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Abstract. Recent outbreaks of coral diseases in the Caribbean have been linked to increasingly stressful
sea-surface temperatures (SSTs). Yet, ocean warming is spatially heterogeneous and therefore has the
potential to lead to hotspots of disease activity. Here, we take an epidemiological approach to examine
spatial differences in the risk of white-band disease on Acropora spp. and yellow-band disease on Orbicella
spp. in the Caribbean. Our analysis involved examining the spatial patterns of disease prevalence, and
creating a Bayesian-risk model that tested for regional differences in disease risk. The spatial examination
of disease prevalence showed several clusters of white-band disease, including high prevalence in the
Turks and Caicos, Jamaica, Puerto Rico, the Virgin Islands, and Belize, whereas yellow-band disease
seemed most prevalent along the Yucatan Peninsula. The Bayesian-risk model showed regional clusters of
white-band disease near the southern Dominican Republic, Puerto Rico, the Virgin Islands, and the Lesser
Antilles, whereas the risk of yellow-band disease was highest in the southern Caribbean. The relative risk
of both diseases increased with warmer SSTs. The Bayesian-risk model allowed us to predict where we
should expect future outbreaks of coral diseases at a regional scale, and suggests regions where the
implementation of disease mitigation plans may be most urgent.
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INTRODUCTION

During the last three decades, reef corals have
experienced unprecedented thermal stress (Glynn
1993, Hoegh-Guldberg 1999, Aronson et al. 2000).
Such extreme thermal stress has led to extensive
coral bleaching, coral mortality, and shifts in coral
community composition (Loya et al. 2001, van
Woesik et al. 2011). In addition, there has been a
purported increase in the number of coral disease
outbreaks in the Caribbean (Aronson and Precht
2001, Harvell et al. 2002, Altizer et al. 2013), which
also has contributed to extensive declines in coral
populations (Cruz et al. 2014, Loh and Pawlik
2014). Although it has been proposed that thermal
stress is a driver of several coral diseases, we are

just beginning to understand the environmental
conditions that trigger coral disease outbreaks
(Harvell et al. 2002, Lesser et al. 2007, Muller et al.
2008, Randall and van Woesik 2015). Furthermore,
it is unknown whether there are emerging hot-
spots of coral disease activity in the Caribbean.
Geographic patterns of sea-surface tempera-

ture (SST) anomalies are predictable, although
they vary spatially and temporally (Thompson
and van Woesik 2009, Burrows et al. 2011). There
are two main regions in the Caribbean that have
experienced frequent thermal anomalies (every
four to seven years) during the past few cen-
turies—these same locations also recently have
experienced the most intensive thermal stress
(Thompson and van Woesik 2009). The first
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region is centered on Puerto Rico and extends
west to the Dominican Republic and east to the
Virgin Islands. The second region is centered on
eastern Costa Rica and extends north to Nicara-
gua and south to Panama (Randall et al. 2014). If
these thermal-anomaly patterns persist into the
near future, as most models suggest (IPCC 2014),
then some regions in the Caribbean will receive
both more intensive and more frequent thermal
stress than other regions. This spatial heterogene-
ity in thermal stress, combined with a projected
increase in frequency and intensity of thermal-
stress events, will presumably influence the
prevalence of coral bleaching and disease, result-
ing in geographic hotspots of disease.

Disease hotspots are characterized by
increased rates of disease transmission and
higher disease prevalence than in surrounding
areas; these hotspots can serve as source areas for
the dispersal of pathogens to less-infected locali-
ties (Paull et al. 2012). Coral disease hotspots can
arise through a number of mechanisms driven by
thermal stress. Firstly, elevated SSTs may increase
the growth rate and virulence of pathogens, lead-
ing to higher pathogen densities and higher rates
of infectivity (Kushmaro et al. 1998, Toren et al.
1998, Harvell et al. 2002, Rosenberg et al. 2007).
Secondly, elevated SSTs may compromise coral
immunity resulting in an increased number of
susceptible and infected hosts (Ritchie 2006, Les-
ser et al. 2007, Muller et al. 2008, Mydlarz et al.
2010, Reed et al. 2010). Thirdly, warm winters
increase pathogen survival rates and lengthen the
duration of disease activity (Harvell et al. 2002,
Randall and van Woesik 2015). Finally, thermal
stress can lead to the loss of symbiotic dinoflagel-
lates, which compromises coral health and further
increases coral susceptibility to disease (Glynn
1984, Brown 1997, Muller et al. 2008). These ther-
mal stress hotspots can result in severe conse-
quences for coral populations, thus leading to
outbreaks of disease at a regional scale (Paull
et al. 2012).

