised from Flavobacterium and Pseudomonas species (Kinoshita et al., 1977; Tsuchiya 

et al., 1989; Negoro et al., 1992, 2005). The synthesis of nylon oligomer degradation enzymes 

from marine microbes can be particularly important for the biological removal or 

detoxification of the synthetic compounds released into the natural environment (Kakudo et 

al., 1993), therefore, the enrichment of nylon degradation genes in viruses associated with 

sponge microbes could improve host resistance to environmental contaminant exposure. 

Since viral transductions are important gene transfer processes in marine ecosystems, the 

enrichment of Nylon degradation in the sponge virome may possibly indicate a mechanism 

by which these genes are being acquired in oceanic microbiomes. 

Although heavy metal resistance and nylon degradation genes are frequently characterised 

from operons located on plasmid DNA (Kinoshita et al., 1977; Tsuchiya et al., 1989; Nies, Nies 

& Silver, 1990; Goncharoff et al., 1991; Juhnke et al., 2002; Wang et al., 2009), a recent study 

investigating the presence of antibiotic and heavy metal resistance genes in aquatic viromes 

showed that 1-3% of viral genes derived from environmental samples were attributed to 

heavy metal resistance (Colombo et al., 2017). The enrichment of these genes in Red Sea 

sponge viromes, together with previous reports of heavy metal and plastic contamination at 

the coastal sampling site, suggests that viruses could help support host resistance to 

environmental contaminant exposure. 

In contrast to the AMGs enriched in the Red Sea environment, herbicide resistance genes 

were significantly enriched in the GBR (Fig. 3.7), which could confer environmental tolerance 

to chemicals introduced to the reef ecosystem as a result of coastal agricultural activity. 
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Pesticides and herbicides associated with agricultural runoff can occur at high levels in coastal 

and lagoonal areas of the GBR (Jones & Kerswell, 2003; Lewis et al., 2009). Genes related to 

herbicide resistance were primarily assigned to contigs from Synechococcus phages 

(Supplementary Table 3.3). Synechococcus is the most abundant cyanobacterium in the ocean 

and a major contributor to the productivity of coastal seawater (Flombaum et al., 2013). The 

toxicological effects of herbicides on cyanobacterial populations is well documented (Linden 

et al., 1990; Weiner, DeLorenzo & Fulton, 2004; Singh et al., 2016), hence the presence of 

herbicide resistance genes in GBR sponges may provide a pathway for environmental 

acclimatisation of phototrophic species to agricultural runoff.  

Analysis of how virome function reflected other aspects of host ecology revealed significant 

differences according to host nutritional mode (photosymbionts vs no photosymbionts; 

PERMANOVA, Pseudo-F value = 2.1976, df = 1, P-value = 0.001) and microbial abundance 

(HMA vs LMA; PERMANOVA, Pseudo-F value = 2.4712, df = 1, P-value = 0.001). Specific 

differences in viral functions were assessed by mvabund analysis of the Swiss-Prot keywords 

(Fig. 3.8, 3.9; Appendix 3 Table A3.1). For instance, the keyword ‘antimicrobial’ was 

significantly enriched in LMA sponges (Fig. 3.8). Currently, the mechanisms underpinning 

whether a sponge hosts high or low microbial abundance (which often translates to high and 

low microbial diversity, respectively (Moitinho-Silva et al., 2017)) are unknown. Within the 

LMA sponge viromes containing ‘antimicrobial’ genes, source contigs were assigned to 

member of the Caudovirales (Supplementary Table 3.3) and most were linked to hydrolytic 

enzymes (Supplementary Table 3.3). Endolysins digest bacterial cell walls to enable 

bacteriophage release from the cell (Oliveira et al., 2013), and are considered highly specific 

antimicrobial agents (Fischetti, 2005). Furthermore, in P. candelabra, the antimicrobial 

keyword was associated with a Pyocin-S2 gene, responsible for producing antimicrobial 

bacteriocins in Pseudomonas aeruginosa (Denayer, Matthijs & Cornelis, 2007). Sponges are 

renowned for their production of bioactive secondary metabolites, although, with a few 

notable exceptions (Mori et al., 2018), it is generally unknown whether these antimicrobial 

compounds originate from the host or the microbial symbionts. Hydrolytic enzymes with 

antimicrobial activities have previously been identified in a sponge microbial metagenome 

(Yung et al., 2011) and here we show a potential bacteriophage origin for at least some 

antimicrobial genes. While enrichment of antimicrobial genes in the viromes of LMA sponges 
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suggests viral AMGs could assist in maintaining the structure of the sponge microbiome, 

further work is still required to confirm and quantify their role in maintaining the density and 

diversity of sponge symbionts. 
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Figure 3.8 Heatmap of viral functions that were significantly different between HMA and LMA sponges. Mvabund was used to perform 
univariate tests on Swiss-Prot keywords abundance data using parameters defined in Laffy et al., 2016. 
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Figure 3.9 Heatmap of viral functions that were significantly different between sponges with or without photosymbionts. Mvabund was 
used to perform univariate tests on Swiss-Prot keywords abundance data using parameters defined in Laffy et al., 2016. 
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An enhanced potential for nitrogen metabolism is a key feature of the microbiome of most 

HMA sponge species (Webster & Thomas, 2016). Here we detected a significant enrichment 

of the Swiss-Prot keywords ‘nitrate assimilation’ and ‘nitrogen fixation’ in the HMA group (Fig. 

3.8). Genes associated with nitrate assimilation included nitrate and nitrite reductases and 

associated transport genes, and genes associated with nitrogen fixation included glutamine 

synthetases and a large number of nitrogen fixation and regulation proteins (Supplementary 

Table 3.3). These genes occurred on contigs taxonomically assigned to Myoviridae and 

Phycodnaviridae, respectively. Interestingly, it has previously been shown that the HMA 

species C. foliascens, from which many of these nitrogen fixation genes were derived, gains 

considerable nutritional benefit from its nitrifying cyanobacterial symbionts (Wilkinson & Fay, 

1979). These cyanobacterial symbionts likely play host to at least some of the Myoviridae 

(which includes a wide diversity of cyanophages) and Phycodnaviridae identified here.  These 

results suggest that the virome may be contributing key genes involved in nitrogen 

metabolism in HMA sponges or that targeting the nitrogen metabolism pathway is part of the 

viral infection strategy in these species.  

Significant differences in viral functional genes were also evident between the phototrophic 

and heterotrophic sponge species. For instance, the ‘cellulose biosynthesis’ keyword was 

significatively enriched in sponges hosting photosynthetic symbionts (Fig. 3.9), particularly in 

C. foliascens and C. marshae (Supplementary Table 3.3), which host Synechoccoccus and 

Oscillatoria respectively (Lemloh et al., 2009; Gao et al., 2014a). Associated with the cellulose 

biosynthesis keyword were genes related to cellulose synthase A (CesA) and probable 

diguanylate cyclase genes, which were both assigned to Phycodnaviridae and Myoviridae 

(Supplementary Table 3.3). CesA genes are involved in the formation of cellulose for cell walls 

in plants (Kumar & Turner, 2015) and cyanobacteria (Zhao et al., 2015) and it has been 

suggested that plant and cyanobacterial cellulose biosynthesis genes share common ancestry 

(Nobles, Romanovicz & Brown, 2001), and may indirectly contribute to photosynthesis in 

marine ecosystems (Delmer & Haigler, 2002; Boex-Fontvieille et al., 2014). It is possible that 

these CesA genes are contributing to cellulose metabolism in a select group of 

microoganisms, although further work is required to fully characterise the role of the CesA 

genes in the sponge holobiont.  
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3.5. CONCLUSION  

Comparative analysis of viral communities from 15 sponge species collected from different 

geographic regions (GBR vs Red Sea), and representing different host nutritional modes 

(photosymbionts vs no photosymbionts) and strategies for microbial symbiosis (HMA vs 

LMA), has greatly expanded our understanding of viral ecology in marine sponges. dsDNA 

viruses spanning all three families of the Caudovirales as well as the NCLDV families 

Mimiviridae, Marseilleviridae, Phycodnaviridae, Ascoviridae, Iridoviridae, Asfarviridae and 

Poxviridae were present in sponges. ssDNA viruses from the Microviridae, Circoviridae and 

Inoviridae, as well as the Retroviridae were also prevalent, although their relative abundance 

was more variable across sponge species. While core viral functions related to replication, 

infection and structure were consistent across most sponge species, functional profiles varied 

significantly between species and sites, in part attributed by differential representation of 

AMGs associated with herbicide resistance, heavy metal resistance and nylon degradation. 

AMGs associated with antimicrobial activity were enriched in low microbial abundance 

species, while AMGs associated with nitrogen metabolism were enriched in high microbial 

abundance species and AMGs related to cellulose biosynthesis were enriched in sponge 

species hosting photosynthetic cyanobacteria. These results highlight the diverse suite of 

beneficial roles viral AMGs may play in the functional ecology of the sponge holobiont. 
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Chapter 4. THE IMPACTS OF THERMAL STRESS ON THE VIROME OF 

THE MARINE SPONGE CARTERIOSPONGIA FOLIASCENS 

4.1. ABSTRACT 

Ocean warming (OW) is causing irreversible damage in global coral reef communities. Future 

climate scenarios have forecast a shift in the reef structure as a result of environmental 

stressors, highlighting sponges as potential ‘winners’ due to their high environmental 

resilience.  The role of viruses in the thermal tolerance of sponges remains largely unknown. 

Viruses are important components of the sponge holobiont and play diverse functional roles 

mediating metabolic processes in their host. In order to investigate how the sponge virome 

responds to elevated temperature, the photosynthetic sponge Carteriospongia foliascens was 

exposed to short (3 days) and longer term (21 days) heat-stress events. A metaviromic 

approach was used to assess the shifts in community and functional composition across 

treatments. No significant taxonomic variation was observed in the sponge viral 

metagenomes after three days exposure to 31 °C, however after 21 days a significant increase 

in temperate bacteriophages from the genus Inovirus was observed. This suggests that 

thermal stress in sponges may trigger Inovirus to switch from a dormant lysogenic to an active 

stage, facilitating the release of virions. Although no significant difference was observed in 

the overall functional profile of short or long term heat-stressed sponges, a significant 

reduction of genes associated with heavy metal resistance, together with an increase in 

virulence and stress-response related genes were detected in heat-stressed sponges, 

suggesting viruses may interfere with sponge-microbial infection or defence ability during a 

heat-stress event. 

4.2. INTRODUCTION 

Rising of atmospheric CO2, largely attributed to the increased consumption of fossil fuels 

(Broecker et al., 1979), has been gradually increasing the Earth’s temperature and is forecast 

to increase seawater temperatures by up to 4 °C by the end of this century (IPCC, 2014). 

Marine ecosystems are experiencing the impacts of Ocean Warming (OW), with coral reefs 

amongst the most vulnerable ecosystems (Hughes, 2003; Doney et al., 2012). Anthropogenic 

activities exacerbates natural warming events, increasing the frequency of seawater 
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temperature anomalies and directly impacting marine communities (Hughes et al., 2018). 

Mass-bleaching events are direct consequences of these temperature anomalies (Hughes et 

al., 2017; Harrison et al., 2018; Stuart-Smith et al., 2018) characterized by the loss of symbiotic 

dinoflagellates (zooxanthellae), photosynthetic bacteria and/or chlorophyll from a variety of 

hosts, including corals, algae and sponges (López-Legentil et al., 2008; McMurray et al., 2011; 

Zozaya-Valdes, Egan & Thomas, 2015). Over 300 severe bleaching episodes have been 

registered across 100 coral reefs worldwide between 1980 and 2016 (Hughes et al., 2018) and 

these events have impacted marine ecosystems by interrupting many biological processes, 

altering the overall fitness and survival of seawater organisms (Hoegh-Guldberg & Bruno, 

2010; Nguyen et al., 2011; Hughes et al., 2017). 

The impacts of OW on living marine organisms can be observed at the macroscopic level of 

whales (Leaper et al., 2006) down to the microscopic viruses (Danovaro et al., 2011; Laffy et 

al., 2019). While most coral reef organisms have been shown to be negatively impacted by 

OW (Przeslawski et al., 2008; Stuart-Smith et al., 2018), some sponge species were found to 

be more resilient compared to other benthic groups, such as coral or macroalgae (Bell et al., 

2018). Different sponge species present varied responses to OW, and even though most of 

the investigated sponge species were negatively impacted by temperature increases, others 

could benefit from this disturbance, usually as a result of declining competitor abundance 

(Bell et al., 2018). The high tolerance of some sponge species to other environmental 

disturbances, including ocean acidification (Bell et al., 2018), sedimentation (Bell et al., 2015; 

Schönberg, 2015) and pollution (Richelle-Maurer et al., 1994; Carballo, Naranjo & García-

Gómez, 1996), indicate that these animals are relevant models to investigate resilience of 

coral reefs to anthropogenic threats. 

Sponges are biodiverse members of marine benthic communities (Hooper & Van Soest, 2002). 

They play important roles in coral reefs by linking pelagic and benthic environments (Pile & 

Young, 2006), and contributing to the flux of energy and nutrients in oligotrophic systems (de 

Goeij et al., 2013b). Members of the sponge phylum Porifera are considered the most 

primitive extant metazoans, and have historically established diverse and targeted symbiotic 

relationships with microorganisms (Webster & Taylor, 2012). This complex host-microbial 

aggregation exists as a unique meta-organism referred to as a holobiont (Margulis & Fester, 

1991). Microbes can constitute up to half of the sponge holobiont biomass (Cuvelier et al., 
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2014), and play important metabolic functions that support their host’s nutrition, defence 

and development (Peters et al., 2010; Freeman & Thacker, 2011; Whalan & Webster, 2014; 

Webster & Thomas, 2016). Additionally, microbial symbionts have been suggested to mediate 

the sponge holobiont capacity to acclimatize and adapt to environmental stressors, although 

the mechanisms that underpin this mediation remain largely unknown (Pita et al., 2018b). 

Given the fundamental importance of microbes to host health (Webster & Taylor, 2012), 

several studies have been conducted which investigate sponge-holobiont response to OW 

events (Cebrian et al., 2011; Webster et al., 2011; Strand et al., 2017). While these studies 

have focussed on how the host or bacterial communities respond to thermal stress, only one 

previous study has focused on understanding the role viruses play within the sponge 

holobiont during a heat-stress event (Laffy et al., 2019). 

Viruses are ubiquitous biological entities and play significant roles regulating natural 

processes in marine environments (Suttle, 2007; Danovaro et al., 2011). They also play a key 

role in the maintenance of complex ecosystems, including coral reefs (Davy et al., 2006; 

Thurber & Correa, 2011; Weynberg, 2018), as they influence the structure of prokaryotic and 

eukaryotic populations, regulating community composition and diversity (Suttle, 2007; 

Rohwer & Thurber, 2009; Breitbart et al., 2018). Viruses are a diverse component of the 

sponge holobiont and are mostly comprised of bacteriophages from the order Caudovirales 

(Laffy et al., 2018; Pascelli et al., 2018). Sponge viruses have also been shown to carry auxiliary 

metabolic genes involved in many host metabolic processes, including herbicide resistance 

genes (Laffy et al., 2018) (Chapter 3) and ankyrin repeat proteins (Jahn et al., 2019), the latter 

encoded by bacteriophage that, upon expression within host bacteria, reduce the eukaryotic 

immune response and phagocytosis of bacteria (Jahn et al., 2019).  

Environmental stressors can directly affect viral  communities (Danovaro et al., 2011; Lara et 

al., 2013) and interfere with viral-host interactions (Jacquet & Bratbak, 2003). Environmental 

stressors may also induce changes in the viral reproductive cycle (Howard-Varona et al., 

2017), promoting shifts in viral population dynamics, as observed in the marine sponge 

Rhopaloeides odorabile where an enrichment in endogenous retro-transcribing viruses was 

observed following a thermal stress event (Laffy et al., 2019).  As different sponge species 

exhibit unique responses to environmental stressors (Bennett et al., 2017), the high 

microbially diverse and photosynthetic sponge Carteriospongia foliascens was chosen to 
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further investigate the role of viruses in the thermal stress response of the sponge holobiont. 

This globally distributed sponge species was identified as having a higher mortality rate at 

elevated temperature and pCO2 compared to other sponges (Bennett et al., 2017). Observed 

C. foliascens physiological responses to OW, include increases in the  levels of tissue necrosis 

and bleaching, elevated respiration rates and decreasing photosynthetic rates (Bennett et al., 

2017). 

In order to characterise the role that viruses may be playing in the thermal stress response of 

C. foliascens, two controlled experiments were conducted, exposing the photosynthetic 

sponge to short (3 days) and longer term (21 days) heat-stress events. Experimental 

conditions based on previous studies (Bennett et al., 2017) determined 31 °C as a sub-

lethal/stress temperature and 28.5 °C as the average ambient/control temperature for C. 

foliascens from the Great Barrier Reef. Following experimental exposure, viral nucleic acid 

was isolated from control and thermally stressed sponge tissue, sequenced and 

bioinformatically analysed to identify the viral taxonomic and functional changes associated 

with each thermal stress treatment. Additionally, host morpho-physiological responses to 

thermal stress were examined, and correlations were made between bleaching / necrosis and 

taxonomic / functional variations in the sponge virome. 

4.3. METHODS 

4.3.1. Experimental design 

Two experiments were conducted in order to investigate how sponge associated viral 

communities and their corresponding functional potential responded to heat-stress. 

Experiment 1 (exp 1) was a short heat-stress exposure, where viral taxonomy and function 

were investigated after three days at 31 °C and Experiment 2 (exp. 2) was a longer heat-stress 

exposure, where metaviromics taxonomy and function were investigated after 21 days heat-

stress exposure. Experiments were performed within the National Sea Simulator at the 

Australian Institute of Marine Science (AIMS). Temperature treatments were created by 

mixing streams of 22 and 36 °C 0.04 µm filtered seawater. In both experiments, sponges were 

exposed to two temperature treatments, the ambient, 28.5 °C (control), based on the 

present-day average ocean temperature on the Great Barrier Reef (GBR)(IPCC, 2014) and the 

sublethal, 31 °C (heat-stress treatment), based on mortality-inducing temperature thresholds 
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previously described for this species (Bennett et al., 2017). Specimens of C. foliascens were 

collected from Davies Reef- GBR (18°820S, 147°650E) between April and May of 2017. After 

collection, sponges were maintained in holding tanks at 27 °C for one week to reduce any 

effects of collection. Following acclimation, individual sponges were transferred to 

experimental tanks, initially kept at 27 °C and gradually increased (0.5 °C per day) to a final 

temperature of 28.5 °C in the control tanks and 31 °C in the treatment tanks. Acclimation and 

ramping took 8 days before time zero (T0) conditions were reached. In both experiments, four 

sponge replicates were placed within each of the three control tanks and three sponge 

replicates were kept in each of the three treatment tanks (n=21). One individual within each 

control tank was processed for viral purification at T0, and the others processed after 3 days 

(T3) or 21 days (T21), resulting in nine replicates per treatment in each experiment (exp. 1: n 

= 21 (T0, n = 3; T3 ambient, n = 9; T3 sublethal, n = 9); exp. 2: n = 21 (T0, n = 3; T21 ambient, 

n = 9; T21 sublethal, n = 9)). To assess gross physiological and morphological changes in the 

sponge host throughout the experiment, photographs were taken before (T0) and after (T-

end) experimental exposure. ImageJ software (IMAGEJ; US National Institutes of Health, 

Bethesda, Md, USA) was used to determine whether sponge tissue was affected by necrosis 

and bleaching. Ten litres of seawater were collected in each tank at T0 and processed for 

comparative metaviromic analysis. 

