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Abstract 18 

The New Zealand government has been praised for heeding scientific advice in response to 19 

the COVID-19 pandemic, but when it comes to environmental protections the scientific 20 

advice seems to be negotiable. Freshwaters have been in decline for decades despite clear 21 

science on limits needed to protect them. There are many examples of ‘shifting baselines’ 22 

where limits have been progressively weakened through agency regulatory capture and 23 

political expediency.  24 

  25 



Background 26 

New Zealand’s government has been praised for listening to health experts in its COVID-19 27 

pandemic response (Baker, 2020; Blackburn and Ruyle, 2020); however, when it comes to 28 

setting limits to manage the health of waterways, scientific advice seems to be considered 29 

negotiable. On numerous occasions over the past few decades, scientific advice for protecting 30 

freshwater has been over-ridden by political interference. On all occasions, this has meant a 31 

weakening of limits in favour of polluters. Political influences have also driven 32 

environmental reporting to emphasise the positive and obscure the negative. This sidelining 33 

of science can be seen at both central and local government, and has resulted in failure to 34 

protect freshwater (Joy, 2015). 35 

Failure to protect freshwaters is starkly revealed by the poor and declining state of 36 

lowland rivers, lakes and wetlands as well as their biodiversity (Weeks et al., 2016; Joy et al., 37 

2019; Ministry for the Environment and Stats NZ, 2020). Nutrient loads in some of New 38 

Zealand’s farmed catchments now (after normalisation of area) rival some of the world’s 39 

most intensively used catchments, such as the Mississippi River and Yellow River (Fig 1; 40 

e.g., Howarth, 2008; Snelder, Larned and McDowell, 2018). 41 

Public awareness and anger over this freshwater tragedy was highlighted in a recent 42 

survey where freshwater was considered the most important environmental issue for 80% of 43 

New Zealanders, and freshwater was a significant national election issue in 2017 (Stats NZ, 44 

2018; Rood, 2019).  This awareness gave government a clear mandate to significantly 45 

improve freshwater health across the nation; leading to the formation of a water taskforce to 46 

advance the analysis and development of freshwater policy options.  47 

 48 

Water taskforce 49 

This task force included three expert advisory groups: the Kahui Wai Māori group, the 50 

Freshwater Leaders Group, and the Science Technical Advisory Group (STAG) (Ministry for 51 

the Environment, 2018).  52 

In May 2020, the freshwater reform package was released (Parker and O’Connor, 2020), 53 

but despite two years of work from the expert panels, crucial advice was not included. The 54 

Minister for the Environment decided to either substantially weaken or postpone the 55 

implementation of nutrient limits and other key recommendations (Parker and O’Connor, 56 

2020), meaning New Zealand will continue to lag in having clear, enforceable and 57 

meaningful nutrient limits. The STAG, supported by extensive research, gave explicit advice 58 



that precise nitrogen and phosphorus limits are necessary to protect the quality of drinking 59 

water and the ecological health of waterways, and recommended a dissolved inorganic 60 

nitrogen bottom-line of 1 mg/L (Essential Freshwater Science and Technical Advisory 61 

Group, 2019, 2020; Canning, 2020; Ministry for the Environment, 2020). Delaying 62 

implementation will inevitably result in a continued delay in realising improved water 63 

quality, with a corresponding delay in improvement of 64 

ecological, cultural, social and economic values (New Zealand Business Council for 65 

Sustainable Development, 2008; Kaye-Blake et al., 2014; Essential Freshwater Kahui Wai 66 

Maori Advisory Group, 2019). 67 

 68 

Implementation 69 

The proposed ecosystem health bottom-lines (which include water quality), were key to 70 

achieving meaningful improvement because, in the absence of prescriptive boundaries, 71 

decisions are left to the discretion of regional authorities to set or enforce ecologically 72 

meaningful limits (Salmon, 2019). Regional authority processes are most often dominated by 73 

well-resourced and funded agricultural industry lobby groups, and then independent scientific 74 

advice and submissions from environmental care groups weakened to the point where 75 

ecosystem health is not protected. By way of example, the majority of the technical caucusing 76 

group advising the Waikato River nutrient limit setting process, dominated by industry-77 

funded experts, recommended an almost doubling of the downstream nitrogen limits that 78 

were initially proposed, and recommended nutrient limits for tributary rivers based on 79 

grandparenting of current state, rather than meaningful relationships with ecosystem health 80 