Here, we take an epidemiological approach to
examine whether the spatial variance in SSTs and
in rates of ocean warming are associated with spa-
tial patterns of two coral diseases, white-band dis-
ease and yellow-band disease, in the Caribbean.
We examine the spatial patterns of disease preva-
lence and develop a Bayesian-risk model that con-
siders disease prevalence in relation to population

size, and examines spatial autocorrelation so as
not to assume spatial independence of adjacent
regions (Hurlbert 1984, Legendre 1993, Rangel
et al. 2006). We test both models on data of
white-band disease on Acropora spp., and yel-
low-band disease on Orbicella spp. Both diseases
have caused major declines in their respective
host coral populations throughout the Caribbean
(Porter and Meier 1992, Aronson and Precht
2001, Miller et al. 2002, Bruckner and Bruckner
2006). Specifically, the objectives of the study
were to (1) examine spatial differences in the
relative risk of two coral diseases prevalent in
the Caribbean (i.e., white-band disease and yel-
low-band disease), (2) determine whether there
are relationships between the two coral diseases
and SSTs, and (3) define the geographic loca-
tions of potential coral-disease hotspots in the
Caribbean.

METHODS

Coral diseases and spatial models
We used count data to estimate disease preva-

lence. Members of the Atlantic and Gulf Rapid
Reef Assessment Program (www.agrra.org) col-
lected count data on coral diseases from 2076
sites that were surveyed between 1997 and 2014
(Fig. 1). At each site, divers recorded the total
number of Acropora spp. and Orbicella spp. coral
colonies, and the presence or absence of disease
signs on each colony. We were interested in
examining the spatial distribution and abun-
dance of Acropora and Orbicella coral colonies,
and the prevalence of white-band disease and
yellow-band disease, respectively.
We were also interested in obtaining informa-

tion on the risk of a particular disease relative to
the regional coral population. We used N to rep-
resent the size of the total coral population, ni to
represent the population in a given region i that
was potentially susceptible to a given disease, O
to represent the total observed number of indi-
vidual colonies with disease, and oi to represent
the observed number of individuals with a dis-
ease in each region. To obtain an estimate of risk,
we compared the observed number of cases of
disease, oi, with an expected number of cases of
disease, ei, based on the population in a given
region, ni. We calculated the standardized
expected ratio in the ith region, as:
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ei ¼ ðoi=niÞ � ni: (1)

Since we were dealing with count data, the
common assumption of most disease models is
that the number of cases of a disease in a region
can be drawn from a Poisson distribution
(Pascutto et al. 2000) as:

oi �PoissonðkiÞ; (2)

ki ¼ hi � ei; (3)

where hi is the relative risk of the disease in region
i. The Poisson distribution assumes that the mean
and variance are the same, yet in nature, particu-
larly on coral reefs, the variance of a population is
frequently higher than the mean of the popula-
tion. To compensate for this over-dispersion, we
also constructed a mixed model (Bivand et al.
2013) using a negative binomial (nbin) distribu-
tion for relative risk (h) and a gamma distribution
to account for the variance (var) as:

ID Region
1 Northern GOM
2 Central GOM
3 Southern GOM
4 W Florida
5 SW Florida
6 E central Florida and N Bahamas
7 S Florida and central Bahamas
8 N Cuba, S Bahamas & Turks and Caicos

9 N Dominican Republic
10 Yucatan Coast
11 S Cuba

–0.011
–0.006
–0.001

0.003
0.008
0.013
0.018
0.022

Rate of 
change in 

SST
(°C yr-1)

ID Region
12 Honduras
13 Nicaragua 
14 Costa Rica and Panama
15 Jamaica to Colombia
16 S Haiti
17 W Venezuela
18 S Dominican Republic
19 Central Venezuela
20 Inner E Caribbean Islands
21 Outer E Caribbean Islands
22 E Venezuela and Trinidad

Fig. 1. The coral reefs of the Caribbean (black), with rates of change in sea-surface temperature (SST; °C yr�1)
over the last 45 years (1968–2012; colors), and the proposed 22 climatic regions of the Caribbean, which were
defined based on rates of change in monthly SST calculated with monthly 1° by 1° HadISST data. White circles
indicate coral disease survey sites. GOM, Gulf of Mexico.
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oi �nbinðki;variÞ; (4)

ki ¼ hi � ei; (5)

vari � gammaðm; aÞ; (6)

hi � gammaðl; sÞ; (7)

where the priors of the parameters v, a, l, and s,
for the gamma distributions, were uninformative
(see the Appendix S1 for annotated R and Open-
Bugs code). From these equations, we deter-
mined whether any region was characterized by
higher or lower cases of disease than expected by
chance alone.

