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Abstract

Coral reef ecosystems are under increasing pressure from local and regional stressors and

a changing climate. Current management focuses on reducing stressors to allow for natural

recovery, but in many areas where coral reefs are damaged, natural recovery can be

restricted, delayed or interrupted because of unstable, unconsolidated coral fragments, or

rubble. Rubble fields are a natural component of coral reefs, but repeated or high-magnitude

disturbances can prevent natural cementation and consolidation processes, so that coral

recruits fail to survive. A suite of interventions have been used to target this issue globally,

such as using mesh to stabilise rubble, removing the rubble to reveal hard substrate and

deploying rocks or other hard substrates over the rubble to facilitate recruit survival. Small,

modular structures can be used at multiple scales, with or without attached coral fragments,

to create structural complexity and settlement surfaces. However, these can introduce for-

eign materials to the reef, and a limited understanding of natural recovery processes exists

for the potential of this type of active intervention to successfully restore local coral reef

structure. This review synthesises available knowledge about the ecological role of coral

rubble, natural coral recolonisation and recovery rates and the potential benefits and risks
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associated with active interventions in this rapidly evolving field. Fundamental knowledge

gaps include baseline levels of rubble, the structural complexity of reef habitats in space and

time, natural rubble consolidation processes and the risks associated with each intervention

method. Any restoration intervention needs to be underpinned by risk assessment, and the

decision to repair rubble fields must arise from an understanding of when and where uncon-

solidated substrate and lack of structure impair natural reef recovery and ecological func-

tion. Monitoring is necessary to ascertain the success or failure of the intervention and

impacts of potential risks, but there is a strong need to specify desired outcomes, the spatial

and temporal context and indicators to be measured. With a focus on the Great Barrier

Reef, we synthesise the techniques, successes and failures associated with rubble stabili-

sation and the use of small structures, review monitoring methods and indicators, and pro-

vide recommendations to ensure that we learn from past projects.

Introduction

The degradation of coral reefs worldwide is affecting the socio-ecological and economic value

of reef ecosystems and the livelihoods of millions of people [1–3]. To date, coral reef manage-

ment has focused on reducing local and regional stressors such as overfishing (through fisher-

ies management and marine protected areas), coastal development (through permitting and

mitigation), and improving water quality (through land and waste water management) to

ensure reef health and facilitate natural recovery [4, 5]. More recently, there is acceptance that

these approaches, even if enhanced, will not adequately protect coral reefs from the escalating

effects of human use, and particularly from anthropogenic climate change [6–9]. An increasing

awareness of the downward trajectory of coral reef condition has driven a search for additional

active management activities, or interventions [9–11], to complement existing management

and facilitate optimal conservation outcomes such as coral reef recovery and adaptation, at

least at local scales [4, 12]. To date, coral reef restoration has been dominated by small-scale

(10s to 100s of m2) projects using a few fast-growing species, with primarily aesthetic results,

and their success or failure has been difficult to ascertain due to [13] a common lack of ade-

quate monitoring [14]. Improving local conditions on small tracts of reef has had primarily

aesthetic results, with little indication about their ability to restore reef communities, functions

and processes. Practitioners are generally conscious that interventions and restoration efforts

are not substitutes for global actions such as reducing greenhouse gas emissions, but it is

hoped that they could provide a buffer, even at small and localized scales, between current con-

ditions and a potentially improved situation in the future [9].

Much of the recent focus on reef degradation has concentrated on sources of coral mortality

such as thermal bleaching [8]. However, an additional problem on many coral reefs is the crea-

tion of unconsolidated reef substrate or coral rubble through direct damage by storms and

cyclones, dynamite fishing and vessel strike, and the increased fragmentation of coral skeletons

following mortality after bleaching, crown-of-thorns starfish and disease outbreaks. Rubble

fields are a natural part of the complex habitat mosaic of coral reefs, but can be associated with

impoverished coral species assemblages [15–18] due to their instability and reduced structural

complexity. Unattached rubble can act as a “killing field” for corals, inhibiting the survival of

coral recruits and establishment of mature coral colonies [15, 17–23], and can cause further

degradation by rolling and impacting remaining live coral colonies in high surge conditions

[17].
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Rubble is often included as a benthic substrate category in coral reef assessment and moni-

toring programs. However, the extent and temporal dynamics of rubble are seldom quantified,

despite sudden visible changes following disturbance events. When these dynamics are quanti-

fied, they are often excluded from reporting activities, precluding an indication of whether

rubble fields are decreasing (e.g. due to consolidation and settlement by sessile organisms),

increasing (e.g. due to repeated disturbance events and lack of recovery) or stable in time and

space. A growing suite of interventions aims to assist coral recovery on rubble fields through

various forms of substrate stabilisation (see examples in Fig 1). These range from simple rock

piles placed on rubble fields to complex combinations of stabilisation techniques, specialised

structures and coral transplantation.

Despite the growing promotion and use of many of these techniques, important knowledge

gaps exist on the current extent of rubble fields and whether they are increasing, the drivers of

rubble generation, natural processes of coral recovery in rubble fields, and the ‘point of no

return’ when rubble fields are unlikely to revert to pre-existing habitats on their own. Because

rubble fields created by disturbance events (e.g. ship strikes, blast fishing, cyclones) are often

small (10s to 100s of m2) compared to other agents of coral reef damage, the potential exists

for interventions to be successful in assisting coral recovery at this scale.

In this review, we:

• Explore the ecological role of loose coarse substrata (rubble) and structural complexity on

coral reefs, and the capacity for natural coral reef recovery in destabilised areas

• Synthesise the techniques, successes and failures associated with active intervention to stabi-

lise substrate and add small structures as coral restoration methods

• Review monitoring methods and indicators used to assess the results of these coral restora-

tion practices

• Identify knowledge gaps and provide recommendations to ensure that we learn from a grow-

ing number of trials and projects.

We base our synthesis on peer-reviewed publications, reports, manuals and interviews on

the importance of reef structural complexity and the effects of its breakdown into rubble, the

processes involved in the natural stabilisation of rubble fields and return to stable reef matrix,

and potential solutions being considered and implemented when natural recovery fails. We

specifically review the use of small structures (from a few centimetres to ~2 m3) for active man-

agement interventions on coral reefs, and for the stabilisation of rubble. We exclude studies on

artificial reefs [e.g. 24], which we define as artificial structures installed in areas where reefs

have not previously existed, and approaches that rely on direct attachment of corals into the

reef matrix, but refer interested readers to Boström-Einarsson et al. [14] where these methods

are reviewed. We focus instead on studies that either add structures, or where corals are

attached to frames or structures that are then placed onto, or attached to, damaged and unsta-

ble reef substrata.

We used the interactive online visualisation tool from Boström-Einarsson et al. [25] to

extract publications describing substrate stabilisation and the use of small structures for coral

restoration purposes. Global experts were also interviewed to gather first-hand information on

methods typically used to stabilise rubble. Nine experts were identified through the authors’

networks and recruited for interviews through email invitations. The interviews were con-

ducted over the phone, following a semi-structured format in which they were asked qualita-

tive questions on the techniques being used for reef repair after a physical disturbance such as

a storm or ship grounding (see full questionnaire in S1 Appendix). For the purpose of this
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study, we focused on responses specific to substrate stabilisation (Questions 3 3.2, S1 Appen-

dix). Interviews with experts were conducted under the human ethics number H7799 granted

by the James Cook University Human Research Ethics Committee. These data were used to

define key knowledge gaps to guide future research and development, and implications for

regulation and management.