(PC1 Technical Experts, 2019). This means that the nutrients for New Zealand’s longest river 81 

would only require a 16% nitrogen reduction overall over the next 80 years, instead of the 82 

initially proposed 41% reduction (PC1 Technical Experts, 2019). The nutrient bottom-lines 83 

would have brought New Zealand into line with the rest of the world (Evans-White, Haggard 84 

and Scott, 2013; Poikane et al., 2019; Yu et al., 2019).  85 

In New Zealand, 85% of waterways in pasture catchments (which make up half of the 86 

country’s waterways, measured by length) now exceed nitrate-nitrogen trigger value 87 

guidelines (ANZG, 2018; Ministry for the Environment and Stats NZ, 2020). The evidence is 88 

clear that contemporary freshwater decline has been driven by agricultural intensification, 89 

fuelled by a growing dependence on synthetic nitrogen fertiliser (Julian et al., 2017). The 90 

main use of synthetic nitrogen is intensive dairy production, but up until the 1980s New 91 



Zealand dairy farmers used clover to naturally fix nitrogen from the air. Furthermore, there is 92 

evidence farmers can make more profit by reducing their use (Dewes, Mudge and Whenua, 93 

2017; Shepherd, 2017; Everest et al., 2019). The dairy industry typically claims economic 94 

good for the country; however, the growing costs to address environmental degradation, often 95 

referred to as ‘externality costs’ are rarely considered or mentioned (e.g., Destremau and 96 

Siddharth, 2018). An independent published study on externalities showed that the industry 97 

would be a nil-sum-gain if externalities were paid (Foote, Joy and Death, 2015).   98 

A further reason to limit nitrogen levels in freshwater is that excess nitrogen is not just an 99 

issue for ecosystem health but also human health (Schullehner et al., 2018). Nitrate in 100 

drinking water at levels close to the nitrogen limit proposed by the STAG has been linked to 101 

colon cancer (Temkin et al., 2019), which is disproportionately high in many parts of New 102 

Zealand (Bisset et al., 2019). Calls have also come from regional New Zealand public health 103 

officials for a nitrate limit in rivers and aquifers supporting the proposed limits to protect 104 

people’s health as well as ecosystems (Dumble, 2019; Te Paa, 2019). 105 

 106 

Politicisation of science and shifting baselines 107 

The politicisation of science seen in the failure to include the STAG recommendations is not 108 

new, it has been occurring since the core environmental legislation in New Zealand, the 109 

Resource Management Act (1991), was enacted. Under this legislation, sixteen river 110 

catchment based regional authorities were established and empowered to develop statutory 111 

plans for the management of their lands and waters. However, for the next two decades 112 

central government failed to provide effective national policy guidance, resulting in councils 113 

developing their own regional limits to protect freshwaters. For nutrient management most 114 

local authorities based their guidance on the Australian and New Zealand Environment and 115 

Conservation Council (ANZECC, 2000), guidelines which propose a nitrate-nitrogen 116 

instream concentration limit to protect lowland waterways of 0.44 mg NO3-N L-1. 117 

In 2011, the National Policy Statement for Freshwater Management (NPS-FM 2011) 118 

(NZ) was enacted (two decades later than proposed in the RMA). While this legislation was 119 

potentially a positive change, it contained drastically weaker nutrient and pathogen limits 120 

than the previous guidelines (ANZECC, 2000). Updated in 2014, the NPS-FM included 121 

numeric water quality bands that were far weaker than most of the regional authorities had 122 



been using in their plans. For example, under the new legislation an ‘A’ rating was given to 123 

rivers with a nitrate-nitrogen concentration up to 1 mg/L, for 1 - 2.2 mg/L a ‘B’ and for rivers 124 

with concentrations of 2.2 - 6.9  mg/l a ‘C’, with a ‘bottom-line’ limit of 6.9 mg/l. Under the 125 

NPS-FM any river that is in the >6.9mg/l ‘D’ band is required to improve over time until it is 126 

at least a C grade. The new NPS-FM limits effectively gave a more than ten-fold increase in 127 

the nitrate concentration permitted in surface waters over and above the previous guideline. 128 