4.3.2. Virus extraction and purification for metagenomic analysis 

Sponge-viral extraction and purification methods were optimized based on a protocol used 

to isolate VLPs from culture lysates and coral tissue (Lawrence & Steward, 2010; Weynberg 

et al., 2014).  Approximately 10 g of fresh sponge tissue was homogenized, first by cutting the 

sponge into small pieces (5 mm), covering with 15 µL of 0.02 µm filter-sterilized (Anotop, 

Whatman) SM buffer (100 mM NaCl, 8 mM MgSO4, 50 mM Tris pH 7.5), then processing with 

a Craig's HS30E homogenizer (Witeg, Germany) for 5 to 10 min. Tissue homogenate was 

filtered through a Falcon® 100 µm Cell Strainer (Corning, USA), and centrifuged at 500 g for 

15 min at 4 °C to pellet cell debris. Supernatant was transferred to a new Falcon® tube (Fisher 

Scientific, USA) where Cesium Chloride (CsCl) was added to bring the solution to a final density 

of 1.2 g mL-1. In parallel, CsCl solutions of varying densities, diluted in 0.02 µm filtered SM 

Buffer, were layered in an ultracentrifuge tube, with the greatest density at the bottom and 

reducing as layers were added (3 mL of 1.6 g mL-1 solution; 2.5 mL of 1.45 g mL-1 solution; 2.5 
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mL of 1.3 g mL-1 solution; 2 mL of 1.2 g mL-1 solution). After layering the gradients, 7.5 mL of 

each sample was added to the top of three gradient tubes (3x2.5 mL per tube), and 

centrifuged (Beckman Coulter Ultracentrifuge, USA) at 4 °C in a swinging-bucket rotor (SW 40 

Ti) for 2h 40 min at 40,000 g. Following centrifugation, eighteen 0.7 mL fractions were pulled 

from the gradient into separate Eppendorff tubes. Density and nucleic acid concentration of 

each fraction was determined (Weynberg et al., 2014) and fractions with density between 1.2 

g/mL and 1.5 g/mL were pooled together and filtered (0.22 µm EMD Millipore filter, EUA) to 

remove any remaining contaminating bacteria. A diafiltration method was used to change the 

buffer, removing the CsCl salt from the samples and concentrating the viral particles in 

solution. Samples were centrifuged in 30 KDa Amicon centrifugal spin columns (Millipore, 

EUA) at 4,000 g for 30 min at 4°C, between four and six times adding filter-sterilized SM Buffer 

and discarding the flow-through (additional times were required when larger volumes of 

solution remained in the tube after centrifugation). Samples were concentrated to a final 

volume of 600 µl. In total, 200 µL of the solution was used for DNA extraction and the 

remaining eluate was frozen at -80°C at the Australian Institute of Marine Science for any 

subsequent analyses. These protocols were based on the findings of Chapter 3. 

4.3.3. Viral DNA extraction and amplification for sequencing 

Viral purified samples were treated with DNase and RNase (Ambion, CA) to degrade free 

nucleic acid from the outside of the viral capsid prior to DNA extraction. DNA was extracted 

using FastDNA SPIN Kit for Soil (MP Biomedicals) following manufacturer’s instructions. A 

modified Random Priming-mediated Sequence-Independent Single-Primer Amplification (RP-

SISPA) approach was used to amplify the viral DNA fragments (Weynberg et al., 2014). Briefly, 

all virus DNA was converted to dsDNA using a Klenow Fragment (3’–5’ exo-) using RP-SISPA 

primers with a 3’ random hexamer sequence. For each reaction, 8 µL of DNA was added to 6 

µl of reaction mix containing 1.5 µl of 10× NEB buffer (New England Biolabs Buffer 2); 1 µl of 

2.5 mM dNTPs; 1.5 µl of primer FR26RV-N (GCCGGAGCTCTGCAGATATCNNNNNN, 10µM 

stock) and 2µl of DNase-free distilled water. Reactions were incubated at 94 °C for 3 min, 

placed on ice for 3 min (primer annealing) before 1 µl of Klenow Fragment was added to the 

mix and incubated at 37 °C for 60 min. After incubation 1 µl of dNTP and 1 µl of N primer was 

added to each tube, incubated again at 94°C for 3 min and placed on ice for 3 min. Finally, 1 

µl of Klenow fragment was added to the solution and the reaction was incubated at 37 °C for 
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60 min then terminated at 75 °C for 20 minutes. Triplicate PCR amplifications were performed 

using the SISPA template. Two µl of template was added to 23 µl of reaction mix containing 

2.5 µl of 10× reaction buffer, 4 µl of dNTP (2.5 mM stock), 2 µl of FR20RV primer 

(GCCGGAGCTCTGCAGATATC, 10 µM stock) and 0.25 µl of TaKaRa LA TaqTM HS polymerase (5 

U/µl, Scientifix). The reaction was incubated at 95 °C for 10 min, followed by 30 thermal cycles 

(95 °C for 30 sec, 60 °C for 60 sec, 72 °C for 90 sec). At the end of the cycles the samples were 

held at 72 °C for 13 min to allow the completion of complementary strand synthesis. PCR 

reactions were loaded on a 0.8 % agarose gel in 1×TAE and underwent electrophoretic 

separation at 100V for 30 min. Amplifications with no visible PCR product were repeated using 

a dilution of the SISPA template (1:10 or 1:100). A reconditioning PCR was performed after 

pooling triplicate reactions. A volume of 10 µl of pooled template was added to 90 µl of 

master mix containing 55.25 µl of PCR grade water, 10 µl 10× reaction buffer, 16 µl dNTP 

(2.5mM stock), 8 µl FR20RV primer (10 µM stock) and 0.75 µl TaKaRa LA TaqTM HS polymerase. 

The reaction was cycled as per the PCR amplification described above. Reactions were cleaned 

using the MinElute PCR Purification Kit® following the Manufacturers protocol. Samples were 

run on a 0.8 % agarose gel in 1×TAE at 100V for 30 min and DNA quality (260:280 ratios) was 

checked using a NanoDrop 2000 spectrophotometer (Thermo Scientific, USA). 

4.3.4. Viral DNA sequencing and bioinformatic analysis 

Purified viral DNA was sent for sequencing in samples containing 20 µL of template 

concentrated at 20 ng / µL. Genomic DNA was sequenced using NextSeq500 platform, which 

produced paired-end 125 bp fragments at the Ramaciotti Centre for Genomics, University of 

New South Wales, Australia.  

Sequencing datasets were analysed using the HoloVir protocol (Laffy et al., 2016), a 

computational workflow designed to assign taxonomy and function to host-associated viral 

metagenomes. Quality Control (QC) analysis and genome assembly was performed on raw 

sequence reads using CLC Genomic Workbench (version 9.0). Library adaptors, ambiguous 

nucleotides (n=2) and low-quality bases (error probability cutoff 0.01) were trimmed and 

reads below 40 base pairs were discarded. Viral contigs were assembled from the trimmed 

sequences using the De Novo Assembly function in CLC Genomic Workbench. Contigs smaller 

than 500bp or those that had average coverage-values below 3 were discarded (Laffy et al., 

2016). Gene prediction was performed on the remaining contigs using MetaGeneAnnotator 
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(Noguchi, Taniguchi & Itoh, 2008), and in accordance with the HoloVir protocol, predicted 

genes were used for viral taxonomic assignment and functional annotation. Taxonomic 

assignment was performed using MEGAN6 (Huson et al., 2011) utilising a lowest common 

ancestor strategy based on best significant matches to viral RefSeq database BLASTP analysis 

(Pruitt, Tatusova & Maglott, 2007). MEGAN6 was run using a top-percent parameter of 80, 

min-support value of five reads and a bit score threshold value of 80. Assembled data was 

also compared with the HoloVir cellular and viral marker database, identifying potential 

cellular contaminants in the samples (Laffy et al., 2016).  

Functional analysis of the predicted genes was also performed as described in the HoloVir 

protocol (Laffy et al., 2016), utilising BLASTP sequence similarity searches of predicted genes 

against the UniProtKB/Swiss-Prot protein database (UniProt Consortium, 2015), using an e–

value cutoff of 10-10. Swiss-Prot Keywords were assigned to predicted genes based on the best 

significant blast match and overall keyword enrichment for each metaviromic community was 

calculated, adjusting for both contig coverage as well as keyword frequency within the 

SwissProt database. The 50 most enriched Swissprot keywords were identified across 

samples. Analysis of deviance for multivariate generalized linear models for abundance data 

(anova.manyglm function) was performed using the R package mvabund (Wang et al., 2012) 

in order to identify the major drivers of difference between ambient and sublethal 

temperatures. MultiDimensional Scaling (MDS) analysis was performed to compare viral 

community composition and function based on Bray-Curtis dissimilarity matrix, and 

PERMANOVA analysis was used to attest for significant differences amongst different 

treatments and tank replicates. SIMPER analysis was used to identify viral taxa that 

contributed to dissimilarities between treatments, while canonical correspondence analysis 

(CCA) was employed to correlate viral taxa that contributed to the dissimilarity between the 

following factors; temperature, bleaching and necrosis. MDS, SIMPER, CCA and PERMANOVA 

analyses were performed using the software Primer (v 6.1.7). 
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4.4. RESULTS 

4.4.1. Analysis of overall community profile of C. foliascens virome 

In total, 693,342 contigs were assembled and 1,284,021 genes were predicted from all C. 

foliascens samples (Table 4.1). On average, 15 % of all predicted genes were taxonomically 

assigned and 20 % of all contigs contained at least one taxonomically assigned gene (Table 

4.1). Cellular marker evaluation identified that an average of 1.3 % of contigs contained 

cellular marker matches (Table 4.1), which is higher than the observed percentage of contigs 

containing cellular marker genes in previous studies (0.1-0.3 % (Laffy et al., 2018); an average 

of 0.25 % (Chapter 3)). An additional contig filtration step was tested in an effort to improve 

the data quality and minimise the effect of cellular contamination, and the details and analysis 

of this approach is provided in Appendix 4 (Table A4.1, Fig. A4.1).  However, this contig 

filtration step did not substantially improve the data quality, generating similar number and 

size of contigs as well as taxonomic assignments (Table A4.1, Fig. A4.1), hence this filtered 

output was not used in final analyses.   

Viral metagenomes derived from Carteriospongia foliascens in the control treatment followed 

the same patterns previously described for C. foliascens samples from the GBR (Chapter 3), 

predominantly matching dsDNA viruses (90 ± 1.1 % (Chapter 4); 90 ± 1.9 % (Chapter 3)), with 

a lower relative abundance of matches to ssDNA viruses (5 ± 0.9 % (Chapter 4); 9 ± 2 % 

(Chapter 3)) and retroviruses (3 ± 0.4 % (Chapter 4); 1 ± 0.2 % (Chapter 3)). The order 

Caudovirales (tailed bacteriophages) was prevalent within the dsDNA viral matches, 

accounting for more than half (53 ± 1.5 %) of total viral taxonomic assignments 

(Supplementary Table 4.1). Myoviridae was the dominant Caudovirales family observed (24 ± 

0.8 %) followed by Siphoviridae (18 ± 1.2 %) and Podoviridae (5 ± 0.4 %) (Supplementary Table 

4.1). Inoviridae (2 ± 0.6 %) and Microviridae (2 ± 0.5 %) made up most of the non-tailed 

bacteriophages associated with C. foliascens (Supplementary Table 4.1). Contigs 

taxonomically assigned to the nucleocytoplasmic large DNA viral (NCLDV) families 

Mimiviridae, Marseilleviridae, Phycodnaviridae, Ascoviridae, Iridoviridae, Asfarviridae and 

Poxviridae were also associated with C. foliascens (Fig. 4.1). Within the NCLDV, 

Phycodnaviridae were present in a higher proportion of samples (11 ± 0.7 %) followed by 

Mimiviridae (5 ± 0.3 %). A complete table of viral taxonomic assignments is presented in 

Supplementary Table 4.1.  
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Analysis of viral metagenome composition revealed that the viral families Myoviridae, 

Podoviridae, Siphoviridae, Mimiviridae, Phycodnaviridae and Poxviridae were found in all 

sponge and seawater samples (Fig. 4.1). Matches to members of the Ascoviridae and 

Inoviridae were also found in all sponge and seawater samples, whereas matches to retro-

transcribing viruses were exclusively found in sponge samples (Fig. 4.1). 
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Table 4.1 Summary of assembly statistics, taxonomic assignment and cellular contamination evaluation of virome datasets from control and thermally stressed C. foliascens. N50 values for each dataset were 
calculated based on evaluation of unfiltered contigs. * the number of days in the aquarium after period of acclimation. NA stands for not applicable.  

Experiment Samples 
Samples 

nature 

Time* 

(days) 
Tank 

Temp 

(°C) 

Contig 

N50 
# contigs 

Longest 

contig 

# predicted 

genes 

% Taxonomically 

assigned genes 

% Taxonomically 

assigned contigs 

% of contigs 

with cellular 

marker matches 

Presence (1) 

absence (0) 

of bleaching 

Presence (1) 

absence (0) 

of necrosis 

Short 

heat-stress 

exposure 

 

E1_T0_1-1_43 Sponge 0 A1 28.5 398 6125 17212 8225 8.64% 10.94% 1.2% 0 0 

E1_T0_1-2_39 Sponge 0 A2 28.5 611 6041 218069 13387 13.32% 16.50% 1.0% 0 0 

E1_T0_1-4_32 Sponge 0 A3 28.5 692 7579 302902 17842 13.39% 15.13% 1.8% 0 0 

E1_T72_1-1_18 Sponge 3 A1 28.5 668 10271 567948 22952 13.01% 16.31% 1.6% 0 0 

E1_T72_1-1_7 Sponge 3 A1 28.5 1046 5219 50164 11343 12.81% 20.29% 2.2% 0 0 

E1_T72_1-1_50 Sponge 3 A1 28.5 525 5781 9176 9029 11.24% 16.55% 1.9% 0 0 

E1_T72_1-2_37 Sponge 3 A2 28.5 493 10235 158313 18541 11.60% 12.62% 1.3% 0 0 

E1_T72_1-2_74 Sponge 3 A2 28.5 456 8316 297818 16087 11.86% 9.76% 1.1% 0 0 

E1_T72_1-2_41 Sponge 3 A2 28.5 435 7099 8568 9529 8.86% 11.26% 1.2% 0 0 

E1_T72_1-4_17 Sponge 3 A3 28.5 478 18388 27146 26622 9.13% 10.63% 1.2% 0 0 

E1_T72_1-4_24 Sponge 3 A3 28.5 540 8288 17034 13757 11.46% 16.40% 1.7% 0 0 

E1_T72_1-4_57 Sponge 3 A3 28.5 545 7044 83157 13974 12.26% 16.43% 1.7% 0 0 

E1_T72_3-1_12 Sponge 3 S1 31 434 9870 164377 16210 9.86% 10.24% 1.3% 0 0 

E1_T72_3-1_29 Sponge 3 S1 31 2234 2527 297553 8523 15.09% 22.83% 2.1% 0 0 

E1_T72_3-1_16 Sponge 3 S1 31 498 5411 72447 10733 3.37% 6.36% 0.6% 0 0 

E1_T72_3-2_4 Sponge 3 S2 31 466 8462 12238 2522 57.69% 6.39% 0.8% 0 0 

E1_T72_3-2_45 Sponge 3 S2 31 388 3942 13838 4927 27.64% 21.49% 2.6% 0 0 

E1_T72_3-2_36 Sponge 3 S2 31 429 2080 17094 11373 8.47% 43.22% 5.4% 0 0 

E1_T72_3-4_9 Sponge 3 S3 31 547 7621 135589 13340 12.17% 12.74% 1.5% 0 0 

E1_T72_3-4_1 Sponge 3 S3 31 538 5909 228242 12602 12.94% 15.32% 1.8% 0 0 

E1_T72_3-4_54 Sponge 3 S3 31 8112 2195 415356 9262 2.07% 8.47% 0.6% 0 0 

SW_E1_T0_1-1 Seawater 0 A1 28.5 621 17595 85432 45454 11.24% 17.53% 0.4% NA NA 

SW_E1_T72_1-1 Seawater 3 A1 28.5 2342 14240 288572 13564 65.98% 42.97% 0.9% NA NA 

SW_E1_T72_1-2 Seawater 3 A2 28.5 1308 11277 70089 30431 7.61% 11.36% 2.0% NA NA 

SW_E1_T72_1-4 Seawater 3 A3 28.5 1669 4869 111115 13656 34.62% 63.63% 2.8% NA NA 

SW_E1_T72_3-1 Seawater 3 S1 31 933 13639 408481 33346 6.71% 10.40% 1.9% NA NA 

SW_E1_T72_3-2 Seawater 3 S2 31 705 11169 630162 27494 18.88% 29.09% 2.0% NA NA 
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SW_E1_T72_3-4 Seawater 3 S3 31 967 17882 82144 44192 9.40% 14.34% 1.9% NA NA 