The structure and consolidation of reef substrata

Importance of structural complexity on coral reefs

The structural complexity of a coral reef, primarily provided by scleractinian corals, is critical

in supporting a biodiverse reef ecosystem and mediating ecological processes such as recruit-

ment, predation and competition [26, 27]. For example, many coral reef fishes recruit as juve-

niles to coral colonies [28, 29], shelter amongst the branches [30, 31], and use them during

reproduction [32]. High structural complexity on coral reefs has been correlated with low algal

cover, high coral cover, and increased fish density and biomass [reviewed by 27]. The many

microhabitats–crevices, overhangs and protrusions–characteristic of highly complex reefs can

Fig 1. Reef structures to help stabilise damaged reef. Examples of structures used to stabilise and restore rubble-dominated habitats. Reproduced with permission of

the Reef Restoration and Adaptation Program.

https://doi.org/10.1371/journal.pone.0240846.g001
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facilitate survival of organisms by affording places of refuge from predation [33–35], a broad

range of environmental settings for water flow rates [36] and light [37], and by moderating

density-dependent competition [38]. However, coral reefs are constantly undergoing destruc-

tive and constructive processes, which result in a natural balance between a range of microhab-

itats, from structurally-complex and high live coral cover habitats to rubble habitats of reduced

3-dimensional complexity. A better understanding of the principles of ecological succession

on reefs following disturbances is crucial to improve the efficiency of conventional and new

active intervention strategies [39–41].

Ecological value of rubble fields

Rubble on coral reefs can be defined as dead coral skeleton or reef rock pieces that have frac-

tured and been liberated by mechanical or chemical means and are larger in size fraction than

sand (>2mm) [42]. Persistent fragmentation is normal in numerous scleractinian taxa [43],

including massive and branching growth forms. Some species fragment year-round, while oth-

ers are affected by episodes of particularly rough weather [44]. Direct formation of rubble via

natural mechanisms generally occurs through mechanical breakage caused by wave action,

storm swells and above-average wave conditions [45]. Indirect rubble formation occurs from

dead and weakened standing coral skeletons following mortality of live tissue [45].

Disturbance-driven breakdown of structural complexity into rubble may lead to declines in

some species. However, rubble can also support a unique suite of species. Biodiversity in cryp-

tic microhabitats of rubble fields can be extremely high [116]. Coral rubble is rich in crypto-

benthic fish species [46], a guild of species hypothesised to drive much of the productivity on

coral reefs [47], and is the preferred habitat for a subset of coral reef fishes [e.g. damselfishes,

48]. Coral rubble contains an abundance of crustaceans over three orders of magnitude higher

than live coral branches [49]. Rubble is also an important habitat for free-living corals [50, 51]

which, together with the rubble itself, can be important building blocks in reef accretion [42].

Further, rubble has a sedimentological role, providing the raw material for finer (carbonate)

sediment that infills inner reef and lagoonal areas, creating new and different habitats, as well

as cay islands (either rubble ramparts or sand islands).

Rubble is also formed by anthropogenic disturbances, including trampling, boat anchoring,

dynamite fishing, coral mining and ship groundings [42, 52–55]. Many of these disturbances

are expected to increase in frequency in the future, shrinking the window available for recov-

ery [56, 57]. There is concern that current disturbance rates are converting living coral reefs

into rubble fields at a rate exceeding the natural capacity for coral reef ecosystems to recover

naturally [58, 59]. Coral reef systems around the world, such as the Greater Barrier Reef [8]

and in Hawai’i [60] have already experienced recurrent cyclones and bleaching events in the

past four years. As a result, the ratio of dead rubble to live coral cover is expected to increase,

potentially slowing coral recovery.

Natural stabilisation of rubble

If rubble remains stable for long enough, it can eventually be consolidated and incorporated

into the reef framework. Reef cores are sometimes composed of layers of both unconsolidated

and consolidated rubble, laid down over thousands of years of reef erosion and accretion [61,

62]. The transition from rubble to reef has been described as a two-part process that requires

both a preliminary stage of rubble stabilisation and binding, followed by rigid binding and dia-

genetic cementation (see S2 Appendix for detail). Though this is a critical process in the recov-

ery of damaged coral reef communities, our understanding of rubble stabilisation and binding

rates, and the characteristics indicative of adequately bound and stabilised rubble, is limited
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[63]. Preliminary stabilisation of rubble can be achieved when hydrodynamic energy is

reduced, rubble pieces interlock or attain a stable configuration (Fig 2A), followed by the colo-

nisation of macroalgae, algal turfs and encrusting and binding invertebrates such as cryptic

sponges (Fig 2B and 2C) [20, 21]. Using settlement tiles, Doropoulos et al. [64] established that

the succession of organisms from turf algae to coralline algae can take at least six months

depending on microhabitat, and Wulff [21] highlighted that rubble seeded by cryptic sponges

could undergo stabilisation and colonisation by corals within 10 months. Despite these studies,

the rates and characteristics that define when preliminary stabilisation is completed are poorly

understood. Following preliminary stabilisation, rigid binding by laterally-growing carbonate

encrusting organisms and diagenetic cementation can then occur (Fig 2D).

The reef framework is continuously infilled with sediment, rubble and cements, as part of

diagenetic alteration [42, 65, 66]. These cements are largely composed of high-magnesium cal-

cite and aragonite that can infill the voids between the rubble pieces and encrust over the dead

skeletal materials [61, 67]. Calcifying microbialites further trap and bind sediments and are

important in providing a rigid cementation (S2 Appendix). The highest rates of rubble cemen-

tation are found in fore-reef areas with low sloping angles above the wave base, while the low-

est rates are found in deeper fore-reef environments [42].

When rubble fails to stabilise naturally

Once a rubble field is formed, the attachment of new coral larvae and their subsequent survival

in the rubble as recruits depends primarily on the stability of the rubble [22, 68]. Lack of recov-

ery of corals in rubble fields following disturbances such as dynamite fishing and ship ground-

ings has been linked to rubble instability and hydrodynamically-driven rubble movement.

This prevents the natural stabilisation, binding and cementation processes described above.

For example, rubble pieces in dynamite-fished rubble beds at a depth of 6–10 m in Indonesia

moved by up to 50 cm per day [22]. At a ship-grounding site in the Caribbean, pieces in the

rubble bed at a depth of 9–14 m were estimated to be overturned every 12 days, and every 3.8

days during peak months [18]. Seventeen years after damage from dynamite fishing ceased,

Fig 2. Stages in the stabilisation and binding of rubble. Stages of the natural stabilisation of rubble fields and eventual conversion to reef framework. A) shelter from

strong hydrodynamic activities, a depression in bathymetry or particle organisation into stable bedforms allows the rubble pieces to settle, interlock and stabilise; b)

pioneer binding organisms such as fleshy and calcareous algae settle on the rubble; c) intermediate binders such as cryptic and erect sponges create greater stability; and

d) late stage binders and coral settlement.

https://doi.org/10.1371/journal.pone.0240846.g002
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the rubble beds in Indonesia displayed significantly lower coral cover than rehabilitated and

control (not blasted) reef sites, despite an adequate supply of coral larvae [S3 Appendix; 15,

69]. Coral larvae can, in fact, recruit to unconsolidated rubble, but frequent movement results

in high mortality and impaired reef recovery [17]. Unconsolidated coral rubble also provides a

poor substrate for asexual coral reproduction and growth [68, 70], although naturally-gener-

ated fragments from some species of Montipora and Acropora have been shown to persist

when natural rubble zones remain stable [44, 71]. Thus, any restoration project using coral

outplanting methods in damaged areas of unconsolidated rubble may benefit from prelimi-

nary substrate stabilisation (Fig 3). Consideration of when and where to implement these

interventions, however, relies on a detailed understanding–building on the studies described

above–of the threshold hydrodynamic conditions that cause rubble movement and impaired

rubble field recovery.

