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Abstract 

The Antamina Cu-Zn skarn, in the central Andes of Peru, is the largest skarn in the world with 

resources of ~2,968 Mt averaging 0.89% Cu, 0.77% Zn, 11 g/t Ag and 0.02% Mo as of 2015. 

The deposit measures ~2.5 km long by ~1.5 km wide with a vertical extension > 2.2 km and 

remains open at depth. The host rocks are structurally stacked limestones and marls of the 

Cretaceous Jumasha and Celendín formations. Skarn and mineralisation occur in and around the 

Antamina Porphyry Complex (APC), which consists of 4 porphyry centres emplaced between 

10.95 ± 0.20 Ma and 10.24 ± 0.23 Ma (U-Pb zircon). The core of the main ore zone is composed 

of 3 contiguous porphyry centres (Oscarina, Taco-Bornita, Usupallares) oriented lengthwise 

from NE to SW; the fourth centre (Condorcocha) is located ~1 km north of Taco. This study 

combines field observations of cross-cutting relationships with U-Pb (zircon) and Re-Os 

(molybdenite) geochronology into a spatio-temporal model that explains how Antamina became 

a giant ore deposit. 

At least 11 intrusive phases were identified at the Antamina deposit. The major porphyry phases 

documented in each intrusive centre at Antamina are classified as P1 (early), P2 (inter-

mineralisation), and P3 (late inter-mineralisation). Sub-phases are denoted in alphabetical order 

as P2a, P2b, etc. General characteristics of the major phases are as follows: P1 is the causative 

skarn-forming intrusion in each porphyry centre. P1 ages range from 10.95 ± 0.20 Ma (Taco) to 

10.24 ± 0.23 Ma (Usupallares). Endoskarn and exoskarn are genetically related to P1 porphyries.  

Stockwork quartz veins (≤ 40% volume) and hydrothermal biotite (potassic alteration) are 

locally abundant in the central porphyry complex. P2 intrusions cut P1 intrusions, related skarns, 

and early quartz veins. Quartz stockwork veins (± pyrite ± chalcopyrite ± molybdenite) extend 

outward from P2 porphyries and cross-cut P1 skarns. Locally, P2 contains xenoliths (up to 

several m long) of P1 exoskarn, P1 endoskarn, and refractory quartz vein fragments. P3 cross-

cuts P1, P2, and early veins. Neither P2 nor P3 contain endoskarn alteration, although they do 

contain veins and disseminations of secondary biotite overprinted by sericite-chlorite alteration. 

Molybdenite mineralisation occurs in two stages across the Taco-Bornita and Usupallares zones. 

Stage I molybdenite occurs in skarns; Re-Os ages include 10.58 ± 0.07 Ma and 10.44 ± 0.05 to 

10.39 ± 0.05 Ma. Stage II molybdenite + quartz veins cut across P2 and P3 porphyries and Re-

Os ages include 9.99 ± 0.04 and 9.68 ± 0.05 Ma. In general, U-Pb zircon and Re-Os molybdenite 
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ages decrease from northeast to southwest along the structurally-controlled axis of the deposit. 

Together, these ages constrain the duration of magmatic-hydrothermal activity at Antamina to 

~1.1 Ma. 

The skarns formed in sequence with porphyry emplacement, then coalesced to form a continuous 

body of skarn that comprises the giant Antamina deposit. Systematic patterns of alteration and 

mineralisation are centred on the multi-phase porphyry centre; outward from this centre, 

alteration consists of hydrothermal biotite (i.e., potassic alteration) transitioning into endoskarn, 

exoskarn, bleached marble, and fluid escape structures in the most distal reaches of the deposit. 

Skarn garnet colour changes from pink to red to brown in endoskarn and from red to brown and 

green (from proximal to distal) in exoskarn. Garnet becomes more andradite-rich and 

grossularite-poor from proximal to distal skarns, and clinopyroxene becomes more hedenbergite-

rich and diopside-poor along the same trend. Mineralisation and metal zoning shows an outward 

progression from Mo ± Cu in the central porphyry, to Cu (± Ag, Bi)-Zn-Pb from proximal to 

distal exoskarns. The ore mineralogy is dominated by molybdenite, chalcopyrite, bornite, and 

sphalerite with lesser galena and minor Bi-Ag-S minerals. Fluid inclusions in a unidirectional 

solidification texture (UST) sample consist of four types assigned to primary and secondary 

assemblages. Primary inclusions are highly saline with liquid-vapour-solid phases and contain up 

to 5 translucent daughters plus a triangular opaque daughter. Secondary inclusions display 

variable proportions of liquid-vapour-solid phases, and are generally less saline and more 

vapour-rich than primary inclusions. Primary inclusions homogenise by halite disappearance, 

whereas secondary inclusions homogenise to the liquid state. Lithostatic pressure estimates from 

primary fluid inclusions range from 1.2 to 0.95 kbar, which equates to formation depth range 

from ~4.6 to 3.5 km. 

The formation of the giant Antamina skarn deposit is attributed to the emplacement of multiple 

fertile porphyries along a NE-trending fault zone into reactive wall rocks between 10.95 ± 0.20 

Ma (oldest U-Pb zircon age) and 9.68 ± 0.05 Ma (youngest Re-Os molybdenite age). Miocene 

surface uplift (on the order of 3.5 km), coupled with Pleistocene glaciation, exposed the top of 

the deposit, preserving the ore body at a favourable erosional level. 
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1.1. Thesis Structure 

It is intended that the contents of this thesis will be published in internationally recognized, 

peer reviewed earth science journals. At the time of thesis submission, Chapter 2 has been 

accepted (pending minor revisions) to the journal Economic Geology. The remaining 

chapters have been written in a traditional monograph style; their contents will be combined 

into additional papers that will highlight the scientific contributions of this study. The 

chapters are stand-alone bodies of work that are related to the central theme of the thesis: 

resolving the intrusive sequence and its relationship to skarn formation at the giant Antamina 

deposit, Peru. There is minor repetition between chapter introductions, methods, and 

discussion topics (when necessary), but the results for each chapter are unique. Chapter 1 

provides an introduction to the geology of Antamina from the regional to deposit scale, 

summarising the work of previous researchers. Chapter 2 presents new compositional data 

and discrimination diagrams for the host rocks and a method for quantifying mass changes 

during skarn formation. Chapter 3 presents new observations on the intrusive sequence and 

its relationship to skarn formation. New geochronology results from U-Pb zircon, Re-Os 

molybdenite, and 40Ar/39Ar biotite are presented in the context of the intrusive sequence. 

Chapter 4 presents the mineralisation and alteration paragenetic sequence, as well as mineral 

chemistry, and applies these to understanding deposit-scale zonation trends. Fluid inclusion 

results are used to estimate the pressure and depth of deposit formation. These results are 

interpreted in the context of previous work on the uplift history of the central Andes of Peru. 