We also examined whether there were any
effects of spatial structure on the Bayesian-risk
model using conditional autoregressive estimates
(Besag et al. 1991). These estimates considered
spatial adjacencies of regions, and the strength of
the relationship between neighboring regions
based on their size (km2), as:

oi �Poissonðhi � eiÞ; (8)

logðhiÞ ¼ aþ bðxi �meanðxiÞÞ þ mi (9)

where a is the intercept, b is the slope of the covari-
ate xi, and mi is the conditional variance of the spa-
tial autoregression specifications using geographic
adjacency matrices. To reduce the open-endedness
of the Markov chain Monte Carlo estimates, we
censored the normal distribution of the prior on
the b values between �2 and 2 (Spiegelhalter et al.
2002). The Bayesian-risk model, using conditional
autoregressive estimates, was developed in Open-
Bugs (Lunn et al. 2000) and was run in R (R Core
Team 2016) using the packages “R2OpenBUGS”
(Sturtz et al. 2005), “sp” (Pebesma and Bivand
2005), and “spdep” (Bivand and Piras 2015). Model
outputs were visualized in R using the packages
“rColorBrewer” (Neuwirth 2014), “raster” (Hij-
mans 2015), and “rgdal” (Bivand et al. 2015).

Temperature data
Mean monthly SSTs from 1968 to 2012 were

obtained from the MetOffice HadISST records at
a 1° by 1° spatial resolution (Fig. 1; Rayner et al.
2003). The years 1968–2012 were selected to
include a 30-year SST record leading up to the
first disease survey in 1997. Linear models were
used to calculate the 45-year rates of change in
SST for every grid cell in the Caribbean region.
The rate of change in SST was then used to

divide the Caribbean into 22 non-overlapping
regions with similar rates of change and with
similar spatial coverage (Fig. 1). We chose a
course grain-size for this hotspot assessment,
although the area of interest can be divided into
fewer or more regions depending on the question
being asked. For every region, we calculated the
following SST variables from 1968 to 2012: (1)
mean SST (Fig. 2, top panel), (2) maximum SST,
(3) minimum SST, (4) mean rate of change in SST,
(5) maximum rate of change in SST, (6) minimum
rate of change in SST, and (7) range in SST. Each
of the SST variables was tested in the models to
determine which, if any, metrics were the best
predictors of disease risk.
For each of the 22 regions, the average preva-

lence of disease was calculated for each host spe-
cies. All models (for Eqs. 1–9) were analyzed
using a Bayesian approach, with uninformative
priors (Gelman et al. 2004). The models were run
using 3000 Markov chain Monte Carlo simula-
tions in OpenBUGs, which were implemented
through R (R Core Team 2016) to obtain posterior
probability distributions. All the R and Open-
Bugs codes, the data, and the shapefiles are
annotated and available online in Appendix S1.

RESULTS

Acropora colonies were present at 38% of the
sites that were surveyed (Fig. 3, top left). White-
band disease on Acropora was particularly preva-
lent in the Turks and Caicos, Jamaica, Puerto
Rico, the Virgin Islands, and Belize (Fig. 3, bot-
tom left). The Bayesian-risk model, without con-
sidering spatial dependencies, showed areas of
high risk of white-band disease on Acropora,
which were located in the southern Dominican
Republic, Puerto Rico, the Virgin Islands, and the
Lesser Antilles (Fig. 2, center). Northern Cuba
also showed relatively high risk of white-band
disease (Fig. 2, center).
When spatial dependency among adjacent

regions was considered in the calculations (Eq. 9),
and when mean SST was used as the covariate in
the autoregressive estimates of the Bayesian-risk
model (Eq. 9), there were three main hotspots of
high risk of white-band disease on Acropora—
southern Hispaniola and Puerto Rico, the Virgin
Islands, and western Venezuela (Fig. 2, bottom).
Honduras and Nicaragua also showed relatively
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Relative risk of white-band disease on Acropora colonies