The ratio of dead rubble to live coral cover is expected to increase as disturbances such as

storms, cyclones and warming events leading to coral bleaching become more frequent, and

intense, and degradation of reefs generally increases worldwide [56, 72, 73]. However,

although ‘rubble’ is a commonly measured substrate category and proposed indicator for reef

health [74, 75], rubble cover is often underreported in comparison to live coral cover, and

there are currently no large-scale data sets showing changes in the proportion of rubble cover

to consolidated reef. Several studies show the persistence of rubble fields that were created by

disturbance or damage. In Indonesia, impacted sites at 6–12 m depth that were affected by dis-

turbances including overfishing, pollution, blast fishing, trampling, anchor and boat damage,

had 10–30% rubble cover, compared to<2% at control sites with similar wave exposure [76].

In Ecuador, sites impacted by overfishing, anchoring and derelict fishing gear had ~10–25%

cover of rubble, and on the reef crest the percentage of rubble increased with the amount of

derelict fishing gear [77]. In the Maldives, eight years after the 1998 bleaching event that

caused mass coral mortality, rubble and sediment cover was still high, ranging from 15 to 65%

[78], consistent with the reported losses in three-dimensional structural complexity [79]. This

was also the case in the Seychelles, where some sites were still rubble-dominated (72% cover)

in 2010 after the 1998 bleaching event, and these sites had significantly less cover of adult cor-

als (10%) compared to sites on consolidated reef (33%) [80]. Following the ‘Kona’ storms in

Hawaii in 1980, Porites compressa thickets on the reef slope were reduced to rubble of< 5 cm,

and 12 years later there was only a small increase in the cover of P. compressa (0.5 to 1.5%).

Rubble accumulations were sometimes moved downslope, but appeared to remain unconsoli-

dated and subject to movement [81].

Active intervention to stabilise substrate and add structure

Substrate stabilisation

Physical restoration of mechanically-damaged coral reef areas has been relatively common in

US territorial waters, often funded by insurance claims following ship-strikes. The most com-

mon technique has been to remove the rubble and re-plant the dislodged coral colonies using

cement; this method has been used both after ship groundings and following the 2004 tsunami

in southeast Asia [e.g. 82, 83]. Also common is the installation of mesh or netting over the rub-

ble to prevent further movement and encourage natural binding and cementation processes

[Fig 4 and Table 1; 10, 84]. This is generally a precursor to transplanting corals or deploying

artificial structures onto the damaged area [68]. Other methods include driving metal rein-

forcement bars into rubble (see S3 Appendix for case study) [85], piling large rocks onto unsta-

ble degraded reef areas [69], collecting rubble into open cement structures [54] or natural fibre

(sisal) net bags and placing them on the damaged reef, or injecting grout or other chemicals to
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bond and stabilise loose rubble [86]. Implementing these approaches requires assessing the

benefits of substrate stabilisation in the context of the natural potential for consolidation on a

particular reef. Such stabilisation activities may be beneficial on a small scale at high-value sites

Fig 3. Where does active intervention fit into the disturbance and recovery cycle?. Schematic diagram showing formation of coral rubble, and stages that

might require intervention. In the inner ring of the circular progression, the substratum is affected by disturbance, and, given favourable conditions, transitions

from loose rubble to stable reef matrix onto which corals (outer ring) can recruit. When the transition from rubble creation to binding cannot occur naturally,

it can be artificially induced through active restoration. Further intervention is possible through the seeding of coral larvae or attachment of coral fragments.

When the cycle occurs naturally, passive management (e.g. through protected areas) can occur.

https://doi.org/10.1371/journal.pone.0240846.g003
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Fig 4. Methods and structures for rehabilitation of rubble fields. Rubble stabilisation techniques: (a) rocks used to

consolidate rubble in Indonesia, photo by Helen Fox, (b) the same area 14 years later, photo by Emily Darling, (c)

metal mesh used to stabilise rubble in Australia, photo by Ian McLeod, (d) the same mesh with corals added, photo by

Nathan Cook. (e) Reef Stars deployed over a rubble bed in Indonesia, photo by Biopixel. (f) Reef Stars with coral

growth, Indonesia, photo by Marie-Lise Schlappy, (g) reef bags used to consolidate rubble in Australia, photo by Tom

Baldock, (h) corals growing on reef balls in Thailand, photo by Margaux Hein. Note that many of these methods have

not been subject to rigorous scientific testing for effectiveness, and are shown here as examples.

https://doi.org/10.1371/journal.pone.0240846.g004
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Table 1. Rubble stabilisation and small structures: Summary of methods.

Approach Primary goal Advantages Disadvantages Outcomes (References)

Coral tipping (replacing

overturned corals after

mechanical damage)

Enhancing survival of

overturned corals

• No extraneous materials needed • Small scale • Large Porites colonies thrown onto land by a

storm and replaced into subtidal reef. Positive
outcomes: abundant recruitment and increase

in fish abundance using the colonies. Negative
outcomes: months between impact and

intervention killed most of the coral tissue,

high cost and machinery required, original

coral tissue died [103]. Considered a

temporary measure to precede the use of

cement [83].

• Negligible to no material costs • Must occur rapidly after

disturbance• Promotes natural processes of

attachment and survival • Ineffective in naturally high-

energy environments• Retains existing habitat structure

• If colonies are large (e.g.

Porites), heavy machinery may be

required

• Subject to movement during

storms

• Manual activity, potentially high

labour cost

Coral reattachment Use of cement to attach

individual storm-blown

colonies to enhance

survival

• Negligible to no material costs • Small scale • Positive outcomes: Successful attachment

and low mortality of colonies, species

composition similar to pre-disturbance [82].
• Promotes natural processes of

attachment and survival

• Must occur rapidly after

disturbance

• Must be preceded by rubble

removal (see below)

• Use of original coral assemblage

• Some machinery required

(cement mixer)

• Depends on rapid setting of

cement

• Subject to movement during

storms

• Manual activity, potentially high

labour cost

Rubble removal on reef slopes

and flats

Exposing solid substrate

underneath, to

encourage settlement of

sessile organisms

• Does not impact reef aesthetics • Small scale • Removal of rubble after ship grounding.

Positive outcomes: Successful removal of

rubble after a number of attempts and

engineering problems. Exposed bare

consolidated substratum for coral

reattachment (S3 Appendix).

