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Abstract
In previous papers we have proposed a method for the ab initio calculation of fully differential
cross-sections for electron scattering in liquids and applied it to liquid argon, xenon and
krypton. In this paper, we extend the procedure to the consideration of positron scattering in
liquid helium, which is complicated by the annihilation process as well as the fact that the
electron definition for the region ‘owned’ by a target atom used previously does not have a
positron analogue. We explore several physically motivated definitions to obtain effective
positron scattering in the dense fluid. We find that our calculations of a pure helium system
cannot precisely match experimental measurements, however by including a small admixture
(<0.1%) of an impurity, we can obtain reasonable agreement in the dense gas phase. In
contrast, the comparison between our calculations and liquid phase measurements is less
satisfactory. This provides motivation to explore further multiple scattering effects in the
theory.

Keywords: positrons, dense fluids, transport, non-equilibrium

(Some figures may appear in colour only in the online journal)

1. Introduction

Positrons are used in a variety of diagnostic applications,
including the medical diagnostic of positron emission tomog-
raphy, materials analysis through positron annihilation life-
time spectroscopy and Doppler broadening spectroscopy [1].
Positrons can even be used as an indirect probe of the struc-
ture of the Galaxy [2]. These experimental techniques gener-
ally rely on the interpretation of gamma rays emitted from the
annihilation of the positrons with electrons.

To be able to interpret these diagnostics, it is essential to
understand how the positron propagates through the material
under investigation. As the concentration of positrons is typ-
ically very low, this falls under the umbrella of swarm mod-
elling [3]. In gases this is usually explored through kinetic

∗ Author to whom any correspondence should be addressed.
Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

theory simulations, which allows for a simple scaling with den-
sity for transport properties such as annihilation rates and drift
velocities. As the density significantly increases, these scal-
ing behaviours have historically been used directly, even for
systems as dense as liquids where the scaling laws break down.

To model charged particle transport in liquids and dense
gases, we must account for effects such as multiple scattering
and interaction screening, using correlations between particles
in the fluid. This was first described by Lekner [4] and we
have since extended the procedure to calculate more accurate,
ab initio, fully-differential effective elastic cross sections for
electrons propagating in liquid argon, xenon and krypton [5–7]
using only the pair correlator for each fluid.

In this article, we investigate positron transport. On the one
hand, this should share much of the same properties of elec-
tron transport through a fluid, as both the electron and positron
are a light charged particle. On the other hand, the interaction
of the positron with a single atom of the fluid is very different:
it has no exchange interaction, the sign of the Coulomb inter-
action is reversed and loss processes are always present, even
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as the collisional energy approaches zero. Note, however, that
the polarisation interaction is similar for both the positron and
electron, as the induced-multipole interaction is independent
of the sign of the charge for closed shell atoms.

An important feature of our approach is that the effective
cross sections are calculated in an ab initio manner from an
interaction potential. This is useful because, (a) less is known
about the positron elastic and annihilation cross sections, as
measurements are more difficult than corresponding electron
systems, and (b) it is the interaction between the charged par-
ticle and the atom that is modified in the fluid, whereas the
isolated-atom cross sections are not so simply related to the
effective cross sections in the fluid.

The structure of this article is as follows. We first describe
the methods that allow us to obtain cross sections in the gas
and dense fluid phases from scattering calculations and then
how we can use these to obtain the transport coefficients in
the gas and dense fluid phases. Comparison of calculated
transport coefficient calculations under equilibrium and non-
equilibrium conditions (driven out of equilibrium through the
application of an applied field) with available experimental
measurements represents a stringent test on the accuracy of
our position cross-sections for dense gas and liquid phases. We
validate our scattering calculations using gas phase data, for
which both total cross section measurements and transport data
are available [8, 9]. Then we apply the dense fluid formalisms,
for which we can compare to experimental measurements in
the dense gas [10] and liquid [11] regimes. The dense gas com-
parisons suggest, with reference to previous analysis [12], that
there is an incompatibility with several of the measurements.
We have been able to show that density effects are signifi-
cant in the dense gas phase only at low reduced electric fields,
by performing full calculations and through simple qualita-
tive arguments. This has allowed us to suggest that an admix-
ture of an impurity may resolve the discrepancies between
our calculations and experimental measurements. We finally
perform similar analysis for the liquid phase, and discuss the
incompatibilities between the calculations and measurements.

