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Abstract

Fountains, also known as negatively buoyant jet, widely exist in both natural
and industrial settings. Extensive attentions have been attracted since 1950s, with
numerous theoretical, experimental and numerical investigations on the transient
behavior of the planar and round fountains from weak to forced turbulent. However,
most of the existing studies are about free fountains. While the understanding of
the behavior of the fountain in a confined space, which is more realistic for practical
applications, is currently lacking. This motivates the work of this thesis.

The confined fountain flow considered in this project is formed by the ejection
of dense fluid upward into a confined space with a homogeneous ambient fluid of
less density. The evolution of a typical confined fountain flow includes five stages;
at first, the dense jet penetrates to a finite height and then a reversal flow falls back
towards the source, creating a fountain flow; subsequently, a secondary intrusion flow
results from the impingement of the fountain downflow with the bottom and spreads
outwards horizontally as a gravity current, which may experience three regimes,
i.e., ‘wall-jet’ regime, ‘buoyancy-inertial’ regime and ‘buoyancy-viscosity’ regime in
terms of the governing forces; after impinging with the sidewall, the intrusion is
turned up and develops along the sidewall, and, since the flow is still denser than
the environment, its front falls down after reaching its maximum penetration height,
creating a wall fountain flow whose flow behavior is not continuous; a reversed flow
is subsequently created and moves from the sidewall to the fountain source due to
the stagnation pressure from the sidewall; with the reversed flow approaching the
fountain flow, the interactions among the fountain flow, the intrusion, the reversed
flow and the ambient fluid are strengthened, resulting in a ‘two-layer’ structure in
the confined region and a density stratified structure is eventually formed over a
long run of the fountain flow. The whole evolution of the confined fountain flow can
be described as a ‘fountain filling box model’. The strong secondary flows in turn
will significantly affect the fountain flow behavior.

The behavior of the confined fountain flow is mainly dependent on the Froude
number Fr, the Reynolds number Re, the Prandtl number Pr and the dimensionless
confinement size parameter λ. In this thesis, the direct numerical simulation (DNS)
and high-speed camera (HSC) experimental techniques are used to study the flow
behavior of confined fountain flows and to illustrate the influence of these governing
parameters on the behavior.

Two-dimensional (2D) DNS are carried out to simulate the transient flow be-
havior of confined weak planar fountains over the ranges of 0.1 ≤ Fr ≤ 3.0,
5 ≤ Re ≤ 800, 0.7 ≤ Pr ≤ 100 and 10 ≤ λ ≤ 35, by assuming the flow be-
havior remains as 2D and laminar over the whole evolution. It is found that the
behavior of the secondary intrusion flow for the confined planar fountain considered
here can be approximately quantified with the scaling relation for the planar grav-
ity current obtained by Chen [1]. However, a two-constant speed stage is observed
for the ‘buoyancy-inertial’ regime and the influence of Re on the intrusion speed
vi cannot be ignored, which are different from the previous studies. Additionally,
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the intrusion flow regimes are determined by the strength of the governing forces
that not all the intrusion flow in this thesis experiences all the three regimes; for
example, only the intrusion for the fountain of Re = 200 with Fr ≤ 0.25 experi-
ences the ‘wall-jet’ regime. The characteristic time-scale τw is determined for the
intrusion to impinge with the sidewall. τw is found to increase with the increase
of Fr and the decrease of Re. Three mechanisms are identified for the secondary
wall fountain behavior for the planar fountain, i.e., no-falling for Re ≤ 20, slumping
down for 50 ≤ Re ≤ 100 and rolling down for 200 ≤ Re, except for a slumping down
mechanism observed for the case of Re = 200 and λ = 10. The maximum pene-
tration height of the wall fountain on the sidewall, ym, and the corresponding time,
τm, increase with increasing Fr and λ, or decreasing Pr. Convection, mixing, ther-
mal conduction and filling all contribute the formation of the stratified structure,
but their effects at individual stages are at different extents. For the initial stages,
convection and mixing play a key role which is corresponding to an increasing bulk
entrainment rate. While thermal conduction and filling dominate the development
of the stratification after a quasi-steady stratification is created, with a decreasing
bulk entrainment rate.

A series of three-dimensional (3D) DNS are carried out to investigate the behavior
of confined weak round fountains over the ranges of 0.25 ≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800,
0.7 ≤ Pr ≤ 100 and 10 ≤ λ ≤ 35. Similarly, the secondary intrusion for the round
fountain can be treated as radial gravity current. However, the correlations for the
intrusion speed vi of vi ∼ Fr−1/5Re1/5τ−1/2 and vi ∼ Fr−1/2Re1/10τ−1/4 obtained
with the numerical results are again different from the results of the scaling study on
gravity current [1]. The increase of Fr or the decrease of Re results in a larger τw,
where τw is the time scale for the intrusion to reach the sidewall. When Pr is very
small, e.g., Pr = 0.7 or 1, τw is noticeably reduced, while the influence of Pr is minor
when Pr ≥ 7. This is because the thermal conduction effect is significant for very
small Pr values. There is no rolling down observed for the wall fountain in the DNS
of confined weak round fountains in this thesis. zm is re-defined as the maximum
penetration height of the wall fountain in the sidewall region for the round fountain.
It is observed that zm and τm increase with the increase of Fr for Fr ≤ 1.75, but
decrease with the increasing Re. Similar to the planar case, the influence of Pr is
significant when Pr is small. During the evolution of a confined weak round fountain,
the bulk entrainment rate experiences three stages. Initially, the entrainment rate
meets a monotonic increase, which mainly results from the entrainment of ambient
fluid by the intrusion head. Then the entrainment rate reaches a peaking value
with the intrusion flow impinging on the sidewall. A relatively high entrainment
rate is subsequently remained, due to the convection and mixing created by the
interactions among the fountain flow, the secondary flows and the ambient fluid,
until the formation of a quasi-steady stratification. After that, the entrainment rate
gradually decreases, with filling and thermal conduction becoming dominant.

The behavior of confined round fountains with Fr, Re and λ over the range
of 1.0 ≤ Fr ≤ 20.0, 102 ≤ Re ≤ 1502 and 27.9 ≤ λ ≤ 48.75 is studied experi-
mentally by using High-speed Camera techniques and dye visualization. The round
fountain is formed by ejecting saline water of various densities upward into a cylin-
drical container filled with quiescent fresh water at specific constant flow rates. A
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system of two Photron FASTCAM Mini UX100 High-Speed Cameras and a SONY
HDR-PJ810 video camera is used to record the transient behavior of the confined
fountains. The experimental results of several typical confined round weak fountain
are compared against the results of the corresponding DNS results, which are in
good agreement both qualitatively and quantitatively, indicating the DNS runs pre-
dict the flow behavior with sufficient accuracy. The influence of Fr, Re and λ on τw
is analyzed quantitatively. For intermediate (e.g., Fr = 3.0) and forced turbulent
fountain (e.g., Fr = 5.0, 8.0) with fixed λ, τw is nearly constant for 500 . Re. Since
the ‘wall-jet’ and ‘buoyancy-inertial’ regime dominate the secondary intrusion flow
where the location of the intrusion front gets less influenced by Re (after [1]). How-
ever, τw for the fountains of Re . 204 is significantly different, which may results
from the change in the dominant regime for the intrusion flow or the interaction
among the upflow, downflow of the fountain and the ambient fluid. Re = 204 is
identified as a critical value for different behavior of the turbulent fountains. The
correlations between Fr and τw is different at specific values of Re. For Re = 204
and Re = 511 with λ = 27.9, Fr = 2.0 is found to distinguish the influence of Fr
(1.0 ≤ Fr ≤ 5.0) into two ranges, and linear correlations τw ∼ Fr are determined.
For Re = 1002 and Re = 1502 with λ = 48.75, a power law τw ∼ Fr1.23 is deter-
mined for 8.0 ≤ Fr ≤ 20.0. The influence of the confinement size λ on τw follows a
power law, i.e., τw ∼ λ1.35. The turbulent secondary flows created by the confined
intermediate and forced turbulent fountain result in a more significant influence of
convection on the development of the stratification.
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Chapter 1

Introduction

1.1 Background

Fountain is known as a jet with buoyancy acting in the opposite direction of its

momentum at the source, which may result from either the upward ejection of a

heavier jet or the downward discharge of a lighter jet into the ambient fluid. For an

upward ejected fountain, as shown in Figure 1.1, the vertical velocity of the upflow

is gradually decelerated due to the negative buoyancy until zero when the fountain

flow reaches its maximum penetration height. After that, a downflow is present,

which falls back toward the fountain source and subsequently forms an intrusion

which spreads outward along the base.

Fountains are abundant in nature, industry, agriculture and our daily life, thus it

is of fundamental significance and practical importance to understand the behavior

of various fountains under a wide range of conditions. This has led to extensive

research on the topic.

Some typical examples include lava flows in magma chambers, explosive volcanic

eruptions, discharge of brine from desalination plants into the sea, replenishing the

1
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Figure 1.1: (a) Schematic illustration and (b) an image from experiment of a turbu-
lent fountain, where AF, UF and DF denote the ambient fluid, upflow, and downflow,
respectively.

cold saline water in solar ponds, eliminating the damage in agriculture due to radi-

ation frost, and reverse cycle air-conditioning systems in the building, to name just

a few.

Figure 1.2: Schematic illustration of explosive volcanic eruptions: (a) Plinian plume and
(b) Pyroclastic flow.

In an explosive volcanic eruption, a large amount of the mixture of gas and

pyroclasts is propelled into the atmosphere, resulting in the most energetic and

dangerous turbulent flow on earth [12]. The high-velocity hot and dense jet is

initially with negative buoyancy, but later the flow develops within two regimes.

When enough air entrains into the jet, the jet becomes neutral or positively buoyant

and keeps rising, forming a high Plinian plume as shown in Figure 1.2(a). Otherwise,
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the jet collapses with depleting initial momentum, creating dense pyroclastic flows as

shown in Figure 1.2(b). The ash and pumice of the eruption columns not only present

potential severe hazards to the human surrounding, but also influence the volcanic

climate. Hence the realistic prediction of the behavior of explosive volcanic eruption

columns and assessing the consequence is necessary. This has led to numerous

studies on explosive volcanic eruption (see, e.g., [13–15]). The entrainment rate

has been identified as the key factor for the transition between different regimes.

Additionally, the results can also be applied for the safe forecasting of the accident

leaks of hazardous gases [16].

Figure 1.3: Schematic illustration of the fountain formed by discharging brine water
from desalination plants into the sea.

The fountain is a major means for the disposal of effluents into water bodies,

as commonly used to discharge brine from desalination plants into the ocean. The

hypersaline water has a significant influence on the offshore environment, since the

high salinity can be toxic to marine organisms. To reduce the influence, the brine

is usually inclined upward to be discharged from a diffuser at a high velocity as

shown in Figure 1.3, resulting in an inclined turbulent fountain. The entrainment

of seawater then reduces both the salinity and the concentration of the pollution

to a safe level. Identifying key physical processes governing the characteristics of

the brine flow, particularly the dilution when the jet impinges on the bottom, is
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central to the design of the diffuser [17, 18]. Similarly, when the cooling water from

power plants is discharged downward into lake or river bodies, a downward fountain

occurs [19, 20].

Figure 1.4: Schematic illustration of the Selective Inverted Sink (SIS) device.

Fountains also have important applications in agricultural production. For ex-

ample. the Selective Inverted Sink (SIS) device is developed to mitigate the damage

of radiation frost in agriculture, which is a problem that can cause significant an-

nual losses in food production worldwide [21]. In the presence of a radiation frost,

air temperature increases with altitude where the coldest air is deposited near the

soil, potentially damaging crops particularly when it is below a critical temperature.

Therefore, the effective control of temperature in cultivated areas is crucial. As il-

lustrated in Figure 1.4, the SIS device selectively drains and expels the coldest air

upwards out of the plantation area by means of mechanical power, preventing the

onset of radiation frost. The upward cold flow here behaves as a turbulent fountain

in a stratified environment. An experimental work supported by CONICYT (Na-

tional Council of Scientific and Technological Research) reported that the averaged

frost damage at the orchard with SIS protection was 14%, against the 42% observed

at the counterpart unprotected orchard [22].

Fountains also widely exist in our daily life. Figure 1.5(a) shows a warm air

curtain on the store entrance in the cold time, formed by the downward ejection of

heated air from a thin horizontal slot at the top of the doorway, which is a downward
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Figure 1.5: (a) Warm air curtain above the entrance of buildings in winter and (b)
underfloor air-conditioning system in buildings.

fountain [23]. The similar technique is also used for forced heating of big structures,

e.g., aircraft hangars [24], and the energy efficient underfloor air distribution system

as shown in Figure 1.5b which ejects upward cool air from vents on the floor to

achieve localized cooling of the room, instead of cooling the whole room [25, 26].

All the application examples above require a full understanding of the behavior

of fountains. There have been numerous studies on fountains since the 1950s. De-

pending on the shape of the source, a fountain can be either a round fountain or a

plane fountain; when the source is an orifice, the resultant fountain will be a round

one whereas for a slot source, the fountain will be a planar fountain (also named as

line fountain or plane fountain). Fountains can also be classified as forced fountains

or weak fountains based on the physical conditions at the source.

The early research had been mainly focused on turbulent fountains (see, e.g., [27–

29]). More recently, weak fountains have also received considerable attentions (see,

e.g., [4, 30–32]). Most of the existing studies are primarily about free fountain

cases where fountains freely penetrate and mix with the ambient fluid without a

confinement from boundaries, as will be summarized in Chapter 2. However, in many

applications, fountains occur in the environment of limited extent (see, e.g., accident

leaks of hazardous gas or localized cooling are usually confined in buildings as shown

in Figure 1.6).
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Figure 1.6: Confined fountain applications: (a) hazardous gas leakage and (b) localized
cooling system.

In such a confined situation the transient behavior of the fountain flow is in-

herently different from that of fountain flow freely spreading in an infinite space.

Figure 1.7 presents the numerically simulated evolution of a weak plane fountain

in an open channel. The initial behavior of the confined fountain is similar to that

for the free fountain case, that is, an intrusion resulted from the impingement of

the downflow on the floor spreads outward as gravity current (Figure 1.7(a)-(b).

Subsequently, the gravity current impinges with and is turned up by the sidewall

(Figure 1.7(c)). Due to the negative buoyancy, the flow on the vertical wall falls back

after it reaches a finite distance, resulting in a wall fountain (Figure 1.7(d)). With

the continuous supply of the dense fluid, the intrusion deepens and a reversed fluid

moves from the side-wall and approaches the fountain core (Figure 1.7(e)). During

the course, the reversed flow interacts with the intrusion, the fountain source and

the ambient fluid. A density stratification is gradually formed in the confined space

(Figure 1.7(f)). Conversely, the change in the ambient fluid also affects the behavior

of the fountain flow, which makes the fountain flow even more complicated.

Quantitative prediction of the behavior of confined fountains highlights the po-

tential for energy saving design, safe forecasting of hazardous gas leakage, etc.To this

end,the factors affecting the confined fountains need to be fully understood. These

include the physical conditions at the source, the length scales of the confinement,
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Figure 1.7: Numerically simulated evolution of a weak plane fountain: (a) formation of
the fountain, (b) intrusion, (c) maximum penetration height of wall fountain, (d) falling
down of wall fountain, (e) reversed flow, and (f) density stratification.

the geometry of the source and confinement, etc.Although there have been some

investigations on the behavior of buoyant flow released in confined spaces, such as

plume filling box, impinging fountains or fountain in stratified environment, etc., as

will be reviewed in Chapter 2, the understanding of fountain in confined space filled

with homogeneous fluid is still scarce, particularly of the confined weak fountain,

which is the motivation of this study.

1.2 Problem addressed and objectives

The problem addressed in this thesis is the behavior of fountain in confined space

with a homogeneous ambient fluid, including the intrusion, wall fountain, reversed

flow and stratification. Both round and planar fountains are considered. Two-

dimensional and three-dimensional direct numerical simulation (DNS) are employed

to simulate the transient behavior of confined weak planar and round fountains
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respectively. In addition, high-speed camera techniques are used for the experiments

of forced round fountains in confined cylindrical containers.

In the case of planar fountains, the physical system under consideration is a

two-dimensional rectangular box of height H and half-width L, whereas in the case

of round fountains, it is a three-dimensional cylindrical container of height H and

radius R, as sketched in Figure 1.8. The vertical sidewalls of the containers are

no-slip and insulated, and the top of the container is a free surface. On the bottom

center, a slot of half-width X0 or an orifice of radius X0 is used as the fountain source

for planar fountains or round fountains respectively. The remaining bottom region

is a rigid non-slip and insulated boundary. In both cases, the containers are initially

filled with a homogeneous Newtonian fluid at rest and with uniform temperature Ta.

At time t = 0, a dense jet at temperature T0 (T0 < Ta) is ejected upward into the

container with a uniform velocity W0 and this discharge is maintained thereafter.

Figure 1.8: Schematic illustration of the physical systems for a fountain in a confined
space with a homogeneous fluid: (a) planar fountain and (b) round fountain.

For either type, the transient behavior of free fountains in a homogeneous ambient

fluid is mainly governed by the Reynolds number, Re, and the Froude number, Fr,

defined as follows,

Re =
W0X0

ν
(1.1)

Fr =
W0√

gX0(ρ0 − ρa)/ρa
=

W0√
gβX0(Ta − T0)

(1.2)
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where g is the acceleration due to gravity, ρ0 and ρa are the densities of the jet fluid

and the ambient fluid at the source, ν and β are the kinematic viscosity and the

coefficient of volumetric expansion of the ambient fluid, respectively. For fountains

with the density difference due to the temperature difference between the jet and

ambient fluid, Fr can also be calculated with the temperature difference using the

Oberbeck-Boussinesq approximation, which requires the density ratio of (ρ0−ρa)/ρa

to be significantly less than unity. For such a case, the influence of thermal conduc-

tion is quantified by the Prandtl number, Pr, which is defined as,

Pr =
ν

κ
(1.3)

where κ is the thermal diffusivity.

When a fountain is confined, its behavior will also be influenced by the size of

the space, which can be scaled by a dimensionless number λ defined as,

λ =
L

X0

=
R

X0

(1.4)

for rectangular boxes and cylindrical containers, respectively.

To the best knowledge of the author, all the existing research on ‘fountain fill-

ing box’ flows are conducted experimentally to illustrate the forced fountain bulk

behavior, e.g., the penetration height and the bulk entrainment. However, it is

difficult to obtain the detailed internal dynamics of the flow by experiments. Nu-

merical method overcomes this shortage, particularly DNS, which can capture all

the internal dynamics of the flow, including the internal density distribution and the

couplings between the fountain and the secondary flows. Nevertheless, the DNS of

the flows with high Re is still challenging due to the computational consumption.

Based on the dynamic behavior of the fountain with different Fr, round fountains

are classified as ‘very weak’ (0.3 . Fr . 1.0), ‘weak’ (1.0 . Fr . 2.0), ‘intermedi-

ate’ (2.0 . Fr . 4.0) and ‘forced/highly forced’ fountains (4.0 . Fr) by Hunt &
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Burridge [2]. Similarly, Hunt & Coffey [33] distinguished the planar fountains into

‘very weak’ (Fr . 2.3), ‘weak’ (2.3 . Fr . 5.7) and ‘forced’ (5.7 . Fr), which are

reviewed in detail in Chapter 2. The aim of this thesis is to investigate the long-

term transient behavior of confined fountains (from weak to forced) by experiments,

direct numerical simulations and scaling analysis. Therefore, DNS is employed to

simulate the behavior of confined weak plane and round fountain (with low Fr and

Re), whereas experiments are carried out for fountains from weak to forced, with

covering a wider range of Fr and Re. More specifically, the objectives of this thesis

are as follows:

• To understand the transient flow behavior of confined weak planar fountains

over the ranges of 0.1 ≤ Fr ≤ 3, 5 ≤ Re ≤ 800, 0.7 ≤ Pr ≤ 100 and

10 ≤ λ ≤ 35.

• To understand the transient flow behavior of confined round fountains over the

ranges of 0.25 ≤ Fr ≤ 15, 5 ≤ Re ≤ 1502, 0.7 ≤ Pr ≤ 100 and 10 ≤ λ ≤ 35.

• To investigate the influence of Fr, Re, Pr, and λ on the transient behavior of

both the confined planar fountains and round fountains, and to determine the

scaling correlations to quantify the influence.

1.3 Significance and innovation

As mentioned in § 1.1, there are extensive practical applications involving the con-

fined fountain flow. Hence, it is of fundamental significance and practical importance

to investigate the behavior of the ‘filling box flow’ with the confined fountain. The

innovations of this project are summarized as follows:

• Establishment of a two-dimensional numerical model for confined weak plane

fountain.
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• Establishment of a three-dimensional numerical model for confined round foun-

tain.

• Numerical and experimental investigation on the influence of Fr, Re and Pr

on the behavior of the fountain flow and its secondary flows.

• Numerical and experimental illustration of the influence of confinement on the

behavior of the fountain flow and its secondary flows in terms of the dimen-

sionless confinement parameter λ.

1.4 Thesis outline

The rest of this thesis is outlined as follows,

• In Chapter 2, a literature review is presented to briefly review and discuss

previous research on fountains, including planar and round fountains, both

free and confined.

• Chapter 3 introduces the numerical method and experimental method used

in this study. A detailed description of the governing equations for the foun-

tain flow and the appropriate initial and boundary conditions is given first,

followed by a brief introduction of the Finite Volume Method and the dis-

cretization schemes used to solve the differential equations. The procedure

to set up numerical simulations in ANSYS Fluent is also briefly described,

along with the experimental system for the study of round fountains confined

in cylindrical containers. The use of the high-speed camera technique is also

briefly described.

• In Chapter 4, the transient behavior of confined planar fountains over the

ranges of 0.1 ≤ Fr ≤ 3, 5 ≤ Re ≤ 800, 0.7 ≤ Pr ≤ 100 and 10 ≤ λ ≤ 35

is studied through a series of two-dimensional direct numerical simulations.

The evolution of confined planar fountains is presented and the effects of Fr,
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Re, Pr and λ on the behavior of the intrusion, the wall fountain, the thermal

stratification are discussed and determined using the DNS results.

• Chapter 5 presents the three-dimensional direct numerical simulation of con-

fined round fountains over the range of 0.25 ≤ Fr ≤ 3, 5 ≤ Re ≤ 800,

0.7 ≤ Pr ≤ 100 and 10 ≤ λ ≤ 35. The effects of Fr, Re, Pr and λ on

the behavior of the intrusion, the wall fountain, the thermal stratification are

discussed and quantified by the DNS results.

• Chapter 6 presents the experimental study on the behavior of confined round

fountains over the ranges of 1 ≤ Fr ≤ 20, 102 ≤ Re ≤ 1502, and 27.9 ≤

λ ≤ 48.75. The behavior of confined turbulent round fountains is studied by

qualitative observation of the time evolution of the experimental food dyed

contours. The experimental data are compared with the DNS results and

analytical predictions to benchmark the accuracy of the numerical code.

• In Chapter 7, a summary of the major findings of this study and the sugges-

tions for future work are given.



Chapter 2

Literature review

2.1 Introduction

As mentioned in the previous chapter, a fountain is the jet with opposing buoyancy

resulted from the density difference between the source fluid and the ambient fluid.

The broad applications of fountains have motivated extensive studies on the behav-

ior of fountains from different aspects in the past 60 years and the related work is

continuously developing. By using various methods (i.e., experimental, theoretical

and numerical method), the behavior of fountains is found to be significantly in-

fluenced by numerous factors [2]. These factors include the nature of the jet (e.g.,

laminar or turbulent); the geometry of the source (e.g., orifice or slot); the direction

of jet ejection (vertical or inclined); and the physical properties of the fluids. In

addition, the effect of the ambient fluid is also important, e.g., whether the ambient

is quiescent, in motion, homogeneous, stratified, and whether it can mix with the

ejected fluid from the source.

When the jet fluid is ejected from the source into the ambient fluid at an angle

smaller than 90 degrees, an inclined fountain is formed. Inclined fountains arise in

a number of applications, particularly in the disposal of brine and sewerage into

the marine environment as shown in Figure 1.3. There have been numerous studies

13
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on inclined fountains, most of which are about inclined turbulent fountain (see,

e.g., [34–39]). As this thesis focuses on vertical fountains, the inclined fountains are

beyond the scope of this thesis and therefore will not be discussed in details here.

Similarly, there are numerous studies on other types of fountains, such as multiple

interacting fountains (see, e.g., [40–44]), fountains in crossflow (see, e.g., [45–48])

and fountains which are immiscible with the ambient fluid (see, e.g., [49–52]), which

are also beyond the scope of this thesis and hence are not dealt with here as well.

The readers are referred to, e.g., [48, 53, 54], for the details of some of these studies.

In this literature review, only the works closely related to the current study

are reviewed and discussed. These include the studies on vertical round and planar

fountains in both free and confined environment, where the fountain fluid is miscible

with the ambient fluid and the density difference is small.

2.2 Fountain classification

In terms of the fountain source geometry, fountains are distinguished as round foun-

tains or planar fountains, with round fountains from an orifice source and a planar

fountain from a slot source, which have been extensively investigated in the past

decades, as reviewed in [2]. For either type, the behavior of the fountain flow in the

homogeneous environment differs from that in the stratified environment [55]. It

has also been found that the behavior of both the round fountain and planar foun-

tain varies significantly under different source conditions (represented by the Froude

number, Fr, and the Reynolds number, Re, at the source), due to the change of the

dominant physics of the flow. Therefore, the classifications need to be considered

for the fountain research [56].

Different classifications of fountains have been reported, particularly for the

round fountain (see, e.g., [6, 32, 57]). The most complete classification was given
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Figure 2.1: Experimental images of round fountains presenting their typical shape and
characteristic penetration heights: (a) very weak fountain, (b) weak fountain, (c) inter-
mediate fountain, (d) forced fountain, and (e) highly forced fountain [2].

by Hunt & Burridge [2], which distinguishes the round fountain in a homogeneous

ambient fluid into the following classes in terms of Fr, namely,

• Very weak fountains (0.3 . Fr . 1.0)

• Weak fountains (1.0 . Fr . 2.0)

• Intermediate fountains (2.0 . Fr . 4.0)

• Forced and highly fountains (4.0 . Fr)

Fr, as defined in Eq.(1.2), represents the ratio of the inertial force to the buoyant

force at the source. The dominate physics at the source varies with different Fr
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values, resulting in a considerable change in the behavior of the fountain. Experi-

mental images shown in Figure 2.1 presents the features including the shape and the

characteristic heights of a round fountain, indicating the reason for the classification.

Figure 2.2: Experimental images demonstrating the effect Re on the behavior of round
fountain: (a) steady, (b) flapping, (c) laminar bobbing and (d) sinuous [3].

What should be noted is that the classification presented above is solely based

on Fr, whereas the influence of Re was not taken into account. Re, as defined in

Eq.(1.1), characterizes the inertial force relative to the viscous force at the source.

The experiments by Williamson et al. [3] show that Re has significant influence on

the behavior of fountains. They identified a laminar flapping as the first unstable

model of a round fountain, and the fountain behavior becomes more disorderly,

with the appearance of a laminar bobbing motion or sinuous motions when Fr

and Re are increased, as shown in Figure 2.2. For the range of 0.7 < Fr < 10

and 10 < Re < 120, a function of C = FrRe2/3 is identified to approximately

describe the transition between the steady behavior, the laminar flapping and the

laminar bobbing, where C is a constant. The flow is steady and axisymmetric with
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no fluctuation in the fountain height as shown in Figure 2.2(a) for 0 < C < 16.

When C falls into the range of 16 < C < 27, the flows become unstable, with

several oscillation modes as shown in Figure 2.2(b), including a two-dimensional

flapping motion that the peak of the fountain moves from one side to the other

and a circling or multimodal flapping that the top of the fountain circles around

the fountain axis. When 35 < C, the fountain behavior becomes highly unsteady

and three-dimensional, with a bobbing motion that the fountain front continuously

rises, stagnates and then collapses around the next rising front as presented in

Figure 2.2(c). The fountain front always attains a maximum in the center of the

fountain axis for the bobbing motion, whereas the location of the maximum fountain

height for flapping motion is usually off-axis. Moreover, they found that the behavior

of a round fountain remains laminar for Re ≤ 120 and turns into fully turbulent

for 2000 . Re, independent of Fr. They classified fountains over the range of

120 < Re < 2000 as the transiti onal fountain [3].

By taking into account the Re influence, Hunt & Burridge [2] presented an

overview of the fountain studies with low Re and high Re, and discussed the major

features of the behaviors of these fountains, as shown in Figure 2.3.

Although the studies on planar fountains are not as extensive as those for the

round fountain, Hunt & Coffey [33] was still able to classify the behavior of planar

fountain. In terms of the penetration height, a planar fountain is distinguished as

either a very weak fountain for Fr . 2.3, or a weak fountain for 2.3 . Fr . 5.7,

or a forced fountain for 5.7 . Fr. Again, in this classification, Hunt & Coffey [33]

only considered the effect of Fr and did not take into account the effect of Re. The

experimental study by Srinarayana et al. [58] demonstrates the influence of Re on

the behavior of planar fountains and four regimes of the behavior of planar fountains

was identified by them in terms of Re, i.e., steady, flapping, laminar mixing and

jet-type mixing behavior. They also found that the critical values of Fr for the

planar fountain to change from a steady behavior to an unsteady behavior depend

on Re. The transition does not depend on Re when Re & 60 and the critical value
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Figure 2.3: Fountain classification at low and high Re, and the major fountain features
under different categories [2].

is Fr = 1.0. However, for 10 < Re . 50, the transition depends on Re and the

critical values can be approximated by a constant FrRe−2/3 line. When Re is further

reduced (Re . 10), the dependence of the transition on Re becomes stronger and

the demarcation line can be approximated by Fr ∼ Ren (where n ≈ 2− 4).
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2.3 Free fountains

In large open bodies of fluid, the fountain fluid released from the source is not re-

stricted by physical boundaries, that is, the fountain flow propagates freely through

the ambient fluid. Such free fountain can be seen, e.g., in the brine effluent dis-

charged into the ocean or the explosive volcanic eruption into the atmosphere, as

mentioned earlier. The majority of the existing studies are on free fountains, as

reviewed in [2]. In a free fountain case, the scale of the fountain flow is usually

much smaller than that of the ambient, implying that the fountain flow does not

significantly modify or influence the nature of the ambient fluid, e.g., the density

distribution. Hence, most of the research on free fountain have focused only on the

behavior of fountains themselves, with the principal parameters of interest including

the maximum penetration heights, entrainment, the onset of asymmetry, etc.