Chapter 5 presents a summary of the work and some recommendations for future study. Each 

chapter contains a list of references and an appendix of A4-formatted tables and/or figures; 

larger format appendices are included in the digital supplement, as noted in the text. 
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1.2. Geological Setting of the Antamina Deposit 
1.2.1. Tectonic Setting and Metallogeny 

The Andes are a metallogenically diverse continental arc that hosts numerous world-class ore 

deposits along its tectonically-segmented length (Fig. 1.1). The Peruvian flat-slab segment is 

 

Fig. 1.1. Location and tectonic setting of the Antamina deposit, Peru. A. Global relief model of western South 
America showing the high topographic relief of the Andes and bathymetry of the western Nazca Plate (Amante 
and Eakins, 2009). B. Tectonic-magmatic-metallogenic domains of Peru. Antamina is located in the Marañón 
Fold-Thrust Belt (MFTB) of the Western Cordillera. The MFTB roughly corresponds with the Miocene 
Metallogenic Belt (Noble and McKee, 1999; Table A1.1), a volcanic gap (Table A1.2), and the Peruvian flat-slab 
zone, as indicated by Wadati-Benioff contours (Ramos and Folguera, 2009). Plate motion vectors are from 
Schellart et al. (2007). The Abancay deflection (A.D.) and Huancabamba deflection (H.D.) are indicated with 
dashed lines (see text for detail). Panel B modified after Myers (1975) and Scherrenberg et al. (2016). 
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one such example that hosts a > 900 km zone of mineralisation known as the Miocene 

metallogenic belt (MMB; Noble and McKee, 1999; Fig. 1.1). The MMB hosts a variety of 

base- and precious metal deposits with diverse mineralisation styles, including high-

sulfidation epithermal Au-Ag (i.e., Yanacocha), porphyry-skarn Cu-Zn-Mo (i.e., Antamina), 

and carbonate replacement Zn-Pb-Ag-Cu (i.e., Cerro de Pasco), to name a few (Petersen, 

1965; Noble and McKee, 1999; Bissig et al., 2008; Baumgartner et al., 2009; Laznicka, 2010; 

and Catchpole et al., 2015). This NNW-trending mineralized belt is roughly bounded by two 

major E-W shear zones, the Huancabamba deflection (5°S) and the Abancay deflection 

(14°S) (Sillitoe, 1988; Fig. 1.1). Based on the ages of these deposits, the timing of formation 

of the MMB corresponds with the mid-Miocene impingement of the Nazca Ridge 

bathymetric high in the Peru-Chile trench at between 15 and 5 Ma (Rosenbaum et al., 2005). 

This tectonic impingement resulted in shallowing of the Nazca plate subduction angle (Hu et 

al., 2016), a volcanic gap (McGeary et al., 1985), uplift of the central Peruvian Andes 

(McNulty and Farber, 2002; Ramos and Folguera, 2009), increased surface and tectonic 

erosion rates (von Huene and Lallemand, 1990; Gregory-Wodzicki, 2000; and Clift et al., 

2003), and an increase in seismicity and deformation in the overriding plate (Rosenbaum and 

Mo, 2011; Fig. 1.1). 

1.2.2. Regional Structure and Stratigraphy 

Hydrothermal systems of the MMB are superimposed on the Marañón Fold-Thrust Belt 

(MFTB), a structurally and stratigraphically complex deformation zone between the Eastern 

Cordillera and Western Cordillera (Cordillera Blanca) in the central Peruvian Andes (Figs. 

1.1 and 1.2). The lithology of the MFTB surrounding the Antamina district consists of 

Precambrian to Cambrian metamorphic basement rocks (Marañón Complex) overlain by 

Palaeozoic and Mesozoic shelf carbonates and clastic sedimentary rocks (Fig. 1.2), which 

record at least two marine transgressions related to early tectonism in the Andes (Love et al., 

2004). This stratigraphic sequence is dominated by carbonate-rich units including the 

Permian Mitu Group, the Triassic-Jurassic Pucara Group, and Chicama Formation; and the 

Cretaceous Oyón Formation, Goyllarisquizga Group, Pariahuanca Formation, Jumasha 

Formation, and Celendín Formation (Fig. 1.2). Locally, these rocks host Eocene and Miocene 

intrusions and mineral deposits, and are sometimes capped by Miocene volcanic rocks (Fig. 

1.2).  
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East-vergent, compressional deformation of this stratigraphic package has taken place in at 

least five orogenic pulses since the late Cretaceous. Locally evident compressional events 

include the late Cretaceous Peruvian orogeny (Benavides-Cáceres, 1999), the Eocene Incaic 

orogenies (Noble et al., 1990; Benavides-Cáceres, 1999; Noble and McKee, 1999), and the 

Miocene Quechua I, II, and III orogenies (Benavides-Cáceres, 1999; Noble and McKee, 

1999). During each orogenic period, compressional stress was accommodated through thick- 

and thin-skinned deformation (Scherrenberg et al., 2016). During the Miocene, interludes of 

local extension and transpression caused reactivation along some basement structures 

(associated with thick-skinned deformation), and facilitated an increase in magmatic-

Fig. 1.2. Regional geological map showing the structural and stratigraphic setting of the Antamina deposit in the 
MFTB, modified after Wilson et al. (1967), Cobbing et al. (1996), and Jacay (1996). 
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hydrothermal activity at shallow crustal levels throughout the MFTB (Scherrenberg et al., 

2016). 

The folds and thrust faults that formed during these compressional events are evident at the 

district scale. Fig. 1.3 shows a carbonate-dominant stratigraphic package that has been folded 

into broad, NW-trending, syncline-anticline folds; these are cut across by sub-parallel thrust 

faults, which are cut across by transverse extensional faults; the Antamina deposit is situated 

at the junction between the Antamina anticline and a transverse fault. 

 

Fig. 1.3. District-scale geological map and cross section. Geology after Goodman (2012). 
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1.3. Deposit Geology 
1.3.1. Host Rocks 

Antamina is hosted in the transition zone between the middle Cretaceous Jumasha Formation 

and the Upper Cretaceous Celendín Formation. The Jumasha Formation consists 

predominantly of limestone and marly limestone, whereas the Celendín Formation is 

dominated by marl, shale, and lesser limestone (Benavides-Cáceres, 1956; Escalante et al., 

2010). Both units are exposed in the vicinity of the mine, however precise location of the 

contact is not confidently known due to compositional similarities, local structural thickening 

(i.e., Jumasha Formation thrust atop the Celendín Formation) and the absence of fossil 

marker beds (Love et al., 2004; Redwood, 2004). Extensive contact metamorphism and 

pervasive metasomatic overprinting compound the problem of estimating true unit thickness 

and extent of these formations around the deposit. 

1.3.2. Structure 

The geometry of the Antamina deposit is largely controlled by the Valley Fault (VF) system 

(Love et al., 2003), also shown on some maps as the Valley Lateral Ramp (Hathaway, 1997;  

Fig. 1.4. Structure block diagram of the Antamina deposit. A. Structural preparation for the Antamina deposit 
includes subvertical faults and a dilational zone along the Valley Fault (VF). Arrows indicate stronger 
compression on the SE side of the Valley Lateral Ramp during the Quechua II orogeny. B. Dilation in the VF 
system controls the location of the Antamina porphyry complex, as well as skarn alteration and dykes (which 
exploit blind thrust faults, as shown in A). Modified after McCuaig (2003). 
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Fig. 1.5. Geological map of the Antamina deposit, Peru. Lithological and structural setting modified after 
Redwood (2004) and Escalante et al. (2010). Undifferentiated skarns include endoskarn and exoskarn. Cross 
sections are as follows: Taco (A-A’), Taco-Oscarina (B-B’), Bornita (C-C’), Usupallares (D-D’), and 
Antamina (long section, E-E’). Refer to text for details on each cross section. 
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McCuaig, 2003; Lipten and Smith, 2005), or as an unnamed lineament along the axis of 

Quebrada Antamina (i.e., the Antamina valley; Glover, 1997; Fig. 1.4). The VF system is a 

NE-striking, sub-vertical fault zone that defines the trend of the Antamina Valley (Figs. 1.4 

and 1.5). Evidence for the structure stems from the apparent dextral offset of folds (i.e., the 

Antamina Anticline; Fig. 1.5) and thrust faults across the Antamina Valley (Love et al., 2003; 

McCuaig, 2003), although the main VF corridor has been largely overprinted by intense 

magmatic-hydrothermal activity in the centre of the deposit (Figs. 1.4 and 1.5). Love et al. 