2. Kinetic theory and transport properties

The kinetic equation used here to describe a positron swarm
subject to an external electric field E in a background of
gaseous or liquid helium is Boltzmann’s equation (BE) for the
phase-space distribution function. As shown in our previous
works [5, 6], comparison with positron swarm experiments can
be made with only the steady-state, spatially-homogeneous
solution:

qE
m

· ∂ f
∂v

= −J( f ), (1)

where q and m are the charge and mass of the positron, by
performing a Legendre polynomial Pl decomposition of the
distribution function of positron velocities v:

f (v) =
∞∑

l=0

f l(ε)Pl(μ), (2)

where ε = mv2

2 , μ = v̂ · Ê and the collision integral J( f) is
given by the expansion

J( f ) =
∞∑

l=0

Jl( f l). (3)

Details of our calculation method can be found in [5, 6], which
include a specialized collision operator for the coherent elastic
scattering, denoted Jl in those articles, and relabelled as Jl

el
in the current article. For the current investigation, we must
also include the annihilation process for the positron, such that
Jl = Jl

el + Jl
an. This requires the definition of the annihilation

collision operator

Jl
an( f l) = νan(ε) f l, (4)

whereνan(ε) is the energy-dependentannihilation collision fre-
quency, which is related to an effective electron number, Zeff ,
[13] via:

νan(ε) = Nvσan(ε) = πr2
0cNZeff(ε) (5)

where N is the gas density, v is the relative speed, σan(ε) is
the cross section for annihilation, r0 ≈ 5.325a0 is the classi-
cal electron radius and c is the speed of light (c = 1/α in a.u.
where α is the fine-structure constant).

The solution to BE allows a connection between micro-
scopic scattering information, and macroscopic transport prop-
erties. The macroscopic transport quantity of interest in this
work is the average annihilation rate αan, which can be cal-
culated from the energy distribution function, f0(ε), via [3]

αan = 2π

(
2
m

) 3
2
∫ ∞

0
ε

1
2 νan (ε) f0 (ε) dε. (6)

This quantity is more commonly described as an averaged
effective electron number, 〈Zeff〉, through the relation [13]

αan = πr2
0cN〈Zeff〉, (7)

where these quantities depend on the distribution function and
hence the electric field.

3. Scattering of positrons by individual helium
atoms

The theoretical procedures used in this paper to describe the
elastic scattering of positrons from helium atoms, at energies
below the positronium formation threshold at 17.79 eV, are
given in [14] and are essentially the same as those used in [5,
6] for electron scattering from argon and xenon. Thus, only a
brief discussion of the overall method will be given here.

In the purely elastic energy region, only the static and polar-
isation potentials need to be included in the interaction for
positron scattering. The scattering of the incident positrons,
with wavenumber k, by helium atoms can then be described
in the gaseous phase by the integral equation formulation of
the partial wave Dirac–Fock scattering equations (see [14] for
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Figure 1. Comparison of our calculated gas phase cross sections [14] used in this paper to various experimental measurements [8, 9].

details). In matrix form, these equations can be written as
(

fκ(r)
gκ(r)

)
=

(
v1(kr)
v2(kr)

)
+

1
k

∫ r

0
dx G(r, x)

[
U(x)

(
fκ(x)
gκ(x)

)]

(8)
where fκ(r) and gκ(r) are the large and small components of
the scattering wavefunction, G(r, x) is the free particle Green’s
function and U(r) is the local potential. In particular, U(r)
contains the static as well as the dipole and quadrupole polar-
isation interactions, with the latter being calculated by the
polarized orbital method [15, 16]. The calculation of the
momentum transfer cross section σmt from these potentials is
discussed in [5, 6].

