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Abstract 

 

Schistosomiasis is a chronic disease caused by infection with trematode parasites of the genus 

Schistosoma. Currently, there is no vaccine available to limit the global burden of this disease, and 

treatment depends on a single drug, praziquantel, which warrants concern about emerging drug 

resistance and emphasises the need for rigorous research into discovery of new drug targets and 

vaccine antigens. Various strategies are employed by parasites to manipulate their hosts, one of 

which is the secretion by parasites of extracellular vesicles (EVs). EVs are membrane-encapsulated 

vesicles secreted by different types of cells and can be grouped into exosome-like vesicles (ELVs) 

and microvesicles (MVs). The parasitic blood fluke Schistosoma mansoni secretes EVs. However, the 

sub-vesicular composition of these EV proteins and their roles in molecular host-parasite 

communication, as well as their vaccine efficacy has not been studied before.  

Chapter 2 (first data chapter) of this thesis provides the first comprehensive proteomic analysis of 

S. mansoni EVs – ELVs and MVs. To achieve this, I isolated and purified EVs from S. mansoni ES 

products using an Optiprep iodixanol gradient and fractions containing vesicles were confirmed by 

tunable resistive pulse sensing using a qNano instrument for both ELVs and MVs. Trypsin shaving as 

well as sequential extraction techniques were used to obtain samples of integral membrane, 

peripheral membrane and cargo components for proteomic analysis of S. mansoni EVs using 

quantitative liquid chromatography-tandem mass spectrometry. A total of 286 and 716 proteins 

were identified in S. mansoni ELVs and MVs, respectively. Among the proteins identified were 

previously described and new potential vaccine candidates. Moreover, proteins of relevance in host-

parasite communication were identified from both vesicle types, including proteases, antioxidants, 

EV biogenesis/trafficking proteins.  
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The role of S. mansoni EVs in host-parasite communication and their impact on host cell gene 

expression was presented in Chapter 3 of this thesis. Using confocal fluorescence microscopy, I 

confirmed that S. mansoni ELVs and MVs are internalised by Human Umbilical Vein Endothelial Cells 

(HUVEC) as well as the THP-1 human monocyte cell line, implying roles in host-parasite 

communication in distinct cell types. To investigate the biological effects of uptake of S. mansoni 

ELVs by HUVEC cells, RNA was extracted and submitted to Next Generation RNA sequencing, and 

revealed 59 differentially expressed genes (DEGs) compared with control ELVs from untreated 

HUVEC cells. Of the DEGs, 17 and 42 genes were downregulated and upregulated, respectively. 

Significantly downregulated genes in HUVEC cells treated with S. mansoni ELVs encoded proteins 

involved in complement and coagulation cascades and glycolysis. DGEs that were upregulated in 

HUVEC cells treated with S. mansoni ELVs encoded proteins involved in inhibition of platelet 

aggregation and vasodilation, inflammation and immune-regulation, and vascular smooth muscle 

contraction. String analyses of DEGs revealed numerous axes of interacting genes, notably 

arachidonic acid metabolism and glycolysis pathways.  

Tetraspanins (TSPs) are abundant transmembrane proteins that are diagnostic features of most 

eukaryotic ELVs. TSPs are known to be efficacious vaccine antigens for schistosomiasis, so I 

expressed selected S. mansoni EV TSP proteins in recombinant form, produced antibodies against 

them, and used those antibodies to disrupt EV uptake by host cell lines, and therefore EV-mediated 

parasite-host communication.  

Chapter 4 of this thesis explored the vaccine potential of adjuvanted S. mansoni MVs in a mouse 

model of schistosomiasis over two independent trials. In one trial, mice vaccinated with S. mansoni 

MVs showed a modest reduction in the number of eggs in the liver (28%, P<0.01) and intestine (35%, 

P<0.01) compared to mice that were immunised with murine fibroblast MVs as a control. Adult 

worm burden and egg viability, as determined by egg hatching from liver homogenates, were not 
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significantly decreased. In a second trial, similar trends were observed but the worm and egg burden 

data did not reach statistical significance. To identify the antigenic targets from EVs, sera collected 

from mice immunised with S. mansoni ELVs and MVs were used to probe a S. mansoni protein array 

consisting of ~1,000 recombinant proteins.  Antigens for which the strongest immune responses 

were detected included proteins that were predicted and/or proven to be located on the tegument 

membrane, intracellular proteins, and metabolic enzymes that have key roles in parasitism. 

Selected S. mansoni EV recombinant TSPs – Sm-TSP-1, Sm-TSP-2, Sm-TSP-4, and Sm-TSP-1 + Sm-TSP-

2 + Sm-TSP-4 – were assessed for vaccine efficacy over two independent trials in Chapter 5 of this 

thesis. Anti-TSP IgG antibodies bound and hence recognised their cognate TSPs, particularly S. 

mansoni TSP-2, on the tegument of adult worm sections, implying that their surface accessibility 

renders schistosomes vulnerable to antibody-mediated killing. Vaccination of mice with Sm-TSP-2 

and the cocktail of TSPs (including TSP-2) showed a significant reduction in adult worm counts (30-

36%, P<0.01) and liver egg burdens (26-36%, P<0.01, P<0.05) in one but not both of the trials. 

Intestinal egg burdens were significantly decreased (31%, P<0.05) in mice vaccinated with the 

cocktail of TSPs. Egg viability was significantly decreased in mice vaccinated with Sm-TSP-2 and the 

cocktail of TSPs. There was no significant reduction obtained for any of the parasitological data 

assessed for mice vaccinated with either Sm-TSP-1 or Sm-TSP-4.  

Altogether, this thesis has provided a comprehensive molecular characterisation of two distinct 

populations of adult S. mansoni EVs. The role of these EVs in host-parasite communication and host 

cell gene regulation in vitro has been assessed in HUVEC cells. Vaccine efficacy of S. mansoni EVs 

and recombinant forms of EV surface proteins was assessed in a mouse model of schistosomiasis, 

providing a foundation upon which to select key antigenic targets for an ultimate subunit vaccine.  
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 Chapter 1  
 

Introduction and Literature review 
 

1.1. Introduction  

1.1.1. Schistosomiasis 

Schistosomiasis is a common neglected disease caused by blood fluke parasites of the genus 

Schistosoma. Nearly 190 million people are infected in developing countries in the tropics and sub-

tropics, with more than 70 million new infections (GBD 2016 DALYs and HALE Collaborators, 2017), 

and nearly 300,000 deaths every year (Colley et al., 2014). Most infected and vulnerable individuals 

are found in sub-Saharan Africa, and close to 800 million people are at risk (Utzinger et al., 2009, Cai 

et al., 2016). Based on the 2016 Global Burden of Disease Study, the global burden of schistosomiasis 

is estimated to be 1.9 million disability-adjusted life years (GBD 2016 DALYs and HALE Collaborators, 

2017). Three main species of schistosomes infect human beings: Schistosoma mansoni, Schistosoma 

haematobium and Schistosoma japonicum. S. mansoni and S. haematobium both occur in Africa and 

the Middle East; S. mansoni is also present in the Americas. S. japonicum is localised to Asia, 

primarily the Philippines and China. S. mansoni is responsible for one-third of schistosomiasis 

infections globally (van der Werf et al., 2003). Schistosoma species have complex life-cycles 

involving infection of a freshwater snail intermediate host in which they multiply asexually as well 

as a definitive vertebrate host where adult male and female worms grow and sexually reproduce 

(McManus et al., 2018). The S. mansoni and S. japonicum egg stages are excreted from the host 

within faecal material (or urine in the case of S. haematobium) whereupon the eggs hatch to release 

free swimming miracidia that infect snails. Eggs trapped in the vasculature of the liver, intestines or 

bladder, depending on the species, cause the majority of disease-associated clinical signs and 
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pathology (McManus and Loukas, 2008). Because of the suite of immune-evasion pathways utilized 

by the adult flukes, they can live for up to 10 years in the portal blood vessels of the mesenteric 

plexus (Collins et al., 2013). The unique tegumental bilayer of the outer surface of the parasite is 

endowed with a population of stem cells, undergoes frequent regeneration and turnover, and is 

instrumental in immune escape pathways by making S. mansoni surface proteins inaccessible to 

host immune cells (Collins et al., 2016).  

Research in schistosomiasis has contributed substantially to better understand the mechanisms of 

parasitism (Zhu et al., 2014, Driguez et al., 2016a). In studies carried out to assess the molecular 

basis of host-parasite interactions, the identification of schistosome tegument proteins has been 

targeted for the development of new diagnostics and their potential as vaccine candidates (Wilson, 

2012). Schistosome antigen discovery for vaccine development has been assisted by major advances 

in molecular biology, specifically the sequencing of the genomes, the tegument proteomes and the 

transcriptomes of different schistosome species (Sotillo et al., 2019b). The availability of this 

information, together with improving post-genomic tools has the potential to reveal many new 

vaccine candidate antigens (Sotillo et al., 2016a). The most relevant targets are the excretory-

secretory (ES) products as well as molecules on the surface of the worm. These are the molecules 

that directly interact with the host immune system (Hotez et al., 2010).  

In addition to secreting soluble proteins, schistosomes secrete extracellular vesicles (EVs). EVs are 

membrane-encapsulated vesicles that can be grouped into exosomes and microvesicles (MVs) 

based on their size and cargo content such as protein and RNA (Meldolesi, 2018). Parasite EVs can 

play roles in host-parasite and parasite-parasite communication, and have also been implicated in 

pathogenesis of helminth infections, such as the carcinogenic liver fluke Opisthorchis viverrini 

(Chaiyadet et al., 2015a). Furthermore, EVs from the parasitic nematode Heligmosomoides 

polygyrus suppress inflammation by downregulating T helper type 2 (Th2) immune responses in 
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mice. H. polygyrus EVs contain micro-RNAs (miRNAs) that regulate inflammation (Buck et al., 2014), 

suggesting a mechanism by which these vesicles exert their immunomodulatory properties and 

highlighting their potential as diagnostic tools and therapeutic agents. In this thesis, I focus on 

presenting the available information based on recent literature about the roles of EVs in 

schistosomiasis and other helminth infections in communication, gene regulation, immune 

modulation and pathogenesis, and further highlight their importance as targets for therapeutics and 

diagnostics.  

1.1.2.  Life-cycle  

Adult male and female S. mansoni reside and mate in the portal veins of the liver. They migrate to 

the mesenteric veins draining the large intestine where the female lays fertilized eggs. The eggs are 

shed into the environment through the faeces. Those eggs that remain trapped in the host tissues 

elicit an inflammatory response and then die, becoming encapsulated by immune granulomas. Eggs 

that are released in the faecal stream into freshwater hatch and release ciliated miracidia, a free-

living stage that infects a suitable snail intermediate host (Biomphalaria species) (Utzinger et al., 

2009). Once in the snail the parasite undergoes asexual replication and the infective cercariae leave 

the snail into the water (Collins et al., 2011). This asexual reproductive cycle in the snail requires 4 

to 6 weeks to complete. Cercariae deplete their energy reserves significantly within a few hours of 

being released from snails (Lawson and Wilson, 1980), but can remain infective for 1-3 days, during 

which they locate a mammalian host in the water, penetrate the skin and lose their tail to become 

the schistosomulum stage. Schistosomula reach the circulation, pass through the lung vasculature 

and finally reach the mesenteric plexus in the portal veins (Figure 1-1). Schistosomula require on 

average 6 weeks (5–7 weeks) to mature to full adulthood whereupon the dioecious adult flukes pair, 

copulate and the female releases eggs to continue life cycle (Ross et al., 2002).  
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Figure 1. 1. The life cycle of the schistosome parasite. 

(https://www.cdc.gov/parasites/schistosomiasis/biology.html) 

Steps 1–3: When individuals infected with S. mansoni defaecate in freshwater, parasite eggs are 

shed in the faecal stream. The eggs hatch and infect freshwater snails (Biomphalaria spp.). The 

parasites then develop and replicate asexually within the snails. Steps 4–5: The cercarial stage of 

the parasite emerges from the infected snails into freshwater, where they can live for up to two 

days. Step 6: Upon contacting a mammalian host, cercariae infect individuals through skin 

penetration.  Steps 7–10: In the body, the larvae get access to the circulatory system and ultimately 

reach the portal blood vessels (mesenteric plexus) where they develop into adult male and female 

parasites which then pair, mate, and remain coupled for up to seven years. Female parasites release 

hundreds of eggs daily, some of which are excreted in the faeces whereas others are retained in the 
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tissues and cause the granulomatous reactions that drive the pathology associated with 

schistosomiasis. 

1.1.3.  Epidemiology   

Schistosomiasis, affecting > 200 million people worldwide (Colley et al., 2014), particularly in 

developing and tropical regions, is one of the most important parasitic diseases. The eggs of S. 

mansoni and S. japonicum when trapped in the portal system elicit hepatosplenic inflammation and 

liver fibrosis (Gryseels et al., 2006). Eggs of S. haematobium can promote bladder cancer in 

chronically infected individuals (Mayer and Fried, 2007). In Africa and the Middle East both S. 

haematobium and S. mansoni occur, whereas only S. mansoni exists in the Americas. Primarily 

located in the Philippines and China, S. japonicum is localised throughout Asia (Figure 1.2). The 

distribution of each species of schistosome depends on the existence of a specific suitable snail host. 

Aquatic freshwater Biomphalaria and Bulinus snails serve as intermediate hosts for S. mansoni and 

S. haematobium, respectively, and Oncomelania, which is an amphibious freshwater snail, serves as 

an intermediate host for S. japonicum. 

Several physical and biological factors influence the distribution of the snails. Temperature - 

affecting the development of larval snails, their growth and rate of transmission - is one of the major 

determining factors for their distribution and survival (Gryseels et al., 2006, Kalinda et al., 2017). As 

a result, snail intermediate hosts for Schistosoma species are geographically restricted to the 

relatively warm tropical and subtropical regions, especially in Africa, Asia, Middle East, South 

America, and the Caribbean; snails do not exist in locations with extreme temperatures, i.e. at high 

altitudes or in temperate regions (Gryseels et al., 2006, Kalinda et al., 2017).  

Despite mass administration of the drug praziquantel to treat schistosomiasis for the last two 

decades, the infection still causes a loss of 1.9 million DALYs (GBD 2016 DALYs and HALE 

Collaborators, 2017). The DALYs attributed to schistosomiasis is a conservative estimate as it doesn’t 
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take into consideration the morbidity associated with infections that were conventionally regarded 

as ‘‘asymptomatic’’ (King, 2015). 

Chronic schistosomiasis is the most prevalent form of the disease in endemic areas. In such areas, 

children can get their first infection as early as two years of age, after which the intensity of infection 

increases with exposure over the first 10 years (Colley et al., 2014). The occurrence of schistosome 

infections in infants and young children is being progressively noticed. This situation did not attract 

due attention in the past, partly because more emphasis is given to treatment of school-aged 

children, because of the age-related low parasite egg output, and because of the poor sensitivity of 

standard diagnostic tests that quantify egg burdens microscopically. Infection that occurs in early 

childhood in endemic regions will likely have a major role the establishment of chronic inflammation 

due to schistosome eggs trapped in the tissues and the subsequent formation of immune 

granulomas (Colley et al., 2014, Schwartz and Fallon, 2018). 

Furthermore, there is a high prevalence of schistosomiasis in young adolescents, although this 

prevalence is generally reduced in adulthood (McManus et al., 2018). However, as long as adults 

have frequent contact with water bodies harbouring cercariae, high prevalence can persist in adults 

(Colley et al., 2014, McManus et al., 2018). Schistosomiasis sero-surveillance carried out in endemic 

areas has shown that nearly all long-term residents become infected at least once in their lifetime. 

In settings with typical transmission trends, 60-80% of school-age children and 20-40% of adults are 

actively infected (Colley et al., 2014). However, age-associated infection patterns are unpredictable 

in populations with recent exposure to transmission compared to those in long-standing endemic 

conditions. Hence, some type of age-associated innate resistance could have a major contribution 

in the epidemiology of schistosomiasis, as slowly developing adaptive immunity is not relevant in 

such circumstances (Gryseels et al., 2006). 
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Figure 1. 2. Worldwide distribution of schistosomiasis (McManus et al., 2018).  

 

1.1.4.  Immunopathogenesis  

The different life cycle stages of S. mansoni express hundreds, if not thousands, of antigenic 

moieties. Many of these antigens elicit intense and easily detected humoral and cellular immune 

responses (Gaze et al., 2014). It is well documented from clinical and epidemiological studies that 

individuals residing in schistosome endemic settings develop some form of acquired immunity after 

multiple exposures (Gryseels et al., 2006, Schwartz and Fallon, 2018). Regarding immunity 

developed by mammalian hosts to schistosome infection, innate or acquired immune responses are 

likely to have an important role in limiting the reproductive capacity of schistosomes (Gryseels et 

al., 2006, Costain et al., 2018). Because the decrease in infection rates after adolescence can also be 

explained by reduced water contact, proving the existence of effective (albeit non-sterilizing) 

acquired immunity in these groups is challenging (Gryseels et al., 2006). 
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Studies using comparative models of reinfection after curative therapy have demonstrated that 

children are more susceptible to schistosome infection than adults, and that these discrepancies 

cannot be explained by water contact patterns (McManus et al., 2018). Findings from studies in 

humans and livestock suggest that adaptive immunity is mediated by IgE against larval and adult 

parasite antigens, which in turn generates eosinophil-mediated attack of the larval stage parasites. 

Blockade of IgE receptors by excess anti-schistosome IgG4 and possibly other immunoglobulin 

isotypes in the first years of infection is thought to be the cause for the slow development of 

acquired immunity. Some researchers report the role of schistosome-specific IgA, for example anti-

Sm28GST, for the slow release of somatic antigens from dying worms or for mediating protective 

immunity in people (Capron et al., 2005). The former hypothesis has been used to support the 

presence of increased immunity after drug therapy; however, these observations need to be further 

confirmed by additional studies (Mutapi et al., 2013). 

Cell mediated immunity is responsible for most schistosomiasis-associated pathology during chronic 

infection. Most chronic responses in schistosomiasis are not due to the adult worms but to the T 

cell-dependent immune response of the host, which is directed against schistosome eggs trapped 

in tissues, mainly in the liver and intestines (McManus and Loukas, 2008, Schwartz and Fallon, 2018).  

In general, the immune response to schistosomiasis at early stages of infection in mice shows a 

predominantly T helper type 1 (Th1) cellular response but shifts to an egg-induced Th2 response as 

the infection becomes chronic (Alves et al., 2016). The Th1 response is characterised by an 

increase in proinflammatory cytokines such as interleukin IL-1, IL-12, IFN-γ and TNF-α that further 

activate macrophages to generate nitric oxide targeting schistosomula and immature adult worms 

(Pearce, 2002, Wilson et al., 2007, Torben et al., 2012). After the deposition of eggs the immune 

response switches to a pronounced Th2 response with the formation of granulomatous lesions 

characterised by high levels of IL-4, IL-5, IL-10, IL-13 and IgE, facilitated by dendritic cells (Pearce, 
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2002, Ndlovu and Brombacher, 2014), connecting the innate with the adaptive immune response 

(Colonna et al., 2006). The granulomas formed wall-off the egg and its liberated proteolytic enzymes 

which otherwise cause tissue necrosis. However, the granuloma formation process induces 

prolonged chronic inflammation that is responsible for the clinical signs of schistosomiasis (Colley 

et al., 2014, Fairfax et al., 2012). Moreover, there is evidence from studies in mice indicating that, 

in addition to Th1 and Th2 immune responses against schistosomiasis, there is a relationship 

between severe pathology and IL-17-producing CD4+ T helper (Th17) cells (Larkin et al., 2012, Chen 

et al., 2013a).  

 

Studies conducted on the human immune response to schistosomiasis suggest that acquired anti-

schistosome protective immunity after curative drug therapy is mediated by a Th2 immune 

response and the generation of protective IgE antibodies mounted against larval antigens and 

adult worms (Gryseels et al., 2006). Indeed, repeated rounds of praziquantel treatment and the 

ensuing protective immune response observed in some indivduals has been touted by some 

researchers as a vaccination approach (Mutapi et al., 2013). Another group of subjects called 

putatively resistant ( PR) individuals are constantly exposed to schistosomes but never get infected 

and have not been treated with praziquantel (Viana et al., 1994). This group is thought to mount a 

protective response aimed at the schistosomula stage of the parasite and is characterised by both 

Th1 cytokines such as IFN-γ as well as Th2 responses typified by IgE against schistosomula tegument 

antigens (Viana et al., 1995). Moreover, levels of IgG4 against soluble worm antigen preparation, 

soluble egg antigen and Sm 22.6 were higher in susceptible subjects compared with PR subjects 

(Oliveira et al., 2012).  

In the long term, schistosomiasis usually progresses to the chronic intestinal form because immune 

responses to the granulomatous tissue are suppressed by several mechanisms. The occurrence of 

clinical signs is usually linked to the intensity of infection but often the intestinal form of the disease 
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manifests as non-specific recurrent abdominal ache and diarrhoea with rectal bleeding (Mohamed 

AR et al., 1990, McManus et al., 2018). Symptoms like these are usually not systemic in nature, but 

rather characterized by isolated polyposis, pseudopolyposis and mucosal hyperplasia interspersed 

with apparently normal intestinal tissue (Cao et al., 2010). Some individuals infected with S. mansoni 

present with massive fibrosis followed by hepatosplenic syndrome with periportal fibrosis, mainly 

due to their poor regulatory responses to parasite egg antigens (Colley et al., 1986, McManus et al., 

2018). Clinical signs include upper quadrant abdominal distress with enlarged palpable and hard 

liver and spleen. As a complication of portal hypertension, ascites and haematemesis from 

oesophageal varices can follow, and frequently result in death (Richter et al., 1998). In patients with 

chronic hepatic fibrosis, complicated by granulomatous pulmonary arteritis, substantial pulmonary 

hypertension can occur (Lambertucci et al., 2000, McManus et al., 2018). It usually takes 5-15 years 

for advanced fibrosis to occur (Gryseels, 1992); however, it can occur in children as young as 6 years 

(Doehring-Schwerdtfeger et al., 1990), urging the necessity for examination and treatment of 

preschool children (Stothard et al., 2011). 

Acute schistosomiasis occurs usually in travelers or immigrants to endemic areas that have no 

previous exposure to schistosome antigens. It follows weeks to months after the first infection, as a 

result of worm maturation, release of egg antigen, and the host’s immune complex responses and 

granuloma formation. In acute schistosomiasis (sometimes referred to as Katayama syndrome) the 

typical clinical signs lasting 2-10 weeks include an abrupt onset of fever, myalgia, headache, malaise, 

abdominal pain, eosinophilia and fatigue. These are not commonly seen in individuals from endemic 

settings and this may be as a result of in utero priming of T and B lymphocyte responses of babies 

born to mothers with parasitic infections (Pearce, 2002, McManus et al., 2018).  
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1.1.5.  Diagnosis  

The standard diagnostic method for active schistosomiasis due to S. mansoni is the detection of 

viable eggs in faeces (or urine for S. haematobium). Currently however, due to the low sensitivity of 

microscopy-based examination of faeces or urine, the absence of schistosome infection cannot be 

reliably concluded. For the diagnoses of mild and light infections, concentration techniques, for 

example, sedimentation using glycerine solution or centrifugation in formol-ether are required. In 

field conditions, thick smear or Kato-Katz technique is usually used, as it also allows for a 

quantitative measure of infection intensity, commonly presented as parasite eggs per gram of host 

faeces (Gryseels et al., 2006).  

Schistosome DNA can be identified using molecular methods that have greater sensitivity and 

specificity than microscopic examination. However, these methods still have limitations due to 

sampling following uneven distribution of eggs in the faeces and sub-optimal use in field conditions 

(Meurs et al., 2015). Multiplex polymerase chain reaction (PCR), which includes detection of several 

intestinal parasites in a single stool sample, can be an advantage when diagnosing infections in 

travelers (Cnops et al., 2012). Serum assessment can also be used to detect parasite DNA (Colley et 

al., 2014). 

In addition, diagnosis of schistosomiasis is also often based on the detection of antibodies against 

crude parasite antigen extracts. The main limitation of this type of assay is its inability to 

differentiate previous recent exposure from current infection in people living in a schistosomiasis-

endemic area, where people remain seropositive for several years after treatment (Doenhoff et al., 

2004); moreover, some antibodies can cross-react with other helminths antigens, which makes its 

use under field conditions difficult. However, such assays are relevant for the diagnosis of migrants 

and travelers who are occasionally exposed. In addition, they can be important for new cases that 

involve children and in low-transmission or post-control settings. Antibody detection assays such as 
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rapid diagnostic point-of care (POC) tests (Nausch et al., 2014) may prove useful as infection 

intensities decline following control programmes, as has been the case in the People’s Republic of 

China (Cai et al., 2014). Frequently applied methods identify IgG and/or IgM against antigens from 

different stages of the parasite such as cercariae, schistosomula, adult flukes and eggs. Moreover, 

detection of parasite antigens in infected host tissues/fluids has been used in the diagnosis of 

schistosomiasis using techniques including enzyme linked immunosorbent assay (ELISA), rapid 

diagnostic test (RDT), indirect immunofluorescence assay (IIFA), or indirect haemaglutination assay 

(IHA), luminex multiplex immunoassay (LMI), and immunomagnetic separation (IMS).  

Somatic parasite antigens, such as the circulating cathodic antigen (CCA) and the circulating anodic 

antigen (CAA) in blood of infected individuals, can be identified and quantified with tagged 

monoclonal antibodies in serum. These genus-specific proteoglycan antigens of the schistosome gut 

epithelium are released in the excretory/secretory products of worms. Both antigens can be 

demonstrated in blood at around 3 weeks post-infection. CAA and CCA are also excreted in host 

urine and can be detected in serum and urine with a commercially available POC assay that detects 

S. mansoni CCA. It is now applied for screening of S. mansoni- infected communities in relation to 

mass drug administration (MDA) programmes (Ochodo et al., 2015). Concentration of urine samples 

can enhance the sensitivity of the POC- CCA assay (Grenfell et al., 2018). Antigen detection in serum 

and urine, however, cannot be used widely for clinical applications because in light infections its 

sensitivity decreases and the costs of POC- CCA screening may be prohibitive. However, it is a useful 

research tool for therapeutic and epidemiological studies for a direct, specific and stable measure 

of parasite loads (Weerakoon et al., 2015).  

Ultrasonography assists as a rapid, safe and non-invasive tool for examining the pathology due to 

chronic hepatosplenic disease. According to WHO clinical guidelines, the severity of hepatic fibrosis 

can be graded based on the image pattern of liver appearance and by objectively measuring the size 
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of the main portal vein diameter and the wall thickness of a peripheral segmental portal vein. The 

degree of fibrosis is again used to predict portal hypertension development and bleeding in the 

gastrointestinal tract. Ultrasonography may also be applied to monitor the success of treatment 

against schistosomes in advanced cases. Magnetic resonance imaging (MRI) has provided a higher 

specificity and sensitivity for differentiating chronic hepatosplenic schistosomiasis and cirrhosis 

(Burke et al., 2009, McManus et al., 2018). Biomarkers of liver fibrosis including the P1 fragment of 

laminin, pro-collagen peptides type III and IV, fibrosin, hyaluronic acid, TNF-α R-II and sICAM-1 have 

the capacity to give a highly sensitive and cost effective method for examining fibrosis due to 

schistosomiasis, but they are still under investigation. IL-13 secretion by peripheral blood 

mononuclear cells (PBMCs) may be an important cytokine revealing the persistence of fibrosis after 

treatment (Burke et al., 2009). Acute schistosomiasis, in addition, is clinically characterized by 

finding diffuse pulmonary infiltrates on chest X-ray films and almost all cases are diagnosed with 

eosinophilia and a history of recent contact with water bodies (Burke et al., 2009, McManus et al., 

2018). 

Improved diagnostic tools for schistosomiasis are still required (both in the clinic and in the field) 

and novel techniques are being investigated. For instance, positron emission tomography (PET) 

scans have been applied experimentally to identify adult worms in the body (Salem et al., 2010). 

Moreover, microfluidics is currently offering assays that have the capacity to detect antibody and 

worm antigen (Chen et al., 2013b). However, currently there is no true gold standard tool for 

quantifying and correlating the outputs with actual parasite load, and this remains a significant 

hurdle (Colley et al., 2014). 
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1.1.6.  Treatment  

Praziquantel (PZQ) is the drug of choice for treating schistosomiasis. Its mode of action is by 

paralyzing the parasites and causing damage to the tegument of the fluke (Colley et al., 2014). A 

study in mice has demonstrated that PZQ treatment disrupts the tegument, exposing tegumental 

antigens to the host immune attack (Mehlhorn et al., 1981) which results in significant change of 

parasite-host-specific immune responses (Mutapi et al., 2007). PZQ is effective at killing all 

Schistosoma species, and for full efficacy its mode of action requires an intact host immune 

response. It is effective against adult schistosome parasites, but has poor activity against immature 

worms, and cannot prevent reinfection. PZQ can be administered with and without anti-

inflammatory drugs at a standard single dose of 40 mg/kg of bodyweight (Bergquist et al., 2017). 

After this dose is given, 70-100% of subjects do not excrete eggs. In many subjects that are not fully 

cured, antigen concentrations and egg counts are decreased by greater than 95% (Utzinger et al., 

2000). Clinical, sonographic and radiographic reports have indicated that from weeks to months 

following treatment, there is a decrease in intestinal lesions, abnormal liver growth, and or hepatic 

fibrosis (Richter, 2003). This dose is therefore applied and recommended for most community-

based mass treatment programs. However, cure rates can be much lower in communities with high 

initial egg counts and in those exposed to rapid reinfection (Zwang and Olliaro, 2017). In such cases, 

the regimen can be increased up to 60 mg/kg, but to avoid side effects from the drug, when possible, 

it is split in two and taken several hours apart. This regimen is also recommended for individual case 

management or in individuals who have left the endemic regions, to reach complete cure. After 

initial treatment, particularly if there is high antibody titres, eosinophilia, or clinical signs persisting 

6-12 weeks, a repeat dose can be important to completely cure people with sub-patent infections 

(Gryseels et al., 2006).  Research reported that treatment of young children with PZQ resulted in 

satisfactory cure rates, and marked reduction in egg-output, with only mild and transient reported 

side-effects (Sousa-Figueiredo et al., 2012, McManus et al., 2018).  
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Moreover, combination treatment with PZQ and Artemether (ART) has been reported to be safe 

and to have an added advantage because ART also kills larval forms of the worm (Colley et al., 2014, 

McManus et al., 2018). It was suggested that schistosomes ingest ART and in the presence of haemin 

or other iron-containing molecules cleave it in their gut where a free radical reaction takes place 

which is toxic to the worms and eventually kills them (Xiao et al., 2003). A meta-analysis has 

reported twice as many cure rates after treatment with PZQ and ART together compared with PZQ 

alone (Perez del Villar et al., 2012). The use of ART for multi-drug resistant malaria, however, 

precludes its widespread use for treating schistosomiasis (Bergquist et al., 2017). 

Oxamniquine acts only on S. mansoni and was the first-line drug in Brazil until the late 1990’s and 

remained in use until 2010 (Valentim et al., 2013). It is as effective as PZQ but can have more marked 

side-effects, most noticeably sleep induction, epileptic seizures and drowsiness. PZQ-resistant 

schistosomes were isolated from Brazilian patients in the 1970’s and also selected in the laboratory 

settings from sensitive parasite lines (Valentim et al., 2013). Under selective pressure, PZQ-tolerant 

schistosome strains can be very easily identified in animals. Under field conditions, low cure rates 

have been reported for PZQ in northern Senegal, but these could be explained by very high 

transmission rates, reinfection, pre-patent infections maturing, and perhaps the epidemic nature of 

the focus (Gryseels et al., 2001). Tolerant strains to PZQ have been identified in Egypt from patients 

who did not originally respond well to therapy, but these findings need to be supported by further 

studies to confirm whether true drug resistance is emerging. The disastrous case in cattle, with 

extensive resistance developed to anthelmintic drugs because of population mass treatment, 

implies that attention is required (Shalaby, 2013). These warrant monitored and careful drug usage, 

and underscore the urgent need for new drugs and other tools to control schistosomiasis.  
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1.1.7.  Control  

From the 1920’s to 1980’s snail control was the most popular method employed to avoid infection, 

since no drugs were suitable for mass supply (Gryseels et al., 2006). Although predators, biological 

competitors, chemicals and habitat change have been applied to decrease snail populations, efforts 

currently mainly use niclosamide, which is a molluscicide that kills snails at low concentrations and 

is safe to people. However, niclosamide is toxic to some freshwater fish and to amphibians and at 

the same time, is expensive and logistically difficult to deploy (Colley et al., 2014). In addition, large 

material and human resources are required for effective application, plus rigorous malacological 

and epidemiological surveillance are needed (Gryseels et al., 2006, McManus et al., 2018).  

Behavioral change is a likely, but challenging means to the management of any health problem. 

However, with proper community participation, it could be beneficial for decreasing both 

contamination of water bodies (snail habitat) by faeces containing schistosome eggs, and people 

contact with water containing schistosomes. Behavioral changes in the population, together with 

improvements in sanitation and water supply, could be effective for control. The supply of 

schistosome-free water for bathing, washing, and recreation is successful in reducing transmission 

but is expensive and economically unrealistic in most regions where schistosomiasis exists (Colley 

et al., 2014, Grimes et al., 2015). 

Mass community-based treatment with PZQ is currently the primary element of most national 

control programmes in many countries, and is also advocated by WHO (Ross et al., 2017, Turner et 

al., 2017). However, in terms of morbidity prevention and control, the advantage of shifting to MDA 

was largely variable among the different circumstances analysed. For regions where the target is to 

stop transmission, however, the projected advantage of MDA was relatively consistent (Turner et 

al., 2017). A number of strategies can be implemented, for example treatment of particular risk 

groups such as school-aged children, indiscriminate population-based treatment, and active case 
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detection. Complicating these strategies however is that the global long-term control of the disease 

demands intersectorial and integrated approaches that go beyond simply deworming (McManus et 

al., 2018), including ecological and behavioral changes. Such changes require sustainable financial 

input that must largely be supported by national governments. In addition, limited donor funding 

needs to be better allocated to sustainable development activities such as poverty reduction and 

schistosomiasis control measures (Ross et al., 2017, McManus et al., 2018).  

 

1.2.  Schistosoma vaccine development  

1.2.1.  History of schistosomiasis vaccine development  

The development of successful viral and bacterial vaccines in the early 20th century led to the first 

attempts to develop a schistosomiasis vaccine in the late 1950s, which involved vaccination of mice 

with crude worm extracts or purified components (Sadun and Lin, 1959). The results obtained, 

however, were ambiguous with lack of consistency in worm burden reduction, even in the same 

laboratory. It appeared therefore that crude extracts alone were inadequate vaccines, and perhaps 

there were a few key protective antigens that needed to be identified.  

Smithers and Terry then proposed the concomitant immunity hypothesis in schistosomiasis 

(Smithers and Terry, 1969), and this impacted heavily on vaccine development and immunology. 

They reported that when the rhesus macaque was challenged with cercariae, the primary worm 

load persisted but the animals were resistant to a secondary infection. These findings were regarded 

as fundamental for vaccine development and led to a paradigm shift for schistosomiasis vaccine 

discovery. In addition, the observation of in vitro killing of transformed schistosomula by the 

immune system involving antibodies, eosinophils and complement (Butterworth et al., 1974), 

known as antibody-dependent cellular cytotoxicity, offered an explanation of how concomitant 

immunity might work (Butterworth, 1984). 
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While skepticism was dominating about the possibility of developing a schistosomiasis vaccine 

guided by immune profiles elicited by hosts with a chronic infection, studies on the mechanism of 

immunity induced by attenuated cercariae using gamma, X-ray and/or UV radiation was gaining 

impetus. Using attenuated cercariae as a schistosomiasis vaccine was first attempted in the early 

1960s, and rigorous analysis were conducted from the late 1970s onwards (Minard et al., 1978). 

Significant levels of reduction in worm burdens in mice (> 90%) and primates (86%) (Mountford et 

al., 1996, Kariuki et al., 2004, Wynn et al., 1995) were observed, and demonstrated proof of principle 

that a vaccine for schistosomiasis was attainable. The concept of attenuated cercariae as a vaccine 

has been assessed for multiple species of schistosomes in different host species (Agnew et al., 1989, 

Anderson et al., 1998, Dean et al., 1996, Ruppel et al., 1990). More recent studies undertaken with 

UV-attenuated cercariae given once or, more effectively, multiple times to C57BL/6 mice have 

confirmed earlier findings with significant reductions in worm and hepatic and intestinal egg 

numbers  38%, 52%, 26%, respectively, in vaccinated animals (El-Shabasy et al., 2015, Reda et al., 

2012). The same study reported tegumental changes in the adult worms (swelling, fusion of 

tegumental folds, vesicle formation and loss or shortening of spines on the tubercles). Further, 

another study demonstrated that single immunization with radiation-attenuated cercariae can 

confer protective immunity levels of 60-70% ( Ricciardi and Ndao, 2015) in animal models, and these 

levels can be increased with booster doses. Notably, radiation-attenuated cercariae of S. mansoni 

have been demonstrated to confer protection, 52% - 84% reduction in worm counts, in non-human 

primates, including chimpanzees and baboons (Soisson et al., 1993, Yole et al., 1996). In addition, 

radiation-attenuated larvae of S. haematobium induce protection (85-90%) in baboons (Harrison et 

al., 1990).  
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These findings provided hope for the development of subunit vaccines against schistosomes. Nearly 

two-and-half decades ago, the WHO kicked-off an independent trial by taking into account the six 

most promising S. mansoni vaccine candidates at that time (Hotez et al., 2019).  

The first schistosome antigen that entered human clinical trials consisted of a recombinant 

glutathione-S-transferase from S. haematobium (rSh28GST) (Bilhvax) formulated with aluminum 

hydroxide adjuvant (Riveau et al., 2012). Cytokine production triggered by this vaccine candidate 

was shown to be influenced by factors such as schistosome infection status, host age and PZQ 

treatment history and this has provided an indication as to the features which should be considered 

for determining the efficacy of the GST-based vaccine during its testing in targeted endemic 

communities (Bourke et al., 2014). The vaccine was immunogenic and well-tolerated in phase 1 

(Riveau et al., 2012) and phase 2 clinical trials in healthy adults in non-endemic Europe and S. 

haematobium endemic areas of West Africa (Niger and Senegal), and has completed a phase 3 

efficacy trial in Senegalese school-age children in 2012 and was not found to be efficacious (Riveau 

et al., 2018). At  preclinical stage, the enzyme present in S.mansoni homologue (Sm28GST) has been 

tested extensively as a recombinant protein vaccine in various experimental models and has shown 

partial protection in terms of reduced worm burdens, inhibition of female worm fecundity and a 

reduction in egg viability (Capron et al., 2002).  

Advances in systems biology have made the discovery, selection and testing of novel schistosomiasis 

vaccine candidates possible as a key strategy for controlling the disease (Mo et al., 2014, Sotillo et 

al., 2016a). Immunological profiles of human sera from putatively resistant individuals in 

schistosomiasis endemic areas has been conducted (Pearson et al., 2015, Gaze et al., 2014) and has 

resulted in the identification of numerous known and novel antigens, including the Sm-TSP-2 vaccine 

antigen for human schistosomiasis.  
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Sm-TSP-2 is a member of the tetraspanin (TSP) family. TSPs contan four transmembrane domains 

and two extracellular loops. The large extracellular loop 2 domain of Sm-TSP-2 when expressed in 

recombinant form provided high levels of protection, with 40-57% and 64-65% reduction in the 

number of adult worms recovered and egg burden, respectively in a murine model of 

schistosomiasis (Tran et al., 2006), even when formulated with alum/CpG (Pearson et al., 2012). 

Furthermore, IgG1 and IgG3 antibodies from putatively resistant human subjects uniquely 

recognized TSP-2 compared to chronically infected subjects (Tran et al., 2006). The Sm-TSP-2 

schistosomiasis vaccine was selected for process development and scale-up manufacture according 

to current good manufacturing practices (cGMP) in the Pichia Pink yeast expression system (Curti et 

al., 2013). Through a product development partnership led by The George Washington University 

and Texas Children’s Hospital Center for Vaccine Development, the recombinant Sm-TSP-2 protein 

was adjuvanted with Alhydrogel® to be given together with an aqueous formulation of the Toll like 

receptor-4 agonist AP 10-701.  A phase 1 clinical trial assessing the immunogenicity and safety of 

Sm-TSP-2/Alhydrogel® with or without AP 10-701 was recently concluded in Houston at the National 

Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH)-sponsored 

Vaccine and Treatment Evaluation Unit of the Baylor College of Medicine. Another NIAID/NIH-

funded phase 1 trial of Sm-TSP-2 vaccine is ongoing in a schistosomiasis endemic area of Brazil, and 

a phase 2 clinical trial of the same vaccine is currently being planned in Uganda, as reviewed in 

(Hotez et al., 2019). 

A 14 kDa fatty acid-binding protein known as rSm14 when expressed in Pichia pastoris was shown 

to be immunogenic and well-tolerated in healthy, adult males from a non-endemic area when 

formulated with a stable oil in-water emulsion of glucopyranosyl lipid A (GLA-SE) in a phase 1 trial 

(Santini-Oliveira et al., 2016). Vaccination induced IgG antibodies against Sm14 as well as a strong 

Th1 cellular response as shown by IFN-ᶌ secretion upon re-stimulation of peripheral blood 
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mononuclear cells from study subjects (Tendler et al., 2015). The Fundação Oswaldo Cruz in Brazil 

has led to the development of this vaccine. A second trial was recently finalised in male adults in an 

endemic region of Senegal but the outcomes have not yet been reported. Preclinical studies 

reported that immunizing with rSm14 vaccine protected mice against S. mansoni infection with 67% 

reduction in the number of adult worms recovered, and encouragingly, no autoimmune response 

was observed even though its structure is identical in basic form with mammalian host homologues 

(Tendler et al., 1996). Recombinant Sm14 is being developed as an anthelmintic vaccine for use 

against both fascioliasis of livestock and human schistosomiasis caused by S. mansoni (Tendler et 

al., 2018). 