2.3.1 Round fountain

2.3.1.1 Maximum penetration height

When the momentum flux at the source is much larger than the negative buoyancy

flux (Fr � 1.0), the fountain flow presents a ‘double plume’ structure where the

inner upflow behaves more like a turbulent jet around by the downflow falling as

a dense plume, as shown in Figure 1.1. The maximum penetration height, Zm,

reached by the fountain flow is generally the focus of most early studies on turbu-

lent fountains. Morton [27] pioneered the research on a turbulent round fountain in

both homogeneous and stratified environment based on the entrainment assumption

proposed by him and his co-workers [59]. Using the integral method, he successfully

obtained an analytic solution for the maximum penetration height in terms of the

source conditions, which is zm = 2.05Fr, where zm is the dimensionless maximum

penetration height non-dimensionalized by X0 (i.e., zm = Zm/X0) [27]. However,

Morton assumed that the vertical flux of the tracer contained in the jet is constant
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from the source to the top, which is not realistic. In consideration of the decrease

of the vertical flux close to the fountain top, Abraham [60] developed an analytic

prediction as zm = 2.74Fr. However, the analysis from both studies is only appli-

cable for the start-up flow at the initial developing stage prior to the creation of the

downflow, since the entrainment from the downflow is ignored.

To overcome this shortage, Turner [28] proposed a ‘double plume’ structure the-

ory for forced round fountains and his dimensional analysis provided the scaling

zm = C∗Fr, where C∗ is a constant of proportionality. Through a series of ex-

periments on turbulent round fountains for 2 . Fr . 30, C∗ was determined as

2.46 [28]. Later, new entrainment equations to quantify the mixing between the

upflow and downflow, and between the downflow and ambient fluid permitted Mc-

Dougall [61] to develop a theoretical model of turbulent round fountains, which gives

zm = 2.56Fr. Based on the same idea, Bloomfield & Kerr [29] employed an alterna-

tive entrainment formulation between the upflow and downflow to give a theoretical

prediction, zm = 2.26Fr, which is in good agreement with their experimental data

for 10 ≤ Fr ≤ 70. Similar scalings for turbulent fountain were also obtained by

some other experimental studies (see, e.g., [32, 62–64]), as listed in Table 2.1. Al-

though considerable discrepancies exist in the values of C∗ for these studies, the

scalings show that the maximum penetration height of turbulent round fountain

only linearly depends on Fr at the source, which may be regarded as robust.

Figure 2.4: Sketch of the weak round fountain (after [4]).
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For the case with the momentum flux playing the same or less important role

than the negative buoyancy flux, the fountain usually remains laminar without dis-

tinguishable upward or downward flow. Instead, the streamlines curve and spread

from the source as shown in Figure 2.4 [4]. These fountains are classified as weak

fountains (Fr ∼ 1) or very weak fountains (Fr � 1), which behave considerably

different from the turbulent fountains, since the effect of viscosity cannot be ig-

nored (via Re), in addition to the momentum flux and buoyancy flux influence.

More recently, weak and very weak round fountains have been investigated through

a series of experimental, analytic, and numerical research. For example, Zhang

& Baddour [56] found experimentally zm = 1.7Fr1.3 for the round fountain over

1.0 . Fr < 7.0. Based on a plume entrainment model, Kaye & Hunt [32] ob-

tained zm ∼ Fr2 and zm ∼ Fr2/3 for the round fountain over 1.0 . Fr . 3.0 and

0 < Fr . 1.0, respectively. However, these studies did not include the influence

of Re. Lin & Armfield [4, 30, 31] carried out a series of numerical simulations to

investigate the behavior of round fountains with small Fr and Re values. Their

numerical results showed a linear scaling zm ∼ Fr for fountains over the range of

0.2 ≤ Fr ≤ 1.0 and 200 ≤ Re ≤ 800 [4]. For the fountains with 0.2 ≤ Fr ≤ 1.0

and 5 ≤ Re ≤ 200, the scaling zm ∼ FrRe−1/2 was obtained [30]. The experimental

and theoretical study by Philippe et al. [52] on round fountains with Re < 100 and

Fr ≈ 10 suggested a different scaling, zm ∼ FrRe1/2. The reason for the difference

of the scalings is due to the different ranges of Fr and Re used for the two studies.

For the round fountain with 0.0025 ≤ Fr ≤ 0.2 and 5 ≤ Re ≤ 800, the mo-

mentum flux is negligible compared to the buoyancy flux and the flow is domi-

nated by the balance between the buoyancy and the viscosity [31]. The dimen-

sional analysis, numerical and experimental studies all identified the scalings zm ∼

Fr2/3Re−2/3 [31, 32, 57, 65, 66].

Table 2.1 presents the scaling relations of the maximum penetration height zm

in terms of Fr and Re at the source for both the forced and weak round fountains

obtained by the above mentioned studies. A more recent experimental study on
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Table 2.1: Summary of the scalings obtained for the maximum penetration height of
round fountains, after [10].

Authors Method Scaling Fr and Re Class

Morton [27] Analytic zm = 2.05Fr - Forced

Abraham [60] Experimental zm = 2.07Fr - Forced

Turner [28] Analytic zm = 2.46Fr 2 . Fr . 30 Forced

McDougall [61] Analytic zm = 2.56Fr - Forced

Mizushina et al. [63] Experimental zm = 2.35Fr
5 . Fr . 250

1100 . Re . 2700
Forced

Campbell & Turner [62] Experimental zm = 2.07Fr 20 . Fr . 90 Forced

Baines et al. [64]
Experimental

Analytic
zm = 2.46Fr 10 . Fr . 250 Forced

Zhang & Baddour [56] Experimental
zm = 1.73Fr1.3

zm = 3.06Fr
0.37 . Fr < 7
7 < Fr . 36.2

Transition
Forced

Bloomfield & Kerr [29] Analytic zm = 2.26Fr 2 . Fr . 30 Forced

Kaye & Hunt [32] Analytic
zm = 0.94Fr2/3

zm = 0.9Fr2

zm = 2.46Fr

0 < Fr . 1.0
1.0 . Fr . 3.0

3.0 . Fr

Laminar
Transition

Forced

Lin & Armfield [4]
Numerical

Dimensional
zm ∼ Fr

0.2 ≤ Fr ≤ 1.0
Re = 200

Laminar

Lin & Armfield [30]
Numerical

Dimensional
zm ∼ FrRe−1/2

0.2 ≤ Fr ≤ 1.0
5 ≤ Re ≤ 200

Laminar

Lin & Armfield [31]
Numerical

Dimensional
zm ∼ Fr2/3Re−2/3

0.0025 ≤ Fr ≤ 0.2
5 ≤ Re ≤ 800

Laminar

Philippe et al. [52]
Experimental

Analytic
zm ∼ FrRe1/2

1 . Fr . 200
0 < Re . 80

Laminar

round fountain explored the influence of Re and determined the threshold value for

Re, i.e., the value beyond which zm may be regarded as independent of Re [65].

It is observed that when Re is very small, zm increases with the Re; however, it

decreases with Re when Re is large enough, and eventually becomes independent of
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Re when Re is very large. The threshold value of Re was identified to depend on

Fr at the source, e.g., zm can be treated as independent of Re when Re > 1000 for

Fr ≥ 2.0, or Re > 500 for Fr ≤ 1.0, but for 1.0 ≤ Fr ≤ 2.0, no threshold Re was

identified. A prevailing summary of the scaling relation for zm for round fountains

in different categories is given by Hunt & Burridge [2], as shown in Section 2.2.

2.3.1.2 Entrainment

The penetrative entrainment is a common feature of all turbulent free-shear flows

including jets, plumes and fountains. In the process of entrainment, the surrounding

fluid is turbulently engulfed into the plume. This process plays an important role in

the development of fountains, since the mass flux entrained from the ambient fluid

into the fountain flow controls the dilution rate, resulting in the modification of the

opposing buoyancy flux. Additionally, the entrainment also significantly determines

the appearance of a fountain, which includes its volume and physical shape [6].

Therefore, it is important to get a comprehensive understanding of the entrainment

process and to obtain the entrainment rate. However, the entrainment process by a

fountain does not only engulfs fluid from its surrounding environment (including at

its top) but also exchanges fluids between its upflow and downflow, which makes it

considerably complex.

Previous theoretical and experimental studies of the entrainment for jets and

plumes usually focused on determining an entrainment coefficient to achieve tur-

bulence closure. For example, in the closure model proposed by Morton, Taylor &

Turner [59], the mean inflow velocity of the entrained fluid ue across the interface

between the flume and the surrounding environment is proportional to the vertical

velocity at the same level w, i.e.,

ue = αew (2.1)
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where αe is the entrainment coefficient for the plume. This elegant parameterisation

is called as the entrainment hypothesis, which is the cornerstone of the classic plume

theory. Moreover, the entrainment hypothesis has also been successfully applied to

a variety of other turbulent flows, e.g., buoyant jets in a steady environment [67]

and gravity currents [68]. However, experimentally measuring the entrainment co-

efficient, particularly determining its variation with height, or with the local Froude

number is challenging and related work is still continuing [69].

Significant efforts have been made to build simplified theoretical models to

describe the dynamics of fountains, from the early studies only on the start-up

flow stage (see, e.g., [27, 60]), to the study about the quasi-steady behavior (see,

e.g., [29, 61, 70, 71]). The plume theory can be successfully applied for the initial

rising-up behavior of fountains. However, to describe the quasi-steady behavior (in-

cluding both upflow and downflow) by plume theory ideally needs to parameterize

the fluid exchange between the upflow and downflow, and between the downflow

and the surroundings. To date, the mechanism of these fluid exchanges has not

been extensively studied and clearly understood, with no firm conclusions reached

yet [72, 73].

However, the bulk entrainment of the ambient fluid (i.e.. the entrainment over

the fountain as a whole,) can be measured with reasonable accuracy [6]. The mea-

surement of the bulk entrainment estimates the mean dilution of the buoyancy

scalar over the fountain as a whole instead of resolving the local entrainment rate.

Therefore, no assumptions are required for the interactions between the upflow and

downflow, or the entrainment process between the fountains and the surroundings.

However, the relevant reported results are still rare, as only two studies have found

so far which explicitly explore the bulk entrainment by fountains, that is, the early

work of Baines, Corriveau & Reedman [5] and the more recent work by Burridge &

Hunt [6].

In the study of Baines et al. [5], a fountain was formed by the upward ejection
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of dense saline solution into an initially uniform environment of freshwater. The

intrusion created by the impingement of the downflow with the floor laterally spread,

resulting in a saline layer. The volume flux in the downflow of the fountain at the

level of the saline-freshwater interface was inferred by the increasing rate of the

saline layer depth, whereas the entrainment above the interface was calculated by

estimating the volume flux in the jet-like upflow at the interface height, where the

width of the upflow was assumed to linearly increase with the interface level and

the source height. Based on the similarity between fountains and plumes, the local

Froude number at the density interface Fri is assumed to determine the entrainment

of a fountain. The main conclusion of their study is that QE/Qi ∝ Fri
3 for Fri ≤ 3.0

and QE/Qi ∝ Fri for Fri ≥ 3.0, where QE/Qi is a dimensionless entrainment

volume flux, QE and Qi denoting the volume flux of the entrainment and the upflow

at interface height respectively, as shown in Figure 2.5(a).

Figure 2.5: Sketch of the turbulent entrainment into fountain or fountain-like flows,
after [5–7].

Similarly, in the experiments of Burridge & Hunt [6], a saline layer was resulted

from the downflow of a round saline fountain in a cylinder initially filled uniform

freshwater, as shown in Figure 2.5(b). By modifying the experimental technique

proposed by Baines [74], Burridge & Hunt [6] sought for directly quantifying the

total volume flux of the entrainment by fountains. In their experiment, the density
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interface with a fixed height of the source was achieved for the first time by equaling

the volume flux of the downflow to the flow rate of the extract pump. This enabled

to directly describe the behavior of fountains in the upper light environment with-

out any theoretical estimation of its evolution, and to deduce the entrainment by

measuring the stationary height of the interface rather than the local rate. The bulk

entrainment by the fountain was then calculated directly via QE = Qout−Q0, where

Qout is the volume flux of the fountain downflow (equal to the extract pump flow

rate) and Q0 is the source volume flux as shown in Figure 2.5(b). The fountains

in the experiment covered a wide range of the Froude number and the Reynolds

number at the source, over 0.004 ≤ Fr0 ≤ 25 and 350 ≤ Re0 ≤ 3460. However, no

significant correlation was observed between entrainment and Re0 after a series of

tests, where Re0 always exceeded the threshold value reported by Burridge, Mistry

& Hunt [65]. The results showed the scalings for the dimensionless entrainment

volume flux QE/Q0 in terms of Fr, the Froude number at the source, that is,

QE/Q0 =



1.08± 0.025, F r . 0.1,

0.37Fr2/3, 0.1 . Fr . 1.0,

0.38Fr2, 1.0 . Fr . 2.0,

0.71Fr, 2.0 . Fr . 8.0,

0.77Fr − 1, F r & 8.0.

(2.2)

These results have been consistent with the volume flux scalings for fountains on

dimensional grounds at low and high Froude numbers [64, 75].

A significant number of studies have focused on determining the entrainment rate

across a density interface due to localized forcing by a fountain-like flow. A typical

fountain-like flow above the density interface is formed by the upward ejection of the

fluid from a localized source within a stratified (usually two-layer) environment as

shown in Figure 2.5(c), where the impinging flow can be a buoyant plume (e.g., [76–

78]) or turbulent jet (e.g., [79–81]). Although the behavior of these flows is indeed
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fountain-like, the entrainment process is influenced by the stratification.

The pioneering work by Turner [82] hypothesized that the entrainment rate can

be quantified in terms of the Richardson number at the interface, Ri (notably Ri

and Fri are interchangeable, as Fri = Ri−1/2), which has laid the foundation for the

research on entrainment across the interface. Based on this hypothesis, Banies [76]

carried out experiments on round turbulent plumes or jets impinging on a density

interface and identified the following scaling for the dimensionless entrainment rate,

QE/Qi, and the Froude number at the interface, Fri,

QE/Qi ∝ Fri
n (2.3)

with n = 3 for 0.25 < Fri < 1.8. Regarding the same problem, Kumagai [77]

presented the same scaling for Fri � 1, but QE/Qi tends to approaches a constant

value (0.56) for Fri � 1. Coffey & Hunt [83] studied the interfacial mixing induced

by the impingement of a turbulent freshwater jet in a confined box, whose results

also supported that QE/Qi ∝ Fri
3 for Fri < 1 and a constant QE/Qi for Fri > 1. In

another experiment conducted by Cardoso & Woods [78], the entrainment is formed

by releasing a rising round plume from a stratified upper layer across an interface

into a uniform lower layer. Cardoso & Woods [78] converted the energy for turbulent

entrainment into the potential energy of the stratification by assuming the fraction

of the kinetic energy supplied at the interface by the plume as constant. Both of their

theoretical model and experimental results identified a scaling as QE/Qi ∝ Fri
2 for

0.4 ≤ Fri ≤ 1.3. Moreover, this scaling even fits the Kumagai’s [77] data better

than that of QE/Qi ∝ Fri
3 for the range of Fri . 1.

Some other entrainment scalings have also been reported, as reviewed in [85]

and [86]. Lin & Linden [84] identified the entrainment coefficient by turbulent

fountains impinging on a steady interface to be around 0.65 for 0.9 . Fri . 2.2.

Shrinvas & Hunt [7] theoretically described the volume flux entrained by a forced
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Table 2.2: Summary of some scaling relations for entrainment law, after [2, 7].

Authors Scaling Fri/Fr Flow type

Baines [76] QE/Qi ∝ Fri
3 0.25 . Fr . 1.8 Impinging plume

Kumagai [77]
QE/Qi ∝ Fri

3

QE/Qi ∝ Const
Fr � 1.0
1.0� Fr

Impinging plume

Cardoso & Woods [78] QE/Qi ∝ Fri
2 0.4 . Fr . 1.3 Impinging plume

Baines et al. [5]
QE/Qi ∝ Fri

3

QE/Qi ∝ Fr
Fr . 3.0
3.0 . Fr

Impinging fountain

Lin & Linden [84] QE/Qi ∝ Fr 0.9 < Fr < 2.2 Impinging fountain

Coffey & Hunt [83]
QE/Qi ∝ Fri

3

QE/Qi ∝ Const
Fr < 1.0
1.0 < Fr

Impinging plume

Shrinivas & Hunt [7]
QE/Qi ∝ Fri

2

QE/Qi ∝ Fr
Fr < 1.4
3.8 < Fr

Impinging plume

Burridge & Hunt [6]

QE/Q0 ∝ Const

QE/Q0 ∝ Fri
2/3

QE/Q0 ∝ Fri
2

QE/Q0 ∝ Fr

Fr . 0.1
0.1 . Fr . 1.0
1.0 . Fr . 2.0

2.0 . Fr

Confined fountain

round jet across a stable density interface in two-layer ambient fluids. They iden-

tified QE/Qi ∝ Fri
2 for a low-Fri regime (i.e., Fri < 1.4) characterized by an

axisymmetric semi-ellipsoidal impingement dome, whereas QE/Qi ∝ Fri for a high-

Fri regime (i.e., 3.8 < Fri) characterized by a fully penetrating turbulent fountain.

More recently, a phenomenological model was proposed by Debugne & Hunt [87] to

quantify the entrainment into the fountain-top, which shows that the volume flux

of fountain-top entrainment is proportional to the incoming volume flux.

A summary of the scaling (QE/Qi ∝ Fri
n) for entrainment by both fountain and

fountain-like flow (by impingement of plumes on density interface) is presented in
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Table 2.2. These large discrepancies may be caused by a variety of reasons, including

the uncertainties in estimating QE, Qi and Fri, and different experiment setups [2].

Additionally, despite box confinement is an innate characteristic of all laboratory

experiments, the effect of the confinement on the entrainment behavior has not

been taken into account by the studies cited above. To the knowledge of the author,

the only study seeking to investigate the confinement influence on entrainment is

that of Shrinivas & Hunt [88]. Nevertheless, the entrainment in the study is by a

turbulent fountain and a turbulent pure plume in a two-layer environment. The

significant discrepancies in fountain entrainment laws and the lack of knowledge

about the influence of confinement on the entrainment by fountains (from weak to

highly forced) also motivates this thesis. A bulk thermal entrainment or dilution

rate of weak planar and round fountains will be defined in this thesis, and will be

studied under different source conditions (Fr, Re, Pr) and confinement (λ).

2.3.2 Planar fountain

As mentioned above, a planar fountain results from the ejection of a jet with oppos-

ing buoyancy flux from a two-dimensional source (i.e., slot), which widely occurs in

engineering applications, such as the downward warm air curtain above tunnels and

shop entrances [89]. Additionally, the flow formed by releasing a row of closely spaced

round fountains may be regarded as an approximately planar fountain [64], e.g., the

underfloor air distribution systems to replenish cooling air in buildings [41]. Al-

though planar fountains have not attracted the same attention like round fountains,

some studies have been conducted to investigate the behavior of planar fountains

from the early research on turbulent planar fountains (see, e.g., [33, 62, 64, 70]) to

recent research on laminar planar fountains (see, e.g., [30, 58, 90–92]). Here only

the related studies are summarized. The readers are referred to [2, 33, 86, 93] for a

detailed review.
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Similar to turbulent round fountains, the dimensionless maximum penetration

height of turbulent planar fountain zm (non-dimensionalized by slot half-width X0)

only depends on the Source Froude number Fr. By extending the research on

turbulent round fountain of Turner [28] to turbulent planar fountains, Campbell &

Turner [62] and Baines et al. [64] analytically obtained a scaling of zm = C ′Fr4/3,

where C ′is a constant of proportionality. The experiment conducted by Campell

& Turner [62] gave C ′ = 1.64 − 1.97 for 5.6 . Fr . 51. But Baines et al. [64]

obtained C ′ = 0.65 for 5 . Fr . 1000, which was pointed out as an error in the

presentation of the data by Hunt & Coffey [33]. The true value of C ′ should be

1.64 which have been supported by the experimental result of [70] using the same

experimental rig as [64]. The 4/3 power law for the turbulent plane fountain height

was also supported by the experimental data of Zhang & Baddour [94], showing

a scaling of zm = 2.0Fr4/3 for the range of 10 . Fr . 113. Hunt & Coffey [33]

argued the influence of the source geometry used by the studies cited above and

developed an analytic solution as zm = 0.84Fr4/3 for the fountain of Fr & 5.7,

which is characterized as turbulent planar fountains. Recently, the numerical studies

of Srinarayana et al. [58, 91] identified the scaling relation zm ∝ Fr4/3 for planar

fountains with uniform inlet-velocity profile over 4.0 ≤ Fr ≤ 10 and with a parabolic

inlet-velocity profile of 2.1 ≤ Fr ≤ 10.

Zhang & Baddour [94] proposed two models for weak plane fountains with smaller

Fr at which buoyancy flux dominates near these fountain sources. In the first

model, the fountain was assumed to develop from a virtual source of momentum

flux and buoyancy flux only, and a following empirical scaling relation was identified

by dimensional analysis and their experimental results,

zm = (2.0− 1.12Fr−2/3)Fr4/3 (2.4)

for 0.62 . Fr . 6.5. While the second model was established by assuming zm

proportional to the product of the characteristic vertical velocity W0 and the time
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for a fountain to reach the maximum penetration height which can be scaled with

the ratio of the momentum flux and buoyancy flux. The corresponding scaling of

the second model for the same Fr range is as follows,

zm = 0.71Fr2 (2.5)

Recently, this scaling relation was modified by Hunt & Coffey [33] using their ex-

perimental data as

zm = 0.5Fr2 (2.6)

for 2.3 . Fr . 5.7. The power law zm ∝ Fr2 is also confirmed by the experimental

and numerical studies of Srinarayana et al. [58, 91], where the scaling was quantified

as

zm = 1.05Fr2 + 2.73 (2.7)

A series of dimensional analysis and numerical studies conducted by Lin & Arm-

field [31, 90] have focused on weak planar fountains and they identified distinct

scaling relations for planar fountains of Fr ∼ 1.0 and Fr � 1.0. They also took

into account the influence of Re at the source [30]. For 0.2 ≤ Fr ≤ 1.0 and

5 ≤ Re ≤ 200, they gave the following scaling,

zm ∼ FrRe−1/2 (2.8)

whereas for the same Fr, but with sufficiently large Re (200 ≤ Re), the relation

becomes

zm ∼ Fr4/3 (2.9)

which is independent of Re. A similar conclusion has been made for the influence of

Re, however, the scaling was quantified as zm ∼ Fr based the DNS results by Lin &

Armfield [90]. The experiments conducted by Srinarayana et al. [58] confirmed the

scaling relation zm ∼ FrRe−1/2 for 0.47 . Fr . 11.5 and 2.1 . Re . 121. Similarly,

for fountains over Fr � 1.0, Lin & Armfield [31] determined the following scaling
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through dimensional analysis,

zm ∼ Fr2/3Re−2/3 (2.10)

The numerical results for 0.0025 ≤ Fr ≤ 0.2 at Re = 200 quantified the scaling as

follows,

zm = 1.88Fr2/3 (2.11)

Notably, the rise height scaling relations zm ∼ FrRe−1/2 and zm ∼ Fr2/3Re−2/3 for

planar fountains are the same as for their counterpart for round fountains [4, 30, 31].

A summary of the scaling relations rise height in planar fountains has been listed

in Table 2.3. Hunt & Coffey [33] compared their analytical and experimental results

to previous studies, and distinguished the planar fountains into ‘very weak’, ‘weak’

and ‘forced’ depending on the rise height scaling as follows,

• Very weak planar fountains (Fr . 2.3)

• Weak planar fountains (2.3 . Fr . 5.7)

• Forced planar fountains (5.7 . Fr)

which is currently the prevailing classification of planar fountains in terms of Fr [2].
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Table 2.3: Summary of the scaling obtained for the maximum penetration height of
planar fountains, after [10]

Authors Method Scaling Fr and Re Classes

Campbell & Turner [62] Experimental
zm = C ′Fr4/3

C ′ = 1.64− 1.79
5.6 . Fr . 51 Forced

Baines et al. [64]
Experimental
Analytic

zm = 0.65Fr4/3 5 . Fr . 1000 Forced

Zhang & Baddour [94]
Experimental
Analytic

zm = 2.0Fr4/3

-1.12Fr2/3

zm = 0.71Fr2

zm = 2.0Fr4/3

0.62 . Fr < 6.5

0.62 . Fr < 6.5
10 . Fr . 113

325 . Re . 2700

Transition

Forced

Bloomfield & Kerr [70]
Experimental
Analytic

zm = 1.64Fr4/3 5 . Fr . 1000 Forced

Hunt & Coffey [33] Analytic
zm = 1.5Fr2/3

zm = 0.5Fr2

zm = 0.84Fr4/3

Fr . 2.3
2.3 . Fr . 5.7

5.7 . Fr

Laminar
Transition
Forced

Srinarayana et al [92] Numerical

zm ∼ Fr
zm ∼ Fr1.15

zm ∼ Fr4/3

0.25 ≤ Fr ≤ 2.0
2.25 ≤ Fr ≤ 3.0
4.0 ≤ Fr ≤ 10.0

Re = 100

Laminar
Transition
Forced

Srinarayana et al. [91] Numerical

zm ∼ Fr
zm ∼ Fr2

zm ∼ Fr4/3

0.25 ≤ Fr ≤ 1.0
1.25 ≤ Fr ≤ 2.25
2.5 ≤ Fr ≤ 10.0

Re = 100

Laminar
Transition
Forced

Srinarayana et al. [58] Experimental zm ∼ FrRe−1/2
0.47 . Fr . 11.57

2.1 . Re . 121
Laminar

Lin & Armfield [90]
Numerical
Dimensional

zm ∼ Fr
0.2 ≤ Fr ≤ 1.0
200 ≤ Re ≤ 800

Laminar

Lin & Armfield [30]
Numerical
Dimensional

zm ∼ FrRe−1/2

zm ∼ Fr4/3

5 ≤ Re ≤ 200
200 ≤ Re ≤ 800
0.2 ≤ Fr ≤ 1.0

Laminar

Lin & Armfield [31]
Numerical
Dimensional

zm ∼ Fr2/3Re−2/3
0.0025 ≤ Fr ≤ 0.2

5 ≤ Re ≤ 800
Laminar

2.4 Confined fountain

Most of the existing fountain studies have focused on free fountains, although the box

confinement is an innate characteristic of all laboratory experiments. Furthermore,

confined fountains widely exist in natural and engineering applications, such as the
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replenishment of magma chambers, the cold salt water replenishment in solar ponds,

localized cooling air conditioning system in low-energy buildings and the accident

leakage of hazardous gases in or between buildings, as mentioned before. Fountain

confined with boundaries has received much less attention [2, 88] than free fountains.

As mentioned in Chapter 1, in the case of releasing a fountain in a box initially

filled with homogeneous fluid, the impingement of the fountain downflow on the base

creates a horizontally spreading gravity current, subsequently resulting in a lower

dense layer. Continuing the injection of the fountain fluid, the dense layer gradually

deepens, creating a time-dependent density stratification in the box. Obviously,

the behavior of the fountain in such a confined environment is more complicated,

due to a complex coupling between the time-dependent density stratification and

the fountain flow. This kind of confined fountain was first proposed as ‘fountain

filling box’ by Baines et al. [64] as a complement to the ‘plume filling box’ which

was named by Turner [95] to the theory of Baines & Turner [96] describing the flow

produced by convection (jet or plume) from a source in a confined region.

In the past decades, ‘plume filling box’ has received extensive attention because

of its fundamental and application significance (e.g., a fire plume in buildings) [97],

where the focus is on two facets i.e., the dynamics behavior of the plume and the

time evolution of density stratification. It has been found that the turbulent jets

and plumes in confined space can cause strong secondary flows in the environment,

including the strong shear flow (i.e., intrusion) resulted from the plume outflow and

the overturning structure (i.e., wall fountain) created by the impingement of the

intrusion on side boundaries, in the early development stage [97]. Kaye & Hunt [97]

developed theoretical models for a confined pure plume, in which the outflow from

the plume was treated as a forced gravity current with constant buoyancy flux,

whereas the flow developing along sidewall is modeled as a wall fountain. Two

regimes are identified in terms of the box aspect ratio R/H, where R is the radius

and H is the height. For a room with large aspect 0.66 < R/H, the intrusion is

pure gravity current when impinging on the sidewall, and the rise height of the wall
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fountain only depends on H. However, for 0.2.5 < R/H < 0.66, the intrusion is

not fully developed into pure gravity before the impingement, resulting in the wall

fountain height proportional to (R/H)−1/3. Their experimental results also agreed

with these scalings [97]. Notably, for R/H < 0.25, Barnett [98] found that the plume

was prevented from impinging with the ceiling due to the downflow in the ambient,

which is named as ‘blocked’ regimes. Apparently, the secondary flows can in turn

affect the behavior of the plumes and jets. In another experimental study, Jaluria

& Kapoor [99] found that the wall fountain penetration depth only depends on the

Froude number of the outflowing buoyant jet. Therefore, the secondary flows (i.e.,

intrusion and wall fountains) and the development of stratification are significantly

influenced by the source conditions and the geometry of the confinement. For more

studies on ‘plume filling box’, the readers are referred to [97] for a review.