For positron scattering we also require the effective electron
number,

Zeff =

N∑
i=1

∫
|Ψ(r1, r2, . . . , rN; x)|δ(ri − x)dr1 dr2 . . . drN

(9)
Here Ψ is the total scattering wavefunction and the ri are the
coordinates (including spin) of the atomic electrons while x is
the position vector of the incident positron. The quantity Zeff

can then be expressed as

Zeff = Z0
eff + Z1

eff (10)

where

Zi
eff =

1
2π

∑
κ

∫ ∞

0
dr

[
f 2
κ (r) + g2

κ(r)
r2

]
ρi(r). (11)

Here ρ0(r) is the unperturbed charge density of the atomic
orbitals and ρ1(r) is the first-order correction. In terms of the
atomic wavefunctions ρ0(r) is given by

ρ0(r) =
∑

nκ

qnκ

[
P2

nκ(r) + Q2
nκ(r)

]
(12)

where Pnκ(r) and Qnκ(r) are the large and small radial com-
ponents of the atomic wavefunctions while qnκ = 2|κ| is the
occupation number of the nκ subshell of a closed shell atom.

The first-order charge density was determined by the non-
relativistic polarized orbital method [15, 17], as relativistic
effects are essentially negligible in light atomic systems. In
the polarized-orbital method the first-order radial distortion
Fνν′

nl (r, x) of each atomic orbital Pnl(r) is calculated adiabati-
cally in the field of a point charge at a series of fixed points x (cf
equation (12) of [15]). The corresponding non-relativistic scat-
tering wavefunction f l(r) is normalized at infinity according to

f l(r) ∼ [4π(2l + 1)]
1
2

k
sin

[
kx − lπ

2
+ δl

]
. (13)

Here, k is the wavenumber of the incident positron while δl

is the partial wave phase shift. The correction to the charge
density is then found by keeping only terms to first order and
is given by

ρ1(r) =
∑

nl

qnl

∑
νν′

(2ν ′ + 1)

(
ν ν ′ l
0 0 0

)2

Pnl(r)Fνν′
nl (r, r)

(14)
where qnl = 2(2l + 1) is the occupation number of the nl
subshell of a closed shell atom.

A comparison of the single-atom elastic cross sections to
single-scatter experiments is shown in figure 1.

3.1. Transport coefficients

In order to test our calculation procedure in the dilute gas
case, we can compare to various experimental measurements
of the thermal zero-field annihilation rate [1, 18, 19] and to
field-dependent measurements at 3.5 amagat of Davies et al
[10]. The general consensus of the zero-field effective atomic
number for room temperature is 〈Zeff〉T0 ≈ 3.9 and our value

3



J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 225201 D G Cocks et al

Figure 2. The averaged 〈Zeff〉(E) for gas phase compared to measurements [10]. The calculation is within the error bars of the
measurements at 3.5 amg density.

of 〈Zeff〉T0 = 3.84 at 300 K is in good agreement. Our field-
dependent results, shown in figure 2, are also in agreement
with experiment, although the large uncertainties provide some
leeway for variation.

We should note that the steady-state distribution, f(v) in
equation (2), is a non-equilibrium distribution, even in the
non-equilibrium case owing to the ‘hole-burning’ effect pro-
vided by the energy-dependence of the annihilation collision
frequency. Furthermore, it is also conceivable that the time-
dependent behaviour of the positron swarm, as it approaches
steady-state, could result in too few positrons that survive in
order to reach the true steady-state f(v) distribution. If this
were the case, then the experimental measurements would
correspond to an average over transient distributions instead
of steady-state. Fortunately, it has been shown [12, 20] that
enough positrons survive to accurately represent the steady-
state distribution.