Sm-p80, a calcium-dependent neutral protease known as calpain, is another S. mansoni vaccine 

antigen that is scheduled to enter phase 1 clinical trials (Siddiqui et al., 2018). Sm-p80, was 

expressed in Escherichia coli,  has been demonstrated to confer high levels of protection in a range 

of animal models, including hamsters (S. haematobium) and non-human primates (S. mansoni), with 

evidence that the vaccine elicits high levels of antibody in baboons for several years (Siddiqui and 

Siddiqui, 2017). Clinical trials with the recombinant protein formulated with GLA-SE or with a CpG 

oliogodeoxynucleotide adjuvant is led by Texas Tech University, PAI (Preparing for Successful Pre-

Approval Inspections) Life Sciences, and Infectious Diseases Research Institute (IDRI) (Siddiqui et al., 

2018). Of note, S. japonicum vaccines are also under development for use in animals in endemic 

areas of the Philippines and China that would interrupt it’s transmission to humans from water 

buffalo and other mammals (Hotez et al., 2019).  In preclinical studies, for instance, compared to 

control animals, 70% and 75% reduction in worm and hepatic egg burden, respectively, were shown 

in mice immunized with a formulation of recombinant Sm-p80 and CpG dinucleotides (Ahmad et al., 

2009b). In a non-human primate model, immunized baboons had a 58% reduction in parasite 

burden compared to controls (Ahmad et al., 2011). Furthermore, different Sm-p80 vaccine 
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formulations were able to reduce established adult worm burdens in a chronic infection/vaccination 

model in baboons, and decrease retention of eggs in tissues and reduce egg excretion in faeces 

(Karmakar et al., 2014c). Moreover, in addition to its prophylactic efficacy, Sm-p80 immunization 

could also confer killing of already established adult parasites and protect against urinary 

schistosomiasis caused by S. haematobium (Karmakar et al., 2014c). Similarly, in a schistosome 

cross-species protection experiment, the Sm-p80 vaccine generated 25% and 64% reductions in S. 

haematobium adult worms and eggs load, respectively, in the urinary bladder of vaccinated baboons 

(Karmakar et al., 2014a). Moreover, Sm-p80 is the first single vaccine (Molehin et al., 2016) to have 

shown substantial protection against the three major schistosome species which infect humans. A 

recent study in baboons demonstrated that rSm-p80 with GLA-Alum as adjuvant provided 33–53% 

and 38% reductions in worm burden in mice and baboons, respectively, compared to those 

immunized with adjuvant only (Zhang et al., 2018b). In another related study, Sm-p80 showed 

potent prophylactic efficacy against transmission of S. mansoni infection and was correlated with a 

significant decrease in egg-induced pathology in vaccinated animals, compared to controls (Zhang 

et al., 2018c). The same study reported a 93% reduction of female worms and significantly less 

clinical manifestations of hepatic or intestinal schistosomiasis by reducing the tissue egg-load by 

90%. Further, a 35-fold and 81% reduction in faecal egg counts and in hatching of eggs into miracidia, 

respectively, were reported compared to unvaccinated controls, demonstrating the parasite 

transmission-blocking potential of the vaccine. In a simulated filed condition of human 

schistosomiasis, Siddiqui and collogues showed a moderate reduction in worm burden but a 

significant reduction in tissue egg burdens in baboons immunized with recombinant Sm-p80 + CpG-

ODN, compared with adjuvant-treated control baboons (Siddiqui et al., 2018).  Sm-p80-based 

vaccine formulations have many salient futures: (1) egg induced pathology resolution both in 

rodents and baboons; (2) prophylactic efficacy against intestinal schistosomiasis; (3) cross-

protection against intestinal and urinary schistosomiasis; (4) longevity of immune response - robust 
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antibody titres for 5-8 years in baboons and up to 60 weeks in mice; (5) post-exposure therapeutic 

effect via killing of established adult worms in chronic infections; (6) transplacental transfer of Sm-

p80-specific antibodies in baboons. Moreover, the Sm-p80-based vaccine has multifaceted 

effectiveness against several stages of the parasite’s life cycle  (Ahmad et al., 2009b, Ahmad et al., 

2009a, Ahmad et al., 2011, Karmakar et al., 2014a, Karmakar et al., 2014b, Zhang et al., 2014, Zhang 

et al., 2010). Additionally, Sm-p80-specific IgE has not been detected in infected or high risk 

populations from South America (Gaze et al., 2014) and Africa (Ahmad et al., 2011), thus lessening 

the risk of hypersensitivity reaction following vaccination in humans.  

Other key schistosome surface proteins located in the apical surface or tegument of the parasite 

have been characterised and could be potential alternative vaccine antigens. None of these, 

however, are currently being developed for trials. As a way forward, an optimal vaccine 

development strategy for clinical trials moving forward should consider such aspects as (i) 

evaluating the existing candidates alone and in combination, together with several different 

adjuvants and immunostimulants; (ii) coordinating and financing of schistosomiasis vaccine clinical 

development efforts; (iii) evaluating how to best introduce a schistosomiasis vaccine, for example 

through existing health systems and/or its integration into programs - expanded program on 

immunisation - could be considered in tackling bottlenecks in clinical development of vaccine 

against schistosomiasis.  Finally, those candidate vaccines that have advanced to clinical trials, if 

eventually licensed, will require a great deal of innovative thought and intersectorial cooperation 

for financing to realise their full benefit.   

1.2.2. Feasibility of vaccine development 

There is currently no available vaccine for schistosomiasis, and rigorous research efforts are 

required to progress early stage discoveries towards a clinically validated and approved vaccine to 

prevent this disease. The feasibility of generating an effective vaccine for the prevention and control 
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of schistosomiasis exists, and is supported by robust immunologic data in both humans and animal 

models (Fonseca et al., 2015, Wilson et al., 2017). In general, immune responses against 

schistosomes have two different phases: (a) immune-pathogenesis as a result of host immune 

responses towards egg antigens which are trapped in host tissues and (b) age-related resistance to 

reinfection which confers protective mechanisms over many years. Research shows that incomplete 

protective innate immunity can develop in endemic regions, and acquired immunity is boosted by 

repeated treatment with PZQ in response to antigens released by dying adult flukes (McManus and 

Loukas, 2008). Moreover, in studies involving animal challenge models, immunisation with 

irradiated schistosome cercariae can confer upwards of 80% protection against challenge infection 

(Hotez et al., 2010). Studies using irradiated schistosome larvae showed that they were killed in 

the lungs by a protective immune response. A small proportion of the larvae enter and persist in 

the skin-draining lymph nodes where they elicit an immune response greater in intensity and 

differing in quality from that induced by non-irradiated parasites. Other larvae travel only as far as 

the lungs where they recruit lymphocytes to arm that organ (Coulson and Wilson, 1997). Lung stage 

schistosomula were the main target of the immune response and Th1 polarised immunity  is 

prominent in the spleen at this time (Bickle, 2009). With multiple exposures of mice to attenuated 

cercariae, the immune response progressively develops a Th2 profile, and protection is passively 

transferable to naïve recipients with immune serum (Kariuki et al., 2004). The immune responses of 

primates to the attenuated vaccine illustrate this switch, with the cytokine profile changing from 

Th1 to Th2 with successive exposures to attenuated cercariae (Eberl et al., 2001). While offering in 

some cases high levels of protection, irradiated cercarial vaccines are impractical for wide-scale 

deployment. In another related study, mice vaccinated with irradiated cercariae mounted both 

humoral and cellular immune responses to lung-stage worms (Wilson et al., 1999), and under some 

conditions, the administration of the cercarial vaccine together with IL-12 enhanced protective 

immunity (Wynn et al., 1995). However, in a natural infection, due to the fact that the parasite 
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evades the immune response, it can survive for many years in the host (Colley and Secor, 2014). 

Moreover, animal field trials with subunit vaccines for platyhelminth infections in pigs like 

cysticercosis caused by Taenia solium and echinococcosis in sheep caused by Echinococcus 

granulosus have shown significant efficacy (Molehin et al., 2016), which enhances the likelihood of 

developing an effective vaccine for schistosomiasis.  

1.2.3. New vaccine candidates and future directions  

Current vaccine development endeavors target the prevention of schistosome infection and/or 

decrease egg burden through attenuation of parasites and their subsequent egg laying capacity. 

Major advances in schistosome molecular biology such as genomics, transcriptomics, proteomics 

and immunomics have aided new antigen discovery (Loukas et al., 2011, Gaze et al., 2012, Driguez 

et al., 2016b). Access to this information in conjunction with improving postgenomic technologies 

has the capacity to facilitate the discovery of many new vaccine candidates. Molecules exposed to 

host antibodies, notably ES products and proteins anchored to the outer tegument of the worm are 

the most important candidates (El Ridi and Tallima, 2013).  

One major reason for the lack of advanced schistosomiasis vaccines to date is the early stage 

selection of inappropriate vaccine candidates. In order to develop a suitable vaccine, a series of 

parameters need to be considered, which include: knowledge of key elements of the protective 

immune response in humans; identifying and characterising the best target antigens; determining 

the efficacy of the vaccine candidate by taking into account the reduction of parasite burden 

and reductions in immunopathology; assessing its safety; and ensuring an appropriate level of 

funding is available for infrastructure and qualified manpower to perform clinical trials (El Ridi 

et al., 2015). Over 100 schistosome vaccine antigens have been identified, of which about one-

quarter have shown some level of protection in the murine model of schistosomiasis  (Siddiqui 

et al., 2011). Many candidate antigens are not exposed on the surface of live parasites, and as such, 
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it is difficult to conceive how they would be targets of protective immunity (Tebeje et al., 2016). As 

a result, it is not apparent how the host immune pathways can be rid of parasites through 

interactions with cytosolic and internal proteins such as fatty acid binding protein, paramyosin, 

triose-phosphate isomerase (TPI), schistosome glyceraldehyde 3-phosphate dehydrogenase 

(SG3PDH), or glutathione S-transferase (GST) (McManus and Loukas, 2008). Moreover, vaccine trials 

in mice indicated that none of the above vaccine candidate antigens induced >40% reduction in 

challenge worm burden, the benchmark set by the WHO for progression of schistosome vaccine 

antigens into clinical trials (El Ridi and Tallima, 2013). Further, surface membrane proteins are 

protected in the immature larvae and adult parasites and unless the parasite is suffering excessive 

loss of tegument integrity and poised to die (eg. after PZQ treatment), they generally cannot be 

accessible to the host immune effector mechanisms (Loukas et al., 2007). Conversely, lung 

schistosomula ES products are ideal potential vaccines targets. ES products elicit primary and 

memory immune responses, and are accessible targets to toxic radicals, effector cells through 

cytokine productions and cells that would directly target schistosomula in the lung capillaries (El Ridi 

and Tallima, 2009). Similarly, skin-stage schistosome ES directs DCs to drive Th2 responses in vivo 

(Jenkins and Mountford, 2005). This ES contains proteases, including several elastases that facilitate 

parasite skin penetration (McKerrow et al., 2006), and can cleave host IgE antibodies (Pleass et al., 

2000). The presence of multiple isoforms of cercarial elastase and a metalloprotease was identified 

using proteomic analysis of cultured parasites (Knudsen et al., 2005, Curwen et al., 2006), and by 

proteomics of human skin traversed by invading cercariae (Hansell et al., 2008). Proteomic analysis 

on egg ES identified two abundant proteins, a ribonuclease omega-1 and alpha-1 (Dunne et al., 

1991, Cass et al., 2007). Moreover, schistosomula in skin were shown to secrete glycolytic enzymes, 

such as GADPH, TPI, enolase and aldolase, as well as several homologues of the venom allergen-like 

family. Cercarial ES also contains the immunomodulator Sm16 that can inhibit toll-like receptor 

signalling in monocytes (Brännström et al., 2009).  Further, calpain, TPI, GST, SG3PDH, aldolase, TPX, 
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and 14-3-3 protein homolog1 were detected among soluble proteins of in vitro-grown 8-day S. 

mansoni schistosomula (Curwen et al., 2004) and secretions of S. mansoni cercariae (Knudsen et al., 

2005, Curwen et al., 2006). In addition, vaccine candidates such as 14-3-3, aminopeptidase, and 

SG3PDH have been identified from adult S. japonicum ES products (Liu et al., 2009), and TPI and GST 

in ES products of both egg and adult S. haematobium (Sotillo et al., 2019a). Thus, targeting these 

specific molecules may allow the development of vaccines that promote worm clearance.  

 

In view of new antigen discovery efforts, emphasis has been placed on proteomic analyses of the 

tegument surface proteome as a source of host-accessible antigens (Sotillo et al., 2015, Wilson, 

2012). Several hundred schistosomula tegument proteins have been identified using mass 

spectrometry approaches and proposed as a reservoir of potential vaccine antigens (Sotillo et al., 

2015). This group of tegument surface proteins includes previously identified prominent proteins 

such as Sm-p80, Sm-TSP-2, Sh28GST, Sm14 and Sm29, and a host of other antigens that have shown 

varying levels of efficacy in mouse models (Tebeje et al., 2016). Furthermore, it is suggested that 

surface membrane proteins of newly transformed schistosomula are prime targets for effective 

vaccines against schistosomiasis (Sotillo et al., 2015). This is attributed to observations that vaccine-

mediated killing of juvenile worms occurs primarily in the lungs (Hewitson et al., 2005). Moreover, 

recent reports have shown that in addition to elimination of schistosomula from lungs, vaccine-

mediated killing can also be achieved for established adult parasites in the mesenteries as seen in 

mice and chronically infected non-human primates (Molehin et al., 2016).  

 

Much of our current understanding of immunity and immune mechanisms against schistosomiasis 

relies on studies conducted in mice, but vaccines based on studies performed only in the 

mouse model could have undesirable effects if taken prematurely to human clinical trials. In 

addition, it has been reported that a large proportion of penetrating cercariae fail to mature 
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in the mouse because its pulmonary capillaries are fragile, raising the question as to whether 

this model is appropriate for vaccine efficacy studies. This reinforces the argument that further 

critical examination of any identified candidate vaccine antigen, whether it has foundation in 

acquired immunity, or not, is critical, and that moving to studies using larger models such as 

rabbits, pigs or bovines in the case of S. japonicum, or non human primates for S. mansoni and 

S. heamatobium, is clearly necessary. 

 

Further, selection of recombinant protein expression system is another important point to consider. 

Extracellular vaccine candidates need to be expressed in bacteria or eukaryotic expression systems. 

Many of the selected antigens are likely to require processing through the endoplasmic reticulum 

by virtue of their expression sites in the parasite, and this may prove challenging. Difficulties in 

obtaining good expression levels and in scaling up production according to good laboratory 

practice/GMP standards for the limited number of antigens selected have turned out to be another 

major hurdle. Some of the vaccine candidates have encountered challanges in scale-up production 

and have been halted (Bergquist et al., 2005, McManus and Loukas, 2008).  

 

In addition to searching for new vaccine antigens, suitable adjuvants, formulation methods and 

delivery routes are essential for generating optimal immune responses. Types of adjuvants selected 

can skew the immune response to a vaccine, and can potentiate the strength of the immune 

response to immunogens, enable dose and dosage sparing, and help to avoid and complement 

immune deficiencies in the elderly and young (Karmakar et al., 2014c, Wilson et al., 2017). However, 

appropriate antigen and adjuvant choice, effective immunogen design using potential immune 

correlates, and strong efficacy in experimental animal models will not be sufficient for a successful 

vaccine unless cGMP manufacturing of the vaccine product is feasible (McManus and Loukas, 2008).  
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Key features of an ideal vaccine for human schistosomiasis include:  1) it should preferably target 

the two major human schistosomes, S. mansoni and S. haematobium, which are often co-endemic 

in the Middle East and Africa. 2) it should prevent the immunopathology seen in the intestine and 

liver (S. mansoni) and the bladder and female genital tract (S. haematobium) during schistosomiasis 

by greatly reducing the number of eggs deposited in those tissues. 3) it should preferably have a 

prophylactic effect, which would be superior to MDA by preventing reinfection, which is key to 

preventing and controlling the infection in endemic areas and reducing parasite transmission. 

 

1.3. Extracellular vesicles  

1.3.1.  What are Extracellular Vesicles? 

Extracellular vesicles (EVs) are heterogeneous vesicles of membranous origin released by different 

types of cells. EVs comprise a complex mixture of genetic information, proteins, lipids, and glycans. 

EVs can broadly be categorised into three classes based on their cell of origin, contents, function, 

physical characteristics, specific protein markers and isolation techniques. These include (1) 

exosomes; (2) Micorvesicles (MVs) or ectosomes; and (3) apoptotic bodies (ABs), as depicted in 

Figure 1.3. A shared character in all of the three EV types is the surrounding lipid bilayer membrane 

with specific cargo molecules, such as, RNA, proteins, and lipids. However, their specific density and 

size vary considerably (Mathivanan et al., 2010); albeit that both measurement ranges for the 

different EV classes have been heterogeneously documented (Thery et al., 2001). Nevertheless, 

exosomes, first recognised in the 1980’s (Kalra et al., 2016), are thought to range from 30-150 nm 

in diameter and with a specific density of 1.10–1.14 g/mL (Kalra et al., 2016) and pellet at 100,000 

g (Raposo and Stoorvogel, 2013). They originate by inward invagination of endosomal membranes, 

resulting in the engulfment of cytosolic proteins and other components to the lumen of the vesicles 

(van Niel et al., 2018, Mathieu et al., 2019) within multivesicular endosomes (MVEs). Subsequent 
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fusion of MVEs with the plasma membrane (PM) then releases the vesicles into the extracellular 

space. 

On the contrary, MVs, first discovered in the late 1960’s (Hargett and Bauer, 2013) are relatively 

larger vesicles ranging from 150-1000 nm in diameter (van Niel et al., 2018, Mathieu et al., 2019) 

and pellet at 10,000 g (Raposo and Stoorvogel, 2013), and are ubiquitously packaged and originate 

from the PM by outward budding or protrusion (van Niel et al., 2018, Mathieu et al., 2019), as shown 

in Figure 1.3.  

ABs (Figure 1.3) are released from both normal and cancerous cells undergoing apoptotic cell 

clearance or programmed cell death (Taylor et al., 2008), and are considered to range from 50-5,000 

nm in diameter and hence are typically the largest of the three EV types (Mathivanan et al., 2010, 

Stremersch et al., 2016). Through a process of apoptosis the cell and cellular debris are dismantled 

in a coordinated fashion, which are again packed into apoptotic bodies. ABs have special features 

that elicit phagocytosis pathways, the ultimate fate in dying cells from which molecular building 

blocks will be recycled. Although some experiments have shown a biological function and role in 

communication for ABs (Bergsmedh et al., 2001), most current studies in the field of EVs focus on 

the smaller sized exosomes and MVs. Hence, ABs are not considered when referring to EVs 

throughout this thesis. And, because the methods used to isolate and purify membrane vesicles 

differ significantly between studies, I will not strictly distinguish exosomes from MVs throughout 

this literature review, and instead will refer to them collectively as EVs, unless specifically mentioned 

as it appears in the sourced literature.   
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Figure 1. 3. The different types of eukaryotic extracellular vesicles (Kalra et al., 2016).  

 

The mechanisms involved for selective packaging of cargo destined for intercellular communication 

and internalisation of these into recipient cells is likely to vary between different cells or organisms 

(Shifrin et al., 2013, Jeppesen et al., 2019). Among EV cargo, there is clear evidence that certain 

miRNA, lipid and protein species are found enriched in certain vesicle types.  

 

The protein profiles of EVs from many cell lines and eukaryotic organisms have been examined by 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), immunoblotting, or 

proteomic analysis. EVs with high purity should be free of contamination, for example, from serum 

proteins and proteins of intracellular compartments (such mitochondria or the endoplasmic 

reticulum). Development of ExoCarta (http://www.exocarta.org), a manually curated database that 

contains information on proteins, RNA and lipids located in exosomes (Simpson et al., 2012, 
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Keerthikumar et al., 2016), and Vesiclepedia (http://microvesicles.org), a community annotation 

compendium for all EVs  (Kalra et al., 2012), has helped researchers to appropriately add known 

constituents of exosomes and offer a broad highlight of their molecular composition (Simpson et 

al., 2012). Moreover, ExoCarta offers annotations with International Society of Extracellular Vesicles 

(ISEV) standards and hence supports researchers by swiftly updating the database with relevant 

literature (Lydic et al., 2015). Some of the proteins identified from larval and adult S. mansoni 

parasites are shown in Figure 1.4.  

                    

Figure 1.4. Schematic representation of a schistosome extracellular vesicle showing selective 

proteins of interest that were identified from larval (Nowacki et al., 2015) and adult flukes (Sotillo 

et al., 2016b). Adopted from (Kifle et al., 2017).  

Among the EV subtypes, exosomes have been and continue to be extensively studied. Because 

exosomes comes from endosomes, proteins taking part in MVB formation (such as Alix and TSG101), 

adhesion (such as integrins), TSPs (e.g., CD9, CD63, CD81, CD82), membrane transport and fusion 
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(such as annexins, flotillins, GTPases), antigen presentation (MHC class molecules), heat shock 

proteins (Hsp70, Hsp90) and lipid-related proteins (Thery et al., 2009, Wu et al., 2019) are usually 

isolated from exosomes, and is independent of the cell of origin. Applying two different techniques, 

high resolution density gradient fractionation and direct immunoaffinity capture, studies with 

human colon (DKO-1) and glioblastoma (Gli36) cancer cell lines demonstrated separation and 

characterisation of small EVs from extracellular non-vesicular compartments (Jeppesen et al., 2019). 

While ALIX and syntenin-1 were among the most abundantly identified proteins in the density 

gradient-purified small EVs analysed, in the non-vesicular fractions the most abundant proteins 

identified were metabolic enzymes like ENO1, PKM, and GAPDH. Cytosolic proteins including 

tubulins and HSP90 were absent from classical exosomes expressing the TSPs CD63, CD81, and CD9 

(van Niel et al., 2018, Zhang et al., 2018a). The same study surmised that some presumed exosome 

proteins were more likely to be associated with non-vesicular fractions than the EV fraction, 

highlighting a need for a reassessment of exosome composition. In another study, by employing 

asymmetric-flow field-flow fractionation, Zhang et al. identified two exosome subpopulations (small 

exosome vesicles, 60-80 nm and large exosome vesicles, 90-120 nm) and discovered a population 

of non-membranous nanoparticles termed “exomeres” (~35 nm) (Zhang et al., 2018a). Moreover, 

from five different cell lines, flotillins (FLOT1 and FLOT2) represented bona fide markers of small 

exosomes vesicles, while HSP90AB1 was preferentially associated with exomeres. Further, although 

CD63, CD9 and CD81 all exhibited specific association with both exosome subpopulations analysed, 

they all showed a cell type- and particle-dependent preferential expression, highlighting the 

necessity of combining CD9, CD63 or CD81 to isolate mammalian cell exosomes (Kowal et al., 2016).  

Membrane proteins at endosomes or proteins that are identified to cluster into microdomains at 

the PM usually are also found on EVs. One of these protein families is the TSPs (Hemler, 2003). TSPs 

such as CD37, CD53, CD63, CD81 and CD82 were primarily discovered in exosomes secreted by B 
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cells and can be taken as a true marker for both the PM and early endosomes (Escola et al., 1998). 

Based on topological studies, TSPs have been defined as a superfamily of proteins with four 

transmembrane domains with some characteristic structural features. Despite their low sequence 

homology, TSPs contain four to six conserved extracellular cysteine residues, and polar residues 

within transmembrane domains. They also contain  distinct palmitoylation sites and most members 

are also glycosylated (Stipp et al., 2003). TSPs are involved in a multitude of biological processes that 

imply roles in cell adhesion, motility, invasion, or membrane fusion as well as signaling and protein 

trafficking.  

The role of TSPs in EV biogenesis and cargo selection have been reviewed by Andreu and Yanez-Mo 

(2014). These include their involvement as exosomes markers, in EV biogenesis and cargo selection, 

in EV targeting and uptake, and as an antigen presenter on EVs. For example, exosomes derived 

from B cells are enriched in all TSPs analysed (CD37, CD53, CD63, CD81, and CD82) by 7- to 124-fold 

(Escola et al., 1998). In addition, TSP membrane-spanning proteins are enriched on the surface of 

mammalian cell exosomes and are relevant for exosome release from parent cells (van Niel et al., 

2011).  

While several researchers have identified CD63, CD9, Alix, and TSG101 as exosomal markers 

(Mathivanan et al., 2010), it is becoming clear that these molecules can no longer be considered as 

“true markers”, but rather they are abundant in exosomes (Lotvall et al., 2014). Supporting these 

findings, Keerthikumar et al. showed an enrichment of CD63, CD9, Alix, and TSG101 in exosomes 

compared to MVs (Keerthikumar et al., 2015). Their research, moreover, assured that CD81 might 

uniquely be used as an exosomal marker, which was again confirmed by Minciacchi et al. (2015).  

Unlike exosomes, MV molecular composition is still largely elusive, but glycoproteins (such as GPIb, 

GPIIb–IIIa and P-selectin) (Mezouar et al., 2015), integrins (such as Mac-1), matrix 

metalloproteinases (MMPs) (Li et al., 2013a), receptors (such as EGFRvIII) (Al-Nedawi et al., 2008), 
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and cytoskeletal components (such as β-actin and α-actinin-4) (Bernimoulin et al., 2009) appear to 

be enriched in MVs, and are cell type dependent. Proteomic analysis of MVs derived from monocytic 

THP-1 cells, mainly in the range of 0.78‒0.99 µm, were shown to have unique protein expression 

patterns depending on the stimuli used, including cytoskeletal components, signaling molecules, 

adhesion receptors, and mitochondrial proteins (Bernimoulin et al., 2009). In like fashion, 

Keerthikumar and co-workers confirmed the enrichment of ribosomal, mitochondrial and 

centrosomal proteins in MVs (Keerthikumar et al., 2015). The study also assured the depletion of 

TSPs, ESCRT proteins, and proteins identified in attachment and transporting such as integrins, 

annexins and flotillins. Moreover, the same study mentioned an exclusive set of RAB GTPases that 

is identified in exosomes and MVs, at least in neuroblastoma cells. Research also suggests that 

MMP2 might be used as a marker of MVs (Keerthikumar et al., 2015). However, MV-identified 

proteins are mainly cell type dependent. For example, the marker of epithelial cells, CK18, was 

enriched in epithelial cell-secreted MVs and not in fibroblast-secreted MVs, (Keerthikumar et al., 

2015, Minciacchi et al., 2015). A recent study, however, identified Annexin A1 as a specific marker 

of cells identified from mammalian MVs but not of exosomes (Jeppesen et al., 2019).  

EVs are also composed of proteins that link with lipid rafts (including glycosylphosphatidylinositol-

anchored proteins and flotillin) (Wubbolts et al., 2003, Raposo and Stoorvogel, 2013, Skotland et al., 

2018). In comparison to the PM, exosomes from a variety of cells (Wubbolts et al., 2003, Raposo 

and Stoorvogel, 2013, Record et al., 2018) are highly enriched in sphingomyelin, cholesterol, and 

hexosylceramides at the expense of phosphatidylcholine and phosphatidylethanolamine. The fatty 

acids in exosomes are mostly monounsaturated or saturated. In conjunction with the high amount 

of cholesterol, this may be attributed to lateral segregation of these lipids into ILVs during their 

formation at MVEs. In comparison, not much is known about the protein and lipid composition of 

MVs and whether distinct elements are enriched on MVs compared to their originating PM.  
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Finally, different studies have also confirmed the presence of RNA contents in EV isolates from cell 

cultures and body fluids. The cargo of EVs is comprised of both mRNAs and miRNAs, and proteins 

can be synthesised by target cells from EV-associated mRNAs (Valadi et al., 2007). As a consequence 

of fusion with recipient cells, EVs from immune cells have been shown to selectively incorporate 

miRNA that can be functionally transferred (Montecalvo et al., 2012). Using unbiased deep 

sequencing of RNA from EVs demonstrated that, together with mRNA and miRNA, they also reveal 

many other small noncoding RNA types, for example RNA transcripts overlapping with protein 

coding regions, structural RNAs, tRNA fragments, vault RNA, yRNA, small interfering RNAs, and 

repeat sequences (Bellingham et al., 2012). Many RNAs that were identified in EVs were observed 

to be enriched compared to the RNA contents of the originating cells (Valadi et al., 2007, Nolte-'t 

Hoen et al., 2012), showing that RNA is selectively packed into EVs. It is worth mentioning here that 

several attempts have been unable to demonstrate whether isolated extracellular RNAs were 

genuinely linked with EVs or rather with RNA-protein complexes that may have been co-identified 

with EVs. Determining whether RNAs are within the cytosolic lumen or linked with the EV outer 

membrane can be carried out by measuring flotation in sucrose gradients and resistance to RNase 

digestion subsequent to protease treatment. Also, different RNA isolation techniques yield much 

variation in exosomal RNA level and patterns (Eldh et al., 2012), and the resulting variations in 

outcomes from several studies, and dearth of quantitative data, make it difficult to pursue a 

comparative inventory of the RNA profiles associated with EVs so far. Furthermore, a recent study 

showed that small EVs are not vehicles of active DNA release, and instead a new model for active 

secretion of extracellular DNA through an autophagy- and multivesicular-endosome-dependent but 

an exosome-independent mechanism (Jeppesen et al., 2019) has been proposed, suggesting the 

need for a reassessment of exosome composition.   
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1.3.2.  Biogenesis and release of eukaryotic EVs   

Exosomes are formed by inward budding of endosomal membranes, forming the progressive 

accumulation of ILVs within large MVBs. Although exosomes and MVs may share some contents 

(nucleic acid, proteins etc), because they follow different routes for their origin, the cellular 

machineries participating in their formation and release are most likely to vary. In the lysosomal 

route, MVEs bind to lysosomes for the breakdown of their contents, which is different from the 

pathway of secretory MVEs. There is morphological and biochemical evidence that these two 

different destinies depend on unique forms of MVEs that exist at the same time within a cell. 

Presence of cholesterol together with the toxin perfringolysin showed one cholesterol-rich MVE 

population for exosome formation and another, structurally similar, but cholesterol-poor 

population destined for the lysosomal pathway (Wiebke Möbius et al., 2002, Hessvik and Llorente, 

2018). On the other hand, lysobisphosphatidic acid is clearly present in lysosome-destined 

epidermal growth factor-containing MVEs (White et al., 2006) but absent in exosomes (Wubbolts et 

al., 2003). Comprehensive reviews of the cell biology and function of EVs were recently published 

(van Niel et al., 2018, Latifkar et al., 2019).  

The formation of MVEs comprises the lateral segregation of cargo at the defining membrane of an 

endosome and inward budding and scissing of vesicles into the lumen of the endosome. The 

molecular mechanisms involved in the biogenesis of MVEs or path for their degradation have been 

determined following the initial discovery of yeast mutants that had limitations in the transport to 

the vacuole, the yeast analogue of mammalian lysosomes (Raposo and Stoorvogel, 2013, Hessvik 

and Llorente, 2018). 

The mechanisms for generation of ILVs within MVBs and the resulting binding with the PM to release 

exosomes into the extracellular space are not entirely known. One of the suggested molecular 

mechanisms associated with the biogenesis and release of exosomes is the ESCRT pathway.  Studies 
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indicate that the ESCRT pathway may have unique functions in EV generation versus sorting for the 

lysosomal pathway. Though EV cargo selection may not be through ubiquitination, some ESCRT 

components have been identified in EV formation. For instance, the transferrin receptor, which in 

immature red blood cells is directed for exosome release, is linked with the ESCRT accessory protein 

Alix while sorting at MVEs. In addition, Alix was also indicated to be involved in exosome biogenesis 

and sorting of syndecans through an interaction with syntenin (Baietti et al., 2012, van Niel et al., 

2018). The ESCRT machinery can be grouped into four multi-complex proteins: ESCRT-0, -I, -II, and 

–III. The first three ESCRT complexes help to recognize and sequester ubiquitinated membrane 

associated proteins at the endosomal defining membrane, and ESCRT III complex is key for budding 

and actual pinching of ILVs (Baietti et al., 2012); the accessory proteins, specifically the AAA-ATPase 

Vps4, are responsible for the dissociation and recycling of the ESCRT complex machinery. Most 

importantly, ESCRT-III in association with deubiquitinating enzymes, such as HD-PTP, helps 

deubiquitination of proteins. Alix was shown to promote intraluminal budding of vesicles in 

endosomes upon interaction with syntenin (Baietti et al., 2012, van Niel et al., 2018), which is the 

cytoplasmic adaptor of syndecan heparan sulphate proteoglycans. Moreover, the accumulation of 

luminal cargo seems to be triggered by the interaction of the ESCRT machinery with Alix (Bissig and 

Gruenberg, 2014).  

The mechanisms by which RNA types are arranged and sorted into EVs are also still unresolved. 

Research suggests that RNAs in EVs share unique sequence motifs that may possibly work as cis-

acting components for targeting to EVs (Batagov et al., 2011). Although it is speculative, the 

observation that ESCRT-II is a RNA-associated complex suggests that it may also be used to select 

RNA for assortment into EVs (Schorey et al., 2015). A recent study by McKenzie et al. using isogenic 

colon cancer cell lines showed that over-activity of KRAS as a result of mutation inhibits localization 

of Ago2 - RNA-induced silencing complex (RISC) component - to MVEs and decreases Ago2 secretion 
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in exosomes (McKenzie et al., 2016). The same study further showed inhibition of mitogen-activated 

protein kinases (MEKs) I and II, but not Akt, reverses the inhibitory effect of the activating KRAS 

mutation and leads to increased Ago2-MVE association as well as exosomal secretion of Ago2.  

EV release is regulated in a number of cellular model systems. For instance, the activation of 

purinergic receptors with ATP can trigger MV release (Wilson et al., 2004). Following thrombin 

receptor activation, platelets are triggered to shed vesicles from the PM and to release exosomes 

(Heijnen et al., 1998). In response to activation by lipopolysaccharides, dendritic cells increase the 

release of MVs and change the protein composition (Obregon et al., 2006). Moreover, peptide-

loaded immature dendritic cells were triggered to release exosomes following their interaction with 

T cells recognizing peptide-loaded MHC II (Buschow et al., 2009). Similarly, cross-linking of CD3 in T 

cells triggers exosome release by T cells, and PM depolarization increases the fast secretion of 

exosomes by nerve cells (Lachenal et al., 2011). The release of EVs is known to involve increasing 

intracellular Ca2+ concentrations, as reported, for instance, for mast cells (Raposo et al., 1997) and 

a human erythroleukemia cell line (Savina et al., 2005), and also reviewed in (Taylor and Bebawy, 

2019).   

The primary evidence for the contribution of Rab GTPases, which need the function of Rab 11 for 

exosome secretion, comes from reports on immature red blood cell lines (Savina et al., 2002). 

Knockdown of Rab27a or Rab27b in an RNAi screen in HeLa cells targeting 59 members of the Rab 

GTPase family remarkably decreased the amount of exosomes secreted (Ostrowski et al., 2010). 

Rab27 functionally is linked with secretory lysosome-related organelles (Raposo et al., 2007, van 

Niel et al., 2018), but is clearly also directly implicated in strengthening endocytic compartments in 

secretion of exosomes. Similarly in other cell systems which host secretory endo/lysosomes, Rab27 

might participate directly or indirectly in the transport and tethering at the cell surface of secretory 

MVEs. Indeed, silencing of two identified Rab27 effectors, Slac2b (EXPH5 (exophilin 5)) and Slp4 
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(SYTL4 (synaptotagmin-like 4)), prevented exosome secretion and phenocopied silencing of Rab27a 

and Rab27b, respectively (Ostrowski et al., 2010). On the other hand, targeting Rab GTPase-

activating proteins, knockdown of the Rab GTPase-activating proteins TBC1D10A-C and interference 

with its effector, Rab35, decreased exosome secretion (Hsu et al., 2010). It should be noted that 

although Rab11, Rab27, and Rab35 are known to participate in exosome secretion and release, 

careful inactivation of one of these Rabs only incompletely affected this process. The functions of 

these GTPases could be either cell type dependent, complementary, or indirect by regulating 

pathways upstream of exosome secretion.  

1.3.3.  EVs as therapeutic targets  

EVs contain proteins, nucleic acids and lipids, all of which are involved in the cell to cell 

communication process, including the transfer of virulence factors between cells (Deolindo et al., 

2013). For example, a high concentration of tau protein, a feature of Alzheimer’s disease, was 

demonstrated to be promoted through microglia-secreted EVs (Asai et al., 2015). In addition, 

disease causing organisms have been reported to use EVs to disseminate infection and evade the 

immune system (Schwab et al., 2015). Moreover, EVs from hepatitis C virus-infected cells were 

demonstrated to be effective in transmitting and establishing infection to normal human 

hepatocytes via RNA in secreted EVs (Ramakrishnaiah et al., 2013).   

In relation to an increase in the number of EVs seen in advanced cancer and related disorders with 

poor outcomes (Silva et al., 2012), a therapeutic target is strategies to minimize the number of EVs 

in the circulation to optimal levels. In this regard, several studies are being undertaken to target 

exosome biology either by interfering with EV biogenesis and secretion mechanisms and/or by 

preventing their communication with host cells by targeting their surface molecules (Raposo and 

Stoorvogel, 2013). For instance, drugs such as fasudil, amiloride, or inhibitors of neutral 

sphingomyelinase can interfere with EV secretion as demonstrated both in vivo and in vitro to 
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occlude pathogenesis and disease progression (Trajkovic et al., 2008, Record et al., 2018). 

Comparable findings were also seen with other EV release inhibitors such as dimethyl amiloride, 

GW4869 and CYP2E1 inhibitor  (Cho et al., 2017), highlighting that other small molecules could also 

regulate EV secretion and content. The actual limitation of these mechanisms would be to locate 

potential targets that would not hinder the physiological roles of normal cell-derived EVs. The main 

challenge here is specific inhibition mechanisms yet to be explored, although critical mechanisms in 

EV biogenesis and release are well documented. Furthermore, in addition to targeting EV biogenesis 

and release, blockage of EV internalisation by host cells represents a promising strategy in 

preventing disease progression via cell to cell communication. For instance, several molecular 

targets were investigated both on EVs and target cells in an effort to block or interfere with liver 

endothelial cell-secreted EV internalisation in vivo and subsequent hindering of fibrosis progression 

(Wang et al., 2015b).  

EVs as therapeutic targets from different cells have been evaluated for managing liver diseases or 

cancers (Vlassov et al., 2012). Particularly, mesenchymal stem cells (MSCs) regulation of organ injury 

and its recovery could be attributed to EV-mediated communication between MSCs and tissue cells 

(Fatima et al., 2017). MSC-derived EVs have been shown to entail therapeutic potential in preclinical 

research in several types of tissues and conditions; this includes in the treatment of diseases and 

conditions targeting the central nervous system (Deng et al., 2017, Kim et al., 2016, Ruppert et al., 

2018), kidney (Bruno et al., 2009, Eirin et al., 2017, Zou et al., 2016), lungs (Lee et al., 2012, Ahn et 

al., 2018, Khatri et al., 2018), heart (Lai et al., 2010, Liu et al., 2017), liver (Haga et al., 2017, Li et al., 

2013b), bone (Furuta et al., 2016, Qi et al., 2016), and cartilage (Cosenza et al., 2017, Cosenza et al., 

2018, Zhang et al., 2016).  EVs have some benefits over cells as therapeutic targets and in tissue 

regulation; however, since they have a shorter half-life than cells, repeated application of EVs is 

required and poses a limitation for therapeutic purposes (Reiner et al., 2017).  



42 
 

A great utility of EVs is as a means by which to transfer bioactive molecules from the cell of origin 

to a target cell by crossing cellular barriers. These particular feature makes EVs potential therapeutic 

agents for delivery of small molecule drugs, therapeutic proteins and RNA species. In contrast to 

liposomes, EVs have lower toxicity and high intrinsic homing capacity, which can be inferred from 

their presence in all biological fluids (Lai et al., 2013). Moreover, EVs as therapeutic targets could be 

manipulated to express biologically active surface molecules that mediate a specific biological role 

or can interfere with bioactive molecules. Surface molecules can also be used to specifically target 

EVs towards recipient cell types, which can help crossing of physiologic barriers of cells such as in 

nerve cells (Alvarez-Erviti et al., 2011). In addition to interfering RNAs, EVs can also be loaded with 

other types of therapeutic cargo such as lipophilic small molecules. For example, anticancer agents 

doxorubicin (Tian et al., 2014) and paclitaxel (Yang et al., 2015), as well as the anti-inflammatory 

agent curcumin (Zhuang et al., 2011) have been successfully loaded into EVs and their efficacies 

were greatly potentiated over other delivery systems, and resulted in fewer unwanted effects on 

major organs. 

Applying EVs as therapeutic targets is still in its infancy but offers huge potential. Studies to optimize 

EV isolation as well as resolve the complexities around EV biogenesis, composition and role are 

underway, including their use in clinical trials. In addition, the routes by which EVs are administered 

influences their bio-availability (Wiklander et al., 2015), so this needs to be taken into consideration 

when identifying any therapeutic strategy. Finally, in order to successfully use EVs as therapeutic 

targets in day-to-day clinical applications, hurdles must still be overcome. With these caveats in 

mind, it seems likely that EVs will become a platform for highly effective therapeutic targets against 

a range of diseases and disorders. In this review, I focus on presenting the available information 

based on recent literature about the roles of EVs in schistosomiasis and other helminth infections 
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in cellular communication, gene regulation, immune modulation and pathogenesis, and further 

highlight their importance as targets for therapeutics and diagnostics.  