Relative risk of white-band disease on Acropora colonies
considering spatial autocorrelation

°C

Mean sea surface temperature, 1967–2012

Relative 
risk

Relative 
risk

Fig. 2. Top panel: mean sea-surface temperature (SST) (°C) of 22 climatic regions from 1967 to 2012. Center
panel: relative risk of white-band disease on Acropora spp. coral colonies, from 1997 to 2014, using Poisson-
gamma relative risk estimates. Bottom panel: relative risk of white-band disease on Acropora spp. coral colonies,
from 1997 to 2014, using Poisson-gamma relative risk estimates and examining spatial autocorrelation (Eqs. 8, 9)
against the mean SST. Note that the relative risk scales vary between panels.
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Fig. 3. The density of coral colonies per site (upper panels) and the prevalence of coral diseases per site (lower
panels). The distribution and abundance of Acropora spp. coral colonies (upper left) and the average prevalence
of white-band disease on Acropora (lower left) at 791 sites, from 1997 to 2014. The distribution and abundance of
Orbicella spp. coral colonies (upper right) and the average prevalence of yellow-band disease on Orbicella (lower
right) at 1536 sites, from 1997 to 2014.

Table 1. Results of Bayesian Poisson-gamma relative risk models used to evaluate the relationship between dis-
ease risk and sea-surface temperature (SST) variables.

Species Variables Beta 2.5% CI 95% CI

Acropora spp. Mean SST 1 �0.3 1.9
Maximum SST �0.1 �1.9 1.9
Minimum SST 0.2 0 0.4

Average rate of change in SST 0.2 �1.9 1.8
Maximum rate of change in SST �0.1 �1.9 1.8
Minimum rate of change in SST 0 �1.9 1.9

Range in SST �0.3 �0.8 0.1
Orbicella spp. Mean SST 0.6 �0.1 1.4

Maximum SST �0.4 �1.7 0.8
Minimum SST 0.2 �0.1 0.5

Average rate of change in SST 0.1 �1.9 �1.9
Maximum rate of change in SST 0.1 �1.9 1.9
Minimum rate of change in SST 0.2 0 0.4

Range in SST �0.2 �0.5 0.1

Notes: CI, credible interval. White-band disease was evaluated on Acropora spp. coral colonies. Yellow-band disease was
evaluated on Orbicella spp. coral colonies. Bolded coefficients indicate significant statistical results.
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high risk of white-band disease (Fig. 2, bottom).
The relationship between mean SST and white-
band disease was positive and strong (b = 1, 95%
credible intervals (CI) = �0.3, 1.9; Table 1). How-
ever, when the mean rates of change and the max-
imum rates of change in SST were considered as
model covariates, the spatial relationships were
weak, with high uncertainty (mean rate of change
in SST b = 0.2, CI = (�1.9, 1.8); maximum rate of
change in SST b = �0.1, CI = �1.9, 1.8; Table 1).
These results suggest that the higher the mean
SST at a given location, the more likely Acropora
were to show signs of white-band disease.

Orbicella colonies were present at 74% of the
sites (Fig. 3, top right), and yellow-band disease
was particularly prevalent along the Yucatan

Peninsula (Fig. 3, bottom right). Yet, the Baye-
sian-risk model, without considering spatial
dependencies, showed that the areas at highest
risk of yellow-band disease on Orbicella were
actually in Honduras, Costa Rica and Panama,
Jamaica and Colombia, and central Venezuela
and Trinidad (Fig. 4, top). The autoregressive cal-
culations of the Bayesian-risk model showed hot-
spots in the southern Caribbean, although the
relative risk was weak, at a maximum of 2.7
(compared with 5.5 for Acropora; Fig. 4, bottom).
The relationship between mean SST and yellow-
band disease was positive and strong (mean SST
b = 0.6, 95%, CI = �0.1, 1.4). Again, the maxi-
mum SST and the rates of change in SST showed
weak relationships with yellow-band disease,

Relative 
risk

Relative 
risk

Fig. 4. Top panel: relative risk of yellow-band disease on Orbicella spp. coral colonies, from 1997 to 2014, using
Poisson-gamma relative risk estimates (Eqs. 2, 7). Bottom panel: relative risk of yellow-band disease on Orbicella spp.
coral colonies, from 1997 to 2014, using the Poisson-gamma relative risk estimates and examining spatial autocorrela-
tion (Eqs. 8, 9) against the mean sea-surface temperature. Note that the relative risk scales vary between panels.
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with high uncertainty (Table 1). Like white-band
disease, these results suggest that the higher the
mean SST at a given location, the more likely
Orbicella showed signs of yellow-band disease.