Based on the similarity to ‘plume filling box’, it is reasonable to expect that

the intrusion, wall fountain and time-dependent density stratification resulted from

‘fountain filling box’ are also influenced by the source condition (via Fr and Re)

and the confinement conditions. However, only few studies have been reported,

from the early work by Baines et al. [64] to the latest study about the spanwise

confined round fountain [100]. Baines et al. [64] developed a confined fountain to

infer the entrainment into the fountain, while the effect of confinement has not been

addressed. A similar shortage is also found for the experimental research to obtain

the entrainment for fountains by plumes impinging with density interface. To the

knowledge of the author, only Shrinivas & Hunt [88] took into account of the con-

finement influence on the entrainment for fountain. In their study, the confinement

parameter λi is characterized by the ratio of the interfacial turbulence length scale

to the depth of the upper layer of the ambient (two-layer). For small λi, a weak

secondary flow influences the entrainment not significantly, with the scaling relation

of Qi/Q0 ∝ Fri
2. While for large λi, a strong secondary flow significantly influences

the entrainment, with the scaling relation of Qi/Q0 ∝ Fri
3 [88]. More recently, De-

bugne & Hunt [100] experimentally studied the influence of spanwise confinement
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on turbulent round fountains. Four flow regimes have been identified by them for

the fountain with 0.5 ≤ Fr ≤ 96 and the confinement ratio 2 < W/R0 < 24, where

W is the gap width and R0 is the source radius. To encompasses the effects of con-

finement, a ‘confined’ Froude number Frc ≡ Fr(W/R0)
−5/4 was introduced as the

governing parameter for confined fountains. Notably, the fountain is only spanwise

confined, with no confinement in lateral wise. Lippert & Woods [101] theoretically

and experimentally examined a particle fountain in a confined environment recently,

identifying four regimes for the flow with different source conditions, which is beyond

the scope of this study.

Additionally, a fountain may impinge with, or develop along a boundary. When

a fountain impinges with a flat solid ceiling/floor, an outward intrusion flow is cre-

ated and then detaches from the ceiling/floor under the influence of buoyancy. The

spreading distance of the intrusion along the horizontal surface before the detach-

ment has been studied numerically and experimentally (see, e.g., [10, 93, 102]).

In some circumstances, the impinging surface may be replaced by the interface of

phase or density, see, e.g., [84, 103, 104]. A detailed summary has been given by

Srinarayana et al. [10], and the readers are referred to it for a review.

2.5 Summary

Fountains have received extensive attention from researchers in the past six decades

and the related research continues to be reported nowadays. Most of the existing

studies have focused on the fountains freely propagating and mixing with the am-

bient fluid. While the impinging fountain, wall fountain and confined fountain have

received relatively little attention, particularly confined fountains. Additionally, the

previous studies about the confined fountain or fountain-like flow are all about the

turbulent fountain, whereas studies on the weak fountain filling box (no mater planar

or round) are not reported, to the best knowledge of the author.
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The maximum penetration height is the main parameter to represent the behav-

ior of fountain in the previous studies on fountains. With distinct scaling relations

for the penetration height in terms of Fr, the classification from ‘very weak’ to

‘forced’ fountains has been made for both round and planar fountains. Although

a few studies (e.g., [3, 30, 58]) have examined the effects of Re on the maximum

penetration height, no firm conclusion has been obtained for the role of Re in the

fountain classification. In a confined space, the outflow of the fountain can cause

strong secondary shear flows in the environment, such as the intrusion and over-

turning. Similar to the study of ‘plume filling box’, the intrusion and overturning

can be modeled as purely gravity current and wall fountain [97], which are signifi-

cantly influenced by the confinement. At the early development stage, the behavior

of intrusion for a confined fountain is the same as for a free fountain [105]. An-

other important characteristic of a confined fountain is the time-dependent density

stratification due to the continuous filling by fountain. The existing confined foun-

tain or fountain-like studies have mainly focused on the entrainment process for the

fountain. No clear understanding of the secondary flows (i.e., intrusion and wall

fountain), time-dependent stratification and their coupling in fountain filling box

has been obtained.

Up to date, all the confined fountain (fountain filling box) studies are conducted

experimentally, which allows the researcher to measure the bulk behavior of the

fountain, e.g., the penetration distance and the bulk entrainment into the fountain.

However, the detailed internal dynamics of fountains are difficult to explore by ex-

periments. Numerical simulations, particularly direct numerical simulation (DNS),

enable researchers to reveal the internal structure (density distribution) and the

couplings between the fountain, the secondary flows and the time-dependent strat-

ification. Another advantage offered by numerical simulation is that any values of

the governing parameters (Fr, Re and Pr) can be achieved accurately, although the

computational consumption is still challenging for DNS of high Re.

All of these motivate the current study.
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Methodologies

3.1 Introduction

In this thesis, the behavior of round and planar fountains (from weak to forced) in a

confined space with a homogeneous fluid is studied by a combination of methodolo-

gies, including direct numerical simulation (DNS), scaling analysis and experiments

with high-speed cameras techniques to record the flow visualization (by food dye).

A brief description of the major methodologies and techniques is given in this chap-

ter. To be more specific, the numerical methods will be presented in § 3.2, while

the experimental methods will be described in § 3.3. The technique for the scal-

ing analysis will be presented in subsequent chapters when it is used for pertinent

situations.

3.2 Numerical methods

The physical systems under consideration here are illustrated in Figure 1.8 and

the corresponding computational domain used for the numerical simulations will

be presented introduced in § 4.2 and § 5.2 respectively. For the unsteady confined

39
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weak/transitional fountains considered in this study, the governing equations are

the Navier-Stokes equations and the temperature equation, which are presented

in § 3.2.1, along with the appropriate boundary and initial conditions, for both

planar and round fountains. In § 3.2.2, the Finite Volume Method (FVM) to solve

the governing equations is introduced and a brief description of the commercial

computational fluid dynamics (CFD) software package ANSYS Fluent 17 is also

given. The discretization of governing equations and solution strategy in the CFD

modelling are detailed in § 3.2.3 and § 3.2.4, respectively. In § 3.2.5, the setup of

Fluent to carry out the simulation is briefly presented.

3.2.1 Governing equations, initial and boundary conditions

The governing equations for fountains considered in this thesis are Navier-Stokes

equations and temperature equation with the Oberbeck-Boussinesq approximation,

which assumes that density ρ(T ) has a linear relation with temperature T solely in

the buoyancy term, as follows,

ρ(T ) = ρ(P0, T0)[1− β(T − T0)]. (3.1)

where P0 denotes the reference pressure at the reference temperature T0. The ap-

proximation also assumes that the changes of other properties of the fluid with tem-

perature are negligible, under the condition that the relative density ratio (ρ(T ) −

ρ(P0, T0))/ρ(P0, T0) is trivial. Under such a condition, a fountain is called a Boussi-

nesq fountain. Otherwise it is a non-Boussinesq fountain. However, a considerable

discrepancy exists in the previous studies to determine the critical value for the rel-

ative density ratio. For positively buoyant jet, Crapper & Baines [106] identified the

Oberbeck-Boussinesq assumption valid up to (ρ(T ) − ρ(P0, T0))/ρ(P0, T0) ≈ 0.05,

which is confirmed by the forced plume study conducted by Ai et al. [107]. Whereas

for fountain flow, Baddour & Zhang [108] suggested (ρ(T )− ρ(P0, T0))/ρ(P0, T0) ≈
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0.003 as the critical value for distinguishing Boussinesq and non-Boussinesq foun-

tains. To ensure the Oberbeck-Boussinesq approximation is valid for this study, the

relative density ratio smaller than 0.0009 is used.

3.2.1.1 Confined planar fountains

For a two-dimensional planar fountain in a confined homogeneous environment,

the two-dimensional incompressible Navier-Stokes and temperature equations are

written in the Cartesian coordinates (X, Y ) as follows,

∂U

∂X
+
∂V

∂Y
= 0, (3.2)

∂U

∂t
+
∂(UU)

∂X
+
∂(V U)

∂Y
= −1

ρ

∂P

∂X
+ ν

(
∂2U

∂X2
+
∂2U

∂Y 2

)
, (3.3)

∂V

∂t
+
∂(UV )

∂X
+
∂(V V )

∂Y
= −1

ρ

∂P

∂Y
+ ν

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+ gβ(T − T0), (3.4)

∂T

∂t
+
∂(UT )

∂X
+
∂(V T )

∂Y
= κ

(
∂2T

∂X2
+
∂2T

∂Y 2

)
. (3.5)

where U and V are velocity components in the X and Y directions, T is temperature,

P is pressure, t is time, and κ and ν are the thermal diffusivity and the kinematic

viscosity of the fluid, respectively. These governing equations can be further written

in the following dimensionless form,

∂u

∂x
+
∂v

∂y
= 0, (3.6)

∂u

∂τ
+
∂(uu)

∂x
+
∂(vu)

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
, (3.7)

∂v

∂τ
+
∂(uv)

∂x
+
∂(vv)

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
+

1

Fr2
θ, (3.8)

∂θ

∂τ
+
∂(uθ)

∂x
+
∂(vθ)

∂y
=

1

RePr

(
∂2θ

∂x2
+
∂2θ

∂y2

)
, (3.9)
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where x and y are the dimensionless coordinates, u and v are the dimensionless

velocity components in the x and y directions, and τ , p and θ are the dimensionless

time, pressure and temperature, respectively, which are made dimensionless by their

respective scales as follows,

x =
X

X0

, y =
Y

X0

, u =
U

W0

, v =
V

W0

,

τ =
t

X0/W0

, p =
P

ρW 2
0

, θ =
T − Ta
Ta − T0

.

 (3.10)

in which X0, W0, and T0 are the half-width, the average vertical velocity and the

temperature of the ejected fountain fluid at the source slot, respectively, whereas

Ta is the temperature of the ambient fluid at the before the commencement of the

fountain flow. With using X0 and W0 as the reference length and velocity, a reference

time is determined as X0/W0, which is used for the non-dimensionalization of τ as

above. Re, Fr and Pr are the Reynolds, Froude and Prandtl numbers as expressed

in Eqs.(1.1), (1.2) and (1.3).

The appropriate initial and boundary conditions, as presented in Figure 1.8, are

as follows,

u = v = 0, θ = 0, at all x, y and τ < 0 (3.11)

and at τ ≥ 0,

u = 0,
∂v

∂x
= 0,

∂θ

∂x
= 0 on x = ±L/X0, 0 ≤ y ≤ H/X0;

u = 0, v = 1, θ = −1, on − 1 ≤ x ≤ 1, y = 0;

u = 0, v = 0,
∂θ

∂y
= 0, on 1 < x ≤ L/X0, y = 0;

u = 0, v = 0,
∂θ

∂y
= 0, on − L/X0 ≤ x < −1, y = 0;

∂u

∂y
=
∂v

∂y
=
∂θ

∂y
= 0, on − L/X0 ≤ x ≤ L/X0, y = H/X0.



(3.12)
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3.2.1.2 Confined round fountains

For a three-dimensional round fountain in a confined homogeneous ambient fluid, the

Navier-Stokes and temperature equations with the Oberbeck-Boussinesq assumption

can be written in dimensionless form in cylindrical coordinates (r, ϕ, z) as follows,

1

r

∂(rur)

∂r
+

1

r

∂uϕ
∂ϕ

+
∂uz
∂z

= 0, (3.13)

∂ur
∂τ

+ ur
∂ur
∂r

+
uϕ
r

∂ur
∂ϕ
−
u2ϕ
r

+ uz
∂ur
∂z

=

− ∂p

∂r
+

1

Re

[
1

r

∂

∂r

(
r
∂ur
∂r

)
− ur
r2

+
1

r2
∂2ur
∂ϕ2

− 2

r2
∂uϕ
∂ϕ

+
∂2ur
∂z2

]
, (3.14)

∂uϕ
∂τ

+ ur
∂uϕ
∂r

+
uϕ
r

∂uϕ
∂ϕ

+
uruϕ
r

+ uz
∂uϕ
∂z

=

− 1

r

∂p

∂ϕ
+

1

Re

[
1

r

∂

∂r

(
r
∂uϕ
∂r

)
− uϕ
r2

+
1

r2
∂2uϕ
∂ϕ2

− 2

r2
∂ur
∂ϕ

+
∂2uϕ
∂z2

]
, (3.15)

∂uz
∂τ

+ ur
∂uz
∂r

+
uϕ
r

∂uz
∂ϕ

+ uz
∂uz
∂z

=

− ∂p

∂z
+

1

Re

[
1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2
∂2uz
∂ϕ2

+
∂2uz
∂z2

]
+

1

Fr2
φ, (3.16)

∂θ

∂τ
+ ur

∂θ

∂r
+
uϕ
r

∂θ

∂ϕ
+ uz

∂θ

∂z
=

1

RePr

[
1

r

∂

∂r

(
r
∂θ

∂r

)
+

1

r2
∂2θ

∂ϕ2
+
∂2θ

∂z2

]
, (3.17)

where r and z are made dimensionless by X0 and ur and uz, which are the di-

mensionless velocity components in the r and and z directions, which are made

dimensionless by W0, respectively. ϕ (in radiant) is itself dimensionless. For two-

dimensional round fountain cases, the flow is axisymmetric and uϕ is zero.

The following initial and boundary conditions are for round fountains, as also

presented in Figure 1.8,

u = v = 0, θ = 0, at all r, ϕ, z and τ < 0 (3.18)
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and at τ ≥ 0,

ur = uϕ = uz = 0, on r = 1, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ H/X0;

ur = uϕ = 0, uz = 1, θ = −1, on 0 ≤ r ≤ 1, 0 ≤ ϕ ≤ 2π, z = 0;

ur = uϕ = uz = 0,
∂θ

∂z
= 0, on 1 < r ≤ R/X0, 0 ≤ ϕ ≤ 2π, z = 0;

∂ur
∂z

=
∂uϕ
∂z

=
∂uz
∂z

=
∂θ

∂z
= 0, on 0 ≤ r ≤ R/X0, 0 ≤ ϕ ≤ 2π, z = H/X0.


(3.19)

For all direction numerical simulations in this study, the heights of both the

rectangular box for planar fountains and the cylinder container for round fountains

are set high enough to eliminate the influence of the top boundary on the fountain

behavior.

3.2.2 Numeral techniques

The above governing equations must be solved numerically to obtain approximate

solutions. There are a number of commercial CFD packages available to do so, such

as, ANSYS Fluent, ANSYS CFX, COMSOL Multiphysics, OPENFOAM, STAR

CCM+, FLOW3D and PHOENICS etc. Currently ANSYS Fluent is the most pop-

ular. In this thesis, all numerical simulations are carried out by using ANSYS Fluent

17.

There are two solvers available in ANSYS Fluent for the simulation, namely

the pressure-based solver, originally developed for low-speed incompressible flows,

and density-based solver, originally developed for high-speed compressible flows.

However, both solvers have experienced significant modifications and been extended

to solve a wider range of flows than their traditional or original intent. For the

pressure-based solver, the velocity filed is obtained from the momentum equations

and the pressure field is determined by solving a pressure or pressure correction

equation which is derived from the continuity equation. This solver is selected in

this thesis.



Methodologies 45

In ANSYS Fluent, the finite volume method is employed to solve the govern-

ing equations. The general procedure for the finite volume method consists of the

following steps: firstly, the whole computational domain is divided into numerous

discrete control volumes to form a computational mesh, the governing equations

are then discretized on each control volume using different schemes to convert the

partial differential equations into algebraic equations, and subsequently these dis-

cretized equations are solved using solvers to give the solutions, which generally

require numerous iterations to ensure the accuracy of the solutions. A more specific

description of the procedure is shown in Figure 3.1 where the solution algorithm is

presented (see ANSYS Fluent Theory Guide [9] for details).

Figure 3.1: The flow chart of the pressure-based solution method with Segregated algo-
rithm

3.2.3 Discretization of governing equations

The governing equations are discretized on finite control volumes. The discretization

is demonstrated here using the two-dimensional governing equations Eqs.(3.2)-(3.5)
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for plane fountains. These governing equations can be represented by the following

equation for a general parameter φ,

∂(ρφ)

∂t
+
∂(ρUiφ)

∂Xi

= Γφ
∂2φ

∂Xi
2 + Sφ, (3.20)

where Γφ denotes diffusion coefficient for φ and Sφ is the source term and i = 1

for X and i = 2 for Y . In the above equation, the first term (∂(ρφ)/∂t) and the

second term (∂(ρUiφ)/∂X) on the left side are the transient term and the convection

term, and the first term on the right side (Γφ∂
2φ/∂Xi

2) is the diffusion term. By

assigning different values to φ, Γφ and Sφ, this general equation can represent any

of Eqs.(3.2)-(3.5). The equation reduces to the continuity equation (Eq.(3.2)) when

φ = 1, Γφ = 0 and Sφ = 0. Eq.(3.3) is obtained by assigning φ = U , Γφ = ν and

Sφ = 0, Eq.(3.4) is obtained by assigning φ = V , Γφ = ν and Sφ = gβ(T − T0), and

Eq.(3.5) is obtained by assigning φ = T , Γφ = κ and Sφ = 0.

As illustrated in Figure 3.2, a two-dimensional staggered mesh consists of nu-

merous control volumes represented by a box, with ‘e’, ‘s’, ‘w’ and ‘n’ denoting the

east, south, west and north sides, respectively. The control volume is represented

by ‘P ’ which is located at its center, while its four neighboring control volumes are

denoted by ‘E’ (for east), ‘S’ (for south), ‘W ’ (for west), and ‘N ’ (for north), all of

them are also located their individual center.

Figure 3.2: The sketch of a two-dimensional mesh and control volumes (after [8]).
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With finite volume method, the general equation Eq.(3.20) is integrated over

each control volume as follows,

∫
V

∂(ρφ)

∂t
dV +

∫
V

∂(ρUiφ)

∂Xi

dV =

∫
V

Γ
∂2φ

∂Xi
2dV +

∫
V

SdV. (3.21)

By using the Gauss Divergence Theorem, the above equation can be converted into

the following expression,

∫
V

∂(ρφ)

∂t
dV +

∫
S

ρUiφnidS =

∫
S

Γ
∂φ

∂Xi

nidS +

∫
V

SdV. (3.22)

where ni represents the Cartesian component of the outward normal surface vector.

In this thesis, the 3rd-order QUICK scheme and the 2nd-order central difference

scheme are selected for the discretization of the convection and diffusion terms,

respectively, while the 2nd-order backward scheme is used for the time integration.

By using the 2nd-order central difference scheme, the discretization of the diffu-

sion term can be written as follows:

∫
S

Γ
∂φ

∂Xi

nidS =
ΓAe

∆XPE

(φE−φP )− ΓAw
∆XPW

(φP−φW )+
ΓAn

∆XPN

(φN−φP )− ΓAs
∆XPS

(φP−φS).

(3.23)

where ∆XPE, ∆XPW , ∆XPN , and ∆XPS are the distances between ‘P ’ and ‘E’,

‘W ’, ‘N ’ and ‘S’, respectively.

The convection term is the integration of the fluxes through the four cell faces

surrounding the control volume, which can be represented as,

∫
S

ρUiφnidS = ρueAeφe − ρuwAwφw + ρunAnφn − ρusAsφs. (3.24)

This equation integrates the values of φ at the cell faces of the control volume.

However, the solutions for variables store at the centre of the control volume (i.e.,

at P , E, W , N , and S) in ANSYS Fluent. Therefore, the values of φ at the faces

need to be approximated by the values at the center of the control volume by using
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an ‘advection scheme’. Due to the highly nonlinear nature of this term, a high order

discretization scheme must be used to ensure accuracy. The most popular one is

the third-order QUICK scheme, which is thus selected in this thesis to discretize the

convection term.

Figure 3.3: The sketch of three neighbouring control volumes to illustrate the QUICK
scheme for convection term (after [9]).

The QUICK scheme using a three-point upwind weighted quadratic interpolation

to determine the face vales. As shown in Figure 3.3, the variable value at face e can

be determined by the following equation,

φe = α[
Sd

Sc + Sd
φP +

Sc
Sc + Sd

φE] + (1− α)[
Su + 2Sc
Su + Sc

φP −
Sc

Su + Sc
φW ]. (3.25)

where α is factor depending on the scheme. The traditional QUICK scheme is

corresponding to α = 1/8.

The discretization process above only considers the steady terms in the governing

equations, which is for steady simulations. However, in this thesis the simulation is

for transient flow behavior. Therefore, the governing equations must be discretized

in both space and time. The spatial discretization for transient governing equations

is identical to the process for steady-state equations above. While the temporal

discretization involves the integration of every term in the differential equations

over a time step ∆t. The integration of the transient terms is straight forward. A

generic expression of the time progression of the quantity φ is assumed by,

φ

t
= F (φ). (3.26)
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By using a backward difference scheme with second-order discretization and implicit

time integration, the discretization of the transient equation is given as

3φn+1 − 4φn + φn−1

2∆t
= F (φn+1). (3.27)

where n+ 1, n and n− 1 denote the next time level (t+ ∆t), current time level (t)

and the previous time level (t−∆t), respectively.

In this section, only the basic formulation of the finite volume method used in

ANSYS Fluent 17.0 is briefly presented. The reader is referred to the user manual of

ANSYS Fluent 17, or in some related CFD books, e.g., [109–111], for more detailed

information.

3.2.4 Solution Strategies

3.2.4.1 Solving the Linear Equations

As illustrated above, the discretization converts the non-linear partial differential

equations into linear ordinary differential equations. The discretized transport equa-

tion contains the unknown scalar variable φP at the centre of the control volume

and the unknown values at the cell faces between the surrounding cells, which can

be written as follows,

aPφ =
∑
nb

anbφnb + b. (3.28)

where the subscript nb refers to neighboring cells, and aP and anb represent the

linearized coefficients for φP and φnb, respectively. The number of neighbors for

each cell is decided by the mesh topoloy, which is typically equal to the number of

faces enclosing the cell except for the boundary cells. The discretization for each

cell is therefore produces a set of algebraic linear equations with a sparse coefficient

matrix, which will be solved through a point implicit (Gauss-Seidel) linear equation



50 Chapter 3

solver in conjunction with an algebraic multigrid (AMG) method in ANSYS Fluent.

The reader can find detailed information from the ANSYS Fluent User’s Guide [9].

3.2.4.2 Controlling the iterative process

It is essential to control the change of the scalar variable φ during the iterative

solution process by ANSYS Fluent to ensure the solution converges. This is usually

done by the under-relaxation of variables (also named as explicit relaxation), through

which the change of variables φ produced during each iteration is reduced. The new

value of variable φ in a cell can be determined through the following simple form in

terms of the old value φold and the computed change in the variable ∆φ,

φ = φold + a∆φ. (3.29)

where a is the under-relaxation factor.

3.2.4.3 Convergence

The success and efficiency of the iterative calculation depend on an appropriate

convergence criterion. Since the errors from the previous time step will transfer

to the next step in a numerical simulation of unsteady flows, without appropriate

convergence criterion setting, the solution may not converge, even resulting in a

failure in simulating the real physical flow.

However, there is no universal criterion for judging convergence. For most types

of flows, examining the residual levels can be used for the convergence judgment.

The residual Rφ computed by a pressure-based solver in ANSYS Fluent is defined as

the imbalance in Eq.(3.28) summed over all control volumes, which can be written

as

Rφ =
∑
cellsP

|
∑
nb

anbφnb + b− aPφP | . (3.30)
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where the subscripts denote the same parameters as those of Eq.(3.28). However,

using the residuals defined by Eq.(3.30) is difficult, since no scaling is employed, for

example, there is no inlet flow rate of φ for natural convection in a room to compare

the residual. Therefore, ANSYS Fluent uses a scaling factor representative of the

flow rate of φ to scale the residual, which is defined as follows,

Rφ =

∑
cellsP |

∑
nb anbφnb + b− aPφP |∑
cellsP | aPφP |

. (3.31)

While for the momentum equations, the scaling factor is changed by replacing the

denominator term aPφP with aPvP , where vP is the magnitude of the velocity at

cell P . In this thesis, residual levels are selected as the indicator of convergence.

Notably, in some conditions residuals may be not appropriate to be the criterion.

In such cases, monitoring relevant integrated quantities (e.g., drag or heat transfer

coefficient) as a complement to examining residual levels is useful to judge conver-

gence. Details about the convergence criterion selection can be found in the ANSYS

Fluent User’s Guide [9].

3.2.5 Fluent setup

Again the two-dimensional planar fountain is used here as an example to illustrate

the procedure for the setup in Fluent. A new fluent fluid flow analysis system can

be created from the ANSYS Workbench by selecting Fluid Flow (FLUENT)

under Analysis Systems listed on the left as shown in Figure 3.4. The project

consists of five cells, i.e., Geometry, Mesh, Setup, Solution and Results. In this

example, a non-uniform mesh document created by ICEM CFD software is directly

imported into the Mesh cell. The detailed information of the non-uniform mesh

will be presented in Chapter 4. By double-clicking the Setup cell in the Project

Schematic, ANSYS Fluent 17 will be started with displaying Fluent Launcher, as

shown in Figure 3.5.
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Figure 3.4: Starting the Fluid Flow (FLUENT) analysis system in the ANSYS Work-
bench.

The Fluent Launcher allows users to decide the version of ANSYS Fluent to use,

based the geometry and the processing capabilities of the computational source.

Here ANSYS Fluent automatically set the Dimension as 2D based on the mesh

for the current system. To achieve high accuracy calculation, Double Precision is

selected under Options . Parallel is selected with setting Number of Processes

as 8 for Processing Options to enhance the calculation efficiency for the comput-

ers used in the numerical simulation in this thesis. Then click the OK button, a

graphical user interface (GUI) of Fluent is launched, as shown in Figure 3.6. A nav-

igation pane is on the left part of the GUI, including a list of items i.e., Problem

Setup, Solution and Results. The setup of these items can be achieved through

an individual task page which will be shown by double-clicking the corresponding

item. The functions of the region of GUI are as shown in Figure 3.6. The Fluent

Launcher can also be directly started from the Windows Start menu.
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Figure 3.5: Setting up of the Fluent Launcher.

3.2.5.1 Problem setup

General

A task pane appears by clicking General in the navigation pane as shown in

Figure 3.6, where the mesh-related activities and solver options are listed. Check

is used to report the results of the mesh as shown in the console, where the min-

imum volume should not be negative, otherwise ANSYS Fluent cannot begin the

calculation. Additionally, the quality of the mesh plays a considerable role in the

calculation accuracy and stability of the numerical simulation, which can be checked
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Figure 3.6: The graphical user interface (GUI) of Fluent and General setup.

through Report Quality. The result of the mesh quality is shown in the console as

shown in Figure 3.6. Pressured-Based is selected for Solver in this thesis, while

Absolute and Transient are filled under Velocity Formulation and Time, re-

spectively. Gravity option is activated with the gravitational acceleration set as

−9.81.

Models

There are a series of modelling options available in ANSYS Fluent 17. By click-

ing Models in the navigation pane, a list of models is shown in the task page

(Figure 3.7). In this thesis, Energy is turned on by double-clicking the Energy

item and enabling the Energy Equation. Additionally, Laminar is selected as

Viscous model for the DNS simulation.

Materials



Methodologies 55

Figure 3.7: The models setup in ANSYS Fluent.

The properties of the fluid for the simulation is quantified by the Materials

task pane. In this thesis, the fountain is created by using water. By clicking the

Create/Edit button, a dialog box appears as illustrated in Figure 3.8. The name

of the fluid is filled as water, and the detailed properties including the Density,

Specific Heat, Thermal Conductivity, Viscosity and Thermal Expansion

are filled as shown in the Figure 3.8. Then the Change/Create button is clicked

to add the defined water in Materials options. For some fluid, it can be directly

imported from Fluent Database, however, some modifications may be needed to

satisfy the requirement of the simulation.

Cell Zone Conditions
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Figure 3.8: The materials setup in ANSYS Fluent.

To set up the cell zone conditions for the simulation, Fluid in the zone list in

the Cell Zone Conditions task page is selected and then the Fluid dialog box

is opened by clicking the Edit button. In the Fluid dialog box, the material is

changed to Water which is created by material setting as shown in Figure 3.9.

Then in the Operating Conditions dialog, by clicking Operating Conditions

in the Cell Zone Conditions task page, the Operating Temperature is filled

as 300, while other parameters remain as default value.

Boundary Conditions

The boundary conditions described above are implemented with the Boundary

Conditions task pane. In the task pane, a list of boundaries is listed under the

Zone, which is defined during the creation of the mesh. To set a specific boundary

condition, the boundary name should be selected under the Zone first, and then the

boundary condition desired is chosen in the Type list and the parameter values are

edited through clicking the Edit button. For example, the fountain source boundary

is set as velocity-inlet and the parameters are filled as shown in Figure 3.10.

Similarly, the remaining bottom and sidewall are set as wall with no-slip condition,

while outflow is selected for the top surface boundary.
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Figure 3.9: The cell zone conditions setup in ANSYS Fluent.

Figure 3.10: Boundary conditions setup in ANSYS Fluent.
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3.2.5.2 Solution control

The solution parameters are set up using the the task pages listed under the Solu-

tion in the navigation pane.

Solution Methods

The task pane is opened by clicking Solution Method under the Solution in

the navigation pane. In this task pane, SIMPLE scheme is selected for Pressure-

Velocity Coupling, while Green-Gauss Cell Based, PRESTO! and QUICK

methods are chosen for the spatial discretization of Gradient, Pressure, and Mo-

mentum and Energy. Second Order Implicit method is used for Transient

Formulation, as shown in Figure 3.11.

Figure 3.11: Solution methods setup in ANSYS Fluent.

Solution Control
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As mentioned above, the under relaxation factor is used to control the varia-

tion of scalar quantity in equations set during the iteration process. The Under-

Relaxation Factors are set in the Solution Controls task pane, which remain

the default values in this thesis as shown in Figure 3.12.

Figure 3.12: Solution controls setup in ANSYS Fluent.

Monitors

There are four types of monitors under the Monitors task page, including

Residuals, Statistic and Force Monitors, Surface Monitors, Volume Mon-

itors and Convergence Monitors. As discussed above, the residual levels play

an important role to judge the convergence of the iterative calculation. Here, the

residual values as the convergence criterion are set in Residual Monitors dialog

pane, as shown in Figure 3.13.

Surface Monitors can be used to save any desired data in every time step or

each iteration. In this thesis, a number of variables, such as the fountain penetration

height, the intrusion front, the wall fountain height, need to be recorded for every

step for the analysis of the fountain behavior. Figure 3.13 demonstrates how to

use Surface Monitors to create a new monitor the intrusion front. The Surface
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Figure 3.13: Monitors setup in ANSYS Fluent.

Monitors dialog box is activated by click Create button under the task pane. Then

the Name is filled with x-m and the Options is set as illustrated in the Figure 3.13.

The maximum intrusion front defined by specific temperature is the variable desired

to be monitored, resulting in the setting of Report Type, Field Variable and

Surfaces. The data will be written in the computer following the specific route in

File Name.

Solution Initialization

The solution needs to be initialized before the simulation starts and set up the

Surface Monitors. In this thesis, the ambient fluid is initially homogeneous with a

specific temperature. Hence, it can be initialized by the clicking the Initialize but-

ton under the Initialization Methods task pane with keeping the default setting

for Standard Initialization as shown in Figure 3.14.