4. Scattering of positrons by dense helium fluids

Our approach to calculating the transport through liquids and
dense gases, referred henceforth as dense fluids, is presented
in [5, 6]. In these papers we detailed the procedure, originally
proposed by [21] for constructing effective scattering poten-
tials for electrons in dense media. The procedure is almost
identical for positron scattering and we do not repeat the for-
malism here but describe only the changes we have made for
the current application to positrons. These include (a) a contri-
bution to the annihilation cross section from the average over
surrounding atomic charge densities, (b) a different choice than
our previous electron calculations for the outer radius of the
scattering calculation, rm, which represents the region of space
‘owned’ by the focus atom and distinguishes it from the rest of
the bulk, and (c) a potential shift, ΔV , similar to that applied
in our investigation of liquid krypton [7].

4.1. The averaged electron density ρeff

Analogous to the effective total potential, one can define an
effective charge density with contributions from both the target
atom and an ensemble average contribution from the atoms in
the bulk, which acts to increase the positron annihilation rate
in dense systems:

ρeff(R) = ρL(R) + ρS(R)

= ρL(R) +
2πn
R

∫ ∞

rm

ds sg(s)
∫ R+s

|R−s|
dt tρL (t) .

(15)

Here ρL = ρ0 + ρ1 corresponds to the focus atom’s charge
density and ρS denotes the surrounding average, shown as an
integral in bipolar coordinates. The pair correlator, g(s), indi-
cates the probability to find another atom at a distance s from
the focus atom. Note that the outer limit, rm, of the scatter-
ing calculation effectively truncates ρL(R) at R = rm. This is
complemented by the rm lower limit on the outer integral of
ρS, which indicates that only the charge density outside the
region owned by the target atom contributes to the averaged
density of its surrounding atoms. In other words, we consider
any charge density within a range rm of an atom to be ‘owned’
by that atom; this is necessary to prevent ‘double counting’ of
the electrons for each atom. In the dilute gas limit rm →∞ and
ρS → 0 as required.

With the total averaged charge distribution defined, we
can easily extend the definition of Zeff to include the total
contribution from the focus and surrounding atoms:

Zeff =
1
n

∫ rm

0
dR (ρL(R) + ρS(R)) |Ψ(R)|2

= ZL
eff + ZS

eff. (16)
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We have found that in our current focus of helium, the contri-
bution of ZS

eff to the total Zeff is negligible, however this may
not be true for larger atoms.

We point out the analogy of the surrounding average to
that performed for the potential itself, described in [5, 6]. To
briefly summarise, the total potential V(r) = U1(r) + U2(r)
where U1(r) describes the screened interaction with the focus
atom and U2(r) describes the potential after averaging over the
surrounding atoms.

4.2. Choice of rm = rWS

In contrast to our previous works involving electrons in dense
fluids, a different definition for rm is required for positrons in
dense fluids. In our previous works, we followed the lead of
Lekner [4] to choose rm as a turning point of the potential.
However, in the current case of positron scattering, where the
sign of the static potential is reversed, this definition results
in a much larger value of rm which appears to be physically
invalid. Hence we make an alternative choice of setting rm to
the Wigner–Seitz radius, rWS = (4πN/3)−1/3. In the dense gas
phase of helium at N = 35.7 amagat, this is rWS = 6.29 Å and
in the liquid phase at N = 0.0188 Å−3, this is rWS = 2.33 Å.
These radii, compared with the contributions to the potential
of scattering in the liquid case, are shown in figure 3. We have
also explored an alternative choice for the Wigner–Seitz
radius [22], called the ‘local Wigner–Seitz radius’
rLWS = (4πNgmax/3)−1/3, where gmax is the maximum of
the pair correlator g(r). This quantity attempts to account
for the increased density that the positron would feel in the
majority of collisions. In our case, this results in a value of
rLWS = 6.24 Å in the dense gas phase, and rLWS = 2.08 Å in
the liquid phase.

We have explored the choice of rWS before in our investiga-
tion of electrons in liquid argon, but found it to worsen the
agreement between our calculations and experimental mea-
surements. However, at that time we did not also apply an
energy shift, which we discuss in the following section.