1.3.4.  Helminth EVs and their roles during infections  

Research on the interactions between EVs secreted from protozoan parasites and the cells in an 

infected host have provided data on new mechanisms of host-parasite communication (Regev-

Rudzki et al., 2013, Twu et al., 2013, Meldolesi, 2018). Single celled parasite EVs can modulate pro-

inflammatory immune pathways and in recipient cells induce production of regulatory cytokines 

(Silverman et al., 2010b). However, EV production by multicellular helminth parasites has received 

considerably less attention.  

The identification of ELVs in the trematodes Echinostoma caproni and Fasciola hepatica was the first 

report of EVs secreted by parasitic helminths (Marcilla et al., 2012). Since this initial publication, 

helminth EVs have received increasing attention, particularly given the role of EVs in the transfer of 

RNAs and other signaling information to target cells, and as novel diagnostic markers of disease 

(Valadi et al., 2007). Further, H. polygyrus derived miRNAs and yRNAs were shown to be transferred 

into mammalian host cells using EVs, where they regulated host genes associated with immunity 

and inflammation (Buck et al., 2014, Eichenberger et al., 2018a, Zamanian et al., 2015), suggesting 

that this may be a shared characteristic for parasitic helminths (Montaner et al., 2014). Moreover, 

miRNAs were also identified in EVs from the parasitic trematodes Dicrocoelium dendriticum (Bernal 

et al., 2014), F. hepatica (Cwiklinski et al., 2015, Fromm et al., 2015, de la Torre-Escudero et al., 

2019), S. japonicum (Wang et al., 2015a, Zhu et al., 2016a, Zhu et al., 2016b), S. mansoni  (Nowacki 

et al., 2015, Sotillo et al., 2016b, Samoil et al., 2018), O. viverrini (Chaiyadet et al., 2015b), and E. 

caproni (Marcilla et al., 2012, Trelis et al., 2016). Published studies in the helminths EV field are 

summarized in Table 1.1.   
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1.3.4.1. Role in communication  
 

Cells often exchange information to keep cellular homeostasis or to respond to pathogens in the 

extracellular space. A universal method of communication is physical interaction by adhesion 

molecules, cell junctions, and soluble factors. However, increasing data are emerging that show EVs 

play significant roles in genetic cross-talk between cells by transferring proteins, nucleic acids, lipids, 

and other components, and in this way, cells can adjust the behavior of other cells (Deolindo et al., 

2013, Meldolesi, 2018).  

The observation that EVs from helminths are endocytosed by host cells implies a role in host-

parasite communication. Marcilla and colleagues reported the release of EVs from the liver flukes 

F. hepatica and E. caproni and their subsequent internalisation into host cells ex vivo (Marcilla et al., 

2012). Further, proteomic analyses showed that apart from being enriched in homologs of proteins 

that are widely found in mammalian EVs, these fluke EVs also contained species-specific protein 

cargo.  

The existence of small RNAs in EVs from protozoan parasites (Pope and Lasser, 2013, Silverman et 

al., 2010a, Twu et al., 2013) suggests that RNA cargo in parasite EVs may regulate host cell gene 

expression by acting as miRNAs. The discovery of miRNAs with homology to mammalian miRNAs in 

the EVs from helminths such as D. dendriticum (Bernal et al., 2014), H. polygyrus and Litomosoides 

sigmodontis (Buck et al., 2014) strengthened this hypothesis. H. polygyrus EVs were shown to 

contain Argonaute, a protein involved in suppression of gene expression through miRNAs 

(Hutvagner and Simard, 2008). A direct role for EV-derived miRNA modulation of host cell pathways 

was demonstrated using microarrays, which showed the suppression of mouse genes predicted to 

be targets of the worm miRNAs upon incubation of mouse cells with H. polygyrus EVs ex vivo (Buck 

et al., 2014). Further, the authors identified a group of RNA species packed within exosomes of H. 
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polygyrus, including miRNAs such as let-7, miR200 and bantam, which could suppress expression of 

the gene encoding mouse phosphatase Dusp1 using a reporter assay. 

L. sigmodontis miRNAs were demonstrated in sera of infected mice, pointing to the secretion of 

these miRNAs during infection. In addition to providing a possible mechanism for RNA transfer 

between parasites and host cells, a role for H. polygyrus EVs has been proposed in the down-

regulation of Type 2 immune responses and eosinophilia in mice (Buck et al., 2014). Moreover, it 

was shown that exosome-like EVs secreted from adult S. japonicum play roles in regulating gene 

expression in macrophages (Wang et al., 2015a). Larval (schistosomula) S. mansoni secrete small 

non-coding RNAs (sncRNAs) found within and outside of EVs, including miRNAs and tRNA-derived 

small RNAs predicted to target host cell gene expression (Nowacki et al., 2015).  

Chaiyadet et al. showed that O. viverrini secretes EVs that are endocytosed by human 

cholangiocytes in vitro and elicit a cascade of inflammatory and pro-tumorigenic changes within the 

cell (Chaiyadet et al., 2015b), thereby providing a plausible mechanism by which ES products are 

internalised by biliary cells of infected hosts (Chaiyadet et al., 2015a) and contribute to the progress 

of cholangiocarcinoma (Brindley and Loukas, 2017). Internalisation of O. viverrini EVs by human 

cholangiocytes and its effect on gene regulation led to dysregulated expression of proteins with 

proven roles in wound healing and cancer (Chaiyadet et al., 2015b). Among the proteins significantly 

regulated were different tropomyosin isoforms, PAK-2, a key kinase involved in tumor cell invasion 

(Coniglio et al., 2008), and the tight junction protein ZO-2, involved in cell-cell junction assembly and 

organization, and upregulated during cell proliferation and wound healing (Farkas et al., 2012). The 

same study further noted that PAK-2 could be involved in tumor progression by interacting with 

different components of the proteasome complex and with vimentin (a protein that plays a role in 

maitaining cellular integrity and offering resistance against stress in several epithelial cancers) 

(Coniglio et al., 2008). Cholangiocyte proteins that participated in the proteasome complex 
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underwent dysregulated expression upon internalising O. viverrini EVs (Chaiyadet et al., 2015b). The 

proteasome complex controls directly or indirectly many key cellular pathways and has been 

suggested as a therapeutic target in cancer (Frankland-Searby and Bhaumik, 2012, Rastogi and 

Mishra, 2012).  

Zamanian et al. (2015) showed that EVs secreted by Brugia malayi contain let-7 and other key 

modulators of host gene expression. Let-7 plays an intricate role in macrophage polarization and 

response to pathogen challenge (Banerjee et al., 2013), and the authors proposed a role in 

macrophage gene regulation by parasite-derived let-7. Another study which compared the cellular 

expression levels of miRNAs from F. hepatica adult worms with F. hepatica-derived EVs reported 

that all miRNAs of these EVs were expressed and most of them were predicted to target genes 

involved in immuno-regulation, tissue growth and cancer, suggesting  miRNAs are the molecular 

mediators of immune modulatory functions of EVs (Fromm et al., 2015). A study by Gu et al. 

demonstrated  that both adult and larval (L4) stages of Haemonchus contortus secrete EVs packed 

with specific miRNAs with various suggested role in host-parasite interactions (Gu et al., 2017). 

Moreover, the same study suggested that only some helminth miRNAs might target host genes, and 

that their release is a selective process because the profile of released miRNAs in the ES products 

differed from that of somatic extracts of H. contortus. 

A study on B. malayi L3 demonstrated that purified ELVs were endocytosed by a murine macrophage 

cell line (Zamanian et al., 2015). Another study by Zhu and co-workers demonstrated that 

mammalian cells could endocytose S. japonicum EVs and incorporate their miRNAs into host cells 

(Zhu et al., 2016a). Many helminth EVs contain proteins predicted to participate in vesicle biogenesis 

in mammalian cell EVs, such as Hsps 70/90 and members of the Rab GTPase family (Rab8, Rab10, 

and Rab11) (Zhu et al., 2016a). Rab proteins are important regulators of intracellular vesicle 

trafficking between different subcellular compartments using processes including vesicle budding, 
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membrane tethering and fusion and mobility along the cytoskeleton (Raposo and Stoorvogel, 2013). 

Further, the identification of RNA-binding proteins such as eukaryotic translation elongation factors 

1 alpha (eEF1A) in S. japonicum EVs suggests a regulatory role of host gene expression and in host 

immune evasion (Zhu et al., 2016a).  

Coakley et al. showed that H. polygyrus derived-EVs are internalised by macrophages whereupon 

they induce suppression of type 1 and type 2 immune-response-associated molecules – TNF, IL-6, 

RELM and Ym1 - and downregulate expression of the IL-33 receptor subunit ST2 (Coakley et al., 

2017).  

A study which characterised EVs derived from N. brasiliensis (Eichenberger et al., 2018a) further 

highlighted the role of EVs in suppressing inflammation in a mouse model of inflammatory bowel 

disease. Furthermore, N. brasiliensis EVs were internalised by mouse gut organoid cells and 

contained miRNAs that are predicted to bind to mouse genes involved in immune processes, 

suggesting a potent anti-inflammatory role in the host gastrointestinal tract. While many immune 

cell subsets are absent from organoids, studies with cell lines have revealed that E. granulosus EVs 

were internalised by bone marrow derived dendritic cells (Nicolao et al., 2019), and two sub-

populations of EVs secreted from adult F. hepatica were internalised by murine macrophages (de la 

Torre-Escudero et al., 2019).  
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Table 1. 1. Summary of helminth-derived extracellular vesicles and their putative roles. 

Taxonomic  

classification 

Helminth  Type of 

vesicle 

EV origin             Cargo 

composition 

characterized 

EVs target Applied Putative Roles References 

Trematodes  Fasciola hepatica  

                       

Exosome-like 

vesicles (ELVs) 

Adult worms  Proteins  Uptake by 

intestinal cells  

In vitro Not reported (Marcilla et al., 2012) 

ELVs   Adult worms  Proteins, miRNAs Not reported  NA Not reported (Cwiklinski et al., 2015) 

EVs Adult worms miRNAs  Not reported  NA Not reported  (Fromm et al., 2015) 

EVs Adult worms  Not reported  Colon cells In vivo Immunomodulation (Roig et al., 2018) 

EVs  Adult worms  Proteins  mouse 

macrophage cells 

In vitro Facilitate  

internalisation  

(de la Torre-Escudero et 

al., 2019) 

Dicrocoelium 

dendriticum 

Exosomes Adult worms Proteins and 

miRNAs 

Not reported NA Not reported (Bernal et al., 2014) 

Schistosoma japonicum 

 

ELVs Adult worms Proteins Macrophage In vitro Polarization of host 

macrophage 

(Wang et al., 2015a) 

ELVs Adult worms Proteins,  

miRNA  

Uptake by mouse 

liver cell 

In vitro Not reported (Zhu et al., 2016a) 

EVs  Eggs miRNA Uptake by Hepa 1-

6, a  murine liver 

cell line  

In vitro  Not reported  (Zhu et al., 2016b) 

Schistosoma mansoni  

 

ELVs Adult worms  Proteins  Not reported NA Not reported (Sotillo et al., 2016b) 

EVs  Schistosomules  Proteins, miRNAs  Not reported NA Not reported (Nowacki et al., 2015) 

ELVs Adult worms Proteins, miRNAs Not reported  NA Not reported  (Samoil et al., 2018) 

ELVs and MVs Adult worms  Proteins  Not reported  NA Not reported  (Kifle et al., 2020) 

EVs Adult worms  miRNAs  Th cells  In vivo and 

in vitro 

Modulate Th-2 

differentiations  

(Meningher et al., 2020) 
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Opisthorchis viverrini EVs Adult worms Not reported  Uptake by human 

cholangiocytes  

In vitro Inflammatory, liver 

cell proliferation; 

antibodies to EVs 

prevent EVs uptake 

(Chaiyadet et al., 

2015b) 

EVs Adult worms  Not reported  Primary bile duct 

cells 

In vivo and 

in vitro 

As vaccines  (Chaiyadet et al., 2019) 

Echinostoma caproni  

 

Exosomes  Adult worms  Proteins  Uptake by 

intestinal cells  

In vitro Not reported  (Andresen et al., 1989, 

Marcilla et al., 2012) 

Exosomes  Adult worm Not reported Systemic blood In vivo Immune-

modulation 

(Trelis et al., 2016) 

Cestodes  Echinococcus 

multilocularis  

Vesicles  Metacestodes  Not reported Mononuclear 

cells/dendritic cells 

In vitro Immune-regulation  (Eger et al., 2003, 

Walker et al., 2004, 

Hubner et al., 2006) 

Echinococcus 

granulosus  

Exosomes  Hydatid cyst Proteins  Not reported  NA Not reported  (Siles-Lucas et al., 2017) 

ELVs Hydatid cyst Proteins Uptake by 

dendritic cells  

In vitro Immuno-regulation (Nicolao et al., 2019) 

EVs  Hydatid cyst and 

protoscolex  

Protein  T cells  In vitro  Immuno-regulation  (Zhou et al., 2019) 

Taenia crassiceps 

Mesocestoides corti 

Echinococcus 

multilocularis 

EVs  Larvae  Protein and 

miRNAs 

Not reported NA Not reported  (Ancarola et al., 2017) 

Nematodes  

 

Heligmosomoides 

polygyrus 

Exosomes Intestinal tract of 

adult nematode 

Proteins, mRNAs, 

small RNAs and Y 

RNAs  

Intestinal epithelial 

cells of the host 

In vivo and 

in vitro 

 

Immune-

modulation in favor 

of parasite survival  

(Buck et al., 2014) 

Exosomes  Adult worms  Proteins  Not reported  NA Not reported  (Simbari et al., 2016) 
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EVs  Adult/larval 

worms 

Not reported  Uptake by 

macrophage 

In vivo and 

in vitro 

Activates 

macrophages; 

Protective immunity 

(Coakley et al., 2017) 

Brugia malayi ELVs Larval stage Protein and 

miRNA 

Uptake by 

macrophage 

In vitro Classical activation 

of macrophages 

(Zamanian et al., 2015) 

EVs  Microfilariae, 

larvae and adult 

worms 

Proteins Uptake by 

macrophage 

In vitro Immunomodulation  (Harischandra et al., 

2018) 

Trichuris suis  EVs  Larvae  miRNA NA NA Not reported  (Hansen et al., 2015) 

Teladorsagia 

circumcincta 

ELVs Larvae Proteins  Immunoglobulins In vitro Recognized by IgA 

and  

IgG  

(Tzelos et al., 2016) 

Haemonchus contortus  ELVs  Adult and larvae  miRNA  NA  NA Not reported  (Gu et al., 2017) 

Nippostrongylus 

brasiliensis 

EVs Adult worm  Proteins, mRNAs 

and miRNAs 

Uptake by mouse 

gut organoids  

In vitro 

and vivo 

Immunomodulation (Eichenberger et al., 

2018a) 

Trichuris muris  

 

ELVs 

 

Adult worms Proteins, mRNAs 

and miRNAs 

Uptake by murine 

colonic organoids 

In vitro Not reported  (Eichenberger et al., 

2018c) 

 

EVs  Adult worms  Proteins  Several antigens 

on EVs targeted by 

IgG  

In vivo vaccine  (Shears et al., 2018) 

Ascaris suum  EVs  Adult/larvae  Protein and 

miRNA 

Not reported  NA Not reported  (Hansen et al., 2019) 

NA: Not applicable
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1.3.4.2. Role in immune modulation 

  

Many researchers have focused on characterizing the soluble ES products released by helminths 

that can modulate host immune responses. Less well characterised is the role of secreted helminth 

EVs in this process. A recent study showed the existence of ELVs secreted by S. japonicum adult 

flukes that were reported to elicit production of nitric oxide and other indicators of a Type 1 pathway 

by the murine macrophage-like cell line RAW264.7. While this study highlighted the potential 

immunomodulatory roles of Schistosoma-derived exosomes during infection, the molecular cargo 

of the vesicles was not characterized (Wang et al., 2015a). A more recent study by Meningher et al. 

demonstrated that adult S. mansoni parasites secrete miRNAs in EVs that are uptaken by Th cells 

in vitro and showed these EVs downregulate Th2 differentiation by modulating the Th2-specific 

transcriptional program (Meningher et al., 2020). The same study reported that schistosome 

miRNAs are found also in Th cells isolated from mesenteric lymph nodes and Peyer's patches of 

infected mice, where the schistosome miR-10 targets genes encoding MAP3K7 and consequently 

downregulates NF-κB. 

EVs from F. hepatica were shown to contain peroxiredoxins and cathepsin cysteine proteases 

(Marcilla et al., 2012), and HDM-1/MF6p has been identified from D. dendriticum exosomes (Bernal 

et al., 2014). The above proteins have been shown to possess immunomodulatory activity as 

components of ES products prior to the discovery of helminth EVs (Dalton et al., 2013). In a murine 

model, H. polygyrus EVs  were shown to have immunomodulatory effects (Coakley et al., 2016, Buck 

et al., 2014), supporting earlier findings with ES products from the same parasite (Maizels et al., 

2012). Further, H. polygyrus exosomes could down-regulate an inflammatory airway response in 

vivo: during the first 24 h of an innate atopic ‘danger’ response to the fungus Alternaria alternata in 

vivo. H. polygyrus exosomes block activation of type 2 innate lymphoid cells and suppress 

eosinophilic recruitment into the lungs (Buck et al., 2014). In addition, H. polygyrus exosomes down-
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regulate expression of IL1RL1/ST2 (the IL-33-specific receptor subunit) following co-culture with 

intestinal epithelial cells in vitro and during the allergic asthma response to Alternaria in vivo (Buck 

et al., 2014).  

B. malayi exosome-like vesicles (ELVs) are internalised by, and induce a classically activated 

phenotype in host macrophages (Zamanian et al., 2015). Treatment with vesicles resulted in 

activation of J774A.1, a murine macrophage cell line, with significant increases in the levels of MCP-

1, G-CSF, MIP-2 and IL-6 compared to macrophages treated with culture media alone (Zamanian et 

al., 2015).   

The anti-helminth vaccine efficacy of exosomes from E. caproni was assessed using BALB/c mice. 

Development of the parasite was delayed in mice immunised with exosomes, and there was a 

decrease in symptom severity and increased survival following challenge infection with E. caproni 

(Trelis et al., 2016). Furthermore, exosomes elicited systemic antibody responses that specifically 

recognised exosome proteins. Following the immunisation with exosomes, elevated levels of IFN-γ, 

IL-4 and TGF-β were found in the spleen of experimental mice prior to infection. Infection with E. 

caproni induced a further increase in IL-4 and TGF-β, along with a rapid IL-10 overproduction, 

suggesting development of a Th2/Treg immune response (Trelis et al., 2016).  

 Coakley and co-authors showed that H. polygyrus derived-EVs are internalised by macrophages and 

they modulate their activation (Coakley et al., 2017). Moreover, EV uptake by macrophages resulted 

in suppression of type 1 and type 2 immune-response-associated molecules (TNF and IL-6, as well 

as RELMa and Ym1) and downregulated expression of the IL-33 receptor subunit ST2. 

1.3.4.3. Role in pathogenesis 

 

There is growing evidence that EVs from some helminth parasites are involved in the progression of 

infections. For instance, while the mechanisms that facilitate chronic liver fluke infection to cause 
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cancer are multifactorial, a major involvement for fluke ES products in inducing a tumorigenic 

phenotype has been shown (Smout et al., 2011). Identification of O. viverrini ES proteins in 

cholangiocytes of infected hosts posed questions about the mechanisms by which parasite proteins 

are internalised by host cells, and its sequela for carcinogenic and pathologic changes (Smout et al., 

2009, Smout et al., 2011). O. viverrini secretes ES products which are subsequently internalised by 

human cholangiocytes and drive cell proliferation and IL-6 production (Chaiyadet et al., 2015a).  

Chaiyadet and co-workers (Chaiyadet et al., 2015b) then showed that O. viverrini secretes EVs that 

are endocytosed by human cholangiocytes in vitro and elicit a cascade of inflammatory and pro-

tumorigenic changes within the cell, thereby providing a plausible mechanism by which ES products 

are internalised by biliary cells of infected hosts and contribute to the progress of 

cholangiocarcinoma in infected hosts. The same study demonstrated that O. viverrini EVs elicit 

production of IL-6 from recipient human cholangiocytes, showing a role for these EVs in liver disease 

progression. Elevated IL-6 levels have been linked to chronic periductal fibrosis and 

cholangiocarcinoma in O. viverrini-infected individuals (Sripa et al., 2011). Furthermore, IL-6 has also 

been linked to the maintenance of chronic inflammation that could progress to tumor formation 

(Schafer and Werner, 2008). O. viverrini EVs were also involved in driving proliferation of 

cholangiocytes, a condition that has been reported in both infected human subjects and the 

hamster infection model (Sripa et al., 2012). This persistent cell proliferation, together with other 

carcinogenic factors such as chronic immunopathology and high intake of dietary nitrosamines 

(Sripa et al., 2007), triggers the establishment of malignant changes. 

Recent characterisation of the miRNA content of  EVs from S. japonicum revealed the presence of 

the Bantam miRNA, and its putative transfer to host liver cells (Zhu et al., 2016a). In Drosophila, 

Bantam miRNA has been reported to target a tumor-suppressor pathway (Hippo signaling), resulting 

in cellular growth and the suppression of cell death (Nolo et al., 2006). Consequently, schistosome-
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specific miRNAs, such as Bantam, may have a role in liver pathology of schistosomiasis. In support 

of this concept, Zhu and colleagues assessed the mRNA expression of three potential target genes 

(Utp3, Gins4 and Tysnd1) of schistosome Bantam miRNA in mice. Both in vitro cell culture (liver cells 

treated with S. japonicum EVs) and in vivo animal studies (in the livers of S. japonicum infected mice) 

clearly showed conserved suppression of the same mRNAs in liver cells.  

1.3.4.4. Role as diagnostic markers 
 

The application of exosomes to diagnose infectious diseases has not been intensively studied, but 

indicates great promise, as EV biomarkers could be of both pathogen and host origin. Strong 

immune reactivity towards S. japonicum EVs was identified when using sera from S. japonicum-

infected rabbits. These findings act as a baseline for the identification of potential target molecules 

for the development of schistosomiasis biomarkers and vaccines (Zhu et al., 2016a). In addition, the 

protein MF6p, also known as MF6p/FhHDM-1, observed in D. dendriticum exosomes (Bernal et al., 

2014) has been described as a potential marker for its use in diagnosis (Martinez-Ibeas et al., 2013). 

Moreover, the miRNA isolated in D. dendriticum exosomes could be employed as biomarker for the 

disease (Bernal et al., 2014). In the same analogy, three miRNAs (Bantam, miR-10 and miR-3479) 

have been described as schistosome-specific miRNAs in the plasma of schistosome infected rabbits 

(Cheng et al., 2013). Furthermore, Bantam and miR-3479 as well as S. japonicum miR-0001 have 

been verified by miScript PCR as schistosome specific, implicating that these molecules may have 

potential roles as novel biomarkers for the diagnosis of schistosomiasis (Cheng et al., 2013). A recent 

study detected schistosome miRNAs in EVs isolated from sera of schistosome infected individuals 

using qRT-PCR, suggesting that this may provide a new tool for diagnosing schistosomiasis in 

patients with a low parasite burden (Meningher et al., 2017). However, most of the reports to date 

that deal with EVs or EV molecules as biomarkers for different parasitic infections are only based on 
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preliminary observations and putative implications, and hence detailed characterization of EVs to 

this end is required.  

1.3.4.5. Role as vaccination platforms/therapeutic agents   
 

The concept of applying EVs as vaccines has its origin in the cancer field. Exosomes secreted from 

dendritic cells pulsed with tumour antigens have been assessed in clinical trials as tumour ‘vaccines’. 

The potential application of exosomes as vaccines for infectious diseases is beginning to garner 

attention. There are several potential benefits to using exosomes as vaccines against pathogens. 

These include: (1) more stable conformational conditions for the cargo; (2) more efficient 

interaction with the antigen presenting cells as a result of the expression of adhesion molecules on 

exosomes; (3) increased molecular distribution due to the capability of exosomes to circulate in 

bodily fluids and reach distal organs, and (4) because exosomes are one of the body’s ‘natural’ 

mechanisms for transporting antigens between cells and one that likely has a potential role in cross-

priming (Schorey et al., 2015). One way of applying helminth-derived EVs as vaccines is through 

synthetic vesicles containing the antigen of interest (Egesa et al., 2017).  

There are emerging indications from studies done in murine models that EVs from parasites have a 

potential role as vaccine candidates. The administration of E. caproni exosomes to mice primed the 

immune response and reduced the severity of clinical signs in E. caproni infection (Trelis et al., 2016). 

Moreover, administration to mice of H. polygyrus-derived EVs formulated with alum generated 

protective immunity against larval challenge, further highlighting the potential of EVs as anti-

helminth vaccine candidates (Coakley et al., 2017). This study, however, did not identify the specific 

protective EV antigens. The abundance of proteasome components in S. japonicum EVs (Zhu et al., 

2016a) implicated the ubiquitin– proteasome system in a regulatory role during schistosome 

infection. Because of the vital role of the proteasome in parasite invasion (Mathieson et al., 2011), 

targeting proteasome molecules could be a candidate strategy for anti-schistosome vaccination. 
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Research has demonstrated the existence of numerous known vaccine candidates in EVs secreted 

by S. mansoni (Sotillo et al., 2016b, Samoil et al., 2018). For instance, Sm-TSP-2 is a member of the 

CD63 family of TSPs, a widely conserved exosome marker.  Sm-TSP-2 is abundant in the S. mansoni 

EV membrane and is a candidate antigen for Schistosoma vaccine development (Tran et al., 2006, 

Sotillo et al., 2016b). There is a growing body of evidence that EV TSPs are good vaccine candidates. 

For example, blood-borne allogeneic exosome internalisation by dendritic cells could be interrupted 

with antibodies against EV TSPs (Morelli et al., 2004). In terms of helminth infections, Chaiyadet et 

al. (2015b) highlighted the involvement of Ov-TSP-1 in O. viverrini EV internalisation by 

cholangiocytes, whereby antibodies to the large extracellular loop blocked EV uptake by 

cholangiocytes. A more recent study by Chaiyadet et al. (Chaiyadet et al., 2019) demonstrated in a 

hamster vaccination-challenge model that vaccination with O. viverrini secreted EVs and 

recombinant EV TSPs induced protective antibodies that blocked  EV uptake by target primary bile 

duct cells in vitro. Moreover, parasite challenge of hamsters after vaccination with both EVs and 

recombinant surface proteins significantly reduced adult worm loads compared to the control group 

administered adjuvant only. Indeed, TSPs are efficacious vaccine antigens in numerous helminth 

infections (Dang et al., 2012, Joseph and Ramaswamy, 2013, Tran et al., 2006, Loukas et al., 2007) 

and these data suggest that the mechanism of vaccine efficacy is associated with blockade of 

parasite EV internalisation by host cells in vivo and subsequent interruption of key physiological and 

pathological processes driven by EVs. These findings indicate that targeting exosomes and their 

surface proteins may provide a key anti-parasite vaccination strategy.  

 

Sotillo et al. demonstrated the existence of several vaccine candidates, including TSPs, on EVs 

secreted by S. mansoni (Sotillo et al., 2016b). Adult S. mansoni release ELVs which are 50 – 130 nm 

in size, with over 80 identifiable proteins, 5 of which are TSPs as well as an abundant saposin-like 

protein. Some of these proteins are homologues of previously identified vaccine candidates for 
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helminth infections, and some are common to multiple life-cycle stages, including eggs, suggesting 

that vaccines based on these proteins could target different parasite stages. If EV internalisation by 

host cells plays a significant role in establishing parasitism, the disruption of this process via 

neutralizing antibodies may explain why vaccines directed against EV membrane proteins show 

efficacy.  

 

The immunoregulatory properties of helminth EVs opens up another therapeutic strategy for their 

use, notably for the treatment of inflammatory diseases. Mice treated with EVs from N. brasiliensis 

prior to administration of a T cell-dependent colitis inducing agent, TNBS, were protected against 

colitic pathology and had reduced expression of IL-6, IFNγ IL-17a and IL-1β and elevated expression 

of IL-10 in the colon compared to mice that received a single intraperitoneal injection of control 

vesicles from grapes (Eichenberger et al., 2018a). Moreover, administration of F. hepatica EVs to 

mice prior to induction of  T cell-independent colitis using dextran sulfate sodium ameliorated the 

pathological symptoms, suppressed pro-inflammatory cytokine expression and interfered with both 

MAPK and NF-kB pathways (Roig et al., 2018). These findings indicate that EVs from parasitic 

helminths can modulate inflammatory responses and exert a protective effect in the gut at least. 

 

1.4. This project  

Countless individuals are infected with schistosomes, and treatment depends on a single drug. After 

treatment, rapid reinfection occurs, precipitating the need for more rigorous practical control 

measures, such as vaccination. This PhD project focuses on identifying S. mansoni EV molecules that 

could be targeted for interruption of EV-mediated host-parasite communication and host cell gene 

regulation, with a specific focus on assessing the vaccine potential of these vesicles and their 

recombinant surface proteins in a mouse model of schistosomiasis.   
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The hypotheses underpinning this thesis are that: 

1. EVs secreted from S. mansoni contain key surface molecules involved in their biogenesis, 

binding to and internalisation by host cells.   

2. Vaccines against EV surface proteins will interrupt EV internalisation by host cells and could 

disrupt EV-mediated parasite-host communication.  

My study is significant and novel given the impact it could potentially have on our understanding of 

schistosome biology and parasitic diseases in general. It will add vital new knowledge to- and fill the 

gap in- the field of molecular parasitology and significantly to the wider science community, and the 

findings could serve as a useful resource for future research, specifically in vaccine discovery and 

development against schistosomiasis.   
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 Chapter 2  
 

Molecular characterisation of Schistosoma mansoni extracellular vesicles 

 

Preamble  

Schistosoma and other helminths secrete EVs with putative roles in host-parasite communication.  

In this chapter, I carried out a comprehensive proteomic analysis of two populations of S. mansoni-

derived EVs – exosome-like vesicles (ELVs) and MVs. Several methods were implemented in order 

to undertake proteomic profiling of these EVs. Vesicles were isolated from the ES products of adult 

worms in culture medium using ultracentrifugation techniques. ELVs were purified by Optiprep 

iodixalon gradient, and fractions containing vesicles were confirmed by tunable resistive pulse 

sensing using a qNano instrument for both ELVs and MVs. I characterised proteins present in the 

membranes of the EVs (including external trypsin-liberated peptides, integral membrane proteins 

(IMPs) and peripheral membrane proteins (PMPs)), as well as cargo proteins, using LC-MS/MS. 

Database search and protein sequence analysis were carried out using different software. 

Sequences of the identified proteins were blasted and gene ontology annotations were obtained. 

Further, protein family analysis, signal peptide and transmembrane domain predictions were 

performed on the identified proteins using bioinformatics tools. The results provide the first report 

of a comprehensive compartmental proteomic analysis of adult S. mansoni-derived EVs. This 

chapter has been published as (Kifle et al., 2020). 
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2.1. Introduction  

Schistosomiasis vaccine and diagnostic antigen discovery has focused on several developmental 

stages of the parasite with an emphasis on the tegument and ES proteomes (Knudsen et al., 2005, 

Liu et al., 2009, Perez-Sanchez et al., 2006, Mathieson and Wilson, 2010, Cass et al., 2007, Curwen 

et al., 2004, Wilson, 2012, Sotillo et al., 2019a). Despite advances in the characterisation of the 

secretome, substantially less is known about the molecular mechanisms involved in the release of 

these molecules. One such pathway is the release of EVs which has been recently described in S. 

mansoni (Sotillo et al., 2016b, Samoil et al., 2018) and other Schistosoma spp. (Wang et al., 2015a, 

Zhu et al., 2016a, Zhu et al., 2016b). Several studies have demonstrated that parasite-derived EVs 

play a key role during helminth infections. For example, EVs are capable of modulating host innate 

immune responses (Buck et al., 2014, Wang et al., 2015a). In addition, the administration of 

exosomes to mice primes the immune response and reduces the severity of clinical signs in E. 

caproni infection (Trelis et al., 2016). Further, EVs can carry and confer virulence factors to the host, 

producing biological effects (Buck et al., 2014, Barteneva et al., 2013, Silverman et al., 2010a). 

Internalisation of O. viverrini EVs by human cholangiocytes led to dysregulated expression of 

proteins involved in wound healing and cancer (Chaiyadet et al., 2015b). Moreover, immune 

reactivity towards S. japonicum EVs was identified when using sera from S. japonicum-infected 

rabbits (Zhu et al., 2016a). These findings serve as a baseline for the identification of potential target 

molecules for the development of schistosomiasis biomarkers and vaccines derived from EVs.  

Protein composition of trematode-derived EVs has been characterised in several species using mass 

spectrometry approaches. Species studied include F. hepatica (Marcilla et al., 2012, Young et al., 

2010, Cwiklinski et al., 2015, de la Torre-Escudero et al., 2019),  D. dendriticum (Bernal et al., 2014), 

S. japonicum (Wang et al., 2015a, Zhu et al., 2016a, Zhu et al., 2016b), and E. caproni (Marcilla et al., 

2012). While the protein composition of S. mansoni EVs has been characterized at a crude, whole-
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vesicle level (Sotillo et al., 2016b, Samoil et al., 2018, Nowacki et al., 2015), the sub-vesicular 

distribution of those proteins has not been described. Herein, to my knowledge for the first time, I 

characterise the compartmental proteome content of S. mansoni-derived both ELVs and MVs.  

 

2.2. Material and methods  

2.2.1. Ethics statement  

The study obtained ethical approval (A2004, A2391 and A2395) from the Animal Ethics Committee 

at James Cook University. All studies involving mice were performed at the animal facilities of the 

Australian Institute of Tropical Health and Medicine in accordance with guidelines and protocols 

approved by the Animal Ethics Committee. 

2.2.2. Mice and parasite material  

Male 6-8 week old BALB/c mice (Animal Resource Centre, WA) were used for the study. All animals 

were maintained under standard conditions with food and water ad libitum. S. mansoni (Puerto 

Rican strain)-infected Biomphalaria glabrata snails were provided by the National Institute of 

Allergy and Infectious Diseases Schistosomiasis Resource Centre for distribution through the 

Biodefense and Emerging Infections Research Resources Repository, NIAID, National Institutes of 

Health, USA: S. mansoni, Strain NMRI; exposed B. glabrata, NR-21962.  

2.2.3. Snail shedding and infection of mice   

Cercariae were shed from snails by exposure to light at 28°C for 1.5 h (Ramalho-Pinto et al., 1974). 

1974). To obtain adult worms, 6-8 week old male BALB/c mice were infected with 120 cercariae 

via tail penetration and parasites harvested by vascular perfusion at 7-8 weeks post-infection 

(Lewis et al., 1986). 



62 
 

2.2.4. Parasite culture and collection of excretory/secretory products  

To harvest ES products, S. mansoni adult worms were obtained from infected mice as described 

previously (Tucker et al., 2013). Briefly, mice were euthanized using an intraperitoneal injection of 

0.2 ml pentobarbital/heparin solution followed by CO2 gas administration and worms were perfused 

using perfusion solution (0.15 M sodium chloride with 0.03 M sodium citrate dehydrate in water) 

and collected in a container (Tucker et al., 2013). Worms were washed three times using serum-free 

Basch media (0.5 µM hypoxanthine (Sigma), 1 µM serotonin (Sigma), 1 µM hydrocortisone (Sigma), 

0.2 µM triiodothyronine (Calbiochem), 8 mg insulin (Lifetech), 0.5× MEM vitamin (Invitrogen), 2× 

antibiotic/antimicotic (Invitrogen), 50 ml Schneider Drosophila medium (Invitrogen), 0.01 M HEPES 

(Invitrogen), and Eagle’s basal medium (Invitrogen) to make 1 L final volume) (Basch, 1981) and 

cultured for 3 h at 37°C with 5% CO2 in serum-free Basch media with a density of approximately 50 

worm pairs in 5 ml of media. The culture media was discarded after 3 h, and replaced with fresh 

culture media. Worms were cultured for a further 10 days and ES products were collected every 24 

h, centrifuged at 4°C (500 g, 2,000 g and 4,000 g for 30 min each) to pellet and discard parasite 

material such as tegumental debris and eggs, and kept at -80°C until further analysis. Worms were 

observed by microscopy daily to ensure that all were motile during in vitro culture. Immotile worms 

were removed as soon as they were detected.  

2.2.5. EV isolation  

EVs were isolated and purified following established methods previously described for S. mansoni 

(Sotillo et al., 2016b). After differential centrifugation, samples were concentrated using a 10 kDa 

spin concentrator (Merck Millipore), and centrifuged at 15,000 g for 1 h at 4°C to pellet MVs, which 

were washed with PBS three more times and kept at -80°C until use. To collect ELVs, supernatant 

was ultracentrifuged using an MLS-50 rotor (Beckman Coulter) at 120,000 g for 3 h at 4°C, and the 

resultant pellet was resuspended in 200 μl of PBS and subjected to Optiprep® discontinuous gradient 
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separation. One ml of 40%, 20%, 10% and 5% iodixanol solutions prepared in 10 mM Tris-HCl, 0.25 

M sucrose, pH 7.2, was layered in decreasing density using an ultracentrifuge tube, and the 200 µl 

containing the resuspended EVs was added to the top layer and ultracentrifuged at 120,000 g for 18 

h at 4°C. A control tube was prepared in a similar way, replacing EVs with PBS to calculate the density 

of fractions. A total of 12 sample fractions were collected from the Optiprep® discontinuous 

gradient, and the excess Optiprep® solution was buffer exchanged using PBS containing 1× EDTA-

free protease inhibitor cocktail (Santa Cruz, Dallas, TX, USA) using a 10 kDa spin concentrator. The 

absorbance was measured at 340 nm for each fraction obtained from the control tubes, and their 

densities were calculated. Finally, protein concentration of all sample fractions was measured using 

a Bradford Protein Assay Kit (ThermoFischer).  

2.2.6. Tunable Resistive Pulse Sensing analysis of EVs  

The particle concentration and size distribution of each fraction was analysed for both S. mansoni-

derived ELVs and MVs by tunable resistive pulse sensing (TRPS) using a qNano instrument (Izon) 

following the manufacturer’s instructions. Nanopore NP150 and NP300 were used for ELVs and MVs, 

respectively. Pressure and voltage values were set to optimize the signal to ensure high sensitivity. 

Samples were diluted 1:5 in electrolyte (Izon) before applying to the nanopore. Calibration was 

performed using CP100 and CP400 carboxylated polystyrene calibration particles (Izon) for ELVs and 

MVs, respectively, at a 1:2,000 dilution. Size distribution and concentration of particles were 

analyzed using the software provided by Izon (version 3.2). Purity analysis of both ELVs and MVs 

(number of particles/µg of protein) was performed following methods described by Webber and 

Clayton (2013).  
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2.2.7. Trypsin shaving and sequential protein extraction of purified S. mansoni EVs 

Peptides from surface-accessible proteins were released by trypsin hydrolysis of EVs using a 

protocol described previously (Robinson et al., 2013). Briefly, sequencing-grade trypsin (1 µg/µl) 

was added to purified EVs for 10 min at 37°C. Treated EVs were then centrifuged at 120,000 g at 4°C 

for 1 h, and surface peptides were obtained from the supernatant. EVs collected as a pellet were 

further processed to investigate proteins associated with the EV membrane and within the EV 

lumen. Briefly, EVs were resuspended in water and sonicated (3x) which resulted in the release of 

EV cargo content which was recovered from the supernatant by centrifugation at 120,000 g for 1 h 

at 4°C. Subsequently, the pellet was incubated with 0.1 M Na2CO3 (pH 11) on ice for 30 min and then 

centrifuged at 120,000 g at 4°C for 1 h to recover peripheral membrane proteins (PMPs) from the 

supernatant. Finally, integral membrane proteins (IMPs) were obtained by solubilizing the pellet in 

1% Triton X-100/2% sodium dodecyl sulphate (SDS) at 37°C for 15 min. 

2.2.8. In-gel digestion of proteins  

For the proteomic analysis, each separated component of cargo, integral membrane and peripheral 

membrane proteins were electrophoresed on a 10% SDS-PAGE gel for 60 min at 140 V. Tryptic in-gel 

digestion was performed as described previously with minor modifications (Sotillo et al., 2014). In 

brief, the gel was stained with Coomassie blue (0.03%), destained overnight and each lane was cut 

into 7 slices (approximately 1 mm2). Each band was destained by washing twice in 50% acetonitrile 

with 200 mM ammonium bicarbonate at 37°C for 45 min, reduced with 20 mM dithiothreitol (Sigma) 

in 25 mM ammonium bicarbonate for 1 h at 65°C, alkylated with 50 mM iodoacetamide (IAM, Sigma) 

in 25 mM ammonium bicarbonate at 37°C for 15 min and digested with 100 ng/µl trypsin (Sigma) at 

37°C for 18 h. Peptides were extracted in 50% acetonitrile with 0.1% trifluoroacetic acid. The last 

step was performed three times to maximize peptide recovery. All peptides were finally dried in a 

vacuum concentrator. Samples were then resuspended in 10 µl of 0.1% trifluoroacetic acid and 
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tryptic peptides were desalted using a Zip-Tip® column (Merck Millipore) pipette tip according to 

manufacturer’s protocol and dried in a vacuum concentrator before analysis using liquid 

chromatography-tandem mass spectrometry (LC-MS/MS). The experimental work-flow from 

sample collection to proteomic analysis is shown in Figure 2.1. 