Calculation Activities
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Figure 3.14: Solution initialization setup in ANSYS Fluent.

Calculation Activities enable ANSYS Fluent to save the simulation data auto-

matically, which is important for the data post process and reduce the risks threat-

ening the data safety, such as unexpected power outage or crash of the software.

The setup of Calculation Activities can be shown by using filling 500 in the di-

alog of Autosave Every (Time steps) as shown in Figure 3.15 as an example,

which commands ANSYS Fluent to save the data document every 500 time steps.

Similarly, the task pane of Automatic Export and Solution Animations can

be used for automatically exporting data and making simulation animation.

Run Calculation

Run Calculation task pane as shown in Figure 3.16 controls the setting of

the Time Step Size and the Number of Time Steps. Additionally, the Max

Iterations/Time Step decides the maximum number of the iterations for each

time step. The setting for the example is illustrated in Figure 3.16. Then the

simulation can start with clicking the Calculate button.
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Figure 3.15: Calculation Activities setup in ANSYS Fluent.

Figure 3.16: Run calculation setup in ANSYS Fluent.
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3.2.5.3 Results

After the simulation has been finished, the numerical results can be processed and

analyzed by the tools under Results in the navigation pane. Graphics, Anima-

tions, Plots and Reports can be used to create different contours, animations,

plots, etc. Figure 3.17 illustrates the procedure to create a temperature contour of

the two-dimensional calculation domain. Double-clicking the Contours under the

Graphics and Animations task pane, the Contours dialog box appears where

Static Temperature is selected as the contour, Levels is filled with 60, while other

parameters remain their individual default setting. Then, clicking the Display but-

ton will show the temperature contour. The Colormap button can be used for the

modification of the contour display as shown in Figure 3.17.

In this section, only a brief description of the procedure used in ANSYS Fluent

is given. For more detailed information about the setup and data post process, the

readers are referred to ANSYS Fluent User’s Guide [112].

Figure 3.17: Results setup in ANSYS Fluent.
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3.2.5.4 Example of numerical simulation setup

The following Table 3.1 shows the set up of the numerical model using the planar

fountain of Fr = 1.0, Re = 200, Pr = 7 and λ = 20 as an example, with other

parameters are set as default.

Table 3.1: The setup of the two-dimensional numerical simulation for the planar fountain
of Fr = 1.0, Re = 200, Pr = 7 and λ = 20

General

Solver type
Velocity Formulation
Time
2D space

Gravity (m/s2)

Pressure-Based
Absolute
Transient

Planar
9.81

Models
Energy
Viscous

On
Laminar

Materials

Density (kg/m3)
Specific Heat (J/kgK)
Thermal Conductivity (w/mK)
Viscosity (kg/ms)
Thermal Expansion Coefficient (1/K)

996.6
4179

0.510435
0.000855
0.000276

Cell Zone Conditions Operating Temperature (K) 300

Boundary Conditions
velocity-inlet:

Velocity mangnitude (m/s)
Temperature (K)

outflow
wall

0.011438892
296.7781999

no-slip

Solution Methods

Scheme
Gradient
Pressure
Momentum
Energy
Transient Formulation

SIMPLE
Green-Gauss Cell Based

PRESTO!
QUICK
QUICK

Second Order Implicit

Monitors (Residual)

continuity
x-velocity
y-velocity
energy

1e−5
1e−6
1e−6
1e−6

Solution Initialization Standard Initialization Standard Initialization

Run Calculation
Time Step Size (s)
Max Iteration/Time Step

0.005
200
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3.3 Experimental methods

In this thesis, the high-speed camera technique is used in the experiments to in-

vestigate the bulk dynamics behaviour of confined round fountains (from weak to

forced) in a homogeneous fluid. Through the experiments, the parameters such

as the intrusion front, the stratification surface level and the fountain penetration

height are obtained. This section provides a brief description of the general design of

the experiment and the major experimental apparatus. Additionally, the technique

to process and analyze the data and error is also introduced.

3.3.1 Design of experiment

Experiments were conducted to investigate the bulk behavior of the round fountain

filling box flow. Figure 3.18 schematically illustrates the design of the experimental

system which consists of (1) a saline reservoir tank containing the colored saline of

specific density, (2) a submersible pump, (3) a pipe system with a series of valves for

flow control, (4) a needle valve and flow meter unit, (5) a round nozzle, (6) a testing

cylindrical Perspex tank initially filled with fresh water, (7) the fountain flow to be

recorded, (8) back lights, (9) cameras including two high-speed cameras and a video

camera. The saline water is transported by the pump to the testing tank through

the pipe system and the round nozzle, creating a round fountain flow visualized

by food dye. The initial behavior of the fountain is then recorded by high-speed

cameras, while a relatively long-term behavior is recorded by the video camera. A

detailed description of the apparatus will be given in the next section.

The experiments cover a range of Fr and Re with 1.0 . Fr . 15.0 and 100 .

Re . 2000, where the Re and Fr are determined by adjusting the injection flow rate

(via the needle valve and flow meter unit), changing the density difference between

the source and ambient fluid through adjusting the salt content in the saline solution

and using nozzles with different diameters. The range of Fr covers round fountains
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Figure 3.18: Schematic illustration of the experiment system.

from ‘weak’ to ‘highly forced’ according to the classification mentioned in Chapter

1, which can not only be compared with the numerical results, but also allow for a

complete analysis of confined round fountains.

3.3.2 Experimental apparatus

Figure 3.19 is the picture of the current experimental setup used in this thesis, which

shows the main apparatus for the experiments.

Saline water reservoir

A 600 Liters black polyethylene container as shown in Figure 3.20 is used as

the saline water reservoir. In the tank, a Davey D15A submersible sump pump

(maximum total head, 12 meters) is installed to fully mix freshwater and salt to

produce uniform saline water and pump the saline to the fresh water tank through

the pipe to create an upward fountain flow. In addition, the saline tank is mounted

on a pre-fabricated frame and fastened tightly to avoid vibration during the pump

operations.

Flow meter



Methodologies 67

Figure 3.19: Picture of the testing experiment system used, including (1) a saline reser-
voir, (2) a pipe system, (3) a needle valve and flow meter unit, (4) a round nozzle, (5) a
Perspex testing tank, (6) back lightting, (7) cameras, (8) laptops, and (9) density meter.

As shown in Figure 3.21, a Dwyer needle valve and flow meter (RMB-83D-SSV)

is used to adjust and measure flow rate to achieve the specific Froude and Reynolds

numbers. The flow meter allows for flow control and measurement and is capable of

measuring up to 1.2L ·min−1.

Round nozzle

The round nozzles were 3D printed with the diameter from 1.0 mm to 7.0 mm

in 0.5 mm increments. As an example, Figure 3.22 shows three 3D round nozzles,

where a black rubber O-ring is with the nozzle for sealing when fitted on the testing

tank. In this study, the nozzles of 4mm, 5mm, 6mm and 7mm are selected to achieve

the range of the Froude number, Reynolds number and confinement scale.

Perspex cylindrical testing tank

As shown in Figure 3.23, a transparent cylindrical container of perspex is selected

as the testing tank to allow a full view of the fountain behavior. The container is of

390 mm inner radius, 400 mm outer radius and 1000 mm length.
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Figure 3.20: Picture of saline reservoir.

Density meter

The fresh water used in the experiment is from the Townsville drinking water

supply, while the saline water is made by dissolving salt in the fresh water. The

density difference between the fresh and saline water plays an important role in

determining the Froude number. Therefore, the density of the two fluid needs to be

measured during the experiment by density meter. The density meter used here is

a Mettler Toledo Densito 30PX density meter (accuracy: 0.001 g/cm3), as shown in

Figure 3.24. When measuring the density, the sampling tube is placed into the fluid,

then the trigger is pulled and the value is subsequently displayed on the screen.

High-speed cameras
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Figure 3.21: Picture of needle valve and flow meter.

Figure 3.22: Picture of 3D printed round nozzles.

As shown in Figure 3.25, two Photron FASTCAM Mini UX100 High-Speed Cam-

eras (HSC) are selected to capture the details of the fountain behavior. These HSCs

are a compact option, allows 1280 × 1024 pixels from 24 fps to 800, 000 fps with

reduced resolution. These two HSCs are used to record the images of the same

fountain but focus on different locations separately.
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Figure 3.23: Picture of perspex testing tank.

Figure 3.24: Picture of Mettler Toledo Densito 30PX density meter.

The ‘End Trigger’ model is set for the HSCs during the experiment, which means

the HSCs will continuously record the images but only the data in a specific period
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Figure 3.25: Picture of Photron FASTCAM Mini UX100 High-Speed Camera.

before clicking the trigger will be saved in the memory. 1280× 1024 pixels and 500

fps are selected to enable 17.468 seconds of recording, which allows to cover the

development of the intrusion.

Video camera

Since the recording duration of HSCs are limited, a video camera is used to record

the entire development of the filling process. The record provides the information on

stratification surface level and fountain penetration height. The SONY HDR-PJ810

video camera shown in Figure 3.26 can record images at 1280× 1024 pixels and 250

fps.

3.3.3 Analysis techniques and errors

In this thesis 40 individual fountain filling box flows have been recorded. The foun-

tain penetration height and intrusion front are measured by the Photron FASTCAM

Viewer (PFV) software after the experiment.
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Figure 3.26: Picture of SONY HDR-PJ810 Video camera.

3.3.3.1 Photron FASTCAM Viewer (PFV) software

Using the measurement of the intrusion front as an example, here a brief description

about the procedure to used the PFV software is presented.

• Open the PFV file of a case using the PFV software, as shown in Figure 3.27.

Figure 3.27: Window of Photron FASTCAM Viewer.
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• Use the scale tool to relate the image to the corresponding actual distance.

As shown in Figure 3.28, the side ruler is focused on by using the zoom tool.

Then a scale calibration window is opened by clicking the scale tool button.

Using Calibrate distance of between 2 points, two points on the ruler is

selected, corresponding to 10 mm distance. This step may be repeated several

times to obtain a trustful scale.

Figure 3.28: PFV - scale calibration.

• Play the video on until the intrusion begins.

• Use the ruler tool to measure the distance between the intrusion front and the

nozzle edge at every 250 fps, as shown in Figure 3.29.

• Then the data is processed by the Origin software to get the time series of

the intrusion front and the intrusion rate, with a raw result as illustrated in

Figure 3.30.

The similar process is used for the data of fountain penetratin height and the

intrusion front head thickness.
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Figure 3.29: PFV - measurement of the intrusion front.

Figure 3.30: The time series of intrusion front processed by Origin.

3.3.3.2 Errors

Random and bias errors occurred during the experiment have a significant influence

on the accuracy of the results. Before the experiments, a quantitative reliability

assessment is carried out on the flow meter to ensure the reliability of the result.

The following procedure is used to assess the flow meter,

• The pump is turned on to allow to circulate the saline in the tank and clean

the bubbles in the pipe;
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Table 3.2: Results from flow meter assessment [11].

Flow rate record Time Measured volume Calculated Flow rate Error

[L/min] [s] [mL] [L/min] (%)

0.4 60 405 0.405 1.25%

0.6 60 610 0.61 1.67%

0.8 60 810 0.81 1.25%

1.0 60 990 0.99 1.0%

1.2 30 610 1.22 1.67%

• The needle valve and flow meter is set to 0.4 L/min;

• Fill the saline into a scaled container and start the timer at the same time;

• The filling lasts for a minute and the volume of the saline is measured, thus

the flow rate is calculated;

• This is repeated for other flow rates, as listed in the Table 3.2.

Table 3.2 shows a fair agreement between the flow meter reading and the exper-

imentally calculated flow rate.

Additionally, to reduce the error source, some qualitative reliablity processes are

applied during the experiment, including levelling both of the testing tank and HSCs

using surface level, eliminating or minimizing air bubbles from the systems etc.
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3.4 Summary

In the first part of this chapter, the governing equations and initial and boundary

conditions are presented for the confined plane and round fountains in homogeneous

environment. The finite volume method using by ANSYS Fluent 17 to solve these

equations is then briefly described. The governing equations are discretized on

a non-uniform mesh, with the standard 2nd-order central difference schemes used

for the viscous and divergence terms and the 3rd-order QUICK scheme used for

the advective terms. The 2nd-order Adams-Bashforth and Crank-Nicolson schemes

are used for the time integration of the advective terms and the diffusive terms,

respectively. The PRESTO scheme is used for the pressure gradient. The procedure

to setup ANSYS Fluent 17 is also introduced.

In the second part of this chapter, the experimental procedure using high-speed

camera techniques to investigate the long-term behavior of confined round foun-

tains is presented. Two high-speed cameras and a video camera are used to record

the details of confined fountains, including penetration, intrusion and stratification.

The design of the experiment and details of the experimental apparatus have been

described. Additionally, the analyzing software and the error source considered are

also outlined.
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Confined weak planar fountains

4.1 Introduction

In this chapter, a series of 2D DNS runs were carried out for weak planar fountains

in confined open channels with homogeneous ambient fluids over the ranges of 0.1 ≤

Fr ≤ 3.0, 5 ≤ Re ≤ 800, 0.7 ≤ Pr ≤ 100 and 10 ≤ λ ≤ 35. The evolution of

the transient flow behavior of weak planar fountains in the confined open channels,

including intrusion, secondary wall fountain and stratification, is described using

numerical results. From these numerical results, the regimes of the intrusion speed,

the characteristic time-scales for intrusion to impinge the sidewall and the wall

fountain to reach its maximum penetration height, the development rate of the

stratification, and the bulk entrainment rate, etc., are also determined and quantified

in terms of the governing parameters Fr, Re, Pr and λ.

The rest of this chapter is organized as follows. In § 4.2, the details of the

2D DNS runs carried out in this chapter are presented. Also presented in this

section are the mesh and time-step independence testing results. The snapshots

of the contours of temperature and stream functions obtained from the numerical

results are shown in § 4.3 to provide a qualitative description of the evolution of the

transient flow behavior of weak planar fountains in the confined open channels under

77
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the influence of Fr, Re, Pr and λ. The influence of these governing parameter on the

characteristics of the transient flow behavior of the confined weak planar fountains

are then analyzed and discussed quantitatively in § 4.4, including the movement of

the intrusion front and the wall fountain front, the development of stratification,

and the associated bulk entrainment, in terms of Fr, Re, Pr and λ. Finally the

conclusions are summarized in § 4.5.

4.2 DNS runs and mesh and time-step indepen-

dence testing

There are 49 DNS runs carried out in this chapter, with the key information of

these runs presented in Table 4.1. Water is selected as the fluid in the numerical

simulation, with the density ρa = 996.6 kg/m3, the kinematic viscosity υ = 8.58 ×

10−7 m2/s and the volume expansion coefficient β = 2.76×10−4 1/K at the reference

temperature Ta = 300 K. The maximum temperature difference between the source

and the ambient fluid (Ta−T0) of all the simulation runs is (300−296.602 = 3.398 K),

which results in a small enough density ratio to ensure the Oberbeck-Boussinesq

approximation to be valid.

Table 4.1: Key data of the DNS runs of confined weak planar fountains

Runs Fr Re Pr λ× h Mesh

1 0.1 200 7 20 × 10 702 × 334

2 0.15 200 7 20 × 10 702 × 334

3 0.25 100 7 20 × 20 1336 × 531

4 0.25 200 7 20 × 20 1336 × 531

5 0.5 10 7 20 × 20 1336 × 531

6 0.5 50 7 20 × 20 1336 × 531

Continued on next page
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Table 4.1 – continued from previous page

Runs Fr Re Pr λ× h Mesh

7 0.5 100 7 20 × 20 1336 × 531

8 0.5 200 7 20 × 20 1336 × 531

9 0.5 500 7 20 × 20 4000 × 1359

10 0.5 800 7 20 × 20 4000 × 1359

11 1 5 7 20 × 20 1336 × 531

12 1 10 7 20 × 20 1336 × 531

13 1 20 7 20 × 20 1336 × 531

14 1 50 7 20 × 20 1336 × 531

15 1 100 7 20 × 20 1336 × 531

16 1 200 7 20 × 20 1336 × 531

17 1 500 7 20 × 20 4000 × 1359

18 1 800 7 20 × 20 4000 × 1359

19 1.25 100 7 20 × 20 1336 × 531

20 1.25 200 7 20 × 20 1336 × 531

21 1.5 10 7 20 × 20 1336 × 531

22 1.5 50 7 20 × 20 1336 × 531

23 1.5 100 7 20 × 20 1336 × 531

24 1.5 200 7 20 × 20 1336 × 531

25 1.5 500 7 20 × 30 4000 × 2359

26 1.5 800 7 20 × 30 4000 × 2359

27 1.75 100 7 20 × 30 1336 × 864

28 1.75 200 7 20 × 30 1336 × 864

29 2 10 7 20 × 20 1336 × 531

30 2 50 7 20 × 20 1336 × 531

31 2 100 7 20 × 30 1336 × 864

32 2 200 7 20 × 30 1336 × 864

Continued on next page
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Table 4.1 – continued from previous page

Runs Fr Re Pr λ× h Mesh

33 2 500 7 20 × 30 4000 × 2359

34 2 800 7 20 × 30 4000 × 2359

35 2.5 100 7 20 × 30 1336 × 864

36 2.5 200 7 20 × 30 1336 × 864

37 3 100 7 20 × 30 1336 × 864

38 3 200 7 20 × 30 1336 × 864

39 1 200 0.7 20 × 20 1336 × 531

40 1 200 1 20 × 20 1336 × 531

41 1 200 10 20 × 20 1336 × 531

42 1 200 20 20 × 20 1336 × 531

43 1 200 50 20 × 20 1336 × 531

44 1 200 100 20 × 20 1336 × 531

45 1 200 7 10 × 30 668 × 864

46 1 200 7 15 × 30 1002 × 864

47 1 200 7 25 × 20 1668 × 531

48 1 200 7 30 × 20 2002 × 531

49 1 200 7 35 × 20 2336 × 531

As mentioned in Chapter 3, the quality and size of grids play an important role

in the accuracy, stability and computation time of the numerical simulation. To

ensure accuracy of the simulation with relatively economy computational source

cost, non-uniform meshes were used for this study, with fine uniform grids in the

bottom region and a relatively coarse stretched mesh in the top region. Extensive

grid and time-step independence tests were conducted to ensure accurate results to

be produced. For example, for the case of Fr = 1 and Re = 200, ∆x = ∆y = 0.03

is used in the uniform regions 0 ≤ y ≤ 10. While in the remaining region, the

meshes expand at a rate 0.5% in the vertical direction until it reaches the open
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Figure 4.1: The computational domain and the typical mesh of a confined weak planar
fountain.

top boundary, resulting in ‘1336× 531’ grids in the computational domain shown in

Figure 4.1 as a basic mesh. Grid independence test was carried out by comparing the

solution obtained on this basic mesh with its counterparts obtained on a relatively

coarse and a fine mesh. ∆x = ∆y = 0.05 and ∆x = ∆y = 0.02 are used in the

uniform region for the coarse mesh and the fine mesh, with the grid expansion rate

unchanged, giving the meshes of ‘800 × 383’ and ‘2000 × 751’, respectively. The

non-dimensional time-step for the mesh dependency testing is fixed at ∆τ = 0.004.

The results are presented in the left column of Figure 4.2 including the horizontal

temperature and velocities at y = 0.2. The variation between the solutions of the

basic mesh and the fine mesh is very small, indicating that the basic mesh provides

sufficient resolution for Re ≤ 200. Subsequently, using the basic mesh, the time-

step independence testing was carried out by comparing the results of simulations

with ∆τ = 0.004, ∆τ = 0.002 and ∆τ = 0.001. As shown in the right column of

Figure 4.2, ∆τ = 0.004 can meet the requirement of accuracy. For the run with

basic mesh at mesh step-size ∆τ = 0.004, the run time for the flow reaching the
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stage shown in Figure 4.2 is of the order of 30 hours on a Dell Optiplex 9020 MT

desktop computer with Intel Core i7-4790 Processor, 8 M cache, 3.60 GHz and 32

GB DDR3 SDRAM Memory.
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Figure 4.2: Comparison of the results from different meshes and time-steps for the runs
of Fr = 1.0, Re = 200, Pr = 7.0 and λ = 20. The left column is for the mesh independence
test, with three meshes of ‘800 × 383’, ‘1336 × 531’ and ‘2000 × 751’ meshes: horizontal
profiles of the horizontal velocity (a), vertical velocity (b), and temperature (c) at y = 0.2
when τ = 28.6; the right column is for the time-step independence test, with three time-
steps of ∆τ = 0.004, ∆τ = 0.002, and ∆τ = 0.001: horizontal profiles of the horizontal
velocity (d), vertical velocity (e), and temperature (f) at y = 0.2 when τ = 28.6.

Similar mesh and time-step size independence testing have also been carried

out for Re = 800 cases to ensure the accuracy of the numerical solutions with
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500 ≤ Re ≤ 800, as shown in Figure 4.3 . Three meshes of ‘2000×751’, ‘4000×1359’

and ‘5000 × 1647’ are tested with ∆τ = 0.0005. Then the time-step independence

testing was carried out with the basic mesh ‘4000× 1359’ by comparing the results

of simulations with ∆τ = 0.001, ∆τ = 0.0005 and ∆τ = 0.0004. Base on the results,

the mesh ‘4000×1359’ and ∆τ = 0.0005 are chosen for the runs of 500 ≤ Re ≤ 800.
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Figure 4.3: Comparison of the results from different meshes and time-steps for the runs
of Fr = 1.0, Re = 800, Pr = 7.0 and λ = 20. The left column is for the mesh independence
test, with three meshes of ‘2000×751’, ‘4000×1359’ and ‘5000×1647’ meshes: horizontal
profiles of the horizontal velocity (a), vertical velocity (b), and temperature (c) at y = 0.5
when τ = 21.9; the right column is for the time-step independence test, with three time-
steps of ∆τ = 0.001, ∆τ = 0.0005, and ∆τ = 0.0004: horizontal profiles of the horizontal
velocity (d), vertical velocity (e), and temperature (f) at y = 0.5 when τ = 21.9.
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4.3 Qualitative observations

4.3.1 Evolution of typical confined weak plane fountain flow

In Figures 4.4 to Figure 4.7, the snapshots of the numerically simulated transient

temperature contours and stream functions at different time instants are presented

for the case of Fr = 0.5, Re = 100, Pr = 7 and λ = 20, providing an overview of the

evolution of a typical confined weak planar fountain. The development of a confined

weak planar fountain consists of five stages, i.e., the formation of the fountain flow,

the intrusion, the wall fountain, the reversed flow, and the stratification. For all the

cases tested in this chapter, the flow behavior in the early stages (i.e., the fountain

formation, the intrusion and the wall fountain) is symmetric. However, a weak

asymmetric flow behavior was observed for some cases in the later stages (i.e., the

reversed flow and the stratification), with enough long running. The asymmetry is

strengthened with the increase of Fr, Re and Pr or the decrease of λ. Here, only

the result on the right part of the simulation domain is presented in the figures, with

the description of asymmetric behavior when it occurs.

Since the fountain flow remains heavier than the ambient fluid, it will descend

to and spread along the floor after it reaches the maximum height, resulting in the

formation of an eddy in the region bounded by the upflow, downflow and the floor

as shown in Figure 4.4(b). A thin layer of denser fluid moving outwards along the

floor is subsequently formed as illustrated in Figure 4.4(c)-(f). The intrusion can be

treated as gravity current, whose behavior may be characterized at different regimes

in terms of the governing forces, which will be further discussed in § 4.4.1. Since the

evolution of the initial fountain formation and the intrusion was described in detail

by Lin & Armfield [90], the description of these phases is omitted here.

The influence of the bounded sidewall on the gravity intrusion becomes signif-

icant as the intrusion flow approaches the sidewall. Figure 4.5(a)-(c) show that

the circulation above the intrusion head is stretched and spread upward along the
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Figure 4.4: Temperature contours (the left column) and stream functions (the right
column) of the intrusion for the planar fountain of Fr = 0.5, Re = 100, Pr = 7 and
λ = 20 over the duration of 1.9 ≤ τ ≤ 15.3.
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Figure 4.5: Temperature contours (the left column) and stream functions (the right
column) of the wall fountain of the planar fountain of Fr = 0.5, Re = 100, Pr = 7 and
λ = 20 over the duration of 16.2 ≤ τ ≤ 25.6.
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sidewall with the current impinging on the sidewall. Since the flow is still heavier

than the ambient flow, the upward flow along the sidewall can be treated as a wall

fountain. The wall fountain keeps increasing to a certain height and then slumps

back due to the negative buoyancy as shown in Figure 4.5(d)-(f). The wall fountain

flow here is similar to its counterpart of jet filling box [97], which will be further

discussed in § 4.4.2. The impingement results in the formation of several tiny cir-

culations bounded by the floor, sidewall and the current, as shown in Figure 4.5(i).

While the anti-clockwise circulation in the corner grows independently, other clock-

wise circulations combine with each other and develop into a medium wedge-shaped

circulation. As shown in Figure 4.5(j)-(k), both circulations grow bigger due to the

slumping of the wall fountain, and the anti-clockwise one pushes the wedge-shaped

one towards the fountain core. Subsequently, the thickness of the current close to

the sidewall region increases. Additionally, finger-like structures are observed to ap-

pear and disappear in Figure 4.5(b)-(f), which result from the interactions between

the circulations.

After the wall-fountain slumps back, a two-layer structure is formed, as shown

in Figure 4.6. The stream functions show that the wedge-shaped circulation is

extruded and divided into two clockwise circulations by the growth of the anti-

clockwise circulation in the corner. The lower clockwise circulation then moves back

and eventually reaches the fountain core, resulting in an increase in the thickness

of the bottom layer, as shown in Figure 4.6(a)-(d). Meanwhile, the upper clockwise

circulation is stretched horizontally to the fountain core, resulting in a reversed flow

from the sidewall to the center of the container. The reversed flow interacts with the

sidewall, the denser bottom layer and the fountain core. As a result, the fountain

height experiences a significant increase, until it reaches a certain height, then falls

down again due to the gravity and creates a stronger intrusion.

Figures 4.7(a)-(b) present the reversed flow fronts from the sidewall colliding at

the centre and are extruded to a higher position by the continuous reversed flow.

Due to the negative buoyancy, the extrusion drops down and separates into the
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Figure 4.6: Temperature contours (the left column) and stream functions (the right
column) of the reversed flow of the planar fountain of Fr = 0.5, Re = 100, Pr = 7 and
λ = 20 over the duration of 26.7 ≤ τ ≤ 43.8.
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Figure 4.7: Temperature contours (the left column) and stream functions (the right
column) of the thermal stratification of the planar fountain of Fr = 0.5, Re = 100,
Pr = 7 and λ = 20 over the duration of 48.6 ≤ τ ≤ 114.4.
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two reversed flow fronts as shown in Figure 4.7(c). This process repeats several

times with a decreasing magnitude of the extrusion, as shown in Figure 4.7(d)-

(e). After a certain time, a thermal stratification is formed with the fountain flow

submerged which can be seen in Figure 4.7(f). In the long run, the formation of

the stratified structure in the ambient fluid results from convection and thermal

conduction. However, thermal conduction plays a minor role before the fountain is

immersed in the stratified fluid. After that, the increase of the stratified fluid height

is mainly due to the filling of the denser fluid.

4.3.2 The influence of the governing parameters

Figure 4.8: Temperature contours of the fountains of Re = 100, Pr = 7 and λ = 20.
The left, middle and right columns are for Fr = 0.25, Fr = 1.0 and Fr = 1.5 respectively
over the duration of 16 ≤ τ ≤ 114.
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The evolution of temperature contours of the fountains of Fr = 0.25, Fr = 1.0

and Fr = 1.5 with Re = 100, Pr = 7 and λ = 20 is presented in Figure 4.8 and

demonstrates the influence of Fr on the transient behavior of confined weak pla-

nar fountains. The first two rows show the time instants when the intrusion flow

impinging the side-wall and the wall fountain reach its maximum height, where a

thicker intrusion flow, wider jump region and wall fountain of higher penetration

height are observed for the fountains with larger Fr. But the intrusion speed de-

creases with the increase of Fr. The third row and last row show the wall fountain

slumping down and the quasi-steady stratification, respectively. It has been found

that it takes longer for the larger Fr fountains to form the quasi-steady stratifica-

tion. The interactions between the intrusion flow, the reversed flow and the ambient

fluid become more significant when Fr increases, which results in a more turbulent

structure. For brevity, the results of simulations with other Fr are omitted here,

due to the similar development processes.

Figure 4.9 shows the temperature contours of the Fr = 1, Pr = 7 and λ = 20

fountains with Re = 20, Re = 50 and Re = 200 at different time instants, which

provides an overview of the influence of Re on the long-term behavior of confined

weak planar fountains. The impingement of the intrusion on the sidewall and the

maximum penetration of the wall fountain in the first two rows present a thinner

and faster intrusion flow for larger Re fountains. From the second and third row

of Figure 4.9, three regimes are identified for the behavior of the secondary wall

fountains. For the Re = 50 case, the wall fountain front reaches the maximum

height at τ = 33.52 and then slumps down at τ = 37.53. For Re = 200 case,

the wall fountain front rolls down after reaching the maximum penetration height

(τ = 31.09). There is no falling process observed for the wall fountain with Re = 20.

As shown at τ = 58.98 in the left column, the wall fountain front is pushed away

from the sidewall by the stagnation pressure.

For all cases a reversed flow is then created and moves from the sidewall towards

the fountain source, interacting with the intrusion flow, the ambient fluid and the
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Figure 4.9: Temperature contours for the fountains of Fr = 1.0, Pr = 7 and λ = 20.
The left, middle and right columns are for Re = 20, Re = 50 and Re = 200 over the
duration of 16 ≤ τ ≤ 114.

fountain. The interactions become stronger with increasing Re. In the long run,

a stratification is created and the fountain is submerged. The thickness of the

stratification (distance between the blue part and the red part) increases with the

decrease of Re, which indicates thermal conduction playing a more significant role.

To illustrate the effects of Pr, the temperature contours of fountains with Fr = 1,

Re = 200, λ = 20 and Pr = 0.7, 10, 20 and 100 at three stages are presented in

Figure 4.10. The left column of Figure 4.10 presents the snapshot of temperature

contours for the intrusion flows at τ = 19.05, where a thinner intrusion is present

for the larger Pr, but the location of the intrusion front is at the same position.