• Allows attachment and settlement of

corals onto exposed solid substrate

• Potential negative impact at

rubble disposal site if offshore

• Death of organisms living in/on

rubble

• Does not add structural

complexity

• High cost

Metal stakes Provision of settlement

substrate

• Cheap materials, readily sourced locally • Small scale • No literature to assess outcomes

• Limited potential to trap and

stabilise unconsolidated substrata

• Becomes inconspicuous relatively

quickly (gaining aesthetic appeal)

• Unknown how microbiome may

be affected by materials, and how

this might affect recolonisation

success

• Quick and easy deployment–does not

require complex machinery

• May act as habitat for unwanted

organisms

• Introduction of foreign material

Metal stakes and plastic mesh

netting

Substrate stabilisation

and provision of

settlement substrate

• Cheap materials, can be sourced locally • Small scale • Positive outcomes: Increase in fish biomass,

coral recruit size and coral recruit survival

(63% vs 6%) after two years Absent outcomes:
Non-significant increase in coral cover.

Negative outcomes: plastic netting still visible

after 5 years [84] (S3 Appendix).

• Microbiome may be affected by

materials, potentially limiting

recolonisation success

• May become inconspicuous (gaining

aesthetic appeal)

• Quick and easy deployment–does not

require complex machinery

• May act as habitat for unwanted

organisms

• Likely restricted to relatively

sheltered areas for deployment

success and long-term stability

• Corals known to settle on both stakes

and netting

• Risk of burial by surrounding

rubble during storms due to low

profile• Prevents movement of loose rubble

• Introduction of foreign material

• Use of plastic for netting can

introduce debris once breakdown

begins

(Continued)
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Table 1. (Continued)

Approach Primary goal Advantages Disadvantages Outcomes (References)

Inject chemicals (usually cement)

to bond unconsolidated

substrates

Substrate stabilisation • Often cheap materials, readily sourced

locally

• Diffuse deployment (potential to

contaminate non-degraded areas)

• No literature to assess outcomes

• Can be deployed over moderately large

areas (10–100 m2) with little expertise

• Difficult to do underwater.

• Unknown toxicity of chemicals

to rubble biota and other

organisms

• Likely restricted to relatively

sheltered areas for success

• Speeds the consolidation of rubble

fields towards suitable settlement

substrata

3D frames (e.g. MARRS Reef

Stars)

Substrate stabilisation

and providing habitat

structure

• Modular, ready scope to scale (quick

and easy deployment–does not require

complex machinery)

• Potential refuge of corallivores,

hindering coral recruit survival

• Positive outcomes: MARRS Reef Stars

resulted in increase in coral cover from 10%

to over 50% after three years [99] (S3

Appendix).
• May require further ecosystem

modification to establish (e.g.

damselfish/corallivore removal)

• Can trap unconsolidated rubble from

adjoining degraded reef areas

• Reef stars must be sourced from

supplier and involves cost for

bespoke fabrications (under

patent).

• Can provide improved growing

conditions for coral (higher than

surrounding benthos)

• Addition of structures may

incur high permitting risk

• Unknown resistance to high

hydrodynamic energy

• Becomes inconspicuous relatively

quickly (gaining aesthetic appeal)•

• Adding plastic, epoxy and steel

to the marine environment

• Microbiome may be affected by

materials, potentially limiting

• recolonisation success

• May act as habitat for unwanted

organisms

• Provide/facilitate refuge for fish and

invertebrates

• May serve as fish attracting

devices, drawing fish from natural

habitats

• Can be fixed in place or temporary for

removal

• Visible for several months,

reducing aesthetic appeal until the

coral covers the frames

• Installation can allow for strong

community engagement

BioRockTM; mesh frames (with

or without electrical current)

Substrate stabilisation

and providing habitat

structure

• Same as for 3D frames; also: • Same as for 3D frames; also: • Positive outcomes: Increased attachment

rates, survival and / or growth of coral

fragments [97, 108–112], densities of reef

associated fishes 6 times greater [113].

Negative outcomes: Decreased growth of

fragments [114]. Absent outcomes: No change

in growth rates [100].

• Potential for facilitating/increasing

levels of cementation within the rubble

bed

• Requires source of power

adding costs and logistical

challenges

• Current required for many

months for good accretion

• Eventually incorporated into the reef

framework

SECORE Tetrapods Providing structure for

coral recruitment

• Relatively inexpensive materials, readily

sourced locally

• Small size reduces scalability • Positive outcomes: 5 to 18-fold reduction in

out planting costs compared to direct

methods. Negative outcomes: low

survivorship of coral recruits, rapid

colonization by algae [98].

• Need to be wedged into complex

reef structure; role in

• rubble is unclear

• Can be deployed by divers • Introduction of foreign material

• May resemble consolidated reef

substrate with aesthetic appeal

• Colonization by undesired

organisms

• Eventually incorporated into the reef

framework

• High labour (diver) costs

(Continued)
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[85], or following ship groundings that generate expansive areas of unconsolidated rubble on a

previously well-consolidated reef framework [87].

The lack of documentation on substrate stabilisation suggests that this is an area where

logistics and materials are still under development [14]. In addition to ship strikes and dyna-

mite fishing, natural disturbances such as storms and cyclones contribute to the types of

impacts that convert complex coral cover to shifting rubble fields that may or may not consoli-

date over time [17]. Studies on coral survival on degradable structures caution that materials

need to be sufficiently durable [88]. This highlights one of the risks of investing time and

Table 1. (Continued)

Approach Primary goal Advantages Disadvantages Outcomes (References)

Natural or concrete-

fabricated structures: Reef

BallsTM; Subcon reef

modules; boulders, pipes and

large objects.

Substrate stabilisation

and providing habitat

structure

• Modular design facilitates

scalability

• Larger scale habitat

engineering may incur high

permitting risk

• Positive outcomes: Reef BallsTM

provide shoreline protection and lead to

increased fish abundance [115, 116].

Negative outcomes: Low coral

recruitment [116].
• Often relatively inexpensive

materials, readily sourced locally

(except Reef BallsTM)

• Ecological (and climatic/

biogeochemical) impacts of

different grades of concrete • Positive outcomes: Subcon modules

were colonised by invertebrate and fish

fauna similar to a nearby shipwreck in

20 months. Negative outcomes: The

modules were rapidly colonised by algae

[106].

• Can create habitat structure at

scale easily

• Patented structures must be

sourced from supplier and

involves cost for bespoke

fabrications (under patent).
• Promotes biodiversity, and can

withstand some physical stress as

scale increases • Installations increasingly

permanent as scale increases • Positive outcomes: Tubular pipes

completely overgrown with Porites
colonies in 12 years. Negative outcomes:
The Porites-dominated community

replaced assemblages originally

composed of Acropora thickets [117].