Figure 2. 1. Overview of experimental workflow for proteomic analysis of S. mansoni extracellular 

vesicles. Seven weeks after infection of mice with S. mansoni cercariae, adult worms were perfused 

and cultured. Excretory/secretory (ES) products were collected and purified from cell-conditioned 

media using differential centrifugation (500 g, 2,000 g and 4,000 g at 4°C, each for 30 min), followed 

by ultracentrifugation at 15,000 g at 4°C for 1 h to pellet MVs. The supernatant was then subjected 

to ultracentrifugation at 120,000 g at 4°C for 3 h to pellet the ELVs. The purity and concentration of 
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ELVs were enhanced using an Optiprep® gradient. Size and concentration of EVs were determined 

by tunable resistive pulse sensing using a qNano instrument. For the proteomic analysis, EV surface-

exposed proteins were obtained using trypsin shaving, then, sequential extraction resulted in 

purification of cargo proteins, PMPs and IMPs. Proteins were submitted to in-gel trypsin digestion 

and LC-MS/MS for proteomic analysis.  

  

2.2.9. LC-MS/MS protein analysis  

Tryptic fragments from each sample were resuspended in 8 µl of 0.1 % formic acid in LC-MS/MS-

grade water and separated chromatographically by an Eksigent nanoLC 415 system using a 15 cm 

long Eksigent column (C18-CL particle size 3 μm, 120 Å, 75 μm ID) and a linear gradient of 3-40% 

solvent B (100 acetonitrile/0.1% formic acid [aq]) for 45 min followed by 40-80 % solvent B in 5 min. 

A pre-concentration step (10 min) was performed employing an Eksigent Trap-column (C18-CL, 3 

μm, 120 Å, 350 μm x 0.5 mm) before commencement of the gradient. A flow rate of 300 nl/min was 

used for all experiments. The mobile phase consisted of solvent A (0.1% formic acid [aq]) and solvent 

B. Eluates from the RP-HPLC column were directly introduced into the PicoView ESI ionisation source 

of a TripleTOF 6600 MS/MS System (AB Sciex) operated in positive ion electrospray mode. All 

analyses were performed using Information Dependant Acquisition. AnalystTF 1.7.1 (Applied 

Biosystems) was used for data analysis. Briefly, the acquisition protocol consisted of the use of an 

Enhanced Mass Spectrum scan with 15 sec exclusion time and 100 ppm mass tolerance. A cycle time 

of 1800 ms was used to acquire full scan TOF-MS data over the mass range 400–1250 m/z and 

product ion scans over the mass range of 100–1500 m/z for up to 30 of the most abundant ions with 

a relative intensity above 150 and a charge state of +2 − +5. Full product ion spectra for each of the 

selected precursors were then used for subsequent database searches. 
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2.2.10. Database search and protein sequence analysis  

Data were searched against a database comprising the S. mansoni proteome obtained from 

WormBase ParaSite (http://parasite.wormbase.org/) appended to the common Repository of 

Adventitious Proteins (cRAP; http://www.thegpm.org/crap/) and their reversed decoy sequences 

using SearchGUI (v3.3.5). X!Tandem (vAlanin), Comet (v2018.01 rev.2), Tide (v3.2.x), MyriMatch 

(v2.1) and MS-GF + (v2016.01.02) were the search engines used, and the identification results were 

validated using PeptideShaker (v1.16.31). All searches were conducted employing the following 

search parameters: trypsin as digestion enzyme, maximum missed cleavages, 2; precursor ion mass 

tolerance ± 10 ppm, fragment ion tolerance ±0.1 Da; fixed modifications: carbamidomethylation of 

cysteine; variable modifications: deamidation of asparagine and glutamine, oxidation of 

methionine; Peptide Spectrum Matches (PSMs), peptides and proteins were validated at a 1.0% 

False Discovery Rate estimated using the decoy hit distribution. Reported results correspond to 

those proteins showing ≥ 2 distinct unique peptides. An estimate of the relative abundance of the 

predicted proteins was assessed using the spectrum counting abundance index (Milac et al., 2012). 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 

via the PRIDE partner repository with the dataset identifier PXD015857 and 10.6019/PXD015857. 

2.2.11. Bioinformatic analyses 

Gene ontology (GO) annotations were obtained using the Blast2GO software (Conesa et al., 2005), 

and GO terms were assigned as biological process or molecular function. Only children GO terms 

were used for subsequent analysis to avoid redundancy in GO terms. REViGO was used to 

summarize and plot GO terms (Supek et al., 2011). Protein family (Pfam) analysis was performed at 

the E-value <0.05 threshold using HMMER software (Conesa et al., 2005). Signal peptides and 

transmembrane domains were predicted using SignalP v4.1 and TMHMM v2.0, respectively 

(Emanuelsson et al., 2007, Krogh et al., 2001).  
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2.3. Results 

2.3.1. EV size, concentration and purity  

S. mansoni adult worm-derived ELVs were purified using an iodixanol density gradient as described 

previously for other helminths (Sotillo et al., 2016b, Eichenberger et al., 2018a, Eichenberger et al., 

2018c). The density and protein concentration of all 12 fractions collected from the gradient were 

analysed. Fractions of ELVs from different batches with densities ranging from 1.09 to 1.22 g/ml 

(fractions containing S. mansoni ELVs) as described previously (Sotillo et al., 2016b) were combined 

and subjected to TRPS analysis using a qNano instrument to determine size and concentration of 

ELVs (Figure 2.2A). Likewise, MVs collected from different batches of EVs were combined, protein 

concentration was measured and TRPS analysis was performed to obtain size and concentration 

(Figure 2.2B) of the MV-enriched sample. Accordingly, purity analysis of both ELVs (4.1 X 108 

particles/µg protein) and MVs (1.6 X 107 particles/µg protein) (Figure 2.2C) was also performed as 

described previously (Webber and Clayton, 2013).  
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Figure 2. 2. Tunable resistive pulse sensing (TRPS) analysis and purity of S. mansoni extracellular 

vesicles. Particle size (x-axis) and number (y-axis) of ELVs (A) and MVs (B) after purification were 

analysed by TRPS using a qNano instrument (iZon). The purity of both ELVs and MVs (C) was 

determined according to Webber and Clayton (Webber and Clayton, 2013).  

 

2.3.2. Proteomic analysis of S. mansoni-derived ELVs and MVs  

A proteomic analysis on each of the four components - TLPs, cargo proteins, IMPs and PMPs - of 

both ELVs and MVs was performed. In total, 286 and 716 different proteins were identified from S. 

mansoni-derived ELVs (Figure 2.3A) and MVs (Figure 2.3B), respectively. Of these, 27 were specific 

to ELVs and 457 specific to MVs, while 259 proteins were identified in both types of EVs (Figure 

2.3C). Antioxidants such as peroxiredoxin (Prx3) and proteins involved in exosome biogenesis or 

trafficking, such as vacuolar protein sorting-associated protein 28 homolog, were among the 27 ELV-

specific proteins identified (Table 2.1, Figure 2.4). ELVs contained 72 TLPs, 52 cargo proteins, 238 

proteins in the IMP component and 81 proteins in the PMP component, with the top 20 proteins 

identified from each compartment based on spectrum counting is presented as Supplementary 

Table 2.1, 2.2, 2.3 and 2.4, respectively. MVs, on the other hand, contained 218 TLPs, 138 cargo 

proteins, 576 IMPs and 142 PMPs, with the top 20 proteins identified from each compartment based 

on spectrum counting is presented as Supplementary Table 2.5, 2.6, 2.7 and 2.8, respectively.   Some 

of the most abundant proteins identified, based on spectrum counting, in both S. mansoni-derived 

ELVs (Supplementary Table 2.1-2.4) and MVs (Supplementary Table 2.5-2.8), included the TSPs TSP-

2 and TSP-4, glutathione-S-transferase (GST), saponin B domain-containing protein, DM9 domain-

containing protein, cathepsin domain-containing proteins, 13 kDa tegumental antigen, and histone 

H4-like protein. However, the TSP Sm23 was only identified in MVs.  
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Figure 2. 3. Shared and specific adult S. mansoni extracellular vesicles proteins. Venn diagram 

representing the number of proteins identified from the four sub-vesicular components, 

enumerating specific and shared proteins of ELVs (A) and MVs (B) and between the two vesicle types 

(C).

 

Table 2. 1. Functional annotation of proteins from S. mansoni exosome-like vesicles. 

  Description  # Unique peptides  

Accession 
number Proteases/inhibitors TLPs  Cargo  IMPs PMPs 

Smp_032580.1 
subfamily T1A non-peptidase homologue (T01 
family) 2 4 0 0 

Smp_070930.1 
proteasome (prosome macropain) subunit alpha 
type 4 4 3 0 0 

Smp_034490.1 Proteasome subunit beta type-6 0 2 0 0 

Smp_187140.1 Cathepsin L-like proteinase precursor 0 3 4 5 

Smp_301340.1 
proteasome (prosome, macropain) subunit, beta 
type,1 0 2 0 0 

Smp_214190.1 Calpain 4 4 11 3 
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Smp_340060.1 Mastin precursor 0 6 9 8 

Smp_006390.1 cysteine protease inhibitor 0 0 3 0 

Smp_030000.1 Putative aminopeptidase W07G4.4 10 0 7 0 

Smp_067060.1 cathepsin B-like peptidase (C01 family) 0 0 2 2 

Smp_103610.1 cathepsin B-like peptidase (C01 family) 0 0 4 2 

Smp_343260.1 cathepsin L, a 3 0 7 3 

Smp_083870.1 Putative aminopeptidase W07G4.4 4 0 0 0 

Smp_029500.1 Thimet oligopeptidase 2 0 0 0 

Smp_212920.1 20S proteasome subunit alpha 6 2 0 0 0 

Smp_207080.1 Proteasome subunit alpha type-6 2 0 0 0 

Smp_089670.1 Alpha-2-macroglobulin-like protein 1 5 35 0 2 

Smp_090080.1 Estrogen-regulated protein EP45 precursor 0 5 0 0 

Smp_075800.1 hemoglobinase (C13 family) 0 0 2 0 

Smp_007550.1 Uncharacterized  2 0 0 0 

  Biogenesis/vesicle trafficking          

Smp_035620.1 Multivesicular body subunit 12B 0 0 3 0 

Smp_048940.1 Vacuolar protein sorting-associated protein 37B 0 0 3 0 

Smp_055880.1 
chmp1 (chromatin modifying protein) (charged 
multivesicular body protein), putative 0 0 8 0 

 
Smp_067540.1 

Vacuolar protein sorting-associated protein 28 
homolog 0 0 2 0 

Smp_034870.1 AP-2 complex subunit beta 0 0 4 0 

Smp_055870.1 vesicle-associated membrane protein 7-like 0 2 11 2 

Smp_068530.1 putative syntenin 0 2 8 3 

Smp_074140.1 Annexin A13 (Annexin XIII) 3 4 13 9 

Smp_013690.1 BRO1 domain-containing protein BROX 3 0 16 9 

Smp_071630.1 Ras-related protein Rab-2A 0 0 6 0 

Smp_077720.1 putative annexin 0 0 6 5 

Smp_062300.1 Ras-related C3 botulinum toxin substrate 1 0 0 3 0 

Smp_045550.1 putative annexin 0 0 11 0 

Smp_045560.1 putative annexin 0 0 5 2 

Smp_067140.1 Ras-related protein Rab-7a 0 0 2 0 

Smp_104670.1 ras-related protein Rab-8A isoform X1 0 0 3 0 

Smp_139340.1 Ras-related protein Rab-27A 0 0 4 0 

Smp_094820.1 
Vacuolar protein sorting-associated protein VTA1-
like protein 0 0 4 0 

Smp_094420.1 Rab GDP dissociation inhibitor alpha 0 0 4 4 

Smp_210430.1 Rab-protein 8 0 0 2 0 

Smp_104310.1 rab11, putative 0 0 7 0 

Smp_312770.1 Ras-related protein Ral-A 0 0 3 0 

Smp_045710.1 Charged multivesicular body protein 4b 0 0 6 0 

  Antioxidants         

Smp_309480.1 Uncharacterized  2 2 4 0 

Smp_004470.1 Peroxiredoxin, Prx3 2 0 0 0 

Smp_158110.1 Thioredoxin peroxidase 2 0 0 0 

  Membrane structure          

Smp_040970.1 putative vacuolar proton atpases 0 2 23 5 
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Smp_041460.1 tetraspanin, putative (Sm-TSP-D76) 0 7 9 7 

Smp_017730.1 200-kDa GPI-anchored surface glycoprotein 7 14 0 0 

Smp_017430.1 CD63 antigen 0 5 9 5 

Smp_055780.1 Multidrug resistance protein 1 4 4 50 24 

Smp_140000.1 putative tetraspanin-CD63 receptor (Sm-TSP-4) 0 3 7 4 

Smp_155310.1 tetraspanin, putative (Sm-TSP-1) 0 2 6 0 

Smp_104270.1 Bis(5'-adenosyl)-triphosphatase enpp4 0 14 28 19 

Smp_313560.1 alkaline phosphatase 2 4 19 4 

Smp_344440.1 putative tetraspanin 18, isoform 1 0 4 11 6 

Smp_015020.1 
Sodium/potassium-transporting ATPase subunit 
alpha 0 0 11 0 

Smp_004310.1 ATPase, H+ transporting, lysosomal, V0 subunit c 0 0 4 0 

Smp_005720.1 Aquaporin-3 (AQP-3) 0 0 2 0 

Smp_011560.1 putative tetraspanin 0 0 2 0 

Smp_042910.1 osteopetrosis associated transmembrane protein 0 0 2 0 

Smp_043990.1 basigin related 0 0 3 0 

Smp_037540.1 putative alpha-amylase 0 0 6 0 

Smp_032520.1 
putative lysosome-associated membrane 
glycoprotein 0 0 3 0 

Smp_031880.1 Immunoglobulin-like domain-containing protein 0 0 3 0 

Smp_073400.1 
putative lysosome-associated membrane 
glycoprotein 0 0 2 0 

Smp_162510.1 SJCHGC07463 protein 0 0 6 0 

Smp_128110.1 transporter, major intrinsic protein family protein 0 0 2 0 

Smp_201730.1 SJCHGC09800 protein 0 0 2 0 

Smp_173150.1 CD63 antigen 0 0 3 0 

Smp_091650.1 putative phospholipid-transporting ATPase IIB 0 0 18 0 

Smp_153390.1 
putative ectonucleotide 
pyrophosphatase/phosphodiesterase 0 0 2 0 

Smp_123280.1 
Major facilitator superfamily domain-containing 
protein 1 0 0 10 4 

Smp_244680.1 protein VAC14 homolog 0 0 2 0 

Smp_174490.1 expressed conserved protein 0 0 7 0 

Smp_169610.1 putative zinc finger protein 0 0 2 0 

Smp_159070.1 hypothetical protein MS3_09367 0 0 2 0 

Smp_128940.1 putative metabotropic glutamate receptor 0 0 5 0 

Smp_131840.1 25 kDa integral membrane protein 0 0 2 0 

Smp_169870.1 putative cystinosin 0 0 3 0 

Smp_095630.1 CD9-like protein Sm-TSP-1 0 0 2 0 

Smp_130300.1 
Sodium/potassium-transporting ATPase subunit 
alpha 0 0 4 0 

Smp_123670.1 Lysosomal acid phosphatase 0 0 4 2 

Smp_091240.1 
Voltage-dependent anion-selective channel 
protein 2 0 0 4 2 

Smp_165170.1 
putative transient receptor potential cation 
channel,subfamily m, member 0 0 2 0 

Smp_150500.1 Protein lifeguard 3 0 0 2 0 
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Smp_167240.1 SJCHGC05348 protein 0 0 5 0 

Smp_210250.1 CDC50 family protein, LEM3 family 0 0 6 0 

Smp_089700.1 integrin beta 2 0 0 4 0 

Smp_129820.1 multi drug resistance-associated protein 0 0 4 0 

Smp_166340.1 SJCHGC03061 protein 0 0 2 0 

Smp_147070.1 
Putative sodium-coupled neutral amino acid 
transporter 9 0 0 4 0 

Smp_160160.1 

putative sialin (solute carrier family 17 member 5) 
(sodium/sialic acid cotransporter) (ast) (membrane 
glycoprotein hp59) 0 0 5 0 

Smp_162770.1 lysosome-associated membrane glycoprotein 0 0 3 0 

Smp_099150.1 
Pleckstrin homology domain-containing family B 
member 2 0 0 5 0 

Smp_194920.1 T-cell immunomodulatory protein 0 0 10 7 

Smp_164210.1 Synaptosomal-associated protein 25 0 0 16 0 

Smp_246270.1 
ATP-binding cassette sub-family B member 6, 
mitochondrial 0 0 16 7 

Smp_344430.1 SID1 transmembrane family member 1 0 0 4 0 

Smp_302090.1 putative ctl2 0 0 4 3 

Smp_267000.1 
ATPase, H+ transporting, lysosomal accessory 
protein 1 0 0 7 3 

Smp_324850.1 SJCHGC01860 protein 0 0 3 0 

Smp_300190.1 Aquaporin-9 (AQP-9) (Small solute channel 1) 0 0 2 0 

Smp_340540.1 lysosome membrane protein 2 0 0 5 2 

Smp_245370.1 Equilibrative nucleoside transporter 3 0 0 3 0 

Smp_141010.1 Dysferlin 0 0 0 6 

Smp_335630.1 tetraspanin 2 (Sm-TSP-2) 0 5 6 6 

Smp_040080.1 SJCHGC08990 protein 0 0 7 5 

Smp_074140.1 Annexin 13  0 0 4 0 

Smp_069120.1 Synaptotagmin-2 0 0 2 0 

Smp_127820.1 SJCHGC05417 protein 0 0 2 0 
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Figure 2. 4. Schematic representation of most representative S. mansoni exosome-like vesicle and 

microvesicle-unique proteins. Several unique membrane and cargo specific proteins were found in 

the different populations of extracellular vesicles isolated from the excretory/secretory products of 

Schistosoma mansoni. 

A GO and protein family analysis of the identified proteins from both S. mansoni-derived ELVs and 

MVs was performed. The most abundant GO terms within the “biological process” ontology of ELVs 

(Figure 2.5A) were “primary metabolic process” followed by “cation transport”, “carbohydrate 

metabolic process”, “phosphorylation” and “ATP metabolic process”; whereas the most abundant 

biological process GO terms for MVs (Figure 2.5B) were “regulation of cellular process” followed by 

“positive regulation of biological process”, “primary metabolic process”, “cellular response to 

stimuli”, and “positive regulation of cellular process”.  

The most prominent GO terms within the “molecular function” ontology of ELVs (Figure 2.6A) were 

“protein binding” followed by “transmembrane transporter activity”, “transferase activity”, and 
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“oxidoreductase activity”; whereas the most prominent molecular function GO terms for MVs 

(Figure 2.6B) were “heterocyclic compound binding” followed by “anion binding”, “carbohydrate 

derivative binding” and “cytoskeletal protein binding”.  

 

Figure 2. 5. Bioinformatic analysis of gene ontology biological process terms in adult S. mansoni 

exosome-like vesicles and microvesicles. REViGO plot showing the most abundantly represented 
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GO terms ranked by nodescore (Blast2GO). Increasing heatmap score signifies increasing nodescore 

from Blast2GO, while circle size denotes the frequency of the GO term from the underlying 

database.



 

Figure 2. 6. Bioinformatic analysis of gene ontology molecular function terms in adult S. mansoni 

exosome-like vesicles and microvesicles. Bioinformatic analysis of gene ontology molecular 

function terms in adult S. mansoni ELVs and MVs. REViGO plot showing the most abundantly 

represented GO terms ranked by nodescore (Blast2GO). Increasing heatmap score signifies 
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increasing nodescore from Blast2GO, while circle size denotes the frequency of the GO term from 

the underlying database. 

 

I have also reported the top 10 represented protein families in each vesicle type analysed (Figure 

2.7). The eight most highly represented protein family domains (by amount of protein containing a 

particular domain) were common to both ELVs and MVs but presented different levels of 

abundance, including “EF-hand domain pair”, “ADP-ribosylation factor family”, “50s ribosome-

binding GTPase” and “Ras” family proteins. In addition, proteins from the TSP family were abundant 

in the ELVs but less well represented in the MVs.  

 

Figure 2. 7. Pfam analysis of the proteins secreted by S. mansoni extracellular vesicles. Bar graph 

showing the top 10 most represented protein families of ELVs and MVs of adult S. mansoni.  
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From a total of 286 proteins identified in ELVs 39 (13.6%) and 69 (24.1%) contained signal peptide 

and transmembrane domains, respectively (Supplementary Table 2.1-2.4 for the top 20 proteins 

ranked based on spectrum counting), whereas of the 716 proteins identified in MVs 64 (8.9 %) and 

120 (16.8%) contained signal peptide and transmembrane domains, respectively (Supplementary 

Table 2.5-2.8 for the top 20 proteins ranked based on spectrum counting and (Kifle et al., 2020)). 

Functional annotation revealed proteins of potential relevance for host-parasite communication in 

both types of EVs analysed, including proteases, protease inhibitors and antioxidants in all 

compartments of EVs and proteins associated with membrane structures from ELVs (Table 2.1) and 

MVs (Table 2.2). Moreover, previously described vaccine candidates, including, TSP-2, GST, Sm29, 

and calpain were identified in both vesicle types, while the TSP Sm23 was identified only in MVs. 

Moreover, proteases corresponding to cathepsin family proteins such as cathepsin B- and cathepsin 

L-like proteases were identified in both ELVs and MVs. Other proteases, including putative 

aminopeptidase W07G4.4, were released following trypsin shaving of both EV types. In addition, 

proteins from the annexin group, including annexin A3, annexin A7, annexin A8 and annexin A8-like 

protein 1, were identified only in MVs. Protease inhibitors such as serpin B9 and cystatin-B were 

also identified only in MVs, while cysteine protease inhibitors were identified only in ELVs. Further, 

proteins with antioxidant or defence roles such as thioredoxin peroxidase were identified in both 

EV types analysed, whereas, peroxiredoxin Prx3 was only found in ELVs, and 

prostamide/prostaglandin F, thioredoxin peroxidase-2 and thioredoxin-2 were anti-oxidant proteins 

found only in MVs (Table 2.1 and 2.2).    

I identified proteins involved in vesicle biogenesis and trafficking exclusively in ELVs including chmp1 

(chromatin modified protein), charged MVB proteins, vacuolar protein sorting-associated protein as 

well as Rab related proteins such as Rab-2A, Rab-7a, Rab-27A and Ral A. Moreover, other vesicle 

biogenesis proteins such as Ras related proteins (Rab-2B, Rab 6, Rab-10, Rab-14 and Rab-18) were 
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identified only in MVs. In addition, proteins with similar roles such as charged MVB protein 4b (SNF7 

homolog associated with Alix 1), syntenin-1, annexin, Rab-8A and Rab-11A were identified from 

both vesicles types. Further, common exosome markers, such as heat shock protein (Hsp)-70, 

members of the TSP family (SmTSP-1, Sm-TSP-2, Sm-TSP-4 and putative TSP-18), Rab protein families 

and enolase were identified in both ELVs and MVs, and hsp-90 was identified only in MVs (Tables 

2.1 and 2.2 and (Kifle et al., 2020)).  

Membrane transporters, channels, and other molecules involved in membrane structure were 

identified from different compartments of both EV types analysed including aquaporin, Na+/K+-

transporting ATPase, H+-transporting ATPase and phospholipid-transporting ATPase IIB. Moreover, 

other proteins with potential roles in membrane structure and signalling including, the TSPs noted 

above, as well as Sm13 and the 25 kDa integral membrane protein, were identified in both vesicle 

types, whereas other membrane proteins were unique to just one vesicle population, including the 

200 kDa GPI-anchored surface glycoprotein, found in ELVs only, and Sm23, tegument antigen (I(H)A) 

and CD 151 homologue, found in MVs only (Tables 2.1 and 2.2 and (Kifle et al., 2020)). 

 

Table 2. 2. Functional annotations of proteins from S. mansoni microvesicles. 

  Description  # unique peptides  

Accession 
number  Proteases/inhibitors  TLPs  Cargo  IMPs  PMPs  

Smp_089670.1 Alpha-2-macroglobulin-like protein 1 2 11 3 2 

Smp_089180.1 Ubiquitin carboxyl-terminal hydrolase 7 2 0 3 0 

Smp_100090.1 High mobility group protein DSP1 2 0 0 0 

Smp_103610.1 cathepsin B-like peptidase (C01 family) 2 0 6 2 

Smp_187140.1 Cathepsin L-like proteinase precursor 4 2 5 3 

Smp_207080.1 Proteasome subunit alpha type-6 5 2 0 0 

Smp_214190.1 Calpain 6 12 41 4 

Smp_153960.1 Presenilin homolog 3 0 0 0 

Smp_155720.1 Glycogen synthase kinase-3 alpha 3 0 0 0 

Smp_141610.1 Cathepsin B-like cysteine proteinase 3 2 3 0 

Smp_212880.1 Proteasome subunit beta type-5 5 0 0 0 

Smp_172590.1 family S10 unassigned peptidase (S10 family) 4 4 10 3 

Smp_247170.1 Major egg antigen 6 0 3 0 
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Smp_340060.1 Mastin precursor 13 13 17 9 

Smp_343260.1 cathepsin L, a 23 0 12 12 

Smp_346350.1 26S proteasome non-ATPase regulatory subunit 1 38 0 2 0 

Smp_246110.1 Kyphoscoliosis peptidase 6 0 7 4 

Smp_307450.1 U-actitoxin-Avd3s 8 0 0 0 

Smp_303330.1 Hemoglobinase 7 0 0 0 

Smp_032580.1 Proteasome subunit alpha type-5 0 3 2 0 

Smp_013040.1 Lysosomal aspartic protease 0 2 6 0 

Smp_074500.1 Proteasome subunit beta type-2 0 2 0 0 

Smp_070930.1 Proteasome subunit alpha type-4 0 3 3 0 

Smp_071610.1 Dipeptidyl peptidase 2 0 2 4 0 

Smp_034490.1 Proteasome subunit beta type-6 0 5 4 0 

Smp_082030.1 Protein dj-1beta 0 3 3 0 

Smp_092280.1 20S proteasome subunit alpha 7 0 3 2 2 

Smp_076230.1 Proteasome subunit alpha-type 7-like 0 2 0 0 

Smp_212920.1 Proteasome subunit alpha type-1 0 4 0 0 

Smp_301340.1 Proteasome subunit beta type-1-B 0 4 0 0 

Smp_006390.1 Cystatin-B 0 0 6 0 

Smp_003980.1 Calpain-B 0 0 6 0 

Smp_008545.1 60 kDa heat shock protein, mitochondrial 0 0 3 0 

Smp_027610.1 40S ribosomal protein S3 0 0 3 0 

Smp_022400.1 Glucose-6-phosphate isomerase 0 0 11 0 

Smp_030000.1 Putative aminopeptidase W07G4.4 0 0 21 0 

Smp_028500.1 Caspase-3 0 0 2 0 

Smp_018240.1 Transitional endoplasmic reticulum ATPase 0 0 19 0 

Smp_019010.1 Dipeptidyl peptidase 3 0 0 9 0 

Smp_029500.1 Thimet oligopeptidase 0 0 4 0 

Smp_061920.1 UV excision repair protein RAD23 homolog B 0 0 5 0 

Smp_056970.2 Glyceraldehyde-3-phosphate dehydrogenase 0 0 27 0 

Smp_031730.1 Signal peptidase complex catalytic subunit SEC11C 0 0 2 0 

Smp_067490.1 Sorcin 0 0 6 0 

Smp_067480.1 Sorcin 0 0 6 0 

Smp_033710.1 ATP-dependent RNA helicase DDX3Y 0 0 3 0 

Smp_067060.1 Cathepsin B-like cysteine proteinase 0 0 5 0 

Smp_089460.1 Calpain-B 0 0 13 0 

Smp_083870.1 Putative aminopeptidase W07G4.4 0 0 5 0 

Smp_099030.1 Casein kinase II subunit alpha 0 0 5 0 

Smp_136640.1 Sorcin 0 0 5 0 

Smp_085640.1 COP9 signalosome complex subunit 4 0 0 2 0 

Smp_079770.1 Probable protein disulfide-isomerase ER-60 0 0 2 0 

Smp_090800.1 Xaa-Pro dipeptidase 0 0 3 0 

Smp_102040.1 
Guanine nucleotide-binding protein subunit beta-2-
like 1 0 0 3 0 

Smp_072140.1 Rho-related GTP-binding protein RhoC 0 0 5 0 

Smp_091470.1 Puromycin-sensitive aminopeptidase 0 0 4 0 

Smp_104110.1 Ras-like GTP-binding protein RHO 0 0 4 0 

Smp_089100.1 Glutathione hydrolase 7 0 0 12 0 
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Smp_075800.1 Hemoglobinase 0 0 7 0 

Smp_247080.1 Aminopeptidase N 0 0 3 4 

Smp_165490.1 
Serine/threonine-protein phosphatase 2A catalytic 
subunit alpha isoform 0 0 3 0 

Smp_214180.1 Calpain 0 0 10 0 

Smp_155560.1 Serpin B9 0 0 2 0 

Smp_213550.1 26S proteasome non-ATPase regulatory subunit 14 0 0 2 0 

Smp_213240.1 Prolyl endopeptidase 0 0 7 0 

Smp_243200.1 Calpain-7 0 0 2 0 

  Biogenesis/vesicle trafficking          
Smp_099310.1 Protein transport protein Sec23A 2 0 3 0 

Smp_118830.1 F-actin-capping protein subunit alpha-2 2 0 3 0 

Smp_131870.2 Syntaxin-binding protein 1 3 0 0 0 

Smp_157410.1 Cytoplasmic dynein 1 heavy chain 1 3 0 0 0 

Smp_154420.1 clathrin heavy chain 3 0 14 3 

Smp_332400.1 Coatomer subunit delta 12 0 3 0 

Smp_333910.1 F-actin-capping protein subunit beta 12 0 5 0 

Smp_008660.2 Severin 0 0 7 0 

Smp_071630.1 Ras-related protein Rab-2B 0 0 11 0 

Smp_077720.2 Annexin A5 0 0 4 0 

Smp_004910.1 Ras-related protein Rab-14 0 0 4 0 

Smp_005670.1 Ras-related protein Rab-11A 0 0 2 0 

Smp_014020.1 Cell cycle control protein 50A 0 0 3 0 

Smp_010090.1 Charged multivesicular body protein 5 0 0 3 0 

Smp_008230.1 Ras-related protein Rab-18 0 0 4 0 

Smp_014660.1 Ras-related protein Rab-10 0 0 4 0 

Smp_022810.1 Ras-related protein Rab-2B 0 0 6 0 

Smp_048940.1 Vacuolar protein sorting-associated protein 37B 0 0 2 0 

Smp_045710.1 Charged multivesicular body protein 4b 0 0 6 0 

Smp_055880.1 Charged multivesicular body protein 1a 0 0 8 0 

Smp_032150.1 Charged multivesicular body protein 3 0 0 3 0 

Smp_047450.1 Synaptobrevin homolog YKT6 0 0 3 0 

Smp_057320.1 Vesicle-fusing ATPase 2 0 0 4 0 

Smp_035620.1 Multivesicular body subunit 12B 0 0 2 0 

Smp_045500.1 Annexin A7 0 0 4 0 

Smp_034870.1 AP-2 complex subunit beta 0 0 5 0 

Smp_055870.1 Vesicle-associated membrane protein 8 0 0 7 0 

Smp_104670.1 Ras-related protein Rab-8A 0 0 4 0 

Smp_146400.1 Syntaxin-binding protein 1 0 0 3 0 

Smp_074020.1 AP-2 complex subunit alpha 0 0 6 0 

Smp_093230.1 Actin-related protein 10 0 0 2 0 

Smp_068530.1 Syntenin-1 0 0 10 0 

Smp_092770.1 Coatomer subunit gamma-2 0 0 2 0 

Smp_079000.1 Charged multivesicular body protein 1b 0 0 3 0 

Smp_104310.1 Ras-related protein Rab-11A 0 0 5 0 

Smp_174580.1 Vesicular integral-membrane protein VIP36 0 0 2 0 

Smp_169460.1 GTP-binding protein YPTC1 0 0 7 0 

Smp_210250.1 Cell cycle control protein 50A 0 0 8 0 
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Smp_340230.1 Charged multivesicular body protein 2a 0 0 4 0 

Smp_245450.1 Coatomer subunit alpha 0 0 3 0 

Smp_337410.1 Tumor susceptibility gene 101 protein 0 0 3 0 

Smp_163580.1 Ras-related protein Rab6 0 0 2 0 

  Antioxidants          

Smp_194940.1 Prostamide/prostaglandin F synthase 4 0 7 0 

Smp_158110.1 Thioredoxin peroxidase 3 3 7 3 

Smp_309480.1 Thioredoxin peroxidase 2 8 6 9 5 

Smp_008070.1 Thioredoxin-2 0 3 2 0 

  Membrane structure          

Smp_121160.2 Mitochondrial dicarboxylate carrier 2 0 0 0 

Smp_103200.1 V-type proton ATPase subunit D 2 0 8 0 

Smp_099890.1 Receptor expression-enhancing protein 5 2 2 5 2 

Smp_104270.1 Bis(5'-adenosyl)-triphosphatase enpp4 2 0 20 2 

Smp_127820.1 SJCHGC05417 protein 2 0 0 2 

Smp_130300.1 
Sodium/potassium-transporting ATPase subunit 
alpha 3 0 12 0 

Smp_130280.1 cell polarity protein 3 0 0 2 

Smp_141010.1 Dysferlin 3 0 0 2 

Smp_340630.1 putative endoplasmin 15 0 0 10 

Smp_313560.1 alkaline phosphatase 9 4 17 6 

Smp_315900.1 Plasma membrane calcium-transporting ATPase 3 10 0 2 0 

Smp_005720.1 Aquaporin-3 0 2 5 0 

Smp_020370.1 Reticulon-4 0 2 7 0 

Smp_017430.1 23 kDa integral membrane protein 0 4 16 0 

Smp_012440.1 
Solute carrier family 2, facilitated glucose 
transporter member 1 0 7 13 0 

Smp_041460.1 tetraspanin D76 0 2 8 0 

Smp_153390.1 
putative ectonucleotide 
pyrophosphatase/phosphodiesterase 0 7 5 3 

Smp_155310.1 tetraspanin, putative (Sm-TSP-1) 0 2 6 0 

Smp_140000.1 putative tetraspanin-CD63 receptor (Sm-TSP-4) 0 5 8 2 

Smp_162770.1 lysosome-associated membrane glycoprotein 0 2 0 3 

Smp_335630.1 tetraspanin 2 (Sm-TSP-2) 0 6 7 8 

Smp_300190.1 Aquaporin-9 (AQP-9) (Small solute channel 1) 0 3 6 4 

Smp_267000.1 
ATPase, H+ transporting, lysosomal accessory 
protein 1 0 2 7 4 

Smp_007260.1 
Sarcoplasmic/endoplasmic reticulum calcium ATPase 
2 0 0 3 0 

Smp_011560.1 CD151 antigen 0 0 5 0 

Smp_029390.1 V-type proton ATPase subunit B 0 0 14 0 

Smp_015020.1 
Sodium/potassium-transporting ATPase subunit 
alpha 0 0 22 0 

Smp_024820.1 CD9 antigen 0 0 3 0 

Smp_048230.1 High affinity copper uptake protein 1 0 0 4 0 

Smp_039130.1 NPC intracellular cholesterol transporter 1 0 0 16 0 

Smp_055780.1 Multidrug resistance protein 1 0 0 54 0 
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Smp_040080.1 Glycosylated lysosomal membrane protein B 0 0 7 0 

Smp_059530.1 25 kDa integral membrane protein 0 0 3 0 

Smp_091650.1 putative phospholipid-transporting ATPase IIB 0 0 20 2 

Smp_136710.1 

putative calcium-transporting atpase 
sarcoplasmic/endoplasmic reticulum type (calcium 
pump) 0 0 7 2 

Smp_105680.1 
Dolichyl-diphosphooligosaccharide--protein 
glycosyltransferase subunit 1 0 0 2 0 

Smp_105410.1 
Solute carrier family 2, facilitated glucose 
transporter member 3 0 0 4 0 

Smp_129820.1 Canalicular multispecific organic anion transporter 2 0 0 9 0 

Smp_131890.1 
Sodium- and chloride-dependent glycine transporter 
1 0 0 2 0 

Smp_127940.1 Sodium-driven chloride bicarbonate exchanger 0 0 2 0 

Smp_123280.1 
Major facilitator superfamily domain-containing 
protein 1 0 0 15 0 

Smp_130230.1 Ras-related protein Rac1 0 0 2 0 

Smp_128940.1 Metabotropic glutamate receptor 7 0 0 3 0 

Smp_136240.1 
Vesicle-associated membrane 
protein/synaptobrevin-binding protein 0 0 3 0 

Smp_141680.1 Fasciclin-1 0 0 2 0 

Smp_079220.1 ADP,ATP carrier protein 0 0 3 0 

Smp_082810.1 Cell division control protein 42 homolog 0 0 7 0 

Smp_069120.1 Synaptotagmin-2 0 0 11 0 

Smp_075210.1 Prohibitin-2 0 0 3 0 

Smp_127650.1 Secretory carrier-associated membrane protein 1 0 0 2 0 

Smp_099150.1 
Pleckstrin homology domain-containing family B 
member 2 0 0 4 0 

Smp_162510.1 Solute carrier family 46 member 3 0 0 5 0 

Smp_246400.1 Glycosyltransferase 1 domain-containing protein 1 0 0 6 4 

Smp_173150.1 CD63 antigen 0 0 2 0 

Smp_194970.1 25 kDa integral membrane protein 0 0 2 0 

Smp_167240.1 Nicastrin 0 0 3 0 

Smp_332300.1 Glucose-6-phosphate exchanger SLC37A2 0 0 2 0 

Smp_194920.1 T-cell immunomodulatory protein 0 0 12 3 

Smp_246270.1 
ATP-binding cassette sub-family B member 6, 
mitochondrial 0 0 16 4 

Smp_196110.1 Ferric-chelate reductase 1 0 0 6 0 

Smp_176940.1 High affinity cationic amino acid transporter 1 0 0 4 0 

Smp_333250.1 
Putative phospholipid-transporting ATPase 
C4F10.16c 0 0 3 0 

Smp_171870.1 
Synaptic vesicle 2-related protein; Short=SV2-related 
protein 0 0 3 0 

Smp_244710.1 ATP-binding cassette sub-family A member 3 0 0 2 0 

Smp_344440.1 putative tetraspanin 18, isoform 1 0 0 6 14 
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Smp_343120.1 Plasma membrane calcium-transporting ATPase 3 0 0 13 0 

Smp_160160.1 Sialin 0 0 2 0 

Smp_340540.1 lysosome membrane protein 2 0 0 6 9 

Smp_245370.1 Equilibrative nucleoside transporter 3 0 0 3 0 

Smp_346900.1 25 kDa integral membrane protein 0 0 3 0 

Smp_190770.1 LanC-like protein 2 0 0 0 3 

Smp_248070.1 putative dock 0 0 0 4 

Smp_315840.1 Kinase D-interacting substrate of 220 kDa 0 0 0 6 

Smp_336620.1 
Gamma-aminobutyric acid receptor subunit gamma-
3 0 0 0 9 

Smp_323680.1 SJCHGC06792 protein 0 0 0 8 

Smp_095630.1 CD81 antigen 0 0 3 0 

  

 

2.4. Discussion 

Cells release different populations of EVs, which may either derive from the endosomal pathway, 

formed by inward budding of the MVB membrane and allowing capture of cytoplasmic cargo (ELVs, 

30-150 nm in diameter), or bud directly from their plasma membrane (MVs, 100-1000 nm in 

diameter) (Kalra et al., 2016). Parasite-secreted EVs are released from different tissues of the 

parasite but are thought to be primarily from the tegument and gut (de la Torre-Escudero et al., 

2016). In this work, a proteomic analysis of two subpopulations of EVs secreted from adult S. 

mansoni was performed to gain more comprehensive coverage of these EV proteomes. The ELVs 

that I isolated fit the characteristics and flotation properties on a iodixanol-density gradient for 

classification as exosomes (Théry et al., 2006). Moreover, the size distribution and concentration of 

both S. mansoni-derived ELVs and MVs were analysed by TRPS, allowing me to confirm the presence 

of these EV types. Importantly, well-standardised techniques (Tauro et al., 2013) were used to 

isolate these two EV types, giving me confidence in the purity of the vesicle samples.  

 

The ELV sample purified in the present study had a higher purity (number of particles/µg of protein) 

than the MV sample. The purity ratio was primarily described for exosomes (Webber and Clayton, 

2013), but since MVs are physically much larger than exosomes, it is expected that they contain 



86 
 

more proteins and hence the purity ratio should be lower. The particle diameter range for the two 

vesicle types appeared to be similar and overlapped (Raposo and Stoorvogel, 2013). Accordingly, 

the size range of ELVs had a wider range than that of MVs, however the median size obtained 

corresponded to that of exosomes (van Niel et al., 2018). MVs, however, had a relatively higher 

concentration (particles/ml) than ELVs for any given size (Figure 2A and 2B). Although apoptotic 

bodies differ clearly from exosomes by their larger size, other vesicle types are more difficult to 

separate since MVs with a similar size to exosomes can also bud at the plasma membrane (Booth et 

al., 2006). Moreover, the size overlap observed between the two vesicles analysed can be explained 

at least in part by the nanopore size used to measure the size distribution of these vesicles – NP150 

was used to analyse ELVs (60 to 480 nm) whereas NP300 was used for MVs (115 to 1150 nm). Several 

studies have reported helminth EVs that correspond to exosomes in terms of vesicle size, including 

S. mansoni (Nowacki et al., 2015, Sotillo et al., 2016b, Samoil et al., 2018), other trematodes 

(Marcilla et al., 2012, Bernal et al., 2014, Cwiklinski et al., 2015, Chaiyadet et al., 2015a, Zhu et al., 

2016a), nematodes (Bernal et al., 2014, Zamanian et al., 2015, Simbari et al., 2016, Tzelos et al., 

2016, Eichenberger et al., 2018a, Eichenberger et al., 2018c, Shears et al., 2018), and cestodes (Siles-

Lucas et al., 2017, Nicolao et al., 2019). To my knowledge, only one study was done prior to this one 

involving helminth-derived MVs, which reported a 15K pelleted fraction from F. hepatica (Cwiklinski 

et al., 2015) with size range of 50-200 nm and, furthermore, MVs analysed in this study were within 

the expected size range for mammalian MVs (van Niel et al., 2018). Using sequential extraction to 

attribute proteins to sub-vesicular compartments of EVs coupled with highly accurate tandem mass 

spectrometry, I identified more than twice as many ELV proteins than reported earlier (Sotillo et al., 

2016b).  