This is consistent with the numerical study carried out by Lin & Armfield [30],
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Figure 4.10: Temperature contours of the fountains of Fr = 1.0, Re = 200 and λ = 20.
The left, middle and right columns are for τ = 19.05, τ = 30.5 and τ = 133.45 respectively,
with 0.7 ≤ Pr ≤ 100.

which illustrated that Pr only influences the thermal layer thickness but has minor

effects on the thermal structure. This is also valid for the wall fountain and thermal

stratification of 10 ≤ Pr at τ = 30.5 and 133.45 as shown in the middle and left

columns of Figure 4.10. However, when Pr is very small, e.g., Pr = 0.7, the thermal

conduction effect is significant, resulting in differences in not only the thermal layer

thickness but also the thermal structure. The weak planar fountains with Fr = 1,

Re = 200, λ = 20 and Pr = 1, 7 and 50 are also tested in this study, which confirm

the results above, hence are not presented here.

Figure 4.11 presents the evolution of temperature contours of the Fr = 1, Pr = 7

and Re = 200 fountains with λ = 10, λ = 20 and λ = 30 at different times, to
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Figure 4.11: Temperature contours of the fountains of Fr = 1.0, Re = 200 and Pr = 7.
The left, middle and right columns are for λ = 10, λ = 20 and λ = 30 at different times.

illustrate the influence of λ on the secondary wall fountain and stratification of the

weak planar fountain filling box flow. A higher maximum penetration height of the

wall fountain is observed for the channel with a larger size λ. For the channel with

λ = 10, the wall fountain slumps down after it reaches the maximum height at

τ = 17.34. While for the channel with λ = 20 and 30, the wall fountain rolls down

after the maximum height position as shown in the middle and right columns. For

the channel with a larger λ, it takes a longer time to form the stratified structure.

The simulations also cover the channels with λ = 15, 25 and 35, and thier results

show the same trend which includes a rolling down wall fountain structure, hence

are not presented here.
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4.4 Quantitative observation

4.4.1 Intrusion

4.4.1.1 Passage of the intrusion front

In Figure 4.12, the time series of the passage of the intrusion front are presented for

the planar fountains with the Fr, Re, Pr and λ over the ranges of 0.1 ≤ Fr ≤ 3.0,

5 ≤ Re ≤ 800, and 0.7 ≤ Pr ≤ 100 and 10 ≤ λ ≤ 35, respectively. The intrusion

front is determined as the x-location at which the temperature T (x) = Ta−1%(Ta−

T0) within the whole calculation domain.
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Figure 4.12: Time series of the passage of the intrusion front for fountains with (a)
Re = 200, Pr = 7, λ = 20 and 0.1 ≤ Fr ≤ 3.0; (b) Fr = 1.0, Pr = 7, λ = 20 and
5 ≤ Re ≤ 800; (c) Fr = 1.0, Re = 200, λ = 20 and 0.7 ≤ Pr ≤ 100; (d) Fr = 1.0,
Re = 200, Pr = 7 and 10 ≤ λ ≤ 35.
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The end point of the time series profile is the time instant when the intrusion

front impinges on the sidewall, which is defined as τw as shown in Figure 4.12(a). The

results in Figure 4.12(a)-(b) show that it takes a longer time for the intrusion front

of the fountain with larger Fr or smaller Re. However, the intrusion profiles overlap

for the cases of Re = 500 and Re = 800, indicating that Re plays a less important

role in the intrusion for 500 ≤ Re. Similarly, the changing of Pr has negligible

influence on the passage of the intrusion front as illustrated in Figure 4.12(c), which

is consistent with the qualitative observation. Figure 4.12(d) presents the intrusion

profiles for the cases with various confinement sizes λ. It has been found that the

effect of the confinement size becomes noticeable only when the intrusion approaches

the sidewall.

4.4.1.2 Time-scale for the intrusion front impinging the side-wall

The effects of Fr, Re, Pr and λ on τw are shown in Figure 4.13. From Figure 4.13(a),

three ranges can be distinguished, with two critical numbers at Fr = 1.0 and Fr =

2.0, and three corresponding correlations are determined from numerical results as

follows:

τw =


25.71Fr0.65 − 0.31, 0.1 ≤ Fr ≤ 1.0,

20.1Fr + 5.65, 1.0 ≤ Fr ≤ 2.0,

29.15Fr − 12.49, 2.0 ≤ Fr ≤ 3.0.

(4.1)

The regression constants for the three correlations are R2 = 0.998, 1 and 1,

respectively. Similarly, the influence of Re on τw is presented in Figure 4.13(b).

Re = 50 and Re = 200 are found to distinguish the range into three parts, that is,

for 5 ≤ Re ≤ 20 and 50 ≤ Re ≤ 200, τw follows power laws with the Re, while for

Re > 200, the influence of Re on τw is negligible. The corresponding correlations
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Figure 4.13: (a) τw plotted against Fr with Re = 200, Pr = 7 and λ = 20; (b) τw
plotted against Re with Fr = 1.0, Pr = 7 and λ = 20; (c) τw plotted against Pr with
Fr = 1.0, Re = 200 and λ = 20; (d) τw plotted against λ with Fr = 1.0, Re = 200 and
Pr = 7.

are determined by power law regression with the numerical results as follows:

τw =


63.46Re−0.21 − 0.05, 5 ≤ Re ≤ 20,

43.15Re−0.12 − 0.12, 50 ≤ Re ≤ 200,

(4.2)

with the regression constants of R2 = 0.989 and 0.985, respectively. The influence

of Pr on the τw is negligible, as shown in Figure 4.13(c). Figure 4.13(d) shows that

τw has a linear relation with the confinement size of the channel as shown below,

τw = 1.15λ+ 2.65, (4.3)
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where the regression constant is R2 = 0.999.

4.4.1.3 Intrusion speed

During the development of a pure gravity current, the flow may experience three

regimes, i.e., the wall jet regime (W-J), the buoyancy-inertial regime (B-I) and the

buoyancy-viscosity regime (B-V), which are determined by the dominating forces [1].

For the initial stage, the flow is dominated by momentum as a plane wall jet, so

a scaling relation X(t) ∼ M1/3t2/3 was obtained, where M is the momentum flux.

After that, the driving force of the current becomes buoyancy (gravity) which is

balanced by the inertial force, thus the current is in a buoyancy-inertial regime. The

balance between the gravity and the inertial force is maintained until the inertial

force is small compared to the total viscous drag force resulting from the interfacial

shear stress between the current and the ambient fluid or from the bottom shear

stress, which changes the flow into another regime where the buoyancy force is

balanced by the viscous drag force.

Two corresponding scaling relations, that is, X(t) ∼ B1/3t andX(t) ∼ (BQ2/ν)1/5t4/5,

were obtained for the gravity current in the buoyancy-inertial and buoyancy-viscosity

regimes, respectively [1], where Q = X0W0, B = g(ρ0 − ρa)/ρaQ are volume and

buoyancy fluxes. Based on these scaling relations, the correlations between the in-

trusion speed and time may be written in dimensionless formation in terms of Fr

and Re as follows:

vi ∼ τ−1/3, (4.4)

for the wall jet regime,

vi ∼ Fr−2/3, (4.5)

for the buoyancy-inertial regime, and

vi ∼ Fr−2/5Re1/5τ−1/5, (4.6)
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Figure 4.14: Time series of the intrusion speed for the fountains with Pr = 7, λ = 20:
(a) Re = 10 and 0.5 ≤ Fr ≤ 2.0; (b) Re = 100 and 0.25 ≤ Fr ≤ 3.0; (c) Re = 200 and
0.1 ≤ Fr ≤ 3.0; (d) Re = 500 and 0.5 ≤ Fr ≤ 2.0.

for the buoyancy-viscosity regime, where vi is the dimensionless intrusion velocity

non-dimensionalized by W0.

For free gravity current, Eq.(4.4) indicates that the intrusion speed for the wall

jet regime is dependent on time, but independent of both Fr and Re. While for

the buoyancy-inertial regime described by Eq.(4.5), the intrusion velocity does not

change with time, which only depends on Fr. When the gravity current is developing

into the buoyancy-viscosity regime, the intrusion speed begins time-dependent again

and is dependent on both Fr and Re, as shown in Eq.(4.6).

Figures 4.14 and 4.15 present the time series of the intrusion front speed for a

series of Fr and Re. It is found that only the cases with Re = 200 and Fr ≤ 0.25
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Figure 4.15: Time series of the intrusion speed for the fountains with Pr = 7, λ = 20:
(a) Fr = 0.5 and 10 ≤ Re ≤ 800; (b) Fr = 1.0 and 5 ≤ Re ≤ 800; (c) Re = 1.5 and
10 ≤ Re ≤ 800; (d) Fr = 2.0 and 10 ≤ Re ≤ 800.

experienced a wall jet regime, as shown in Figure 4.14(c). The buoyancy-inertial

regime (with constant velocity) is observed for the cases of 0.5 ≤ Fr. However,

for the cases over the range of 1.0 ≤ Fr ≤ 2.0 and 100 ≤ Re ≤ 800, two stages at

different constant speeds are observed, which are defined as the ‘B-I-1’ stage and the

‘B-I-2’ stage respectively. However, only one constant speed stage is present for the

cases over the range of Re ≤ 50 and Fr ≤ 0.5, or Fr ≥ 2.5. The results also show

that the velocity profiles of the cases of Fr ≤ 1.0 and Re ≤ 200 all experienced the

buoyancy-viscosity regime. But when Fr > 1.0, only the cases of Fr = 1.5, Re = 10

and 50, and Fr = 2.0 and Re = 10 developed into the buoyancy-viscosity stage.

Moreover, Eq.(4.5) indicates that only Fr can influence the intrusion speed in

the buoyancy-inertial regime. Figure 4.16 presents the velocities against Fr−2/3 for
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Figure 4.16: The B-I regimes for the intrusion current: (a) The B-I-1 regime, the first
constant speed stage; (b) The B-I-2 regime, the second constant speed stage.

the ‘B-I-1’ and ‘B-I-2’ stages, which indicates that the −2/3 power law can describe

the influence of Fr on vi for the fixed Re cases very well. Eq.(4.5) is confirmed by

the overlap parts in Figure 4.16(a) (i.e., Fr ≥ 1.0 and Re ≥ 100) or Figure 4.16(b)

(i.e., Re ≥ 500). However, the difference between the slopes of the trend lines for

other cases is considerable, which should be caused by the influence of Re.

In regards to the influence of Re, Figure 4.17 presents the intrusion velocity

plotted against vi ∼ Fr−2/3Rem, where m is the index determined by multivari-

ate regression technique with the numerical results. Two corresponding modified

correlations, i.e., B-I-Modified-1 and B-I-Modified-2, are obtained as follows:

vi =


0.37Fr−2/3Re1/5, 0.5 ≤ Fr ≤ 2.0, 5 ≤ Re ≤ 50,

0.56Fr−2/3Re1/10, 0.5 ≤ Fr ≤ 3.0, 50 ≤ Re ≤ 200,

(4.7)

with the regression constants of R2 = 0.998 and 0.992, respectively.
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Confined weak planar fountains 103

The result of the buoyancy-viscosity regime is presented in Figure 4.18, which

fits Eq.(4.6) very well. The quantified correlation is as following

vi = 0.61Fr−2/5Re1/5τ−1/5, (4.8)

with the regression constant of R2 = 0.994.

4.4.2 Wall fountain

4.4.2.1 Development of wall fountain along the sidewall

After the intrusion impinging with the sidewall, the flow is turned upward and

develops along the sidewall. Due to the negative buoyancy, the flow penetrates to a

certain height and then falls down, forming a wall fountain flow, which is also called

as overturning in the filling box model [97]. Notably, the secondary wall fountain flow

is not continuous. Here, the fountain behavior is characterized as no overturning,

slumping down and rolling down according to the bulking behavior as listed in

Table 4.2. From this table, it is found that the overturning behavior of the secondary

wall fountain is mainly governed by Re; for small Re values (5 ≤ Re ≤ 20), no

overturning is observed; for 50 ≤ Re ≤ 100, the fountain slumps down after reaches

the maximum height; and the fountain rolls down for higher Re values (Re ≥ 200).

Additionally, when the confinement size reduces to λ = 10, the fountain slumps

down, which is different from the rolling down behavior for λ ≥ 15. It is seen

that the influence of Fr and Pr on the overturning behavior of the secondary wall

fountain is minimal.

Table 4.2: Behavior of the secondary wall fountain

Runs Fr Re Pr λ Overturning

1 0.1 200 7 20 R

Continued on next page
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Table 4.2 – continued from previous page

Runs Fr Re Pr λ Overturning

2 0.15 200 7 20 R

3 0.25 100 7 20 S

4 0.25 200 7 20 R

5 0.5 10 7 20 N

6 0.5 50 7 20 S

7 0.5 100 7 20 S

8 0.5 200 7 20 R

9 0.5 500 7 20 R

10 0.5 800 7 20 R

11 1 5 7 20 N

12 1 10 7 20 N

13 1 20 7 20 N

14 1 50 7 20 S

15 1 100 7 20 S

16 1 200 7 20 R

17 1 500 7 20 R

18 1 800 7 20 R

19 1.25 100 7 20 S

20 1.25 200 7 20 R

21 1.5 10 7 20 N

22 1.5 50 7 20 S

23 1.5 100 7 20 S

24 1.5 200 7 20 R

25 1.5 500 7 20 R

26 1.5 800 7 20 R

27 1.75 100 7 20 S

Continued on next page
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Table 4.2 – continued from previous page

Runs Fr Re Pr λ Overturning

28 1.75 200 7 20 R

29 2 10 7 20 N

30 2 50 7 20 S

31 2 100 7 20 S

32 2 200 7 20 R

33 2 500 7 20 R

34 2 800 7 20 R

35 2.5 100 7 20 S

36 2.5 200 7 20 R

37 3 100 7 20 S

38 3 200 7 20 R

39 1 200 0.7 20 R

40 1 200 1 20 R

41 1 200 10 20 R

42 1 200 20 20 R

43 1 200 50 20 R

44 1 200 100 20 R

45 1 200 7 10 S

46 1 200 7 15 R

47 1 200 7 25 R

48 1 200 7 30 R

49 1 200 7 35 R

N - No falling, S - Slumping, R - Rolling

To further investigate the influence of these parameters on the wall fountain, the

time series of the secondary wall fountain front along the sidewall are presented in

Figure 4.19 over the ranges of 0.1 ≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800, 0.7 ≤ Pr ≤ 100 and
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Figure 4.19: Time series of the wall fountain front for fountains with (a) Re = 200,
Pr = 7, λ = 20 and 0.1 ≤ Fr ≤ 3.0; (b) Fr = 1.0, Pr = 7, λ = 20 and 5 ≤ Re ≤ 800; (c)
Fr = 1.0, Re = 200, λ = 20 and 0.7 ≤ Pr ≤ 100; (d) Fr = 1.0, Re = 200, Pr = 7 and
10 ≤ λ ≤ 35.

10 ≤ λ ≤ 35. The wall fountain front on the sidewall is defined by the y-location at

which the temperature T (y) = Ta − 1%(Ta − T0) at x = ±λ. From the time series,

the maximum distance of the wall fountain developed on the side-wall is determined

as ym as shown in Figure 4.19(a) and the corresponding time τm, which is the time-

scale for the secondary wall fountain reaches its maximum penetration height. It is

found that the ym increases with Fr and λ, but decreases with Re and Pr. Similarly,

τm is larger with a larger Fr or λ, but becomes smaller with a larger Re or Pr.
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Figure 4.20: (a) τm plotted against Fr with Re = 200, Pr = 7 and λ = 20; (b) τm
plotted against Re with Fr = 1.0, Pr = 7 and λ = 20; (c) τm plotted against Pr with
Fr = 1.0, Re = 200 and λ = 20; (d) τm plotted against λ with Fr = 1.0, Re = 200 and
Pr = 7.

4.4.2.2 Time-scale for the wall fountain reaching the maximum pene-

tration height

The influence of Fr, Re, Pr and λ on the time-scale for the secondary wall fountain

to reach its maximum height is shown in Figure 4.20. It is seen that the influence

of Fr on τm can be distinguished into three ranges as identified in Figure 4.20(a),

with Fr = 1.0 and Fr = 2.0 as the critical values, and the individual correlations
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obtained with the numerical results are as follows,

τm =


34.7Fr0.71 − 0.12, 0.1 ≤ Fr ≤ 1.0,

23.76Fr + 10.93, 1.0 ≤ Fr ≤ 2.0,

37.83Fr − 17, 2.0 ≤ Fr ≤ 3.0,

(4.9)

with the regression constants of R2 = 1.0, 1.0 and 0.998, respectively.

From Figure 4.20(c), it is seen that the influence of Pr on τm can be approximated

by the following power law correlations,

τm = 35.65Pr−0.02 + 0.07 (4.10)

with the regression constant of R2 = 0.97.

Since there is no falling down process for the fountain with Re ≤ 20, no τm exists

for these cases. As shown in Figure 4.20(c), it is seen that the influence of Re on τm

can be distinguished into two different ranges, with Re = 200 as the critical value.

A linear relation is found for the influence of λ on τm, as shown in Figure 4.20(d),

which can be approximated by the following correlation,

τm = 1.6λ+ 2.69, (4.11)

with the regression constant of R2 = 0.996.

4.4.2.3 Maximum height of the wall fountain on the sidewall

Similarly, the relations between the maximum height of the secondary wall fountain

on the sidewalls, ym, and Fr, Re, Pr and λ are presented in Figure 4.21. From

Figure 4.21(a), it is seen that, similar to the influence of Fr on τm, Fr = 1.0

and Fr = 2.0 distinguish the influence of Fr into three different ranges. The
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Figure 4.21: (a) ym plotted against Fr with Re = 200, Pr = 7 and λ = 20; (b) ym
plotted against Re with Fr = 1.0, Pr = 7 and λ = 20; (c) ym plotted against Pr with
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corresponding correlations for the three individual ranges are obtained as follows,

ym =


5.45Fr0.42 − 0.05, 0.1 ≤ Fr ≤ 1.0,

1.72Fr + 3.78, 1.0 ≤ Fr ≤ 2.0,

2.49Fr + 2.17, 2.0 ≤ Fr ≤ 3.0,

(4.12)

with the regress constants of R2 = 0.999, 0.993 and 0.998, respectively.
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From Figure 4.21(b), it is shown that before and after Re = 200, Re has sig-

nificantly different influence on ym, which should be caused by the different over-

turning behaviors, i.e., slumping down for 50 ≤ Re ≤ 100 and rolling down for

200 ≤ Re ≤ 800.

The influence of Pr on ym is shown in Figure 4.21(c), which can be approximated

by the following power law correlation,

ym = 6.21Pr−0.042 − 0.17, R2 = 0.935 (4.13)

with the regression constant of R2 = 0.935.

The influence of λ on ym can be approximated by the following linear correlation,

ym = 0.11λ+ 3.06, (4.14)

with the regression constant of R2 = 0.984, which is similar to the influence of λ on

τm.

4.4.3 Stratification

The height of the thermally stratified fluid within the domain is defined as the

vertical location where the temperature is T (y) = Ta − 1%(Ta − T0), which is the

height of the interface between the stratified fluid created by the filling of cold fluid

through the fountain flow and the ambient fluid. The time series of the maximum,

minimum and averaged heights of the thermally stratified fluid after the intrusion

impinging with the sidewall are presented in Figure 4.22 for various Fr, Re, Pr

and λ. The magnitudes of the differences among these heights are initially signif-

icant, due to the key roles played by convection and mixing. After that, over a

relatively long time, the differences decrease and the time series of these heights

follow essentially the same trend when filling becomes dominant in the subsequent
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stratification formation. From this figure, it is seen that the development rate of

the quasi-steady stratification can be approximately described by the rate of the

averaged stratification height profile.

As shown in Figure 4.22(a), with the increase of Fr, the magnitudes of the

differences among the maximum, average and minimum height profiles increase and a

longer time needs for the confined fountain to reach a steady stratification. Similarly,

the differences among these heights increase when Re increases, however, the time

for the fountain to reach a steady stratification is decreased. Additionally, the

development rate of the stratification decreases with the increase of Re. The increase

of Pr can also reduce the rate of the stratification, due to the influence of thermal

conduction as presented in Figure 4.22(c).

For a purely filling box, the development rate of the stratification height, vs, is

the reciprocal of λ (vs = 1/λ), based on the conservation of mass. The rate of the

averaged stratification height profile and the corresponding purely filling rate are

plotted in Figure 4.23 to illustrate the influence of Fr, Re, Pr and λ on vs with the

filling by fountains. Figure 4.23(a) indicates that the effect of Fr on vs, again, can

be distinguished into three ranges by Fr = 1.0 and Fr = 2.0, although no suitable

correlations are obtained due to the limited data obtained.

The influence of Re on vs, as shown in Figure 4.23(b), can be divided into three

different regimes, with Re = 20 and Re = 200 as the critical values. For Re < 200,

the influence of Re can be quantified by the following correlations,

vs =


0.09Re−0.14, R2 = 0.983, 5 ≤ Re ≤ 20,

0.07Re−0.06, R2 = 0.974, 20 ≤ Re ≤ 200,

(4.15)

with the regression constants of R2 = 0.983 and 0.974, respectively. However, vs

becomes independent of Re when Re is beyond 200.
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Figure 4.22: Time series of the maximum, minimum and average stratification heights
for fountains with (a) Re = 200, Pr = 7, λ = 20 and Fr = 0.25, 1.5, 2.5; (b) Fr = 1.0,
Pr = 7, λ = 20 and Re = 20, 50, 200; (c) Fr = 1.0, Re = 200, λ = 20 and Pr = 0.7, 10, 50;
(d) Fr = 1.0, Re = 200, Pr = 7 and λ = 10, 20, 30.

The influence of Pr on vs is presented in Figure 4.23(c), which shows that it can

be approximated by the following power law correlation,

vs = 0.0586Pr−0.035, (4.16)

with the regression constant of R2 = 0.916. The results also show that the strati-

fication rate approximately coincides with the purely filling rate for very high Pr,

indicating that the influence of thermal conduction is negligible.
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Figure 4.23: (a) vs plotted against Fr with Re = 200, Pr = 7 and λ = 20; (b) vs plotted
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The relation between vs and λ is shown in Figure 4.23(d), and can be approxi-

mated by the following correlation,

vs = 0.99λ−0.98, (4.17)

with the regression constant of R2 = 1.0.
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4.4.4 Bulk entrainment or dilution

Since no assumptions are required for interactions between the upflow and downflow,

or the entrainment process between fountains and surroundings, the bulk entrain-

ment is selected to estimate the mean dilution of the buoyancy scalar over the

fountain as a whole instead of to resolve the local entrainment rate. As mentioned

in Chapter 2, the bulk entrainment rate is defined as QE/Q0, where QE is the bulk

entrainment by the fountain and Q0 is the source volume flux. In this study, QE

is calculated by QE = Qs − Q0, where Qs represents the volume flux of the strat-

ified fluid, which is calculated by integrating the area under the thermal stratified

surface, as an example shown, with the results presented in Figure 4.24.
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Figure 4.25: Time series of the entrainment rate QE/Q0 for fountains with (a) Re = 200,
Pr = 7, λ = 20 and 0.1 ≤ Fr ≤ 3.0; (b) Fr = 1.0, Pr = 7, λ = 20 and 5 ≤ Re ≤ 500; (c)
Fr = 1.0, Re = 200, λ = 20 and 0.7 ≤ Pr ≤ 100; (d) Fr = 1.0, Re = 200, Pr = 7 and
10 ≤ λ ≤ 35.

The values of QE/Q0 are calculated for the confined weak planar fountains over

the range of 0.1 ≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800, 0.7 ≤ Pr ≤ 100 and 10 ≤ λ ≤ 35,

from the initial formation stage to the filling stage, with the time series of QE/Q0

presented in Figure 4.25. It is found that the bulk entrainment rate increases mono-

tonically with time until it attains a maximum value, and then decreases gradually.

This is because after a certain time, thermal conduction dominates the dilution pro-

cess, and the filling by fountains model turns to the purely filling box model. The

influence of Fr, Re, Pr and λ on QE/Q0 is in agreement with the results presented

in § 4.4.3 for the stratification rate. However, before the entrainment rate reaches

the maximum value, its changing rate decreases with Fr, but increases with Re as
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shown in Figure 4.25(a)-(b), indicating that the convection has significant influence.

4.5 Summary

A ‘weak plane fountain filling box’ model is developed by the discharge of a weak

plane fountain into an open channel with a homogeneous ambient fluid. A series of

2D direct numerical simulations are carried out to investigate the transient behavior

of fountains over the ranges 0.1 ≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800, 0.7 ≤ Pr ≤ 100

and 10 ≤ λ ≤ 35. A detailed description is given for the typical evolution of the

confined weak plane fountains. With detailed qualitative and quantitative analysis,

the following conclusions can be summarized,

• An intrusion current results from the downflow of the fountain impinging on

the floor. The decrease of Fr or the increase of Re can enhance the intrusion

speed vi. The behavior of the intrusion flow can be approximately quantified

by the scaling relations obtained by Chen [1] for gravity currents. However

for the buoyancy-inertial regime, a two-constant speed stage is observed and

the influence of Re on vi cannot be ignored which is different from previous

studies.

• Three mechanisms are observed for the behavior of the secondary wall fountain,

i.e., no falling, slumping down and rolling down. The maximum penetration

height ym of the wall fountain increases with the increase of Fr and λ, due to

the reduction of buoyancy flux. However, the increase of Pr reduces ym, due

to the decrease of thermal conduction.

• For the fountains with 0.1 ≤ Fr ≤ 1.0, τw ∼ Fr0.65 and τm ∼ Fr0.71 are

obtained, where τw and τm are the time scales for the intrusion front and the

wall fountain front. For the space with the same dimension, only the buoyancy

flux keeps constant, the time-scale will follow a 2/3 power law with Fr. For
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Fr ≤ 1.0, the intrusion current spreads fast and remains laminar, hence the

buoyancy flux has a minor changing.

• Convection, filling and conduction all contribute to the formation of thermal

stratification. In the initial stage, convection and mixing play a key role. After

a quasi steady stratification is formed, filling and thermal conduction become

dominant. The behavior of intrusion and wall fountain for the fountain at

Re ≤ 20, due to its conduction-dominant nature, is significantly different from

that at larger Re values considered (50 ≤ Re ≤ 800), where convection plays

a more significant role. Additionally, Fr = 1.0 and Fr = 2.0 are found to

distinguish the influence of Fr into three ranges. The influence of Pr applies

through thermal conduction. With a smaller Re or Pr, the influence of the

thermal conduction becomes more significant.
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Confined weak round fountains

5.1 Introduction

In the previous chapter, the transient behavior of weak planar fountains in an open

channel with a homogeneous ambient fluid was studied using a series of 2D DNS

runs. The influence of the major governing parameters (Fr, Re, Pr and λ) on

the different evolution stages of the flow was explored using the numerical results.

Moreover, the intrusion and stratification were compared with the existing theories

for the pure gravity current and the filling box model. As reviewed in Chapter 2,

the round fountain is another basic type of fountains, which widely exists in both

nature and engineering. Hence, it is necessary to investigate the transient behavior

of confined round fountains as well.

In this chapter, a series of 3D DNS runs are carried out to study the transient

behavior of round fountains in cylindrical containers. In § 5.2, the details of the

three-dimensional DNS runs carried out in this chapter, along with the mesh and

time-step size independence testing results, are described. In § 5.3, the evolution

of the typical confined weak round fountains is described qualitatively with the

snapshots of the contours of temperature obtained from the DNS runs, along with

the qualitative discussions on the influence of Fr, Re, Pr and λ on the flow behavior.

119
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A quantitative analysis is then presented in § 5.4, to quantify the influence of Fr,

Re, Pr and λ on the characteristics of the transient behavior of confined weak round

fountains, including the intrusion, the wall fountain, the stratification and the bulk

entrainment/dilution rate, over the ranges of 0.25 ≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800,

0.7 ≤ Pr ≤ 100 and 10 ≤ λ ≤ 35. Finally the major conclusions of this chapter are

drawn in § 5.5.

5.2 DNS runs and the mesh and time-step size

independence testing

There are totally 46 DNS runs carried out in this chapter using ANSYS Fluent 17.0,

with the key information about these runs presented in Table 5.1. Water is again

selected as the fluid in the numerical simulations, similar to the cases for confined

weak planar fountains studied in the previous chapter. The density, the kinematic

viscosity and the volume expansion coefficient of water used in the DNS runs are

ρa = 996.6 kg/m3, υ = 8.58×10−7 m2/s and β = 2.76×10−4 1/K with the reference

temperature of Ta = 300 K. The maximum temperature difference between the

source and the ambient fluid (Ta−T0) of all DNS runs is (300−296.602) = 3.398 K,

which results in a small enough density ratio to ensure the Oberbeck-Boussinesq

approximation is valid. The specific values of Fr, Re and Pr are determined by

changing X0, W0 and T0, with Ta fixed at 300 K.

For all DNS runs, cylindrical computational domains with radius R and height

H are used. The radius of the nozzle for the inlet of fountain fluid is R0, as sketched

in Figure 1.8. To eliminate the influence of the open top boundary on the flow

behaviors of interest, the value of H is chosen large enough. Similar to the planar

fountain cases in the previous chapter, a fine uniform grid is used in the bottom

region (below H/2), while for the top region (over H/2) a coarser and stretched
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mesh is used as shown in Figure 5.1, to provide accurate results with a relatively

economic computational source cost.

Table 5.1: Key data of the DNS runs of confined weak round fountains (Note: λ = R/R0

and h = H/R0).