• Provide/facilitate refuge for fish

and invertebrates

• May resemble consolidated reef

substrate with aesthetic appeal

• Almost always requires

heavy machinery

• Introduction of foreign

material

• Eventually incorporated into the

reef framework, depending on size

• High risk of sedimentation

onto colonised substrate in

areas of degraded reef

• Positive outcomes: Rock piles resulted

in increase in fish communities similar

to those of healthy reefs, hard coral

cover from 0% to 44.5% over 14 years

[69], (S3 Appendix).
• Reef BallsTM moulds can be

bought from the company for

different sized structures and

fabricated on site using locally

sourced cement plus admixtures

• Microbiome may be affected

by materials, potentially

limiting recolonisation

success

• May act as habitat for

unwanted organisms

• May serve as fish attracting

devices, drawing fish from

natural habitats

• Sustainability issues around

concrete production and

transportation

Gabion cages/baskets/reef

bags

Substrate stabilisation

and providing habitat

structure

• Mostly the same as for ‘natural or

concrete-fabricated structures’–

accessible and relatively low cost

• Mostly the same as for

‘natural or concrete-

fabricated structures’ except:

• Positive outcomes: Reef bags stable,

CCA recruitment, increased fish

abundance, some coral recruitment after

7 months [104].• May require heavy

machinery

• Filled with existing natural

materials (e.g. reef rubble primed

for coral recruitment)

• Eventually incorporated into the

reef framework

• Can be constructed in situ by

divers

• Provide shoreline protection if

designed and positioned correctly

https://doi.org/10.1371/journal.pone.0240846.t001
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resources in substrate stabilisation, where increasing storm activity may damage or dislodge

structures.

Small structures

Beyond the simple stabilisation of rubble, the deployment of small structures (from a few cen-

timetres to ~2 m3) aims to either combine substrate stabilisation with the provision of habitat

structure, or to provide structure only (Table 1). This is one of the earliest forms of coral resto-

ration [14]. Early attempts often involved using discarded objects like car tires and steel frames

to rapidly create structural complexity in degraded habitats [89, 90] (but see Risks section).

However, in recent years, objectives and methodology have shifted towards engineered struc-

tures that mimic specific functions performed by an intact coral reef framework [Fig 4; 91].

The most commonly-used structures are frames [92, 93], blocks [91], rocks [69, 84] or pur-

pose-built structures such as ReefBallsTM [94], ceramic EcoReefs [95], BioRock [96, 97],

SECORE (Sexual Coral Reproduction) tetrapods [98] or MARRS (Mars Assisted Reef Restora-

tion System) Reef Stars (previously known as ‘Spiders’) [99]. Three-dimensional habitat can be

enhanced by designing novel structures for settlement [e.g. new shapes, sizes and surfaces; 96,

98], or by using electrical current to stimulate mineral accretion [97, 100, 101], with or without

the attachment of coral colonies or fragments. Given adequate upstream larval sources, suc-

cessful structures can attract natural coral recruitment and enhance survival or provide habitat

for other reef organisms [102].

There is very little evidence, and in some cases, none at all, of the success or failure rates of

the different methods (Table 1). Positive outcomes of methods used to date include coral

recruitment onto the structures (overturned corals and reef bags [103, 104]), increasing coral

cover on and around the structures (MARRS Reef Stars, rock piles [69, 99]) and increasing fish

abundance and biomass (metal stakes, ReefBalls, Subcon modules [84, 105, 106]). However,

there were similar numbers of studies reporting failed coral recruitment due to algal over-

growth of the structures [98], no change in coral cover, or artificial structures remaining visible

before the end of the monitoring period [84]. Some methods required a period of trial and

error before they could be deemed useful (e.g. rubble removal from a ship grounding site, S3

Appendix), and others resulted in structures remaining visible, rather than becoming incorpo-

rated into the reef matrix. For some methods, such as BioRock, results reported by different

researchers are equivocal, with some reporting increased attachment rates and others finding

no difference (Table 1). No literature presently exists describing efforts to use metal stakes for

rubble stabilisation, or to use cement or similar chemicals to enhance rubble stabilisation rates.

Studies reporting positive outcomes were usually conducted over a short time-frame, prevent-

ing an assessment of whether there was, in fact, a restoration of coral communities and pro-

cesses at any scale (Table 1).

Theoretically, the time required for restoration techniques to benefit coral assemblages at

scales of 10s to 100s of m2 (e.g. increased fish abundance, coral cover, structural complexity)

depends to some degree on the technology and mechanisms used (Fig 5). Techniques such as

deploying tailored structures require a high level of technological investment and man-power,

but are expected to yield immediate benefits by providing shelter and structural complexity for

sessile organisms and reef fishes. Deploying cementation compounds and removing rubble are

also technologically advanced but are likely to take variable amounts of time before recovery

occurs through natural recruitment and growth of corals. Some low-tech methods, such as

mesh or rock piles to stabilise loose rubble, would also take a long time to translate into bene-

fits on the reef through coral growth, while others such as frames that provide shelter and

structure could yield immediate results in terms of fish abundance and diversity, although this
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may occur through novel structures attracting fishes from natural habitats nearby. The time to

yield results can be sped up for most techniques by transplanting corals onto the artificial

structures (Fig 5).

Fig 5. Costs and benefits of rubble field restoration methods. A stylised visual representation of the relationship between time required to gain restoration

benefits and the level of technology required. Techniques in the top left quadrant require a higher level of technology, but are likely to yield immediate benefits.

Techniques in the top right quadrant are more technologically advanced and will take a relatively long time before recovery occurs (i.e. through natural

recruitment and growth of corals). Techniques in the bottom right quadrant are relatively low-tech but are expected to take a long time to yield benefits.

Finally, techniques in the bottom left are low-tech and may see immediate or fast benefits to coral communities. Most techniques can reduce the time until

benefits (moving right to left along x-axis) by adding transplanted corals.

https://doi.org/10.1371/journal.pone.0240846.g005
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Benefits

The provision of stable substrata is primarily of benefit to corals and other sessile organisms,

which can settle and grow without the risk of being overturned, broken, abraded or smothered

as loose rubble moves around [107]. Once sessile organisms, particularly corals, have become

established, their growth provides further three-dimensional habitat for motile organisms

[99]. The methods described above can, in some cases, be integrated and used together, and

ideally become part of the reef framework over time; documented projects include examples

where this occurred and others where it did not (Table 1). Practically, small and modular

structures are relatively easy to fabricate and handle, have a low per-unit cost, can be quickly

deployed, and can be less complex, from a regulatory and permitting perspective, than larger

structures such as artificial reefs (S3 Appendix).

Summary of advantages, disadvantages, successes or failures of different approaches (from

simple to more complex) to the use of structures and substrate stabilisation.

Although financial profit is not generally the primary motivation of restoration practition-

ers, sociocultural and economic indicators for coral restoration effectiveness include reef

users’ satisfaction, stewardship, capacity-building, and economic value [118]. Substrate stabili-

sation and the use of small structures can therefore have economic benefits through enhancing

recreational diving, fishing and tourism at new or recovering sites, especially when using struc-

tures that enhance overall habitat complexity [119]. Such sites may act to reduce pressure on

natural reefs, allowing disturbed reefs to recover with reduced damage from snorkelers and/or

scuba divers. Increasing fish stocks and recreation markets can benefit local communities

through food security and economic opportunities [85].

Risks

The effects of substrate stabilisation and structure deployment should be considered within

a risk framework [120] to further guide coral restoration regulation, research and develop-

ment. Undesirable outcomes could include the potential shifts in coral community compo-

sition due to novel substrata favouring some species over others [119], as well as impacts

on rubble habitat biota [46, 47] and the overall carbonate sediment production of the reef.

If not prepared correctly, artificial structures could introduce pathogens, and poor place-

ment may result in movement, damage to adjacent areas, or loss (Table 1). Often, it is

assumed that small structures or mesh netting will become part of the reef framework over

time, but if materials are inappropriate (e.g. Raymundo et al. [84] and Fadli [121] used

plastic netting) there is a risk of degradation, generating marine debris and contaminating

the marine environment [14]. Consequently, the location and desired scale of deployment

needs to be considered, as an optimum restoration may not require intervention over an

entire rubble bank.