 

To determine the location of each protein within their respective vesicles, I performed a sequential 

extraction as described previously for F. hepatica- (Cwiklinski et al., 2015) and Mycoplasma 
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hyopneumoniae-derived ELVs (Robinson et al., 2013). Proteins identified with high abundance 

following trypsin shaving of both ELVs and MVs include a fatty acid binding protein with a role in 

biosynthesis of fatty acids and cholesterols in schistosomes (Tendler et al., 1996), the antioxidants 

thioredoxin peroxidase (Macalanda et al., 2018) and GST (Bourke et al., 2014, Boulanger et al., 

1991), dynein light chain (Hoffmann and Strand, 1996) and membrane structure proteins, for 

example the Sm13 tegument antigen (Tebeje et al., 2016). Proteases and peptidases including 

calpain, cathepsins B, cathepsin L, cathepsin A, legumain, and a Pro-Xaa carboxypeptidase were also 

identified following trypsin shaving of both vesicle types analysed but with relatively less 

abundance. Similar peptidases were released following trypsin shaving of the F. hepatica-derived 

EV surface (Cwiklinski et al., 2015). Whether these proteases and peptidases, many of which do not 

contain transmembrane or other membrane-anchoring motifs, are found on the surface of EVs in 

vivo remains to be determined. Proteases and other enzymes have been reported on the surface of 

mammalian exosomes following invagination of the cell membrane whereby molecules on the cell 

surface become localized to the luminal side of the endosomal membrane. Some of these proteases 

then make their way to the exosome surface through small invaginations of the endosomal 

membrane where they remain once the multi-vesicular body forms and eventually fuses with the 

cell membrane to release the newly formed exosome into the extracellular space (Sanderson et al., 

2019). Another possibility is that soluble proteases bind to the exosome surface within either the 

endosomal compartment or following secretion of the exosomes into the extracellular space. Once 

localized to the exosome surface, proteases are free to encounter substrates either at the cell 

surface or within the extracellular matrix, including ectodomain shedding (Shimoda and Khokha, 

2017). Interestingly, most of the proteases associated with the mammalian cell surface are 

metalloproteases, particularly matrix metalloproteases (Shimoda and Khokha, 2017), whereas there 

was only a single MMP (nardilysin or ADAM17) identified on the MV surface and none were detected 

on ELVs despite the presence of a family of leishmanolysin-like clan M metallopeptidases in the S. 
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mansoni genome (Silva et al., 2011). Instead, cysteine proteases were abundantly represented on 

the surface of the schistosome vesicles, reflecting their genome-wide over-representation in many 

blood-feeding helminths (Caffrey et al., 2018), and suggestive of a role for EVs in feeding. Further, 

production of reactive oxygen species (oxygen radicals, superoxide, and hydrogen peroxide) by 

phagocytes is a primary pathway of immune attack against parasites including schistososmes 

(Hewitson et al., 2009). Correspondingly, EV cargo contains high levels of antioxidants, including 

catalases, glutathione and thioredoxin peroxidases, and peroxiredoxins (Sotillo et al., 2016b, Samoil 

et al., 2018, Cwiklinski et al., 2015, Coakley et al., 2017).  

 

HSP-70 (Simpson et al., 2012, Mathivanan et al., 2010) and TSPs (Tauro et al., 2013, Crescitelli et al., 

2013) are widely considered as biomarkers of EVs from mammalian cells; for example, HSP-70 has 

been reported from MVs (Kowal et al., 2016, Jeppesen et al., 2019, van Niel et al., 2018) and the 

TSPs CD9, CD63 and CD81 have been found in exosomes, MVs and apoptotic bodies (Booth et al., 

2006, Lenassi et al., 2010, Fang et al., 2007). Similarly, our data support these findings in that HSP-

70 was identified in both ELVs (identified in cargo and PMP compartments) and MVs (TLP and PMP 

compartments). Likewise, members of the TSP family including Sm-TSP-1, TSP-2, and TSP-4 were 

identified in cargo, PMP and IMP compartments of both ELVs and MVs. My data presented herein 

revealed that MVs and ELVs share many proteins, notably the surface membrane TSPs, so 

distinguishing EV types by their proteomic content requires caution. Now that a catalogue of shared 

and unique EV sub-type proteins has been produced, antibodies to select candidate proteins can be 

generated to aid in classifying the various cellular/tissue origins of helminth EVs and to monitor their 

trafficking and release.  

Previously described schistosomiasis vaccine candidates were identified in both ELVs and MVs, 

including TSP-2 (Tran et al., 2006), GST (Bergquist et al., 2002, Capron et al., 2001), Sm29 (Cardoso 
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et al., 2006) and calpain (Jankovic et al., 1996, Le et al., 2014, Karmakar et al., 2014c), whereas  Sm23 

(Bergquist et al., 2002, Krautz-Peterson et al., 2017) was identified from cargo and IMP components 

of MVs only. Indeed, TSP-2, GST, and Sm29 were among the most abundant proteins identified in 

both EV types, further supporting the notion of EVs as a major reservoir of vaccine candidates 

against schistosomiasis and other helminth infections. My data also showed clear abundance of 

schistosome surface antigens such as TSP-1,TSP-2, TSP-4,  as well as TSP-18 (relatively less abundant) 

and a variety of other tegumental antigens in both EV types analysed, some of which have been 

implicated in schistosome evasion of the host immune response (Han et al., 2009, Salzet et al., 

2000). Although TSP-1 has been reported to have vaccine efficacy in a mouse model (Tran et al., 

2006), TSP-4 and TSP-18 remain to be tested. EVs secreted by other related trematodes were also 

found to be abundant in TSPs (Chaiyadet et al., 2015b, Cwiklinski et al., 2015). Further, antibodies 

generated against an EV surface TSP were able to block the internalisation of O. viverrini  EVs by 

human cholangiocytes  (Chaiyadet et al., 2015a), and EVs and recombinant TSPs from O. viverrini 

and other helminth parasites have been shown to be efficacious as vaccines in animal models 

(Shears et al., 2018, Trelis et al., 2016, Chaiyadet et al., 2019).  

One of the proteins identified from the integral membrane component of both ELVs and MVs was 

annexin, a protein involved in a wide range of cellular processes, and, notably has an anti-

inflammatory role (D'Acquisto et al., 2008). Moreover, annexins function as plasminogen receptors 

and enhance fibrinolysis-prolonging blood clot formation (Madureira et al., 2011), roles that are 

likely to be important for an intra-vascular parasite. Together with the identification of other 

proteins with known and proposed roles in red cell lysis (saponin-like proteins) (Don et al., 2008), 

haem storage (ferritin isoforms) and blood feeding (endoproteases and aminopeptidases), a role is 

emerging for EVs in the nutrient acquisition process in haematophagous trematode parasites. 

Moreover, enolase, found only in MVs in this study, has been identified as a tissue plasminogen 
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activator which subsequently results in the generation of the potent fibrinolytic agent plasmin which 

could degrade blood clots forming around S. mansoni parasites in vivo (Figueiredo et al., 2015).  

Proteins involved in vesicle biogenesis and trafficking were particularly abundant in the IMP 

compartment of both vesicle types. Among these were members of the endosomal sorting complex 

required for transport-I and -III pathways with known essential roles in vesicle biogenesis and 

secretion in mammalian cells (Kowal et al., 2014). Charged MVB proteins such as chromatin 

modified protein (chmp1) were identified only in ELVs. It was unexpected to identify proteins 

involved in exosome biogenesis also in MVs. While every effort was made to minimise the 

occurrence of contamination of MV sample by ELVs, I could not discount the possibility of isolation 

of ELVs (if at all) in MV sample preparation. Even though the generation of MVs and exosomes 

occurs at distinct sites within the cell, common intracellular mechanisms and sorting machineries 

are involved in the biogenesis of both entities (reviewed in (van Niel et al., 2018)). In many cases, 

these shared mechanisms hinder the possibility of distinguishing between the different vesicle sub-

populations (Colombo et al., 2014). Further, Rab GTPases/Ras family proteins (identified in IMP and 

PMPs) such as Rab-2A, Rab-7a, Rab-27A and Ral-A identified only in ELVs and Rab-2B, Rab 6, Rab-

10, Rab-14 and Rab-18 in MVs were identified, while Rab-8A as well as Rab-11A were identified from 

both vesicle types analysed. Ral-A is a small GTPase required for MVB biogenesis and EV release in 

Caenorhabditis elegans (Hyenne et al., 2018) and F. hepatica (de la Torre-Escudero et al., 2019). 

Contrary to my findings, Rab10 has been detected in S. japonicum- (Zhu et al., 2016a) and F. 

hepatica-derived ELVs (de la Torre-Escudero et al., 2019). It was unexpected to identify Rab proteins, 

usually involved in ELV biogenesis and trafficking (Zhao et al., 2019), also in MV samples, but this 

might be explained by the reasons mentioned earlier. Rab proteins are one of the main regulators 

of intracellular EV trafficking between subcellular compartments through processes including 

vesicle budding, mobility along the cytoskeleton, and membrane fusion (Stenmark, 2009).  
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Herein, I have isolated and characterised the proteomic composition of two sub-populations of S. 

mansoni secreted EVs (ELVs and MVs) using sequential extraction of proteins from the different sub-

vesicular compartments to provide a comprehensive molecular snapshot. Future research should 

investigate whether S. mansoni ELVs and MVs interact with defined host cell types as it is unclear 

whether they are internalised by host cells. A more comprehensive understanding of schistosome 

EV biology will facilitate development of methods to interrupt vesicle-mediated communication 

between host and parasite, as well as inter-parasite interactions. Schistosome EVs are clearly a rich 

source of target antigens for the development of novel approaches for preventing, treating and 

diagnosing infections, and further research is essential to add to the schistosomiasis control toolbox. 
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 Chapter 3  
 

Uptake of Schistosoma mansoni EVs by host cells, impact on gene 

expression, and antibody-mediated interruption 
 

Preamble  

Determining the role of S. mansoni-derived EVs in host-schistosome communication was one of the 

main aims of my thesis. For this purpose, S. mansoni ELVs and MVs were isolated and purified from 

adult worm ES products as described in Chapter 2. Moreover, MV concentration and particle size 

were determined using TRPS on a qNano instrument. Both EV types were labelled with PKH-67 

fluorescent dye and incubated with human umbilical vein endothelia cells (HUVEC) as well as the 

THP-1 human monocyte cell line. The uptake of EVs by both cell lines was assessed and confirmed 

using confocal fluorescence microscopy. This study presents evidence demonstrating the 

internalisation of S. mansoni-derived ELVs and MVs into target cells, highlighting their roles in host-

parasite cell-cell communication. Once I had confirmed the uptake of EVs by host cells, the next goal 

was to determine the impact of ELV internalisation on host cell gene regulation – there was 

insufficient material available to do the same analysis with MVs. For assessing the impact of S. 

mansoni ELVs on host cell gene expression, vesicles were incubated with HUVEC cells; there was 

insufficient EV material to conduct gene expression studies on THP-1 cells. RNA was extracted and 

sent for deep sequencing. Moreover, to identify key proteins on the surface of EVs that might be 

involved in their uptake by host cells, selected S. mansoni TSP proteins were expressed in 

recombinant form and antibodies were produced against them and used to disrupt EV uptake and 

therefore EV-mediated parasite-host communication.  
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3.1. Introduction  

Cells often exchange information to maintain cellular homeostasis or to respond to pathogens. A 

universal method of communication is physical interaction by adhesion molecules, cell junctions, 

and soluble factors. However, increasing data are emerging that show EVs play significant roles in 

genetic cross-talk between cells by transferring proteins, nucleic acids, lipids, and other 

components, and in this way, cells can adjust the behaviour of other cells (Deolindo et al., 2013, 

Meldolesi, 2018).  

EVs are membrane-surrounded vesicles that are continually secreted by different types of cells in 

disease and normal states (de la Torre-Escudero et al., 2016). Although once EVs were regarded to 

be “cellular garbage cans” with the only function of removing unnecessary cellular debris (Thebaud 

and Stewart, 2012), now they are known to have key  roles in intercellular communication involving 

their mRNA, miRNA, lipids, and proteins including TSPs (Record et al., 2014).  

Studies have demonstrated that parasite-derived EVs play a key role during the infection process 

(Eichenberger et al., 2018b, Marcilla et al., 2014). Since 2012, EVs have been described from a 

growing number of parasitic helminths including trematodes (Marcilla et al., 2012, Chaiyadet et al., 

2015b, Zhu et al., 2016a, Zhu et al., 2016b, de la Torre-Escudero et al., 2019), nematodes (Zamanian 

et al., 2015, Coakley et al., 2017, Eichenberger et al., 2018a, Eichenberger et al., 2018c, Hansen et 

al., 2019) and cestodes (Nicolao et al., 2019, Ancarola et al., 2017, Siles-Lucas et al., 2017), and many 

of these studies demonstrated the uptake of EVs by target cells in vitro at least, indicating likely 

roles in host-parasite interactions.  

Further, secreted EVs are increasingly recognized as mediators of cell communication (Fromm et al., 

2017, Fromm et al., 2015), and they have been shown in parasitic nematodes to suppress 

inflammatory responses in vitro (Buck et al., 2014, Zamanian et al., 2015, Eichenberger et al., 2018a). 

On the other hand, EVs from other parasites such as the liver fluke O. viverrini are endocytosed by 
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human cholangiocytes in vitro and elicit a cascade of inflammatory and pre-tumorigenic changes 

within the cell, thereby providing a plausible mechanism by which the parasite causes bile duct 

cancer (Chaiyadet et al., 2015b). In addition, studies on H. polygyrus, Leishmania spp., Cryptococcus 

spp., and Trypanosoma spp. have shown that parasite EVs can carry and confer virulence factors to 

the host (Buck et al., 2014, Barteneva et al., 2013, Silverman et al., 2010a).  

Current vaccine development endeavors target the prevention of schistosome infection and/or 

decrease egg output to reduce transmission. Major advances in schistosome molecular biology such 

as genomics, transcriptomics, proteomics and immunomics have aided new antigen discovery 

(Loukas et al., 2011, Gaze et al., 2012, Driguez et al., 2016b). Access to this information in 

conjunction with improved postgenomic technologies has the capacity to facilitate the discovery of 

many new vaccine candidates. Molecules exposed to host antibodies, notably ES products and 

proteins anchored to the outer tegument of the worm are the most important candidates (El Ridi 

and Tallima, 2013), and many of these ES and tegument proteins are also found in EVs (Sotillo et al., 

2016b, Samoil et al., 2018, Kifle et al., 2020, Nowacki et al., 2015). EVs secreted by other related 

trematodes were found be enriched in TSPs (Chaiyadet et al., 2015b, Cwiklinski et al., 2015). The 

roles of TSPs in EV biogenesis and cargo selection have been reviewed by Andreu and Yanez-Mo 

(2014). The significance of specific proteins such as TSPs in EV uptake was shown with O. viverrini, 

where antibodies against O. viverrini (Ov)-TSP blocked EV internalisation and decreased IL-6 

secretion by cholangiocytes (Chaiyadet et al., 2015b). Furthermore, the ability of antibodies against 

Ov-TSP-1 (Chaiyadet et al., 2017) as well as Ov-TSP-2 and Ov-TSP-3 (Chaiyadet et al., 2019) to block 

the uptake of EVs by host cells has been demonstrated. Pertaining to this study, TSPs have been 

found to be enriched in S. mansoni-derived EVs (Sotillo et al., 2016b, Samoil et al., 2018, Kifle et al., 

2020) and are abundantly expressed on the outermost tegument of both adult worms (Tran et al., 
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2006, Braschi and Wilson, 2006) and schistosomula (Sotillo et al., 2015), and I propose that 

antibodies against S. mansoni TSPs could be used to interrupt host-parasite communication.  

In this chapter, I demonstrated that S. mansoni-derived ELVs and MVs are internalised by human 

endothelial and monocyte cell lines using confocal fluorescence microscopy. In addition, I have 

shown that uptake of ELVs by host cells results in differential expression of genes involved in 

pathways that are critical to parasitism.  Moreover, recombinant forms of selected TSPs identified 

on the surface of EVs were produced and antibodies raised against these recombinant proteins were 

used to successfully block the uptake of both ELVs and MVs by both cell lines.   

 

3.2. Material and methods 

3.2.1.  S. mansoni EV isolation and purification 

S. mansoni-derived EVs used in this experiment were isolated and purified following the standard 

procedures as described in section 2.2.5 (of this thesis).  

3.2.2. Cell culture  

Primary HUVEC and THP-1 human monocytes cell lines used in in this experiment were cultured 

following standard protocols as described below: 

3.2.2.1. HUVEC culture  
 

HUVEC (ATCC® PCS­100­010™) were purchased together with vascular cell basal medium (ATCC®  

PCS-100-030™) and endothelial cell growth kit-VEGF (ATCC PCS­100­041™) from the ATCC 

(Manassas, VA, USA), and cells were maintained following the manufacturer’s protocol. In brief, 

HUVEC were grown using 25-cm2 culture flasks ( CELLSTAR®) under 5% CO2 at 37 °C in cell media 

supplemented with the following: recombinant human (rh) VEGF (5 ng/ml), rh EGF (5 ng/ml), rh 
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FGF basic (5 ng/ml), rh IGF­1 (15 ng/ml), ascorbic acid (50 µg/ml), L­glutamine (10 mM), heparin 

sulphate (0.75 U/ml), hydrocortisone hemisuccinate (1µg/ml) and 2% Foetal Bovine Serum 

containing 10 U/ml of penicillin, 10 µg/ml of streptomycin and 25 ng/ml Amphotericin B solution 

(ATCC PCS-999-002). Cells were maintained until they reached approximately 80% confluence 

before sub-culturing with 5 103 cells per 25 cm2 culture flask, and finally aliquoted as approximately 

5 x105 viable cells/cryotube, and stored in liquid nitrogen until further use.   

3.2.2.2. THP-1 cell culture  

 

THP-1 human monocyte cells were donated by Prof Andreas Suhrbier from QIMR-Berghofer 

Medical Research Institute, Brisbane, Queensland, Australia. They were maintained under 5% CO2 

at 37°C in complete medium comprising RPMI 1640 supplemented with penicillin (10 U/ml), 

streptomycin (10 µg/ml) and gentamycin (10 µg/ml) (Invitrogen) and 10% low endotoxin foetal 

calf serum (Invitrogen) until they reached approximately 80% confluence before sub-culturing 

with 5  103 cells per cm2, and finally aliquoted with approximately 5  105 viable cells/cryotube, 

and stored in liquid nitrogen until further use.  

3.2.3. S. mansoni EV labelling and their uptake by host cells  

Fluorescent labelling of EVs was performed with PKH-67 (Sigma-Aldrich), a green lipophilic 

fluorescent dye, following the manufacturer’s procedure. Briefly, EVs were labelled with PKH-67 for 

5 min at RT, and the staining reaction was stopped by adding an equal amount of 1% purified bovine 

serum albumin (BSA), and incubated at RT for 1 min. PKH-67 excess dye was removed by 

centrifugation using 100 kDa cut-off spin filters (Amicon, Merk Millipore) at 3000 g and 15°C for 2 

min, and vesicles were washed using PBS. Cells were cultured in the presence of PBS as control. 

HUVEC and THP-1 cells were grown to 80% confluence as described elsewhere using slide chambers 

(SPL life sciences) in the presence of labelled EVs (1.25 µg of total EV proteins) for 30, 60 or 120 min 
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at 37°C with 5% CO2. Cell-culture medium was removed, wells were washed 3 times with PBS, cells 

were fixed in 4% paraformaldehyde, and incubated for 30 min at RT. Glycine (100 mM) was added 

to cultured cells for 15 min at RT to quench autofluorescence caused by paraformaldehyde residue 

on the samples. Finally, Hoechst (Abcam) was used to stain nuclei, and images were visualized using 

a laser scanning confocal microscope (Zeiss, LSM800). 

3.2.4. Confocal microscopy  

After thorough washing with PBS, cells were mounted in fluoroshield mounting medium (Abcam), 

and pictures were taken using a Zeiss confocal microscope (LSM800). All images were captured using 

standard excitation (EX) and emission (EM) filters, DAPI (348 nm EX/455 nm EM) and PKH-67 (495 

nm EX/519 nm EM). The 2D deconvolution images were controlled with Zen 2.1 software (Carl 

Zeiss). Fluorescence intensity of internalised PKH-67-stained EVs was quantified using ImageJ and 

expressed as a percentage of corrected total cell fluorescence (CTCF) adjusted by background 

fluorescence.  

 

3.2.5. Sm-TSP gene cloning 

The cDNAs encoding for the open reading frames of the Sm-TSPs Smp_155310 (TSP-1) and 

Smp_140000 (TSP-2) were obtained from www.parasite.wormbase.org. The regions of the cDNAs 

encoding the large extracellular loop (LEL) of Sm-TSP-1 (Smp_155310, amino acids 110 to 202) were 

identified using Tmpred (https://embnet.vital-it.ch/software/TMPRED_form.html), and amplified 

using oligonucleotide forward primer (FP) (5’ -CGCCCATGGGTCGAGAGGAGATCATGAAATAC-3’ and 

reverse primer (RP) (5’ -CGCCTCGAGCAACTTATCTTTTAACATCAC-3’), and for Sm-TSP-4 

(Smp_140000, amino acid  130 to 249): FP (5’-CGCCCATGGGTTCTCGTAAAGATGAGATTGGA-3’),  

RP (5’-CGCCTCGAGGTCCATATATTTAAGGAAAAG-3’) incorporating NcoI and XhoI restriction sites 

(underlined) by using plasmid DNA containing genes of interest (already available in our laboratory) 
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as templates. The PCR reactions were performed as follows: 0.5µl (12.5 ng) plasmid DNA, 3µl (10 

µM) forward primer and reverse primer each, 10 µl MyTaq red reaction buffer (Bioline), 0.5µl 

MyTaq DNA polymerase (Bioline), and 33 µl water. Cycling conditions were: initial cycle of 

denaturation at 95°C for 5 min, 35 cycles of denaturation at 95°C for 15 sec, annealing at 50°C 

for 15 sec and extension at 72°C for 30 sec, and a final extension step at 72°C for 7 min. Each 

amplicon was then ligated into the NcoI and XhoI sites of the pET32ΔHis (Novagen) expression vector 

such that they were in-frame with the vector’s N-terminal thioredoxin and C-terminal 6xHis tags, 

produces a recombinant thioredoxin (TRX) fusion protein. The vector pET-32aΔHis is an in-house 

modified version of pET-32a (Novagen) which has the N-terminal 6xHis-tag absent (but retains the 

C-terminal 6xHis tag) to facilitate efficient purification after cleavage of the thioredoxin tag. The 

construct was then transformed into chemically competent E. coli BL21 (DE3) (ThermoFischer) using 

the heat-shock method following the manufacturer’s instructions. E. coli transformants harbouring 

the plasmids were screened on Luria Bertani (LB) agar (1% yeast extract, 1% tryptone, 0.5% NaCl 

and 1.5% agar in water) plates containing ampicillin (100 µg/ml) (Sigma), and incubated overnight 

at 37oC. Recombinant colonies were confirmed by colony PCR.  DNA sequencing was performed to 

confirm the presence and the correct orientation of the open reading frame. A third TSP was 

produced, Sm-TSP-2 (Smp_181530), using E. coli BL21 (DE3) transformed with pET41a vector to 

facilitate native N-terminal expression without the TRX fusion tag, but retaining the C-terminal 6xHis 

tag.  

3.2.6. Expression and purification of recombinant Sm-TSPs  

3.2.6.1.   Pilot recombinant protein expression and detection  

 

The Sm-TSP recombinant proteins (rSm-TSPs) were pilot-expressed by inoculating 5 ml of LB broth 

(1% yeast extract, 1% tryptone and 0.5% NaCl in water) supplemented with ampicillin (100 µg/ml) 

(Sigma) with a single recombinant E. coli BL21 (DE3) colony containing the recombinant plasmid and 
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grown overnight with shaking (225 rpm) at 37°C. Glycerol stocks were made from each overnight 

culture and stored at -80°C. Overnight cultures were diluted 1:100 in 5 ml 2YT broth (1% yeast 

extract, 2% tryptone and 0.5% NaCl in water) containing ampicillin and grown to log phase (OD600 

0.5-1.0) for 2 h with shaking (225 rpm) at 37°C. To find the optimal condition for protein induction, 

each culture was divided in half, one culture was induced by adding 1 mM isopropyl-b-d-1-

thiogalactopyranoside (IPTG) (Bioline), and the second culture did not receive IPTG and served as 

the non-induced control sample. Cultures were incubated for 4 h with shaking (225 rpm) at 37°C. 

From each culture 1 ml was taken and pelleted at 16,000 g for 1 min, the supernatants were 

removed, and pellet was kept at -20oC, and the growing cultures were maintained overnight  with 

shaking (225 rpm) at 37°C. The following morning, 1 ml of each culture was pelleted at 16,000 g for 

1 min, and supernatant was removed, and pellet samples including those harvested from the 4 h 

culture were resuspended in 250 µl of resuspension buffer (50 mM Na2HPO4/NaH2PO4, pH=8, 300 

mM NaCl, 40 mM imidazole), and lysed by three cycles of freeze/thawing (-80oC/42oC). Samples 

were sonicated three times for 10 sec each and kept on ice between cycles. Samples were 

centrifuged at 16,000 g at 4oC for 5 min to separate pelleted insoluble fractions and soluble 

fractions. Samples of both the insoluble and soluble fractions were subjected to 15% SDS-PAGE and 

were visualised by Coomassie staining.  

3.2.6.2.   Large-scale Sm-TSP recombinant protein expression and purification  
 

The rSm-TSPs were expressed and purified as soluble proteins. Expression cultures were grown from 

glycerol stocks. First, 10 ml of broth media (1% yeast extract, 1% tryptone and 0.5% NaCl in water) 

supplemented with 100 µg/ml ampicillin (Sigma) was inoculated with a single recombinant E. coli 

BL21-DE3 colony containing the recombinant plasmid and grown overnight at 37oC with shaking 

(200 rpm). The entire overnight culture were then used to seed 1 litre of LB broth media 

supplemented with 100 µg/ml ampicillin, and after 4 h of incubation protein expression was induced 
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using 1 mM IPTG. After 18 h of induction bacteria were pelleted by centrifugation at 8,000 g at 4oC 

for 20 min, and resuspended in 50 ml of lysis buffer (50 mM Na2HPO4 buffer, pH=8, 300 mM NaCl 

and 40 mM imidazole). Subsequently, the cells were submitted to 10 cycles of sonication lasting 5 

sec each, and centrifuged at 16,000 g at 4oC for 5 min. Recombinant proteins were collected from 

supernatant as soluble proteins and stored at -80oC until further use. Recombinant proteins were 

thawed, and diluted (1:4) using buffer A (1 × PBS, 300 mM NaCl, pH=8), the resultant recombinant 

proteins solution were filtered through a 0.22 µm filter (Millipore ExpressTM Plus), and  purified 

under non-denaturing conditions via 1 ml Hi-Trap nickel-sulphate affinity chromatography column 

(GE Healthcare Life Sciences) using an AKTApurifierTM (UPC 10, Sweden) at a flow rate of 1 ml/min. 

Bound proteins were eluted with an increasing concentration gradient of imidazole in elution buffer 

(1× PBS, 300 mM NaCl, 500 mM imidazole, pH=8). Various fractions obtained from the purification 

process were visualized by 15% SDS-PAGE gel with Coomassie staining. The fractions containing a 

clear single protein band were pooled, buffer-exchanged in PBS using 10 kDa Amicon centrifugal 

concentration devices (Millipore). The recombinant proteins were quantified using Pierce BCA 

protein assay kit (ThermoScientific) using BSA as the standard. For rSm-TSP-2 expression and 

purification in E. coli, all the above processes were adhered to. After purification by IMAC, proteins 

were buffer exchanged into PBS using 3kDa Amicon centrifugal concentration devices (Millipore).  

3.2.7. SDS-PAGE and immunoblotting  

Each recombinant protein was electrophoresed on a 15% SDS-PAGE gel (Laemmli, 1970) and 

electroblotted onto nitrocellulose membrane (Towbin et al., 1979) for 1 h at 200 mA. Membrane 

was then blocked with Western blocking buffer (5% non-fat dry milk in TBST (0.5 M NaCl, 0.02 M 

Tris (pH 7.5) with 0.05% Tween-20) for 1 h with shaking at RT. Membrane was washed with PBST 

(PBS/0.05% Tween) 3 times each for  5 min, and probed with anti-6His antibodies 

(ThermoScientific) diluted 1:2,000 in PBST at 4oC overnight, followed by washing (3 5 min with 
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PBS/0.05% Tween), then probing with goat anti-mouse IgG horseradish peroxidase (HRP)-

conjugated (Invitrogen) diluted 1:2,000 in PBST at 4oC for 1 h. Membrane was washed again with 

PBST three times for 5 min each, and developed using Amersham ECLTMPrime Western Blotting 

Detection (GE Healthcare) as per the manufacturer’s instructions. Briefly, working reagent was 

prepared by mixing 1 ml of each of solution A and B and applied onto the nitrocellulose membrane 

for 5 min. Excess of working reagent was removed and bound antibody was detected using a Versa 

DOCTM imaging system (Bio-Rad Laboratories).  

3.2.8. Production of rabit antisera  

Antibodies to Sm-TSP-2 and Sm-TSP-4 were raised in New Zealand white rabbits housed at the 

Institute of Medical and Veterinary Sciences, South Australia, as described previously (Pearson et 

al., 2012). Briefly, 100 µg of Sm-TSP-2 or Sm-TSP-4 (1 mg/ml) adjuvanted with an equal volume of 

Freund’s complete adjuvant was subcutaneously administred 2 and 4 weeks later into a single New 

Zealand White. The rabbit was bled 2 weeks later and the serum collected by centrifugation.  

3.2.9. Interruption of S. mansoni EV uptake by host cells using Sm-TSP antibodies  

PKH-67-labelled S. mansoni ELVs and MVs (1.25µg of each) were incubated with anti-rSm-TSP-2 or 

anti-rSm-TSP-4 rabbit sera or control sera (naive rabbit sera) at 1:2.5 dilution with end-to-end mixing 

using a 360o rotator for 1 h  at RT. S. mansoni EV-antibody complexes were then washed with 1× 

PBS using a 100 kDa cut-off centrifugation column (Amicon, Merk Millipore) at 3000 g, 4o C for 10 

min to a final volume of 200 µl and cultured with 8  103 cells  cells of both HUVEC and THP-1 human 

monocyte cells for 2 h under 5% CO2 and at 37oC.  Nuclei were stained with 2 μg/ml of Hoechst 

(Invitrogen) for 15 min. Images were captured using a Zeiss LSM800 confocal microscope at 200  

the original magnification. A total of thirty cells were analysed from each sample for fluorescence 

intensity analysis using ImageJ version 1.50i.   
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3.2.10. EV internalisation or blockage data analysis  

Data are represented as mean ± SD using GraphPad Prism™ Software version 7.03 

(www.graphpad.com). Fluorescence intensity data were evaluated by Student’s t-test and P<0.05 

was considered as statistically significant.  

3.2.11. RNA extraction  

    Initially, HUVEC cells were seeded at 7.5  104 using 25 cm2 culture flasks (CELLSTAR®) and cultured 

for 24 h. S. mansoni ELVs (5 µg) were filtered using 0.2 µm filters (WhatmanTM) and added to cells, 

and incubated for another 72 h at 5% CO2 and 37oC. Both HUVEC cells as well as mouse fibroblast 

derived-MVs (isolated from supernatant solution collected from cultured mouse fibroblasts 

following the same procedure used to isolate S. mansoni MVs) incubated with HUVEC cells were 

used as control. After three days of incubation, the cells were washed with PBS 3 times, and then 1 

ml Trizol (Sigma-Aldrich) was added to preserve RNA prior to storage at -80oC. Total RNA was 

extracted using standard procedures as described elsewhere (Eichenberger et al., 2018c). Briefly, 

0.2 ml chloroform (Sigma-Aldrich) was added to thawed samples, shaken vigorously for 15 sec, 

incubated at RT for 5 min, and centrifuged at 12,000 g for 15 min at 4C. The upper aqueous phase 

was transferred to a fresh tube, and 0.5 ml isopropyl alcohol (Sigma-Aldrich) and 3 l glycoblue 

(Invitrogen) were added, and incubated for 10 min at RT. Samples were centrifuged at 12,000 g for 

10 min at 4C, supernatant was discarded, and the pellet washed with 1 ml of 75% ethanol in diethyl 

pyrocarbonate (DEPC) water (Invitrogen), mixed by vortexing and centrifuged at 7,500 g for 5 min 

at 4C. The supernatant was then discarded, pellets air dried, and dissolved in 20 l DEPC water, 

and stored at -80°C until further processed. Two biological replicates of each sample were prepared 

for RNA-Seq – the difficulty in obtaining sufficient quantities of S. mansoni ELVs prevented the use 

of a third biological replicate for RNA-Seq.  
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3.2.12.  DNase digestion of RNA and RNA clean-up  

   To digest contaminating DNA in RNA solutions prior to RNA clean-up, 10 μl Buffer RDD (DNA Digest 

Buffer) (Qiagen), and 2.5 μl DNase I stock solution (Qiagen) were added to the RNA samples and 

mixed, and the final volume was brought up to 100 μl with RNase-free water (Qiagen), and samples 

were incubated for 10 min at RT. For RNA clean-up, 350 μl Buffer RLT (guanidine-thiocyanate–

containing lysis buffer) (Qiagen) was added, mixed well, and 250 μl of 100% ethanol was added to 

the diluted RNA, and mixed well by pipetting. Samples were transferred immediately to an RNeasy 

Mini spin column (Qiagen) placed in a 2 ml collection tube, and centrifuged for 15 sec at 8,000 g, 

and flow-through was discarded. Buffer RPE 500 μl (Qiagen) was added to the sample in the RNeasy 

spin column, followed by centrifugation of the columns for 15 sec at 8,000 g. Column flow-through 

was discarded, and this procedure was repeated at the same speed but for 2 min. The sample 

collection tube was changed, and samples were centrifuged for 1 min at 16,000 g. Again, RNeasy 

spin column was placed in a new 1.5 ml collection tube, and 50 μl of RNase-free water was added 

directly to the spin column membrane, and centrifuged for 2 min at 8,000 g to elute the RNA. Finally, 

the concentration of RNA in the samples was measured using a nanodrop (LabGear). Extracted RNA 

from the different samples was sent to the Australian Genome Research Facility (AGRF) in 

Melbourne, Victoria, Australia for RNA deep sequencing.  

3.2.13. RNA quality control, library preparation and sequencing  

Sample quality control was performed using a Bioanlayzer RNA 6000 Nano kit. Library preparation 

and sequencing were performed at the AGRF. Total RNA was prepared for sequencing using an 

Illumina TruSeq stranded Total RNA-seq library preparation kit (Illumina). RNAseq was performed 

on a NovaSeq SP (S-Pime) 300 cycle kit (Illumina, paired-end 150-bp PE read, approximately 30M 

reads per sample).  
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3.2.14. RNAseq mapping 

Gencode version 29, RNA annotations (in gtf format) for human were downloaded from 

ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_29/. “chr” was stripped from the 

transcript annotations, and chromosomes relabeled 1-22, X, Y, MT for compatibility with 

hg38/GRCb38, release 95 annotations.  STAR version 2.7.0e (Dobin et al., 2013) was used for building 

genome indices and mapping. For genome indices, gtf (complete) and genome fasta files (as 

described above) were provided to STAR as parameters –sjdbGTFfile and –geneFastaFiles with --

runMode genomeGenerate to generate indices. --sjdbOverhand was set to 149 for total RNA and 49 

for miRNA (read length – 1). All other parameters remained default. Adapter trimming was 

performed using trimgalore version 0.5.0 (https://github.com/FelixKrueger/TrimGalore) (implemented 

in python version 3.6.5) and run in paired-end mode (using the-paired parameter) and adapters 

trimmed were “–illumina”. Sequence end soft clipping was performed using the default phred score 

of 20 and paired reads less than 20 bp were discarded. All other parameters were default. For 

mapping of RNA, STAR was run in paired end mode with --runMode alignReads –sjdbGTFfile and –

genomeDir using the pre-built STAR genome index and gtf generated as described, --readFilesIn with 

specified paired reads. Non-default parameters used were: --outFilterMultimapNmax 20; --

outFilterMismatchNmax;  --outFilterMismatchNoverReadLmax 0.04; --outFilterType BySJout; --

alignIntronMin 20; --alignIntronMax 1000000; --alignMatesGapMax 1000000; --alignSJoverhangMin 

8; --alignSJDBoverhangMin 1; --sjdbScore 1. All other parameters were default. Bam files were 

sorted by name (-n), with samtools version 1.7, and reads summarized using htseq-count  version 

0.11.1 (Anders et al., 2015) (implemented with python version 3.6.5) and stranded mode was 

selected (reverse - for TruSeq stranded library). All other parameters were default. FastQC version 

0.11.7 (Simon, 2010), was used for the assessment of read quality before and after adapter 

trimming. 
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3.2.15. Differential gene expression analysis  

consensusDE (Waardenberg and Field, 2019) (BioConductor development version 1.3.3) in R version 

3.5.1 was used for subsequent differential expression (DE) analysis. A summarized table containing 

read counts of all RNAseq experiments was built using the buildSummarized function in 

consensusDE, with a sample table provided that described the experimental design, the path to the 

HTSEQ files generated above and the same gtf file described above, and low read counts filtered by 

selecting, filter = TRUE. multi_de_pairs was then called using the filtered summarized experiment 

object generated with buildSummarized and transcript annotations conducted with both 

org.Hs.eg.db (version 3.6.0) provided as input to ensembl_annotate, adjust method (being the 

method for multiple hypothesis correction) set to “bonferonni” and the beforementioned gtf 

provided to gtf_annotate. ruv_correct was set to TRUE (Risso et al., 2014) and all other parameters 

remained default. consensusDE then generated all pairwise comparisons possible and combined the 

results of voom (as implemented in limma version 3.36.5) (Ritchie et al., 2015), edgeR (version 

3.22.5) (Robinson et al., 2010, McCarthy et al., 2012) and DESeq2 (1.20.0) (Love et al., 2014) 

algorithms. 

3.2.16. Bioinformatics analysis  

Gene ontology analysis was then conducted using GO analysis, KEGGgraph version 1.42.0 (Zhang 

and Wiemann, 2009), and STRINGdb version 9.1 (Franceschini et al., 2013) packages for R where 

differential expression was defined as a P<0.01 and a fold change greater than 1.5 or -1.5.  
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3.3. Results  

3.3.1.   S. mansoni EVs are internalised by both HUVEC and THP-1 human monocyte cells    

To test the hypothesis that S. mansoni-derived EVs interact with host cells in vitro, HUVEC (Figure 

3.1) and THP-1 monocytes (Figure 3.2) were incubated with PKH-67 labelled ELVs and MVs. Uptake 

of ELVs and MVs was observed with both HUVEC and THP-1 cells. Stained EVs are visible inside the 

cytoplasm of both cell lines, and the fluorescence intensity increased over time. There was a 

significant increase in uptake of both ELVs and MVs by HUVEC cells incubated for 30 min (68% 

(P<0.05) and 93% (P<0.0001)), 60 min (98% (P<0.0001) and 99 % (P<0.0001)), and 120 min (99.7 % 

(P<0.0001) and 100% (P<0.0001)), respectively, compared to PBS control (Figure 3.1D). Similarly, 

there was a significant increase in uptake of both ELVs and MVs by THP-1 cells incubated for 30 min 

(86% (P<0.0001) and 92% (P<0.0001)), 60 min 86% (P<0.0001) and 95% (P<0.0001)), and 120 min 

(99% (P<0.0001) and 100% (P<0.0001)), respectively, compared to PBS control (Figure 3.2D). 



107 
 

 

Figure 3.1. Uptake of S. mansoni extracellular vesicles by epithelial HUVEC cells. Panel A = PBS 

control, Panel B = PKH67-labelled S. mansoni ELVs, C= PKH67-labelled S. mansoni MVs after 120 min 

incubation and Panel D= shows fluorescence intensity at 490 nm (green channel) for S. mansoni 

both ELVs and MVs and PBS control incubated with HUVEC cells for 30, 60 and 120 min. The nuclei 

were stained by Hoechst (blue colour). Scale bars = 20µm. Data were presented as the mean ± SD 

of fluorescence quantification using ImageJ software. Asterisks indicate significant differences 

(Student’s t-test, *P < 0.05, ****P <0.0001). 
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Figure 3.2. Uptake of S. mansoni extracellular vesicles by THP-1 human monocyte cells. Panel A = 

PBS control, Panel B = S. mansoni ELVs; Panel C = S. mansoni MVs after 120 min incubation; Panel D 

shows fluorescence intensity at 490 nm (green channel) for both S. mansoni ELVs and MVs and PBS 

control incubated with THP-1 human monocyte cells for 30, 60 and 120 min. The nuclei were stained 

by Hoechst (blue colour). Scale bars = 20 µm. Data are presented as the mean ± SD of fluorescence 

quantification using ImageJ software. Asterisks indicate significant differences (Student’s t-test, 

****P <0.0001). 

3.3.2.  Recombinant protein production 

TRX fused LEL of Sm-TSP-1 (corresponding to predicted molecular weights (mw) including 6 His tag 

= 32.3 kDa) and Sm-TSP-4, mw = 34.3 kDa, as well as Sm-TSP-2 without TRX, mw = 12.4 kDa, were 

expressed in E. coli BL21 (DE3) using IPTG-induction at 37oC overnight and purified by IMAC. The 
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size and purity of the recombinant TSPs (rTSPs) were assessed by SDS-PAGE and stained with 

Coomassie Brilliant Blue (Figure 3.3A) and Western blotting with anti-6xHis-HRP (Figure 3.3B).  