(2003) and McCuaig (2003) suggest that the VF acted as a transfer fault or lateral ramp to 

partition strain across the axis of the deposit. The VF is thought to have formed in response to 

regional compression during the Quechua II orogeny (~10-9 Ma; Noble and McKee, 1999; 

Richards, 2003). A transpressional regime following the Quechua II orogeny caused dilation 

along the VF, which allowed magma and hydrothermal fluids to exploit the existing structural 

framework (McCuaig, 2003). The majority of the economic resource at Antamina is hosted in 

the zone of maximum dilation along the VF (Figs. 1.4 and 1.5). Northeast and southwest of 

this zone, the deposit narrows, both due to tapering of the VF and the greater structural 

influence of southwest-striking thrust faults (approximately normal to the VF) on intrusion 

geometry (McCuaig, 2003; Figs. 1.4 and 1.5). 

1.3.3. Igneous Rocks 

The Antamina Porphyry Complex (APC) is the name I have assigned to the multi-phase 

porphyry centre of the Antamina deposit (Taco and Usupallares porphyries; Fig. 1.5). In plan 

view, the APC is surrounded by skarns for up to 3 km by 1.5 km, with its long dimension 

oriented northeast along the axis of the Valley Fault (Fig. 1.5). Within the APC, two 

magmatic-hydrothermal centres have been documented in detail (this study): the Taco zone 

and the Usupallares zone (Fig. 1.5). The Taco zone occupies the northeast and central 

portions of the APC, while the Usupallares zone occupies the smaller southwest portion (Fig. 

1.5). Two additional porphyry centres are included for comparison with the APC: the 

Condorcocha zone is a separate porphyry-skarn centre located approximately 1 km north of 

the Taco zone (Fig. 1.5), and the Oscarina dykes intersect the Taco and Condorcocha zones 

along their northeast margins (Fig. 1.5). 
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1.5. Appendix 

Table A1.1. Name and location of Miocene ore deposits shown in Fig. 1.1. 

 

  

Name Country Lat. Long. Name Country Lat. Long.
Junin Ecuador 0.33 -78.58 Cerro de Pasco Peru -10.68 -76.27
Chaso Juan Ecuador -1.38 -79.12 Quicay Peru -10.70 -76.39
Telimbela Ecuador -1.57 -79.13 Iscay Cruz Peru -10.73 -76.71
Balzapamba-Las Guardias Ecuador -1.67 -79.15 Paraq Peru -10.73 -77.03
Chaucha Ecuador -2.93 -79.42 Colquijirca Peru -10.78 -76.27
Gaby-Papa Grande Ecuador -3.05 -79.68 Huaron Peru -11.03 -76.43
Fierro Urcu Ecuador -3.58 -79.33 Chungar Peru -11.05 -76.50
Rio Playas Ecuador -4.20 -79.58 Rio Pallanga Peru -11.15 -76.46
Rio Blanco Peru -4.94 -79.31 Carhuacayan Peru -11.18 -76.31
Canariaco Peru -6.04 -79.27 Santander Peru -11.19 -76.53
La Granja Peru -6.35 -79.13 Puy-Puy Peru -11.54 -76.15
Tantahuatay Peru -6.73 -78.68 Colqui Peru -11.57 -76.46
Hualgayoc Peru -6.75 -78.62 Morococha Peru -11.58 -76.18
Cerro Corona Peru -6.76 -78.61 Toromocho Peru -11.60 -76.13
Sipan Peru -6.92 -78.78 Venturosa Peru -11.62 -76.36
Minas Conga Peru -6.93 -78.36 Casapalca Peru -11.72 -76.22
Yanacocha Peru -6.99 -78.49 San Cristobal Peru -11.74 -76.05
El Galeno Peru -7.02 -78.32 Viso Aruri Peru -11.81 -76.30
Michiquillay Peru -7.30 -78.16 Millotingo Peru -11.82 -76.23
Sayapullo Peru -7.59 -78.47 Pacococha Peru -11.87 -76.25
Algamarca Peru -7.60 -78.24 Azulcocha Peru -12.05 -75.65
Igor Peru -7.65 -78.44 Yauricocha Peru -12.32 -75.72
El Toro Peru -7.82 -78.01 Cercapuquio Peru -12.43 -75.42
Quiruvilca Peru -7.99 -78.31 Huancavelica Peru -12.81 -74.97
Mundo Nuevo-Tamboras-Compaccha Peru -8.05 -77.97 Julcani Peru -12.93 -74.79
Angasmarca Peru -8.10 -78.01 Huachocolpa Peru -13.09 -74.96
Pasto Bueno Peru -8.15 -77.85 Palomo Peru -13.14 -75.02
Magistral Peru -8.27 -77.78 Castrovirreyna Peru -13.19 -75.20
Pashpap Peru -8.78 -77.99 Chalcobamba Peru -14.03 -72.33
Nueva California Peru -9.15 -77.63 Los Chancas Peru -14.16 -73.13
El Extrano Peru -9.23 -77.95 Cotabambas Peru -14.18 -72.35
Jacabamba Peru -9.31 -77.29 Constancia Peru -14.46 -71.77
Huarangayoc Peru -9.42 -77.68 Lahuani Peru -14.46 -72.99
Pierina Peru -9.45 -77.60 San Juan de Lucanas Peru -14.65 -74.19
Antamina Peru -9.53 -77.07 Tintaya Peru -14.91 -71.31
Ticapampa Peru -9.78 -77.52 Coroccohuayco Peru -14.95 -71.26
Huanzala Peru -9.86 -77.00 Antapaccay Peru -14.96 -71.35
Chururopampa Peru -9.98 -77.39 Quechua Peru -14.98 -71.31
Pachapaqui Peru -10.00 -77.09 Cuajone Peru -17.05 -70.71
Pacllon Peru -10.23 -77.07 Quellaveco Peru -17.11 -70.62
Raura Peru -10.44 -76.74 Queen Elizabeth Chile -19.87 -68.97
Atacocha-Milpo Peru -10.59 -76.21 Cerro Colorado Chile -20.04 -69.26
Uchucchacua Peru -10.62 -76.68 - - - -
Data from Noble and McKee (1999).
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Table A1.2. Name and location of active volcanoes shown in Fig. 1.1. 

 

 

 

Name Country Latitude Longitude
Reventader Ecuador -0.08 -77.67
Pichincha Ecuador -0.25 -78.60
Antizana Ecuador -0.48 -78.13
Sumaco Ecuador -0.57 -77.65
Cotopaxi Ecuador -0.63 -78.37
Quilotoa Ecuador -0.87 -78.92
Cumbal Ecuador -0.98 -77.88
Lunganate Ecuador -1.22 -78.25
Tungurahua Ecuador -1.47 -78.45
Sangay Ecuador -2.03 -78.33
Nevado Coropuna Peru -15.51 -72.70
Hualca-Gaulca Peru -15.80 -71.88
Vol. Misti Peru -16.30 -71.42
Ubinas Peru -16.35 -70.90
Omate Peru -16.58 -70.87
Ticsani Peru -16.76 -70.60
Tutupaca Peru -17.03 -70.37
Calientes Peru -17.15 -70.22
Yucamane Peru -17.18 -70.20
Nevado Chupiquina Peru -17.63 -69.80
Tacora Peru -17.68 -69.86
Nevado Sajama Bolivia -18.11 -68.88
Guallatiri Bolivia -18.41 -69.05
De Sacabaya Bolivia -18.61 -68.78
Cerro Tulapalca Chile -18.70 -69.47
Puquintica Chile -18.73 -69.01
Cerro Arintica Chile -18.73 -69.05
Isluga Chile -19.15 -68.83
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2.1. Abstract 

Distinguishing exoskarns from endoskarns can be problematic when textures are massive or 

mottled. In this study I assess the effectiveness of whole rock composition to distinguish 

massive exoskarn from endoskarn, using the Antamina skarn in Peru as an example. Whole 

rock data (up to 60 elements) were examined for 224 samples, including wall rocks 