Poor placement can result in smothering sessile organisms, and if structures are used as a

vector for introducing coral fragments, the question of the source of those fragments arises

[122]. There has been some research to suggest maximum ‘safe’ proportions of healthy Acro-
pora cervicornis and Stylophora pistillata colonies (10% or less) that can be harvested for frag-

ments [123, 124], but further research needs to take into account a broader range of species in

a variety of environmental settings. If collecting ‘fragments of opportunity’, practitioners need

to ensure that they are not denuding an area of coral fragments that may have otherwise

become attached and survived to produce new growth at the source location. Risks of failure

in delivering a successful intervention will also depend on understanding the dynamics of rub-

ble transportation within a reef, to identify suitable areas and/or techniques of intervention

that consider the regular deposition of rubble naturally produced in a reef system. Substrate
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stability is likely to be naturally patchy even at small spatial scales, with rubble accumulating in

depressions and limestone or live coral outcrops providing raised consolidated patches. There

is still uncertainty about our ability to make an ecologically meaningful difference in attempt-

ing to restore denuded consolidated substrate; one management option is to focus on firstly

restoring this type of habitat, before resources are allocated to rubble.

While the temptation to undertake interventions is sometimes understandable, stabilising

rubble and establishing manufactured structures can fail at a higher rate than restoration proj-

ects on consolidated reef, due to unfavourable environmental conditions which precluded

coral growth in the first place [122]. This includes the concern that increasing frequency and

intensity of disturbances could potentially undo the restoration work that has been imple-

mented; there is a risk that significant resources and effort channelled into restoration projects

that may be negated by the next disturbance. Physical modelling is one tool that can ensure

that restoration structures can withstand rough storm conditions. For example, ‘reef bags’–

netted bags filled with rubble–were made to specifications likely to withstand velocities experi-

enced during violent storms (Fig 4G). To minimise risk in future projects, the publication of

failures in coral restoration is at least as important as publishing success stories. This would

greatly assist cost-benefit analyses to support future decisions about restoration methods, as

would more detailed information about the costs of interventions. Importantly, the risk of tak-

ing action also needs to be weighed against the risk of doing nothing, and the potential conse-

quences of allowing reefs or sections of reefs to degrade completely.

Limited government support and funding, a need for new or refined policy, plans rele-

vant to restoration and adaptation [125], better enforcement and reduction in permitting

constraints (see S4 Appendix) have all been identified as general limitations to coral restora-

tion effectiveness [126]. While substrate stabilisation has been identified as a potentially

useful technique, it has not been a focus in reef intervention policy, especially in Australia

(S4 Appendix). Further, it is only prioritised in the legal framework of responses to damage

caused by ship groundings or storms in some parts of the world (e.g. the US and the Carib-

bean). Approval processes for specific restoration projects are generally dependent on the

level of risk and location. Regulatory permitting will range from low risk (substrate stabili-

sation) to high risk (habitat engineering and artificial reefs), depending on the specific

delivery methods used. Additional studies are required to determine optimum material

types, shape or configuration and orientation, season of deployment, and the specific bene-

fits and risks associated with each.

Scaling-up

Given the substantial and increasing area of coral reefs that may require restoration or rehabil-

itation, and the inherently small scales of restoration activities presently being practised, cur-

rent practices would need to be scaled up by many orders of magnitude to demonstrably slow

down the global and regional rate of reef degradation. To be effective at regional or larger

scales, existing substrate stabilisation techniques would need to be replicated many millions of

times (Table 1).

There are two approaches for scaling up. First, current methods can simply be replicated,

similar to the development of the global agriculture or forestry sectors [127, 128]. However,

few opportunities exist for gaining economies of scale by simply applying the same technique

repeatedly; additionally, the patchiness of the habitat and depth-related variability are impor-

tant differences between coral reef environments and terrestrial habitats. A second approach

focuses on methodological changes and/or the development and uptake of new technology to

achieve major per-unit cost reductions [127]. This second approach, also exemplified through
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global agriculture, aims to increase efficiency and productivity by developing and implement-

ing biological and mechanical technology. There are increasing efforts to develop technology

through better understanding of biological and ecological processes–such as natural stabilisa-

tion rates and rubble movement hydrodynamic thresholds. These will likely lead to some gains

in productivity, for example knowing exactly when and where to carry out interventions.

However, scaling-up many, if not most, of the current practices will not result in substantial

per-unit efficiencies unless mechanisation and automation can be developed and applied.

Therefore, scaling-up approaches needs to be explicitly considered when planning method

development, pilot projects and research programs.

Monitoring and measuring success

Coral reef restoration and adaptation projects would benefit from knowledge of the baseline

(pre-disturbance) state, and an effective monitoring program to assess the performance of

intervention methods. This evaluation should be based on a clear statement of objectives,

translated into appropriate indicators or metrics to be measured, using adequate sampling

techniques, time frames and spatial scales [13]. When considering substrate stabilisation and

small structures, initial, short-term metrics may include measures of substrate stability fol-

lowed by long-term assessment of changes in coral cover and the ratio of coral to rubble,

recruitment, assemblage structure and structural complexity (Table 2). Overinvestment in sta-

bilisation can also impact on the natural sediment budgets of coral reefs, so an understanding

of the background rubble state of reefs is important. Other metrics may relate to broader eco-

logical function as suggested by Hein et al. [118], including coral diversity, herbivore biomass

and diversity, and coral health. All these metrics can be monitored using well-established

methods developed during decades of coral reef ecology research. Overall, it is important to

consider the functional definition of recovery and targets for the restoration program, which

will be key to implementing a methodology and relevant metrics to construct the baseline

dataset of which to monitor the success of an intervention.

Ideally, data resulting from robust and systematic monitoring should form the foundation

of the decision-making process governing if, when, how and what active intervention should

be considered for a certain reef (Fig 6). It is also important to consider that the majority of the

world’s reefs are located in developing nations, and often in remote locations. Coastal commu-

nities in such locations often have little access to human capital that can operate underwater

and make educated assessments of the state of rubble, coral recruitment or biological assem-

blages [129]. Implementing this type of process (Fig 6) may require capacity building in local

communities.

Some of the studies reviewed here (Table 1 and S3 Appendix) described the medium-term

baseline conditions (e.g. rubble fields that had not recovered for> 6 years, [15, 117]), while

others conducted a one-off “baseline” assessment prior to installation of structures [106].