To put this into global context, the Yangtze and Mississippi Rivers would score a ‘B’ grade 129 

(Müller et al., 2008; Xu et al., 2013; Kreiling and Houser, 2016).  130 

The justification given for this weakening was that these bands were there to protect 131 

aquatic life from the toxic effects of nitrate, whereas the previous ANZECC guidelines were 132 

based on the indirect, but no less toxic, effects on oxygen levels from excess algal and 133 

microbial metabolism that happen at much lower levels of nitrate. The 6.9 mg/L NO3-N 134 

bottom-line limit claimed to give 80% species protection (National Policy Statement for 135 

Freshwater Management, 2014), but this was based on laboratory experiments. Of the 22 136 

species used to derive the criteria, only one New Zealand fish was included (Hickey and 137 

Martin, 2009; Hickey, 2013). Obviously, these laboratory conditions are far cry from the high 138 

temperatures, low water hardness, low dissolved oxygen, and trophic networks that New 139 

Zealand native fish experience in impacted waterways in summer (Close and Davies‐Colley, 140 

1990). We instead suggest that nutrient criteria be derived by using relationships between 141 

metrics of ecosystem health or species and nutrient concentrations (preferably measured 142 

continuously), set to avoid tipping or saturation points, and at concentrations corresponding 143 

to the desired level of health. 144 

A further example illustrating the shifting of baselines relates to the interpretation and 145 

scoring of New Zealand’s Macroinvertebrate Community Index (MCI), similar to the 146 

Hilsenhoff Index in the United States (Hilsenhoff, 1988) and the SIGNAL (stream 147 

invertebrate grade number average level) Index in Australia (Chessman, Growns and Kotlash, 148 

1997; Chessman, 2003). The original MCI score interpretations considered streams with 149 

scores below 100 as ‘grossly polluted’;  in 1998, the interpretations changed and scores under 150 

100 were described as ‘probable moderate pollution’ and under 80 as ‘probable severe 151 

pollution’; updates in 2004 and 2007, then described scores under 100 as ‘fair’ and under 80 152 

as ‘poor’ respectively. Recently, Greenwood et al (2015) proposed new tolerance scores 153 

which, on average, raise scores by approximately five MCI points. When assessing the most 154 

complete MCI dataset at the time (n = 10548 surveys), using the original scoring 155 

approximately 50% had scores less than 100, when applying the new tolerance scores to the 156 



same dataset, only 15% of samples scored less than 100. Despite the substantial increase in 157 

scores, the narrative bands remained relatively unchanged. The gradual shift in baseline from 158 

below 100 representing ‘grossly polluted’ to ‘fair’ with more positive scoring could not be 159 

starker  (Stark, 1985; Stark and Maxted, 2007; Greenwood et al., 2015). To provide some 160 

redress, the new NPSFM, as recommended by STAG, introduced a national bottom line for 161 

MCI of 90, with lower scores being indicative of severe organic pollution. Furthermore, the 162 

sensitivity scores must be those defined by Clapcott et al (2017), which are largely the 163 

original values with several updates (Stark and Maxted, 2007), rather than those from 164 

Greenwood et al (2015). 165 

The shifting of baselines is revealed in environmental reporting as well as policy. 166 

National scale water quality data for New Zealand rivers is based on the National Rivers 167 

Water Quality Network (NRWQN) operated by the National Institute for Water and 168 

Atmospheric Research (NIWA; Smith and McBride, 1990). The NWRQN contains data 169 

starting in 1989 from 77 monitoring sites on rivers with catchments draining about one half 170 

of the total national land area. On most rivers in the NRWQN there are two or more sites, an 171 

upstream lightly or unimpacted ‘Baseline’ site and a downstream ‘Impact’ site (Smith and 172 

McBride, 1990). They are consistently reported by NIWA as one combined dataset. Control 173 

and impact site data merged and reported as one and thus the level of impact is obfuscated 174 

(e.g., Ballantine and Davies-Colley, 2014; Julian et al., 2017; Ministry for the Environment 175 

and Statistics New Zealand, 2019; Ministry for the Environment and Stats NZ, 2020). 176 