                                                   

Figure 3.3. SDS-PAGE and Western blot analysis of recombinant purified Sm-TSP proteins. (A) 

Coomassie blue stained SDS-PAGE profile of the purified recombinant proteins and (B) identically 

loaded Western blot analysis of recombinant proteins probed with anti-6xHis-HRP. (1) protein 

ladder; (2) IMAC-purified Sm-TSP-1 fused to N-terminal thioredoxin and C-terminal 6xHis tags; (3) 

Sm-TSP-2 with C-terminal 6xHis tag; (4) Sm-TSP-4 fused to N-terminal thioredoxin and C-terminal 

6xHis tags. 

3.3.3.  Anti-S. mansoni TSP antibodies block the uptake of Sm-derived EVs by both HUVEC and 

THP-1 human monocyte cells    

PKH-67-labelled S. mansoni ELVs and MVs were incubated with rabbit antisera raised to Sm-TSP-2 

or Sm-TSP-4 or pre-immunisation rabbit sera as control at a dilution of 1:2.5 before being cultured 

with HUVEC cells or THP-1 monocytes. Both anti-rSm-TSP-2 and anti-rSm-TSP-4 antibodies 

compared to naïve rabbit sera significantly reduced the internalisation of both S. mansoni ELVs 

(Figure 3.4) and S. mansoni MVs (Figure 3.5) by HUVEC cells. Moreover, anti-rSm-TSP-2 and anti-

rSm-TSP-4 resulted in a significant reduction of 94% (P<0.0001) and 97% (P<0.0001)), and (93% 

(P<0.0001) and 96% (P<0.0001) in the uptake of S. mansoni ELVs (Figure 4B and 4C) and S. mansoni 

MVs (Figure 5B and 5C), respectively. CTCF analysis highlights the extent to which internalisation of 

S. mansoni ELVs (Figure 3.4D) and S. mansoni MVs (Figure 3.5D) into HUVEC cells was blocked. 
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Comparably, anti-rSm-TSP-2 and anti-rSm-TSP-4 also resulted in significant reductions of 99% 

(P<0.0001) and 99.5% (P<0.0001), respectively, in uptake of S. mansoni ELVs (Figure 3.6) by THP-1 

human monocyte cells. Anti-rSm-TSP-2 and anti-rSm-TSP-4 also showed 80% (P<0.0001) and 53% 

(P<0.001) reductions, respectively, in the uptake of S. mansoni MVs (Figure 3.7) by THP-1 human 

monocyte cells.  

 

Figure 3.4. Sm-TSP antisera blocks S. mansoni exosome-like vesicle uptake by HUVEC cells. PKH67-

labeled S. mansoni ELVs were incubated for 1 h with rabbit antisera to rSmTSP-2 or rSm-TSP-4 or 

pre-immunisation serum as control prior to co-culture with HUVEC cells for 2 h. Panel A = pre-

immunisation serum diluted 1:2.5, panel B = antiserum to rSm-TSP-2 diluted 1:2.5, panel C = rabbit 

antiserum to rSm-TSP-4 diluted 1:2.5; panel D shows fluorescence intensity at 490 nm (green 

channel). The nuclei were stained by Hoechst (blue colour). Scale bars = 20µm. Data were presented 
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as the mean ± SD of fluorescence quantification using ImageJ software. Asterisks indicate significant 

differences (Student’s t-test, ****P < 0.0001).  

 

Figure 3.5. Sm-TSP antisera blocks S. mansoni microvesicle internalisation by HUVEC cells.  PKH67-

labeled S. mansoni MVs were incubated for 1 h with rabbit antisera to rSmTSP-2 or rSm-TSP-4 or 

pre-immunisation serum as control prior to co-culture with HUVEC cells for 2 h. Panel A = pre-

immunisation serum diluted 1:2.5, panel B = antiserum to rSm-TSP-2 diluted 1:2.5, panel C = rabbit 

antiserum to rSm-TSP-4 diluted 1:2.5; panel D= shows fluorescence intensity at 490 nm (green 

channel). The nuclei were stained by Hoechst (blue colour). Scale bars =20µm. Data were presented 

as the mean ± SD of fluorescence quantification using ImageJ software. Asterisks indicate significant 

differences (Student’s t-test, ****P < 0.0001).  
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Figure 3.6. Sm-TSP antisera blocks S. mansoni exosome-like vesicle internalisation by THP-1 

human monocyte cells. PKH67-labeled S. mansoni ELVs were incubated for 1 h with rabbit antisera 

to rSmTSP-2 or rSm-TSP-4 or pre-immunisation serum as control prior to co-culture with THP-1 

human monocyte cells lines for 2 h. Panel A = pre-immunisation serum diluted  1:2.5, panel B = 

antiserum to rSm-TSP-2 diluted  1:2.5, panel C = rabbit antiserum to rSm-TSP-4 diluted  1:2.5; panel 

D shows fluorescence intensity at 490 nm (green channel) using confocal fluorescence microscopy. 

The nuclei were stained by Hoechst (blue colour). Scale bars =20µm. Data were presented as the 

mean ± SD of fluorescence quantification using ImageJ software. Asterisks indicate significant 

differences (Student’s t-test, ****P < 0.0001).  
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Figure 3.7. Sm-TSP antisera blocks S. mansoni microvesicle internalisation by THP-1 human 

monocyte cells. PKH67-labeled S. mansoni MVs were incubated for 1 h with rabbit antisera to 

rSmTSP-2 or rSm-TSP-4 or pre-immunisation serum as control prior to co-culture with THP-1 human 

monocyte cells lines for 2 h. Panel A = pre-immunisation serum diluted 1:2.5, panel B = antiserum 

to rSm-TSP-2 diluted 1:2.5, panel C = rabbit antiserum to rSm-TSP-4 diluted 1:2.5; panel D shows 

fluorescence intensity at 490 nm (green channel) using confocal fluorescence microscopy. The nuclei 

were stained by Hoechst (blue colour). Scale bars =20µm. Data were presented as the mean ± SD of 

fluorescence quantification using ImageJ software. Asterisks indicate significant differences 

(Student’s t-test, ***P<0.001, ****P < 0.0001).  
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3.3.4.  Differential gene expression 

RNAseq data analysis of HUVEC cells incubated with S. mansoni ELVs revealed 59 differentially 

expressed genes (DEGs) compared to HUVEC controls. Of these, 42 were upregulated and 17 were 

downregulated compared to control cells at P<0.01 and logFC of 1.5 (Table 3.1 and Figure 3.8).  

Table 3.1. Differential gene expression of HUVEC cells upon incubation with S. mansoni exosome-

like vesicles at log2-foldchange, FC > 50%, and adjusted P-value =FDR, P<0.01. 

Gene name  Gene Symbol  Foldchange  P-value  

Arachidonate 15-lipoxygenase, type B ALOX15B -3.973312244 3.91E-08 

Solute carrier family 14 member 1 (Kidd blood group) SLC14A1 -3.75152481 8.85E-05 

Uncharacterized  AL445305.1 -3.688949405 0.0095907 

Metallothionein 3 MT3 -3.27432529 3.15E-05 

Cytochrome P450 family 1 subfamily B member 1 CYP1B1 -2.862460755 0.0001033 

Annexin A10 ANXA10 -2.265138015 0.0022851 

L1 cell adhesion molecule L1CAM -2.083537678 0.0005084 

Coagulation factor III, tissue factor F3 -2.044594965 4.59E-06 

Uncharacterized  AC234772.2 -1.901623016 0.0008176 

Myopalladin MYPN -1.888286159 9.86E-06 

lncRNA sorafenib resistance in renal cell carcinoma 

associated 

LNCSRLR -1.849184496 0.0039688 

ADAM metallopeptidase with thrombospondin type 1 motif 

1 

ADAMTS1 -1.837069559 8.27E-06 

Keratin associated protein 2-3 KRTAP2-3 -1.830788931 1.06E-06 

Sushi, von Willebrand factor type A, EGF and pentraxin 

domain containing 1 

SVEP1 -1.697428425 1.10E-06 

Serpin family G member 1 SERPING1 -1.613517902 0.0002031 

G protein-coupled receptor class C group 5 member A GPRC5A -1.610223006 1.89E-10 

Homeobox A13 HOXA13 -1.521581888 0.0018089 

Spectrin beta, non-erythrocytic 5 SPTBN5 1.501242743 0.0003031 

Interferon alpha inducible protein 27 IFI27 1.503973236 7.44E-05 

Adhesion G protein-coupled receptor G1 ADGRG1 1.511365191 0.0009681 
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Solute carrier family 29 member 2 SLC29A2 1.51172568 0.0052509 

Proline rich 15 PRR15 1.529170415 0.0010466 

Receptor activity modifying protein 2 RAMP2 1.565471238 0.0002012 

Desmoplakin DSP 1.594792001 0.0002465 

C-X-C motif chemokine ligand 2 CXCL2 1.625825806 1.28E-06 

Neurotensin receptor 1 NTSR1 1.629169423 0.0037779 

Interleukin 6 IL6 1.683722285 0.0021358 

Mesenteric estrogen dependent adipogenesis MEDAG 1.684277397 0.0013488 

RAB3A interacting protein like 1 RAB3IL1 1.687254515 0.0001589 

Bone marrow stromal cell antigen 2 BST2 1.697082808 3.08E-07 

G protein-coupled receptor 4 GPR4 1.698444579 0.0002736 

Lysosomal associated membrane protein 3 LAMP3 1.713792795 3.51E-05 

Tribbles pseudokinase 3 TRIB3 1.719404631 0.0006135 

Growth differentiation factor 15 GDF15 1.767357785 0.0005193 

Integrin subunit beta 4 ITGB4 1.778296215 0.0081078 

ChaC glutathione specific gamma-glutamylcyclotransferase 

1 

CHAC1 1.834863558 0.008595 

Dishevelled binding antagonist of beta catenin 1 DACT1 1.878293141 0.0009148 

Carboxypeptidase X, M14 family member 1 CPXM1 1.897608027 2.99E-05 

Phospholipase A2 group III PLA2G3 1.912424965 0.0033182 

DNA damage inducible transcript 3 DDIT3 1.920769774 0.007029 

Prostaglandin I2 synthase PTGIS 1.935688955 0.000287 

CDC42 binding protein kinase gamma CDC42BPG 1.946425707 0.0098185 

Apolipoprotein E APOE 1.956098223 0.0064436 

Protein phosphatase 1 regulatory inhibitor subunit 14A PPP1R14A 2.024533301 7.20E-05 

KIAA1755 KIAA1755 2.096818517 4.43E-05 

Homeobox B9 HOXB9 2.183061954 0.0041297 

Forkhead box S1 FOXS1 2.230204253 0.002425 

Proprotein convertase subtilisin/kexin type 9 PCSK9 2.255661834 3.58E-07 

Interleukin 21 receptor IL21R 2.281196663 0.0014368 

C-type lectin domain family 4 member G pseudogene 1 CLEC4GP1 2.325996829 6.95E-07 

GLI family zinc finger 1 GLI1 2.565422205 0.0047162 
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Figure 3.8. Volcano plot of differential gene expression of HUVEC cells upon incubation with S. 

mansoni exosome-like vesicles. Vertical axis represents log2-foldchange, FC > 50%, and horizontal 

Aggrecan ACAN 2.727991377 4.26E-06 

Follistatin like 5 FSTL5 2.775761257 3.13E-06 

Cadherin 8 CDH8 2.787079061 0.0045313 

Musculin MSC 2.948933812 0.0016573 

Cadherin related family member 1 CDHR1 3.049841871 1.87E-10 

NIPA like domain containing 4 NIPAL4 3.264323401 2.58E-09 

Kelch domain containing 7B KLHDC7B 4.301916647 0.0003094 

Derlin 3 DERL3 4.336143784 0.0002043 
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axis represents adjusted P-value = FDR, P<0.01. Genes with significant expression changes are 

represented in distinct shades of blue.  

GO analysis revealed that DEGs have primary roles in cell communication, developmental processes, 

response to stress, signalling and regulation of metabolic process (Figure 3.9). 

 

Figure 3.9. Gene ontology biological process classification of proteins encoded by DEGs detected 

in HUVEC cells incubated with S. mansoni exosome-like vesicles. Grammar of graphics (gg)plot2 

showing GO terms ranked by number of hits, as defined by the GO consortium. 
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Additionally, KEGG pathway analysis of DGEs identified major intracellular pathways including 

metabolism (notably arachidonic acid metabolism), signalling (TNF, Jak-STAT, NF-kB and HIF-1), 

cytokine-cytokine receptor interaction, complement cascade, coagulation cascade and vascular 

smooth muscle contraction (Figure 3.10).  

 

Figure 3.10. KEGG pathway analysis for proteins encoded by DEGs detected in HUVEC cells 

incubated with S. mansoni exosome-like vesicles. ggplot2 showing KEGG pathway ranked by 

number of hits, as categorized defined by PantherDB signaling pathway. 
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Of interest, downregulated DGEs in HUVEC cells treated with S. mansoni ELVs encoded proteins 

involved in blood clotting (F3), and vasoconstriction (EDN1). DGEs that were upregulated in HUVEC 

cells treated with S. mansoni ELVs encoded proteins involved in inhibition of platelet aggregation 

and vasodilation (PTGIS), inflammation and immune-regulation (IL-6 and CXCL2), cell proliferation, 

differentiation and signalling (IL21R), stress response following cell-injury (GDF15 and DDIT3), 

vascular smooth muscle contraction (PPP1R14A and NTSR1), and vesicle-mediated transport 

(RAB3IL1) (Figure 3.11).  

 

Figure 3.11. String analysis for proteins encoded by DEGs detected in HUVEC cells incubated with 

S. mansoni exosome-like vesicles compared to HUVEC control. The network edges refer to the 

interaction types between gene pairs and the node colours refer to the pathway in which the gene 

node participates. 
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3.4. Discussion  

In mammals, cell-to-cell communication is mediated at least in part by EVs, which can deliver their 

cargo to recipient cells (Guay and Regazzi, 2017, Xu and Wang, 2017), and impart specific functions 

such as immune response activation and cell development (Robbins and Morelli, 2014, Xiao et al., 

2016), but the specificity of the cell populations with which these EVs interact is largely unknown. 

The secretion of small EVs was demonstrated in various intracellular and extracellular parasites, but 

knowledge about target cells and specific cell surface receptors are still mostly lacking (Coakley et 

al., 2015).  

 

Previous studies, including those by our group showed the internalisation of parasitic helminth EVs 

by biologically relevant target cells, indicating potential roles in host-parasite communication in vivo 

(Eichenberger et al., 2018a, Eichenberger et al., 2018c, Marcilla et al., 2012, Zhu et al., 2016a, Zhu 

et al., 2016b). Therefore, EVs derived from S. mansoni may potentially act as vehicles to package 

and deliver miRNAs to host cells and regulate host gene expression, which may facilitate parasitism. 

The primary mechanism for uptake of parasite EVs by recipient cells appears to be via endocytosis 

(Coakley et al., 2017). However, a recent study on F. hepatica EVs identified specific molecules 

involved in their internalisation to target cells (de la Torre-Escudero et al., 2019), and hence further 

study is needed to clarify the mechanisms at play. Several molecules have been identified on the 

surface of mammalian EVs and target cells with suspected roles in vesicle uptake; 

lectins/proteoglycans (Christianson et al., 2013), integrins (Morelli et al., 2004, Hoshino et al., 2015) 

T cell immunoglobulin- and mucin-domain-containing protein 4 (Miyanishi et al., 2007) have been 

speculated to play instrumental roles in EV internalisation and hence could also dictate target cell 

specificity. However, none has been identified as a unique EV receptor by demonstrating that it is 

necessary and sufficient for EV uptake by target cells. Many EV subtypes have common surface 

molecules and it is possible that one or more of them function as a common ligand or receptor that 
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assists vesicle uptake, similarly to the internalisation pathway of low-density lipoprotein (Brown and 

Goldstein, 1974). In this study, confocal microscopy revealed efficient internalisation of S. mansoni 

EVs by human host target cells, and they were observed diffusely throughout the cell cytoplasm. S. 

mansoni EV uptake steadily increased over 2 h of incubation with both HUVEC as well as THP-1 

human monocyte cells, suggesting that EV internalisation is a time-dependent process (Marcilla et 

al., 2012, Chaiyadet et al., 2015b), which correlates with increased CTCF due to labelled vesicle 

uptake.  

 

HUVEC cells were chosen for internalisation studies because adult flukes are in intimate contact 

with the vascular endothelium in vivo. On the other hand, monocytes were also used because these 

cells and their differentiated progeny (dendritic cells and macrophages) would encounter S. 

mansoni EVs in the blood and are critical mediators of immune regulation in schistosomiasis (Colley 

et al., 2014, Fairfax et al., 2012). Moreover, phagocytic cells including macrophages and dendritic 

cells can adsorb exosomes and thus modify T cell responses or internalise these vesicles by 

endocytosis, present antigens and modify their own functional conditioning of T cell responses 

(Montecalvo et al., 2008, Morelli et al., 2004). Wang et al. demonstrated that macrophages were 

preferentially differentiated into the M1 subtype while being treated with S. japonicum ELVs (Wang 

et al., 2015a). 

EV surface proteins or other molecules that could serve as ligands for surface receptors on the host 

cell could be targeted to interrupt parasite-derived EV-host cell interactions. Herein, I have 

demonstrated that antibodies against the LEL of rSm-TSP-2 and rSm-TSP-4 have blocked EV uptake 

by host cells. An earlier study demonstrated that EV uptake by dendritic cells can be blocked using 

antibodies to TSPs (Morelli et al., 2004). Similarly, treatment of EVs derived from adult O. viverrini, 

with anti-TSP antibodies blocks their uptake by cholangiocytes in vitro (Chaiyadet et al., 2015b). 

More recently, Chaiyadet et al. showed that antibodies raised by vaccinating hamsters with O. 
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viverrini EV recombinant TSPs significantly blocked EV internalisation by cholangiocytes (Chaiyadet 

et al., 2019). In mammalian cells, TSPs on the surface of EVs are key molecules in cell-to-cell 

interaction and EV internalisation by target cells (Andreu and Yanez-Mo, 2014). Moreover, TSPs are 

thought to influence cell selectivity (Rana et al., 2012) and have a role in miRNA recruitment and 

regulation of protein assembly in mammalian exosomes (Perez-Hernandez et al., 2013, Villarroya-

Beltri et al., 2013). In addition, TSPs are key in the development of the S. mansoni tegument (Tran 

et al., 2010) and are abundant on the surface membranes of parasitic helminths (Loukas et al., 

2007). Indeed, my proteomic data (Kifle et al., 2020) has revealed that S. mansoni EV surface 

membranes are rich in TSPs, which is consistent with previous studies on whole (unfractionated) 

EVs from adult (Sotillo et al., 2016b) and larval (Nowacki et al., 2015) stages of S. mansoni. Of note, 

the proteomic data revealed not only ELVs but also MVs are enriched for TSPs. Moreover, TSPs are 

efficacious helminth vaccine antigens (Tran et al., 2006, Dang et al., 2012, Joseph and Ramaswamy, 

2013). The use of TSPs as vaccines is marked in schistosomiasis where Sm-TSP-2 is one of the most 

promising vaccine antigens for human use (Tran et al., 2006) and has completed phase 1 clinical 

trials (Merrifield et al., 2016, Hotez et al., 2019). The data shown herein, highlight the potential of 

EVs as vaccine candidates, whereby immunisation with rTSPs might generate antibodies that block 

host-parasite communication in vivo (Chaiyadet et al., 2019) and disrupt vital pathways by which 

the parasite promotes its long-term survival. In addition, it has been previously shown that blocking 

of O. viverrini EV internalisation decreases the levels of IL-6 (fibrosis associated cytokine) and cell 

proliferation (Chaiyadet et al., 2015b) that ultimately drive tumour formation in this carcinogenic 

fluke infection. A recent vaccine trial in hamsters with O. viverrini adjuvanted EVs and recombinant 

TSPs from the surface of EVs resulted in significantly reduced worm burdens as well as stunted 

growth of those flukes that survived and matured in the bile ducts (Chaiyadet et al., 2019) compared 

to hamsters that received adjuvant alone, suggesting these antibodies might block the ability of the 

parasite to communicate with its host, thereby impairing the establishment and growth of the 
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parasite by interrupting its ability to suppress inflammation. Indeed, a vaccine based on TSPs or 

other EV surface proteins derived from S. haematobium might also have an anti-cancer effect and 

reduce the inflammatory processes that underpin development of squamous cell carcinoma in the 

bladder. Hence, it is intriguing to guide future research to enhance the evidence for the role of TSPs 

and their associated proteins in the formation of EVs, their shedding, and internalisation by the 

recipient cell, both in vivo and ex vivo.  

 

In disagreement with the findings presented herein where antibodies to S. mansoni EV TSPs block 

their uptake by target cells, one report described enhanced uptake of F. hepatica EVs by 

macrophages in the presence of antibodies against a CD63-like TSP on the surface of these EVs (de 

la Torre-Escudero et al., 2019). It was speculated by the authors that this is likely due to opsonisation 

of EVs and FcR-mediated uptake by antigen presenting cells (de la Torre-Escudero et al., 2019, 

Coakley et al., 2017) as opposed to distinct EV uptake by non-phagocytic target cells such as 

cholangiocytes (Chaiyadet et al., 2019) and HUVEC cells as shown in this study. Moreover, de la 

Torre-Escudero et al. did not formulate their F. hepatica EVs with an adjuvant, so one might argue 

that their study was not a vaccine trial per se but rather a therapeutic administration of EVs that 

might have been expected to have an immunoregulatory impact as opposed to an immunogenic 

one. 

Increased understanding of how schistosome EVs interact with host cells could provide insights into 

schistosome-host interactions and pave the way for the development of key intervention strategies. 

Schistosomula (Nowacki et al., 2015) and adult (Samoil et al., 2018, Sotillo et al., 2016b, Kifle et al., 

2020) S. mansoni release EVs, but the molecular impact of their uptake by recipient host cells has 

not, until now been determined. Here, I have shown that S. mansoni ELV could potentially function 

as signal messengers that regulate host cell gene expression and thereby facilitate parasitism.  
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DGEs from HUVEC cells incubated with S. mansoni ELVs compared to untreated HUVEC cells 

revealed reduced expression of genes encoding for proteins involved in blood clotting such as 

coagulation factor III (F3) and the vasoconstrictor peptide EDN1. Moreover, over-expressed genes 

in S. mansoni ELV-treated HUVEC cells encoded for proteins with roles in inhibition of platelet 

aggregation and vasodilation such as PTGIS, vascular smooth muscle contraction such as PPP1R14A 

and NTSR1, as well as genes involved in stress response following cell injury including GDF15 and 

DDIT3. These findings support the emerging role for EVs as virulence factors used by parasitic 

helminths (Chaiyadet et al., 2015b, Zhu et al., 2016a), but also shed light on processes that are 

unique to intravascular helminths. For example, schistosomes employ a variety of mechanisms to 

hinder platelet aggregation and prevent formation of clots (Mebius et al., 2013, Wang et al., 2017). 

This is of relevance to S. mansoni because of the large size of the worm pair compared to the narrow 

blood vessels in which they reside. The DGE analysis provided herein suggests that schistosome ELVs 

might modulate host blood clotting pathways by reducing vasoconstriction and clot formation and 

promoting vasodilation, all of which would facilitate their long-term existence in the mesenteries. 

Interestingly, S. mansoni EVs (Nowacki et al., 2015, Sotillo et al., 2016b, Samoil et al., 2018, Kifle et 

al., 2020) contain proteins with anti-clotting activities including annexin, saponin-B domain 

containing protein, and aminopeptidases, further supporting a role for EV molecules and their 

impact on host cell gene expression in targeting defined pathways that are essential for 

schistosomes to thrive in the microvasculature.  

 

Among the up-regulated DGEs in ELV-treated HUVEC cells were those involved in inflammation and 

immune-regulation including IL-6 and CXCL2, and cell proliferation, differentiation and signalling 

such as IL21R. An immunoregulatory role for helminth derived EVs (including S. japonicum) is well 

documented (Zamanian et al., 2015, Buck et al., 2014, Roig et al., 2018, Eichenberger et al., 2018a, 

Coakley et al., 2017, Chaiyadet et al., 2015b, Fromm et al., 2015, Wang et al., 2015a). IL-6, an acute 
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phase protein induced during inflammation (Hirano, 1998), inhibits the generation of Foxp3+ Treg 

cells induced by TGF-β, and exerts an important influence on Th17-cell differentiation (Bettelli et al., 

2006). Tissue injury initiates a cascade of inflammatory mediators including cytokines, chemokines 

and prostaglandins that leads to over-expression of genes regulating IL6  and chemokine receptor 

CXCL2 expression (Wang et al., 2009). IL21R, is a receptor which transduces the growth promoting 

signal of IL21, and is important for the proliferation and differentiation of T cells, NK cells and B cells 

(Bubier et al., 2009). O. viverrini ES (Chaiyadet et al., 2015a) and O. viverrini EVs (Chaiyadet et al., 

2015b) elicit production of IL-6 from recipient human cholangiocytes, which is thought to contribute 

to chronic periductal fibrosis and bile duct cancer in O. viverrini-infected individuals (Sripa et al., 

2011). Moreover, O. viverrini EVs also drive proliferation of cholangiocytes, a condition that has 

been reported in both the hamster infection model and infected human subjects (Sripa et al., 2012). 

Zhu et al. identified the transfer of schistosome-specific miRNAs, such as EV associated Bantam, into 

hepatic cells, indicating a common down-regulation of mRNAs involved in tumour suppression 

pathways in the livers of S. japonicum infected mice and in liver cells treated with S. japonicum EVs 

(Zhu et al., 2016a), as well as cell growth and suppression of cell death. Moreover, many N. 

brasiliensis EV miRNAs map to interleukin networks of mouse cells, including the IL-6 receptor and 

IL-6 signal transducers, IL-17 receptor and IL-21 (Eichenberger et al., 2018a). Another study showed 

that downregulation of IL-6 promoted susceptibility of mice to Th2-mediated killing of H. polygyrus 

(Smith and Maizels, 2014).  

 

The findings herein, describe the uptake of S. mansoni secreted ELVs and MVs by human vascular 

endothelial and monocyte cell lines, highlighting their diverse potential roles in host-parasite 

communication. These findings indicate that S. mansoni EVs may play an important regulatory role 

in parasite-host interactions and could be involved in the pathogenesis of schistosomiasis. Their 

roles in driving gene expression changes in target host cells identifies a mechanism by which host-
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parasite communication could be manipulated (Zamanian et al., 2015). Further, blocking this 

process using specific antibodies to EV-TSPs could be impairing critical parasite-host communication 

mechanisms which impact on parasite survival, and thereby offer hope for the eventual control of 

this debilitating neglected tropical disease. Further work is required to identify whether or not there 

is specificity or selectivity in host cells or tissues targeted by EVs and if so, what molecular 

mechanisms underscore this specificity. In addition, further work is required to characterise multiple 

pathways downstream of the process of host-parasite communication, as well as the individual fluke 

proteins and/or miRNAs involved and their cellular receptors. Moreover, it would be of interest to 

further explore the role of S. mansoni EV internalisation by THP-1 human monocyte cells. 

Exploration of the role of these vesicles as vaccine targets may help identify novel strategies which 

could be applied to identify potential vaccines/therapeutics to control schistosomiasis and other 

helminthiases.  
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 Chapter 4  
 

Assessment of Schistosoma mansoni extracellular vesicles as vaccines in 

a mouse model of schistosomiasis 

 

Preamble  

Helminth-derived EVs have been demonstrated to have vaccine potential using different animal 

models. In this chapter, I assess S. mansoni MVs as a novel vaccine modality in a mouse model of 

schistosomiasis; there was insufficient material to do a vaccine trial with S. mansoni ELVs. For this 

purpose, S. mansoni MVs were isolated from ES products as described in Chapter 2 following a 

standard procedure. Before the start of the experiment, protein concentration was determined for 

the MV sample. Moreover, MV concentration and particle size were determined using TRPS on a 

qNano instrument. A total of 60 BALB/C mice were used in two independent vaccine trials. Three 

groups of mice, 10 animals per group, were immunised intraperitoneally with two doses, two weeks 

apart, of 1) S. mansoni MVs; 2) mouse fibroblast-derived MVs; and 3) PBS control, adjuvanted with 

alum/CpG. Vaccine efficacy was assessed by calculating the worm burden, liver and intestine egg 

loads and egg viability (hatching index) of mice immunised with S. mansoni MVs compared to the 

control group. Finally, sera from mice immunised with S. mansoni ELVs and MVs were utilized to 

identify antibody signatures using a protein microarray containing ~1,000 S. mansoni recombinant 

proteins.   

 

 

 

 



128 
 

4.1.  Introduction  

Despite substantial efforts to eradicate schistosomiasis through integrated control strategies, such 

as snail control, community education and mass drug admiration using PZQ, it continues to be a 

major public health concern and causes significant morbidity and disability in disease endemic 

countries (McManus et al., 2018). As a sustainable prevention and control strategy, a vaccine for 

schistosomiasis is therefore urgently needed. Recent advances in schistosome molecular biology 

including genomics, transcriptomics, proteomics and immunomics have assisted the discovery of 

new antigens (Loukas et al., 2011, Gaze et al., 2012, Driguez et al., 2016b), however only a few 

subunit vaccines have been taken into early stage clinical trials.  

 

There is emerging evidence from mouse models that helminth-derived EVs have a role as vaccine 

antigens, (reviewed in (Kifle et al., 2017). In addition, several studies have reported that EVs released 

from helminths are capable of modulating host immune responses (Buck et al., 2014, Wang et al., 

2015a, Coakley et al., 2017, Zamanian et al., 2015, Eichenberger et al., 2018a). In one study, immune 

reactivity towards S. japonicum EVs was identified using rabbit anti-sera raised against S. japonicum 

infection (Zhu et al., 2016a). Indeed, helminth-secreted EVs as vaccine antigens and therapeutic 

agents have shown promising results (Trelis et al., 2016, Coakley et al., 2017, Shears et al., 2018, 

Chaiyadet et al., 2019). Trelis and colleagues in a mouse model of fluke infection demonstrated that 

E. caproni EVs can induce an antibody response upon vaccination and reduce the severity of 

symptoms of infection (Trelis et al., 2016). Vaccination of mice with nematode EVs has also been 

shown to induce protective immunity. Vaccination of mice with H. polygyrus-derived EVs resulted 

in greatly diminished worm burdens (Coakley et al., 2017), and EVs secreted by T. muris when 

administered to mice without adjuvant and induced anti-EV antibodies and a significant reduction 

in worm burdens (Shears et al., 2018). Recently, Chaiyadet et al. reported that hamsters vaccinated 

with O. viverrini EVs showed a significant increase in serum IgG titres against O. viverrini ES, O. 
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viverrini EVs and recombinant EV TSP proteins compared with sera from hamsters that received 

adjuvant only (Chaiyadet et al., 2019). Moreover, vaccinated hamsters had significantly reduced 

adult worm loads and egg burdens compared to control animals after challenge with O. viverrini 

metacercariae. In addition, the body length of worms recovered from vaccinated hamsters was 

significantly shorter than those collected from control animals, implying that anti-TSP antibodies 

interfere with fluke maturation and cause stunting. Pertinent to this Chapter, previously described 

S. mansoni vaccine candidates (Tran et al., 2006, Cardoso et al., 2006, Rezende et al., 2011, Sotillo 

et al., 2016b, Samoil et al., 2018, Pearson et al., 2012) have also been identified in S. mansoni EVs 

(Sotillo et al., 2016b, Nowacki et al., 2015, Samoil et al., 2018), supporting the hypothesis that S. 

mansoni EVs may be an important source of protective antigens. Indeed, my experimental findings 

from earlier chapters confirm this.  

 

Furthermore, there are reports that not only EVs from parasites but host cell-derived EVs induce 

protective immunity against parasitic infection. For instance, chickens immunised with dendritic 

cell-derived EVs pulsed with Eimeria parasites resulted in reduced mortality, intestinal inflammation 

and faecal oocyst shedding (del Cacho et al., 2012). Martin-Jaular and colleagues purified EVs from 

peripheral blood of mice infected with a non-lethal strain of Plasmodium yoelii (17X strain) and 

identified parasite proteins in the reticulocyte EVs. Vaccination of mice with adjuvanted EVs from 

17X-infected reticulocytes induced IgG antibodies that attenuated parasitaemia and prolonged 

survival after challenge infection with a lethal strain of the parasite (Martin-Jaular et al., 2011). 

Similarly, Beauvillain et al. showed that vaccinating mice with EVs from splenic dendritic cells pulsed 

with Toxoplasma gondii antigens prior to pregnancy showed protective immunity in pups, and led 

to lower mortality and fewer brain cysts with eventual congenital exposure to infection (Beauvillain 

et al., 2009).  
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Key to the identification of new target vaccine molecules and high throughput antigen discovery are 

the published complete genomes of schistosomes (Zhou et al., 2009, Berriman et al., 2009, Young 

et al., 2012), and related post-genomic research on the schistosome proteome, transcriptome, 

glycome and immunome (Sotillo et al., 2019b). The proteome microarray approach to antigen 

discovery is ideal for high-throughput profiling of the repertoire of antigens that can elicit defined 

immune responses in schistosomiasis. Schistosome protein microarrays have been used to examine 

the antibody profiles for different clinical grades of schistosomiasis (Chen et al., 2014, Gaze et al., 

2014, Pearson et al., 2015, de Assis et al., 2016, Driguez et al., 2015), and this approach is well suited 

to the current project. This chapter aimed to assess S. mansoni MVs as vaccines in a mouse model 

of schistosomiasis. I confirmed that these EVs induce partial protection in mice against infection as 

assessed using worm burdens, liver and intestine egg loads and egg hatching-index. Moreover, I 

have shown here that protein arrays provide an ideal means by which to explore humoral immunity 

and vaccine antigen discovery for schistosome infections. Sera from mice immunised with S. 

mansoni ELVs and MVs were used to probe arrays of S. mansoni antigens in an effort to identify 

reactive and potentially protective antigens.   

4.2. Material and methods 

4.2.1.  Ethics statement  

All experimental procedures were approved by JCU animal ethics, as described in section 2.2.1.  

4.2.2.  Study animals and S. mansoni  

Study animals and S. mansoni parasite species used in the experiment are described in section 2.2.2. 

4.2.3.  Snails shedding and mice infection  

Snails shedding and experimental mice infection with cercariae were performed following standard 

procedures, as described in section 2.2.3.   
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4.2.4.  Adult worm perfusion   

Adult worms after 6-8 weeks post-infection of mice were obtained as described in section 2.2.4. 

4.2.5.  Parasite culture and ES products collection  

Adult parasites were cultured and ES products were collected as described in section 2.2.4.  

4.2.6.  S. mansoni EV isolation and purification 

S. mansoni EVs were isolated and purified by Optiprep iodixalon gradient method as described in 

section 2.2.5.  

4.2.7.  EV analysis  

Size and concentration determination of EVs were carried using TRPS as described in section 2.2.6.  

4.2.8.  Immunisation studies  

Three groups of 10 male BALB/c mice, 6-8 weeks, were used for assessing vaccine efficacy of S. 

mansoni MVs. Prior to each vaccine trial, the amount of protein in each MV sample was measured 

using a Bradford assay kit (ThermoFischer) according to the manufacturer’s instructions, and mice 

were immunised intraperitoneally on day-1 (10 μg /mouse) with either S. mansoni MVs, mouse-

fibroblast MVs or PBS, each formulated with an equal volume of Imject alum adjuvant 

(ThermoFisher) and 5 μg of CpG ODN1826 (InvivoGen). Mice were given a booster dose 2 weeks 

later at day-14. All vaccinations were carried out using a 25 G needle (BD Microlance). At day 28, all 

mice were challenged with 120 S. mansoni cercariae using the tail technique (Harn et al., 1984). At 

day-26 blood samples were collected and sera isolated to assess antibody responses. Two 

independent vaccine trials were carried out for data reproducibility. There was insufficient material 

to do a vaccine trial with S. mansoni ELVs.  
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4.2.9.  Mice necropsy and estimation of worm and tissue egg burdens  

Seven weeks after parasite challenge, all mice were euthanized using an intraperitoneal injection of 

0.2 ml pentobarbital/heparin solution followed by CO2 gas administration and worms were perfused 

using perfusion solution (0.15 M sodium chloride with 0.03 M sodium citrate dehydrate in water) 

from the mesenteric veins to collect adult worms, as described elsewhere (Smithers and Terry, 

1965). Worm as well as egg burden assessments were carried out as described previously (Pearson 

et al., 2012). Livers and intestines were removed and weighed then each sample was digested for 4 

h at 37°C using 10 ml of 5% KOH. Samples were centrifuged for 10 min at 1000 g and pellets were 

resuspended using 1 ml of 4% paraformaldehyde. Counts were performed in triplicate with 5 µl 

volume from each sample under light microscopy at 200 × magnification. Eggs per gram (EPG) in 

liver and intestine homogenates were calculated as follows: (average number of eggs × total drops 

of tissue solution)/g of tissue. For each group, total adult worm burdens as well as liver and intestinal 

egg burdens were measured and reductions were calculated as a percentage of the parasite burdens 

in the control group by using the formula:  

% change = (mean number in infected controls - mean number in infected experimental mice) ×  100 

                                           mean number in infected controls  

 

4.2.10. Egg viability test  

Liver portions from each mouse were pooled within groups, homogenized in H2O in identical 

volumetric flasks (foil-covered with top 1 cm exposed) and placed under bright light to hatch eggs 

from the livers. After 1 h of exposure to light, the number of miracidia in 50 μl aliquots of H2O 

sampled 10 times from the very top of each flask were counted by adding 2 µl bioiodine to each 

aliquot. Egg viability (hatching-index) was calculated by multiplying the weight of pooled liver halves 

by the average EPG of that group (calculated once liver EPG from KOH digested livers had been 

determined) to get number of eggs per flask, and then expressing the number of hatched eggs 
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(miracidia) in each aliquot as a percentage of this. Hatching reduction was determined by expressing 

the hatching index of the vaccinated groups as a percentage of the control group. 

4.2.11. Probing of S. mansoni protein arrays with sera from mice immunised with S. mansoni EVs 

Protein microarrays, each containing 992 S. mansoni recombinant proteins (de Assis et al., 2016) 

were probed with sera from: (a) mice immunised with ELVs (sera pooled from 5 mice), (b) mice 

immunised with MVs (2 pools of sera – each from 5 mice from 2 separate immunisation 

experiments), (c) mice infected with S. mansoni parasites (sera pooled from 10 mice at 7 weeks 

post-infection) and (d) naïve mice. Probing was performed in duplicate. Samples were pre-adsorbed 

for anti-E. coli antibodies by rocking for 30 min at RT with E. coli lysate—impregnated fliters before 

probing of arrays. Protein arrays were blocked in blocking solution (Maine Manufacturing) for 2 h 

at RT prior to probing with mouse sera (1:50 in TBS/0.05% Tween 20 (TTBS)) at 4C overnight with 

gentle constant rocking. Arrays were washed 3 times for 5 min with TTBS, probed with goat anti-

mouse IgG1-biotin (1:200 in TTBS) (Sigma) for 2 h at RT, washed again and then incubated for 2 h in 

streptavidin-Cy-5 (1:400 in TTBS). Following a final 3 washes with TTBS, 3 washes with TBS and 3 

washes with MQ water, slides were air-dried and scanned on a Genepix 4200AL scanner (Molecular 

Devices) and signal intensities (SI) quantified using the ScanArray Express Microarray Analysis 

System Version 3.0 (Molecular Devices). Raw SI were corrected for spot-specific background using 

the Axon GenePix Pro 7 software and then further refined by determining the mean SI of the 

negative control (empty vector) spots (n=12) for each serum sample and subtracting that value from 

each spot. Finally, the refined SI for each spot from the array probed with naïve sera was subtracted 

from the corresponding spot on each of the other arrays to correct for background (naïve sera) 

reactivity.  
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4.2.12. Data analysis  

For all vaccine trial data, unpaired Student’s t-test was used to analyse any statistical differences 

between experimental and control groups. Power calculations were conducted to determine group 

sizes and the ability to detect at least 40% reduction in worm and egg burdens. Further, the mean 

and standard error of the mean (SEM) for each test group were compared with the control group 

for the variable of interest (worm recovery, tissue worm burdens as well as egg viability). GraphPad 

Prism™ version 7.03 was used for analysis.  P < 0.05 was considered as statistically significant.  

 

4.3. Results 

4.3.1.  Vaccination with S. mansoni MVs induces partial reduction in tissue egg burden  

Mice immunised with S. mansoni MVs did not show a significant reduction in adult worm counts in 

both vaccine trial 1 (Figure 4.1A) and trial 2 (Figure 4.1B).  

  

Figure 4. 1. Worm counts for individual mice immunised with S. mansoni microvesicles formulated 

with alum/CPG for vaccine trial 1 (A) and vaccine trial 2 (B) compared to mice vaccinated with 

fibroblast-derived MVs or PBS control groups. Worm burdens were determined seven weeks post 

cercarial challenge.  
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In vaccine trial 1, liver egg burdens (expressed as eggs per gram – EPG) (Figure 4.2A) compared to 

both control groups was unaffected. However, a significant reduction in liver egg burden (28%, P 

<0.01, Figure 4.2B) was obtained in vaccine trial 2 compared to mice that were treated with PBS but 

not with mice vaccinated with mouse MVs.  