4.3. Potential shift

Even as the positron velocity approaches zero, it will feel a
background energy in the presence of a liquid or dense gas
[23]. This quantity is known as V0 and has been obtained
through a combination of measurement and calculation for
electron scattering in various liquids, see [22, 24] and refer-
ences therein. As it is not possible to do these same experi-
ments with positrons, we instead investigate two different sub-
stitute values for V0 and incorporate this into the scattering
calculation as a potential shift, ΔV = V0. The first option for
ΔV is U2(r → 0), which corresponds to the averaged poten-
tial of the surrounding atoms felt at the origin, and the second
surrogate is VWS, a Wigner–Seitz calculation in the style of
[22, 25], which we will describe in more detail in an upcom-
ing paper. In short, the VWS value is found as the minimum
energy solution for a wavefunction that satisfies a ‘spherical
Bloch wave’ boundary condition. We have applied a similar
surrogate value for the potential shift, ΔV , when performing
calculations of electrons in liquid krypton [7]. Note that the

value of VWS itself depends on the value of rm and we will refer
to VWS and VLWS as the potential shift from using the regular
(rWS) and local (rLWS) Wigner–Seitz radii respectively.

4.4. Pair correlators in helium

The essential input to perform the dense fluid calcula-
tions is the fluid pair-correlator and its Fourier transform,
the static structure factor. For liquid-phase helium at T =
4.2 K, we use the pair-correlator and structure factor derived
from experiments by [26]. For the dense gas case at
T = 295.65 K, we have calculated the pair-correlator from
Monte Carlo simulations with N = 10 000 atoms using an
untruncated Lennard–Jones potential with parameters [27]
εLJ/kB = 5.465 K and σLJ = 2.628 Å. These pair correlators
are shown in figure 4. As the pair correlator for the dense gas
is relatively flat, it can be expected that some of the dense fluid
effects will be negligible, however that contributions from the
surrounding average will still be significant.

5. Results

5.1. Experimental measurements

There are several measurements of the zero-field annihilation
rate, see [1, 28, 29] for a compilation, which allow us to assume
a value of approximately 〈Zeff〉T0 ≈ 3.9 for the dense gas phase
and 〈Zeff〉T0 ≈ 3.6 for the liquid phase. Our calculations, using
several different choices for ΔV , span a range of different
increases/decreases in the zero-field 〈Zeff〉T0 . In both phases,
ΔV = 0 shows an unusual increase in 〈Zeff〉T0 which cannot
be reconciled with the experimental measurements.

We are only aware of a few measurements of the non-
equilibrium field-dependent annihilation rate. These are [10]
for the dense gas phase and [11, 30] for the liquid phase.
In both cases, there is a decrease in 〈Zeff〉(E) as the field is
increased. While our calculations, shown in figures 5 and 6,
also exhibit a decrease it happens (a) over a larger variation
of 〈Zeff〉(E) for both dense gases and liquids and (b) with a
shoulder at either too small or too large a field. In addition,
the calculated variation of 〈Zeff〉(E) is much larger than experi-
mentally observed. The similarity between theΔV = VWS and
ΔV = VLWS results in the dense gas was expected, as the key
input distinguishing these approaches is the maximum in the
pair correlator, which is negligible for the dense gas case. How-
ever, their behaviour in the liquid case is surprising: despite a
15% difference in rm, the two cases share almost identical elas-
tic and annihilation cross sections, leading to almost identical
〈Zeff〉 values.

It is also possible for us to choose different values for our
simulation parameters of rm andΔV , which are not necessarily
physically motivated. We have done this by scanning a wide
range of values but no particular choice allows us to obtain
both the required magnitude and field-dependence of 〈Zeff〉(E),
even approximately.

While the differences between our results and the exper-
imental measurements in figures 5 and 6 appear to be quite
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Figure 3. The potential due to the focus atom, U1(r), surrounding atoms, U2(r) and total scattering potential, V(r) in the case of scattering in
the liquid. The values of rWS and rLWS are shown as dashed vertical lines. For comparison the values of rWS and rLWS in the dense gas phase
are also shown, however we point out that the surrounding and total potential curves are different in the dense gas phase.