Long  

heat-stress 

exposure 

E2_T0_1-1_D4 Sponge 0 A1 28.5 534 29843 41722 45611 10.81% 13.77% 1.2% 0 0 

E2_T0_1-2_D39 Sponge 0 A2 28.5 482 19336 49146 25808 8.80% 9.78% 1.0% 0 0 

E2_T0_1-4_D64 Sponge 0 A3 28.5 583 23637 70431 41333 12.31% 17.74% 1.6% 0 0 

E2_T3W_1-1_D17 Sponge 21 A1 28.5 687 11603 78496 21230 9.14% 13.90% 1.9% 0 0 

E2_T3W_1-1_D37 Sponge 21 A1 28.5 604 14163 66906 23278 11.20% 14.54% 1.6% 0 0 

E2_T3W_1-1_D9 Sponge 21 A1 28.5 513 15990 50363 22438 22.43% 25.96% 1.0% 0 0 

E2_T3W_1-2_D72 Sponge 21 A2 28.5 563 17256 27249 27882 2.76% 4.04% 1.3% 0 0 

E2_T3W_1-2_D22 Sponge 21 A2 28.5 543 9048 21246 15952 16.54% 23.44% 1.6% 0 0 

E2_T3W_1-2_D65 Sponge 21 A2 28.5 450 6752 12339 8800 21.92% 23.96% 1.0% 0 0 

E2_T3W_1-4_D32 Sponge 21 A3 28.5 513 23307 56861 32998 12.29% 14.19% 1.0% 0 0 

E2_T3W_1-4_D16 Sponge 21 A3 28.5 567 14018 49368 25540 12.98% 19.43% 1.7% 0 0 

E2_T3W_1-4_D3 Sponge 21 A3 28.5 521 22787 38783 27763 11.58% 11.24% 0.8% 0 0 

E2_T3W_3-1_D51 Sponge 21 S1 31 486 26115 68406 33944 9.22% 9.99% 0.9% 1 1 

E2_T3W_3-1_D52 Sponge 21 S1 31 643 18511 30427 30164 9.18% 12.38% 1.5% 1 1 

E2_T3W_3-1_D57 Sponge 21 S1 31 477 9776 16535 12680 25.62% 29.64% 0.8% 1 1 

E2_T3W_3-2_D53 Sponge 21 S2 31 556 21379 19133 11373 28.30% 12.44% 0.5% 0 0 

E2_T3W_3-2_D55 Sponge 21 S2 31 647 7111 64655 12244 7.87% 12.64% 1.8% 1 0 

E2_T3W_3-2_D24 Sponge 21 S2 31 566 19013 76225 29971 3.35% 5.18% 1.8% 1 0 

E2_T3W_3-4_D19 Sponge 21 S3 31 351 5459 6131 6323 20.04% 21.08% 0.6% 0 0 

E2_T3W_3-4_D2 Sponge 21 S3 31 471 13607 27806 16552 8.95% 9.37% 0.7% 1 1 

E2_T3W_3-4_D23 Sponge 21 S3 31 2774 10155 104607 31244 1.50% 4.05% 1.8% 0 0 

SW_E2_T0_1-1 Seawater 0 A1 28.5 939 16288 102801 40318 17.10% 29.51% 1.6% NA NA 

SW_E2_T3W_1-2 Seawater 21 A2 28.5 907 9601 47617 22551 14.30% 25.29% 2.1% NA NA 

SW_E2_T3W_1-4 Seawater 21 A3 28.5 1112 19774 102658 47988 15.69% 25.86% 2.0% NA NA 

SW_E2_T3W_3-1 Seawater 21 S1 31 973 30937 131573 80757 15.99% 27.57% 1.8% NA NA 

SW_E2_T3W_3-2 Seawater 21 S2 31 727 10352 87708 21982 15.99% 24.23% 1.9% NA NA 

SW_E2_T3W_3-4 Seawater 21 S3 31 680 38450 102535 88380 15.89% 26.41% 1.3% NA NA 
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Figure 4.1 Taxonomic summary of the viral community associated with C. foliascens subjected to a short and long heat-stress experiment, with column headings denoting the number of days samples were 
exposed to heat stress (T0, T3, T21), the temperature treatment (28.5° C and 31° C) and seawater control samples. Taxonomy is summarised at the family level based on MEGAN6 LCA taxonomic assignment 
using parameters defined in Laffy et al., 2016. 
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4.4.2. Effect of temperature on the C. foliascens viral community 

Comparison of viral communities in samples exposed to experimental treatments for 3 days, 

identified a higher number of samples with Coronaviridae matches in heat-stressed sponges 

(6) compared to control treatments (4), as well as fewer heat-stressed samples showing 

matches with Iridoviridae (8 in control, 6 in sub-lethal treatment) and Circoviridae (4 control, 

2 in sub-lethal treatment) (Table 4.2). However, ordinate and variance analysis based on Bray-

Curtis similarity of genus-level taxonomic assignment for predicted genes showed no 

significant difference in the overall viral community composition between ambient and 

sublethal temperature treatments following short term exposure (Table 4.2).  In contrast, 

significant differences were evident between temperature treatments in the longer-term 

exposure (Fig 4.2; Table 4.2). Additionally, there was no significant difference between tank 

replicates and there was no difference between ambient samples across time (Table 4.2). 

Table 4.2 PERMANOVA pairwise comparisons of predicted viral genes from C. foliascens based on viral RefSeq taxonomic 
assignments (genus level) from two experiments: short heat-stress exposure (3 days) and long heat-stress exposure (21 
days), each profiling sponge associated viral metagenomes from sponges exposed to ambient (28.5 °C) and sublethal (31 °C) 
temperatures. Multivariate permutational analysis of variance (PERMANOVA) (Primer6/PERMANOVA+ v1.0.2, Plymouth, UK) 
was used to compare taxonomic differences in the viral communities amongst replicates from different tanks, time and 
temperature treatments. For each heat-stress experiment there were three ambient treatment tanks (A1, A2, A3) and three 
elevated temperature tanks (S1, S2, S3), each containing three sponge replicates. Differences between day zero (T0), day 3 
(T3) and day 21 (T21) were measured within ambient conditions. Samples with significant p-values from pairwise tests (≤0.05) 
are highlighted with an asterix (*). Student’s t-test are indicated by the letter “t” and “Unique perms” indicates how many 
unique-values of the test statistic were obtained under permutation. 

Experiment Factors Groups t p Unique perms 

3 d Exposure Tank (28.5 °C) A1-A2 0.981 0.424 473 

A1-A3 1.302 0.212 473 

A2-A3 0.508 0.928 465 

Tank 31 °C) S1-S2 0.813 0.785 10 

S1-S3 0.508 1 10 

S2-S3 0.782 0.703 10 

Time (28.5 °C) T0-T3 0.831 0.653 59 

Temperature 28.5 °C-31 °C 1.267 0.204 10 

21 d Exposure Tank (28.5 °C) A1-A2 0.889 0.611 470 

A1-A3 0.942 0.494 465 

A2-A3 1.147 0.268 468 

Tank (31 °C) S1-S2 1.221 0.194 10 

S1-S3 1.325 0.313 10 

S2-S3 1.276 0.195 10 

Time (28.5 °C) T0-T21 1.146 0.34 59 

Temperature 28.5 °C-31 °C 1.2041 0.001* 10 
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Figure 4.2 Non-metric multidimensional scaling plot based on Bray-Curtis similarity of genus-level taxonomic assignment for 
predicted genes, based on viral RefSeq BLASTP taxonomic assignment. Ordination displays similarities in the viral 
communities of C. foliascens exposed to two temperatures (28.5° C and 31° C) for a (a) 3 day and (b) 21 day heat-stress 
exposure. Samples were taken at day 0 (T0) for both experimental set-ups and at day 3 (T3) and day 21, (T21) respectively. 
Control seawater samples were also taken for each tank at day 0 (T0). 
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Mvabund analysis identified an enrichment of Inovirus matches and a decline of tailed 

bacteriophages as drivers of difference between control and thermally stressed samples in 

the 21 d experiment (Fig. 4.3). 

 

Figure 4.3 Heatmap of viral communities associated with C. foliascens following a 21 d heat-stress exposure, showing 
significant differences between treatments (p-value <0.05) according to mvabund analysis summarised on genus-level based 
MEGAN6 LCA taxonomic assignment using parameters defined in Laffy et al., 2016. Mvabund analysis was used to identify 
the drivers of difference between samples at day zero (T0), after 21 days exposure to ambient temperature (T21 28.5 °C) 
and to sublethal temperature (T21 31 °C). 

Similarity percentage analysis (SIMPER) of species-level taxonomic assignments showed that 

the Inoviridae representative, Pseudomonas phage pf3, primarily contributed to the 

dissimilarity between ambient and sub-lethal conditions (Table 4.3), accounting for 0.9 % of 

the total dissimilarity.  This Inovirus representative species was six times more abundant in C. 

foliascens at 31 °C. 
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Table 4.3 Similarity percentage analysis (SIMPER) of differences in C. foliascens viral metagenomes in individuals exposed to 
28.5 °C and 31 °C, based on Bray-Curtis similarity of species-level taxonomic assignment of predicted genes. The columns 
two and three identify the average abundance of viral taxa within each temperature treatment, the fourth and fifth columns 
represent the Bray Curtis dissimilarity metric between both temperatures and its standard deviation, respectively. The sixth 
column shows the percentage of dissimilarity contribution explained by that phylum and the seventh column shows the 
cumulative Bray Curtis dissimilarity metric for the phylum. 

Species Average 

Abundance   

28.5 °C 

Average 

Abundance     

31 °C 

Average 

dissimilarity 

Dissimilarity 

standard 

deviation 

% 

Contribution  

Cumulative 

% 

Pseudomonas phage 
Pf3 

1.77 10.82 0.46 0.6 0.9 0.9 

Gordonia phage 
Orchid 

9.26 1.33 0.38 1.17 0.74 1.64 

Bacillus virus G 22.68 27.58 0.38 1.32 0.74 2.38 

Loktanella phage 
pCB2051-A 

4.44 9.15 0.37 0.6 0.71 3.09 

Eel River basin 
pequenovirus 

7.65 4.49 0.36 1.05 0.69 3.78 

Burkholderia virus 
Bcep22 

6.95 8.85 0.33 1.39 0.64 4.42 

Ralstonia phage 
RS603 

0.94 7.14 0.33 0.64 0.64 5.06 

Mycobacterium phage 
Dori 

13.31 8.82 0.3 1.11 0.59 5.65 

Vibrio phage douglas 
12A4 

8.15 4.92 0.28 1.15 0.53 6.18 

Ectocarpus siliculosus 
virus 1 

8.88 9.11 0.27 1.18 0.52 6.7 

Xylella phage Xfas53 6.76 1.58 0.26 1.1 0.51 7.21 

Ostreococcus 
lucimarinus virus 1 

9.45 5.4 0.26 1.33 0.5 7.72 

Trichoplusiani 
ascovirus 2c 

8.74 9.59 0.25 1.36 0.48 8.19 

Staphylococcus phage 
phiIPLA-C1C 

0.12 4.74 0.24 0.41 0.46 8.66 

Brucella phage Tb 5.78 1.38 0.23 1.1 0.45 9.11 

Verrucomicrobia 
phage P8625 

5.74 2.57 0.23 1.06 0.45 9.56 

Aureococcus 
anophagefferens virus 

14.92 14.96 0.23 1.28 0.45 10.01 

4.4.3. Viral community profile in bleached and necrosed sponges 

The impact of elevated temperature on C. foliascens was evident by the occurrence of 

morpho-physiological anomalies, specifically bleaching and tissue necrosis, in several of the 

thermally stressed individuals from the longer-term exposure experiment (Fig. 4.4; Table 4.1). 

Ordination and variance analyses performed at the genus-level on the viral taxonomic 

assignments showed no significant distinction in viral community composition across visibly 

healthy and bleached/necrotic sponges (Table 4.4; Fig. 4.5). However, analysis using mvabund 

identified drivers of significant difference between non-stressed samples, thermally stressed 

samples with no signs of bleaching/necrosis and stressed individuals with visible signs of 
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bleaching/necrosis (Fig. 4.6). A higher proportion of Inovirus matches were evident in 

bleached individuals compared to non-bleached ones (Fig. 4.6a). While the Circoviridae and 

Gokushovirinae matches in bleached individuals were comparable to non-stressed 

individuals, there was an increase in the number of matches to these taxa in the non-bleached 

samples at 31 °C. Similarly, while matches to P1 virus, Andromedavirus and Tavenvirinae were 

largely absent from visibly unaffected samples at 31 °C, they were observed in both control 

samples at 28.5 °C and bleached samples at 31 °C (Fig. 4.6a). Mvabund analysis performed to 

assess drivers of difference between 28.5 °C healthy individuals, 31 °C visibly unaffected 

individuals and 31 °C necrosed individuals, identified that matches to the viral subfamily 

Autographivirinae were largely absent from most samples, but were prominent in three 

quarters of the necrotic heat stressed samples (Fig 4.5b). Additionally, matches to 

Herpersviridae, Gammaherpesvirinae, Muvirus and Betabaculovirus in necrosed individuals at 

31 °C was comparable to healthy samples at 28.5 °C, but reduced in visibly unaffected samples 

at 31 °C. Similarly, matches to Lymphocystivirus were comparable between necrosed samples 

at 31 °C and healthy samples at 28.5 °C, but higher in visibly unaffected samples at 31 °C (Fig 

4.5b). 

Table 4.4 PERMANOVA pairwise comparisons of predicted viral genes from C. foliascens based on viral RefSeq taxonomic 
assignments (genus level) from long heat-stress exposure experiment. Multivariate permutational analysis of variance 
(PERMANOVA) (Primer6/PERMANOVA+ v1.0.2, Plymouth, UK) was used to compare taxonomic differences in the viral 
communities in bleached/necrotic and visibly healthy individuals amongst all experimental samples and within thermally 
stressed (31 °C) samples. Samples with significant p-values from pairwise tests (≤0.05) are highlighted with an asterix (*). 
Student t-tests are indicated by the letter “t” and “Unique perms” indicates how many unique-values of the test statistic 
were obtained under permutation. 

Assignment Factors Groups t p Unique perms 

Taxonomic Bleaching Bleached - Non-bleached 1.282 0.082 993 

Bleaching (within 31 °C) Bleached - Non-bleached 0.703 0.948 84 

Necrosis Necrosed – Non-necrosed 0.881 0.652 925 

Necrosis (within 31 °C) Necrosed – Non-necrosed 0.968 0.565 126 

Functional Bleaching Bleached - Non-bleached 0.8958 0.619 988 

Bleaching (within 31 °C) Bleached - Non-bleached 1.559 0.013* 84 

Necrosis Necrosed – Non-necrosed 1.106 0.216 126 

Necrosis (within 31 °C) Necrosed – Non-necrosed 0.771 0.879 919 
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Figure 4.4 Health state representation of three C. foliascens individuals photographed at day zero (T0), and after 21 d exposed 
to 31 °C (T21 31 °C), exemplifying the sponges that (a) kept the initial visibly heathy, (b) bleached, or (c) necrosed 
morphotypes after exposed to the heat-stress treatment. 



87 
 

 

Figure 4.5 Non-metric multidimensional scaling plot based on Bray-Curtis similarity of genus-level viral taxonomic assignment 
for predicted genes from C. foliascens individuals exposed to temperature treatments for 21 days. Ordination displays 
similarities in the viral communities of (a) i) 28.5 °C healthy, ii) 31 °C visibly unaffected and iii) 31 °C bleached individuals and 
(b) between i) 28.5 °C healthy, ii) 31 °C visibly unaffected and iii) 31 °C necrotic individuals. 
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Figure 4.6 Heatmap of the metaviromic communities associated with C. foliascens following 21 days experimental exposure 
to elevated temperature. Heatmap shows significant differences between samples (p-value <0.05) according to PERMANOVA 
tests performed using the mvabund package, summarised at the genus level based on MEGAN6 LCA assignment using 
parameters defined in Laffy et al., 2016. Mvabund analysis was used to identify the drivers of difference between (a) i) 28.5 
°C healthy, ii) 31 °C  visibly unaffected and iii) 31 °C bleached individuals and (b) between i) 28.5 °C healthy, ii) 31 °C visibly 
unaffected and 31 °C necrotic individuals. 

Canonical Correspondence Analysis (CCA) (Fig. 4.7) was carried out to determine which viral 

taxa contributed most to the dissimilarities between experimental samples according to 

temperature, bleaching and necrosis (Table 4.3). The first two axes of the CCA biplot 

accounted for 89 % and 10 % of the total community variation, respectively, with temperature 

and bleaching the most correlated factors with the first axis (Temperature (axis 1: -0.51, axis 

2: 0.25); Bleaching (axis 1: 0.56, axis 2: -0.26)) and necrosis mostly correlated with axis 2 (axis 

1: -0.1, axis 2: -0.46), showing minimal impact on the viral community structuring (Fig. 4.7). 
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Figure 4.7 Canonical correspondence analysis (CCA) biplot correlating the occurrence of morpho-physiological anomalies in 
C. foliascens exposed to a 21 d heat stress experiment, with the viral community profile represented by the species that 
contribute with over 0.45% of the represent the Bray Curtis dissimilarity metric between stressed and non-stressed samples 
according SIMPER analysis (Table 4.3) and the parameters temperature, occurrence of bleaching and necrosis. 

4.4.4. Analysis of overall functional profile of virome 

Comparing the 50 most abundant Swissprot keywords within the metaviromic data sets 

showed differences and similarities in viral function between treatment, control and seawater 

samples after 3 and 21 days of exposure (Fig. 4.8). The functional keywords ‘tonB box’, 

‘flagellar rotation’, ‘transposition’, ‘restriction system’, ‘two-component regulatory system’, 

‘iron transport’, ‘transcription antitermination’ were consistently present across all samples 

in the short-exposure experiment (Fig. 4.8), while ‘transposition’, ‘transposable element’ and 

‘transcription antitermination’ were enriched in all samples from the longer-exposure 

experiment (Fig. 4.8). The functional profile of C. foliascens was consistent with the observed 

functional profile from environmentally sampled individuals (Fig. 4.8 and Chapter 3, Fig. 3.5). 

For example, C. foliascens from environmental and experimental conditions share 54 % of 

their 50 most enriched keywords, where ‘tonB box’, ‘transposition’, ‘transposable element’ 
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and ‘restriction system’ were enriched in every sample. The keywords ‘limb-girdle muscular 

dystrophy’, ‘cardiomyopathy’, ‘viral extrusion’, ‘respiratory chain’, ‘RNA-directed DNA 

polymerase’, ‘kelch-repeat’, ‘calmodulin-binding’, ‘metachromatic leukodystrophy’, ‘viral 

latency’, ‘mucopolysaccharidosis’, ‘TPR repeat’, ‘Kartagener syndrome’, ‘immunoglobulin 

domain’ were exclusively enriched in sponge samples. Most of these keywords are related to 

a suite of auxiliary metabolic genes, and amongst them, the keywords limb-girdle muscular 

dystrophy and cardiomyopathy were more abundant in samples from the ambient 

temperature treatment. The keywords ‘degradation of lipopolysaccharide during viral entry’, 

‘viral DNA replication’ and ‘viral tail tube protein’ were exclusively detected in seawater 

samples from the short-term exposure. Ordinate and variance analysis based on Bray-Curtis 

similarity of the overall functional profile of the C. foliascens virome showed no significant 

difference between ambient and sublethal temperature treatments following short or longer 

term exposure to 31 °C (Fig. 4.9; Table 4.5). 