 

Figure 4. 2. Egg burden per gram of liver for individual mice immunised with S. mansoni 

microvesicles formulated with alum/CPG for vaccine trial 1 (A) and vaccine trial 2 (B) compared 

to mice vaccinated with fibroblast-derived MVs or PBS control groups. Liver egg burdens were 

determined seven weeks post cercarial challenge (** P<0.01).  

Mice immunised with S. mansoni MVs compared to either of the control groups did not show 

protection (Figure 4.3A) measured by intestinal egg loads (expressed as EPG) in vaccine trial 1. In 

vaccine trial 2 however, intestinal egg burdens were significantly reduced (35%, P<0.01, Figure 4.3B) 

in mice vaccinated with S. mansoni MVs compare to mice that were immunised with PBS but not 

with fibroblast MVs. 
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Figure 4. 3. The egg burden per gram of intestine for individual mice immunised with S. mansoni 

microvesicles formulated with alum/CPG for vaccine trial 1 (A) and vaccine trial 2 (B) compared 

to mice immunised with fibroblast-derived MVs or PBS. Intestine egg loads were determined seven 

weeks post cercarial challenge (** P<0.01).  

 No significant reduction in egg viability (hatching-index, as determined by egg hatching from liver 

homogenates) was reported in mice immunised with S. mansoni MVs compared to control groups 

both in vaccine trial 1 (Figure 4.4A) and vaccine trial 2 (Figure 4.4B).  
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Figure 4. 4. Egg viability assessment (hatching index) per individual mouse vaccinated with S. 

mansoni microvesicles formulated with alum/CPG for vaccine trial 1 (A) and vaccine trial 2 (B) 

compared to mice immunised with fibroblast microvesicles or PBS. Egg hatching index of each 

group was calculated by expressing the hatched eggs (miracidia) as a percentage of the total liver 

eggs obtained after EPG was computed. 

Parasitological data including adult worm counts, liver and intestinal egg loads as well as egg 

viability assays were summarized for vaccine trial 1 (Table 4.1) and vaccine trial 2 (Table 4.2). 

Table 4.1. Parasitological data for mice immunised with S. mansoni microvesicles formulated with 

alum/CPG for vaccine trial 1 compared to mice immunised with fibroblast microvesicles or PBS. 

Group  Adult 

worms, 

range   

Adult worms 

Mean ± SEM 

reduction (%) 

Liver EPG 

Mean ± SEM, 

reduction (%) 

Intestine EPG 

Mean ± SEM, 

reduction (%) 

Hatching index 

Mean ± SEM, 

reduction (%) 

Mouse MVs; 

n=9  

38-84 61 ± 5.8  20350 ± 1218   9335 ± 983 (-)  0.027 ± 0.004  

PBS; n=9 48-88 60.4 ± 4.2  18294 ± 858  11658 ± 721   0.022 ± 0.005 

S. mansoni 

MVs; n=10 

26-102 55.6 ± 7.1 (9% 

compared to 

mouse MVs; 

8% to PBS) 

17653 ± 

1461(13% 

mouse MVs; 

3.5% PBS) 

10549 ± 1166 

(no reduction  

mouse MVs; 

9.5% PBS) 

 0.026 ± 0.004 

(3% mouse MVs; 

no reduction PBS) 
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Table 4.2. Parasitological data for mice immunised with S. mansoni microvesicles formulated with 

alum/CPG for vaccine trial 2 compared to mice immunised with fibroblast microvesicles or PBS. 

Group  Adult 

worms, 

range   

Adult worms 

Mean ± SEM 

reduction (%) 

Liver EPG Mean 

± SEM, reduction 

(%) 

Intestine EPG 

Mean ± SEM, 

reduction (%) 

Hatching index 

Mean ± SEM, 

reduction (%) 

Mouse MVs; 

n=9  

30-104 62 ± 7.0  16802 ± 1601  9119 ± 1102  0.025 ± 0.005  

PBS; n=10  38-82 66 ± 5.1  18880 ± 1188  11825 ± 818   0.03 ± 0.008 

S. mansoni 

MVs; n=8 

30-80 53 ± 5.2 (15% 

compared to 

mouse MVs; 

20% to PBS) 

13601 ± 1315 

(19% mouse 

MVs; 28% 

**P<0.01 PBS) 

7620 ± 952 (16% 

mouse MVs; 35% 

**P<0.01 PBS) 

 0.025 ± 0.004 (no 

reduction mouse 

MVs; 24% PBS)  

 

 

4.3.2.  Antibody signatures of mice immunised with S. mansoni EVs to arrayed antigens  

Probing of S. mansoni protein arrays with pooled sera from BALB/c mice immunised with S. mansoni 

ELVs and S. mansoni MVs demonstrated specific recognition of S. mansoni EV antigens by IgG1 

antibodies. Numerous antigens on the protein arrays were recognised by sera from immunised 

mice, including hypothetical, tegumental and metabolic proteins. The top 20 proteins recognised by 

sera from mice immunised with either S. mansoni-derived ELVs (Figure 4.5) or MVs (Figure 4.6) are 

presented. The three most strongly recognised antigens in mice immunised with S. mansoni ELVs 

were hypothetical protein (Smp_187080.1), the integral membrane protein Sm23 (Smp_017430.1) 

and the tegmental antigen Sm13 (Smp_195190.1). Likewise, the three top recognized antigens by 

sera from mice immunised with S. mansoni MVs were NADH dehydrogenase subunit 1 

(mitochondrial) (Smp_900110.1), thioredoxin glutathione reductase (Smp_048430.1) and Sm13 

(Smp_195190.1). Of the 20 top reactive arrayed antigens that were targets of significantly elevated 
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IgG1 responses in mice immunised with S. mansoni ELVs or S. mansoni MVs, six of them were 

common targets of antibody responses to both: Sm13 (Smp_195190.1), NADH dehydrogenase 

subunit 1 (Smp_900110.1), putative glutaredoxin, grx (Smp_006550.1), and the three hypothetical 

proteins: Smp_187080.1, Smp_176400.1 and Smp_118020.1. Moreover, antigens which were 

among the top 20 immunoreactive proteins include known and potential schistosome vaccine 

candidates: Sm23 (Smp_017430.1), Sm13 (Smp_195190.1), cathepsin B-like peptidase 

(Smp_158420.1), annexin (Smp_045500.1) and thioredoxin glutathione reductase (Smp_048430.1). 

 

Figure 4. 5. IgG1 reactivity profiles of sera from mice immunised with S. mansoni exosome-like 

vesicles to S. mansoni proteins printed on a proteome microarray. The graph shows the average 

fluorescence intensity of the top 20 most immunoreactive proteins. *RFU: relative fluorescence 

unit.  
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Figure 4. 6. IgG1 reactivity profiles of sera from mice immunised with S. mansoni microvesicles to 

S. mansoni proteins printed on a proteome microarray. The graph shows the average fluorescence 

intensity of the top 20 most immunoreactive proteins. *RFU: relative fluorescence unit.  

 

4.4.  Discussion  

EVs have diverse roles in host-pathogen interactions from participating in pathogen dissemination 

to provoking and even suppressing distinct arms of the host immune system (Lambertz et al., 2015, 

Regev-Rudzki et al., 2013, Silverman et al., 2008). The ability of helminths, such as S. mansoni, to 

secrete EVs highlights a newly identified strategy by which the parasite hijacks the host to promote 

its longevity (Sotillo et al., 2016b). EVs can have immunomodulatory roles that is largely based on 

their cargo, which is characteristic of both their cellular origin and physiological or pathological 
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conditions that trigger their secretion (Buck et al., 2014). Helminth derived EVs have shown 

promising results as potential vaccine targets (Zhu et al., 2016a, Shears et al., 2018, Coakley et al., 

2017, Trelis et al., 2016).  Moreover, previously described S. mansoni vaccine candidates (Tran et 

al., 2006, Cardoso et al., 2006, Rezende et al., 2011, Sotillo et al., 2016b, Samoil et al., 2018, 

Chaiyadet et al., 2019) have also been identified in the EV proteome.  

 

The degree of protection induced by vaccination with S. mansoni MVs was relatively low, and 

inconsistent between trials. Significant reduction in egg counts was only observed in trial 2. These 

variabilities in protection levels over two vaccine trials could be due to the modest levels of 

protection reported (28-35%) being drowned out by the expected degree of variation observed in 

mouse models. The differences in adult worm burdens and liver and intestinal egg burdens in mice 

immunised with S. mansoni MVs compared to mice that received fibroblast MVs was not statistically 

significant. Future studies might test higher concentrations of EVs and vaccinate with three doses 

instead of two. Moreover, more work involving a third vaccine trial is needed to allow robust 

statistical comparisons between trials which could address data inconsistency observed herein. 

 

Egg production rate is one of the parameters that is proposed as a measure of the reproductive 

success of S. mansoni in a particular host species (Bergquist and Colley, 1998), and is one of the 

criteria used to prioritise vaccine candidates for schistosomiasis. Vaccination with S. mansoni MVs 

resulted in a significantly lower number of tissue eggs in trial 2, suggesting a possible effect on worm 

fecundity as a consequence of the host immune response against these EVs. There was no significant 

difference in egg viability as calculated by hatching-index between both test and control groups, 

and these results were consistent for both trials.  
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Vaccines formulated as microparticles and liposomes may provide clues as to why EVs make efficient 

antigenic targets (Guy, 2007). For instance, encapsulating vaccine antigens using lipid spheres 

prevents their degradation and ensures slow release over time (Guy, 2007, Chadwick et al., 2010, 

Gregoriadis, 1994). Moreover, nanoparticles in the range of 40-50 nm are selectively taken up by 

murine dendritic cells compared to particles of up to 2 μm (Fifis et al., 2004). Therefore, it could be 

argued that the nature of helminth-derived EVs makes them better suited to internalisation by 

antigen presenting cells such as dendritic cells and macrophages, thus enhancing their antigenicity. 

This, however, should be investigated further as encapsulating recombinant or purified native 

schistosome EV antigens may improve efficacy.  

 

The low level of protection observed in this study was probably because the mice didn’t receive 

sufficient immunogen, and an extra boost was warranted to enhance IgG production. In Chapter 3 

however, I demonstrated that there are some efficacious antigens present on the surface of the 

EVs, as antibodies to TSP-2 and TSP-4 blocked the uptake of the vesicles in vitro. It is tempting to 

suggest the protection observed in mice with recombinant Sm-TSP-2 is due to antibodies blocking 

the ability of schistosome parasites to communicate with host cells.  

 

Protein microarrays allow rapid screening of a large repertoire of antigens by serological 

interrogation. My findings demonstrate that screening of a schistosome protein array rapidly 

revealed targets of the anti-ELV and anti-MV immune responses in mice. IgG1 is an important 

component of the protective humoral immune response to schistosomes (Mitchell et al., 2012, 

Wilson et al., 2014), and tegumental antigens like Sm-TSP-2, Sm29 and Smp80 (calpain) are the 

targets of IgG1 responses in schistosome-resistant individuals (Cardoso et al., 2006, Tran et al., 2006, 

Ahmad et al., 2011, Gaze et al., 2014). Antigens for which the strongest IgG1 responses were 

detected in this study included proteins that were predicted and/or proven to be located on the 
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tegument membrane, intracellular proteins, and metabolic enzymes that have key roles in 

parasitism. These findings support the notion that EVs are rich in antigens which could elicit specific 

immune responses against proteins with important roles in parasitism. Moreover, many of the 

strongly recognized antigens from the protein array were identified in the S. mansoni EV sub-

proteomes described in Chapter 2.  

Among the top 20 most immunoreactive antigens were proteins recognized by sera from mice 

immunised with both S. mansoni ELVs and S. mansoni MVs, including the tegmental antigen Sm-13 

and NADH dehydrogenase subunit 1. They are both reactive because the protein is probably found 

in both vesicle types. Sm13 is one of the most strongly recognised proteins by antibodies from mice 

immunised with adult worm tegumental membranes (Abath et al., 2000), and has been localized to 

the adult worm tegument. NADH dehydrogenase and Sm13 were found also to be reactive antigens 

in S. mansoni infected individuals using the same protein microarray as used herein (de Asssi et al., 

2016). A S. japonicum homologue of Sm13, Sj13, allowed detection of low intensity infections with 

high specificity and sensitivity when a panel of S. japonicum recombinant proteins were probed with 

sera, and to assess pre- and post-drug treatment follow up (Xu et al., 2014).  

In this study, a number of proteins that were differentially recognized by sera from mice immunised 

with S. mansoni ELVs or S. mansoni MVs compared with controls are noteworthy. Indeed, some of 

these antigens, for example the TSP Sm23 (Smp_017430.1) was one of the most reactive targets of 

IgG1 responses in mice immunised with ELVs and has previously been shown to be protective in 

recombinant form in a mouse model of schistosomiasis (Bergquist et al., 2002, Krautz-Peterson et 

al., 2017). Further, S. mansoni infection of rats, mice and humans produces a strong antibody 

response to Sm23 (Krautz-Peterson et al., 2017). Moreover, its S. japonicum homologue Sj23 (Zhu 

et al., 2003, Shi et al., 2001) was shown to be protective in animal challenge models of 

schistosomiasis.  
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Cathepsin B-like peptidase (C01 family) (Smp_158420.1) was amongst the top 20 IgG1-reactive 

proteins recognized by antibodies from mice immunised with S. mansoni ELVs. Peptidases are 

essential for development of S. mansoni, and a number of gut-associated peptidases digest host 

blood proteins in the schistosome gastrodermis to facilitate nutrition (Sajid et al., 2003). 

Recombinant S. mansoni-cathepsin B formulated with Montanide elicited high levels of specific 

antibodies and provided protection against challenge infection by significantly reducing adult worm 

and egg burdens in mice and inducing high levels of Th1 and Th2 cytokine production by splenocytes 

(Ricciardi et al., 2016).  

One of the most strongly recognised targets of IgG1 antibodies in mice immunised with S. mansoni 

ELVs was annexin (Smp_045500.1). Annexin is thought to be of integral importance for the stability 

of apical cell membranes in schistosomes and is proposed to play diverse roles in distinct cellular 

processes, notably suppression of inflammatory (D'Acquisto et al., 2008) and fibrinolysis (Madureira 

et al., 2011, de la Torre-Escudero et al., 2011). Annexin was recognized by sera from mice infected 

with S. mansoni (Leow et al., 2019), and is localized in the teguments of both schistosomula and 

adult worms (Leow et al., 2019, Tararam et al., 2010).  

A possible anti-schistosome drug target is the seleno-protein thioredoxin-glutathione reductase 

(TGR) (Smp_048430.1). TGR was among the top 20 immunoreactive antigens in mice immunised 

with S. mansoni MVs, and is a key enzyme in detoxification of reactive oxygen species in schistosome 

parasites (Cioli et al., 2008). TGR from S. japonicum was assessed as a vaccine antigen in a mouse 

model of schistosomiasis and vaccination induced a significant decrease in adult worm and egg 

burdens (Han et al., 2012). TGR was also shown to be essential for schistosome survival using RNA 

interference in vitro, and was concluded to be a key drug target (Kuntz et al., 2007). Indeed, TGR 

has been flagged as a potential drug target against most neglected tropical diseases (Prast-Nielsen 

et al., 2011).  
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Importantly, probing of the protein arrays with anti-EV sera revealed several S. mansoni antigens 

which were not detected in EVs using proteomic approaches (Chapter 2), and for which there is 

supporting literature on their vaccine and/or diagnostic potential for schistosomiasis. Only four of 

the top 20 most immunoreactive S. mansoni proteins identified using sera from mice immunised 

with S. mansoni ELVs were also found from proteomic analysis on S. mansoni ELVs: Sm13 

(Smp_195190.1), cathepsin B (C01 family) (Smp_158420.1), annexin (Smp_045500.1) and peptidyl-

prolyl cis-trans isomerase (Smp_040790.1). Strikingly, only two of the top 20 recognised proteins 

from mice immunised with S. mansoni MVs were also identified from S. mansoni MVs by proteomic:  

Sm13 and putative GRX (Smp_006550.1). These findings can be interpreted in different ways: (1) 

proteomics is only revealing a small subset of the total EV proteome, and proteins that are less 

abundant and less readily digested into easily identified tryptic peptides by LC-MS/MS are detected; 

(2) substantial immunologic cross-reactivity between EV and non-EV proteins exists. Targeted MS 

approaches such as multiple reaction monitoring can be conducted on EV proteomes to specifically 

search for tryptic peptides from antigens identified serologically to confirm their presence. 

Since there is an increasing body of evidence that helminth ELVs are efficacious vaccines in murine 

models (Trelis et al., 2016, Coakley et al., 2017, Shears et al., 2018, Chaiyadet et al., 2019), and S. 

mansini ELVs have been identified as a source of immunomodulatory effector molecules that can 

manipulate the host environment (Sotillo et al., 2016b, Samoil et al., 2018, Kifle et al., 2020), there 

is now compelling reasons to direct future research to assess S. mansoni ELVs for their vaccine 

efficacy.  

Nonetheless, studies involving helminth-derived EVs as vaccines are still in their infancy, and future 

studies should be tailored towards evaluating different routes of vaccine administration and animal 

models used based on their suitability for vaccine trials and translatability to the human setting. For 
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instance, vaccination studies involving helminth-derived ELVs used different routes of antigen 

administration and/or mouse strains (Trelis et al., 2016, Coakley et al., 2017, Shears et al., 2018).   

In conclusion, the data shown herein demonstrates the ability of S. mansoni MVs to provide modest 

levels of protective immunity in a mouse model of schistosomiasis as observed by reduction in both 

liver and intestinal egg burdens, but noting this outcome was only achieved in one of two trials 

conducted. Antibodies against EVs are hypothesized to target key physiological processes that can 

be potentially interrupted via subunit vaccines. Moreover, mice immunised with S. mansoni ELVs 

and MVs generated IgG1 antibodies that recognise defined antigens on these EVs. The potential of 

helminth-derived EVs to modulate the immune system offers a new strategy of targeting EVs as 

vaccine and therapeutic targets. Future work should investigate recombinant forms of EV surface 

proteins as protective antigens. Such insights will have paramount importance in determining how 

we can exploit the information gained to prevent and cure infectious diseases.  
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 Chapter 5  
 

Assessment of recombinant Schistosoma mansoni EV tetraspanins as 

vaccines in a mouse model of schistosomiasis 
 

Preamble  

TSPs from helminths have been demonstrated to have vaccine potential using different animal 

models. In this Chapter, the three TSP proteins identified on the surface of S. mansoni-EVs (Chapter 

2) were selected for assessment as recombinant subunit vaccines. rTSP proteins were expressed in 

E. coli (Chapter 3) and their vaccine efficacy assessed in a mouse model of schistosomiasis. Two trials 

with different vaccine regimens were carried out in BALB/c male mice. In each vaccine trial, five 

groups, 10 mice per group, were immunised intraperitoneally with the LEL of 1) rSm-TSP-1; 2) rSm-

TSP-2;  3) rSm-TSP-4; 4) cocktail of rSm-TSP-1 + rSm-TSP-2 + rSm-TSP-4; or 5) rTRX, with all antigen 

preparations formulated with Alum/CpG adjuvant. Parasitological data including worm burdens, 

liver and intestine egg loads and egg viability assessment were performed to evaluate the level of 

protection for each vaccinated group compared to TRX control. Moreover, IgG serum antibody 

responses to each antigen were assessed using indirect-enzyme linked immunosorbent assay 

(ELISA). Immunohistochemistry was used to anatomically localize the TSP proteins within adult S. 

mansoni.  
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5.1.  Introduction  

Although strident efforts have been put in place for the prevention and control of schistosomiasis 

through integrated approaches such as MDA of PZQ, targeting the snail intermediate host, and 

improved sanitation, most importantly the development of a vaccine is needed to eliminate 

schistosomiasis (Rollinson et al., 2013). Molecules on the apical membrane of the schistosome 

tegument are accessible targets by host antibodies for immunological attack because of  their close 

association with the host immune system (Braschi and Wilson, 2006).  

Rigorous efforts are required to progress early stage discoveries towards a clinically validated and 

approved vaccine. Herein, I have assessed vaccine efficacy of the selected S. mansoni rTSP LELs in a 

mouse model of schistosomiasis. TSPs are efficacious helminth vaccine antigens (Tran et al., 2006, 

Dang et al., 2012, Joseph and Ramaswamy, 2013, Pearson et al., 2012). The vaccine potential of the 

LEL of rSm-TSP-1(Tran et al., 2006) and rSm-TSP-2 (Tran et al., 2006, Pearson et al., 2012) has been 

described. The LEL of rSm-TSP-1 and rSm-TSP-2 formulated with Freund adjuvants (Tran et al., 2006) 

or rSm-TSP-2 adjuvanted with alum/CpG (Pearson et al., 2012) have proven to be an effective anti-

schistosomiasis vaccine in a murine model, with significant reductions in both adult worm loads and 

egg burdens compared to controls. Other schistosome rTSPs have also shown protection in mouse 

vaccination models of schistosomiasis (Braschi and Wilson, 2006), including Sm23 (Da'Dara et al., 

2008, Da’dara et al., 2001) and S. japonicum-TSP-2  (Yuan et al., 2010). Moreover, Sm-TSP-2 was 

strongly recognised by IgG from putatively resistant human subjects (Tran et al., 2006, Pearson et 

al., 2012), further highlighting the potential of some TSPs as subunit vaccines against human 

schistosomiasis. Moreover, TSPs have also been identified from S. mansoni EVs (Sotillo et al., 2016b, 

Samoil et al., 2018, Nowacki et al., 2015), and numerous TSPs (including those mentioned above) 

were identified herein following proteomic analysis of S. mansoni-derived EV fractions (Chapter 2). 

Furthermore, my findings from Chapter 3 show that antisera raised to TSPs successfully blocked S. 
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mansoni EV uptake by human host cell lines and hence have putative roles in host-parasite 

communication.  

This chapter aimed to assess the efficacy of selected rSm-TSPs identified on S. mansoni-derived EVs 

as vaccines. The findings from my study confirmed that select rSm-TSPs conferred protection against 

infection as assessed by reduced worm burdens and liver and intestine egg loads, as well as ability 

of eggs to hatch and release viable miracidia.  

 

5.2. Material and methods 

5.2.1.  Ethics statement  

The study secured ethical clearance from the Animal Ethics Committee at JCU as described in section 

2.2.1. 

5.2.2.  Mice and S. mansoni  

Information on mice and S. mansoni used in the vaccine trial are described in section 2.2.2.  

5.2.3.  Cloning, expression and purification of rSm-TSPs  

Information on Sm-TSP gene cloning, expression and protein purification are outlined in sections 

3.2.5 and 3.2.6.  

5.2.4.  Mouse immunisation and infection  

Groups of ten male BALB/c mice 6 to 8 weeks of age were used for vaccination studies. Sample size 

was calculated by comparing two independent samples inference for means formula (Rosner, 2011). 

A sample size of n = 10 was selected on the assumption of a vaccine trial resulting in a 40% reduction 

in worm burdens in the test group, i.e. mean of 42 worms per mouse for μ1 (TRX control) and 25 

worms per mouse for μ2 (test group), σ = 13, two-sided test, with α = 0.05 and power of 0.80. A 
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total of 50 mice were divided into five groups (10 mice/group) and each group was vaccinated with 

50 μg of each of the following recombinant proteins as antigens: rSm-LEL-TSP-1; rSm-LEL-TSP-2; 

rSm-LEL-TSP-4; a cocktail of rSm-LEL-TSP-1 + rSm-LEL-TSP-2 + rSm-LEL-TSP-4 with 16.67 μg each; TRX 

control. TRX, was used as control because the recombinant proteins were cloned so as to produce 

TRX fusion proteins, and hence, protections conferred in vaccine trials were only be attributed to 

recombinant proteins assessed. All rTSPs and rTRX were constituted with an equal volume of Imjust 

alum adjuvant (Imject® Alum/Thermo Scientific) and 5 µg/dose of CpG oligodeoxynucleotides 1826 

(InvivoGen). Immunisation of experimental mice were conducted as previously reported (Pearson 

et al., 2012) using the intraperitoneal route. Mice in vaccine trial 1 received three doses at 2-week 

intervals. Antibody titres in trial 1, however, were lower than we had observed in previous trials, 

therefore, the decision was made in trial 2 to give a fourth immunisation. Mice were challenged 

with 120 S. mansoni cercariae two weeks after the final vaccination using the tail technique (Harn 

et al., 1984). Serum samples were collected at day-2 (pre-immunisation), prior to each protein boost 

and pre-challenge to monitor immune responses. Mice were euthanized seven weeks after cercarial 

challenge as described in section 4.2.4, and necropsy was undertaken to obtain parasitological data 

including the number of adult worms, liver as well as intestinal egg burdens, and egg hatching index. 

Two independent vaccine trials were conducted on different dates using different batches of 

cercariae.   

5.2.5.  Egg viability test  

Egg viability test was assesses as described in section 4.2.10.  

5.2.6.  Enzyme-linked immunosorbent assay 

Specific IgG antibody responses in sera collected from mice vaccinated with rSm-TSP-1, rSm-TSP-2, 

rSm-TSP-4, rSm-TSP-1 + rSm-TSP-2 + rSm-TSP-4 and TRX were measured by ELISA as described 

previously. Ninety-six-well flat-bottom microtiter plates (NUNC-F96, FisherScientific) were coated 
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with 2 µg/ml of each antigen in triplicate in 100 mM carbonate-bicarbonate buffer (pH=9.6), and 

incubated with 5% skim milk for 1 h at 37oC before addition of 100 µl of serially diluted test sera 

(1:1,000 to 1: 2,560,000) as primary antibodies at 37oC for 1 h. Plates were then washed 3 times 

with PBS/0.05% Tween-20 (PBST) between incubations. After addition of IgG HRP-conjugated goat 

anti-mouse secondary antibody (Invitrogen) at a dilution of 1: 6,000 in PBST, peroxidase activity was 

detected with tetramethyl benzidine chromogenic substrate (ThermoFisher), and the reaction was 

stopped by adding 50 μl of 3 M HCl. The colorimetric reaction was read at 450 nm using a microplate 

spectrophotometer (Bio-Rad Laboratories). Positive results were expressed as endpoint titres with 

3 standard deviations above background wells containing baseline sera. 

5.2.7.  Immunolocalisation  

Immunohistochemistry was performed to determine the anatomic sites of S. mansoni TSP 

expression in sectioned adult worms. Fixed adult worm sections were deparaffinised using the 

following procedures: first washed with 100% xylene two times for 3 min each, and slides were 

transferred to coplin jars containing 50% xylene and 50% ethanol and kept for 3 min. Slides were 

rehydrated with two washes of 100% ethanol, then consecutively with 95%, 70% and 50% ethanol 

each for 3 min before rinsing in cold water two times for 5 min each. Antigen retrieval was 

performed by boiling the slides in citrate buffer (10 mM sodium citrate, pH 6) for 40 min followed 

by Tris buffer (10 mM Tris, 1 mM EDTA, 0.05% Tween, pH 9.0) for 20 min. Sections were washed 

using TBS/0.05% Tween-20 (TBST) and blocked with 10% goat serum for 1 h at RT. After washing 

with TBST three times each for 5 min, sections were incubated with sera from vaccinated mice 

diluted 1:50 in 1% BSA/TBST overnight at 4oC. Samples were washed using TBST three times each 

for 5 min. The sections were then probed with goat anti-mouse IgG-Alexa Fluor 647 (Sigma-Aldrich) 

diluted 1:200 in TBST/1% BSA for 1 h at RT, and samples were kept in the dark. Slides were washed 
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three times with TBST, mounted with Entellan mounting medium (Millipore), covered with cover 

slips, and examined with an AxioImager M1 fluorescence microscope (Zeiss) using Nuance software.  

5.2.8.  Mice necropsy and estimation of worm and tissue egg burdens    

Mice were necropsied and worm as well as egg burden assessments were carried out as described 

in section 4.2.9.  

5.2.9.  Data analysis  

For all vaccine trial data, unpaired Student’s t-test was used to analyse any statistical differences 

between experimental and control groups as described in section 4.2.12. 

 

5.3. Results  

5.3.1.  Antibodies against S. mansoni-TSPs recognize adult worm surface antigens  

Antibodies to both rSm-TSP-2 and TSP-4 bound to the tegument of sectioned adult flukes. 

Antibodies to TSP-2 bound more strongly to the tegument compared to the less pronounced binding 

of antibodies to TSP-4 (Figure 5.1). The distribution pattern of TSP-2 was reasonably uniform across 

the tegument, which is in agreement with earlier studies (Tran et al., 2006), but TSP-4 has not 

previously been localized and revelaed a punctate distribution pattern across the tegument. It is 

possible that TSP-4 is expressed in distinct tegumental regions, possibly tegumentay cytons, and 

future work using transmission electron microscopy could shed light on the specific sub-cellular 

distribution of this protein. Naïve mouse sera did not show any binding to schistosome tissues. 
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Figure 5. 1. Anti-rTSP antibodies recognise proteins in the tegument of adult worms. 

Immunofluorescence micrographs showing adult S. mansoni sections probed with either 1) naive 

mouse serum (panels A and D), mouse anti-rSm-TSP-2 serum (panels B and E) and mouse anti-rSm-

TSP-4 serum (panels C and F) followed by goat anti-mouse IgG-Alexa Fluor-647. Red fluorescence 

denotes regions where antibody has bound. Note fluorescence of only the tegument with antibodies 

to rSm-TSP-2 and rSm-TSP-4 but not naïve serum. All images are shown at 400× original 

magnification.  

 

5.3.2.  S. mansoni rTSPs showed a moderate efficacy in protecting infections  

Mice in vaccine trial 1 showed no significant reduction in adult worm burdens compared to mice 

immunised with TRX control (Figure 5.2A). In vaccine trial 2, however, mice vaccinated with rSm-

TSP-2 36% (P<0.01) and TSP cocktail 30% (P<0.01) showed significant reduction in worm burdens 

(Figure 5.2B).  
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Figure 5. 2. Worm counts for individual mice in vaccine trial 1 (A) and vaccine trial 2 (B) immunised 

with either rSm-TSP-1, rSm-TSP-2, rSm-TSP4 or TSP cocktail compared to TRX control group 

formulated with alum/CpG. Worm burdens were determined seven weeks post-cercarial challenge. 

** P< 0.01.  

Moreover, mice vaccinated with rSm-TSP-1, rSm-TSP-2, rSm-TSP-4 or TSP cocktail in vaccine trial 1 

resulted in no significant reduction in mean liver egg burdens (Figure 5.3A). On the contrary, a 

significant reduction in mean liver egg burdens of 36% (rSm-TSP-2; P<0.01) and 26% (TSP cocktail; 

P<0.05) were observed (Figure 5.3B) in vaccine trial 2 compared to TRX control.   
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Figure 5. 3. The egg loads per gram of liver tissue for individual mice in vaccine trial 1 (A) and 

vaccine trial 2 (B) immunised with either rSm-TSP-1, rSm-TSP-2, rSm-TSP4 or TSP cocktail 

compared to TRX control formulated with alum/CpG. Liver egg loads were determined seven 

weeks post-cercarial challenge. * P<0.05, ** P< 0.01.  

To evaluate the effect of the vaccines on reducing transmission, intestinal eggs were counted; 

intestines from any of the groups in vaccine trial 1 had no significant reduction in intestinal egg loads 

(Figure 5.4A); however, mice vaccinated with TSP cocktail had a 31% (P<0.05) reduction in mean egg 

burdens than those in the control group (Figure 5.4B) in vaccine trial 2.  

 

Figure 5. 4. The egg load per gram of intestine tissue for individual mice in vaccine trial 1 (A) and 

vaccine trial 2 (B) immunised with either rSm-TSP-1, rSm-TSP-2, rSm-TSP4 or TSP cocktail 

compared to TRX control group formulated with alum/CpG. Intestine egg loads were determined 

seven weeks post-cercarial challenge. * P<0.05.  

 A significant reduction in egg hatching index (Figure 5.5A) was obtained in mice immunised with 

rSm-TSP-2 (P<0.05) and TSP cocktail (P<0.001) in vaccine trial 1.  In vaccine trial 2, however, mice 

vaccinated with only rSm-TSP-4 had a lower egg hatching index compared to TRX control (Figure 

5.5B), but this difference was not statistically significant.     
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Figure 5. 5. Egg hatching index per individual mouse in vaccine trial 1 (A) and vaccine trial 2 (B) 

immunised with either rSm-TSP-1, rSm-TSP-2, rSm-TSP4 or TSP cocktail compared to TRX control 

group formulated with alum/CpG. Egg hatching index was determined seven weeks post cercarial 

challenge. * P<0.05, *** P< 0.001.  

 

5.3.3.  Mice vaccinated with rTSPs mounted IgG antibody responses 

Antibody responses to rTSPs and rTRX were measured by IgG endpoint titres on pre-challenge 

pooled sera collected from mice in vaccine trial 1 and vaccine trial 2. Mice generated antibody titres 

in excess of 1:320,000 in vaccine trial 1 against rSm-TSP-1 and in excess of 1:160,000 against rSm-

TSP2, rSm-TSP-4, TSP cocktail or TRX control (Table 5.1).  
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Table 5. 1. Pre-challenge IgG endpoint titres and parasitological data for mice in vaccine trial 1 

immunised with either rSm-TSP-1, rSm-TSP-2, rSm-TSP4 or TSP cocktail compared to TRX control 

formulated with alum/CPG.  

Group  IgG 

endpoint 

titres/pre-

challenge  

Adult 

worms

, range   

Adult 

worms 

Mean ± SE 

Liver EPG 

Mean ± SE 

Intestine EPG 

Mean ± SE 

Hatching index 

Mean ± SE (% 

reduction) 

Control 

(thioredoxin); 

n=9 

1:160,000 16-40 24.7 ± 2.3   9107 ± 1257  5351 ± 627  0.061 ± 0.01 

Sm-TSP-1; 

n=10 

1:320,000 14-38 25.4 ± 2.7 9227 ± 935  5415 ± 721  0.066 ± 0.01 

Sm-TSP-2; n=8 1:160,000 18-42 26.5± 2.8   10642 ± 1220 5907 ± 745  0.04 ± 0.01 (35%,  

*P<0.05)  

Sm-TSP-4; 

n=10 

1:160,000 14-62 28.6 ± 4.3  9499 ± 1560 6506 ± 1010  0.59 ± 0.01 (3%) 

Cocktail;  

n=10 

1:160,000 20-66 37. 2 ± 4.2   9998 ± 1384  5628 ± 939 0.02 ± 0.01  

(71%, ***P<0.001) 

 

Endpoint titres measured on pre-challenge sera collected from mice in vaccine trial 2 were much 

higher than trial 1. Titres of 1:2,560,000 were recorded for rSm-TSP-1 and 1:1,280,000 for either 

Sm-TSP2, rSm-TSP-4, TSP cocktail or TRX control (Table 5.2).  
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Table 5. 2. Pre-challenge IgG endpoint titres and parasitological data for mice in vaccine trial 2 

immunised with rSm-TSP-1, rSm-TSP-2, rSm-TSP4, TSP cocktail compared to thioredoxin control 

formulated with alum/CPG.  

Group  IgG endpoint 

titres/pre-

challenge  

Adult 

worm

s, 

range   

Adult worms 

Mean ± SE (% 

reduction) 

Liver EPG 

Mean ± SE 

(%reduction) 

Intestine 

EPG Mean ± 

SE (% 

reduction) 

Hatching 

index Mean ± 

SE (% 

reduction) 

Control 

(thioredoxin); 

n=8 

1: 600,000 40-84 54.7 ± 5.2   16503 ± 

1539 

 9713 ± 748  0.02 ± 0.004 

Sm-TSP-1; 

n=10 

1: 2,560,000 36-74 53.2 ± 4.1 

(3%) 

15159 ± 

1217 (8%) 

9838 ± 1480 

(0) 

 0.03 ± 0.005 

(0) 

Sm-TSP-2; 

n=10 

1: 1, 280,000 26-52 34.8± 2.9    

(36%, 

**P<0.01) 

10598 ± 916 

(36%, 

**P<0.01) 

8090 ± 1145 

(17%) 

0.06 ± 0.01 

(0) 

Sm-TSP-4; 

n=10 

1: 1, 280,000 34-66 49.2 ± 3.9 

(10%) 

 15060 ± 965 

(9%) 

9827 ± 742 

(0) 

 0.01 ± 0.003 

(37%) 

Cocktail; 

n=10 

1: 1, 280,000 26-54 38.4 ± 2.6 

(30%, 

**P<0.01) 

12159 ± 918 

(26%, 

*P<0.05) 

 6719 ± 798 

(31%, 

*P<0.05) 

 0.04 ± 0.003 

(0) 

 

 

5.4. Discussion  

Molecules exposed to host antibodies, notably proteins anchored to the outer tegument of the 

worm are the most important vaccine candidates (El Ridi and Tallima, 2013). Tegument proteins are 

key candidates as schistosome vaccine antigens because of their location at the parasite-host 

interface (Loukas et al., 2007, Pinheiro et al., 2011). Many tegumental proteins have been 

characterised as vaccine candidates, including the TSPs Sm-TSP-1, Sm-TSP-2 and Sm23 (Tebeje et 
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al., 2016). Helminth secreted EVs have shown promising results as vaccines in mice infected with E. 

caproni (Trelis et al., 2016), H. polygyrus (Coakley et al., 2017) and T. muris (Shears et al., 2018), and 

in hamsters infected with O. viverrini (Chaiyadet et al., 2019), but we know little about the specific 

antigens targeted by protective antibodies. Since at least some of these protective molecules likely 

make contact with ligands on the target cell plasma membrane, they present as potential targets 

for vaccines that prevent EV-host cell communication. Applying intact helminth EVs as vaccines, 

however, is not feasible because of the difficulty in the collection and isolation of sufficient EVs. 

Instead, assessing vaccine efficacy of recombinant forms of select EV surface antigens with known 

roles in host cell communication is technically feasible.  

The aim of this Chapter was to assess selected rSm-TSP proteins identified on the surface of S. 

mansoni EVs as vaccines in a mouse model of schistosomiasis. To this end, the LEL of Sm-TSP-1, Sm-

TSP-2 and Sm-TSP-4 recombinant proteins and a cocktail of all three antigens adjuvanted with 

alum/CpG were tested for their vaccine efficacy compared to TRX control in a mouse model of 

schistosomiasis. In this study, the protection level obtained for some of the antigens in vaccine trial 

2 was higher compared to the same antigen used in vaccine trial 1 and was inconsistent across the 

two experiments conduced. rSm-TSP-2 and TSP cocktail vaccine formulations were capable of 

eliciting a significant reduction in both adult worm and liver egg burdens in vaccine trial 2; moreover 

vaccination with the TSP cocktail induced significant reductions in intestinal egg burdens in vaccine 

trial 2. Antibody titres in trial 1 were lower than we had observed in previous (published) trials with 

TSP-2 and TSP-4 and, therefore, the decision was made in trial 2 to give a fourth immunisation, and 

that is the likely reason why antibody titres and protection were higher in trial 2. Previous studies 

done by our group to assess the vaccine efficacy of the LEL of rSm-TSP-2 formulated with Freunds 

(Tran et al., 2006) or alum/CpG (Pearson et al., 2012) adjuvants in a murine model of schistosomiasis 

achieved 57% and 64% vs 25-27% and 20-27% reductions in mean adult worm and liver egg burdens, 
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respectively, over two independent vaccine trials. The discrepancies observed in protection levels 

among the different studies could be attributed to the differences in experimental conditions such 

as adjuvants, route of cercarial challenge, and/or fitness of different cercarial batches. Moreover, 

rSm-TSP-2 showed even higher immunogenicity and protection when used as a chimeric vaccine 

with a protective hookworm vaccine antigen (Na-APR-1), resulting in 54-58% and 48-56% reductions 

in mean worm and liver egg burdens, respectively, compared to mice immunised with rSm-TSP-2 

alone over two independent trials (Pearson et al., 2012). Similarly, a multivalent chimeric antigen 

with rSmTSP-2/rSm29 formulated with alum/CpG showed reductions of 28 to 34% in adult worm 

counts and up to 48% reductions in liver pathology compared to 20% and 38% reductions in adult 

worm and liver pathology, respectively, compared to mice that received rSm29 alone (Pinheiro et 

al., 2014). In the current study, vaccination of BALB/c mice with rSm-TSP-1 or rSm-TSP-4 did not 

produce significant reductions in adult worm burdens or liver egg loads compared to mice in the 

TRX control group. In contrary to my findings, previous studies done by our group (Tran et al., 2006) 

demonstrated that CBA/CaH mice immunised with the LEL of rSm-TSP-1 formulated with Freunds 

adjuvants displayed 34% and 52% reductions in mean adult worm burdens and liver egg loads, 

respectively. The discrepancy between the two studies might be due to the different experimental 

conditions such as different adjuvants and mouse strains used. Indeed, the different experimental 

conditions used by different research groups, including different routes of administration, 

adjuvants, vaccination regimen, antigen doses, and even mouse strains could attribute to the 

apparent discrepancy seen in the literature for select vaccine antigens for schistosomiasis. This 

makes it difficult to compare and contrast published data, and consistency in protocols used to 

assess putative vaccine antigens would be a welcome approach for the field. In a simulated field 

condition of human schistosomiasis, Siddiqui and collegues showed a moderate reduction in worm 

burden but significant reduction in tissue egg burdens in baboons immunised with recombinant Sm-

p80 + CpG-ODN compared with adjuvant-treated control baboons (Siddiqui et al., 2018). Further, 
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rSm-p80 formulated with GLA-Alum provided 33–53% and 38% reduction in worm burdens in mice 

and baboons, respectively, compared to those immunised with adjuvant only (Zhang et al., 2018b). 