Figure 4. The pair correlators used for the liquid (solid blue line [26]) and dense gas (dashed orange line, calculated from Monte Carlo
simulations) phases.

large, this is due to a relatively small variation in Zeff . The dif-
ferences between the ΔV = U2(0) calculations and the mea-
surements are within 5% for the dense gas case and 10% for
the liquid case. This could be accounted for by assuming a sys-
tematic uncertainty in the measurements, but we will instead
consider what modifications can be made to our model to rec-
oncile experiment and theory in the following sections. It is
worth pointing out that the analysis involved in these mea-
surements may be complicated by the ordering of the lifetimes
for free positron annihilation and o-Ps annihilation: in the low
density 3.5 amagat case, o-Ps annihilation is faster, and in the

high-density 35.7 amagat case, free positron annihilation is
faster [31].

We first discuss the dense gas case below in greater detail,
and propose some modifications that we can make to explain
the differences. We will then apply those considerations to the
liquid phase.

5.2. Dense gas comparison

From figure 5, we can see that the various choices of ΔV allow
us to tune the value of 〈Zeff〉(E) at low fields. However, these
choices all result in the same behaviour of 〈Zeff〉(E) at high
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Figure 5. The comparison between dense gas measurements [10] and our calculations for various physically motivated choices of ΔV.
These values should be compared directly with the 35.7 amg measurements but we also show the 3.5 amg measurements for reference. For
the dense gas phase, U2(0) = −0.0084 eV, VWS = −0.0151 eV and VLWS = −0.0150 eV. The similarity between the VWS and VLWS cases
(they cannot be distinguished in the plot) is due to the insignificant peak in the pair correlator.

Figure 6. The comparison between liquid measurements [11] and our calculations for various physically motivated choices of ΔV . For the
liquid phase, U2(0) = −0.14 eV, VWS = −0.275 eV and VLWS = −0.267 eV.

fields. We believe this should be expected from modifications
due to the dense fluid, as large kinetic energies overwhelm
these effects. It is rather the difference in the experimental
measurements at higher reduced fields between the 3.5 amagat
and 35.7 amagat results that we find surprising.

We have explored some modifications to our model of the
gas in order to obtain agreement with experiment. In terms of
transport quantities, we require one or both of the following
modifications: either (a) an additional source of annihilation
which is significant at higher energies, or (b) a source of fric-
tion to reduce the mean energy at higher fields. A lower mean
energy has the desired side effect of increasing the 〈Zeff〉 felt

by the ensemble, as the annihilation cross section is larger at
lower energies.

Both of these effects can be produced by a small admixture
of an impurity in the gas. The dominant effects of a molecular
species as an impurity can be represented by two additional
processes: another annihilation pathway and an inelastic cross
section. In order to separate these effects, we first consider the
zero-field case. Here, the positron distribution (neglecting the
small perturbation from annihilation) will remain close to a
thermal distribution. In this way, the additional inelastic cross
section can be neglected and only the additional annihilation
pathway will affect the measured 〈Zeff〉T0 . This leaves us with

7
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Figure 7. The effective electron number due to the small admixture of an impurity. The annihilation cross section is shaped like that of
ethane and the effective ethane density is denoted as x̃ in the legend. No additional inelastic processes are included in these results. Note that
inclusion of an impurity can only increase the zero-field 〈Zeff〉, so the ΔV = 0 results cannot be made to match the zero-field experimental
result.

Figure 8. The effective electron number due to the small admixture of an impurity, including a constant inelastic cross section of magnitude
Ã and threshold εinel. The ΔV = U2(0) case corresponds to x̃ = 0.067%, Ã = 10−3 Å2 and εinel = 2.5 eV and the ΔV = VWS case
corresponds to x̃ = 0.15%, Ã = 10−4 Å2 and εinel = 2 eV.