DISCUSSION

>Here, we examined the spatial patterns in the
prevalence of white-band disease on Acropora
and yellow-band disease on Orbicella in the Car-
ibbean. We applied a Bayesian-risk model to
examine regional spatial patterns of disease risk
and determine whether there were relationships
between the diseases and SSTs. Identifying
regions with a high disease prevalence is usually
the first step toward the potential management
of a disease (Snow 1854), yet the spatial patterns
of disease prevalence that were identified did not
always match the regions with increased disease
risk.

The Bayesian-risk model identified spatial clus-
ters of relative disease risk, considering regional
population size and adjacency. Both the spatially
dependent and spatially independent estimates
showed that the highest relative risk of white-band
disease on Acropora was evident in the southern
Dominican Republic, Puerto Rico, the Virgin
Islands, western Venezuela, Honduras, and Nicar-
agua (Fig. 2, center and bottom). Both the spatially
dependent and spatially independent estimates
showed that the highest relative risk of yellow-
band disease on Orbicella was evident in Panama,
Honduras, Jamaica and Colombia, and central
Venezuela (Fig. 4). Interestingly, these same
regions were previously identified as showing his-
torically high return frequencies of thermal
anomalies (Thompson and van Woesik 2009, Ran-
dall et al. 2014). Although the autoregressive mod-
els showed no relationship with rates of change in
SST, there were strong and positive relationships
between mean SST and both coral diseases.

Taking spatial autocorrelation into considera-
tion in the relative risk models resulted in similar
spatial patterns of risk compared with the model
without spatial autocorrelation, but the condi-
tional autoregressive models showed lower risk
overall, and generally fewer regions at risk. These
conditional autoregressive models consider spa-
tial dependency among regions and therefore do
not treat each region as completely independent.
In an epidemiological context, autoregressive

models that include spatial dependency might be
most useful when the disease of interest stems
from waterborne contagious pathogens and when
there is considerable water exchange among adja-
cent regions that promote microbial and genetic
connectivity (e.g., Precht et al. 2016). Such models
may be less necessary when diseases are not
contagious (e.g., Randall et al. 2016), when they
are a consequence of infections by ubiquitous
pathogens, or when they are driven mostly by
environmental conditions (e.g., Muller et al.
2008). Because both diseases tested in this study
showed strong and positive relationships with
mean SST, the disease hotspots identified by both
relative risk models are worth considering and
developing further.
We chose a course-grained approach, using a

Bayesian-risk model, to detect regional disease
hotspots, although the same methods can be
applied to detect hotspots or disease microrefugia
at a finer scale (Mosblech et al. 2011). The same
modeling approach can also be taken within a
spatiotemporal framework, with all Eqs. 1–9 sub-
scripted with a time component, t, where time-
series data are available. Such an approach would
not only test the dynamics of diseases through cli-
mate cycles, but would also test the long-term effi-
cacy of management intervention to control coral
diseases. While these data are not yet available,
numerous restoration and monitoring programs
may soon be able to make use of these models at
an even finer spatial and temporal resolution.
Over the next century, the climate is predicted

to continue to drive ocean temperatures consider-
ably higher than any temperatures experienced
by reef corals for over the last 700,000 years
(Hoegh-Guldberg et al. 2007, Hansen et al. 2010,
IPCC 2014). The results of the Bayesian-risk
model suggest that the risk of white-band disease
and yellow-band disease increases in regions with
warmer-than-average SSTs (Lesser et al. 2007,
Muller et al. 2008, Randall et al. 2014, Randall
and van Woesik 2015). High SSTs will most likely
continue to cause thermal stress in corals and will
consequently increase the prevalence of coral dis-
eases in these regional hotspots. Attention should
be focused on reefs in the regional disease hot-
spots identified in the Dominican Republic,
Puerto Rico, the Virgin Islands, Venezuela, Hon-
duras, Costa Rica, and Panama to begin efforts to
mitigate disease transmission in the Caribbean.
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