(limestone, marl, marble, hornfels), intrusive rocks, and massive skarns. Cluster analysis was 

used to identify elements and elemental pairs that can distinguish wall rocks and intrusive 

rocks; these parameters were further tested for their capacity to distinguish massive exoskarns 

and endoskarns. Geochemical discriminators of skarn type include: TiO2 vs. Y, HREE; Al2O3 

vs. HREE, Y, Ni, and Sc, plus Al2O3 alone. Skarn samples plot as two non-overlapping data 

clusters defined by precursor; skarns plotting with the wall rock cluster are interpreted as 

exoskarns, while skarns plotting with the igneous cluster are interpreted as endoskarns. The 

process of identifying and applying these parameters, as I have done at Antamina, establishes 

a clear link between the skarns and their precursors. Antamina skarn samples previously 

logged by texture and garnet colour were re-evaluated using these geochemical parameters. I 

found that mottled skarn textures are not reliable for classification in the field, and 

classification by garnet colour must be used with caution. The effectiveness of the 

discriminating pairs identified in this study is likely due to the significantly different 

concentrations of these elements in the wall rocks versus igneous rocks, coupled with their 

immobility during skarn formation. Based on this immobility, isocon analysis reveals that 

both skarn types gained significant Fe2O3, MnO, MgO and base metals, and lost alkali 

elements Na2O and K2O. Exoskarn formation involves loss of volatiles and gain of SiO2, 

whereas SiO2 is lost and volatiles are gained during conversion of intrusive rock to 

endoskarn. 
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2.2. Introduction 

The intensity of hydrothermal alteration during skarn formation can have a destructive effect 

on primary rock textures, rendering the rocks massive, ambiguous, and difficult to relate to a 

least-altered precursor. In mineralogically and geochemically zoned systems, such as skarns, 

successful exploration targeting relies heavily upon accurate classification of altered rocks, as 

zonation patterns can be used as vectors to ore (Newberry et al., 1991; Meinert, 1997; 

Meinert et al., 2005; and references therein). Understanding these patterns requires correct 

assumption of a precursor. In the field this is usually based on skarn texture and mineralogy, 

with highly interpretive results for the most altered samples. Where textures become 

unreliable, geochemistry can be used to examine the immobile element composition of a rock 

and establish a clearer link to its precursor, and hence, its significance in the skarn system. 

Skarn formation is a metasomatic process driven by hydrothermal fluid-rock interaction. 

Skarns can replace both calcareous wall rocks and igneous rocks, forming exoskarns and 

endoskarns, respectively (Einaudi et al., 1981; Meinert et al., 2005).  Both exoskarn and 

endoskarn occur as partial to massive replacements of wall rocks and igneous host rocks, 

however most skarns are dominated by exoskarn with only minor amounts of endoskarn 

(Meinert et al., 2005), because carbonate-rich wall rocks are more easily dissolved and 

replaced by acidic magmatic-hydrothermal fluids. More often than exoskarns, endoskarns 

retain residual patches of igneous rock, which provide an unambiguous link to the igneous 

precursor (Chang and Meinert, 2008a). 

Endoskarn is an integral part of the skarn zoning pattern and accurate identification of 

endoskarn and exoskarn has important implications for exploration, mine geology, and 

metallurgy. Mineralogical zoning patterns around the causative intrusion are of the most 

important tools in skarn exploration (Meinert, 1997; Meinert et al., 2005; Chang and Meinert, 

2008b). For mine geologists, the endoskarn-exoskarn contact marks a change in precursor, 

ore grade, and metal distribution, therefore accurate mapping of this contact can improve 

modelling of intrusion and orebody geometry and aid in ore zone prediction. For 

metallurgists, the contact can signify a change in ore hardness and grade, which can inform 

ore control procedures and optimize blending of ore types and metal recovery through the 

mill circuit. 
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Where endoskarn alteration is relatively weak, calc-silicate skarn minerals, such as garnet, 

clinopyroxene and wollastonite, occur in veins cutting intrusive rocks or as patchy 

replacements in intrusive rocks, e.g., at the Empire Zn-Cu skarn, Idaho (Chang and Meinert, 

2008a). Such endoskarns are easy to recognise due to the presence of residual igneous 

textures. Where endoskarn development is strong and pervasive (i.e., proximal to the 

hydrothermal fluid source), calc-silicate veins coalesce into massive endoskarn and the 

igneous precursor texture is destroyed. Such endoskarns are difficult to distinguish from 

exoskarns, because both have similar mineralogy and lack residual precursor textures. 

At Antamina, Peru (Fig. 2.1), some endoskarns occur distinctly as veins and patchy 

replacements in intrusive rocks, and some exoskarns (i.e., near the marble front) clearly 

inherit banded textures from layering in the wall rocks. In between there are extensive 

massive skarns, locally with mottled textures; this scenario provides an ideal location to test 

and develop tools to distinguish massive endoskarn and exoskarn. In this study, I use a suite 

of 224 samples from the Antamina deposit to demonstrate that geochemical discrimination of 

skarns, based on whole rock composition, is an effective way to distinguish massive 

endoskarn from exoskarn. Using the geochemical discriminators identified in this study, I re-

examine the effectiveness of classifying the same skarn samples by texture and garnet colour, 

and I evaluate elemental loss and gain during skarn formation.  

2.2.1. Geology of Antamina 

Antamina is located approximately 270 km north of Lima, Peru, at 9°46’S, 77°06’W. It is the 

largest skarn deposit in the world, with a resource of ~2,968 Mt averaging 0.89% Cu, 0.77% 

Zn, 11 g/t Ag and 0.02% Mo (Glencore, 2015). The deposit is located in the Marañon Fold-

Thrust Belt structural domain of the central Peruvian Andes, where it is hosted in a 

complexly deformed package of intercalated limestone, marl, and calcareous shale/siltstone 

assigned to the Cretaceous Jumasha and Celendín formations. Marble and calcareous hornfels 

are the inferred precursors to exoskarn at Antamina and they form the contact metamorphic 

halo that surrounds the deposit. Structural thickening, metamorphic recrystallization, and 

skarn alteration within the contact metamorphic halo make it difficult to confidently trace the 

stratigraphic contact between the two formations. Despite these complications, previous 

workers generally agree that the deposit is hosted in the transition zone between the Jumasha 

and Celendín formations (Love et al., 2004; Lipten and Smith, 2005; Escalante et al., 2010).  
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The Antamina orebody is centred on a Miocene (10.83 to 10.57 Ma; zircon U-Pb, Escalante 

et al., 2010) multi-phase porphyry intrusion complex, herein referred to as the Antamina 

Porphyry Complex (APC; Fig. 2.1). The APC comprises several intrusions, including early 

Fig. 2.1. Geological map of the Antamina deposit and district showing sample locations. The geology is 
modified after Redwood (2004) and Escalante et al. (2008, 2010). A. Near-mine sample distribution. B. District-
scale sample distribution and location of near-mine samples shown in Figure 2.1A. 
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and inter-mineral porphyries. All intrusive phases contain porphyry-style quartz stockworks 

and associated secondary biotite alteration, but only the early porphyries have endoskarn 

alteration along their margins (Mrozek et al., 2017). Early endoskarn and exoskarn are 

crosscut by later inter-mineral porphyries, indicating a complex intrusive history (Mrozek et 

al., 2017). Locally, epidote and chlorite alteration are common; however, a propylitic 

alteration zone is not well developed at Antamina. Evidence for hydrothermal alteration can 

be traced for up to approximately 1 km around the deposit based on trace element 

concentrations in fluid escape structures (Escalante et al., 2010). Hydrothermal activity 

continued until approximately 9 Ma, based on K-Ar ages of biotite and K-feldspar (McKee et 

al., 1979), and 40Ar/39Ar ages for hornblende, biotite, and sericite (Love et al., 2003). 