  



91 
 

 

Figure 4.8 Swiss-Prot functional keyword assignment to predicted genes associated with C. foliascens, normalised according to keyword frequency within the SwissProt database and read 
coverage of the source contig within the presented virome. The 50 most abundant keywords across all datasets were identified based on UniProt-KB BLAST analysis of sponge metaviromes and 
an e-value cutoff of 1e-10. Samples are labelled with experimental information (short heat-stress exposure (3 days) and long heat-stress exposure (21 days), number of days of treatment 
exposure (T0, T3, and T21), the temperature (28.5 °C and 31 °C) and seawater control samples). 
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Figure 4.9 Non-metric multidimensional scaling plot based on Bray-Curtis similarity of Swiss-Prot functional keyword 
assignment for predicted genes. Ordination displays similarities in the viral functions of C. foliascens subjected to (a) a short 
heat-stress exposure (3 days) and (b) a long heat-stress exposure (21 days). The associated figure legends denote the 
differences in treatment exposure (T0, T3, and T21 days), temperature exposure (28.5 °C and 31 °C) and seawater control 
samples. 
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Table 4.5 PERMANOVA pairwise comparisons of functional assignment of viral contigs based on Swiss-Prot keyword 
abundance data from C. foliascens in the short heat-stress exposure (3 days) and long heat-stress exposure (21 days), each 
exposed to ambient (28.5 °C) and sublethal (31 °C) temperatures. Multivariate permutational analysis of variance 
(PERMANOVA) (Primer6/PERMANOVA+ v1.0.2, Plymouth, UK) was used to compare functional differences from different 
tanks, time and temperature treatments. For each heat-stress treatment there were three tanks at 28.5 °C (A1, A2 and A3) 
and three tanks at 31 °C (S1, S2, and S3), each containing three sponge replicates. Temporal differences between day zero 
(T0), day 3 (T3) and day 21 (T21) were also measured within ambient conditions. Student t-tests are indicated by the letter 
“t” and “Unique perms” indicates how many unique-values of the test statistic were obtained under permutation. 

Experiment Factors Groups t p Unique perms 

Short heat-stress 

exposure 

Tank (within 28.5 °C) A1-A2 0.925 0.601 10 

A1-A3 0.702 0.907 10 

A2-A3 1.042 0.203 10 

Tank (within 31 °C) S1-S2 1.99 0.098 10 

S1-S3 0.864 0.502 10 

S2-S3 2.045 0.094 10 

Time (within 28.5 °C) T0-T3 0.782 0.778 59 

Temperature 28.5 °C-31 °C 1.039 0.376 10 

Long heat-stress 

exposure 

Tank (within 28.5 °C) A1-A2 0.899 0.529 463 

A1-A3 1.108 0.339 471 

A2-A3 1.174 0.255 463 

Tank (within 31 °C) S1-S2 0.851 0.692 10 

S1-S3 1.081 0.273 10 

S2-S3 0.937 0.708 10 

Time (within 28.5 °C) T0-T21 1.107 0.384 59 

Temperature 28.5 °C-31 °C 1.511 0.113 10 
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Figure 4.10 Heatmap of the viral functions associated with C. foliascens samples following 3 days experimental exposure to 
elevated temperature. Heatmap shows significant differences between samples (p-value <0.05) according to PERMANOVA 
tests performed using the mvabund package summarised at the Swiss-Prot keyword abundance data using parameters 
defined in Laffy et al., 2016. Mvabund analysis was used to identify the drivers of difference between individuals sampled at 
day zero (T0), after 3 days exposure to ambient temperature (T3, 28.5 °C) and to sublethal temperature (T3, 31 °C). 

 

Mvabund analysis performed with data from the 21 d temperature exposure revealed no 

significant difference in the relative abundance of antibiotic resistance genes between 28 and 

31 °C exposed samples (Fig. 4.11). The keyword ‘tyrosine catabolism’ was considered a driver 

of variation between 28 and 31 °C exposed samples, being exclusively detected in samples at 

31 °C. A total of 53 % of contigs containing tyrosine catabolism genes were taxonomically 

assigned, matching members of the bacteriophage Family Myoviridae (Supplementary Table 

4.2). 
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Figure 4.11 Heatmap of the viral functions associated with C. foliascens samples following 21 days experimental exposure to 
elevated temperature. Heatmap shows significant differences between samples (p-value <0.05) according to PERMANOVA 
tests performed using the mvabund package summarised at the Swiss-Prot keyword abundance data using parameters 
defined in Laffy et al., 2016. Mvabund analysis was used to identify the drivers of difference between individuals sampled at 
day zero (T0), after 21 days exposure to ambient temperature (T21, 28.5 °C) and to sublethal temperature (T21, 31 °C). 

 

4.4.5. Functional profile in bleached and necrosed sponges 

 

Comparison of enriched Swiss-Prot keywords associated with visually stressed and healthy 

sponges viromes, revealed variations in the functional profiles of sponges with distinct 

morphophysiological responses to heat-stress. Ordination and variance analyses performed 

at genus-level on the relative frequency of Swiss-Prot keywords showed a significant 

difference in the viral functions between bleached and non-bleached sponges at 31 °C (Table 

4.4; Fig. 4.12a). In contrast, no functional variation was noted between necrosed and healthy 

sponge viromes (Table 4.4; Fig. 4.12b). 
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Figure 4.12 Non-metric multidimensional scaling plot based on Bray-Curtis similarity of Swiss-Prot functional keyword 
assignment for predicted genes from C. foliascens individuals exposed to temperature treatments for 21 days. Ordination 
displays similarities in the viral functions of (a) i) 28.5 °C healthy, ii) 31 °C visibly unaffected and iii) 31 °C bleached individuals 
and (b) between i) 28.5 °C healthy, ii) 31 °C visibly unaffected and 31 °C necrotic individuals. 

 

Mvabund analysis identified several significant differences between control samples at 28.5 

°C, visibly unaffected samples at 31 °C and bleached / necrotic samples at 31 °C (Fig. 4.13). 

The keywords ‘galactose metabolism’ and ‘alternative promoter usage’ were identified as 

drivers of functional difference between bleached and healthy sponges (Fig. 4.13). The genes 

assigned the keyword ‘galactose metabolism’ were found on 98 contigs, 47 % of which were 
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taxonomically assigned as unclassified dsDNA viruses and 30 % matched Myoviridae 

bacteriophage (Supplementary Table 4.2). Genes coding for UDP-glucose 4-epimerase (UgeA) 

represented two thirds of all genes associated with the keyword ‘galactose metabolism’. The 

functional keyword ‘alternative promoter usage’, was enriched in bleached sponges, and 

identified on 33 viral contigs, of which 45 % were taxonomically assigned to the bacteriophage 

order Caudovirales. Half of the genes associated with this keyword assignment were classified 

as transposase genes. 

Amongst the functional variations observed between healthy and necrotic individuals after 

21 days of heat exposure, genes assigned the functional keywords ‘tissue remodelling’ and 

‘citrate utilization’ were shown to be drivers of difference in necrotic heat-stressed sponges 

(Fig. 4.13). Fifty percent of the genes assigned to the tissue remodelling keyword matched 

known chondroitin sulphate proteoglycan 4 (CSPG4) genes (Supplementary Table 4.2). 
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Figure 4.13 Heatmap of the viral functions associated with C. foliascens samples following 21 days experimental exposure to elevated 
temperature. Heatmap shows significant differences between samples (p-value <0.05) according to PERMANOVA tests performed using the 
mvabund package summarised at the Swiss-Prot keyword abundance data using parameters defined in Laffy et al., 2016. Mvabund analysis was 
used to identify the drivers of difference (a) between i) 28.5 °C healthy, ii) 31 °C  visibly unaffected and 31 °C  bleached individuals and (b) between 
i) 28.5 °C healthy, ii) 31 °C  visibly unaffected and iii) 31 °C  necrotic individuals. 
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4.5. DISCUSSION 

 

Despite viruses being acknowledged as critical components of marine ecosystems (Suttle, 

2007; Breitbart et al., 2018), their role in coral reef organisms, threatened by environmental 

disturbances, including ocean warming (OW) are still poorly described (Thurber et al., 2009b; 

Littman, Willis & Bourne, 2011; Laffy et al., 2019). In the first study to test the effect of OW 

on the viral community of a phototrophic coral reef sponge, the taxonomy and function of 

viruses associated with C. foliascens in response to elevated seawater temperature was 

described. The overall viral community profile in C. foliascens followed a similar structure to 

what had been previously described for this species (Chapter3), with communities dominated 

by bacteriophages, including members of the Caudovirales and Inoviridae, although NCLDV 

viral families were also represented in all samples (Fig. 3.2 and Fig. 4.1). The predominance of 

matches to bacteriophage is likely reflective of the high abundance of microbial symbionts 

associated with C. foliascens. This abundance was also seen in TEM images and microbial 

descriptions presented in Appendix 1 (Figs. A1.2d, A1.3a-e, A1.6a-b; Table A1.1), and is also 

in accordance with the current classification of C. foliascens as a high microbially abundant 

(HMA) sponge species (Moitinho-Silva et al., 2017). The high proportion of matches to 

members of the bacteriophage family Myoviridae, which includes the predominant viruses 

that infect the cyanobacterium Synechococcus (Breitbart, 2012), reflects the characteristic 

association between C. foliascens and Synechococcus (Gao et al., 2014b, 2015; Luter et al., 

2015). Amongst the NCLDV viruses observed, the dominance of Phycodnaviridae and 

Mimiviridae followed a similar pattern to what has been observed in other sponge species 

(Chapter 3; Laffy et al., 2018, 2019).  Matches to these two viral families may reflect the 

presence of a novel eukaryotic viral family, or may be indicative of the sponge-association 

with eukaryotic algae and protists, natural hosts of Phycodnaviridae and Mimiviridae, 

respectively (Laffy et al., 2018). 

The viral community profile of C. foliascens did not change when sponges were exposed to 31 

°C for 3 days (Fig. 4.2; Table 4.2). These results differ to a previous investigation into viruses 

in thermally stressed marine sponge R. odorabile which showed a significant difference in viral 

community composition after 12 h of exposure to 32 °C (Laffy et al., 2019). These findings are 
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likely a reflection of C. foliascens ecological niche, since this species typically inhabits shallow 

reefs and lagoons (Wilkinson & Evans, 1989) and is therefore exposed to periodic, acute but 

short temperature fluctuations (McCabe et al., 2010). However, a shift in viral community 

composition was evident in C. foliascens exposed to 31 °C for 21 days.  This shift comprised 

an increase in sequences matching Inovirus and a decrease in tailed bacteriophages (Fig. 4.3). 

Inoviruses are filamentous bacteriophages with multiple groups of bacteria serving as natural 

hosts (Ploss & Kuhn, 2010). They are considered temperate phages, whose infection doesn’t 

result in immediate cell death, but instead, establishes a chronic infection by continuously 

releasing virions without inducing cell lysis (Bayer & Bayer, 1986; Addy et al., 2012; Roux et 

al., 2019).  The increase in Inovirus is consistent with a previously described trend where 

lysogenic viruses increase in response to stress exposure (Howard-Varona et al., 2017). 

Inoviruses are also distinguished by their lysogenic conversions, where they coexist with the 

host in a dormant state for several host generations, either remaining integrated within host 

chromosomes as prophages or in a free episomal state (Bayer & Bayer, 1986; Howard-Varona 

et al., 2017; Roux et al., 2019). The induction of a reproductive cycle in dormant viruses, a 

process known as reactivation, can occur spontaneously or be induced by exposure to an 

environmental stressor, such as changes in temperature, pH and nutrients (Howard-Varona 

et al., 2017). The reactivation mechanism in herpesviruses, for instance, often requires 

disabling repressive chromatin marks, facilitating the viral gene expression and translation 

(Bloom, Giordani & Kwiatkowski, 2010; Avgousti & Weitzman, 2015). Although the 

mechanisms underpinning the gene translation are not fully understood, it is known that 

epigenetic regulation and stress-inducing compounds can induce viral reactivation, 

highlighting the key roles host metabolic pathways play in the viral life cycle (Wilson & Mohr, 

2012). For example, heat-shock has been demonstrated to trigger reactivation of herpes 

simplex virus in latently infected mice neurons after detecting infectious viruses and as a 

result of raising the core body temperature to 43 °C for 10 min (Sawtell & Thompson, 1992).”. 

Yet, the increase in abundance of Inoviruses in thermally stressed sponges (Fig 4.3) suggests 

that a viral reactivation is occurring as a response to prolonged thermal stress. The increase 

of lysogenic virus matches after a heat-stress event has previously been reported for marine 

sponges, where representatives of the viral family Retroviridae increased in R. odorabile after 

exposure to 32 °C for 12 hours (Laffy et al., 2019). Although both sponge species showed an 

increase in lysogenic viruses, these viruses belong to different families. While Inoviruses are 
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prokaryotic viruses which likely target specific sponge microbial symbionts, retrotranscribing 

viruses target eukaryotes, suggesting they infect either the sponge host, or an associated 

eukaryotic symbiont. The identification of an Inovirus representative, Pseudomonas phage 

pf3, as the taxa that contributed most to the dissimilarity across temperature treatments 

(Table 4.3) was further supported by mvabund analysis which indicated that Inovirus 

distribution was a major driver of the differences between ambient and sublethal 

temperatures. However, Pseudomonas phage pf3 contributed to less than 30 % of the total 

variation, indicating a multi-species response to heat stress.  

A higher relative abundance of Inovirus matches in sponges at 31 °C was also one of the main 

drivers of variation between healthy and bleached samples (Fig. 4.6). Bleaching events have 

been previously reported for C. foliascens exposed to heat stress (Bennett et al., 2017). The 

bleaching process in phototrophic sponges is often associated with the loss of photosynthetic 

symbiont communities, such as cyanobacteria (Thacker, 2005; Whalan, 2018). The correlation 

between bleaching occurrence and Inovirus enrichment suggests that the cyanobacterial 

symbiont of C. foliascens plays host to Inoviruses, which are increasing in abundance as they 

leave their host cell in anticipation of host death. Even though Inoviruses are yet to be isolated 

from C. foliascens cyanobacteria, Inoviridae-like particles have been observed associated with 

C. foliascens cyanobacteria symbionts (Pascelli et al., 2018) and Inovirus-like sequences have 

been identified from cyanobacterial genomes (Roux et al., 2019).  

It is important to note that the heat stress response in C. foliascens viral and microbial 

assemblages may also be influenced by the sponge hosts innate immune response. For 

example, prolonged exposure to warmer waters has been showed to alter immune responses 

in abalone by increasing antiviral activity while decreasing antibiotic activity (Dang, Speck & 

Benkendorff, 2012). In sponges, exposure of Haliclona tubifera to thermal stress activates 

immune response related genes, including toll-like receptors (TLRs) (Guzman & Conaco, 

2016). TLRs are important mediators of the innate response in sponges, providing signalling 

pathways of the antimicrobial host-defence system (Wiens et al., 2006) (Yuen, Bayes & 

Degnan, 2014). TLRs are also known to play important roles in mediating the antiviral immune 

responses of metazoans, by recognizing viral infections, activating signalling pathways and 

inducing the production of antiviral proteins (Xagorari & Chlichlia, 2008; Green & Speck, 

2018). Moreover, sublethal temperature stress in sponges can also up regulate heat-shock 
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protein (Hsp90) genes (Guzman & Conaco, 2016), which has been demonstrated to interact 

with viral proteins and mediate apoptotic pathways in vertebrates (Zhang et al., 2011). 

Despite the understanding that immune receptors play key roles in antiviral responses in 

aquatic organisms (Rauta et al., 2014), there is a critical knowledge gap regarding antiviral 

immune responses in sponges. Therefore, to better understand viral dynamics in stressed or 

diseased sponges, further studies must investigate signalling pathways of immune genes and 

pathogen recognition pathways in healthy versus stressed sponges. 

In the C. foliascens virome, keywords related to a suite of auxiliary metabolic genes, such as 

limb-girdle muscular dystrophy and cardiomyopathy were abundant in control samples (Fig. 

4.8). Although these keywords describe human dysfunctions, the specific genes assigned to 

these keywords were associated with the biosynthesis and degradation of collagen (Jokela et 

al., 2019), an important component of the sponges skeletal structure (Simpson, 2011). Until 

recently, collagen was considered an animal-exclusive protein (Morris, 1993). However, 

recent work characterising giant Mimiviruses has identified that collagen plays a key role in 

envelope structure and collagenase genes are contained within Mimivirus genomes (Luther 

et al., 2011). Although there are varied cellular mechanisms associated with collagen 

biosynthesis (Kavitha & Thampan, 2008), the enrichment of limb-girdle muscular dystrophy 

and cardiomyopathy keywords in sponge associated viromes suggests viruses may utilize 

sponge collagen as a resource for their own metabolic pathways. 

The overall functional profile of the C. foliascens virome did not vary significantly when 

exposed to 31 °C (Table 4.5), although mvabund analysis identified specific keywords as 

significant drivers of variation between healthy and stressed individuals (Figs. 4.10, 4.11). 

After 3 days exposure to 31 °C, genes associated with cadmium and chromate resistance were 

significantly reduced at 31 °C (Fig. 4.10). In microorganisms, mechanisms related to both 

resistance systems include a reduction in cellular uptake and a promotion of an efflux 

transport of heavy metal molecules (Summers, 1985; Silver, 1996). These resistance genes 

are naturally enriched in C foliascens and have been proposed to improve the viral hosts’ 

resistance to heavy metal contamination (Chapter 3). If the resistance genes function in this 

way, a reduction in their relative abundance in thermally stressed sponges could indicate that 

increased temperature interferes with the ability of the sponge holobiont to resist the effects 



103 
 

of marine pollutants. However, further studies employing methods that assess variation in 

gene expression are needed to test this hypothesis. 

After 3 days at 31 °C, a significant increase in the frequency of the SwissProt functional 

keyword ‘antibiotic resistance’ was observed in the sponge viromes (Fig. 4.10). Antibiotic 

resistance genes are naturally present in microbial communities (Allen et al., 2010).  Besides 

providing defence against specific therapeutic manipulated compounds (Davies & Davies, 

2010), antibiotic resistance genes are also associated with self-protection mechanisms, 

including inhibition of competitors growth through the production of bioactive compounds 

(Martinez, 2008; Neeno-Eckwall, Kinkel & Schottel, 2011) and regulation of biosynthesis 

pathways (Tahlan et al., 2007). Antibiotic resistance genes in microbes can be transmitted 

through viral infection, and this has been shown to improve their hosts survival under strong 

antibiotic selection pressures (Haaber et al., 2016). Considering that sponges naturally 

harbour dense communities of microbial symbionts (Cuvelier et al., 2014) which play 

important roles in their biological functions (Webster & Taylor, 2012), the enrichment of 

antibiotic resistance genes in sponge viruses indicates that viruses could play roles in 

mediating self-protection mechanisms within specific microbial groups in the sponge 

holobiont. Genes coding for antibiotic resistance in the C. foliascens virome were mostly 

found on contigs taxonomically assigned to Myoviridae sequences (Supplementary Table 4.2). 