Where pre-intervention monitoring exists, this may set the goals to be achieved during resto-

ration. For example, rubble fields at Havannah Island on the Great Barrier Reef failed to

recover for a decade [16, 17], and might therefore be a candidate for intervention. However,

before the disturbances, its coral cover was ~45% [16, 17], and some reefs in the same region

currently also have cover of ~45% (http://apps.aims.gov.au/reef-monitoring/). Therefore, for

restoration at this reef to be considered a success, quantitative and qualitative re-assembly of

the coral community should be assessed against historical records and regional norms, which

provide benchmarks of the desired ecological state [122]. As always, unmanipulated control

sites should also be included at the disturbed reef where no restoration efforts are in place.
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Le et al. [130] argued that restoration should be monitored in two distinct phases: 1) the ini-

tial establishment phase in which the efficacy of the methods is assessed, and 2) the long-term

building phase where monitoring measures performance against ecological objectives

(Table 2). If objectives are linked to the recovery of coral ecosystems, then efficacy should be

measured for at least five to seven years to include successful recruitment and growth of

mature coral colonies, and resistance to potential ongoing disturbances. With a few exceptions

[e.g. 69], the monitoring of restoration projects, often linked to student projects or short-term

funding, is too brief to ascertain whether the project has resulted in a viable, self-sustaining

coral reef community [14]. However, where objectives are stated as simply the enhancement of

Table 2. Questions to guide monitoring and research priorities. Questions arising from current knowledge gaps, and examples of ecological and socio-economic met-

rics to tailor monitoring to the questions for each stage of a rubble field repair intervention.

Question Ecological metrics Socio-economic metrics

Before intervention

What are the reasons for

the rubble field?

• Nature and history of acute disturbance (eg cyclones, crown-of-thorns starfish,

coral bleaching)

• Human use of the area

• History of human impacts

• Metrics related to chronic stressors (e.g. turbidity, pollution, ongoing

destructive fishing)

Is the rubble field

problematic?

• Repeated measurements of percentage cover of rubble compared to live coral

and hard carbonate over time

• Value of the area to fisheries and tourism

industries?

• Importance of intactness and aesthetic appeal?• Hydrodynamic properties of the site and rubble movement rates

• Count and size of coral recruits

• Fish loss

• Coral recruit growth and survival

• Succession of consolidation and its implication on natural recovery dynamics

(Percentage cover of encrusting organisms on rubble; spot sampling of whether

rubble pieces are bound or not)

What are the conditions

preventing recovery?

• Wave and current data • Human use of the area

• Insufficient coral recruitment

• Rubble movement that can be tolerated by coral recruits/juveniles

• Sediment loads

• Algal cover and herbivore biomass

• Larval supply

During intervention

What will work best? • Determine ecological objectives and relevant metrics • Cost and benefit analysis

• Socio-economic risk assessment• Spatial scale

• Determine socio-economic objectives and relevant

metrics

• Ecological risk assessment

During & after intervention

Is the method appropriate? • Structural integrity of material over time • Community/visitor concerns/ support/ benefits

• Changes in rubble movement / consolidation rates • Traditional Owner/Indigenous concerns/ support/

benefits• Monitoring of identified risks (e.g. hitchhiking organisms, microbial

communities, introduction of foreign material, marine debris)

• Introduction and safe storage / isolation of foreign materials

Is the method working? • Monitoring tailored to measure metrics relevant to intervention objectives • Monitoring tailored to measure metrics relevant to

intervention objectives• Examples: percent cover of rubble vs. consolidated substratum, coral

recruitment and recruit survival, coral cover, structural complexity, fish

assemblage structure, abundance and biomass.

• Examples: aesthetic appeal, tourism and fisheries

benefit, cultural significance, community

participation• Control sites for comparison–both undamaged and unrestored

• Coral donor source monitoring if corals transplanted or grown

https://doi.org/10.1371/journal.pone.0240846.t002
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aesthetic appeal (e.g. a new dive site for tourism) or the remediation of a damaging one-off

event (e.g. a ship grounding), a shorter-term monitoring program can be sufficient [106, 131].

Considering the importance of rubble stabilisation, binding and cementation to coral

recruitment, it appears essential to not only monitor coral recovery by measuring recruitment

and coral cover, but to also assess the degree of stabilisation of a rubble field over time

(Table 2). Potential metrics include the thickness of the rubble bank above the underlying sub-

strate, movement of individual rubble pieces in the pile, the height of the rubble pile above the

substrate [19, 21] and the force required to shift rubble pieces. Further, knowledge of natural

binding times and succession following stabilisation will allow us to more accurately predict

recovery times both with and without interventions in place. At a larger scale, an understand-

ing of the hydrodynamics of a reef, together with the size and morphology of the rubble pieces,

sediment generation and dispersal across reefs, and the distribution of rubble-encrusting

Fig 6. Decision tree showing considerations to be made in rubble stabilisation interventions. The tree shows a framework for making decisions at two stages of

restoration planning: when i) determining whether active intervention is suitable and likely to effectively restore a rubble field on a damaged reef, and ii) deciding which

active intervention method to employ.

https://doi.org/10.1371/journal.pone.0240846.g006
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organisms with the potential to bind rubble, should provide an indication of the potential for

stabilisation (Fig 6). While further work is conducted to fill these and other knowledge gaps,

baseline data on rubble fields could be incorporated into existing reef monitoring programs,

including size, morphological categories, reef bathymetry and percentage hard carbonate.

Rubble-encrusting organisms such as encrusting sponges and coralline algae could also be

added to the small structures, and included in reef monitoring frameworks, and baselines for

future monitoring could categorise communities found at different stages of stabilisation suc-

cession to estimate degree of stabilisation.

Conclusions

In environments without direct anthropogenic pressures, natural processes may allow the sta-

bilisation and cementation of coral rubble over time, through a succession of processes that

culminates in the return of rubble fields to consolidated reef and living coral assemblages.

However, as coral reefs become subject to increasing pressures from stronger and more fre-

quent disturbances producing rubble, the natural capacity of these systems to accrete and gen-

erate a consolidated reef framework could be impaired [132, 133], leading to an overall

increase in rubble over time. Coral larvae can settle on unstable rubble, but abrasion and

smothering of juvenile corals results in negligible survival, such that rubble beds have been

dubbed "killing fields" for juvenile corals. We have synthesised the current understanding of

the process of natural rubble stabilisation, and the ways in which this knowledge could be used

to assess the likelihood that natural stabilisation will occur, or whether there is a need for inter-

vention (Fig 6).

Active interventions may be a way of helping to bridge the gap between the current condi-

tions, the predicted worsening situation, and a hoped-for reprieve in the future, even if at

small scales and with primarily aesthetic results. The scale of disturbance-induced rubble lends

itself to the scale of common intervention methods. In fact, increasing the speed of recovery is

already possible at these small scales, as demonstrated by those studies that have included

long-term monitoring. Interventions will likely continue to be especially important at high-

value sites. All the methods presented here would ideally be tested with pilot studies and, to

reveal whether they work, they will require appropriate monitoring.

Unfortunately, as with most restoration work to date, the methods and techniques reviewed

here suffer from a lack of independent monitoring at time scales relevant to the expected out-

comes. In fact, the choice of metrics to monitor must be set in relation to the stated objectives

of the restoration effort, which are often either absent or vague (e.g. “increasing reef resil-

ience”). If, as the reviewed methods imply, the objectives are to stabilise rubble, promote

cementation and create a stable substratum for coral recruitment, then metrics related to rub-

ble stability, cementation rates, and coral settlement and survival are the minimum require-

ment. We argue that most methods would still require a stage where the efficacy of the

technique itself is measured, before including long-term ecological indicators.