Runs Fr Re Pr λ× h Grids (million)

1 0.25 100 7 20 × 20 4.06

2 0.25 200 7 20 × 20 4.06

3 0.5 10 7 20 × 20 4.06

4 0.5 50 7 20 × 20 4.06

5 0.5 100 7 20 × 20 4.06

6 0.5 200 7 20 × 20 4.06

7 0.5 500 7 20 × 12 5.88

8 0.5 800 7 20 × 12 5.88

9 1 5 7 20 × 20 4.06

10 1 10 7 20 × 20 4.06

11 1 20 7 20 × 20 4.06

12 1 50 7 20 × 20 4.06

13 1 100 7 20 × 20 4.06

14 1 200 7 20 × 20 4.06

15 1 500 7 20 × 12 5.88

16 1 800 7 20 × 12 5.88

17 1.25 100 7 20 × 20 4.06

18 1.25 200 7 20 × 20 4.06

19 1.5 10 7 20 × 20 4.06

20 1.5 50 7 20 × 20 4.06

21 1.5 100 7 20 × 20 4.06

22 1.5 200 7 20 × 20 4.06

23 1.5 500 7 20 × 12 5.88

Continued on next page
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Table 5.1 – continued from previous page

Runs Fr Re Pr λ× h Grids(million)

24 1.5 800 7 20 × 12 5.88

25 1.75 100 7 20 × 20 4.06

26 1.75 200 7 20 × 20 4.06

27 2 10 7 20 × 20 4.06

28 2 50 7 20 × 20 4.06

29 2 100 7 20 × 20 4.06

30 2 200 7 20 × 20 4.06

31 2 800 7 20 × 12 5.88

32 2.5 100 7 20 × 20 4.06

33 2.5 200 7 20 × 20 4.06

34 3 100 7 20 × 20 4.06

35 3 200 7 20 × 20 4.06

36 1 200 0.7 20 × 20 4.06

37 1 200 1 20 × 20 4.06

38 1 200 10 20 × 20 4.06

39 1 200 20 20 × 20 4.06

40 1 200 50 20 × 20 4.06

41 1 200 100 20 × 20 4.06

42 1 200 7 10 × 30 3.84

43 1 200 7 15 × 30 5.78

44 1 200 7 25 × 20 4.07

45 1 200 7 30 × 20 4.89

46 1 200 7 35 × 20 5.7

Again extensive mesh and time-step size independence testing were carried out to

ensure accurate results to be obtained for the DNS runs. The results for one typical

example of the testing are presented in Figure 5.2 for the case of Fr = 1.5, Re = 200,
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Figure 5.1: The computational domain and the typical mesh of a confined weak round
fountain.

Pr = 7 and λ = 20. Three meshes (coarse, basic and fine) were created by ICEM

software for the mesh independence testing. For the basic mesh of 3.7 million grids

as shown in Figure 5.1, the uniform grids of the sizes of ∆r = 0.067 and ∆z = 0.067,

which are made dimensionless by R0, are used in the region of 0 ≤ z ≤ 10, while

in the remaining region, the grid sizes expand at a rate of 0.5% in vertical direction

until they reach the open top boundary, along with 40 uniform grids created in the

angular direction. When larger grid sizes of ∆r = 0.1 and ∆z = 0.1 were used in the

uniform region and the grid size expansion rate is unchanged for the non-uniform

region, the coarse mesh is created with 1.5 million grids. In the uniform region of

the fine mesh, the grid sizes are reduced to ∆r = 0.05 and ∆z = 0.05, resulting in
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5.2 million grids. Using the same non-dimensional time-step size ∆τ = 0.0076, the

results of the mesh independence test are presented in the left column of Figure 5.2,

including the temperature and velocities distributions at z = 0.67 in the central

surface (y = 0). The variation between the solutions of the basic mesh and the fine

mesh is very small, indicating that the basic mesh can produce a sufficient resolution

for Re ≤ 200.
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Figure 5.2: Comparison of the results from different meshes and time-step sizes. The
left column is for the results obtained using the meshes of ‘1.5million’ (coarse mesh),
‘3.7million’ (basic mesh) and ‘5.2million’ (fine mesh), at the time-step of ∆τ = 0.0076:
(a) horizontal profiles of the horizontal velocity, (b) vertical velocity, and (c) temperature
at y = 0, z = 0.67 when τ = 125.8. The right column is for the results obtained using the
time-steps of ∆τ = 0.0152, 0.0076, and 0.0038 with the basic mesh: (d) horizontal profiles
of the horizontal velocity, (e) vertical velocity, and (f) temperature, at y = 0, z = 0.67
when τ = 125.8.
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The time-step independence test is conducted with three different time-step sizes,

i.e., ∆τ = 0.0152, 0.0076 and 0.0038, respectively, using the basic mesh. The

testing results are presented in the right column of Figure 5.2, which show that the

non-dimensional time-step size ∆τ = 0.0076 can meet the requirement of accuracy.

Similar mesh and time-step independence testing have also been carried out for Re ≥

800 cases to ensure the chosen meshes and time-steps produce accurate numerical

solutions.

To ensure the accuracy of the DNS results, the numerical simulation results of

7 DNS runs are compared to the experimental results for approximately the same

corresponding individual cases. The details about the benchmark will be presented

in Chapter 6. The results of the benchmark show that the meshes and time-steps

used for these DNS runs produce sufficiently accurate solutions.

5.3 Qualitative observations

5.3.1 Evolution of typical confined weak round fountain flows

A series of snapshots of the transient temperature contours for the fountain of Fr =

0.5, Re = 200, Pr = 7 and λ = 20 are presented in Figures 5.3 to Figure 5.6, which

provide an overview of the evolution of a typical confined weak round fountain.

Similar to the planar case, the development of a confined weak round fountain,

after the formation of the fountain flow, can be divided into four stages, i.e., the

intrusion, the wall fountain, the reversed flow and the stratification. Due to the

axisymmetric behavior of the weak fountain flow considered here, only the two-

dimensional contours of temperature on the section of y = 0, 0 ≤ x ≤ 20 in the

right half of the computational domain are presented in the left columns of these

figures for 4 different time instants at each time duration considered, while the

right columns of these figures contain the corresponding individual three-dimensional

contours of temperature of the whole computational domain. Notably, the legend
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Figure 5.3: The two-dimensional temperature contours on the section y = 0, 0 ≤ x ≤ 20
(the left column) and the three-dimensional temperature contour (the right column) of the
round fountain of Fr = 0.5, Re = 200, Pr = 7 and λ = 20 over the period 2.7 ≤ τ ≤ 55.8.

of temperature for the Figures 5.3 to Figure 5.6 is also applied for the temperature

contours of the following qualitative results.

The flow gets minor influence from the confinement when the fountain and intru-

sion flow are initially formed, resulting in the similar behavior to its counterpart of

the free round fountain, which has been illustrated in detail by Lin & Armfield [4].

Thus the description of this phase is omitted here. With a weak momentum flux at

the source, the fountain streamline curves and spreads outward along the bottom

as shown in Figure 5.3, behaving as a radial gravity current. Similar to the pla-

nar fountain case, the evolution of the radial intrusion flow also experiences several

regimes, i.e., the wall jet, the gravity-inertial and gravity-viscosity regimes in terms
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of the governing forces. A detailed discussion of the intrusion flow will be presented

in § 5.4.1.

Figure 5.4: The two-dimensional temperature contours on the section y = 0, 0 ≤ x ≤ 20
(the left column) and the three-dimensional temperature contour (the right column) of the
round fountain of Fr = 0.5, Re = 200, Pr = 7 and λ = 20 over the period 61.7 ≤ τ ≤ 92.8.

A secondary wall fountain flow is created after the intrusion impinging with the

sidewall as shown in Figure 5.4, where the dense flow spreads upward along the

sidewall to reach a finite distance and then falls down under the effect of negative

buoyancy. The fountain behavior will be further studied in § 5.4.2. A flow reversal

moving from the sidewall to the fountain is subsequently created due to the stag-

nation pressure from the sidewall, resulting in a two-layer structure as presented

in Figure 5.5. The thickness of the bottom dense layer increases due to the in-

teraction between the reversed flow and the intrusion, the fountain flow and the

ambient fluid. The interaction is strengthened with the reversed flow approaching
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Figure 5.5: The two-dimensional temperature contours on the section y = 0, 0 ≤ x ≤ 20
(the left column) and the three-dimensional temperature contour (the right column) of
the round fountain of Fr = 0.5, Re = 200, Pr = 7 and λ = 20 over the period 98.1 ≤ τ ≤
159.8.

the fountain core. Subsequently, a collision of the intrusion flow occurs at the cen-

ter of the container, extruding the dense fluid to a finite height. Because of the

negative buoyancy, the extrusion falls down as shown in Figure 5.6(b). With the

continuous supply of the fountain flow, a thermal stratification is eventually created,

with the fountain flow submerged in the stratified fluid as shown in Figure 5.6(d).

After that filling and thermal conduction dominate the development of the thermal

stratification stratification.
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Figure 5.6: The two-dimensional temperature contours on the section y = 0, 0 ≤ x ≤ 20
(the left column) and the three-dimensional temperature contour (the right column) of
the round fountain of Fr = 0.5, Re = 200, Pr = 7 and λ = 20 over the period 175.9 ≤
τ ≤ 261.7.

5.3.2 The influence of the governing parameters

Figure. 5.7 presents the two-dimensional temperature contours of the fountains of

Fr = 1.0, Fr = 1.5 and Fr = 2.0 with Re = 200, Pr = 7 and λ = 20 on the section

y = 0 at different time instants to illustrate the influence of Fr on the behavior

of confined weak round fountains. Similar to the planar fountain cases, when Fr

increases, it will take a longer time for the intrusion front to impinge with the sidewall

and for the wall fountain flow to reach its maximum height, as shown in the first and

second rows, respectively. Meanwhile, the intrusion thickness and the wall fountain’s

maximum penetration height increase when Fr becomes larger. The reversed flow
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Figure 5.7: The two-dimensional temperature contours on the section y = 0 for the
fountains of Re = 200, Pr = 7 and λ = 20. The left, middle and right columns are for
Fr = 1.0, Fr = 1.5 and Fr = 2.5, respectively.

and thermal stratification shown in the last two rows indicate a stronger interaction

among the reversed flow, the intrusion and the ambient fluid with increasing Fr,

which results in a longer time for the reversed flow to collide at the center, but a

shorter time for the thermal stratified surface to reach the same height. In the long

run, the increase of Fr changes the behavior of the fountain and its secondary flows

from symmetric to asymmetric and from laminar to turbulent, as demonstrated by

the corresponding three-dimensional temperature contours presented in Figure 5.8.

The evolution of two-dimensional and three-dimensional temperature contours

of the fountains of Fr = 1.0, Pr = 7 and λ = 20 with Re = 50, Re = 200 and

Re = 800 are presented in Figure 5.9 and Figure 5.10 to illustrate the influence of

Re. The two-dimensional temperature contours on the section y = 0 include the

fountain behavior from the intrusion impinging the sidewall to the formation of the
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Figure 5.8: The three-dimensional temperature contours for the fountains of Re = 200,
Pr = 7 and λ = 20. The left, middle and right columns are for Fr = 1.0, Fr = 1.5 and
Fr = 2.5, respectively.

quasi-steady stratification, showing a thinner intrusion, a wall fountain with smaller

maximum penetration height and a smaller stratification height for the fountain

with a larger Re. The first row indicates the intrusion speed becomes larger with

increasing Re and the time to reach the maximum height of the wall fountain is

reduced as shown in the second row. However, it takes a longer time to form

the stratification for the fountain with a larger Re as shown in the last row. The

interaction between the fountain and its secondary flows becomes more significant

with increasing Re, resulting in the extension for the region of the fountain core

(the blue part at the center). This is because a stratified structure with a denser

fluid (blue) surrounding the fountain is formed, which will reduce the stability of the

fountain flow. Hence, a weak asymmetric behavior appears for the intrusion near the

fountain core for the fountain of Re = 800, as shown in Figure 5.10. What should
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Figure 5.9: The two-dimensional temperature contours on the section y = 0, 0 ≤ x ≤ 20
for the fountains of Fr = 1.0, Pr = 7 and λ = 20. The left, middle and right columns are
for Re = 50, Re = 200 and Re = 800, respectively.

be noted here is that no falling of the wall fountain is observed for the fountain of

Re ≤ 20.

The influence of Pr is illustrated by Figure 5.11 and Figure 5.12, where the

two-dimensional and three-dimensional temperature contours are presented for the

fountains of Fr = 1.0, Re = 200 and λ = 20 with Pr = 0.7, Pr = 10 and Pr = 50,

respectively. In the first row of Figure 5.11, the intrusion front of these fountains

reach the same location at the same time instant, with a thicker intrusion for the

fountain with smaller a Pr, indicating little influence of Pr on the thermal structure,

which is consistent with the previous studies (see, e.g., [30]). However, in the later
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Figure 5.10: The three-dimensional temperature contours for the fountains of Fr = 1.0,
Pr = 7 and λ = 20. The left, middle and right columns are for Re = 50, Re = 200 and
Re = 800, respectively.

evolution stages, it takes a longer time for the intrusion to impinge with the sidewall

(the second row), for the wall fountain to reach its maximum height (the third row)

and for the quasi-steady stratification to form (the last row) with the increase of

Pr, indicating that the influence of thermal conduction becomes more significant

when Pr is very small, which influences not only the thermal layer thickness, but

also the thermal structure. Additionally, an asymmetric behavior is observed for

the fountain of Pr ≥ 20, e.g., the case of Pr = 50 as shown in the last row of

Figure 5.12, which is due to the denser bottom structure resulted from the influence

of a larger Pr.
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Figure 5.11: The two-dimensional temperature contours on the section y = 0, 0 ≤ x ≤ 20
for the fountains of Fr = 1.0, Re = 200 and λ = 20. The left, middle and right columns
are for Pr = 0.7, Pr = 10 and Pr = 50, respectively.

Figure 5.13 and Figure 5.14 present the evolution of the two-dimensional and

three-dimensional temperature contours for the fountains of Fr = 1, Pr = 7 and

Re = 200 with λ = 10, λ = 20 and λ = 30 to demonstrate the influence of λ. The

second row of Figure 5.13 presents the time instant when the wall fountain reaches its

maximum height, indicating a higher maximum penetration height for the fountain

with a larger λ. With the development of the flow, a stratified structure with a

denser fluid close to the bottom is formed with decreasing λ, which will enhance the

instability of the fountain performance. In such a stratified structure, the fountain

extends its width and eventually changes from symmetric to asymmetric as shown
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Figure 5.12: The three-dimensional temperature contours of the fountains of Fr = 1.0,
Re = 200 and λ = 20. The left, middle and right columns are for Pr = 0.7, Pr = 10 and
Pr = 50, respectively.

in the last row of Figure. 5.14. Meanwhile, a more turbulent structure appears for

a very small λ, e.g., λ = 10.
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Figure 5.13: The two-dimensional temperature contours on the section y = 0, 0 ≤ x ≤ 20
for the fountains of Fr = 1.0, Re = 200 and Pr = 7. The left, middle and right columns
are for λ = 10, λ = 20 and λ = 30, respectively.
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Figure 5.14: The three-dimensional temperature contours of the fountains of Fr = 1.0,
Re = 200 and Pr = 7. The left, middle and right columns are for λ = 10, λ = 20 and
λ = 30, respectively.



138 Chapter 5

5.4 Quantitative observations

5.4.1 Intrusion

5.4.1.1 Passage of the intrusion front

Similar to the study on confined weak planar fountains, the time series of the intru-

sion front for the confined round fountains of 0.25 ≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800, 0.7 ≤

Pr ≤ 100 and 10 ≤ λ ≤ 35 are presented in Figure 5.15. Similarly, the intrusion

front is determined as the r-location where the temperature T (r) = Ta−1%(Ta−T0)

within the whole cylindrical domain.
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Figure 5.15: The time series of the passage of the intrusion front for round fountains
with (a) Re = 200, Pr = 7, λ = 20 and 0.1 ≤ Fr ≤ 3.0; (b) Fr = 1.0, Pr = 7, λ = 20
and 5 ≤ Re ≤ 800; (c) Fr = 1.0, Re = 200, λ = 20 and 0.7 ≤ Pr ≤ 100; (d) Fr = 1.0,
Re = 200, Pr = 7 and 10 ≤ λ ≤ 35.
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The end point of the times series is again defined as the characteristic time scale

for the intrusion front impinging with the sidewall, τw. Similar to the planar fountain

cases, the intrusion speed is found to increases with decreasing Fr or increasing Re

as shown in Figure 5.15(a)-(b). Notably, for planar fountains, the intrusion passage

overlaps for the cases of Re = 500 and Re = 800, indicating a minor effect from Re

for Re ≥ 500. However, for round fountains, only the early stage of the intrusion

passage overlaps for fountains of Re ≥ 500. Similarly, in the early evolution stage of

the fountains with varying Pr, the intrusion front passage profiles overlap as shown

in Figure 5.15(c). But after a certain distance, the intrusion speed declines with

increasing Pr. The influence of λ is presented in Figure 5.15(d), which shows that

the λ effects becomes significant only in the region close to the sidewall. All these are

consistent with the above qualitative observations, indicating the effect of thermal

conduction becomes more significant with larger Fr or smaller Re and Pr.

5.4.1.2 Time-scale for the intrusion front impinging the side-wall

To illustrate the influence of the governing parameters on τw, τw is plotted against

Fr, Re, Pr and λ in Figure 5.16. From Figure 5.16(a), Fr = 1.0 and Fr = 1.75

are identified as the critical numbers to distinguish the influence of Fr into three

ranges, with three different correlations are determined as follows:

τw =


941Fr0.61 − 0.26, 0.25 ≤ Fr ≤ 1.0,

50.8Fr + 43.7, 1.0 ≤ Fr ≤ 1.75,

35.2Fr + 66.1, 2.0 ≤ Fr ≤ 3.0.

(5.1)

with R2 = 1, 0.998 and 0.999, respectively. Figure 5.16(b) demonstrates the

influence of Re on τw. Similarly, two ranges of Re, i.e., 5 ≤ Re ≤ 200 and

200 ≤ Re ≤ 800 are determined, with the correlations between τw and Re can
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Figure 5.16: τw, the time-scale for intrusion front impinging with the sidewall, plotted
against: (a) Fr with Re = 200, Pr = 7 and λ = 20; (b) Re with Fr = 1.0, Pr = 7 and
λ = 20; (c) Pr with Fr = 1.0, Re = 200 and λ = 20; (d) λ with Fr = 1.0, Re = 200 and
Pr = 7.

be quantified by the following:

τw =


217.4Re−0.159 + 3.8, 5 ≤ Re ≤ 200,

377.8Re−0.263 + 0.1, 200 ≤ Re ≤ 800,

(5.2)

with R2 = 0.985 and 1 respectively. With the numerical results shown in Fig-

ure 5.16(c), a power law correlation between τw and Pr over the range of 0.7 ≤

Pr ≤ 100 are determined as follows:

τw = 78.9Re0.05 + 3.7 (5.3)
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with R2 = 0.982. The effect of λ on τw is presented in Figure 5.16(d), represented

by the following power law correlation:

τw = 0.5λ1.73 + 1.7 (5.4)

with R2 = 1.

5.4.1.3 Intrusion speed
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Figure 5.17: The time series of the intrusion speed for the fountains with Pr = 7,
λ = 20: (a) Re = 10 and 0.5 ≤ Fr ≤ 2.0; (b) Re = 50 and 0.25 ≤ Fr ≤ 2.0; (c) Re = 200
and 0.25 ≤ Fr ≤ 3.0; (d) Re = 800 and 0.5 ≤ Fr ≤ 2.0.

A detailed study on gravity current carried out by Chen [1] illustrates that a

radial gravity current may experience three regimes, i.e., the radial wall jet regime

(W-J), the buoyancy-inertia regime (B-I) and the buoyancy-viscosity regime (B-V)
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Figure 5.18: The time series of the intrusion speed for the fountains with Pr = 7,
λ = 20: (a) Fr = 0.5 and 10 ≤ Re ≤ 800; (b) Fr = 1.0 and 5 ≤ Re ≤ 800; (c) Re = 1.5
and 10 ≤ Re ≤ 800; (d) Fr = 2.0 and 10 ≤ Re ≤ 800.

in terms of the governing forces. When the gravity current is initially dominated by

momentum flux, M , the current behaves as a radial wall jet, where an increase is

observed for the current thickness with its spreading. In the radial wall jet regime,

the location of the intrusion front follows a scaling relation of R(t) ∼M1/4t1/2 with

time. Then, buoyancy (or gravity) becomes the driving force of the current, which is

balanced by the inertial force, resulting in a scaling relation R(t) ∼ B1/4t3/4 for the

buoyancy-inertia regime. The balance between buoyancy and inertia is later replaced

by a new balance between buoyancy and viscous drag force, when the viscous drag

force becomes larger than the inertial force, thus the current enter the buoyancy-

viscosity regime and the scaling relation R(t) ∼ (BQ2/ν)1/8t1/2 is obtained. The

momentum flux M , buoyancy flux B and volume flux Q for the round fountain are
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determined as Q = πR2
0W

2
0 , B = g(ρ0 − ρa)/ρaQ and Q = πR2

0W0. Similar to

the planar fountain case, non-dimensional correlations are obtained from the above

scaling relation for the intrusion speed in terms of Fr and Re as follows,

vi ∼ τ−1/2, (5.5)

for the radial wall jet regime,

vi ∼ Fr−1/2τ−1/4, (5.6)

for the buoyancy-inertial regime, and

vi ∼ Fr−1/4Re1/8τ−1/2. (5.7)

for the buoyancy-viscosity regime, where vi is the dimensionless radial intrusion

velocity which is non-dimensionalized by W0.
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Figure 5.19: The modified correlations for the intrusion speed in wall-jet regime, con-
sidering the influence of Fr and Re.
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Similar to the planar fountain, in the wall jet regime, vi is only time-dependent,

but independent of Fr and Re as indicated in Eq.(5.5). By contrast, Eq.(5.6) shows

that vi for the buoyancy-inertial regime is dependent of Fr and time, but is not

affected by Re. It is found that Fr together with Re decides the time-dependent

vi, when the intrusion develops into the buoyancy-viscosity regime as presented in

Eq.(5.7).

The time series of the intrusion front speed for a series of Fr and Re are shown

in Figure 5.17 and Figure 5.18 confirm that vi increases with decreasing Fr or

increasingRe, and is slowed down with time after it created. Additionally, significant

fluctuations are observed in the intrusion speed profiles for fountains with Re ≥ 500.

Similar to the intrusion of the planar fountain cases, vi is found to be influenced by

both Fr and Re for all three regimes, as further discussed below.
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Figure 5.20: The intrusion speed for buoyancy-inertial regime: (a) processed based on
gravity current theory; (b) modified correlations considering the influence of Re.
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Eq.(5.5) shows that vi only depends on time. However, it is found that the

influence of Fr and Re cannot be ignored, as indicated in Figure 5.17 and Figure 5.18

respectively. Thus a modified correlation is obtained with the consideration of the

influence of Fr and Re by using multivariate regression technique, as follows,

vi = 0.37Fr−1/5Re1/5τ−1/2 + 0.18 (5.8)

with R2 = 0.978. The dependence of vi/τ
−1/2 on Fr−1/5Re1/5 shown in Figure 5.19

indicates a good fit for the modified correlation shown in Eq.(5.8).

Similarly, Figure 5.20(a) plots vi/τ
−1/4 against Fr−1/2 according to Eq.(5.6) for

the buoyancy-inertial regime, showing that the influence of Re needs to be consid-

ered. Hence a modified correlation is obtained based on the numerical results, as

follows,

vi = 0.23Fr−1/2Re1/10τ−1/4 + 0.04 (5.9)

with R2 = 0.995. The modified correlation in Eq.(5.9) is presented in Figure 5.20(b).
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0
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2

3

vi/
-1/2

Fr-1/4Re1/8

Figure 5.21: vi/τ
−1/2 plotted against Fr−1/4Re1/8 for the intrusion current in the

buoyancy-viscosity regime.
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Figure 5.21 shows the results for vi/τ
−1/2 plotted against Fr1/4Re1/8 for the

intrusion current in the buoyancy-viscosity regime, which fits Eq.(5.7) well. The

quantified correlation is as follows,

vi = 0.72Fr−1/4Re1/8τ−1/2 − 0.03, (5.10)

with R2 = 0.931.

5.4.2 Wall fountain

5.4.2.1 Development of wall fountain in sidewall region

Similar to the confined weak planar fountains, a discontinuous wall fountain is

formed after the intrusion impinges with the sidewall. The behavior of the wall

fountain is still mainly dependent on Re, that is, no falling is observed for the wall

fountain with Re ≤ 20, while the wall fountain slumps down after reaching its max-

imum penetration height for 50 ≤ Re ≤ 800. However, no rolling down behavior is

found for the wall fountain of the DNS runs here.

In § 4.4.2.1, the height of the wall fountain front is determined by the vertical

location on the sidewall where the temperature T (y) = Ta−1%(Ta−T0). If the same

definition is used to describe the wall fountain height of the round fountain, no falling

down exists in the time series of the wall fountain front for the fountain with λ ≤ 20,

except for very small Fr, like Fr = 0.25 and 0.5. For example in Figure 5.22, only

the wall fountain front passage for fountains of Fr = 1.0, Re = 200 and Pr = 7 with

λ ≥ 25 experiences a falling phase. Hence, to illustrate the influence of governing

parameters on the wall fountain behavior for confined round fountains, the wall

fountain front is re-defined as the z-location in the region close to the sidewall at

which the temperature T (z) = Ta − 1%(Ta − T0).
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Figure 5.22: Time series of the passage of the wall fountain front on the sidewall for
fountains with Fr = 1.0, Re = 200, Pr = 7 and 10 ≤ λ ≤ 35.

Based on the new definition, the time series of the wall fountain front in sidewall

region are shown in Figure 5.23 over the range of 0.25 ≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800,

0.7 ≤ Pr ≤ 100 and 10 ≤ λ ≤ 35. The maximum height of the wall fountain zm

and the corresponding time-scale τm are determined from the figure. For Fr ≤ 1.75,

zm is found to increase with Fr, along with a larger corresponding τm, while the

conclusion is not valid for 2.0 ≤ Fr, due to the stronger convection as shown in

Figure 5.7. Similarly, with the increase of λ, zm and τm increase. The increase of

Re and Pr both results in a smaller zm. However the time for the wall fountain

to reach its maximum height is longer with the decrease of Re and the increase of

Pr. The influence of the governing parameters on τm and zm will be quantitatively

discussed below.
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Figure 5.23: The time series of the wall fountain front for fountains with (a) Re = 200,
Pr = 7, λ = 20 and 0.25 ≤ Fr ≤ 3.0; (b) Fr = 1.0, Pr = 7, λ = 20 and 5 ≤ Re ≤ 800;
(c) Fr = 1.0, Re = 200, λ = 20 and 0.7 ≤ Pr ≤ 100; (d) Fr = 1.0, Re = 200, Pr = 7 and
10 ≤ λ ≤ 35.

5.4.2.2 Influence of Fr, Re, Pr and λ on τm

Figure 5.24 demonstrates the influence of Fr, Re, Pr and λ on τm. Fr = 1.0 and

Fr = 2.0 are determined as the critical values to distinguish the influence of Fr into

three ranges as shown in Figure 5.24(a). The corresponding correlations between

τm and Fr are obtained as follows,

τm =


109.4Fr0.68 − 0.21, 0.25 ≤ Fr ≤ 1.0,

92.1Fr + 20.1, 1.0 ≤ Fr ≤ 1.75,

(5.11)
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Figure 5.24: τm plotted against (a) Fr with Re = 200, Pr = 7 and λ = 20; (b) Re with
Fr = 1.0, Pr = 7 and λ = 20; (c) Pr with Fr = 1.0, Re = 200 and λ = 20; (d) λ with
Fr = 1.0, Re = 200 and Pr = 7.

with R2 = 1 and 0.998, respectively. There is no clear correlation fits for the range

of 2.0 ≤ Fr ≤ 3.0, which is due to the more asymmetric and turbulent structure

with increasing Fr, particularly for 2.0 ≤ Fr ≤ 3.0.

No τm is obtained for the fountains with Re ≤ 20 since there is no slumping down

behavior for their secondary wall fountain flows. For the fountains with 50 ≤ Re ≤

800, the influence of Re is distinguished into two ranges by Re = 200 as shown in

Figure 5.24(b), with two power law correlations are determined with the numerical
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results as follows,

τm =


270.9Re−0.17 − 1.47, 50 ≤ Re ≤ 200,

410.5Re−0.25 + 0.45, 200 ≤ Re ≤ 800,

(5.12)

with R2 = 0.99 and 1, respectively.

The results shown in Figure 5.24(c) indicate a power law correlation for the

influence of Pr on τm, quantified with the numerical results as follows,

τm = 95.8Pr0.033 + 1.31, (5.13)

with R2 = 0.97.

Similarly, a power law correlation is identified between τw and λ with the numer-

ical results, as shown in Figure 5.24(d), which is as follows,

τm = 1.1λ1.53 + 1.16, (5.14)

with R2 = 0.999.

5.4.2.3 Maximum height of the wall fountain on the sidewall

Similarly, Figure 5.25 demonstrates the influence of these governing parameters on

the maximum penetration height of the wall fountain on the sidewall region. In

Figure 5.25(a), the influence of Fr on zm is again divided into three ranges by

Fr = 1.0 and Fr = 2.0. The following correlations are obtained from the numerical

results for the ranges of 0.25 ≤ Fr ≤ 1.0 and 1.0 ≤ Fr ≤ 1.75,

τm =


1.92Fr0.3 − 0.01, 0.25 ≤ Fr ≤ 1.0,

0.86Fr + 1.06, 1.0 ≤ Fr ≤ 1.75,

(5.15)
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Figure 5.25: zm plotted against (a) Fr with Re = 200, Pr = 7 and λ = 20; (b) Re with
Fr = 1.0, Pr = 7 and λ = 20; (c) Pr with Fr = 1.0, Re = 200 and λ = 20; (d) λ with
Fr = 1.0, Re = 200 and Pr = 7.

with R2 = 0.995 and 0.998 respectively, while there is no clear correlation for the

range of 2.0 ≤ Fr ≤ 3.0.

Figure 5.25(b) shows the influence of Re on zm. For Re ≥ 200, the effect of Re

on zm is minumal, while for 50 ≤ Re ≤ 200, the following correlation is obtained

from the numerical results,

ym = 8.38Re−0.28 − 0.03, (5.16)

with R2 = 0.995.
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The following power law correlation is obtained between zm and Pr from the

numerical results, as shown in Figure 5.25(c),

ym = 3.16Pr−0.022 − 0.04 (5.17)

with R2 = 0.987.

The influence of λ on zm presented in Figure 5.25(d) can be quantified by the

following linear correlation,

zm = 0.027λ+ 1.41 (5.18)

with R2 = 0.985.