The increase in antibiotic resistance genes in Myoviridae-assigned contigs in sponges at 31 °C 

may suggest an initial viral-mediated defence mechanism in C. foliascens. 

An increase in the frequency of the SwissProt functional keyword denoting tyrosine 

catabolism in the virome dataset of sponges exposed to 31 °C for 21 days is indicative of a 

viral mediated response to heat stress (Fig. 4.11). Most viral contigs containing tyrosine 

catabolism genes were taxonomically assigned to known Myoviridae sequences 

(Supplementary Table 4.2). Genes assigned this keyword are commonly associated with the 

degradation of the aromatic amino acid tyrosine (Dixon & Edwards, 2006). Tyrosine synthesis 

and degradation pathways are involved in regulatory mechanisms in bacteria, interfering with 

physiology, virulence, stress response and changes to DNA metabolism (Grangeasse, Nessler 

& Mijakovic, 2012). Most genes associated with this keyword were functionally identified as 

4-hydroxyphenylpyruvate dioxygenase (4-HPPD) gene homologues, which have been 

proposed to influence bacterial survival in the natural environment (Steinert et al., 2001) as 
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well as contributing to microbial virulence and self-defence mechanisms (Liang et al., 2018). 

It remains unclear whether the introduction of viral tyrosine catabolism genes contributes to 

increased host survival and fitness in heat-stressed C. foliascens. Identification of 4-HPPD 

genes in thermally stressed sponge viromes may point to the appearance of pathogenic 

species within thermally stressed sponges, although further work is required to confirm this. 

The enrichment of “leucine rich repeat” (LRR) genes in C. foliascens virome (Fig. 4.10) likely 

indicates a viral interaction with host-associated immune responses. LRRs integrate the Nod-

like receptors (NLRs) or nucleotide-binding oligomerization domain receptors family, which 

are important intracellular sensors in the in innate immune systems of metazoans (Ting et al., 

2008). NLRs play key roles on the differentiation between self from non-self-molecules and 

are capable of detecting microbial- or pathogen-associated molecular patterns 

(MAMPs/PAMPs) (Boller & Felix, 2009), mediating animal–bacterial interactions (Franchi et 

al., 2012; Robertson & Girardin, 2013). Marine sponges are notable for holding a highly 

abundant and diverse NLRs immune receptors genes (Yuen, Bayes & Degnan, 2014), which 

have been proposed to intercede in the complex interactions between sponges and microbial 

symbionts (Degnan, 2015). A distinct NLR-like proteins domain, the ankyrin repeat, has been 

discovered and expressed in sponge viruses, confirming that immunomodulatory viral protein 

can mediate microbe-sponge interaction (Jahn et al., 2019). Yet, during the short term heat-

stress experiment, it was noted significant difference on the LRR genes enrichment between 

ambient and sublethal temperatures, with LRR genes exclusively enriched in non-stressed 

sponges (Fig. 4.10). This result indicates that heat stress potentially interferes with the 

immunomodulatory viral response in sponges. In order to confirm the viral contribution to 

the adaptive immunity in sponges further studies must focus on the expression of LRR sponge 

viral genes across multiple stress levels.Significant functional differences in the sponge virome 

were also evident between control and bleached individuals, in comparison to visibly 

unaffected sponges at 31 °C (Table 4.4; Fig. 4.12a). Increases in galactose catabolism and 

alternative promoter usage genes in bleached sponges were amongst the primary drivers of 

functional variations between bleached and non-bleached sponges (Fig. 4.13a). Most genes 

associated with the galactose metabolism keyword pertained to  enzyme UDP-glucose 4-

epimerase (UgeA) homologues, and these genes have previously been associated with cell 

wall biosynthesis (Rösti et al., 2007). UgeA genes are also involved in the synthesis of 
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lipooligosaccharide, characteristic of virulence factors in pathogenic bacteria (Lee et al., 

1999). The functional keyword ‘alternative promoter usage’, also enriched in bleached 

sponges, was assigned to genes present within contigs taxonomically assigned to 

Caudovirales. Half of the genes associated with this keyword were functionally identified as 

Transposases for transposon Tn5,  a gene characterised by its ability to insert into several sites 

within host genomes,  and transposase elements which may be involved in transmitting 

antibiotic resistance genes to their hosts (Berg & Berg, 1983). Tn5-induced mutations can also 

interfere with the virulence and pathogenicity of some bacterial groups (Weiss et al., 1983; 

Cuppels, 1986). Transposable elements can facilitate viral integration into bacterial 

chromosomes during lysogeny (Harshey, 2014). Genes associated with an increase in tissue 

remodelling were also identified as drivers of functional variation between control and 

necrotic sponges, with an elevated relative abundance in necrotic sponges at 31 °C. Most 

genes associated with this keyword were identified as sulphate proteoglycan 4 (CSPG4) 

homologues (Supplementary Table 4.2). In bacteria, CSPG4 can be involved in receptor-

mediated endocytosis of toxins and virulence factors secreted by pathogenic bacteria (Yuan 

et al., 2015; Gupta et al., 2017), and the presence of these genes in the viromes of necrosed 

sponges suggests that viruses containing these genes may be contributing to cell mortality 

and tissue degradation in sponges. No genes on contigs associated with this function were 

taxonomically assigned, and it remains to be seen whether this process, if occurring, is viral-

mediated. 

These results, combined with a previous report of sponge viral responses to heat stress (Laffy 

et al., 2019), suggest that while thermal stress does not cause a significant change in the 

overall functional composition of the viral community, elevated temperature can drive 

specific variations related to heavy metal resistance, antibiotics and virulence. Nevertheless, 

physiological responses in the holobiont, such as bleaching and necrosis, do correlate with 

functional variations in the sponge virome. The multi-species viral response to bleaching 

suggests that there is no single viral mediated driver of bleaching in sponges. 

4.6. CONCLUSION 

This chapter drew upon the comprehensive knowledgebase of sponge viral ecology 

established in Chapters 2 and 3 to provide an improved understanding of how sponge-viral 
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dynamics will respond to ocean warming. The main conclusions from this study are that 1) 

the C. foliascens viral community does not change in response to short term (3 days) heat-

stress; 2)  inoviruses increased after longer term heat-stress (21 days), which correlates with 

C. foliascens bleaching; 3) bleaching correlates with shifts in the functional capacity of the C. 

foliascens viral metagenome; and 4) specific functional differences between control and heat- 

stressed samples include a reduction in genes associated with heavy metal resistance and an 

increase of virulence related genes in the viral communities of sponges exposed to 31 °C. 

From these results, it appears that thermal sensitivity affects susceptibility to viral infections 

in C. foliascens, particularly in sponges displaying a phenotypic bleaching response. Future 

studies should aim to characterise the switch from lysogenic to active viral life cycles in 

thermally stressed sponges, and to identify specific Inovirus hosts within the sponge holobiont 

in order to characterise the mechanisms associated with the bleaching phenotype and 

endeavour to confirm the expression of viral resistance and virulence genes in C. foliascens at 

elevated seawater temperature. 
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Chapter 5. GENERAL DISCUSSION 

5.1. SYNTHESIS OF RESULTS 

This research was inspired by a knowledge gap regarding the role of viruses in coral reef 

sponges. My dissertation has provided important insights into the taxonomic and functional 

diversity of viruses in sponges, using morphological and metagenomic approaches to identify 

50 viral morphotypes, over 25 viral families and several auxiliary metabolic genes (AMGs), 

including those associated with herbicide resistance, heavy metal resistance, nylon 

degradation and antimicrobial activity, associated with 15 sponge species from two distinct 

biogeographic regions. This research provided visual evidence that viruses are important 

members of coral reef sponges, associating with the eukaryotic and prokaryotic components 

of the sponge holobiont. In addition, it presented compelling evidence that the sponge-viral 

community and function are structured by biogeographic variation and influenced by sponge-

holobiont symbiotic strategies, including microbial abundance and the presence of 

photosymbionts. Furthermore, it demonstrated that the viral community associated with 

Carteriospongia foliascens is impacted by elevated seawater temperature, with an increase 

in temperate viruses occurring after 21 days exposure to 31 °C. Furthermore, C. foliascens 

that exhibited thermal bleaching were enriched in Inoviruses compared to visually healthy 

sponges. This research greatly advances what is currently known about the roles viruses play 

in sponges, and more broadly in coral reef invertebrates. 

5.2. DIVERSITY AND FUNCTION OF VIRUSES IN CORAL REEF SPONGES 

Viruses are the most abundant biological entities in the marine environment (Danovaro et al., 

2011), infecting all living organisms (Fuhrman, 1999; Rohwer & Thurber, 2009), and although 

viruses were first observed within sponges more than forty years ago (Vacelet & Donadey, 

1977), this thesis is the first follow up study visualizing VLPs in sponges (Pascelli et al., 2018). 

Chapter 2 shows a diverse array of VLPs associated with different components of the sponge 

holobiont. To visualize viruses and associated microorganisms inside sponges, three 

Transmission Electron Microscopy (TEM) techniques were combined. Although most VLPs 

observed inside the sponges were considered rare (visualized less than 5 times per sample 

during 1 h of searching), select morphotypes were found in high abundance, in dense 



108 
 

aggregates, e.g., associated with archaeocytes in Xestospongia testudinaria and in 

cyanobacteria associated with Amphimedon ochracea (Figs. 2.4. j-l, 2.5. d-g; Appendix 2 Table 

A2.1). This is supportive of with the “virus bank model”, which suggests that although most 

viruses are widely distributed in low abundance, only a fraction are active at any one point in 

time, a d the majority remain rare and inactive., This phenomenon has been compared to 

seed-banks in plant populations (Breitbart & Rohwer, 2005). The high diversity and low 

frequency of viral morphotypes in sponges further suggests that the sponge holobiont also 

behaves as a viral bank, where specific environmental factors could trigger shifts in the viral 

communities in these ecosystems. 

Most of the observed viral morphotypes were exclusively detected in just one host species 

(Figs. 2.1-5, Appendix 2 Table A2.1). This observation was supported by the metagenomic 

data, which revealed that the viral community in sponges was species-specific (Figs 3.3a). 

Marine sponges are filter-feeders capable of retaining viral particles from seawater (Hadas et 

al., 2006). Thus, variation in viral community composition across sponge species may be 

partially attributed to their differential ability to filter seawater particles. The sponge filtration 

ability is associated with its morphological characteristics, such as body plan, mesohyl density, 

aquiferous systems complexity / dimensions and oscular behaviour, as these parameters 

determine the water density and pumping rates and subsequent filtration efficiency (Weisz, 

Lindquist & Martens, 2008; Strehlow et al., 2016). This hypothesis is supported by analysis 

presented in Appendix 3 (Table A3.2), which shows a significant correlation between sponge 

morphotypes and viral community structure, indicating that sponge morphology may play 

roles in determining the viral composition. 

Sponge microbial associations also play key roles in structuring the sponge virome. 

Morphological and metagenomic approaches (Chapters 2 and 3) both highlighted 

bacteriophages as the dominant viral group across all sponge species (Figs. 2.1-5, 3.2), 

suggesting that the microbial and viral consortia are interconnected with the sponge 

holobiont. The clear delineation in viral communities observed between high (HMA) and low 

microbial abundance (LMA) sponges, combined with observed viral community 

differentiation between sponges with and without photosymbionts (Fig. 3.3b) supports the 

argument that the sponge-viral community is greatly influenced by sponge associated 

microbial symbionts. A dominance of bacteriophages has been previously reported in marine 
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invertebrate viromes (Patten, Harrison & Mitchell, 2008; Wood-Charlson et al., 2015; Correa 

et al., 2016; Weynberg et al., 2017a; Thurber et al., 2017; Laffy et al., 2018), which is 

consistent with the current theoretical proposal that all multicellular organisms form a 

holobiont, encompassing multiple symbiotic associations, including a wide range of 

microorganisms (Morris, 2018). The premise that sponge microbes are key elements 

influencing viral community structure within sponges is further supported by reports that 

distinct sponge species maintain a highly uniform and specific association with 

microorganisms (Hentschel et al., 2002; Webster et al., 2013a). 

Although bacteriophages are likely the major players in the sponge holobiont, eukaryotic 

viruses were also part of the core sponge virome (Fig. 3.2) as was observed via TEM analysis 

(Figs. 2.1. a, 2.3. k-l, 2.4. j-l, 2.5. h). Observed eukaryotic viruses included the 

nucleocytoplasmic large DNA viruses (NCLDV) families, a collection of known viral families 

that infect a range of eukaryotic organisms including protists, algae, and animals (Wegley et 

al., 2007; Thurber & Correa, 2011; Grasis et al., 2014; Wood-Charlson et al., 2015; Leigh et al., 

2018; Laffy et al., 2018). The presence of these viruses in sponges may indicate that these 

viral groups are either targeting sponge cells or other multicellular representatives of the 

sponge holobiont, such as macroalgae or other associated invertebrates. Yet, their 

occurrence might not be strictly related with the presence of a host, they could have been 

assimilated during sponge filtration (Hadas et al., 2006), or trapped within sponge canals. 

However, it is notable that sponges have the capacity to shape and maintain their viral 

communities, as individual sponge viromes are significantly different from surrounding 

seawater viromes (Laffy et al., 2018). Giant viruses, including Mimiviridae and 

Marseilleviridae, are members of the NCLDV observed within sponge-associated viromes 

(Chapters 3 and 4). It has previously been suggested that sponges may be a potential marine 

host for giant viruses (Claverie et al., 2009), and although giant viruses were consistently 

identified in the sponge viromes (Fig. 3.2), no viral morphology consistent with giant viruses 

was observed through TEM analysis. However, the observation of VLPs could have been 

hindered by the TEM preparation methods, since tissue sectioning commonly restricts 

observations to a relatively small host area and filtering and centrifuging can potentially 

eliminate or damage larger viral particles. 
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A major goal of this research was to understand the mechanisms through which viruses 

interact with their hosts. For instance, sponge viruses are likely mediating cellular mortality 

(eukaryotic or prokaryotic) in sponges, which is suggested by the observation of burst viral 

infected cells (Fig. 2.4 j-l; Figs 3e and 5e) as well as by the occurrence of obligately lytic viruses, 

such as the T4 bacteriophages (Hobbs & Abedon, 2016), amongst the sponge virome 

(Appendix 3 Table 3.2). Viral-induced cellular mortality in sponges may be partially 

contributing to Darwin’s paradox, explaining how ecosystems with low nutrient input can 

sustain high biodiversity (Darwin, 2013). In a process termed the “sponge-loop”, sponges have 

been shown to cycle dissolved organic matter (DOM), making it available to other reef species 

via rapid cellular turnover and expulsion of detritus (de Goeij et al., 2013a). It is also possible 

that sponge viruses play a role in this microbial loop by transforming the DOM (microbial food 

source) incorporated as bacterial biomass into cellular detritus, or particulate organic matter 

(POM) via the lysis of their host/microbial cells, especially considering that viruses are 

responsible for killing 20 – 40% of oceanic bacteria per day (Suttle, 1994). Although part of 

this organic matter would be trapped in an internal loop (viral shunt, (Suttle, 2005)), it is 

possible that a portion of the cellular material that is lysed by members of the sponge virome 

would produce detritus that would subsequently be expelled by the sponge and further 

incorporated by other coral reef organisms, thereby impacting coral reef food webs and 

biogeochemical cycles. 

Viral-induced cellular mortality was not the only role identified for viruses in the sponge 

holobiont. Results presented in Chapter 3 showed that sponge viruses contain genes that can 

manipulate their host transcription through expression of auxiliary metabolic genes (AMGs). 

Core viral functions were consistently identified within the sponge viromes, in contrast with 

AMGs, which varied across sponge species (Fig. 3.5). Previous research  demonstrated the 

specificity of AMGs in sponge and coral holobionts (Laffy et al., 2018), and the findings 

presented in Chapter 3 further expand our understanding of how viral functional profiles are 

correlated to host nutritional strategy, microbial abundance and geographic location (Chapter 

3). For instance, functional profiling revealed that genes associated with photosynthesis were 

enriched in phototrophic sponges, nitrogen metabolism genes were enriched in HMA 

sponges, and antibiotic synthesis genes were enriched in LMA sponges (Figs. 3.8-9). 

Additionally, geographic location (or the specific environmental conditions of each site) 
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contributed to the metaviromic functional profiles, with an enrichment of heavy metal 

resistance genes observed in the viromes of Red Sea sponges and herbicide resistance genes 

observed in GBR sponge viral metagenomes (Fig. 3.7). These functional differences may be 

reflecting the elevated levels of heavy metal contamination in the Red Sea (Badr et al., 2009) 

in comparison with the generally low levels in the GBR Marine Park (Haynes & Johnson, 2000), 

as well as reflecting the impact of agricultural runoff on the GBR (Jones & Kerswell, 2003; 

Lewis et al., 2009).  

Considering the variability of the sponge viral metagenomes in accordance with their host 

species, geographic location and microbial association strategies (HMA/LMA and 

presence/absence of photosymbionts) (Chapter 3), the last component of this research 

(Chapter 4) investigated how the sponge viral metagenomes responded to changing 

environmental conditions, specifically short (3 days) and long-term (21 days) exposure to 

elevated seawater temperature. Significant differences were observed in the Carteriospongia 

foliascens-associated viral metagenomes after long-term exposure to elevated seawater 

temperature, although these communities remained stable for the first three days of 

exposure. These findings are likely a consequence of the ecological niche occupied by this 

host species, as C. foliascens typically inhabits shallow reefs and lagoons (Wilkinson & Evans, 

1989) and is, therefore, often exposed to periodic and acute temperature fluctuations 

(McCabe et al., 2010). However, longer term heat-exposure resulted in a significant increase 

in the relative abundance of temperate bacteriophages from the genus Inovirus (Fig. 4.3). This 

increase may be attributed to a switching of Inoviruses from a dormant lysogenic stage to an 

active stage, trigged by heat-stress, as has been previously proposed for temperate viruses 

(Howard-Varona et al., 2017). Interestingly, the only other study describing sponge-viral 

responses to heat-stress also showed a significant increase in temperate viruses in heat-

stressed GBR sponge Rhopaloiedes odorabile (Laffy et al., 2019). Laffy et al. (2019) identified 

that these temperate viruses belonged to the Retroviridae, and although also lysogenic, this 

viral family typically infects eukaryotic cells, suggesting that the lysogenic/ active switching 

response in thermally stressed sponges involves both prokaryotic and eukaryotic viruses. Viral 

communities within marine organisms other than sponge have been shown to exhibit varying 

responses to heat-stress, including an increase in Herpesviridae in the coral Porites compressa 

(Thurber et al., 2008) and a decrease of Inoviridae in Hydra vulgaris (Grasis et al., 2014). 