In a similar study, Zhang et al. reported a significant reduction (90%) in the tissue egg load in 

baboons immunised with rSm-p80 adjuvanted with glucopyranosyl lipid A/GLA-SE compared to 

baboons that received GLA-SE only (Zhang et al., 2018c).   

Because most of the morbidity of schistosomiasis is linked to eggs trapped in the tissues rather than 

the adult worms, reducing tissue egg burdens and granuloma formation would be desirable criteria 

of any effective schistosomiasis vaccine antigen. In the present study, TSP cocktail with alum/CpG 

was capable of achieving significant reductions in worm burdens and liver and intestinal egg loads 

compared to mice immunised with TRX control. Indeed, vaccination with the cocktail resulted in 

greater reductions in intestinal egg burdens compared to vaccination with rSmTSP-2 alone, 

highlighting the need for further research on multivalent vaccine antigen discovery and 

development for schistosomiasis. A vaccine that reduces intestinal egg burden will have an impact 

on transmission. Recombinant O. viverrini EV surface proteins,  combination of rOv-TSP-2 + rOv-TSP-

3 when adjuvanted with alum/CpG showed a significant reduction in worm loads compared to mice 

vaccinated with rOv-TSP-2 or rOv-TSP-3 alone in a hamster model of opisthorchiasis (Chaiyadet et 

al., 2019). The reduced number of tissue eggs from my study herein and others in the literature may 

reflect either an immediate anti-fecundity effect of the vaccine or a delayed inception of egg laying 

(Cheever et al., 2002). To this end, further research assessing generation of developmental oograms 

and examination of egg laying at different experimental intervals should be performed (Cheever et 

al., 2002, Mati and Melo, 2013). Moreover, Chaiyadet et al. showed that the average length of 

worms obtained from hamsters vaccinated with rOv-TSP-2 or rOv-TSP-3 was significantly shorter 

compared to those collected from control hamsters, revelaing a stunting effect on worm 

development (Chaiyadet et al., 2019). In this study, eggs recovered from mice immunised with rSm-
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TSP-2 and TSP cocktail had showed a reduction trend in hatching-index, possibly as a result of 

attenuated development of the parasites caused by binding of antibodies to the tegument having 

an effect on parasite fitness. However, additional studies are necessary to support the association 

between protection levels measured by hatching-index. Eggs recovered from baboons immunised 

with rSm-p80 + CpG-ODN  had  significantly reduced viability and hatching rates compared to eggs 

from baboons that received adjuvant only (Siddiqui et al., 2018). Moreover, an 81% reduction in 

hatching of eggs was reported in baboons immunised with rSm-p80 adjuvanted with GLA-SE 

compared to baboons immunised with GLA-SE only (Zhang et al., 2018c).  

Investigational vaccines against S. mansoni are more likely to succeed if they can elicit robust 

immune responses against multiple antigenic targets in the schistosome. In this study, pre-challenge 

sera collected from mice vaccinated with rTSPs showed IgG antibody titres that were higher for all 

groups of mice in vaccine trial 2 compared to mice in vaccine trial 1, and this might be due to an 

extra (fourth) dose of antigen administered to mice in vaccine trial 2. In trial 1, mice were challenged 

with parasites before antibody titres were assessed. In trial 2, antibody titres were assessed after 

the third vaccination and were found to be lower than that obtained in earlier studies from our 

laboratory. A fourth vaccination was therefore conducted in trial 2, resulting in substantially higher 

IgG titres. Studies done in humans showed that rSm-TSP-2 is strongly recognised by IgG1 and IgG3 

(Tran et al., 2006) from naturally resistant individuals but is not recognised as strongly by IgG from 

chronically infected individuals. In my study, there was no association between antibody titres and 

parasite burdens in mice immunised with rSm-TSP-1. Despite producing the highest IgG titres of all 

the antigens in both vaccine trials, vaccination with rSm-TSP-1 did not result in significant reductions 

in adult worm or tissue egg burdens. Similarly, high levels of antigen-specific IgG1 antibodies were 

measured in mice immunised with the tegument surface protein Sm14 adjuvanted with alum 

hydroxide, but no reduction in adult worm burden was observed (Fonseca et al., 2004), suggesting 
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that high antibody titres against any surface antigen is not sufficient for protection, and only certain 

surface antigens can generate meaningful protective humoral responses.  

In this study, I have demonstrated immunolocalization of Sm-TSP-2 and Sm-TSP-4 to the outer 

tegument of S. mansoni. While the surface localisation of TSP-2 has been previously reported (Tran 

et al., 2006), this is the first report of surface localisation for TSP-4. Strong localization seen to Sm-

TSP-2 on the tegument compared to Sm-TSP-4 could be best explained by a higher level of 

abundance/expression of TSP-2 in the tegument compared to TSP-4, or its accessibility to the host 

immune system due to its anatomical location within the tegument. While not addressed herein for 

TSP-4, Sm-TSP-2 is also expressed on the surface of live schistosomula (Tran et al., 2010), the 

developmental stage that is widely thought to be the most vulnerable stage for immune-mediated 

attack (Tebeje et al., 2016). The role of Sm-TSP-2 in maintaining tegument membrane integrity has 

been demonstrated in vitro using RNAi (Tran et al., 2010). Moreover, it was recently demonstrated 

that the tegument relies on a stem cell (neoblasts) population that replace tegumental cells lost to 

turnover that are enriched in TSP-2, prompting the authors to speculate that stem cell-driven 

renewal of this tegumental lineage represents an important strategy for parasite survival, and hence 

revealed new therapeutic targets (Wendt et al., 2018, Collins et al., 2016). Furthermore, S. mansoni-

infected rats show a higher titer for schistosome apical tegumental antigens (primarily Sm-TSP-2 

and Sm29) compared with non-apical membrane antigens, and these antibodies were also bound 

to the surface of living lung-stage worms and to formaldehyde-fixed adult worms (Sepulveda et al., 

2010). S. mansoni infection in experimentally infected mice and rats, as well as naturally infected 

humans, elicits high levels of antibodies that recognise five major tegumental membrane proteins, 

including Sm-TSP-2, Sm23 and Sm29 (Krautz-Peterson et al., 2017).  

Mode of vaccine delivery and selection of mouse strain used in any given vaccine model are an 

important aspect to consider in the experimental design and for critical interpretation of results. 
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Several studies reported that antigens irrespective of their routes of administration resulted in 

similar levels of protection and immune responses in a S. mansoni challenge model. For instance, 

the levels of protection against S. mansoni infection obtained by the intranasal route with 9B 

peptide-1 (Ben-Yedidia et al., 1999) was comparable to that obtained by intraperitoneal with this 

same peptide, and both modes of delivery yielded comparable humoral responses (Tarrab-Hazdai 

et al., 1998). Moreover, single-dose mucosal immunisation with biodegradable microparticles 

containing a S. mansoni antigen administered using nasal or oral routes induced a long-lasting 

specific humoral response (Baras et al., 1999). Further, oral immunisation of mice with recombinant 

S. japonicum proteins induced antigen-specific antibodies and damage to adult worms after a 

challenge infection (Yang et al., 1997). Similarly, mucosal immunization of mice with a recombinant 

fusion protein vaccine against schistosomiasis conferred protection against infection and 

immunopathology (Lebens et al., 2003). An additional factor that might affect antigen/adjuvant 

responses is the mouse strain used. For instance, BL/6 and BALB/c mice are regarded as high 

responders to the irradiated S. mansoni cercariae vaccine with fewer worms obtained after 

challenge infection compared to CBA mice which are considered moderate responders (Stephenson 

et al., 2014). On the other hand, infected CBA mice show stronger splenic T cell proliferation with a 

reduced suppressor T cell response once a schistosome infection becomes patent compared to that 

of BL/6 and BALB/c mice (Lewis and Wilson, 1981).  

In summary, my findings herein demonstrated that immunisation of mice with rSm-TSP-2 or TSP 

cocktail formulated with alum/CpG resulted in protection against schistosomiasis infection 

compared to TRX control group as observed by a trend towards reduction of adult worms, liver egg 

burdens and hatching index, and reduction in intestinal egg loads in mice that received TSP cocktail 

in one of the vaccine trials. Repeated multiple trials with the same vaccine regimen is recommended 

for the future to address data inconcistancy between trials. Moreover, rSm-TSP specific IgG 
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antibodies were elicited and these antibodies recognise TSPs on the worm surface. My findings 

along with previous studies by our group (Tran et al., 2006, Pearson et al., 2012) implicate the 

relevance of testing different experimental conditions in order to get the most protective and 

immunologically favourable formulation. Finally, EV recombinant proteins might be best delivered 

in the form of synthetic vesicles so that they are embedded on/in the surface and adopt the proper 

conformation and are correctly presented to the immune system. 
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 Chapter 6 
  

General discussion and future directions 
 

6.1. General discussion  

Schistosomiasis is a debilitating neglected disease that mainly occurs in tropical and subtropical 

regions. Treatment depends solely on PZQ, which is effective in killing adult schistosome parasites, 

but has poor activity against immature worms, and does not prevent reinfection. Further, the 

development of drug resistance by the parasite is also a concern that has to be considered (Gryseels 

et al., 2006, Doenhoff and Pica-Mattoccia, 2006, McManus et al., 2010). Currently, there are no anti-

schistosomiasis vaccines that have received regulatory approval and made it into the clinic. In terms 

of vaccine targets, there has been much recent interest in assessing helminth EVs. 

As defined in the introduction of this thesis, EVs are heterogeneous vesicles of membranous origin 

released by different types of cells. EVs comprise a complex mixture of genetic information, 

proteins, lipids, and glycans. Pertinent to this thesis was addressing the roles of S. mansoni EVs in 

host-parasite interactions: What are the proteome profiles of the different compartments of these 

EVs? Do EVs secreted from S. mansoni bind to and get internalised by host cells?  Do the internalised 

EVs have a role in host cell gene regulation?  Do antibodies against surface TSPs disrupt EV-mediated 

parasite-host communication? Will vaccines against EVs and recombinant versions of their surface 

proteins display efficacy in a mouse model of schistosomiasis? Research conducted within this thesis 

has begun to address these questions.  

 

In Chapter 2 of this thesis, I presented the first comprehensive proteomic analysis of two 

populations of adult S. mansoni-derived EVs – ELVs and MVs, and have provided valuable 

information on the protein composition of these two EV types. I identified 286 and 716 proteins in 
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ELVs and MVs, respectively. Among the proteins identified were potential vaccine candidates and 

proteins relevant to host-parasite communication, which are unique and common to both EV types. 

MS-based proteomic analysis has undoubtedly advanced our understanding of schistosome EV 

protein content; however, coupled with other approaches such as metabolomics and 

transcriptomics, interrogation of the schistosome proteome (particularly the surface molecules) 

provided a mechanism by which to identify important clinically-relevant proteins, notably those 

with potential as new vaccine targets. Therefore, these vesicular proteomes provide diverse 

information on the nature of EVs secreted by schistosomes, and help us to translate the molecular 

mechanisms that are involved in vesicular cargo sorting and biogenesis, as well as the diverse 

physiological and pathological functions of EVs (Bandu et al., 2019, Rontogianni et al., 2019). 

Further, high-throughput mass spectrometry based proteomic studies on EVs facilitate biomarker 

discovery based on the protein signatures of the originating cells.  

Perhaps the most intriguing aspect of the interactions between EVs and target cells is the active 

internalisation of these EVs by target cells, and their potential roles in host cell gene regulation. 

Based upon the increasing realisation that EVs facilitate intercellular communication in eukaryotes 

(Guay and Regazzi, 2017, Xu and Wang, 2017, Alcayaga-Miranda et al., 2016), it was hypothesised 

that S. mansoni-secreted EVs contribute to maintenance of long-term host-parasite interactions 

during schistosomiasis. It is clear from my work in Chapter 3, that both S. mansoni ELVs and MVs 

are internalised by both endothelial and monocyte cell lines (at least in vitro), and have a role in 

regulation of host gene expression. This is the second documentation of a role for S. mansoni EVs in 

host-parasite communication, and reveals novel insights into the mechanisms of host-schistosome 

interactions. The first report of internalisation and subsequent functional consequences of S. 

mansoni EVs was recently described by Meningher et al. (2020) who showed that internalisation of 

adult worm EVs modulated host T helper cell differentiation. The mechanism underlying S. mansoni 
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EV internalisation and cargo deliver into target cells is key area for future research. EVs recognize 

and attach to their target cells through surface molecules and are internalised by 

endocytosis/phagocytosis (Mulcahy et al., 2014) or with direct fusion of EVs with the plasma 

membrane of target cells (Feng et al., 2010). Many EV subtypes have common surface molecules 

and it is possible that one or more of these serve as a common ligand or receptor.  

After determining that S. mansoni EVs were internalised by host target cells, I wanted to determine 

whether they could have a role in host target cell gene regulation. The findings from Chapter 3 on 

differential gene expression using HUVEC cells revealed that S. mansoni ELVs are indeed involved in 

regulating host cell gene expression, with notable effects on genes involved in coagulation, nutrient 

acquisition and immune regulation. Moreover, differential gene expression analysis revealed that S. 

mansoni EVs might assist the parasite’s migration through host tissue and help it to evade attack by 

host immune cells. Transfer of EV molecules, such as proteins and miRNAs can influence the 

physiology of the target cell and exert an effect on both normal physiological as well as pathological 

processes (Robbins and Morelli, 2014). Therefore, EVs derived from S. mansoni parasites potentially 

act as vehicles to package and deliver signalling molecules to host cells and regulate host gene 

expression, which may facilitate survival of the schistosome. These findings need due consideration 

as further investigation in this area may facilitate the discovery of new vaccines and therapeutic 

targets.  

Recombinant forms of selected S. mansoni EV surface proteins - Sm-TSP-1 (Smp_155310), Sm-TSP-

2 (Smp_181530), Sm-TSP-4 (Smp_140000) and their cocktail rSm-TSP-1 + rSm-TSP-2 + rSm-TSP-4 - 

were expressed to assess their vaccine efficacy over two independent trials. None of the antigens 

(either individually or in combination) were found to be protective in vaccine trial 1. However, in 

vaccine trial 2, reduction in the burden of adult worms, liver and intestinal eggs was detected in 

mice vaccinated with rSm-TSP-2 and a cocktail of TSPs, compared with mice vaccinated with TRX 
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control. Anti-TSP IgG antibodies bound and hence recognised S. mansoni TSP proteins present on 

the tegument of sectioned adult worms. This suggests that TSP-2 at least is accessible on the surface 

of live parasites and renders them susceptible to immune mediated killing. Sm-TSP-2 is abundant in 

the S. mansoni EV membrane (Sotillo et al., 2016b, Kifle et al., 2020), and is currently in clinical 

development as a vaccine for S. mansoni infection (Merrifield et al., 2016, Hotez et al., 2019). Sm-

TSP-1 and TSP-4 which were assessed herein did not confer protection in either trial and are likely 

not good candidate antigens. Identifying an effective single antigen with a high level of protection 

against schistosomiasis would be ideal for a vaccine candidate; however, the complexity of the 

schistosome genome and its immunomodulatory sophistication makes single-target vulnerability 

improbable (Mei and LoVerde, 1997, Gouveia et al., 2019), so combining multiple subunit antigens 

is most likely required based on the lessons learned from the attenuated cercariae vaccine (Mastin 

et al., 2009) and the use of rhesus macaques (Li et al., 2015, Wilson et al., 2008). Selection of the 

best vaccine antigens will only be achieved after thorough characterisation of the proteins that are 

crucial for the parasite’s survival. For this purpose, combining proteomics, immunomics, and 

transcriptomics will provide invaluable information. Finally, tegumental proteins, ES products, and 

gut proteins play key roles in host-parasite cross-talk, and comprehensive characterization of their 

content is a priority for vaccine discovery against schistosomiasis and other helminthiases.   

Altogther, this thesis has provided a comprehensive characterisation of the proteomic composition 

of two populations of S. mansoni-secreted EVs. It has also demonstrated that S. mansoni EVs have 

a role in host-parasite communication by influencing expression of genes in pathways are essential 

for parasitism. Finally, I have demonstrated (in one trial at least) the vaccine efficacy of S. mansoni 

EVs and identified the antigen targets of anti-EV mouse sera using an immunomics approach. Lastly, 

although our knowledge on the roles of EVs in the context of diseases caused by schistosomes is still 

inadequate, my experiments presented in this body of work have generated compelling 
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information, and important findings of value in advancing schistosome EV research. In addition, my 

work may have broader implications in understanding the biology of other multicellular parasites. 

Fundamental understanding of aspects of schistosome cell biology is key in order to advance our 

knowledge of the strategies by which the parasite’s survive for many years and do not generally 

succumb to protective immune reponses. Finally, the past decade has seen much progress in 

understanding the basic biology of helminth-derived EVs, but further investigations are required to 

fully characterize the functional capabilities of these vesicles. A growing body of evidence indicates 

that helminth-derived EVs as novel carriers of immunomodulatory molecules, exceptionally well-

suited to manipulate the unfavourable environments encountered by parasites within their hosts. 

To this end, targeting pathways in the biogenesis and uptake of helminth EVs will provide key 

insights into strategies for the control of helminth infections. In addition, comprehensive knowledge 

of helminth EVs on the infective process is needed to understand physiological and pathological 

functions and may pave the way for utilizing EVs in therapeutic and vaccination approaches. Also, 

from a diagnostic point of view, EVs released by helminths may offer opportunities for developing 

new diagnostic tests that can detect early and low intensity helminth infections. Finally, new 

perspectives in the area should enhance the interrogation by focusing on the roles of EVs and on 

their translation from the bench to the bedside.  

 

6.2. Future directions  

In Chapter 2 I presented a comprehensive proteomic analysis on S. mansoni ELVs and MVs. This 

work provides a molecular snapshot of S. mansoni EVs, and lays the foundation for further studies 

on vesicular protein-protein interaction networks involved in vesicle cargo sorting, biogenesis and 

uptake by target cells (Choi et al., 2012, Choi et al., 2013). Deciphering the molecular mechanisms 

underpinning packaging and targeted delivery of EV cargo will be required to utilize EVs as key 
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mediators of intracellular signaling entities via the delivery of effector molecules. While this study 

identified unique proteins in both S. mansoni ELVs and MVs, confirmation of the specificity of these 

markers to each vesicle population, by western blotting or immunogold electron microscopy, will 

be an important focus of future studies. In the future, schistosome EV proteome data could be 

combined with other approaches used in systems biology to shed light on the roles of helminth EVs.  

In Chapter 3 I demonstrated the uptake of S. mansoni EVs by host cells, their impact on gene 

expression using biologically relevant cell lines that schistosomes encounter in vivo, and antibody 

mediated interruption of their uptake by target cells. It would be of interest to further explore the 

specific impact of S. mansoni EV uptake by host immune cells, particularly antigen-presenting cells 

(e.g. macrophages and dendritic cells). In addition to investigation of helminth EV cell targeting and 

routes of uptake, future research into the routes of intracellular trafficking in target cells is required 

to optimally utilize these EVs for therapeutic purposes. Further work is now required to characterise 

multiple pathways downstream of the process of parasite EV internalisation, as well as the individual 

EV proteins and miRNAs involved and their cellular receptors. This will allow a more strategic and 

rational approach to future vaccine or anthelmintic development programs. Moreover, it would be 

interesting to direct future research to address silencing of some of the genes involved in host-

schistosome communication using RNA interference (RNAi) or gene knockout techniques such as 

clustered regularly interspaced short palindromic repeats (CRISPR) (Waaijers et al., 2013). While the 

importance of Sm-TSP-2 in impacting tegument development, maturation and stability has been 

demonstrated using RNAi (Tran et al., 2010), determining the specific role of TSP-2 knock-out or 

knock-down in terms of its impact on EVs needs further investigation. Given that antibodies against 

Sm-TSPs successfully blocked EV internalisation by host cells (Chapter 3), it is tempting to speculate 

that human sera from a Sm-TSP-2 vaccine trial will have the ability to block EV uptake, and as 
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protection conferred in resistant subjects could be, at least in part, due to interception of EV 

internalisation by host cells.  

S. mansoni MVs showed modest protection against schistosomiasis when administered as a vaccine 

in a single trial (Chapter 4). S. mansoni ELVs could also be assessed for vaccine efficacy but 

insufficient quantities were available herein. Indeed, there is a growing body of evidence that 

helminth-derived ELVs are efficacious as vaccines in animal models (Trelis et al., 2016, Coakley et 

al., 2017, Shears et al., 2018, Chaiyadet et al., 2019), and offers an exciting new therapeutic  strategy. 

Further, I have demonstrated that probing a S. mansoni protein microarray with antibodies from S. 

mansoni EV-immunised mice (Chapter 4) identified potential vaccine antigens. Future research 

identifying ways to improve efficacy of MVs and ELVs as vaccines are warranted; this might involve 

testing higher doses (if not limited by availability), different routes of administration and different 

adjuvants.  

In this thesis, recombinant Sm-TSP-2 when administered as a vaccine was shown to provide modest 

protection in a mouse model of schistosomiasis (Chapter 5). Moreover, I have demonstrated that 

TSPs are located on the surface of the parasite by probing adult worm sections with anti-Sm-TSP IgG 

antibodies. Moreover, future work towards assessing multivalent vaccines against schistosomiasis 

is warranted. Much of our current understanding of immune mechanisms in play in schistosomiasis 

are from studies conducted on mice, but over-reliance on the use of mice as an experimental animal 

model for human schistosomiasis vaccine discovery and development is undesirable, and can results 

in certain antigens being prematurely advanced into human clinical trials. Future work on 

schistosome EVs will likely lead to a new cohort of protective vaccine and diagnostic antigens for 

schistosomiasis. While the field is still very much in its infancy, new and exciting data is constantly 

being published, and this evolving field will surely prove to be a fruitful avenue of academic 

endeavour. 
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 Appendices  
 

Supplementary Table 2.1. Top 20 surface-exposed proteins released by trypsin treatment of 

Schistosoma mansoni exosome-like vesicles ranked by spectrum counting.  

Protein name Accession 
number  

Spectrum 
counting  

Molecular 
mass (kDa) 

Sequence 
coverage 
(%) 

SP  Matching 
peptide  

TMD 

histone H4-like Smp_053300.1 1573.84 11.36 44.66 N 6 N 

Tegument antigen 
(I(H)A) 

Smp_086480.1 1343.91 21.67 10.33 N 2 N 

fatty acid binding 
protein 7, brain 

Smp_095360.1 1174.57 14.84 53.38 N 7 N 

tyrosine 3-
monooxygenase/trypt
ophan 5-
monooxygenase 
activation protein, 
beta polypeptide 

Smp_009760.1 1162.99 28.35 21.43 N 4 N 

13 kDa tegumental 
antigen Sm13 

Smp_195190.1 1100.78 11.92 38.46 Y 4 N 

Universal stress 
protein 

Smp_043120.1 1090.30 17.96 15 N 2 N 

enolase Smp_024110.1 1060.90 46.96 49.77 N 33 N 

putative dynein light 
chain 

Smp_095520.1 926.14 10.39 30.34 N 2 N 

putative dynein light 
chain 

Smp_201060.1 926.14 10.47 39.33 N 2 N 

triosephosphate 
isomerase 1a 

Smp_003990.1 821.73 28.08 22.53 N 5 N 

Glutathione S-
Transferase 

Smp_306860.1 727.35 23.84 36.49 N 7 N 

proteasome (prosome 
macropain) subunit 
alpha type 4 

Smp_070930.1 681.44 27.76 19.43 N 4 N 

Thioredoxin 
peroxidase 

Smp_158110.1 629.21 21.68 14.95 N 2 N 

arginase type II Smp_059980.1 625.21 39.89 10.16 N 4 N 

putative troponin I Smp_018250.1 599.90 27.08 12.66 N 2 N 

putative ferritin Smp_047370.1 584.59 36.31 7.92 N 2 N 

nucleoside-
diphosphate kinase 

Smp_092750.1 576.41 16.06 18.18 N 2 N 

Aldolase Smp_042160.1 559.56 39.62 44.08 N 16 N 

Uncharacterised  Smp_309480.1 538.74 21.05 12.43 N 2 N 

DM9 domain-
containing protein 

Smp_035560.1 528.38 17.55 21.79 N 2 N 

SP= signal peptide; TMD= Transmembrane domain; Y= yes; N= no 
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Supplementary Table 2.2. Top 20 intra-vesicular cargo proteins identified after lysis of 
Schistosoma mansoni exosome-like vesicles cargo ranked by spectrum counting.  

Protein name Accession 
number  

Spectrum 
counting  

Molecular 
mass 
(kDa) 

Sequence 
coverage 
(%) 

SP  Matching 
peptide  

TMD 

Saposin B 
domain-
containing 
protein 

Smp_194910.1 1332.30 21.02 14.44 Y 2 N 

tetraspanin 2 Smp_335630.1 1158.90 23.82 19.18 N 5 Y 

putative 
tetraspanin-
CD63 receptor 

Smp_140000.1 995.55 30.59 8.27 N 3 Y 

tetraspanin, 
putative 

Smp_041460.1 928.72 30.41 18.01 N 7 Y 

putative 
ferritin 

Smp_047650.1 898.04 19.69 18.02 N 4 N 

DM9 domain-
containing 
protein 

Smp_035560.1 893.57 17.55 57.69 N 9 N 

apoferritin-2 Smp_063530.2 830.72 21.90 31.05 Y 8 N 

Mastin 
precursor 

Smp_340060.1 748.16 42.27 10.93 N 6 N 

Glutathione S-
Transferase 

Smp_306860.1 720.15 23.84 35.07 N 8 N 

putative 
ferritin 

Smp_047680.1 691.89 19.88 20.35 N 2 N 

putative 
tetraspanin 18, 
isoform 1 

Smp_344440.1 638.26 33.07 13.22 N 4 Y 

histone H4-like Smp_053300.1 622.49 11.36 17.48 N 2 N 

Uncharacterise
d 

Smp_130100.1 607.17 14.76 15.63 Y 3 N 

putative 
ferritin 

Smp_311640.1 602.57 20.92 38.12 N 7 N 

CD63 antigen Smp_017430.1 566.26 23.62 16.51 N 5 Y 

Aldolase Smp_042160.1 516.18 39.62 50.96 N 21 N 

putative sm29 Smp_072190.1 411.01 21.18 9.95 N 2 Y 

Ferritin-1 
heavy chain 

Smp_087760.1 316.79 20.16 35.26 N 8 N 

Tegument 
antigen (I(H)A) 

Smp_045200.1 296.55 22.56 13.16 N 3 N 

Multidrug 
resistance 
protein 1 

Smp_053900.1 225.89 60.90 10.88 Y 6 Y 

SP= signal peptide; TMD= Transmembrane domain; Y= yes; N= no 
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Supplementary Table 2.3. Top 20 integral membrane proteins identified from Schistosoma 

mansoni exosome-like vesicles ranked by spectrum counting.  

Protein 
name 

Accession 
number  

Spectrum 
counting  

Molecular 
mass 
(kDa) 

Sequence 
coverage 
(%) 

SP Matching 
peptide  

TMD 

tetraspanin 
2 

Smp_335630.1 1914.17 23.82 19.63 N 6 Y 

tetraspanin, 
putative 

Smp_041460.1 862.76 30.41 18.01 N 9 Y 

Saposin B 
domain-
containing 
protein 

Smp_194910.1 769.99 21.02 14.44 Y 2 N 

putative Cys-
rich domain 
protein 

Smp_101970.1 736.19 13.36 29.82 N 3 N 

putative 
tetraspanin-
CD63 
receptor 

Smp_140000.1 733.85 30.59 24.46 N 7 Y 

DM9 
domain-
containing 
protein 

Smp_035560.1 686.95 17.55 68.59 N 16 N 

putative 
tetraspanin 
18, isoform 
1 

Smp_344440.1 632.97 33.07 22.37 N 11 Y 

13 kDa 
tegumental 
antigen 
Sm13 

Smp_331280.1 631.93 12.70 8.04 Y 2 Y 

histone H4-
like 

Smp_053300.1 538.65 11.36 38.83 N 5 N 

transporter, 
major 
intrinsic 
protein 
family 
protein 

Smp_128110.1 497.53 31.43 6.97 N 2 Y 

Tegument 
antigen 
(I(H)A) 

Smp_045200.1 475.25 22.56 34.21 N 9 N 

ATPase, H+ 
transporting, 
lysosomal 
accessory 
protein 1 

Smp_267000.1 467.47 26.31 25.91 Y 7 Y 

putative 
sm29 

Smp_072190.1 439.49 21.18 25.65 N 5 Y 
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13 kDa 
tegumental 
antigen 
Sm13 

Smp_195190.1 431.89 11.92 23.08 Y 4 N 

vesicle-
associated 
membrane 
protein 7-
like 

Smp_055870.1 391.27 25.37 39.91 N 11 Y 

putative 
ferritin 

Smp_047650.1 386.49 19.69 25.58 N 4 N 

CD63 
antigen 

Smp_017430.1 368.26 23.62 25.23 N 9 Y 

High affinity 
copper 
uptake 
protein 1 

Smp_048230.1 364.19 22.50 11 N 2 Y 

tetraspanin, 
putative 

Smp_155310.1 343.25 30.58 17.75 N 6 Y 

Protein 
lifeguard 3 

Smp_150500.1 340.42 31.82 4.23 N 2 Y 

SP= signal peptide; TMD= Transmembrane domain; Y= yes; N= no 
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Supplementary Table 2.4. Top 20 peripheral membrane proteins identified from Schistosoma 

mansoni exosome-like vesicles ranked by spectrum counting.  

Protein name Accession 
number  

Spectrum 
counting  

Molecular 
mass 
(kDa) 

Sequence 
coverage 
(%) 

SP Matching 
peptide  

TMD 

tetraspanin 2 Smp_335630.1 2790.79 23.82 19.63 N 6 Y 

tetraspanin, 
putative 

Smp_041460.1 1722.45 30.41 22.79 N 7 Y 

DM9 domain-
containing protein 

Smp_035560.1 1566.87 17.55 68.59 N 12 N 

Saposin B domain-
containing protein 

Smp_194910.1 1455.63 21.02 14.44 Y 2 N 

putative ferritin Smp_311630.1 1328.37 20.92 24.86 N 4 N 

13 kDa 
tegumental 
antigen Sm13 

Smp_195190.1 996.94 11.92 23.08 Y 3 N 

putative 
tetraspanin-CD63 
receptor 

Smp_140000.1 908.58 30.59 12.95 N 4 Y 

putative 
tetraspanin 18, 
isoform 1 

Smp_344440.1 835.09 33.07 16.61 N 6 Y 

cathepsin B-like 
peptidase (C01 
family) 

Smp_103610.1 782.45 38.54 6.47 Y 2 N 

CD63 antigen Smp_017430.1 751.37 23.62 16.51 N 5 Y 

Mastin precursor Smp_340060.1 725.16 42.27 11.2 N 8 N 

putative ferritin Smp_047650.1 717.13 19.69 18.02 N 3 N 

histone H4-like Smp_053300.1 676.87 11.36 38.83 N 4 N 

apoferritin-2 Smp_063530.1 591.18 22.78 10.15 Y 2 N 

Bis(5'-adenosyl)-
triphosphatase 
enpp4 

Smp_104270.1 537.55 63.29 25.96 N 19 Y 

Cathepsin L-like 
proteinase 
precursor 

Smp_187140.1 529.60 40.17 13.16 Y 5 N 

vesicle-associated 
membrane 
protein 7-like 

Smp_055870.1 516.21 25.37 7.17 N 2 Y 

protein kiaa0174, 
putative 

Smp_057650.1 487.53 37.61 5.93 N 2 N 

Dynein light chain 
2, cytoplasmic 

Smp_201030.1 461.97 10.22 39.33 N 3 N 

putative Cys-rich 
domain protein 

Smp_101970.1 414.20 13.36 29.82 N 3 N 

SP= signal peptide; TMD= Transmembrane domain; Y= yes; N= no 
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Supplementary Table 2.5. Top 20 surface-exposed proteins released by trypsin treatment of 

Schistosoma mansoni microvesicles ranked by spectrum counting.  

Protein name  Accession 
number  

Spectrum 
counting  

Molecular 
mass 
(kDa) 

Sequence 
coverage 
(%) 

SP Matching 
peptide  

TMD 

Fatty acid binding 
protein 7, brain  

Smp_095360.1 516.29 14.84 73.68 N 2 N 

Family C13 non-
peptidase 
homologue  

Smp_303330.1 477.02 16.29 9.35 N 7 N 

Hypothetical 
protein  

Smp_096790.1 456.14 8.91 27.85 Y 2 N 

Putative universal 
stress protein  

Smp_200240.1 450.44 19.44 8.05 N 5 N 

13kDa tegumental 
antigen Sm 13 

Smp_195190.1 444.90 11.92 46.15 Y 4 N 

Putative dynein 
light chain  

Smp_095520.1 443.76 10.39 43.82 N 2 N 

Phosphatase 2A 
inhibitor I2PP2A 

Smp_155060.1 415.56 29.27 26.77 N 3 N 

Thioredoxin 
peroxidase 2 

Smp_309480.1 399.45 21.05 30.81 N 8 N 

Troponin T Smp_179810.1 377.30 38.46 46.15 N 4 N 

Actin  Smp_307010.1 367.55 41.71 64.63 N 8 N 

Tegument antigen 
(I(H)A) 

Smp_086480.1 359.94 21.67 44.02 N 2 N 

Glutathione S-
Transferase  

Smp_306860.1 308.36 23.84 46.45 N 7 N 

Histone H2A Smp_089870.1 299.81 13.42 36.8 N 2 N 

Receptor 
expression-
enhancing protein 
5 

Smp_099890.1 297.81 21.42 23.28 N 2 Y 

dynein light chain  Smp_202130.1 291.52 10.29 26.97 N 5 N 

dynein light chain  Smp_320340.1 282.02 10.76 22.83 N 11 N 

dynein light chain 
LC6, flagellar outer 
arm-like 

Smp_174510.1 274.56 11.88 11.54 N 4 N 

Thioredoxin 
peroxidase  

Smp_158110.1 269.73 21.68 29.9 N 3 N 

Phosphoglyserate 
mutase  

Smp_096760.1 268.61 28.41 29.6 N 2 N 

Phosphoglycerate 
kinase 1 

Smp_214060.1 264.43 44.48 55.53 N 5 N 

SP= signal peptide; TMD= Transmembrane domain; Y= yes; N= no 
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Supplementary Table 2.6. Top 20 intra-vesicular cargo proteins identified after lysis of 

Schistosoma mansoni microvesicles cargo ranked by spectrum counting.  

Protein name Accession 
number  

Spectru
m 
counting  

Molecula
r mass 
(kDa) 

Sequenc
e 
coverag
e (%) 

SP  Matchin
g 
peptide  

TMD 

23 Kda integral 
membrane protein 

Smp_335630.1 2135.62 23.82 19.63 N 6 Y 

Tegument antigen Smp_045200.1 1366.22 22.56 34.21 N 9 N 

Uncharacterised  Smp_194910.1 1175.67 21.02 19.44 Y 3 N 

Dynein light chain 2, 
cytoplasmic 

Smp_201030.1 1061.04 10.22 55.06 N 10 N 

Tegument antigen Smp_086530.1 919.71 20.75 48.62 N 11 N 

Histone H4 Smp_053300.1 881.97 11.36 50.49 N 5 N 

13 kDa tegumental 
antigen Sm-13 

Smp_195190.1 852.19 11.92 23.08 Y 3 N 

Uncharacterised Smp_072190.1 789.29 21.18 25.65 N 5 Y 

Chymotrypsin-like 
elastase family 
member 2A 

Smp_340060.1 577.62 42.27 28.8 N 13 N 

Uncharacterised Smp_130100.1 574.94 14.76 22.66 Y 4 N 

Ferritin-2 heavy 
chain  

Smp_047680.1 562.20 19.88 50.58 N 8 N 

Cornifelin  Smp_101970.1 511.46 13.36 29.82 N 4 N 

Uncharacterised Smp_331280.1 491.16 12.70 8.04 Y 2 Y 

Tetraspanin-6 Smp_140000.1 401.54 30.59 15.83 N 5 Y 

Receptor expression-
enhancing prtein 5 

Smp_099890.1 392.39 21.42 13.76 N 2 Y 

23 kDa integral 
membrane protein  

Smp_017430.1 372.38 23.62 21.56 N 4 Y 

Annexin A8-like 
protein 1 

Smp_074140.1 352.10 39.93 29.1 N 11 N 

Aquaporin-3 Smp_005720.1 341.35 33.88 7.89 N 2 Y 

Peroxiredoxin 2 Smp_309480.1 338.25 21.05 37.3 N 7 N 

Uncharacterised Smp_035560.1 322.18 17.55 48.72 N 7 N 

SP= signal peptide; TMD= Transmembrane domain; Y= yes; N= no 
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Supplementary Table 2.7. Top 20 integral membrane proteins identified from Schistosoma 

mansoni microvesicles ranked by spectrum counting.  

Protein name Accession 
number  

Spectrum 
counting  

Molecular 
mass (kDa) 

Sequence 
coverage 
(%) 

SP  Matching 
peptide  

TMD  

Tetraspanin 2  Smp_335630.1 1716.55 23.82 19.63 N 7 Y 

Saponin B domain-
containing protein  

Smp_194910.1 561.57 21.02 19.44 Y 3 N 

Tegument antigen 
(I(H)A) 

Smp_045200.1 495.00 22.56 54.21 N 18 N 

Putative Cys-rich 
domain protein  

Smp_101970.1 466.64 13.36 29.82 N 4 N 

Lipopolysaccharide-
induced tumor 
necrosis factor-
alpha factor like 
protein  

Smp_203810.1 450.36 15.06 18.38 N 2 Y 

Histone H-4 like  Smp_053300.1 435.88 11.36 51.46 N 7 N 

Putative Sm-29 Smp_072190.1 419.00 21.18 25.65 N 5 Y 

13 kDa tegumental 
antigen Sm-13 

Smp_331280.1 410.98 12.70 8.04 Y 2 Y 

DM9 domain-
containing protein  

Smp_035560.1 378.99 17.55 68.59 N 18 N 

SJCHGC00347 Smp_181070.1 358.90 12.99 31.58 Y 4 N 

Putative 
tetraspanin-CD63 
receptor  

Smp_140000.1 335.27 30.59 24.46 N 8 Y 

Cathepsin B-like 
peptidase  (C01 
family) 

Smp_103610.1 323.47 38.54 30.29 Y 18 N 

ATPase, H+ 
transporting, 
lysosomal acessory 
protein 1 

Smp_267000.1 308.70 26.31 25.51 Y 7 Y 

Dynein light chain 
LC6, flagellar outer 
arm-like  

Smp_174510.1 292.07 11.88 29.81 N 3 N 

Immunoglobulin 
like domain-
containing protein  

Smp_031880.1 281.34 32.48 36.43 Y 9 Y 

Dynein light chain 2, 
cytoplasmic 

Smp_201030.1 258.53 10.22 55.06 N 8 N 

Hypoxanthine 
guanine 
phosphoribosyltran
sferase  

Smp_103560.1 258.47 26.04 32.03 N 7 N 

Putative 
reticulon/nogo 

Smp_020370.1 256.56 23.29 29.06 N 7 Y 
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Putative dynein 
light chain  

Smp_201060.1 254.87 10.47 60.67 N 15 N 

Phosphoglycerate 
mutase  

Smp_096760.1 242.45 28.41 47.6 N 13 N 

SP= signal peptide; TMD= Transmembrane domain; Y= yes; N= no 
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Supplementary Table 2.8. Top 20 peripheral membrane proteins identified from Schistosoma 

mansoni microvesicles ranked by spectrum counting.  

Protein name Accession 
number  

Spectrum 
counting  

Molecular 
mass 
(kDa) 

Sequence 
coverage 
(%) 

SP Matching 
peptide  

TMD 

tetraspanin 2 Smp_335630.1 1461.03 23.82 19.63 N 6 Y 

Saponin B domain-
containing protein  

Smp_194910.1 968.10 21.02 14.44 Y 2 N 

Dynein light chain 
2, cytoplasmic 

Smp_201030.1 788.71 10.22 55.06 N 7 N 

Histone H4 Smp_305460.1 753.73 10.86 20.65 Y 3 N 

Hypothetical 
protein  

Smp_096790.2 515.16 7.15 32.26 Y 3 N 

Saponin 
containing protein  

Smp_130100.1 492.50 14.76 9.38 Y 2 N 

13 kDa 
tegumental 
antigen Sm13 

Smp_195190.1 414.20 11.92 23.08 Y 3 N 

Cathepsin L-like 
proteinase 
precursor  

Smp_187140.1 403.57 40.17 13.16 Y 5 N 

Flagellar outer 
dynein arm light 
chain 8 

Smp_200190.1 391.55 10.32 49.44 N 5 N 

Mastin precursor  Smp_340060.1 379.13 42.27 42.4 N 22 N 

Fatty acid binding 
protein 7, brain  

Smp_095360.1 356.28 14.84 35.34 N 5 N 

13 kDa 
tegumental 
antigen Sm13 

Smp_331280.1 326.07 12.70 7.14 Y 1 Y 

Putative dynein 
light chain  

Smp_201060.1 318.74 10.47 42.7 N 2 N 

Hypothetical 
protein 

Smp_096790.1 305.89 8.91 26.58 Y 4 N 

Actin Smp_307010.1 290.22 41.71 44.68 N 26 N 

Tegument antigen  Smp_169200.1 280.17 21.13 7.22 N 1 N 

Putative Cys-rich 
domain protein  

Smp_101970.1 269.07 13.36 17.54 N 2 N 

Cytosolic purine 
5'-nucleotidase  

Smp_147840.1 263.23 63.02 13 N 7 N 

Putative 
tetraspapnin-CD63 
receptor  

Smp_140000.1 251.81 30.59 8.27 N 3 Y 

Thioredoxin 
peroxidase  

Smp_158110.1 227.89 21.68 25.77 N 6 N 

SP= signal peptide; TMD= Transmembrane domain; Y= yes; N= no  
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