5.4.3 Stratification

Similar to the confined planar fountain cases, the time series of the maximum, aver-

aged and minimum heights of the thermally stratified surface are used to illustrate

the influence of Fr, Re, Pr and λ on the evolution of the stratification, as shown

in Figure 5.26. The stratified surface for a round fountain is determined by the

z-location at which the temperature T (z) = Ta − 1%(Ta − T0) within the whole

cylindrical domain. The profiles of the stratified surface passage in the figures start

from the time instant when the intrusion impinges with the sidewall until a quasi-

steady stratification is formed when the differences among the maximum, averaged

and minimum heights become small enough or overlap. In the initial stage, the

differences among the height profiles are significant. This is because convection

and mixing play dominant roles in the flow development, which is mainly resulted

from the interactions among the fountain flow, its secondary flows, the ambient

fluid and the sidewall. After a long run, the three profiles follow the same trend

and the extents of the differences are reduced, indicating that thermal conduction

and filling become the dominant factors in the later evolution of the stratification.
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Moreover, the slope of the averaged height profile can be approximately treated as

the development rate of the thermally stratified surface.
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Figure 5.26: Time series of the maximum, minimum and average stratification heights
for fountains with (a) Re = 200, Pr = 7, λ = 20 and Fr = 0.5, 1.0, 2.0; (b) Fr = 1.0,
Pr = 7, λ = 20 and Re = 5, 20, 200; (c) Fr = 1.0, Re = 200, λ = 20 and Pr = 0.7, 10,
50; (d) Fr = 1.0, Re = 200, Pr = 7 and λ = 10, 20, 30.

Figure 5.26(a) shows that the magnitude of the differences among the height

profiles becomes more significant when Fr increases, and the time for the formation

of the quasi-steady stratification also increases. While the results in Figure 5.26(b)

indicate that the increase of Re results in smaller difference magnitudes and a shorter

time for the stratification to reach steady, a smaller development rate of the quasi-

steady stratification is observed for the fountain with larger Re, due to the influence

of thermal conduction. Similarly, with the increase of Pr, the development rate of

the thermal stratification is reduced, as shown in Figure 5.26(c). The magnitude of
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the differences among the height profiles is more significant for the fountain with

increasing λ, as shown in Figure 5.26(d), which is because of the higher penetration

height of the wall fountain.
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Figure 5.27: vs plotted against (a) Fr with Re = 200, Pr = 7 and λ = 20; (b) Re with
Fr = 1.0, Pr = 7 and λ = 20; (c) Pr with Fr = 1.0, Re = 200 and λ = 20; (d) λ with
Fr = 1.0, Re = 200 and Pr = 7.

While the development rate of the stratification vs, can be approximately ob-

tained through the slope of the averaged stratification profiles after the quasi-steady

stratification is formed, the counterpart development rate for a purely filling flow in

a cylindrical container can be calculated by vs = 1/λ2 based on the conservation law

of mass. Figure 5.27 presents the development rate of the averaged stratification

and its corresponding purely filling rate for the fountains to illustrate the influence

of the governing parameters on vs. Again, Fr = 1.0 and Fr = 2.0 are determined
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as the critical values to distinguish the influence of Fr into three ranges, as shown

in Figure 5.27(a). For 0.25 ≤ Fr < 1.0, the increase of Fr results in a declining vs.

But vs remains almost constant for 1.0 ≤ Fr ≤ 2.0. However, with the further in-

crease of Fr, vs increases noticeably in the range of 2.0 < Fr ≤ 3.0. Figure 5.27(b)

illustrates the influence of Re on vs, where the influence of Re can be distinguished

into two ranges by some specific value between Re = 100 and Re = 200, with two

power law correlations obtained as follows,

vs =


0.09Re−0.362, 5 ≤ Re ≤ 100,

0.07Re−0.173, 200 ≤ Re ≤ 800,

(5.19)

with R2 = 0.998 and 1.0 respectively.

The following power-aw correlation is obtained for the influence of Pr on vs over

the range of 0.7 ≤ Pr ≤ 50, as shown in Figure 5.27(c),

vs = 0.0074Pr−0.238 − 0.0002, (5.20)

with R2 = 0.98. But the change of vs for 50 ≤ Pr is negligible, which is also close

to the purely filling rate, showing a minor influence from thermal conduction when

Pr is very high.

Based on the results in Figure 5.27(d), the following correlation is obtained

between vs and λ,

vs = 0.5077Pr−1.574 − 0.0002, (5.21)

with R2 = 0.998.
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Figure 5.28: Time series of the entrainment rate QE/Q0 for fountains with (a) Re = 200,
Pr = 7, λ = 20 and 0.25 ≤ Fr ≤ 3.0; (b) Fr = 1.0, Pr = 7, λ = 20 and 5 ≤ Re ≤ 500;
(c) Fr = 1.0, Re = 200, λ = 20 and 0.7 ≤ Pr ≤ 100; (d) Fr = 1.0, Re = 200, Pr = 7 and
10 ≤ λ ≤ 35.

5.4.4 Bulk entrainment or dilution

The bulk entrainment rate determined by QE/Q0 is used to describe the mean

dilution of the buoyancy scalar over the filling box as a whole, which is again em-

ployed here to investigate the entrainment/dilution behavior for the filling flow with

weak round fountains. For a confined round fountain, the source volume flux is

Q0 = πR2
0W0, whereas the bulk entrainment QE is calculated by QE = Qs − Q0,

where Qs is the volume flux of the stratified fluid, which is calculated by integrating

the volume under the thermal stratified surface.

The entrainment rates (QE/Q0) for the confined round fountains over the range
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of 0.25 ≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800, 0.7 ≤ Pr ≤ 100 and 10 ≤ λ ≤ 35 are calculate

and plotted against τ as shown in Figure 5.28, to demonstrate the influence of

these governing parameters. The time series of the entrainment rate profile starts

from the formation stage of the fountain until the formation of the quasi-steady

stratification. As presented in Figure 5.28, the entrainment rate profiles can be

approximately distinguished into three stages. In the first stage, the entrainment

rate increases monotonically with time until reaching the first peak points. The first

stage corresponds to the period of the intrusion development, where the ambient fluid

is mainly engulfed by the eddy over the intrusion head. With the intrusion front

impinging with the sidewall, the entrainment rate profile reaches the peak, due to the

stronger convection and mixing resulted from the impingement and the subsequent

secondary wall fountain flow. Then the convection and the interactions among the

intrusion, the reversed flow and the ambient fluid keep the entrainment rate at a

relatively high value until the reversed flows collide at the center of the container.

For some cases, see, e.g., Pr = 0.7 and 1, the colliding at the center results in

another peaking value for the the entrainment rate. After that the entrainment rate

profiles decrease gradually. This is because thermal conduction plays the dominant

roles in the dilution process, with the confined fountain flow turning into a filling box

model. It should be noted that thermal conduction keeps influencing the dilution

process at all stages. The influence of Fr, Re, Pr and λ on QE/Q0 is consistent

with the results presented in § 5.4.3 for the stratification rate.

5.5 Summary

The upward ejection of a round fountain into a cylindrical container with a ho-

mogeneous ambient fluid results in a ‘weak round fountain filling box model’. A

series of 3D DNS runs for the round fountains over the ranges of 0.25 ≤ Fr ≤ 3.0,

5 ≤ Re ≤ 800, 0.7 ≤ Pr ≤ 100 and 10 ≤ λ ≤ 35 are carried out to illustrate the

behavior of the confined weak round fountains. The typical evolution of the confined
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weak round fountains is described in detail, along with the qualitative and quanti-

tative analysis of the influence of Fr, Re, Pr and λ with the numerical results. The

major conclusions of this chapter are summarized as follows:

• A secondary radial intrusion flow is created with the impingement of the foun-

tain downflow on the bottom of the container. The intrusion flow behavior

can be approximately described by the scaling relations obtained by Chen [1]

for radial gravity currents. However, for the ‘wall-jet’ regime and ‘buoyancy-

inertial’ regime, both Re and Fr influence vi, which is different from the results

of the existing studies. Additionally, the influence of Pr on vi becomes signif-

icant after the intrusion spreads a certain distance, particularly for very small

Pr, e.g., Pr = 0.7 and 1, due to the influence of thermal conduction.

• The behavior of the secondary wall fountain for the fountains with specific

values of Fr, Re and Pr is significantly influenced by the confinement λ. The

wall fountain front on the sidewall changes from no falling to falling with the

increase of λ. The maximum penetration height zm is found to increase with

λ and Fr for Fr ≤ 2.0, whereas zm decreases with increasing Re and Pr.

• Three stages are determined based on the time series of the bulk entrainment

rate. At first, the entrainment rate monotonically increases due to the ambi-

ent fluid engulfed by the intrusion head. With the intrusion impinging with

the sidewall, the entrainment rate reaches a peaking value. Then the sub-

sequent interactions among the intrusion, the reversed flow and the ambient

fluid create convection and mixing, leading to the second stage with relatively

high entrainment rate. After the second peak, the entrainment rate gradually

decreases, which is because the dominant factors governing the stratification

development switch to filling and thermal conduction. The stratification rate

vs deceases with the increase of Re and Pr, which reduces the effect of thermal

conduction.
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• With the qualitative and quantitative analysis, Fr = 1.0 and 2.0 are identified

as the critical values to distinguish the behavior of the intrusion, wall fountain

and stratification. This is consistent with the existing classifications of the

round fountains [2], while Re = 200 is determined as the critical value to

divide the influence of Re, which also agrees well with the existing results [30].





Chapter 6

Confined intermediate and forced

turbulent round fountains

6.1 Introduction

The previous two chapters have focused on the transient behavior of confined weak

planar and round fountains through direct numerical simulation. In this chapter,

the transient behavior of confined weak, intermediate and forced round fountains

is studied through a series of experiments. In § 6.2, the details of the experiments

are described. To benchmark the numerical results of confined weak round fountain

produced by DNS runs in the previous chapter, several experiments with typical

Fr and Re values were carried out and the comparison between the numerical and

experimental results are presented in § 6.3. The qualitative and quantitative results

obtained from experiments are detailed and discussed in § 6.4. The main conclusions

of this chapter are summarized in § 6.5.

161
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6.2 Experimental details

The details of the experimental system, setup, and methods were described in § 3.3.

In the current experiments, saline water of various densities was ejected upward into

a cylindrical container with quiescent free water at specific constant flow rates, to

form the confined round fountains with Fr and Re over the range of 1.0 ≤ Fr ≤ 20.0

and 102 ≤ Re ≤ 1502. The inner diameter of the cylindrical Perspex-sided test tank

is R = 0.39m. The changes of the nozzles with diameters of 0.007 m, 0.006 m, 0.005

m and 0.004 m, from which the fountain is ejected, result in the dimensionless

confinement size λ = 27.9, 32.5, 39.0 and 48.75, respectively, with the majority of

the experiments using the nozzle of the diameter of 0.007 m (λ = 27.9). Since the

fluid for the experiments is water, Pr is fixed as Pr = 7. Hence only the influence

of Fr, Re and λ on the transient behavior of confined round fountains are studied

experimentally here. The transient behavior of confined fountain was recorded by a

system of two Photron FASTCAM Mini UX100 High-Speed Cameras and a SONY

HDR-PJ810 video camera.

There are totally 39 experiments were carried out, with the key information for

these experiments presented in Table 6.1.

Table 6.1: Key data of the experiments of confined round fountains

Runs Fr Re R0 (m) W0 (m/s) ρ0 (kg/m3) ρa (kg/m3)

1 1 102 0.007 0.013533584 996.9 999.5

2 1 204 0.007 0.027067167 996.5 1007.6

3 1 511 0.007 0.067667918 996.7 1063.4

4 1.5 102 0.007 0.013533584 996.5 997.7

5 1.5 204 0.007 0.027067167 996.5 1001.3

6 1.5 307 0.007 0.040600751 996.7 1007.5

Continued on next page
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Table 6.1 – continued from previous page

Runs Fr Re R0 (m) W0 (m/s) ρ0 (kg/m3) ρa (kg/m3)

7 1.5 409 0.007 0.054134334 996.8 1015.7

8 1.5 511 0.007 0.067667918 996.6 1026.1

9 2 102 0.007 0.013533584 996.5 997.2

10 2 204 0.007 0.027067167 996.5 999.3

11 2 511 0.007 0.067667918 996.6 1013.3

12 3 102 0.007 0.013533584 996.7 997

13 3 204 0.007 0.027067167 996.6 997.8

14 3 511 0.007 0.067667918 996.6 1004.2

15 3 695 0.007 0.092028368 996.6 1010.5

16 3 1002 0.007 0.132629119 996.6 1025

17 5 204 0.007 0.027067167 996.9 997.3

18 5 511 0.007 0.067667918 996.4 999.1

19 5 695 0.007 0.092028368 996.6 1001.6

20 3 1002 0.007 0.132629119 996.7 1007.1

21 1.5 501 0.006 0.077366986 996.7 1041.6

22 5 501 0.006 0.077366986 996.6 1000.7

23 8 1002 0.006 0.185680767 996.6 1003.1

24 5 501 0.005 0.095492966 996.6 1004

25 8 1002 0.005 0.185680767 996.6 1007.5

26 1.5 501 0.004 0.116050479 996.8 1148.2

27 5 501 0.004 0.116050479 996.7 1010.1

28 5 1502 0.004 0.348151438 996.7 1121

29 8 215 0.004 0.04973592 997 998

Continued on next page
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Table 6.1 – continued from previous page

Runs Fr Re R0 (m) W0 (m/s) ρ0 (kg/m3) ρa (kg/m3)

30 8 501 0.004 0.116050479 996.7 1002.1

31 8 716 0.004 0.165786399 996.5 1007.5

32 8 1002 0.004 0.232100959 996.6 1017.8

33 8 1502 0.004 0.348151438 996.5 1044.7

34 15 501 0.004 0.116050479 997 998.5

35 15 716 0.004 0.165786399 996.7 999.8

36 15 1002 0.004 0.232100959 996.6 1002.7

37 15 1502 0.004 0.348151438 996.5 1009.8

38 20 1002 0.004 0.232100959 996.5 1000

39 20 1502 0.004 0.348151438 996.7 1004.4

6.3 DNS results benchmarking

To ensure accurate numerical results to be obtained by the DNS runs, the DNS

results of several typical confined weak round fountains obtained in Chapter 5 are

compared against the experimental results of approximately the same corresponding

fountains, both qualitatively and quantitatively. The DNS runs selected for the

benchmark include those of Fr = 1.0, 1.5, 2.0, and 3.0 at Re = 200 and λ = 20,

and Re = 100, 200, and 500 at Fr = 1.5 and λ = 20. The experiments chosen

for the DNS benchmark are those of Fr = 1.0, 1.5, 2.0 and 3.0 at Re = 204 and

λ = 27.9 (i.e., runs 2, 5, 10 and 13), and Re = 102, 204 and 511 at Fr = 1.5 and

λ = 27.9 (i.e., runs 4, 5 and 8), with each experiment corresponding to the closest

to its counterpart of the DNS run.

The evolution of the flow behavior of a typical confined weak round fountain

was presented in § 5.3 with the DNS results, which includes five major development
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Figure 6.1: The comparison of the images of the density field from the experiment for
the confined weak round fountain of Fr = 2.0, Re = 204, Pr = 7 and λ = 27.9 and the
contours of the temperature field from the DNS for the corresponding confined weak round
fountain of Fr = 1.5, Re = 200, Pr = 7 and λ = 20, during the intrusion flow stage.

stages, i.e., the formation of the fountain flow, the intrusion flow, the wall fountain

flow on the sidewall, the reversed flow and the stratification. In Figure 6.1 to

Figure 6.3, the images of the density field from the experiment for the confined

weak round fountain of Fr = 2.0, Re = 204, Pr = 7 and λ = 27.9 and the contours

of the temperature field from the DNS for the corresponding confined weak round

fountain of Fr = 2.0, Re = 200, Pr = 7 and λ = 20 are presented for the stages

of the intrusion flow, the wall fountain flow and the stratification, respectively. As

the description of the evolution of the flow behavior of such a confined weak round

fountain was detailed in the previous chapter, it will not be repeated here.

The importance of these figures is that the experimental results and the DNS

results are qualitatively in good agreement, as the DNS results captures the major
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Figure 6.2: The comparison of the images of the density field from the experiment for
the confined weak round fountain of Fr = 2.0, Re = 204, Pr = 7 and λ = 27.9 and
the contours of the temperature field from the DNS for the corresponding confined weak
round fountain of Fr = 1.5, Re = 200, Pr = 7 and λ = 20, during the wall fountain flow
stage.

features of the flow behavior with sufficient accuracy, although noticeable quantita-

tive differences are also clearly shown between the experimental and DNS results.

Similarly, the quantitative comparisons between the numerical and experimental

results of the time series of the penetration height of the fountains and the intrusion

front, as shown in Figure 6.4 to Figure 6.7 also clearly show that in general the DNS

results are in good agreement with the experimental results in terms of the intru-

sion front, again indicating the DNS runs predict the flow behavior with sufficient

accuracy.

The results show that the DNS data, in general, match the experimental results

satisfactorily and capture all the major features of the flow behavior of confined

round fountains, although some noticeable quantitative differences are also clearly
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Figure 6.3: The comparison of the images of the density field from the experiment for
the confined weak round fountain of Fr = 2.0, Re = 204, Pr = 7 and λ = 27.9 and
the contours of the temperature field from the DNS for the corresponding confined weak
round fountain of Fr = 1.5, Re = 200, Pr = 7 and λ = 20, during the stratification stage.

seen. Some of the possible factors contributed to these differences were discussed by

Mahmud [54] who used the similar experimental facility to the current one for his

PhD thesis. These factors can be briefly summarized as follows:

• Determination of the density difference: In the DNS runs, the density dif-

ference was determined by the temperature difference using the Oberbeck-

Boussinesq approximation, whereas in the experiments, it was determined by

the salinity of fluid. The substantial difference in the Schmidt number be-

tween the saline water used in the experiments and the pure water used in

the DNS runs results in considerably different molecular diffusion rates of the

fluids and thus a noticeable different thermal boundary layer calculated by

the DNS runs compared to that obtained by the experiments. It is speculated
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Figure 6.4: The time series of the penetration height of the fountains of (a) Fr = 1.0 with
Re = 200 for the DNS run (solid line), and Fr = 1.0 with Re = 204 for the experimental
run (scatters); (b) Fr = 1.5 with Re = 200 for the DNS run (solid line), and Fr = 1.5
with Re = 204 for the experimental run (scatters); (c) Fr = 2.0 with Re = 200 for the
DNS run (solid line), and Fr = 2.0 with Re = 204 for the experimental run (scatters);
(d) Fr = 3.0 with Re = 200 for the DNS run (solid line), and Fr = 3.0 with Re = 204 for
experimental run (scatters).

that this should be the major factor contributed to the observed differences

between the DNS results and the experimental results.

• Measurement errors in the experiments: The errors in the experimental mea-

surements of the densities, velocities, fountain penetration height, intrusion

speed and thickness, stratification level, nozzle size, flow rate, etc., are in-

evitable. Such errors are other major sources for the observed differences.
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Figure 6.5: The time series of the penetration height of the fountains of (a) Fr = 1.5 with
Re = 100 for the DNS run (solid line), and Fr = 1.5 with Re = 102 for the experimental
run (scatters); (b) Fr = 1.5 with Re = 200 for the DNS run (solid line), and Fr = 1.5
with Re = 204 for the experimental run (scatters); (c) Fr = 1.5 with Re = 500 for the
DNS run (solid line), and Fr = 1.5 with Re = 511 for experimental run (scatters).

• Difference in the inlet velocity profiles: In the DNS runs, a ‘top-hat’ uniform

inlet velocity profile was assumed whereas in the experiments the specific inlet

velocity profile was unknown but it is certain that it should not be a uni-

form one. Such a difference surely will make a noticeable contribution to the

observed differences.

• Difference in the ambient fluids: In the DNS runs, a uniform ambient fluid

was assumed at the commencement of the runs, while in the experiments such

a uniform ambient fluid was hard to achieve. In addition, in the DNS runs,

the ambient fluid was pure water, whereas in the experiments, dye particles

were added in the water which is itself not pure, but with numerous small
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Figure 6.6: The time series of the intrusion front for fountains of (a) Fr = 1.0 with
Re = 200 for the DNS run (solid line), Re = 204 for the experimental run (scatters); (b)
Fr = 1.5 with Re = 200 for the DNS run (solid line), Re = 204 for the experimental run
(scatters); (c) Fr = 2.0 with Re = 200 for the DNS run (solid line), Re = 204 for the
experimental run (scatters); (d) Fr = 3.0 with Re = 200 for the DNS run (solid line),
Re = 204 for experimental run (scatters).

solid particles, although very tiny and very dilute, will also makes a noticeable

contribution to the observed differences.

• In the experiments, the fountain penetration height, the passage of the intru-

sion and the stratification height were determined from the images captured
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Figure 6.7: The time series of the intrusion front for fountains of (a) Fr = 1.5 with
Re = 100 for the DNS run (solid line), Re = 102 for the experimental run (scatters); (b)
Fr = 1.5 with Re = 200 for the DNS run (solid line), Re = 204 for the experimental run
(scatters); (c) Fr = 1.5 with Re = 500 for the DNS run (solid line), Re = 511 for the
experimental run (scatters).

by the CCD camera with the help of dye. Such PIV images can be severely

affected by the light reflected from the air, the glass wall or the ambient and

fountain fluids, which will also make a contribution to the observed differences

between the DNS results and the experimental results.

Nevertheless, all the benchmarking results, as noted above, clearly show that the

code used for the DNS runs is able to provide satisfactorily accurate and reliable nu-

merical results which capture all the major features of the bulk behavior of confined

round fountains in a homogeneous fluid.



172 Chapter 6

6.4 Experimental results and discussion

Hunt and Burridge [2] classified round fountains into very weak fountains (0.3 .

Fr . 1.0), weak fountains (1.0 . Fr . 2.0), intermediate fountains (2.0 . Fr .

4.0), and forced / highly forced fountains (Fr & 4.0) with the consideration of the

dominant physics of these flows with different Fr values. Similar to the characteris-

tics of the flow behavior of confined weak round fountains, the evolution of the filling

box flow induced by intermediate and forced turbulent fountains also experiences

the formation of the fountain, the intrusion flow, the wall fountain flow, the reversed

flow and the stratification, although both the fountain flow and the secondary flows

present are turbulent instead of laminar as for confined weak round fountains. In

the subsequent sections, the evolution of these flows and the influence of Fr, Re

and λ on their bulk behavior, including penetration height, intrusion thickness, in-

trusion speed and stratification rate, are described and discussed both qualitatively

and quantitatively.

6.4.1 Qualitative observations

Without the PIV system assistance, the cameras can only capture the bulk behavior

of the fountain flow and its secondary flows projected onto the sidewall in front. As

a result, the images captured from experiments, as those presented in Figure 6.1 to

Figure 6.3, can only determine the maximum value of the dense flow in vertical and

horizontal directions. For example, the intrusion flow shown in the camera images

actually reflects the radial location and the vertical thickness of the intrusion front,

whereas the density stratification (dark region) in the camera images is actually

the maximum height of the stratified surface in the vertical direction. Hence, the

internal structure and some of the flow behavior (e.g., the wall fountain and reversed

flow) cannot be captured by the camera systems in this study.
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6.4.1.1 The evolution of the confined intermediate round fountain of

Fr = 3.0

Figure 6.8: The images show the evolution of the confined round fountain of Fr = 3.0,
Re = 695, Pr = 7 and λ = 27.9 over the duration of the intrusion flow: (a) at τ = 58.4;
(b) at τ = 76.1; (c) at τ = 110.3; (d) at τ = 151.0.
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Figure 6.9: The images show the evolution of the confined round fountain of Fr = 3.0,
Re = 695, Pr = 7 and λ = 27.9 over the duration of the wall fountain flow: (a) at
τ = 119.5; (b) at τ = 151.0; (c) at τ = 242.8; (d) at τ = 326.9.

Figure 6.8 to Figure 6.10 present the snapshots of the flow of the intermediate

round fountain of Fr = 3.0, Re = 695, Pr = 7 and λ = 27.9, to illustrate the

evolution of the flow behavior of the fountain. Figure 6.8 shows the passage of

the intrusion flow. As the intrusion flow spreads, the thickness of the intrusion

decreases following a correlation hi ∼ Frτ−1/2 as shown in [113]. This is apparently

confirmed by the snapshots presented in Figure 6.8. After the intrusion flow reaches

the sidewall, as shown in Figure 6.9, it impinges with the sidewall and forms a vertical

wall fountain along the sidewall. After reaching a finite height, the wall fountain

flow falls down and interacts with the intrusion flow and the ambient fluid to form

the reversed flow which moves above the intrusion flow and towards the fountain

source. The reversed flow results in the increase of the fountain penetration height.
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Figure 6.10: The images show the evolution of the confined round fountain of Fr = 3.0,
Re = 695, Pr = 7 and λ = 27.9 over the duration of the reserved flow and stratification:
(a) at τ = 468.6; (b) at τ = 1152.2; (c) at τ = 2706.2; (d) at τ = 4281.2.

Subsequently, the continuous fountain flow, intrusion flow, wall fountain flow and

reversed flow collectively form the stratification. After a very long time of such flow,
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a stratification will gradually establish in the domain and the fountain flow will be

totally submerged within the stratified fluid. Such a development of stratification is

clearly shown in the images presented in Figure 6.10.

Figure 6.11: The images show the evolution of the intrusion flow for the fountain of
Fr = 3.0, Pr = 7 and λ = 27.9 at: the first row, Re = 102; the second row, Re = 204;
the third row, Re = 511; the fourth row, Re = 695; the fifth row, Re = 1002.

The influence of Re on the flow behavior of the confined intermediate round

fountain of Fr = 3.0 is illustrated in Figure 6.11, where the snapshots of the central
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region of the flow for the fountains of Fr = 3.0 and λ = 27.9 at five Re values (that

is, Re = 102, 204, 511, 695 and 1002) over the duration of the intrusion flow are

presented.

The snapshots in Figure 6.11(a)-(e) show the density field of the flow after the

instant when the downflow of the fountain impinges with the bottom and the in-

trusion flow is creating, where the structure with an inner jet-like upflow and an

annular downflow is identified. It is observed that both the upflow and downflow

change from weak to forced turbulent with the increase of Re, and their interactions

are also strengthened meanwhile. Although a flapping behavior is observed for the

fountains of Re = 102 and 204, both the upflow and downflow behave in a laminar

manner and the interaction is weak, allowing a quicker falling of the downflow to

impinge with the bottom and creating the intrusion earlier, while the stronger in-

teraction between the upflow and downflow for the fountains with Re & 500 reduces

the falling of the downflow. Hence, the time for the downflow to reach the bottom

increases with increasing Re for Re . 500. But the counterpart time for fountains

with Re & 500 is similar as shown in Figure 6.11(c)-(e).

Figure 6.11(k)-(o) presents the flow when the intrusion front impinges with the

sidewall. For the fountain of Re & 204, the time for the intrusion front to reach the

wall (τw) is essentially independent of Re, indicating that when the fountain is in

turbulent regime, the influence of Re on τw is negligible. This is consistent with the

numerical study. In such confined forced fountains, the intrusion flow is dominated

by the wall-jet and/or buoyancy-inertial regime, where the intrusion front speed

can be described by the correlation of vi ∼ τ−1/2 and vi ∼ Fr−1/2τ−1/4, indicating

little influence from Re. Then the earlier starting time of the intrusion for the

fountain of Re = 204 than those of Re & 500 results in a smaller τw. However,

when Re is small (Re = 102), the flow is in the laminar regime, experiencing both

the buoyancy-inertial and buoyancy-viscosity regimes. The intrusion speed for the

buoyancy-viscosity regime follows the correlation of vi ∼ Fr−1/4Re1/8τ−1/2, resulting

in a slower intrusion speed in the second-half spreading for the fountain of Re = 102.
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Hence the fountain of Re = 102 takes a noticeably longer time for the intrusion front

to reach the sidewall, although with the earliest formation of the intrusion.

Additionally, the results in the figure show that, in terms of the penetration

height, the influence of Re is not significant, which is consistent with the prediction

by the correlation of zm ∼ Fr [2]. The thicknesses of the intrusion flow are similar

for different Re values, e.g., Figure 6.11(m)-(k), also indicating that the influence of

Re on the intrusion flow thickness is minimal. However, it is observed that with the

increase of Re, the fountain flow and its secondary flows become more turbulent.

The results in Figure 6.11(a), (b), (f), (k) and (l) marked in red line are provided by

the video camera, while the others are from the High-Speed Camera (The same as

in the subsequent figures). This is because the recording capacity of the High-Speed

Camera under the current setting is 17.466 seconds, thus only a short evolution of

the flow can be captured. What should be noted here is that errors need to be

considered in processing the contour and calculating the dimensionless time when

the images are from different camera sources.