Between 2015 and 2019, 21 sites were dropped and sampled at nearby sites by regional 177 

authorities (Julian et al 2017), but the data is not added to the database. Of the 21 dropped 178 

sites, 15 are impact sites (almost half of the total impact sites, so if this is not accounted for 179 

when next reported the combined dataset will likely be dominated by baseline sites (control 180 

sites) so conditions will appear to have improved.   181 

Similarly, Ministry for the Environment (MfE) and Statistics New Zealand (StatsNZ) 182 

report water quality on their website that conglomerates data from sites with pristine 183 

catchments with those from downstream impacted sites (Ministry for the Environment and 184 

Statistics New Zealand, 2019; Ministry for the Environment and Stats NZ, 2020). For 185 

example, their national reporting contains statements similar to this: “Models suggest 83 186 

percent of total river length for large rivers was not expected to have regular or extended 187 

algal blooms” (Ministry for the Environment and Stats NZ, 2017, p. 40). For the uninformed 188 

reader this would imply that most waterways were well managed, but obscures the fact that 189 

close to half of the length of waterways in New Zealand are small, headwater streams in the 190 



Conservation Estate or undeveloped catchments, thus do not require management and should 191 

always be excellent or good.   192 

This weakening of environmental limits we have described in New Zealand is part of a 193 

phenomenon known as ‘shifting baselines’ where expectations of acceptable levels of 194 

pollution change over generations, and is increasingly recognized as one of the fundamental 195 

obstacles to addressing a wide range of today’s global environmental issues (Soga and 196 

Gaston, 2018). Managing shifting baselines should involve preserving historical data, 197 

incorporating it into contemporary science, and actively communicating the change in ways 198 

relatable to audiences, such as through images of historical condition or comparable habitat 199 

(Klein and Thurstan, 2016). Though this will be easier said than done, now the new policy 200 

also requires water quality be maintained from 2017, a shift from the previous baseline of 201 

1991 in the RMA (1991). There is a second parallel and additive process of politically 202 

induced weakening of standards and selective environmental reporting, driven by political 203 

expediency and an attempt to protect short term economic measures (Langford and Shaw, 204 

2014).   205 

 206 

Environmental reporting 207 

The politicisation of environmental reporting is predictable given that reporting organisations 208 

are reporting on their own performance with minimal oversight. At local government level it 209 

is revealed by the capture of regulators by vested interests, this phenomenon known as 210 

agency capture has long been established (Guerin, 2003; Brown, Peart and Wright, 2016). A 211 

recent comprehensive report Evaluating the Environmental Outcomes of the RMA highlighted 212 

this agency capture of Regional Councils revealed, for example, as “a lack of enthusiasm for 213 

setting strong limits for freshwater due to a preponderance of agricultural interests in the 214 

council” (Brown, Peart and Wright, 2016, p. 20). The report found that the weakest 215 

limitations on implementing the RMA are on managing cumulative effects and a lack of 216 

enforcement, thus the causes of decline in water quality are more than just shifting baselines.  217 

Given the failures of environmental protection and reporting through political and 218 

business lobbying the need to keep independent scientific advice from political influence is 219 

clear. This means there is a critical need for an independent body to manage environmental 220 

monitoring, analysis, and enforcement. In New Zealand there is a suitable model for this 221 

organisation with the office of Parliamentary Commissioner for the Environment (PCE). 222 

With the required resourcing across-party parliamentary relatively independent organisation 223 

like this could go a long way to halting the political influence on freshwater science and lead 224 



to sustainable freshwater management. Other options could include much more emphasis on 225 

enforcement of current legislation, increased costs for non-compliance and more funding for 226 

independent freshwater advocacy and monitoring. Additionally, freshwater standards written 227 

into trade agreements could increase enforcement and monitoring.   228 

 229 

230 
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Figures 406 

Figure 1. 407 
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Figure legend 430 

Fig. 1. The annual nitrogen flux of some of New Zealand’s agriculturally-dominated river 431 

catchments alongside other intensive catchments across the globe (Goolsby et al., 2000; 432 

Howarth, 2008; Howden et al., 2010; Xu et al., 2013; Li et al., 2014; Snelder, Larned and 433 

McDowell, 2018). 434 
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