112 
 

Knowledge regarding host-viral interactions in coral reef communities is still very limited, and 

Chapter 4 of this thesis provides a solid base from which to expand our understanding of 

virome community dynamics in marine holobiont systems exposed to heat stress. Chapter 4 

also identified a correlation between bleaching and increased Inovirus in heat stressed C. 

foliascens (Fig. 4.6). As a bleaching phenotype in C. foliascens is likely the result of a decrease 

in the abundance of cyanobacteria (Thacker, 2005; Whalan, 2018), the associated rise in 

Inovirus in bleached sponges suggests a host-virus interaction between Inovirus and 

cyanobacterial symbionts. As a result of this correlation, I hypothesize that C. foliascens 

cyanobacteria associated inoviruses increase in abundance as a result of dormant viruses 

being induced to reproduce prior to the death of the sponge, although additional validation 

is needed to confirm this. 

In addition to highlighting how the sponge viral community responds to heat stress, 

experiments described in Chapter 3 detected functional variations in the virome of C. 

foliascens at elevated seawater temperature. Significant differences in the assigned 

functional keywords were found between bleached and non-bleached sponge viromes 

following thermal stress (Table 4.4.; Fig. 4.11.a). Analysis of the drivers of difference between 

these phenotypes showed that viral genes characteristic of microbial virulence and 

pathogenicity were enriched in bleached sponges compared to visibly healthy individuals. This 

functional response in the virome may be a result of an increase in microbial pathogenicity 

within bleached sponges, suggesting that viruses may potentially interfere with the sponge-

microbial infection or defence ability during a heat-stress event. Although the functional 

variations were clearly related with this physiological condition, heat-stress did not result in 

a significant difference in the C. foliascens virome functional profile. The overall functional 

stability of heat-stressed viromes suggests that the observed viral taxonomic shift did not 

contribute to a metabolic advantage within the sponge holobiont system. This result is 

comparable to the observed functional stability of the R. odorabile virome under heat stress 

(Laffy et al., 2019). 

5.3. FUTURE DIRECTIONS FOR SPONGE HOLOBIONT-VIRAL STUDIES 

Our knowledge of the roles viruses play in marine holobionts is still in its infancy. While the 

number of studies exploring viral interactions with coral reef organisms has grown 



113 
 

substantially in recent years, almost all of these focused on hard coral species (Seymour et 

al., 2005; Wilson et al., 2005; Davy et al., 2006; Davy & Patten, 2007; Cervino et al., 2008; 

Patten, Harrison & Mitchell, 2008; Thurber & Correa, 2011; Pollock et al., 2014; Soffer et al., 

2014; Wood-Charlson et al., 2015; Correa et al., 2016; Brüwer et al., 2017; Weynberg et al., 

2017a; Thurber et al., 2017; Mahmoud & Jose, 2017; Weynberg, 2018). In contrast, studies 

that investigate viral roles in marine sponge have been very scarce (Pascelli et al., 2018; Laffy 

et al., 2018, 2019; Jahn et al., 2019).  The findings of this thesis greatly expand this field by 

visually cataloguing VLPs and characterising viral communities and their associated and 

functions within 15 sponge species from distinct biogeographic regions, thereby establishing 

a robust baseline that will inform future studies aimed at understanding the role of viruses in 

sponge holobiont biology. 

This PhD research showed that sponges host several viral groups that typically infect a diverse 

array of macro and microorganisms. This knowledge sets the scene for future studies to focus 

on identifying specific hosts for individual viruses within the sponge holobiont. This could be 

achieved by sorting specific cell types within the sponge holobiont prior to viral purification, 

using techniques including macro and micromanipulation (Fröhlich & König, 2005), 

fluorescence-activated cell sorting (FACS) (Worden, Dupont & Allen, 2011) and 

immunomagnetic cell separation (Clarke & Davies, 2003). Utilising cell culture techniques may 

also facilitate the targeting of specific viral groups within the sponge holobiont, a strategy 

that has been successfully applied for other marine invertebrate systems (Rinkevich, 2005). 

Allied to these methods, other technologies could be used to characterize specific viral or host 

group within the sponge holobiont, including fluorescent in situ hybridization (FISH) (Liehr, 

2016) and single molecule, real-time (SMRT) sequencing (Eid et al., 2009). As an example, FISH 

can be used to detect and localize specific viral/microbial sequences, providing new insights 

into the abundance, distribution and interactions of viruses or specific viral genes within the 

sponge holobiont (Li et al., 2006). Additionally, SMRT technology could be used to sequence 

independently longer strands of the viral and host genomes and generate full-length 

transcripts, providing a more accurate classification of these viruses as well as their functions 

(Boldogkői et al., 2019).  

Another gap in this research is the lack of characterization of virus integration into host 

microbial genomes, as the purification method used in this thesis specifically targeted viral 
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particles, and did not account for the identification of prophage (inserted into host genome) 

signatures within host genomes. The results presented in Chapter 4 suggest that the increase 

in Inovirus in thermal stressed sponges is related to the switching of Inovirus from dormant 

lysogeny to an active life stage, trigged by heat-stress. In order to test this hypothesis, the 

experiment must be expanded, quantifying and comparing lysogeny across treatments in 

order to verify the Inovirus infection strategy. This could be achieved by isolating the microbial 

genome associated with the sponges and incorporating an additional verification of viral 

signatures in microbial sequence data, using specific bioinformatic pipelines, including 

VirSorter, a tool to detect viral signals in different types of microbial sequence data (Lima-

Mendez et al., 2008; Roux et al., 2015a). Moreover, investigating the presence of viruses or 

prophages in the sponge gametes and any vertically transmitted microbes (which comprise a 

large part of the microbiome of many sponge species, (Gloeckner et al., 2014; Cuvelier et al., 

2014)) would elucidate viral transmission strategies (Gaino et al., 2006). Additionally, in order 

to understand the viral community dynamics within the sponge host, and more precisely 

understand the sponge efficiency in selectively removing viruses from seawater, viral 

standard experiments could be conducted to investigate the viral composition and 

concentration among the sponge inhalant canal, chambers and exhalant canals as well as 

correlating these results with sponge features like species affiliation, morphological 

complexity and symbiotic association. 

Methodology used in this thesis captured extensive viral diversity associated with coral reef 

sponges (Chapters 3 and 4) by focussing on visualising and sequencing the viral communities. 

However, sequencing efforts exclusively targeted DNA viruses because efforts to capture 

informative sequences from RNA viruses were constrained by a lack of homologous 

sequences in existing databases (Steward et al., 2013) and difficulty in assembling RNA virus 

contigs (Marz et al., 2014). Considering that prokaryotic symbionts comprise up to half of the 

sponge volume (Cuvelier et al., 2014), and that RNA viruses are largely absent from 

prokaryotic communities (Culley, Mueller & Belcaid, 2014), it is expected that DNA viruses are 

responsible for the largest part of the overall community and functional composition in 

sponge viromes. However, since new techniques have been developed to isolate, assemble 

and annotate RNA viral genes (Bruinsma et al., 2016; Wolf et al., 2018) and 

metatranscriptomic approaches have improved the description of host-RNA virus interaction 
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(Shi et al., 2017, 2018), future studies on sponge viromes should also consider the roles RNA 

viruses play in the sponge holobiont. This may uncover new insights into sponge viral 

associations, highlighting interactions between viruses and the eukaryotic component of the 

sponge holobiont. 

Findings from this thesis suggest that viral communities in sponges can be influenced by 

environmental factors including location and water quality (Chapters 3 and 4). As sponges are 

key benthic taxa occupying polar to tropical regions, shallow, deep water and other distinct 

ecosystems (Bell, 2008; Van Soest et al., 2012), a more comprehensive descriptive study 

targeting sponge species from varied habitats, depth and latitudes would help us to 

understand the stability of sponge-viral associations and provide a better understanding of 

how the surrounding environment influences these biological associations. In addition, future 

studies should investigate whether viruses play specific roles in modulating specific sponge 

ecological traits. For instance, it is known that most diseases reported for marine sponges lack 

a specific etiological agent (Maldonado, Sánchez-Tocino & Navarro, 2010; Angermeier et al., 

2012; Luter & Webster, 2017; Slaby et al., 2019), and while many diseases in marine 

organisms have been shown to be virally-mediated (Sánchez-Paz, 2010; Crane & Hyatt, 2011; 

Soffer et al., 2014; Petton et al., 2015), the role of viruses in sponge diseases has been poorly 

explored (Slaby et al., 2019). Disease occurrence in marine organisms can also be associated 

with dysbiosis, or an imbalance of the microbial symbiotic consortia (Egan & Gardiner, 2016; 

Pita et al., 2018b). Thus, in order to investigate whether viruses play a causative role in sponge 

disease, or are involved in the onset of dysbiosis, comparative studies must be conducted to 

characterize the viral community of healthy versus diseased sponges using a variety of 

approaches, including metagenomics (Laffy et al., 2016), viral enumeration (FCM) (Marie et 

al., 1999), isolation of the etiological agent (Middelboe, Chan & Bertelsen, 2010) and 

bioinformatics methodologies that search for viral-induced microbiome alteration (Roux et 

al., 2015a). 

Our methodology used amplification techniques to produce sufficient material for sequencing 

and also relied on relative abundance data derived from sequencing reads to characterize 

each viral group or function associated with each distinct sponge species. A more accurate 

quantitative description of viral functions is now needed to test the specific hypotheses 

generated by this thesis. For instance, Chapters 3 and 4 highlight the potential roles of viral 
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AMGs in the holobiont, including enrichment of heavy metal resistance genes in sponges at 

the Red Sea site and enrichment of herbicide and insecticide resistance genes in GBR sponge 

viral metagenomes. These findings are indicative of heavy metal contamination in the Red 

Sea and agricultural runoff affecting the GBR. Previous work has indicated that it is unlikely 

that viruses would maintain redundant or random genes within their genomes, as 

maintenance of larger genomes result in a putative fitness cost (Mahmoudabadi, Milo & 

Phillips, 2017). This suggests that the occurrence of AMGs are a result of specific selective 

pressures (Breitbart et al., 2007; Rosario & Breitbart, 2011; Crummett et al., 2016). Future 

studies exposing distinct sponge species to controlled environmental conditions, including 

various levels of pollutants, nutrients, temperature, pH, UV radiation or sedimentation may 

elucidate whether viral AMGs play an active role in manipulating host metabolic processes, 

as has been proposed in this thesis. Future research should also undertake a more accurate 

description of viral community dynamics using quantitative approaches. Flow cytometry 

(FCM) and quantitative real-time PCR (qPCR) are amongst the techniques that could be used 

to better quantify viruses in marine sponges (Brussaard, 2004b; Albinana-Gimenez et al., 

2009), as these tools have been effectively used to count microbes and VLPs in other coral 

reef organisms (Patten, Seymour & Mitchell, 2006; Bourne, Muirhead & Sato, 2011; 

Weynberg et al., 2017b).   

The effect of future climate scenarios predicted for coral reef ecosystems (IPCC, 2014) must 

be studied in the context of viral-sponge holobiont associations. Environmental stresses 

including ocean warming and acidification, sedimentation, light attenuation, nutrient 

availability, salinity variation and pollutant exposure have all been shown to impact the fitness 

of sponges and their associated microbial communities (Pineda et al., 2016, 2017; Bennett et 

al., 2017; Gantt, López-Legentil & Erwin, 2017; Watson et al., 2017; Glasl et al., 2018). The 

role viruses play in these stress responses remains largely uncharacterized in marine sponges, 

despite studies in other systems highlighting the capacity for viruses to manipulate their hosts 

(Breitbart et al., 2018; Roux et al., 2019), contributing to acclimation (Llave, 2016), survival 

(Karpf et al., 1997) and evolution (Villarreal, 1999). Chapter 4 builds on existing work (Laffy et 

al., 2019) that has started to investigate the sponge holobiont-viral response to heat-stress, 

an important step towards understanding the role that viruses play in sponge response to a 

changing world. It has been suggested that sponges may dominate some coral reefs under 
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future climate scenarios (Bell et al., 2018), hence additional experimental work is needed to 

assess sponge-viral responses to a range of environmental pressures, including shifts in ocean 

temperature, pCO2, nutrients, pollutants and a combination of these factors. Additional 

studies must me grounded in forecasted future climate scenarios, to better understand the 

roles that viruses will play in reef community restructuring. Similarly, an understanding of the 

thresholds that mediate viral functional contributions to heavy metal, plastic and herbicide 

contaminations and associated dose response relationships should be generated, in order to 

implement the best possible management strategies and mitigate the effects of these 

contaminants on reef communities. 

Additionally, the enrichment of important Nod-like receptor genes in the sponge virome, as 

well as their distinct thermal stress responses (Fig. 4.10) are possible indicators of a viral 

modulation of the sponge immune system. To elucidate whether and how viruses 

communicate with the sponge immune system and respond to environmental stress future 

studies must consider the sponge innate immune system while investigating the host 

response. This could be achieved by accessing changes in expression of signalling and 

immunity pathways within control and stressed individuals. 

5.4. FINAL CONCLUSIONS 

This PhD research has shown that viruses are a diverse component of the sponge holobiont 

in all 15 species investigated. TEM and metagenomic analyses revealed that sponge 

associated viral communities are dominated by bacteriophages, and the composition of these 

communities is primarily influenced by the composition of the sponge associated 

microbiome. Additionally, multiple eukaryotic viral groups were identified within the sponge 

holobiont, likely targeting sponge cells or a eukaryotic symbiont in the holobiont. This 

research has greatly expanded upon previous findings highlighting the species-specificity of 

the sponge-viral community (Laffy et al., 2018), and also shows that sponge viromes are 

influenced by host strategies for symbiosis, including microbial abundance and the presence 

of photosymbionts. Sponge viral community composition is also influenced by environmental 

factors, including geographic location and seawater temperature. Finally, this study revealed 

that the functional profiles of sponge viromes vary significantly between species and sites, 

involving differential representation of auxiliary metabolic genes (AMGs), including those 
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associated with herbicide resistance, heavy metal resistance and nylon degradation. Findings 

from this PhD have greatly expanded our understanding of sponge-viral interactions and 

improved our knowledge of sponge ecology, revealing putatively important roles for viruses 

in the sponge holobiont.  
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APPENDIX 1 

 

This dataset presents the morphological characterization of prokaryotes associated with coral 

reef sponges from the Red Sea and the GBR as described in Chapter 2. 

 

Sponge-associated prokaryotes 

TEM analysis revealed high variability in the microbial morphotypes, abundance and 

distribution associated with the different sponge species. Gram-positive and Gram-negative 

bacteria were observed and morphologically characterized as coccus; diplococci; rod; Star-

cross section-oriented rod and spore. Gram-negative was the dominant bacterial group, 

which was represented mostly by rod shaped cells in the RS sponges and coccus shaped cells 

in the GBR sponges (Fig. A1.1). 

 

Figure A1.1 Proportion of prokaryote morphotypes in the Great Barrier Reef (internal circle) and Read Sea (external circle) 
sponges described in Table 2.1. 

TEM sections also revealed that most of the sponge-associated bacteria were spread into the 

intercellular spaces, distributed across the mesohyl. In total, fifty prokaryote morphotypes 

where identified and enumerated as M-I to M-L (Fig. 2-6; Table 2). Microbial cells were found 

Prokaryote Morphotypes Gram-negative coccus

Gram-positive coccus

Gram-negative rod

Gram-positive rod

Cyanobacteria

Gram-positive vibrio

Filamentous Cyanbacteria

Gram-negative vibrio

Gram negative diplococci

Star-cross section oriented-shaped
rod bacteria

Gram-negative spore

GBR

Red Sea
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isolated or aggregated with other bacteria from the same (Figure 2A, D) and different 

morphotypes (Figure 2B, C). Aggregations of similar morphotypes were observed in 

Carteriospongia foliascens and Echinochalina isaaci, while aggregations of multiple 

morphotypes were observed in Xestospongia testudinaria and Hyrtios erectus. Aggregations 

were often observed in the sponge mesohyl matrix with high amounts of particulate organic 

matter, usually located between sponge collagen fibrils. 

 

Figure A1.2 Examples of Microbial aggregations in ultrathin sections of (A) Echinochalina isaaci, (B) Hyrtios erectus, (C) 
Xestospongia testudinaria and (D) Carteriospongia foliascens. Scale bar= 2µm. 

 

The number of observed prokaryotic morphotypes associated with each sponge species 

varied from one, in Cymbastela marshae, Lamellodysidea herbacea (GBR) and Amphimedon 

sp., Mycale sp. (RS) to six, in Stylissa carteri (GBR) and Xestospongia testudinaria (RS). 

Cyanobacteria were frequently observed in the sponges C. foliascens (GBR and RS), X. 

testudinaria (RS) and C. marshae. Cyanobacteria were the dominant bacterial morphotype 
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associated with C. foliascens from both the GBR and RS (Figs. A1.3 A-E; A1.6 A-B), however 

morphotypes from both locations were clearly distinct. The RS morphotype was notably 

smaller and presented a thicker and lobate cell wall. Filamentous cyanobacteria were found 

associated with L. herbacea (GBR) (Fig. A1.4 I) and Amphimedon ochracea (GBR) (Figs. A1.8 D-

G). The number of cells per filament observed in the sponge sections were six in A. ochracea, 

and three in L. herbacea, although this number may be biased by the tissue sectioning 

methodology. In A. ochracea each cell presented radially organized thylakoid membranes, 

dense bodies resembling polyphosphate granules and stellar bodies, which have been noted 

before in this sponge species (Berthold et al 1982). In the L. herbacea cyanobacteria, the 

thylakoid membranes were also concentrically arranged within the cells, peripherally 

distributed, with an electron translucent cell core. A filamentous Cyanobacterium identified 

as Oscillatoria spongeliae has been previously isolated from L. herbacea, cited as Dysidea 

herbacea (Berthold, Borowitzka & Mackay, 1982; Hinde, Pironet & Borowitzka, 1994; Thacker 

& Starnes, 2003). However, the cyanobacteria in L. herbacea from the present study are 

distinctly thinner (5.5-6.5 µm width; 3.0-4.3 µm long) than O. spongeliae associated with the 

same sponge species from a  previous study  (6·0-8·0 µm width; 3·0-4·0 µm long) (Berthold, 

Borowitzka & Mackay, 1982).  In addition, it did not presented Stellar bodies, abundant 

structure in O. spongeliae. However, the thylakoid structure, homogeneously spaced and 

oriented in right angles to the outer cell wall, seemed to be similar amongst both 

Cyanobacteria. 