Garnet is typically the dominant skarn mineral, indicating oxidized conditions of formation, 

although clinopyroxene-rich layers and lenses are locally common; these mineralogical 

heterogeneities are likely to be inherited from the host rocks. The skarn exhibits a well-

developed garnet colour zonation from the APC outward to the marble front, which generally 

transitions from pink-red endoskarn to red-brown-green exoskarn (Lipten and Smith, 2005). 

All skarns are variably mineralized, with the general trend corresponding with proximal Cu-

Mo to distal Zn-Pb. The principal ore minerals include chalcopyrite, sphalerite, and 

molybdenite, with localized bornite, galena, and lesser Bi-sulphides (Love et al., 2000). Late 

molybdenite-quartz-sericite veins cross-cut the APC and the surrounding skarns, including 

retrograde Cu-Zn skarn mineralisation (Love et al., 2000). 

2.2.2. Characteristics of the Metasedimentary Wall Rocks 

The host rocks have been subjected to at least 5 regional deformation events (Benavides-

Cáceres, 1999; Ramos and Aleman, 2000), yet aside from intense fold-thrust development 

and localized contact metamorphism, the rocks have largely retained their sedimentary 

characteristics. Previous workers have suggested a marine-deltaic origin for the rocks 

surrounding Antamina, and have classified them as impure limestone, mudstone, wackestone, 

and marl (Benavides-Cáceres, 1956; Wilson, 1963; Escalante, 2008; Escalante et al., 2010). 
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The mid-Cretaceous Jumasha Formation (Fig. 2.2 A, D-E) is a topographically prominent, 

medium-to-thickly bedded bioclastic limestone with lesser amounts of marl, dolomite, and 

Fig. 2.2. Field characteristics of the Celendín and Jumasha Formations, within 3 km of Antamina. A. The break 
in slope marks the approximate location of the contact between the prominent Jumasha and recessive Celendín 
Formations. B. Weakly metamorphosed Celendín Formation, displaying interbedded marly (dark grey) and 
calcareous (light brown) layers. C. Thin-layered, dark grey, marly Celendín limestone. D. Massive, light grey 
Jumasha limestone with thin bioclastic layers. E. Thickly bedded, cliff-forming Jumasha limestone. 
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chert nodules (Benavides-Cáceres, 1956; Wilson, 1963; Escalante et al., 2010). Fresh and 

grey Celendín Formation. Unit thickness ranges from 200-800 m, although local structural 

thickening is observed around Antamina. The Late Cretaceous Celendín Formation (Fig. 2.2 

A-C) is a fine-grained, moderately recessive unit dominated by thin intercalations of 

carbonate and calcareous shale/siltstone (Benavides-Cáceres, 1956; Wilson, 1963; Escalante 

et al., 2010). Thickness varies by location, from 225 m at the type locality to 115 m in other 

parts of the region (Wilson, 1963). Fresh rock surfaces are medium to dark grey reflecting an 

overall high organic carbon content; weathered surfaces display a creamy beige patina. 

Escalante (2008) used petrography to confirm that the limestone host rocks around Antamina 

contain a variable siliciclastic component and suggested that minerals other than calcite and 

pyrite are detrital in origin. Escalante (2008) also reported that the Celendín Formation has a 

more diverse mineralogy than the Jumasha Formation. 

Contact metamorphism is restricted to an aureole up to 1 km surrounding the Antamina 

deposit (Fig. 2.1). Both the Celendín and Jumasha formations were affected, producing a 

colourful package of marble and fine-grained calcareous hornfels. Escalante (2008) identified 

five types of marble and four types of hornfels based on colour (Table A2.1). Many detrital 

minerals found in both marble and hornfels appear to be inherited from the limestones (i.e., 

quartz, feldspar, rutile, titanite, and apatite). There is also significant addition of some typical 

skarn minerals (i.e., diopsidic pyroxene, up to 53%; epidote, up to 18%), as well as trace 

amounts of sphalerite and chalcopyrite. The fine-grained pyroxene was likely from thermal 

metamorphism, whereas trace green pyroxene in narrow diffusive veins in marble was caused 

by prograde alteration. Other hydrothermal minerals were produced by retrograde skarn 

alteration (Table A2.1). The distribution of marble and hornfels types is controlled by 

sedimentary layering and proximity to the orebody. Bleached hornfels and marble extend at 

least 500 m outward from the orebody, but bleaching is also observed around dykes and veins 

distal to the main orebody. Green marble and hornfels containing diopside are transitional 

rock types observed between bleached (white) marble/hornfels and grey-tan marble/hornfels. 

The colour of tan marble and hornfels is attributed to phlogopitic biotite. A disseminated 

pyrrhotite aureole is notably present, approximately 75 m outward from the bleached halo 

(Escalante, 2008).  
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2.3. Sampling and Analytical Methods 

A total of 224 rock samples were collected and analyzed for this study. Massive skarn 

samples (n = 66) and intrusion samples (n = 43) were selected from drill core and pit walls, 

with care taken to ensure that each sample was representative of the unit/interval and free of 

veins, xenoliths, contacts, and other heterogeneities. Nevertheless, minor alteration of some 

igneous rock samples is inevitable; 15 igneous rock samples with > 1% S, > 1,000 ppm Cu, > 

100 ppm Mo, or > 250 ppm Pb have been filtered out of the dataset. Sample sizes ranged 

from 5-15 cm of NQ drill core or fist-sized hand samples from outcrops and high walls. 

Limestone ± marl samples (n = 106) were collected by Antamina exploration geologists (Paz 

et al., 2015) from within a 6 km radius of the mine, outside of the contact metamorphic halo, 

using the same selection criteria defined for the samples described above. Limestone samples 

were classified in the field as either Jumasha or Celendín Formation based on stratigraphic 

criteria used in regional exploration. Two additional samples of limestone and 7 of marble 

were collected for whole rock and total organic carbon (TOC) analyses. Fig. 2.1 presents the 

sample locations, with drill core samples projected to the surface. 

All samples collected for this study were analyzed at ALS Chemex in Lima, Peru using a 

combination of techniques including X-ray fluorescence (XRF), inductively coupled plasma-

atomic emission spectroscopy (ICP-AES), inductively coupled plasma-mass spectrometry 

(ICP-MS), atomic absorption (AA), and Leco analysis for 60 elements including major and 

trace elements, total S, total C, and LOI (loss on ignition). The sample digestion and 

measurement methods with analytical detection limits are presented in Digital Appendix 2.1. 

The complete data set is presented in Digital Appendix 2.2. Nine samples of undifferentiated 

limestone and marble from drill core and field samples were analyzed for total organic carbon 

(TOC) at the James Cook University Advanced Analytical Centre in Cairns, Australia. The 

analytical procedure is described in Wurster et al. (2012). The organic C content ranges 0.09-

3.63 weight percent. The results are shown in Digital Appendix 2.3. 

Whole rock analysis of an additional 41 samples from Escalante et al. (2010) are also used in 

this study, including 12 hornfels, 1 intrusive rock, and 28 marble samples. No unit names 

were assigned to the hornfels and marble samples (Escalante et al., 2010). For these samples 

the elements measured are the same as in our samples except that; 1) Sc and total C were not 
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analyzed for all the samples; 2) some samples were not analyzed for Au, and; 3) Cd, Li, As, 

Bi, Hg, Sb, Se, Te, and S were not analyzed in the intrusive sample (Escalante et al., 2010). 

Marble and hornfels are treated as metasedimentary wall rocks, as they are mainly the 

product of thermal metamorphism that is likely to be isochemical (e.g., Meinert et al., 2005). 

In total, the dataset has 265 samples, including 44 intrusive samples, 155 wall rock samples, 

and 66 skarn samples (Digital Appendix 2.2). 