〈Zeff〉T0 = 〈ZHe
eff 〉T0 + x〈Zimp

eff 〉T0 (17)

where x is the ratio of impurity density to helium density.
As it is likely that a mix of different hydrocarbons can play

the role of impurities, we substitute their combined 〈Zimp
eff 〉

by a cross section that is proportional to that of ethane, i.e.
Zimp

eff (ε) = CZC2H6
eff (ε), and reinterpret x̃ = xC as an effective

ethane impurity density. While this introduces an ambiguity
into the impurity, it removes one fitting parameter from our
calculations. We emphasize that even a few fitting parameters
can allow us to fit any measured 〈Zeff〉(E), so it is important to
limit the number of these as much as possible.

Our simulations, after fitting for x̃ at E = 0, are shown
in figure 7. We can see that only a very small admixture is
required to match the experimental value of 〈Zeff〉T0 . However,
in the case of ΔV = 0, no amount of impurity will lower the
〈Zeff〉T0 value.

We now turn to including the second-most significant aspect
of an impurity, which is the introduction of inelastic collisions
with lower threshold energies than helium. As we again want to
consider a range of hydrocarbon impurities, we use a surrogate
cross section of constant magnitude A and threshold εinel. We
again reinterpret this quantity as the magnitude Ã = xA which
is an effective inelastic cross section, indicating a magnitude

8
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Figure 9. The effective electron number as shown in figure 5 but scaled to the zero-field value 〈Zeff〉T0 . No impurity is included in these
calculations. This is useful in the scenario that the comparison between absolute values is not possible. In this scenario, the ΔV = VWS and
ΔV = VLWS cases represent the best fit.

Figure 10. The effective electron number in liquid helium, due to the small admixture of an impurity and using ΔV = VWS. The impurity
parameters are x̃ = 0.1%, Ã = 10−4 Å2 and εinel = 2 eV. Although the inclusion of the impurity can adjust the zero-field rate to bring it into
agreement with the experimental measurement, the rest of the field range is not in agreement, even with the inclusion of an inelastic process.
The uptick in the experimental measurements at the higher fields has been shown to be due to Ps formation as the positrons reached a
steady-state distribution.

relative to the density of helium. By doing this, there are only
three parameters to characterise the impurity: x̃, Ã and εinel.
The value of x̃ is fixed by the zero-field annihilation rate, so
we now vary the latter two parameters to obtain the best fits
shown in figure 8.

In all cases, the fits perform reasonably well and provide
good agreement over most of the range of experimental mea-
surements. The fit for ΔV = VWS includes an additional peak
at around E/N = 2 × 10−3 Td not seen in the experimental

data, while the ΔV = U2(0) curve does not follow the data as
closely.

As an alternative, we can choose to believe that the com-
parison of absolute values from our calculation and measure-
ment may not be well posed, and instead we can compare
the 〈Zeff〉(E) values relative to the zero-field 〈Zeff〉T0 . This is
shown in figure 9, where the ΔV = VWS and ΔV = VLWS

appear to give the closest fit, although all choices are not
unreasonable.

9
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Figure 11. The effective electron number as shown in figure 5 but scaled to the zero-field value 〈Zeff〉(E = 0). No impurity is included in
these calculations.

5.3. Liquid comparison

As with the dense gas case, we can apply the same steps to
include an impurity to better match the experimental measure-
ments. There is less likelihood for the presence of an impurity
in liquid helium, as it would be expected to freeze out of the
liquid. In any case, we can consider the effect it would have.

For the liquid the ΔV = U2(0) case produces a zero-field
value which is higher than the experiment, even without the
inclusion of an impurity. This means that we can only consider
the ΔV = VWS case as suitable to add an impurity.

The effect of the impurity in the ΔV = VWS case is shown
in figure 10, with and without the additional of an inelastic pro-
cess. It is clear to see that we cannot obtain agreement. This
is somewhat surprising, as we have some free parameters to
manipulate. We believe this suggests that there is a contribu-
tion missing from our calculations, which is due to multiple
scattering at high densities.