 A very rare microbial morphotype, the star cross section shaped rod, was found associated 

with the sponge Niphates rowi (Figure A1.7 I). These cells were about 1.5 µm long and their 

star-shaped cross section measured 500 nm in diameter with eight radial protrusions. A 

similar morphotype has been observed associated with the larva of the sponge Haliclona 

caerulea (Maldonado, 2007). However, the N.  rowi associated bacterium apparently have 

eight radial protrusions, do not present a thick outer peptideoglycan layer and were found 

exclusively extracellularly. In comparison, the H caerulea bacteria have strictly nine 

protrusions, a thick peptideoglycan layer and are observed within sponge cells. 
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Figure A1.3 Prokaryote morphotypes associated with the GBR sponges: (A-E) Carteriospongia foliascens, (F-I) Stylissa carteri  
in (A-B; C in detail D-I) longitudinal section and (C; F & I in detail) transversal section. Scale bar= 500 nm. cm: cytoplasmic 
membrane; c: capsule, w: cell wall; ms: mesossome structure; t: thylakoid membrane; ca: carboxisome; em: external 
membrane; im: internal membrane; f: flagellum; r: ribosome; pg: peptidoglycan. 
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Figure A1.4 Prokaryote morphotypes associated with the GBR sponges: (A-B) Stylissa carteri, (C-F) Xestospongia testudinaria, 
(G-H) Pipestela candelabra, (I) Lamellodysidea herbacea in (A-H) longitudinal section and transversal (I) section. Scale bar= 
500 nm (A-G) and 5 µm (I). cm: cytoplasmic membrane; c: capsule, w: cell wall; ms: mesossome structure; t: thylakoid 
membrane; pg: peptidoglycan. 
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Figure A1.5 Prokaryote morphotypes associated with the GBR sponges: (A-C) Cinachyrella schulzei, (D-E) Ianthella basta, (F) 
Cymbastela marshae, (G-I) Echinochalina isaaci in (A-I) longitudinal section and (A, D, F in detail) transversal section. Scale 
bar= 500 nm. cm: cytoplasmic membrane; c: capsule, w: cell wall; ms: mesossome structure; t: thylakoid membrane; om: 
outer membrane; pi: pili; pg: peptidoglycan; cy: cyanosome. 
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Figure A1.6 Prokaryote morphotypes associated with the RS sponges: (A-B) Carteriospongia foliascens, (C-E) Stylissa carteri, 
(F-I) Xestospongia testudinaria, in (A-I) longitudinal section and (C in detail) transversal section. Scale bar= 500 nm. cm: 
cytoplasmic membrane; c: capsule, w: cell wall; ms: mesossome structure; t: thylakoid membrane; em: external membrane; 
im: internal membrane. White arrows indicate Inclusion bodies. 
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Figure A1.7 Prokaryote morphotypes associated with the RS sponges: (A-B) Xestospongia testudinaria, (C-F) Hyrtios erectus, 
(G) Mycale sp., (H-I) Niphates rowi in (A-H, I in detail) longitudinal section and (I; B & D in detail) transversal section. Scale 
bar= 500 nm. cm: cytoplasmic membrane; c: capsule, w: cell wall; ms: mesossome structure; t: thylakoid membrane; ca: 
carboxisome; om: outer membrane; im: internal membrane; pg: peptidoglycan. 
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Figure A1.8 Prokaryote morphotypes associated with the RS sponges: (A-H) Amphimedon ochracea, (I) Amphimedon sp,  in (A-E, G-I) 
longitudinal section and (F; A, H, I in detail) transversal section. Scale bar= 500 nm. cm: cytoplasmic membrane; w: cell wall; t: thylakoid 
membrane; om: outer membrane; im: internal membrane; bodies; sb: stellar sw: spore wall; cx: cortex; sc: spore coat; r: ribosome; 
pg: peptidoglycan. 
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Table A1.1 GBR and RS sponge-associate prokaryote morphotype characterization represented from the figures A1.3-8. The abundance was classified in high: more than 15 individuals; moderate: between 
5-15 individual and low: less than 5 individual per sampling time (1h). 

Prokaryote 

morphotype 

Site Associated 

sponge specie 

Classification Size range Abundance Additional comments 

M-I GBR Carteriospongi

a foliascens 

Ovoid-shaped 

Gram-negative 

coccus 

700-800 nm 

long and 400-

500 nm wide 

High  

M-II GBR Carteriospongi

a foliascens 

Ovoid-shaped 

Cyanobacteria 

2-2.5 µm long, 

1.5-1.7 µm 

wide 

High Presented evident photosynthetic thylakoid membranes present 

(3-4 layers), often peripheral and concentric. This morphotype was 

very abundant and broadly distributed across the mesohyle and 

often clustered arranged individualized by collagen fibrils bundles 

in areas with notable high concentration of vesicles and particulate 

organic matter and where other bacteria types are present.  

M-III GBR Carteriospongi

a foliascens 

Flagellate 

Gram-negative 

rod 

3.8-4 µm long. 

500-600 nm 

wide 

Moderate Present filamentous similar with flagellum. 

M-IV GBR Carteriospongi

a foliascens 

Gram-negative 

coccus 

1.2-1.4 µm 

diameter 

Low  
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M-V GBR Carteriospongi

a foliascens 

Ovoid-shaped 

Gram-positive 

coccus 

320-340 nm 

long, 240-250 

nm wide 

Moderate  

M-VI GBR Stylissa carteri Elongated 

Gram-negative 

rod 

1.5-2 µm long, 

200-300 nm 

wide 

Moderate  

M-VII GBR Stylissa carteri Ovoid-shaped 

Gram-negative 

coccus 

425-450 nm 

long, 320-325 

nm wide 

Low  

M-VIII GBR Stylissa carteri Gram-negative 

coccus/Cyanob

acteria? 

500-550 nm 

radius 

Low Resemble a cyanobacteria, although the electrodense core and 

presence of ribosomes prevents the thylakoid observation 

M-IX GBR Stylissa carteri Gram-positive 

vibrio 

280-300 nm 

long, 125-150 

nm wide 

Moderate High number of ribosomes in cytoplasm.  

M-X GBR Stylissa carteri Amorphous 

Cyanobacteria 

600-700 nm 

long, 500-550 

nm wide 

Low Present a pair of concentric thylakoid membranes. 

M-XI GBR Stylissa carteri Gram-negative 

coccus 

400-420 nm 

radius 

Low  
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M-XII GBR Xestospongia 

testudinaria 

Gram-negative 

rod 

1.5 µm long, 

500 nm wide 

Low A single individual was observed. 

M-XIII GBR Xestospongia 

testudinaria 

Square-shaped 

gram-positive 

coccobacilli 

1.7 µm long, 

700 nm wide 

Low A single individual was observed. 

M-XIV GBR Xestospongia 

testudinaria 

Ovoid-shaped 

Gram-positive 

coccus 

700-850 nm 

long, 500-550 

nm wide 

High  

M-XV GBR Xestospongia 

testudinaria 

Ovoid-shaped 

Gram-negative 

coccus 

1-1.2 µm long, 

600-650 nm 

wide 

Low  

M-XVI GBR Pipestela 

candelabra 

Bean-shaped 

Gram-negative 

vibrio 

430-450 nm 

long 300 nm 

wide 

Low  

M-XVII GBR Pipestela 

candelabra 

Gram-negative 

rod 

1-1.25 µm 

long, 500-560 

nm wide 

Low  

M-XVIII GBR Lamellodyside

a herbacea 

Filamentous 

cyanobacteria 

5,5-6.5 µm 

wide 

3-4,3 µm long 

Low Cyanobacteria with thylakoids radially arranged similar with 

Annamia toxica and Oscillatoria spongeliae also previously 

described for L. herbacea 
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M-XIX GBR Cinachyrella 

schulzei 

Gram-negative 

rod 

1.4-1.6 µm 

long, 400-500 

nm wide 

 

High  

M-XX GBR Cinachyrella 

schulzei 

Gram-negative 

coccus / 

Archaea-like 

700 nm long 

500 nm wide 

Low The high presence of a thin pili/ hili suggests that it can be part of 

the Archaea domain 

M-XXI GBR Cinachyrella 

schulzei 

Gram-positive 

Rod 

1.2-1.3 µm 

long, 500-550 

nm wide 

Moderate This morphotype is commonly found in aggregations of 5-6 

bacteria inside a capsule/ vacuole. 

M-XXII GBR Ianthella basta Ovoid-shaped 

Gram-positive 

coccus 

900 nm- 1 µm 

long, 500-520 

nm wide 

Moderate  

M-XXIII GBR Ianthella basta Ovoid-shaped 

gram negative 

530-550 nm 

long, 350-360 

n wide 

Moderate  

M-XXIV GBR Cymbastela 

marshae 

Rounded-

shaped 

Cyanobacteria 

3-3.5 µm long 

2.2-2.7 µm 

wide 

High A single prokaryote morphotype dominated in Cymbastela  
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M-XXV GBR Echinochalina 

isaaci 

Ovoid-shaped 

Gram-negative 

coccus 

550-570 nm 

long, 450-460 

nm wide 

Moderate  

M-XXVI GBR Echinochalina 

isaaci 

Gram-negative 

diplococci with 

long lateral pili 

450-500 nm 

long 

400-410 nm 

wide 

High The bacteria structure is Similar with the gammaproteobacteria 

morphotype like Proteus mirabilis. 

These bacteria was mostly observed forming spores. 

 

M-XXVII RS Carteriospongi

a foliascens 

Ovoid-shaped 

Cyanobacteria 

1.7-2 µm long, 

1.4-1.5 µm 

wide 

High Shows evident photosynthetic thylakoid membranes present (3-4 

layers), often peripheral and concentric. Presents a thick and 

lobate cell wall. This type was observed broadly distributed across 

the mesohyle.  

M-XXVIII RS Carteriospongi

a foliascens 

Gram-negative 

rod 

1-1.3 µm long, 

300-600nm 

wide 

High Thick cell wall. Clear distinction and wide separation of internal and 

external cytoplasmic membrane. 

M-XXIX RS Stylissa carteri Gram-negative 

rod 

1-1.2 µm long, 

400-500 nm 

wide 

Low  
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M-XXX RS Stylissa carteri Gram-negative 

coccus/Cyanob

acteria? 

500 nm radius Moderate This bacteria shape resembles cyanobacteria, besides present a 

thick capsule and apparent concentric ribosome orientation. Its 

dark core could potentially hide a possible thylakoid membrane. 

M-XXXI RS Stylissa carteri Gram-negative 

rod 

About 1.25 

µm long, 250-

300 nm wide 

Moderate Similar with type VI, from the GBR S. carteri. 

M-XXXII RS Xestospongia 

testudinaria 

Gram-positive 

rod 

2.3-2.5 µm 

long, 700-750 

nm wide 

Moderate It was observed about 50 nm electrodense particles inside the 

cytoplasm. 

M-XXXIII RS Xestospongia 

testudinaria 

Gram-negative 

rod 

2-2.2 µm long, 

850-900 nm 

wide 

High This morphotype often presents invagination bodies peripherally 

arranged in the cytoplasm. It strongly resembles with M-XXXVIII 

from H. erectus, however this doesn’t show invagination bodies. 

M-XXXIV RS Xestospongia 

testudinaria 

Ovoid-shaped 

Cyanobacteria 

1.8-2 µm long, 

1.2-1.3 µm 

wide 

High Presents 5 thick layers of peripheral concentric Thylakoid 

membranes. Slightly lobate cell wall and covered by a thin layer of 

peptidoglycan. This morphotype strongly resembles with the clade 

Candidatus Synechococcus spongiarum. 

M-XXXV RS Xestospongia 

testudinaria 

Triangular-

shaped Gram-

positive rod 

2-2.1 µm long, 

1 µm wide 

High  
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M-XXXVI RS Xestospongia 

testudinaria 

Gram-negative 

rod 

1.4-1.6 µm 

long, 500-550 

nm wide 

Moderate Presents a slightly lobate cell wall and a distinct peripheral 

electrodense core in the cytoplasm. 

M-XXXVII RS Xestospongia 

testudinaria 

Gram-positive 

rod 

800-950 nm 

long, 300-400 

nm wide 

Moderate  

M-XXXVIII RS Hyrtios erectus Gram-negative-

rod 

1.9-2.1 µm 

long, 800 nm-

1 µm wide 

High Very abundant and widely distributed across the sponge mesohyle. 

M-XXXIX RS Hyrtios erectus Gram-negative-

rod 

1-1.1 µm long, 

390-410 nm 

wide 

High  

M-XL RS Hyrtios erectus Ovoid-shaped 

Gram-positive 

coccus 

500-600 nm 

long, 420-450 

nm wide 

Moderate This type presents a very thick external peptidoglycan layer 

M-XLI RS Hyrtios erectus Ovoid-shaped 

Gram-negative 

coccus 

1-1.3 µm long, 

750-850 nm 

wide 

High  
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M-XLII RS Mycale sp Ovoid-shaped 

Gram-negative 

coccus 

300-340 nm 

long, 200-225 

nm wide 

High  

M-XLIII RS Niphates rowi Elongate Gram-

negative Rod 

2-2.3 µm long 

200-220 nm 

wide 

Low  

M-XLIV RS Niphates rowi Star-cross 

section 

oriented-

shaped rod 

bacteria 

 

1.3-1.5 µm 

long, 450-550 

nm wide  

High Rod bacteria characterized by a star-shaped cross section with 8/9 

radial protrusions. 

M-XLV RS Amphimedon 

ochracea 

Elongate Gram-

negative Rod 

2.6-2.8 µm 

long, 160-180 

nm wide 

Low  

M-XLVI RS Amphimedon 

ochracea 

Ovoid-shaped 

Gram-negative 

coccus 

950 nm-1.5 

µm long 800-

850 nm wide  

Low  
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M-XLVII RS Amphimedon 

ochracea 

Gram-negative 

spore 

650-700 nm 

long 400-500 

nm wide 

Low  

M-XLVIII RS Amphimedon 

ochracea 

Filamentous 

Cyanobacteria 

7-9 µm wide.  High Filamentous cyanobacteria with radial organized parallel 

thylakoids (t), dense bodies resembling polyphosphate granules (p) 

and stellar bodies (sb). In a few cyanobacteria, a Geminiviridae VLP 

composed of two spherical subunits are visible in the cytoplasm, 

thylakoid lumina or even inside vesicles (Fig ). The microscopy 

section allowed the visualization of maximum 6 cells. 

M-XLIX RS Amphimedon 

ochracea 

Gram-negative 

rod 

1-1.5 µm long, 

250-350 nm 

wide 

high Often observed surrounding the filamentous cyanobacteria. 

M-L RS Amphimedon 

sp 

Gram-positive 

rod 

1.3-1.5 µm 

long, 350-400 

nm wide 

Moderate  
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APPENDIX 2 

 

 

Figure A2.1 Sponge species where the VLPs were investigated. Red Sea sponge species: (a) Amphimedon ochracea, (b) 
Xestospongia testudinaria, (c) Crella cyathophora, (d) Hyrtios erectus, (e) Mycale sp. GBR and Red Sea sponge species: (f) 
Stylissa carteri, (g) Carteriospongia foliascens. GBR sponge species: (h) Echinochalina isaaci, (i) Cymbastella marshae, (j), 
Cinachyrella schulzei, (k), Lamellodysidea herbacea, (l), Pipestela candelabra, (m) Xestospongia sp.. Scale bar = 10 cm. Photos 
by Cecília Pascelli. 
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The concept of Virus-like particle (VLP). 

The terminology virus-like particle (VLP) used in chapters 2 and 3 is in accordance with the 

ecological concept defined by Forterre and colleagues (Forterre et al., 2013), where VLP is a 

general term that a priori covers true virions, gene transfer agents (GTAs), and membrane 

vesicles (MVs). This terminology was preferentially used to encompass the distinct particles 

that morphologically resemble viruses, considering that microscopy images may not 

distinguish between true virion or resembling non-virion particles. Nevertheless, it is 

important to consider the term VLP has been previously used to define non-infectious viral 

resembling molecules, composed of an empty structural capsid (without genetic material) 

(Zeltins, 2013).   
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Table A2.1 GBR and RS sponge-associate VLP morphotype characterization represented in the figures 2.1 – 2.5. The VLP abundance was classified in high: more than 15 individuals; moderate: 
between 5-15 individual and low: less than 5 individual per sampling time (1h). 

VLP 

Morphotype 

Site Associated 

sponge specie 

Classification Abundance Size range Details 

M-I GBR Carteriospongia 

foliascens 

Tailed (short) non-

enveloped, spherical-

shaped VLP 

(icosahedral 

symmetry), with 

electron-dense core. 

Low 210 nm in diameter, core with 194 nm in 

diameter, tail with 25 nm long and wide. 

Observed in the cellular lumen of 

sponge archaeocytes. The 

icosahedral structure and the short 

tail are characteristic of the 

Podoviridae.  

M-II GBR Xestospongia sp. Tailed (short), non-

enveloped VLP, with 

icosahedral 

symmetry. 

Low Capsid with 52 nm diameter, core with 40 

nm in diameter. Tail with 48/21 nm 

long/wide. 

Observed in sponge mucus. 

M-III GBR Echinochalina 

isaaci 

Tailed (short), non-

enveloped VLP, with 

icosahedral 

symmetry. 

Low Head measuring 50 nm in diameter. Tail 

measuring 14 nm long, 11 nm wide. 

Observed in sponge mucus. 

M-IV RS Stylissa carteri Tailed (short), non-

enveloped VLP, with 

icosahedral 

symmetry. 

Low Capsid with 75-78 nm diameter and tail 

with 24-25 nm long/wide. 

Observed in sponge mucus and 

characteristic of Podoviridae family 

M-V GBR Cinachyrella 

schulzei 

Non-enveloped 

tailed bacteriophage 

Moderate 150 nm in total length, with symmetric 

hexagonal head measuring 55 nm in 

Observed in sponge mucus. 
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with symmetric 

icosahedral head. 

diameter and an elongated tail measuring 

95 nm in length and 10 nm in width. 

M-VI GBR Echinochalina 

isaaci 

Non-enveloped 

tailed bacteriophage 

with symmetric 

icosahedral head. 

Low 260 nm in total length, with symmetric 

hexagonal head measuring 90 nm in 

diameter and an elongated tail measuring 

160 nm in length and 1nm in width. 

Observed in sponge mucus. 

M-VII GBR Echinochalina 

isaaci 

Filamentous VLP with 

electron-dense core. 

Low 200 nm in total length, with elongated 

head measuring 95 nm in length and 70 

nm in width and an elongated tail 

measuring 105 nm in length and 22.5 nm 

in width. 

Observed in sponge mucus. 

M-VIII RS Stylissa carteri Non-enveloped T4-

like bacteriophage. 

Low 283 nm in total length, with elongated 

hexagonal head measuring 128 nm in 

length and 84 nm in width and tail 

measuring 155 nm in length and 26,6 nm 

in width. 

Observed in sponge mucus and 

strong resemblance to Myoviridae.  

 

M-IX RS Amphimedon 

ochracea 

Non-enveloped 

tailed bacteriophage 

with symmetric 

icosahedral head. 