6.4.1.2 The evolution of the confined forced round fountain of Fr = 5.0

and 8.0

To illustrate the evolution of the flow behavior of confined forced turbulent foun-

tains, two such fountains, i.e., the fountain of Fr = 5.0, Re = 695, Pr = 7 and

λ = 27.9, and the fountain of Fr = 8.0, Re = 1502, Pr = 7 and λ = 48.75, are

selected as examples. The images obtained experimentally showing the evolution of

the flow behavior of such confined forced turbulent fountains and the Re influence

are presented in Figure 6.12 to Figure 6.19. For the Fr = 5.0 fountain, as shown

in Figure 6.12(b)-(d), the intrusion thickness is significantly thicker than its coun-

terpart of the intermediate fountains of Fr = 3.0, which is in agreement with the

correlation of hi ∼ Frτ−1/2 [113]. However, different from the fountain of Fr = 3.0,

there is no decrease observed in the intrusion thickness with time. This is because
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Figure 6.12: The images show the evolution of the confined round fountain of Fr = 5.0,
Re = 695, Pr = 7 and λ = 27.9 over the duration of the intrusion flow: (a) at τ = 118.8;
(b) at τ = 137.8; (c) at τ = 160.1; (d) at τ = 224.3.
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Figure 6.13: The images show the evolution of the confined round fountain of Fr = 5.0,
Re = 695, Pr = 7 and λ = 27.9 over the duration of the wall fountain flow: (a) at
τ = 182.5; (b) at τ = 224.3; (c) at τ = 294.6; (d) at τ = 326.9.

the strengthened effect of convection and diffusion with increasing Fr contributes

to the entrainment of the ambient fluid into the intrusion flow during the spreading,

particularly in the intrusion head region, resulting in a constant or even increas-

ing thickness presented in the figure. Figure 6.12(a) shows that it takes significant

longer time for the downflow of the fountain of Fr = 5.0 than that of the fountain

of Fr = 3.0 to impinge with the bottom, due to a more turbulent and higher pen-

etration height of the fountain flow. It is observed that the intrusion flow of the

fountain of Fr = 5.0 is slower than that of the fountain of Fr = 3.0 to impinge with
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Figure 6.14: The images show the evolution of the confined round fountain of Fr = 5.0,
Re = 695, Pr = 7 and λ = 27.9 over the duration of the reserved flow and stratification:
(a) at τ = 875.1; (b) at τ = 1703.3; (c) at τ = 3767.4; (d) at τ = 4157.6.
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Figure 6.15: The images shown the evolution of the intrusion flow for the fountain of
Fr = 5.0, Pr = 7 and λ = 27.9 at: the first column, Re = 204; the second column,
Re = 511; the third column, Re = 695; the fourth column, Re = 1002.

sidewall, which again confirms the correlation of vi ∼ Fr−1/2τ−1/4. After the intru-

sion impinges with the sidewall, a wall fountain structure (overturning) is observed,

as shown in Figure 6.13. With the increasing time, a two-layer structure fountain is
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Figure 6.16: The images show the evolution of the confined round fountain of Fr = 8.0,
Re = 1502, Pr = 7 and λ = 48.75 over the duration of the intrusion flow: (a) at τ = 305;
(b) at τ = 351.6; (c) at τ = 455.7; (d) at τ = 597.1.
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Figure 6.17: The images show the evolution of the confined round fountain of Fr = 8.0,
Re = 1502, Pr = 7 and λ = 48.75 over the duration of the wall fountain flow: (a) at
τ = 523.6; (b) at τ = 597.1; (c) at τ = 1772.6; (d) at τ = 2680.2.

clearly observed and the interaction between the fountain and secondary flows be-

comes stronger. With the density stratification gradually formed in the container,

a higher penetration of the fountain is presented, as shown in Figure 6.14.

Similar to the Fr = 3.0 fountains, the fountain of Fr = 5.0 at Re = 204 shows

laminar behavior, e.g., flapping, with the much earlier impingement of the downflow

with the bottom and the intrusion with the sidewall than that for the fountain of
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Figure 6.18: The images show the evolution of the confined round fountain of Fr = 8.0,
Re = 1502, Pr = 7 and λ = 48.75 over the duration of the reserved flow and stratification:
(a) at τ = 3237.8; (b) at τ = 6057.8; (c) at τ = 8738.6; (d) at τ = 16293.5.



186 Chapter 6

Figure 6.19: The images show the evolution of the intrusion flow for the fountain of
Fr = 8.0, Pr = 7 and λ = 48.75 at: the left column, Re = 204; the middle column,
Re = 716; the right column, Re = 1502.

Re & 511, as shown in Figure 6.15(i)-(l). While, with the increase of Re & 511, both

the fountain and its secondary flows behave more turbulent. The influence of Re on

the intrusion of such confined forced turbulent fountains is minimal, as illustrated in
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Figure 6.15, where it is seen that the penetration height of the fountain, the intrusion

thickness and τw are not influenced noticeably by Re, which further confirms the

correlations of zm ∼ Fr and hi ∼ Frτ−1/2.

Another example presented here is the confined forced turbulent round fountain

of Fr = 8.0. Figure 6.16 to Figure 6.18 present the images to show the evolution of

the fountain of Fr = 8.0 with Re = 1502, Pr = 7 and λ = 48.75, and Figure 6.19

shows the flow behavior of the Fr = 8.0 fountains at Re = 215, 715 and 1502 over

the duration of the intrusion flow. The results presented in these figures clearly show

that the similar conclusions about the behavior of these confined forced turbulent

fountains and influence of Re can be made, but the fountain flows and the secondary

flows become more turbulent.

6.4.1.3 The influence of Fr

To illustrate the influence of Fr on the flow behavior of confined forced turbulent

fountains, Figure 6.20 and Figure 6.21 present the images of the confined fountain

flows of five Fr values (i.e., Fr = 1.0, 1.5, 2.0, 3.0, and 5.0) at Re = 204 and

Re = 511 with Pr = 7 and λ = 27.9. It is clearly seen that the fountain flow

changes from the laminar behavior to the turbulent behavior with the increase of

Fr.

The first row of these figures shows the flows when the intrusion front impinges

with the sidewall, where it is observed that both the penetration height of the foun-

tain flow and the thickness of the intrusion flow increase with Fr, which is consistent

with the related previous studies [2, 113]. Additionally, the time for the intrusion

to impinge with the sidewall increases with increasing Fr. After the impingement

of the intrusion with the sidewall, a wall fountain structure is formed. Then a re-

versed flow moves backward to and interacts with the fountain flow, as presented in

Figure 6.20(f)-(j) and Figure 6.21(f)-(j), where the interaction is strengthened with

the increase of Fr. A sharper interface is observed for the fountain of decreasing Fr
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Figure 6.20: The images show the evolution of the filling flow for the confined fountain
of Re = 204, Pr = 7 and λ = 27.9 with: the first column, Fr = 1.0; the second column,
Fr = 1.5; the third column, Fr = 2.0; the fourth column, Fr = 3.0; the fifth column,
Fr = 5.0.

between the fountain / its secondary flows and the ambient fluid, due to the reducing

effect of diffusion. Moreover, the decreasing Fr also slows down the development

rate of the stratification, which is consistent with the numerical results presented in

the previous chapter.
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Figure 6.21: The images show the evolution of the filling flow for the confined fountain
of Re = 511, Pr = 7 and λ = 27.9 with: the first column, Fr = 1.0; the second column,
Fr = 1.5; the third column, Fr = 2.0; the fourth column, Fr = 3.0; the fifth column,
Fr = 5.0.

6.4.2 Quantitative analysis

Similarly to the numerical studies carried out in the previous two chapters, the

experimental results for the confined intermediate and forced turbulent fountains

are analyzed quantitatively. The quantitative analysis focuses on the characteristic
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time-scale for the intrusion front to impinge with the sidewall (i.e., τw) and the de-

velopment rate of the density stratification (i.e., vs) and in particular the quantified

influence of Fr, Re and λ.

6.4.2.1 Time-scale for the intrusion front impinging the sidewall
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Figure 6.22: (a) τw for the fountains of Fr = 3.0, Pr = 7 and λ = 27.9 at Re = 102,
204, 511, 695 and 1002; (b) τw for the fountains of Fr = 5.0, Pr = 7 and λ = 27.9 at
Re = 204, 511, 695 and 1002; (c) τw for the fountains of Fr = 8.0, Pr = 7 and λ = 48.75
at Re = 215, 501, 715, 1002 and 1502.
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Figure 6.22 presents τw for the fountains of Fr = 3.0, 5.0 and 8.0 at several dif-

ferent Re values. As shown in Figure 6.22(a), τw is significantly longer for Re = 102,

since the intrusion front speed slows down in the buoyancy-viscosity regime. While

from Re = 204, the intrusion flow is dominated by the wall-jet and/or buoyancy-

inertial regime, where the intrusion front speed can be described by the correlation

of vi ∼ τ−1/2 and vi ∼ Fr−1/2τ−1/4, indicating little influence from Re. Hence, τw is

essentially independent of Re. Notably, smaller τw for the fountain of Re = 204 than

those of Re & 500 is resulted from its earlier formation, as discussed in § 6.4.1.1.

Similarly, such results are also obtained for higher Fr values, at Fr = 5.0 and 8.0,

as shown in Figure 6.22(b) and in Figure 6.22(c).

To illustrate the influence of Fr, τw for the fountains of various Fr values at four

Re values (Re=204, 511, 1002 and 1502) is presented in Figure 6.23. For fountains

of Re = 204, Fr = 2.0 is identified as the critical value to distinguish the influence of

Fr into two regimes, as shown in Figure 6.23(a), where τw follows linear correlations

with Fr within both regimes, as quantified as follows,

τw =


12.4Fr + 103.8, 1.0 ≤ Fr ≤ 2.0,

12.8Fr + 101.5, 2.0 ≤ Fr ≤ 3.0,

(6.1)

with the regression constants of R2 = 0.996 and 0.991, respectively, which are similar

to the numerical results obtained in the previous chapter.

Similarly, as shown in Figure 6.23(b), τw for the fountains of Re = 511 and

λ = 27.9 with various Fr also shows two different linear correlations in two individual

regimes, quantified as follows,

τw =


32Fr + 48.5, 1.0 ≤ Fr ≤ 2.0,

23.7Fr + 65.7, 2.0 ≤ Fr ≤ 5.0,

(6.2)

with the regression constants of R2 = 1.0 and 0.996, respectively.
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Figure 6.23: (a) τw for the fountain of Re = 204, Pr = 7 and λ = 27.9, with Fr = 1.0,
1.5, 2.0, 3.0 and 5.0; (b) τw for the fountain of Re = 511, Pr = 7 and λ = 27.9, with
Fr = 1.0, 1.5, 2.0, 3.0 and 5.0; (c) τw for the fountain of Re = 1002, Pr = 7 and λ = 48.74,
with Fr = 8.0, 15.0 and 20.0; (d) τw for the fountain of Re = 1502, Pr = 7 and λ = 48.75,
with Fr = 5.0, 8.0, 15.0 and 20.0;

At larger Re values (Re = 1002 and 1502), a power law correlation is obtained

to quantify the influence of Fr on τw at both Re values (i.e., independent of Re),

as shown in Figure 6.23(c)-(d), with the following quantified correlation,

τw = 57.3Fr1.23 − 70.7, (6.3)
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where R2 = 0.986.

A similar discussion is also done to study the influence of λ on τw. Figure 6.24

presents τw for the fountains of Fr = 5.0, Re ≈ 500 with λ = 27.9, 32.5, 39 and

48.75 and the fountains of Fr = 8.0, Re = 1002 with λ = 32.5, 39 and 48.75. Two

power law correlations are obtained to quantify the influence of λ on τw, as shown

below,

τw =


2.28λ1.35 + 4.28, F r = 3.0, Re ≈ 500,

3.75λ1.35 − 17.71, F r = 8.0, Re = 1002,

(6.4)

with the regression constants of R2 = 0.987 and 0.981, respectively.
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Figure 6.24: (a) τw for the fountain of Fr = 5.0, Re ≈ 500 and Pr = 7, with λ = 27.9,
32.5, 39 and 48.75; (b) τw for the fountain of Fr = 8.0, Re = 1002 and Pr = 7, with
λ = 32.5, 39 and 48.75;
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Figure 6.25: The time series of the stratification height projected on the sidewall for the
fountains of (a) Fr = 3.0, Pr = 7 and λ = 27.9, with Re = 204, 511, 695 and 1002, and
(b) Fr = 5.0, Pr = 7 and λ = 27.9 with Re = 204, 511, 695 and 1002.

6.4.2.2 The time series of stratified surface and the development rate of

stratification

Since the cameras can only capture the bulk behavior of the fountain and its sec-

ondary flows projected onto the sidewall in front, the time-dependent profile of the

stratification level in the video may be the maximum value of the wall fountain or

the stratified surface for the corresponding time instant. Hence, to illustrate the de-

velopment of the stratification, the experiment cases were run long enough to allow
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Figure 6.26: The experimental and theoretical development rates of the stratification
height projected on the sidewall for the fountains of (a) Fr = 3.0, Pr = 7 and λ = 27.9,
with Re = 204, 511, 695 and 1002, and (b) Fr = 5.0, Pr = 7 and λ = 27.9 with Re = 204,
511, 695 and 1002.

the stratification developing at a quasi-steady rate. Here, parts of the time series of

the stratification level (the interface between the dark salty water and the fresh wa-

ter) are presented and the corresponding development rates are determined. Based

on these quantitative results, the influence of Fr, Re and λ on the stratification are

analyzed in this section.

Figure 6.25 presents the time series of the stratification level for the fountains
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of Fr = 3.0, Pr = 7 and λ = 27.9, with Re = 204, 511, 695 and 1002, and the

fountains of Fr = 5.0, Pr = 7 and λ = 27.9 with Re = 204, 511, 695 and 1002. The

corresponding development rates are denoted by vs as shown in Figure 6.26. Similar

to the numerical results, the development rate of the stratification, vs, is found to

decrease with Re. This is because the diffusion effect is reduced by increasing Re.

For Re ≥ 695, vs remains at the same value vs = 0.0013, which is very close to the

pure filling rate vc = 1/λ2 = 0.00129. While for 204 ≤ Re ≤ 695, the correlation

between vs and Re is determined as follows:

vs =


−0.0006Re−0.164 + 0.00001, F r = 3.0,

−0.0118Re−0.321 + 0.00007, F r = 5.0,

(6.5)

with the regression constants of R2 = 0.988 and 0.950, respectively.

For the time series of the stratification level profiles shown in Figure 6.25, it is

expected for the fountain with a smaller Re to reach the same certain height earlier,

which behaves like the profiles for Re = 511, 695 and 1002. However, the case of

Re = 204 behaves differently with this trend, which takes longer time to reach the

same level than other cases. This may be because the intrusion thickness for the

fountain of Re = 204 is thinner than that of the fountains with a larger Re as shown

in Figure 6.11.

With specific values of Re, Pr and λ, the experiments of various Fr are carried

out to investigate the influence of Fr on the development of stratification for the con-

fined turbulent fountains. The results are presented in Figure 6.27 and Figure 6.28,

where the time series of the stratification surface level and the corresponding devel-

opment rate for the fountains of Re = 511, Pr = 7 and λ = 27.9, with Fr = 1.0,

1.5, 2.0, 3.0 and 5.0, and the fountain of Re = 1002, Pr = 7 and λ = 48.75, with

Fr = 8.0, 15.0 and 20.0, respectively, are shown. The time series of the stratification

surface level indicate that it takes longer for the fountain with a smaller Fr to reach

the same certain height. This is not only because the thickness of the intrusion flow
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Figure 6.27: The time series of the stratification height projected on the sidewall for the
fountain of (a) Re = 511, Pr = 7 and λ = 27.9, with Fr = 1.0, 1.5, 2.0, 3.0 and 5.0, and
(b) Re = 1002, Pr = 7 and λ = 48.75, with Fr = 8.0, 15.0 and 20.0.

increases with Fr (i.e., hi ∼ Frτ−1/2), but also the increase of Fr enhances the

effect of diffusion.

Fr = 2.0 was identified to distinguish the behavior of the fountain into weak and

intermediate by Hunt and Burridge [2], which is also confirmed by the snapshots

shown in Figure 6.21. From Figure 6.28, it is found that vs increases with Fr.

Similarly, Fr = 2.0 is identified as an critical value to distinguish the stratification

behavior of the confined round fountains. For the fountain of Re = 511 with Fr =
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Figure 6.28: The experimental and theoretical development rates of the stratification
height projected on the sidewall for the fountains of (a) Re = 511, Pr = 7 and λ = 27.9,
with Fr = 1.0, 1.5, 2.0, 3.0 and 5.0, and (b) Re = 1002, Pr = 7 and λ = 48.75, with
Fr = 8.0, 15.0 and 20.0.

1.0, 1.5 and 2.0, the relation between vs and Fr is linear, as follows:

vs = 0.0005Fr + 0.0013, (6.6)

with R2 = 1.0, whereas no suitable correlation is found for Fr = 3.0 and 5.0.

Similarly, for the fountains of Re = 1002, vs also increases with Fr, which can be
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described by an exponential correlation as follows:

vs = 0.0002e0.067Fr − 0.00005, (6.7)

with R2 = 0.991.
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Figure 6.29: The time series of the stratification height projected on the sidewall for
the fountains of (a) Fr = 1.5 and Pr = 7, with Re = 511 and λ = 27.9, Re = 501 and
λ = 32.5, and Re = 501 and λ = 48.75, (b) Fr = 5.0 and Pr = 7, with Re = 511 and
λ = 27.9, Re = 501 and λ = 32.5, Re = 515 and λ = 39, and Re = 501 and λ = 48.75.

The influence of the confinement size λ on the stratification is demonstrated

with the results presented in Figure 6.29 and Figure 6.30 where the time series of
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Figure 6.30: The experimental and theoretical development rates of the stratification
height projected on the sidewall for the fountains of (a) Fr = 1.5 and Pr = 7, with
Re = 511 and λ = 27.9, Re = 501 and λ = 32.5, and Re = 501 and λ = 48.75, (b)
Fr = 5.0 and Pr = 7, with Re = 511 and λ = 27.9, Re = 501 and λ = 32.5, Re = 515
and λ = 39, and Re = 501 and λ = 48.75.

stratification surface levels and the corresponding vs for the fountain of Fr = 1.5,

Re ≈ 500 and Pr = 7, with λ = 27.9, 32.5 and 48.75, and the fountains of Fr = 5.0,

Re ≈ 500 and Pr = 7 with λ = 27.9, 32.5, 39.0, and 48.75, respectively. The

stratification surface increases at a higher vs for the fountains with a smaller λ,
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which can be described by the following power law correlations,

vs =


2.2562λ−2.227 + 0.00003, F r = 1.5, Re ≈ 500,

18.314λ−2.758 + 0.00005, F r = 5.0, Re ≈ 500,

(6.8)

with the regression constants of R2 = 0.994 and 0.997, respectively.

6.5 Summary

The behaviors of confined round fountains from weak to forced turbulent have been

investigated by using high-speed camera technique. A series of experiments have

been carried out over the ranges of 1.0 ≤ Fr ≤ 20.0, 102 ≤ Re ≤ 1502 and

27.9 ≤ λ ≤ 48.75. Since the fountain flow is resulted from the upward ejection of

dense salty water into the homogeneous fresh water, Pr for all the experiments here

is treated as constant at Pr = 7. The qualitative and quantitative results have been

analyzed and compared with the previous analytic and numerical studies, and the

major conclusions can be summarized as follows:

• Some DNS results of the confined weak round fountain in the previous chapter

have been verified by the experimental results, indicating the DNS code and

its results are sufficiently accurate.

• Bobbing and flapping motions have been observed for the behavior of the

fountains in the experiment. With the increase of Fr, the behavior of the

fountain flow transfers from weak to turbulent. The secondary flows, i.e., the

intrusion flow and the stratification turn into turbulent for the intermediate

and forced fountains and the turbulence of the fountain and its secondary

flows is strengthened with increasing Re. The steady maximum penetration

height of the fountain zm and the thickness of the intrusion flow hi are found to

increase with Fr. The influence of Re on zm and hi is negligible for 200 < Re.
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These results are consistent with the existing theoretical results on fountain

height [2] and gravity current [113], respectively.

• The time-scale for the intrusion front to impinge with the sidewall, τw, is

identified and analyzed in terms of Fr, Re and λ. For intermediate (e.g.,

Fr = 3.0) and forced turbulent fountains (e.g., Fr = 5.0, 8.0) with a specific

λ, τw is nearly constant for Re & 500. This is because the secondary intrusion

flow is dominated by the buoyancy-inertial regime where the location of the

intrusion front is a time-dependent function of Fr, i.e., r ∼ Fr1/2τ 3/4 [1].

However, τw for the fountains of Re . 204 is significantly different, which

may results from the change in the dominant regime for the intrusion or the

interaction between the upflow, downflow of the fountain and the ambient

fluids. For example, for the cases of Fr = 3.0 and λ = 27.9, τw for the

fountain of Re = 102 is larger than that for the other fountains with a larger

Re. Since the flow behavior is laminar, the secondary intrusion flow is not

only governed by the buoyancy-inertial regime, but also the buoyancy-viscosity

regime. While for the cases of Fr = 3.0, 5.0 and 8.0, τw for the fountain of

Re = 204 is significantly smaller than that for the fountains with a larger

Re. This is because the stronger interactions among the upflow, downflow of

the fountain and the ambient fluid slow down the creation of the secondary

intrusion for the cases with larger Re, thus the starting time of the intrusion

for the fountain of Re = 204 is earlier, resulting in a smaller τw for Re = 204.

Here Re = 204 is determined as a critical value for different behavior of the

turbulent fountains. The correlations between Fr and τw is different at specific

values of Re. For Re = 204 and Re = 511 with λ = 27.9, Fr = 2.0 is found to

distinguish the influence of Fr (1.0 ≤ Fr ≤ 5.0) into two ranges, and linear

correlations τw ∼ Fr are determined. For Re = 1002 and Re = 1502 with

λ = 48.75, a power law τw ∼ Fr1.23 is determined for 8.0 ≤ Fr ≤ 20.0. The

influence of the confinement size λ on τw follows a power law, i.e., τw ∼ λ1.35.
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• The secondary stratification resulted from the confined intermediate and forced

turbulent fountain is also turbulent, which strengthens the influence of con-

vection on the development of the stratification. From the time series of the

stratification level, the quasi-steady development rate of the stratification vs

is determined and quantified in terms of Fr, Re and λ. vs is found to increase

with Fr, but decrease with Re, since the diffusion effect is suppressed with

smaller Fr or bigger Re.
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Conclusion and future work

This thesis aims to investigate the transient behavior of the filling box flow resulted

from the discharge of a fountain flow in a confined space. A series of 2D and

3D DNS runs were carried out using the commercial CFD package ANSYS Fluent

17.0, to simulate the behavior of the confined weak planar fountain and confined

weak round fountain respectively. In addition, the high-speed camera and dyed flow

visualization techniques were used in the experiments to benchmark the numerical

results of confined weak round fountains and to study the behavior of confined

intermediate and turbulent round fountains. Moreover these results were compared

with the existing theories for gravity current and purely filling problems.

The general conclusions of this thesis are summarized briefly in § 7.1. In § 7.2,

some suggestions for the future research on this topic are proposed.

7.1 Conclusion of the thesis

The major results of the work described in this thesis can be summarized as follows:

• The evolution of the flow behavior of a typical confined planar/round fountain

is consist of five major development stages, i.e., the formation of the fountain

205
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flow, the intrusion flow, the wall fountain flow along the sidewall, the reversed

flow from the sidewall to the fountain flow and the density stratification.

• Even the minimum confinement size (λ = 10) considered in this thesis is too

large to influence the flow behavior when the fountain is formed. Hence the

flow behavior of the confined planar/round fountain considered here in the

fountain formation stage is same as the counterpart of the corresponding free

fountain.

• A secondary intrusion flow is resulted from the impingement of the fountain

downflow with the container bottom. The intrusion flow for the planar/round

fountain can be treated as a planar/radial gravity current respectively, which

may experience ‘wall-jet’, ‘buoyancy-inertial’ and ‘buoyancy-viscosity’ regimes

in terms of the governing forces. The intrusion speed vi increases with the

increase of Re or the decrease of Fr. vi can be approximately quantified

by the scaling relations obtained by Chen [1] for gravity current. However,

for the ‘buoyancy-inertial’ regime of planar fountains, a two-constant speed

stage is observed and the influence of Re on vi cannot be ignored, which is

different from the previous studies. Similarly, for the ‘wall-jet’ regime and the

’buoyancy-inertial’ regime of round fountains, the numerical results show that

vi is dependent on time, Fr and Re, instead of dependent of only time or Fr

and time, as indicated by the scaling relations for radial gravity current. The

modified correlations for these regimes are obtained with the results of this

thesis.

• A noncontinuous secondary wall fountain flow is created after the intrusion

flow impinges with the sidewall. The denser flow moves upward along the

sidewall and penetrates to a finite height, then falls down under the influence

of negative buoyancy. For a confined weak planar fountain, three mechanisms

are identified for the behavior of the wall fountain behavior, i.e., no falling,

slumping down and rolling down. For the planar fountains with 0.1 ≤ Fr ≤
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3.0, Pr = 7 and λ = 20, the wall fountain is found to slump down for 50 ≤

Re ≤ 100 and to roll down for 200 ≤ Re ≤ 800, but no falling is observed

for 5 ≤ Re ≤ 20. Additionally, the wall fountain changes from slumping

down to rolling down when the confinement size is extended from λ = 10 to

λ ≥ 15. Similarly, for the confined weak round fountains, no falling is found

for 5 ≤ Re ≤ 20. The maximum penetration height of the wall fountain

zm is quantitatively scaled in terms of the governing parameters, where zm is

measured on the sidewall for the planar fountain but in the sidewall region for

the round fountain. The results shows that zm increases with the increase of

Fr and λ for both planar and round fountains. However, the influence of Re

and Pr on zm for planar and round fountains follows different trends.

• Two dimensionless characteristic time-scales τw and τm are determined for

the time instant when the intrusion impinges with the sidewall and the wall

fountain reaches its maximum penetration height. It is found that τw and

τm decrease with the increase of Re or the decrease of Fr for the confined

weak planar/round fountains, except for the round fountains over the range of

2.0 ≤ Fr. The experimental results show that τw for confined intermediate and

turbulent fountains remains unchanged for Re & 500. While for Re ≈ 200, τw

has a significant decreases than that for Re & 500, which is mainly because the

laminar behavior of fountain flow for Re ≈ 200 results in an earlier formation

of the intrusion.

• The reversed flow is driven by the stagnation pressure from the sidewall, mov-

ing from the sidewall to the fountain flow. During this stage, the reversed

flow interacts with the intrusion flow, the ambient fluid and the fountain flow,

resulting in a two-layer structure. With the increase of Fr and Re, the inter-

action become more significant.

• A secondary stratification is formed in the confined space after a long run

of the fountain. Convection, conduction, mixing and filling all contribute to



208 Chapter 7

the evolution of the stratification. In the initial stages, the ambient fluid is

entrained into the denser layer mainly by convection and mixing. During this

stage, the bulk entrainment rate keeps increasing and then reaches a peaking

point/stage. While after a quasi-steady stratification is formed, filling and

thermal conduction dominate the flow behavior of the stratification. In this

stage, the entrainment rate gradually decreases.

• The secondary flows, e.g., the reversed flow and the stratification, in turn

affect the behavior of the fountain flow. The interaction between the reversed

flow and the fountain induces extra fluctuations in the penetration height of

the fountain. The stratified structure around the fountain core reduces the

local buoyancy flux, resulting in an increase in both the width and heights

of the fountain flow. Additionally, the stratification also reduces the stability

of the fountain structure, where a transfer from symmetric to asymmetric is

observed.

• Fr = 1.0 and Fr = 2.0 are identified as the critical values to distinguish the

influence of Fr on the behavior of the secondary flows which supports the

current classification of the round fountain [2], while Re = 200 is determined

as the critical number to divide the influence of Re, which is consistent with

the existing results [30].

7.2 Future work

Important areas for further work are suggested by the results of this thesis:

• For the confined weak planar fountains, only two-dimensional numerical sim-

ulations results are obtained by assuming the flow behavior remains two-

dimensional during the evolution. Moreover, the numerical results for planar



Conclusion and future work 209

fountains are not benchmarked against experimental results due to the limita-

tion of experimental apparatus. In the future work, 3D DNS and experiments

should be carried out on confined planar fountains.

• 2D and 3D DNS in this thesis are only carried out for the confined pla-

nar/round fountains over a limited ranges of 0.1 ≤ Fr ≤ 3.0 and 5 ≤ Re ≤

800. In the future numerical studies, these parameter ranges should be signifi-

cantly expanded, covering a high Fr and Re, to explore the transient behavior

of confined intermediate and forced turbulent fountains. Furthermore, consid-

ering the cost of computational source, appropriate turbulent models, e.g.,

Large Eddy Simulations and advanced Reynolds Stress models can be used to

simulate the flow behavior of the confined turbulent fountains.

• Without the assistance of the PIV system, the high-speed camera and video

cameras can only record the bulk behavior projected on the sidewall in front.

Thus the information inside the fluids cannot be obtained. Furthermore, the

curvature of the cylindrical container also induces errors in the intrusion mea-

surement. In the future work, the 2D and 3D PIV techniques should be con-

ducted to get more detailed information of the confined fountains.

• This thesis focused on the evolution of the confined fountain flow, and the

influence of the governing parameters on the secondary flows. But the influ-

ence of the secondary flows on the fountain flow is not investigated in detail.

Future work can pay more attention on these aspects, e.g., the change of the

penetration height, the transfer of the fountain behavior from symmetric to

asymmetric, etc..

• The minimum confinement size in this project is λ = 10, which is still large

enough to allows the fountain behaves as free fountain in the initial stages,

which can be called as weakly confined condition. In the future work, smaller

confinement can be used for the DNS and experimental study to investigate

the behavior of a fountain in intermediately or highly confined space.
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• The filling box flow in this thesis is resulted from discharging fountains in a

confined space with a homogeneous ambient fluid. The future work can be

extended to the case with a stratified environment.

• The bottom and sidewall for all the DNS runs considered in this thesis are

set as no-slip insulated wall boundaries. In the future work, complex thermal

boundary conditions can be applied, which is closer to the applications in

reality.
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behaviour of negatively buoyant jets in immiscible ambient fluid. Experiments

in Fluids, 52(1): 261–271, 2012.

[54] H Mahmud. Behavior of multiple transitional round fountains interacting in

homogeneous and stratified fluids. PhD thesis, James Cook University, 2014.

[55] NB Kaye. Turbulent plumes in stratified environments: a review of recent

work. Atmosphere-ocean, 46(4): 433–441, 2008.

[56] H Zhang and RE Baddour. Maximum penetration of vertical round dense jets

at small and large froude numbers. Journal of Hydraulic Engineering, 124(5):

550–553, 1998.

[57] HC Burridge and GR Hunt. The rise heights of low-and high-froude-number

turbulent axisymmetric fountains. Journal of Fluid Mechanics, 691: 392–416,

2012.

[58] N Srinarayana, N Williamson, SW Armfield, and W Lin. Line fountain behav-

ior at low-reynolds number. International Journal of Heat and Mass Transfer,

53(9-10): 2065–2073, 2010.

[59] BR Morton, GI Taylor, and JS Turner. Turbulent gravitational convection

from maintained and instantaneous sources. Proc. R. Soc. Lond. A, 234(1196):

1–23, 1956.



bibliography 217

[60] G Abraham. Jets with negative buoyancy in homogeneous fluid. Journal of

Hydraulic Research, 5(4): 235–248, 1967.

[61] TJ McDougall. Negatively buoyant vertical jets. Tellus, 33(3): 313–320, 1981.

[62] IH Campbell and JS Turner. Fountains in magma chambers. Journal of

Petrology, 30(4): 885–923, 1989.

[63] T Mizushina, F Ogino, H Takeuchi, and H Ikawa. An experimental study of

vertical turbulent jet with negative buoyancy. Wärme-und Stoffübertragung,
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