Knowledge gaps exist for every stage of the creation, stabilisation and cementation of rub-

ble, the performance of current restoration techniques and the long-term effectiveness of res-

toration at any scale. In fact, while there are data on the cover of rubble on reefs globally

among coral reef monitoring programs, there is a surprising lack of reporting on long-term,

large-scale trends in rubble cover. Perhaps the localised nature of both rubble fields created by

human disturbance and the current techniques available to restore them makes this metric

obsolete at larger scales, and the focus should remain on restoring local sites that are aestheti-

cally, economically or socio-culturally valuable. Coral restoration projects are increasingly

including socio-cultural and socio-economic objectives to ensure the long-term sustainability
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of the restoration efforts. Active involvement in coral restoration activities has been shown to

improve opportunities for education and stewardship of reef resources. As accounting for the

human dimension of coral restoration efforts becomes more important, monitoring plans

should increasingly evaluate metrics such as reef-user satisfaction, stewardship, capacity-build-

ing, and economic value. However, active interventions such as substrate stabilisation should

be considered as an addition to, and not a substitute for, global action on climate change, con-

ventional management and reducing local and regional stressors.
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111. Eisinger M. Beiträge zu ökologischen und ökonomischen Aspekten der Korallentransplantation auf

elektrochemisch erzeugte Substrate als Methode zur Rehabilitation degradierter Korallenriffe: Univer-

sity of Duisburg-Essen 2005.

112. Eisinger M, van Treeck P, Paster M, Schuhmacher H. Coral transplantation on electrochemically

formed reef structures and development of adapted coral reef rehabilitation concepts—the CON-

TRAST project in Egypt. In: Por FD, editor. Aqaba-Eilat, the Improbable Gulf Environment, Biodiversity

and Preservation. Jerusalem, Israel: Magnes Press; 2009. p. 343–71.

113. Goreau TJ, editor Coral reef and fisheries habitat restoration in the Coral Triangle: The key to sustain-

able reef management. Proceedings of the Coral Reef Management Symposium on the Coral Triangle

Area; 2010; Manado, Sulawesi, Indonesia.

114. Romatzki SBC. Influence of electrical fields on the performance of Acropora coral transplants on two

different designs of structures. Marine Biology Research. 2014; 10(5):449–59. https://doi.org/10.1080/

17451000.2013.814794

115. Sherman RL, Gilliam DS, Spieler RE. Artificial reef design: void space, complexity, and attractants.

ICES Journal of Marine Science. 2002; 59:S196–S200.

116. Meesters HWG, Smith SR, Becking LE. A review of coral reef restoration techniques. Wageningen:

IMARES, 2015.

117. Thongtham N, Chansang H, editors. Transplantation of Porites lutea to rehabilitate degraded coral

reef at Maiton Island, Phuket, Thailand. Proceedings of the 11th International Coral Reef Symposium;

2008; Fort Lauderdale, Florida.

118. Hein MY, Willis BL, Beeden R, Birtles A. The need for broader ecological and socioeconomic tools to

evaluate the effectiveness of coral restoration programs. Restoration Ecology. 2017; 25(6):873–83.

https://doi.org/10.1111/rec.12580

119. Edwards AJ, editor. Reef Rehabilitation Manual. St Lucia, Australia: Coral Reef Targeted Research &

Capacity Building for Management Program; 2010.

PLOS ONE Small structures and substrate stabilisation

PLOS ONE | https://doi.org/10.1371/journal.pone.0240846 October 27, 2020 26 / 27

https://doi.org/10.1038/s41598-017-17555-z
http://www.ncbi.nlm.nih.gov/pubmed/29273761
https://doi.org/10.1007/s00338-009-0564-y
https://doi.org/10.1007/s00338-009-0564-y
https://doi.org/10.4236/nr.2014.510048
https://doi.org/10.1111/emr.12381
https://doi.org/10.1016/j.rsma.2020.101408
http://www.ncbi.nlm.nih.gov/pubmed/32289061
https://doi.org/10.1080/17451000.2013.814794
https://doi.org/10.1080/17451000.2013.814794
https://doi.org/10.1111/rec.12580
https://doi.org/10.1371/journal.pone.0240846


120. Holsman K, Samhouri J, Cook G, Hazen E, Olsen E, Dillard M, et al. An ecosystem-based approach to

marine risk assessment. Ecosystem Health and Sustainability. 2017; 3:e01256.

121. Fadli N. Growth rate of Acropora formosa fragments that transplanted on artificial substrate made from

coral rubble. Biodiversitas. 2009; 10:181–6.

122. Edwards AJ, Gomez ED. Reef restoration concepts and guidelines: making sensible management

choices in the face of uncertainty. St. Lucia, Australia: Coral Reef Targeted Research & Capacity

Building for Management Programme; 2007.

123. Schopmeyer SA, Lirman D, Bartels E, Gilliam DS, Goergen EA, Griffin SP, et al. Regional restoration

benchmarks for Acropora cervicornis. Coral Reefs. 2017; 276:1–11.

124. Epstein N, Bak RPM, Rinkevich B. Strategies for gardening denuded coral reef areas: the applicability

of using different types of coral material for reef restoration. Restoration Ecology. 2001; 9(4):432–42.

125. McLeod IM, Newlands M,Hein M, Boström-Einarsson L, Banaszak A, Grimsditch G, et al. Mapping

current and future priorities for coral restoration and adaptation programs: International Coral Reef Ini-

tiative ad hoc Committee on Reef Restoration 2019 interim report. Townsville, Australia: TROPWater,

James Cook University, 2019.

126. Hein MY, Birtles A, Willis BL, Gardiner N, Beeden R, Marshall NA. Coral restoration: Socio-ecological

perspectives of benefits and limitations. Biological Conservation. 2019; 229:14–25.

127. Alston JM, Andersen MA, Pardey PG. The rise and fall of U.S. farm productivity growth, 1910–2007.

Staff Paper Series P15-02. University of Minnesota: College of Food, Agricultural and Natural

Resource Sciences, 2015.

128. Rinkevich B. Novel tradable instruments in the conservation of coral reefs, based on the coral garden-

ing concept for reef restoration. Journal of Environmental Management. 2015; 162:199–205. https://

doi.org/10.1016/j.jenvman.2015.07.028 PMID: 26241935

129. Donner SD, Potere D. Inequity of the global threat to coral reefs. BioScience. 2007; 57:214–5.

130. Le HD, Smith C, Herbohn J, Harrison S. More than just trees: assessing reforestation success in tropi-

cal developing countries. Journal of Rural Studies. 2012; 28:5–19.

131. NOAA, DLNR. Final damage assessment and restoration plan and NEPA evaluation for the February

5, 2010, M/V Vogetrader grounding at Kalaeloa, Barbers Point, Oahu. Hawai’i: National Oceanic and

Atmospheric Administration and Department of Land and Natural Resouces, 2017.

132. Silbiger NJ, Guadayol O, Thomas FIM, Donahue MJ. Reefs shift from net accretion to net erosion

along a natural environmental gradient. Marine Ecology Progress Series. 2014; 515:33–44.

133. Perry CT, Alvarez-Filip L. Changing geo-ecological functions of coral reefs in the Anthropocene. Func-

tional Ecology. 2018; 33:976–88.

PLOS ONE Small structures and substrate stabilisation

PLOS ONE | https://doi.org/10.1371/journal.pone.0240846 October 27, 2020 27 / 27

https://doi.org/10.1016/j.jenvman.2015.07.028
https://doi.org/10.1016/j.jenvman.2015.07.028
http://www.ncbi.nlm.nih.gov/pubmed/26241935
https://doi.org/10.1371/journal.pone.0240846