Isocon analysis (Grant, 1986; Grant, 2005) was conducted using the complete data set in 

order to quantify element mobility through skarn formation, regardless of precursor or degree 

of alteration. The isocon method uses a modified version of Gresens’ (1967) equation for 

calculating mass balance by recalculating and plotting the chemical components of a least-

altered rock against those of an altered equivalent in X-Y space using a common conversion 

factor to scale the data (Digital Appendix 2.4). Elements deemed to be immobile are used to 

plot a best-fit linear array anchored through the origin to define the isocon, or line of ‘equal 

concentration’. The isocon slope quantifies the total mass change of the system. In this study, 

we used averaged sets of rocks to minimize the effect of compositional heterogeneity as in 

Oliver et al. (2004). Detailed explanations of the mass balance calculation procedure are 

presented in Grant (1986), Leitch and Lentz (1994), and Trepanier et al. (2016). 

2.4. Results 
2.4.1. Host Rock Geochemistry 

Samples of the Jumasha Formation have higher concentrations and a narrower range of total 

carbon (9.85-13.1 wt. % C) and less SiO2 (0.70-11.2 wt. %) and Al2O3 (0.15-3.14 wt. %) than 

samples from the Celendín Formation (3.15-11.6 wt. % C; 3.85-46.2 wt. % SiO2; 0.9-12.6 wt. 

% Al2O3; Fig. 2.3). Some Jumasha samples are essentially pure limestone with up to 13.1 

weight percent total C, 55.4 weight percent CaO, and little SiO2 (minimum 0.70 wt. %) and 

Al2O3 (minimum 0.15 wt. %; Fig. 2.3); their composition is close to stoichiometric calcite 

(12.00 wt. % C and 56.03 wt. % CaO). Despite the fact that dolomite was not previously 

identified in sample of the Jumasha Formation (Table A2.1), some limestone samples from 

the Jumasha Formation contain up to ~3.4 weight percent MgO, indicating that they are 

dolomitic. Samples of the Celendín Formation are more variable in composition (~25-97 wt. 
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% calcite) and may contain more silicate minerals (up to ~75 wt. %). The low-carbon 

Celendín rocks are the calcareous shale-siltstone observed in the field (Fig. 2.2).  

 

Fig. 2.3. Composition of wall rocks and intrusive rocks. Note that the 40 marble and hornfels samples from 
Escalante et al. (2010) do not have total carbon analysis therefore are not shown in the SiO2-Total C diagram. 
These samples were not assigned stratigraphy unit names (Jumasha or Celendín), either. 

The decrease in total C concentration in the wall rocks correlates with a decrease in CaO 

content and an increase in SiO2 and Al2O3. The total C is dominated by carbon from 

carbonates, as the organic content is fairly low (Digital Appendix 2.3). Therefore, the trend 

indicates that the decrease in carbonate is compensated by an increase in silicate minerals 

(Fig. 2.3 A-B). This is consistent with the petrographic findings of Escalante (2008) in that 
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the wall rocks contain various proportions of calcite and quartz-aluminosilicate minerals 

(Table A2.1). Given the tight inverse linear relationship between total C and SiO2 (Fig. 2.3 

A), SiO2 content is used as a proxy for the clastic component of the wall rocks. 

Fe2O3, K2O, Na2O, and most lithophile trace elements (e.g. REE, Y) have positive linear 

correlations with SiO2 (Fig. 2.3; Fig. A2.1) in both Jumasha and Celendín samples, indicating 

that these elements are related to the clastic components in the sedimentary host rocks. The 

MnO content is low (0.005-0.16 wt. %), with slightly higher concentrations in rocks 

containing > 10 wt. % SiO2 (Fig. A2.1). Barium concentrations range from 17.1 to 429 ppm 

and do not seem to be related to any specific rock type (Fig. A2.1). The Sr content ranges 

from ~250 to 2,100 ppm, with some carbonate-rich rocks containing the highest Sr 

concentrations (Fig. A2.1); however, samples with lower Sr do not have clear correlation 

patterns between calcite/clastic component ratio and Sr content. 

As would be expected, the intrusive rocks contain significantly higher SiO2 with a narrower 

range (64.6-74.3 wt. % vs. 0.70-48.55 wt. %) and significantly lower total carbon (0.01-0.35 

wt. % vs. 3.15-13.1 wt. %) and CaO (0.70-5.31 wt. % vs. 15.7-55.4 wt. %; Fig. 2.3) than the 

wall rocks. This is due to higher wall rock carbonate and lower wall rock silicate 

concentrations compared to the intrusive rocks. In general, the intrusive rocks contain more 

K2O, Na2O and Ba and have narrower compositional ranges than the wall rocks (Fig. 2.3 and 

Fig. A2.1). The intrusive rocks have similar Al2O3, TiO2, and Zr concentrations and lower Ni, 

Lu, Y and V contents compared with the SiO2-rich sedimentary rocks (> 30 wt. %, Celendín 

Formation; Fig. 2.3 and Fig. A2.1). The intrusive rocks and wall rocks have similar ranges of 

total Fe and MnO content (Fig. A2.1), although some intrusive rock samples extend to higher 

MnO concentrations (up to 0.19 wt. % MnO). 

2.4.2. Seeking Geochemical Discriminators for Endoskarn and Exoskarn 

In order to find elements or element pairs that can effectively discriminate massive endoskarn 

from exoskarn, I first identified parameters that can separate the least-altered intrusive rocks 

and the sedimentary host rocks, then among them seek elements that can discriminate the 

skarn types. 
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Among the 60 individual elements, only SiO2, CaO, and total C can fully separate wall rocks 

and igneous rocks (Fig. 2.3). The three parameters, however, cannot discriminate massive 

endoskarn and exoskarn, as shown in Fig. A2.2, in which the composition of the skarns is 

between sedimentary rocks and intrusive rocks in terms of the SiO2 and CaO content, and all 

of the skarns have less total C than all wall rocks.  

All elements in the dataset were plotted as X-Y pairs. It was found that 73 element pairs 

could be used to distinguish the igneous versus sedimentary rocks, although many pairs 

involve geochemically similar elements (e.g., Al2O3 vs. La and Al2O3 vs. Ce). A summary of 

the most relevant pairs are listed in Table 2.1, and the representative plots are shown in Fig. 

2.4. After addition of the skarn data to the X-Y plots, a number of plots were found to 

distinguish skarn types. Skarn data points plot in two groups in the TiO2 vs. HREE plot; one 

group in the domain defined by the sedimentary wall rocks and the other group in the domain 

defined by igneous rocks (Fig. 2.4). Given the unequivocal clustering and the strong 

correlation with the precursor, these groups are considered to represent exoskarn and 

endoskarn, respectively. Among the pairing elements, TiO2 vs. Y shows one of the best cases 

of clustering and matching, and has the highest abundance. Therefore, TiO2-Y is proposed to 

be the best discriminating plot and is used to separate the skarns in this dataset into endoskarn 

and exoskarn (Fig. 2.4 A). 

Table 2.1. Elements and element pairs that can discriminate massive endoskarn and exoskarn at Antamina. 

 

Using the endoskarn vs exoskarn classification defined by the TiO2-Y plot, other elemental 

pairs capable of discriminating sedimentary and intrusive rocks were divided into three 

groups regarding their effectiveness in separating endoskarn and exoskarn. First order 

discriminants (i.e., element pairs that can clearly separate endoskarn and exoskarn) include 

Element Pairing Elements
TiO2 HREE Y Al2O3 Ni Sc LREE Ga Zr, Hf Th
Al2O3 HREE Y Th TiO2 LREE Ni Sc Ga Zr, Hf
Y Al2O3 TiO2 LREE Zr, Hf Th Sc HREE Ga Ni

Element pairs clearly discriminate endo- and exoskarns.
Element pairs weakly discriminate endo- and exoskarns.
Element pairs cannot discriminate endo- and exoskarns.