Low 142 nm long, head measuring 59.8 nm in 

diameter with electron-dense core with 

36.4 nm in diameter. Tail measuring 82 nm 

long, 12 nm wide.  

Observed in the sponge mucus. The 

VLP features are characteristic of 

Siphoviridae. 

M-X GBR Carteriospongia 

foliascens 

Non-enveloped, 

icosahedral 

symmetry VLP, with 

electron-dense core. 

Low 150 nm in diameter; core with 122 nm in 

diameter.  

Observed in sponge mesohyl. 
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M-XI GBR Carteriospongia 

foliascens 

Non-enveloped, 

icosahedral 

symmetry VLP, with 

electron-dense core. 

Moderate 140-150 nm in diameter, core with 90-100 

nm in diameter. 

Observed in sponge mesohyl and the 

cellular lumen of sponge 

archaeocytes. 

M-XII GBR Carteriospongia 

foliascens 

Non-enveloped VLP 

with 

spherical/icosahedral 

symmetry and 

electron-dense core. 

Low 103 nm in diameter, core with 81 nm in 

diameter. 

Observed in sponge mucus. 

M-XIII GBR Carteriospongia 

foliascens 

Icosahedral 

symmetry VLP, with 

electron-dense core. 

Low 56 nm in diameter, core with 41 nm in 

diameter. 

Observed in sponge mucus. 

M-XIV GBR Stylissa carteri Enveloped VLP with 

spherical/icosahedral 

symmetry. 

High 90-100 nm of diameter. Purified from sponge tissue via 

density gradient ultracentrifugation. 

M-XV GBR Stylissa carteri Icosahedral 

symmetry VLP, with 

electron-dense core. 

Moderate 89 +- 4 nm in diameter, core with 74 nm +-  

7 nm in diameter. 

Observed in sponge mucus. 

M-XVI GBR Xestospongia sp. Non-enveloped, 

icosahedral 

symmetry VLP, with 

electron-dense core. 

Low 70 nm in diameter, core with 37 nm in 

diameter. 

Purified from sponge tissue via 

density gradient ultracentrifugation. 
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M-XVII GBR Pipestela 

candelabra 

Enveloped VLP with 

spherical/icosahedral 

symmetry. 

Low 180-205 nm in diameter. Purified from sponge tissue via 

density gradient ultracentrifugation. 

M-XVIII GBR Pipestela 

candelabra 

Non-enveloped VLP 

with 

spherical/icosahedral 

symmetry and 

electron-dense core. 

Low 138 nm in diameter, core with 35 nm in 

diameter. 

Purified from sponge tissue via 

density gradient ultracentrifugation. 

M-XIX GBR Pipestela 

candelabra 

Non-enveloped VLP 

with 

spherical/icosahedral 

symmetry and 

electron-dense core. 

Moderate 180-200 nm in diameter, core with 120-

124 nm in diameter. 

 

Observed within gram-negative 

bacteria. 

M-XX GBR Pipestela 

candelabra 

Non-enveloped VLP 

with 

spherical/icosahedral 

symmetry and 

electron-dense core. 

Low 100 nm in diameter, core with 69 nm in 

diameter. 

 

Observed in sponge mucus. 

M-XXI GBR Lamellodysidea 

herbacea 

Geminate VLP. Low 135 nm in diameter. Comprise 2 quasi-

isometric particles with 72 nm in diameter 

each with a dese core with 57 nm in 

diameter.  

Observed in sponge mucus. 

M-XXII GBR Lamellodysidea 

herbacea 

Non-enveloped VLP 

with 

Low 118 nm in diameter, core with 91 nm in 

diameter. 

Observed in sponge mucus. 
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spherical/icosahedral 

symmetry and 

electron-dense core. 

M-XXIII GBR Lamellodysidea 

herbacea 

Non-enveloped VLP 

with spherical 

symmetry and 

electron-dense core. 

Low 111 nm in diameter, core with 81 nm in 

diameter. 

Observed in sponge mucus. 

M-XXIV GBR Cinachyrella 

schulzei 

Non-enveloped VLP 

with 

spherical/icosahedral 

symmetry and 

electron-dense core. 

High 70-85 nm in diameter, core with 35-45 nm 

in diameter. 

Purified from sponge tissue via 

density gradient ultracentrifugation. 

M-XXV GBR Cinachyrella 

schulzei 

Non-enveloped 

electron-dense VLP 

with icosahedral 

symmetry. 

Low 135 nm in diameter, core with 95 nm in 

diameter. 

Observed in sponge mucus. 

M-XXVI GBR Cymbastella 

marshae 

Non-enveloped, 

icosahedral 

symmetry VLP, with 

electron-dense core. 

Low 74 nm in diameter, core with 42 nm in 

diameter. 

Observed in sponge mucus. 

M-XXVII RS Carteriospongia 

foliascens 

Non-enveloped 

electron-dense VLP 

with icosahedral 

symmetry. 

Moderate 60-65 nm in diameter. core with 32-35 nm 

in diameter. 

Observed within Gram-negative 

bacteria. 
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M-XXVIII RS Carteriospongia 

foliascens 

Non-enveloped VLP 

with icosahedral 

symmetry and 

electron-dense core. 

Moderate 100-110 nm in diameter. Observed in sponge mesohyl and 

inside a lysed cyanobacterial cell. 

M-XXIX RS Stylissa carteri Non-enveloped VLP 

with 

spherical/icosahedral 

symmetry and 

electron-dense core. 

Low 81 nm in diameter, core of 56 nm 

diameter. 

Observed in sponge mucus. 

M-XXX RS Stylissa carteri Non-enveloped VLP 

with 

spherical/icosahedral 

symmetry. 

High 163-175 nm in diameter. Observed in sponge mucus. 

M-XXXI RS Stylissa carteri Non-enveloped VLP 

with icosahedral 

symmetry. 

Low 60 nm in diameter, core of 42 nm 

diameter. 

Observed in sponge mucus. 

M-XXXII RS Xestospongia 

testudinaria 

Non-enveloped VLP 

with icosahedral 

symmetry and 

electron-dense core. 

Moderate 140-150 nm in diameter, core of 120-125 

nm diameter. 

Observed in the sponge mesohyl. 

M-XXXIII RS Hyrtios erectus Non-enveloped VLP 

with icosahedral 

symmetry and 

electron-dense core. 

Low 85 nm in diameter, core with 53 nm in 

diameter. 

Single VLP observed inside sponge 

cell. 
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M-XXXIV RS Hyrtios erectus Enveloped VLP with 

icosahedral 

symmetry and 

electron-dense core. 

Moderate 110-128 nm in diameter, ovoid-shaped 

core with 50-80 nm in diameter. 

Observed within vacuole in the 

sponge mesohyle matrix and sitting 

on top of the sponge cell. 

M-XXXV RS Mycale sp. Non-enveloped VLP 

with icosahedral 

symmetry and 

electron-dense core. 

Moderate 71-85 nm in diameter, core with 54-70 nm 

in diameter. 

Observed in sponge mucus. 

M-XXXVI GBR Carteriospongia 

foliascens 

Ovoid-shaped VLP 

with electron-dense 

core. 

Low 118 nm long, 85 nm wide, core 82 nm long, 

59 nm wide. 

Observed in sponge mucus. 

M-XXXVII GBR Xestospongia sp. Rod-shaped 

Filamentous VLP 

High 120-130 nm long, 18 nm wide. Purified from sponge tissue via 

density gradient ultracentrifugation. 

M-XXXVIII GBR Xestospongia sp. Rod-shaped 

Filamentous VLP 

Low 171 nm long, 28 nm wide. Core with157 

nm long, 23 nm wide. 

 

Observed in sponge mucus. 

M-XXXIX GBR Cinachyrella 

schulzei 

Filamentous VLP with 

electron-dense core. 

Low 400 nm in length and 25 nm in width. With 

an electrodense core measuring 7.5 nm in 

diameter. 

Observed in sponge mucus. 

M-XL RS Carteriospongia 

foliascens 

Filamentous VLP, 

non-electron-dense 

core. 

High 100-130 nm long, 50-60 nm wide Observed sitting on top of the 

Cyanobacteria and in the sponge 

mesohyl. 
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M-XLI RS Stylissa carteri Filamentous VLP with 

electron-translucent 

core. 

Low 520-600 nm long 12-15 nm wide. Observed in sponge mucus. 

M-XLII RS Stylissa carteri Rod-shaped 

filamentous VLP with 

electron-translucent 

core. 

Low 230 nm long, 19 nm wide. Observed in sponge mucus. 

M-XLIII RS Xestospongia 

testudinaria 

Filamentous VLP with 

electron-translucent 

core. 

High 340-1300 nm long, 15-30 nm wide. Observed in sponge mesohyl and in 

sponge archaeocytes. 

M-XLIV RS Crella 

cyathophora 

Filamentous VLP. Moderate 150-154 nm long, 22-25 nm wide. Observed in the sponge mucus. This 

VLP tube-like structure resembles 

Paramyxovridae morphology.  

M-XLV RS Crella 

cyathophora 

Non-enveloped VLP 

with geminate 

icosahedral capsid 

and an electron-

dense core. 

Low 221 nm long, formed of two hexagonally 

symmetric portions with 110 nm in 

diameter. Core measuring 83-90 nm in 

diameter. 

Observed inside a vacuole in the 

sponge mesohyl. 

M-XLVI GBR Lamellodysidea 

herbacea 

Geminate VLP. Low 135 nm in diameter. Comprise 2 quasi-

isometric particles with 72 nm in diameter 

each with a dese core with 57 nm in 

diameter.  

Observed in sponge mucus. 
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M-XLVII RS Amphimedon 

ochracea 

Geminate VLP. High 81-95 nm long, 37-48 nm wide. Comprise 

2 quasi-isometric particles with 34-45 nm 

long each.  

 

Observed in the sponge mucus as 

well as in association with 

filamentous Cyanobacteria. VLP was 

observed inside cell vacuoles, 

between thylakoid membranes and 

around stellar bodies. 

M-XLVIII RS Crella 

cyathophora 

Enveloped brick-

shaped VLP with 

electron-dense 

lateral bodies. 

Low Envelope 230-252 nm in diameter, core 

169-178 nm in diameter. 

Observed in the sponge mesohyl. 

This VLP was characteristic of the 

Poxviridae morphology. 

M-XLIX GBR Carteriospongia 

foliascens 

Beaded filamentous 

VLP. 

Low 340 nm long, with each bead measuring 

30-35 nm in diameter. 

 

Observed in sponge mesohyl. 

M-L RS Hyrtios erectus Beaded filamentous 

VLP. 

Moderate 80-350 nm long. 15-23 nm wide. 

Composed of 2-8 aligned beads with 36-42 

nm in longest diameter. 

Observed inside vacuole of a sponge 

archaeocyte and in the sponge 

mesohyl as either a free VLP or 

attached to extracellular vacuole 

membranes. 
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APPENDIX 3 

 

In order to understand how specific sponge features structure the viral communities in 

sponges, Principal Coordinate Analysis (PCoA) was performed at the sample level over the 

Hellinger-transformed data and fitted variables describing sponge host features were 

identified. The variables (i.e. sponge features) tested were: 1-microbial symbiont strategy, 

classified as high microbial abundance (HMA) or low microbial abundance (LMA) sponge; 2- 

host nutritional mode, classified by the presence or absence of photosymbionts and 3- sponge 

morphology, classified as massive, cup-like, erect and encrusting (Table A3.1). PCoA was 

performed using the function cmdscale from the stats package in R, while the fitting of sponge 

features to this ordination was done using the envfit function from the vegan library. To 

support these analyses, permutational multivariate analysis of variance was performed using 

the R package mvabund. 

Fitting of sponge features to the PCoA ordination revealed that all tested features were able 

to explain variability among samples, although to different extents (Table A3.2). Microbial 

abundance category and sponge morphology are the best predictors of viral community 

composition, accounting for 40% (p<0.001) and 47% (p<0.001) of the variability in the data, 

respectively. The presence of photosymbionts is also a good predictor of viral composition, 

although to a lesser extent (R2 = 0.125, p = 0.023). These results provide support for our 

conclusion that sponge-viral community are primarily driven by the associated microbial 

community, responding to both microbial abundance and composition. Likewise, the 

correlation between the viral community and sponge morphology may reflect the host-

symbiont association, as microbial symbiont composition has been shown to vary with sponge 

morphology (Neves & Omena, 2003) . Additionally, morphology can influence the pumping 

rate in sponges, and although a more detailed study describing the mechanisms of selective 

filtration in sponges is still required, this could in turn affect the composition of microbial/viral 

communities within them. 

  



187 
 

Table A3.1 Summary of sponge features classified according to: i) microbial symbiont strategy as high microbial abundancy (HMA) or low microbial abundancy (LMA) sponge; ii) host nutritional 
mode, classified by the presence or absence of photosymbionts and iii) sponge morphology, classified as massive, cup-like, erect and encrusting. The sponge morphology was classified according 
Schoenberg and Fromont (2014). 

Host species # 

replicates 

Collection site Hosts 

Photosymbionts 

Microbial 

Abundance 

Morphotype* References 

Callyspongia sp. 3 Orpheus Island, GBR  Yes LMA Erect Thomas et al 2016; Moitinho-Silva et al 2017 

Carteriospongia foliascens 3 Orpheus Island, GBR  Yes HMA Cup-like Luter et al 2015 

Cinachyrella schulzei 3 Orpheus Island, GBR  No  HMA Massive Thomas et al 2016 

Cymbastela marshae 3 Orpheus Island, GBR  Yes HMA Cup-like Thomas et al 2016 

Echinochalina isaaci 3 Orpheus Island, GBR  na  na Erect 
 

Ianthella basta 3 Orpheus Island, GBR  No  LMA Erect Luter et al 2010 

Lamellodysidea herbacea 3 Orpheus Island, GBR  Yes LMA Encrusting Flatt et al 2015 

Pipestela candelabra 3 Orpheus Island, GBR  na na Erect 
 

Stylissa carteri 2 Orpheus Island, GBR  No  LMA Erect Moitinho-Silva et al 2017; Giles et al 2012 

Amphimedon ochracea 3 Al Fahal Reef, Red Sea Yes LMA Erect Radwan et al 2009 

Carteriospongia foliascens 3 Al Fahal Reef, Red Sea Yes HMA Cup-like Gao et al 2015 

Crella cyathophora 3 Al Fahal Reef, Red Sea Yes LMA Massive Gao et al 2015; Giles et al 2012 

Hyrtios erectus 2 Al Fahal Reef, Red Sea No  HMA Erect Lee et al., 2011 

Mycale sp. 3 Al Fahal Reef, Red Sea na na Encrusting 
 

Niphates rowi  2 Al Fahal Reef, Red Sea na na Encrusting 
 

Xestospongia testudinaria 2 Al Fahal Reef, Red Sea Yes HMA Cup-like Ryu et al 2016; Thomas et al 2016 
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Table A3.2 Fitting of sponge features to PCoA ordination classified according: i) microbial symbiont strategy as high microbial 
abundancy (HMA) or low microbial abundancy (LMA) sponge; ii) host nutritional mode, classified by the presence or absence 
of photosymbionts and iii) sponge morphology, classified as massive, cup-like, erect and encrusting, according Table A.3.1. 

 

  

Sponge features Classification Goodness of 
fit 

Centroid 

 

 
r2 Pr(>r) p-value Dim 1 Dim 2 

Microbial symbiosis 
strategy 

HMA 

0.402 0.001 

0.1183 0.0239 

LMA -
0.0852 

-
0.0186 

Host nutritional mode Photosymbionts present 

0.125 0.023 

0.0330 -
0.0308 

No photosymbionts 
present 

-
0.0313 

0.0776 

Sponge morphology Massive 

0.37 0.001 

0.0981 0.0773 

Cup-like 0.1393 0.0112 

Erect -
0.0569 

0.0192 

Encrusting -
0.0602 

-
0.0775 
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APPENDIX 4 

 

Considering that the marker evaluation identified an average of 1.3% of contigs generated 

from the thermal-stress experiment containing cellular marker matches, a filtration step was 

implemented in order to evaluate the inferences of the cellular contamination on the viral 

community. During this step the major cellular contaminant was identified (Marinomonas sp.) 

and all contigs mapping to this group were removed. Comparative analyses were applied 

between the least contaminated samples and the most contaminated samples using marker 

genes and with Marinomonas sp. contigs, with and without the filtering step, checking for 

variations in gene prediction (Table 4A.1) and contig assembly (Fig. 4A.1). 

Table A4.1 Summary of assembly statistics evaluation of virome datasets with and without a contigs filtration step. This table 
shows a subsample of the thermal stress virome dataset, representing the three samples highest contaminated with marker 
genes (H), highest contaminated with Marinomonas sp. assembled contigs (M) and less contaminated with marker genes (L) 
samples. 

Contigs filtration Contamination 

level 

Samples N50 # raw reeds # contigs Longest 

contig 

Non filtrated H E1_T0_1-1_43 398 4041947 6125 17212 

H E1_T0_1-2_39 611 4736967 6041 218069 

H E1_T72_1-4_17 478 10604377 18388 27146 

M E1_T72_1-1_7 1046 2066936 5219 50164 

M E1_T72_1-4_24 540 3367742 8288 17034 

M E1_T72_3-2_4 466 5034752 8462 12238 

L E2_T0_1-4_D64 583 5994626 23637 70431 

L E2_T3W_3-2_D24 566 4512308 19013 76225 

L SW_E2_T0_1-1 939 3734748 16288 102801 

Filtrated H E1_T0_1-1_43 386 3928205 5328 8354 

H E1_T0_1-2_39 553 4333806 7133 35069 

H E1_T72_1-4_17 464 10279047 18367 22905 

M E1_T72_1-1_7 743 3659869 5806 15912 

M E1_T72_1-4_24 491 3222783 8087 16052 

M E1_T72_3-2_4 352 4993361 1789 17055 

L E2_T0_1-4_D64 575 5851611 22603 70427 

L E2_T3W_3-2_D24 568 4425918 18823 84056 

L SW_E2_T0_1-1 621 3532864 17592 85266 

 



190 
 

 

 

Figure A4.1 Gene-centric comparison of the taxonomic composition of cellular marker genes based on two reference 
databases of phylogenetic markers, a ribosomal RNA database (SILVA, release 115) (Quast et al., 2013) and an in-house 
database of universally conserved proteins found in EggNOG 4.0 (Powell et al., 2014). Output is based on BLAST analysis of 
MetaGeneAnnotator predicted genes using parameters defined in Laffy et al., 2016. The green colours represent the less 
contaminated samples, the red colours represent the highest contaminated with marker genes and the blue colours 
represent the highest contaminated samples with Marinomonas sp., while the light colours represent Marinomonas 
unfiltered samples and the darker colours represent the samples which contigs assigned to Marinomonas sp. were removed. 
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