We should also point out that we should not aim to fit the
uptick in the experimental results at high fields. This has been
shown [11] to be an apparent increase only, and is actually due
to the formation of positronium with ionised electrons. This
spur-enhanced Ps formation is estimated to be at most 1% and
only occurs at higher fields. As the apparent 〈Zeff〉 is about
1.2% larger at the higher fields, this fits almost perfectly with
this explanation.

We can also consider the possibility of positrons forming
self-trapped clusters of higher density in the helium liquid [32].
However, these clusters have been found to only be present for
densities less than that of liquid helium. Hence, we can ignore
this mechanism as a source of increased Zeff .

Finally, we note that we have not accounted for a difference
between the applied and effective electric fields due to the per-
mittivity of the liquid. This is because the effect is negligible,
as the dielectric constant [33] of helium is 1.05 ≈ 1.

Again, we have made a comparison with the relative dif-
ference to the zero-field 〈Zeff〉 value, shown in figure 11. In
contrast to the similar comparison in figure 9, there is a much
bigger difference in the choices of ΔV for calculation, but
the ΔV = VWS and ΔV = VLWS choices remain closest to the
experimental measurements.

While the inability to fit the liquid results is problematic
for our calculation method, we still believe that our approach
to obtain agreement for the dense gas case is valid. This is
because the density of 35.7 amg in the measurements of [10]
is a rather dilute density, so multiple-scattering effects should
also be relatively weak. However, we cannot completely rule
out the possibility that our dense gas calculations are also
lacking some additional physical behaviour.

6. Conclusions

We have modelled the transport of positrons under an applied
electric field through dense fluids of helium and compared our
predictions of annihilation rates to experimental measurements
in the dense gas and liquid phases. Our model includes modifi-
cations due to coherent scattering and screening of the interac-
tion potential between the positron and the helium atom, which
have been discussed in previous articles. This article has intro-
duced additional considerations for the annihilation rate due to
electrons from the surrounding atoms, and we have shown that
double counting should be avoided in the averaging process.

While our model does not provide results in complete
agreement with experimental measurements, we are able to
include a very small (≈0.1%) contribution of an impurity
that is representative of a hydrocarbon to vastly improve this
agreement. The impurity is motivated by the noticeable dif-
ference between the dilute gas and dense gas measurements
and is represented using a model which includes three fitting
parameters.

10
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Our model has been extended from our previous articles,
to include one adjustable parameter, ΔV , for which we have
explored three physically-motivated values: (a) ΔV = U2(0),
(b) ΔV = VWS and (c) ΔV = VLWS. These values are (a) the
total polarisation potential of the surrounding atoms at the
origin of the focus atom and (b) the ground state energy of
the conduction band, calculated in a Wigner–Seitz model and
(c) a calculation in the Wigner–Seitz model using a ‘local’
Wigner–Seitz radius [22]. In both the dense gas and the liq-
uid, the effects of ΔV = VWS and ΔV = VLWS were found
to be nearly identical. In the case of a dense gas of helium,
any of these choices can be made to agree with the experi-
mental measurements, using different choices of an impurity
admixture. However, for the case of liquid helium, only the
choices of ΔV = VWS or ΔV = VLWS were found to be com-
patible, yet there remained significant discrepancies between
our calculated values and the experimental measurements.

Our results, using the Boltzmann equation description out-
lined in this article, have also been independently verified
using a Monte-Carlo calculation. Details of that implementa-
tion are available in [34, 35].

One of the reasons that impurities can play a large role
in our current investigations is due to the very small Zeff of
helium. In the future, we wish to model positron transport
through fluids of larger atomic species. These atoms, with
many more electrons, may provide a means to better test our
calculations by suppressing the potential effects of impurities.

In addition, we wish to explore further choices of ΔV and
determine a method to uniquely specify its value. One man-
ner in which to do this is to consider species in which there
are a larger range of densities with experimental measure-
ments, such as krypton [36]. We also intend to include further
multiple-scattering corrections to both ΔV and Zeff [37, 38],
to see if these can identify the current disagreement between
our calculations and experimental measurements.
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