LREE: La to Sm
HREE: Dy to Lu
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TiO2 vs. HREE and Y; and Al2O3 vs. HREE, Y, Ni and Sc (Table 2.1; Fig. 2.4). Other TiO2 

pairs listed in Table 2.1 have analogous behaviour to TiO2-Y in that they can clearly separate 

the skarns and display maximum cluster overlap between the skarns and their corresponding 

precursors (Fig. 2.4). In the plots involving Al2O3, the endoskarns have a larger Al2O3 

concentration range than that of the intrusive rocks; however, the skarns are still clearly 

distinguishable (Fig. 2.4). Second order discriminants include element pairs that can separate 

endoskarn and exoskarn with no overlapping (or only minor overlapping) of the clusters. 

These pairs include TiO2 vs. Ni; Al2O3 vs. LREE, TiO2, V, and MgO; Ni vs. Nb, Sm, Zr and 

Sc; HREE vs. Nd, Sm, Hf, and Th (Fig. 2.4, Table 2.1). Second-order pairs may be used to 

discriminate the skarn types, but some data points will have an ambiguous interpretation. The 

third order group includes element pairs that cannot distinguish endoskarn and exoskarn, as 

the two skarn domains overlap. These include all pairs involving Na2O and Ga; Fig. 2.4 G 

and H present one example with minor overlap (i.e., Ga vs. Y), and one example with 

significant overlap (i.e., Na2O vs. Y), respectively. 

It was found that although Al2O3 alone cannot discriminate intrusions from wall rocks (Fig. 

2.3 C), the Al2O3 contents of exoskarn (0.63-11.05 wt. %) and endoskarn (11.90-20.00 wt. %) 

do not overlap (Fig. A2.3). Therefore, Al2O3 by itself is an easy-to-use discriminator of skarn 

types at Antamina. The gap between the range of exoskarn and endoskarn values is small 

(11.05-11.90 wt. %), and the midpoint value, 11.5 weight percent Al2O3, is proposed to be the 

discriminatory criterion (Fig. A2.3). 

Isocon analysis of endoskarn versus intrusions (Fig. 2.5 A; Digital Appendix 2.4) appears to 

involve little mass change, as indicated by the isocon slope of 1.02, while exoskarn formation 

shows an overall mass loss of approximately 15% percent (Fig. 2.5 B; Digital Appendix 2.4). 

Immobile elements in both endoskarn and exoskarn include REE, Y, TiO2 and Al2O3 (Fig. 

2.5). In both endoskarn and exoskarn, significant mass increases are observed in metals (Cu, 

Mo, Zn, Pb, U) and some major skarn mineral components (i.e., Fe2O3, MnO, and MgO). 

Alkalis (K2O, Na2O) decrease by more than 50 percent in both endoskarn and exoskarn. LOI 

increases by more than 50 percent in endoskarn, but decreases by more than 50 percent in 

exoskarn. 
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Fig. 2.4. Element pairs that can clearly distinguish intrusive rocks and sedimentary wallrocks, but function 
differently in distinguishing endoskarns and exoskarns. The division of endoskarn and exoskarn is based on the 
TiO2-Y plot. TiO2-Dy and TiO2-Lu representing the TiO2-HREE plots, and Al2O3-Y representing Al2O3-HREE 
plots (see Table 2.1) can also clearly distinguish endo- and exoskarns. TiO2-Ni represents pairs that can barely 
distinguish endo- and exoskarns, with the endo- and exoskarn domains in the diagram not overlapping but very 
close. Na2O-Y and Ga-Y plots represent pairs that cannot distinguish endoskarns and exoskarns. 
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2.4.3. Texture and Garnet Colour as Indicators of Skarn Precursor 

Mottled textures (Fig. 2.6) and garnet colours are the most commonly used classification 

criteria for distinguishing massive endoskarn and exoskarn at Antamina. Mottled textures 

were believed to be inherited from the porphyritic texture of the intrusive rocks, and as such, 

would indicate an endoskarn precursor. I have found that this criterion is not reliable. For 

example, the samples shown in Fig. 2.6 A-C have mottled textures but their whole rock 

 

Fig. 2.5. Isocon plots showing mass change during skarn formation. Least-altered precursors are plotted along the 
X-axis, while altered equivalents are plotted along the Y-axis. The total mass change for the system is indicated 
at the top right of each plot. Elements plotting along the isocon line (black circles) are immobile. Those species 
plotting below the isocon indicate mass loss, while those above the isocon indicate mass gain. A: element mobility 
and mass changes during endoskarn formation. B: element mobility and mass changes during exoskarn formation. 
Data and calculations are presented in Digital Appendix 2.4. 

geochemistry indicates that they are actually exoskarns (Fig. 2.7). In contrast the samples in 

Fig. 2.6 D-F are endoskarns based on their geochemical signature (Fig. 2.7). 

Garnet colour (pink, red, brown, green) was recorded for each skarn sample in this study, 

then plotted using the TiO2-Y discriminator. Typically, a sample may contain more than one 

colour of garnet; the dominant garnet colour recorded for each sample is presented in Fig. 

2.7. At Antamina, only pink and green garnet correspond strongly with endoskarn and 

exoskarn, respectively (Fig. 2.7). Red and brown garnet are observed both in endoskarn and 

exoskarn (Fig. 2.7). 
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Fig. 2.6. Both endoskarns and exoskarns can have mottled textures. A, B and C are exoskarns, whereas D, E and 
F are endoskarns, based on the geochemical discrimination. Scale bar applies to all images. 

 

Fig. 2.7. Skarns reclassified by whole rock geochemistry and plotted by garnet colour. Pink garnet occurs 
exclusively in endoskarn, while green garnet occurs exclusively in exoskarn. Red and brown garnet occur in both 
endoskarn and exoskarn, therefore they are not diagnostic of skarn type. Mottled-textured skarns presented in Fig. 
2.6 are labelled; note that both endoskarn and exoskarn can display mottled textures, and mottled textures are not 
limited to the samples identified in this plot. 
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2.5. Discussion 
2.5.1. Geochemical Distinction of Endoskarn and Exoskarn 

In this study I identified several combinations of elements, plus the Al2O3 content, that can be 

used to effectively discriminate massive skarn types (endoskarn vs. exoskarn) at Antamina. 

These geochemical discriminators involve Al2O3 and high field strength elements (HFSE), 

including Ti, Y, HREE, Hf, Th, Zr, and Nb (Table 2.1 and Fig. 2.4). These geochemical 

discriminators are effective probably because; 1) the intrusive and metasedimentary wall 

rocks have significantly different signatures (i.e., non-overlapping clusters) in terms of these 

discriminators, and 2) the elements involved are typically immobile, particularly in a 

carbonate-rich (pH buffered) environment, therefore the geochemical fingerprint of the 

precursor is passed on to the skarns. As a result, the discriminating elements and element 

pairs are effective for any combination of prograde and retrograde skarn alteration.  

The compositional differences between the igneous rocks and the wall rocks are shown in 

Fig. A2.1 and Fig. 2.3. The calcareous wall rocks have various amounts of siliciclastic 

impurities, particularly in the Celendín Formation. The wall rocks contain various amounts of 

Al2O3 and HFSE, mostly in the siliciclastic components. Escalante (2008) reported the 

mineralogy of hornfels and marbles, which are the thermal metamorphic products of the 

calcareous wall rocks (Table A2.1). The Al2O3 is mostly in the feldspars (up to 85 volume % 

of the rocks), whereas the HFSE may be in the accessory LREE-epidote, rutile, titanite, 

apatite, zircon, and biotite. The amount of these generally immobile elements is broadly in 

proportion to the ratio of siliciclastic component/calcite in the wall rocks (Fig. 2.3 and Fig. 

A2.1). 

2.5.2. Element Loss and Gain During Skarn Formation 

Being able to clearly distinguish the precursor of various skarn types, I can now confidently 

evaluate element mobility (loss or gain) during both prograde skarn formation and retrograde 

alteration using isocon analysis (Fig. 2.5). The immobility of discriminating elements at 

Antamina (Fig. 2.5) is in agreement with previous studies showing that HFSE and Al are 

among the most immobile under a variety of geologic conditions (Floyd and Winchester, 

1978; Finlow-Bates and Stumpfl, 1981; Whitney and Olmsted, 1998; Jiang et al., 2005; 

Lentz, 2005; Ranjbar et al., 2016). Although the solubility and mobility of these elements can 
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be enhanced in strongly acidic fluids, their solubilities drop dramatically with increasing pH. 

For example, at 250°C total dissolved Al in fluids in equilibrium with alunite + kaolinite + 

quartz is ~2000 ppm at a pH of 2 but drops to only ~1 ppm when the pH is 4 (Stoffregen, 

1987). In high-sulfidation epithermal environments, strongly acidic fluids (pH < 2) can 

remove Al from rocks to form vuggy residual quartz (up to 99% SiO2; Stoffregen, 1987; 

Hedenquist et al., 2000). 

In carbonate-rich environments where most skarns form, fluid acidity ranges from weak to 

neutral due to buffering by excess carbonate; such fluids will not be able to mobilize HFSE or 

Al2O3. In impure carbonates, like those that host the Antamina skarns, these elements can be 

hosted in authigenic feldspar, titanite, rutile, zircon, and apatite (Table A2.1; Deer et al., 

1992; Hammerli et al., 2016; Mao et al., 2016). During skarn formation, the mineralogy of 

the host rocks changes significantly; however the low solubilities of these immobile elements 

allows them to be re-incorporated in skarn minerals as they form (Huggins et al., 1977; 

Nicolescu et al., 1998, Gaspar et al., 2008). Consequently, immobile element signatures in the 

Antamina skarns are inherited from the host rocks, as evidenced by the isochemical 

behaviour of elements outlined in Fig. 2.5. 

Endoskarn formation resulted in a mass loss of 2%, while a 15% mass loss during exoskarn 

formation was observed. The greater mass loss calculated in exoskarn may be due to 

increased porosity (reduced density) as a result of prograde dissolution by acidic magmatic-

hydrothermal fluids and retrograde alteration of the prograde exoskarn mineral assemblage. 

In general, exoskarn samples gain porosity and lose density during prograde formation and 

retrograde alteration. In contrast, endoskarn samples are rarely porous, despite being 

subjected to the same intensity of metasomatism. This may be related to the silicate-rich 

composition of the precursor being more resistant to dissolution than the carbonate-rich wall 

rocks. 

In both endoskarn and exoskarn, increases in Fe2O3, MnO, and MgO are related to the 

formation of garnet and clinopyroxene during prograde skarn alteration; these components 

are likely to be derived from the magmatic-hydrothermal fluids. SiO2 is also added to 

exoskarn during prograde skarn formation, but its source may be partly from SiO2 stripping 

from the intrusions during endoskarn formation (as indicated by a loss of SiO2 in the 

endoskarn vs. intrusions isocon plot; Fig. 2.5 A). Metals (Cu, Mo, Zn, Pb, U) increase 
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significantly in both endoskarn and exoskarn as a result of retrograde alteration. Volatile 

(LOI) increases in endoskarn may be related to the formation of hydrous or CO2-bearing 

retrograde minerals (chlorite, amphibole, calcite), while decreases in exoskarn LOI are 

related to CO2 being driven off of marble (mostly calcite) during prograde skarn formation. 

The only elements lost in significant quantities (50 to 75%) from both endoskarn and 

exoskarn are the alkali elements (K2O, Na2O). The most common skarn minerals do not 

incorporate these elements into their crystal lattice. Some of this element loss may actually be 

related to alkali gain in the intrusive samples due to retrograde alteration (i.e., sericite), but 

significant amounts of these elements were likely transported to distal parts of the system via 

hydrothermal fluid escape structures (Meinert et al., 2005). At Antamina I can only speculate 

that these alkalis were transported to overlying rock packages that have now been lost to 

erosion. Nevertheless, if alkali element loss is a common feature of skarn formation, then 

upflow and reaction of these fluids may provide some of the alkalis for the alteration 

assemblages that are characteristic of overlying porphyry-epithermal environments. Elements 

for these alteration assemblages are primarily considered to be magma sourced, but some 

contribution from skarn alteration of wallrock would be consistent with Pb isotope evidence 

supporting a wallrock component to porphyry alteration fluids (Cooke et al., 2014), and 

would ease the requirements for very large magma volumes to source alkali elements for 

porphyry alteration envelopes (Cathles and Shannon, 2007). 

2.5.3. Mottled Texture  

I have found that the mottled textures displayed by some exoskarns at Antamina are not 

reliable for distinguishing endoskarn from exoskarn, as both skarn types can exhibit mottled 

textures (Fig. 2.6). Endoskarns typically inherit mottled textures from porphyritic and coarse-

grained phaneritic igneous precursors. However, exoskarns may also inherit mottled textures 

(Fig. 2.6) from impure carbonate precursors like those at Antamina. Any host rock containing 

patches or layers of siliciclastic impurities may produce a mottled exoskarn texture through a 

process of repetitive dissolution and fragmentation. For example, open space is created when 

carbonate dissolution occurs faster than calc-silicate replacement can fill voids, which causes 

the more resistant siliciclastic layers to become unsupported and collapse into fragments; 

metasomatic replacement of these rocks will produce exoskarns with mottled textures. 
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2.5.4. Garnet Colour 

At Antamina, green and pink garnet can be used with a high degree of confidence to classify 

skarns, because they never occur together and they correlate well with exoskarn and 

endoskarn, respectively (Fig. 2.7). Red and brown garnet should be used with caution as they 

occur in all skarn types (Fig. 2.7). Spatially, pink garnet occurs in endoskarn, green garnet 

occurs in distal exoskarn near the marble front, and red ± brown garnet occur in both 

exoskarn and endoskarn proximal to the intrusion-wall rock contact. As such, garnet colour 

can also be used, with caution, to establish broad-scale zoning patterns where rock exposure 

or spatial context is limited (i.e, exploration drill core). 

2.5.5. Applicability in Other Skarns 

The geochemical discriminators discovered at Antamina may be applicable to other skarns 

but need to be used with caution. Calcareous wall rocks may vary significantly in 

compositions from deposit to deposit, and the intrusive rocks may also have different 

compositions, as skarns may be caused by a wide range of intrusive rocks, with the SiO2 

content ranging from ~53 to 78 weight percent (Meinert, 1995). Accordingly, the Al2O3 and 

HFSE content of various intrusive rocks and the temperature and composition of alteration 

fluids may be significantly different from the situation at Antamina. Therefore, it is unlikely 

that the geochemical discriminators I have identified at Antamina are would be universally 

applicable; however, this approach to skarn classification is particularly well-suited for 

deposit-scale studies where the detailed geology is known and a range of rock types, from 

least-altered to strongly altered, are available for analysis. Applying our procedures to other 

skarn localities, I suggest that the compositions of both the wall rocks and the intrusive rocks 

should be characterised prior to identification of geochemical discriminators of skarn type. 

2.6. Conclusions 

The results of this study demonstrate that whole rock major and trace element composition 

can be used to discriminate precursors (igneous versus wall rock) of skarns, which is 

particularly useful where the skarns are massive or mottled and the original textures have 

been destroyed by intense hydrothermal alteration. The most effective discriminators at 

Antamina are element pairs of TiO2 vs. Y, HREE; Al2O3 vs. HREE, Y, Ni, and Sc, plus 
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Al2O3 alone (endoskarns contain > 11.5 wt. % Al2O3, whereas exoskarns contain < 11.5 wt. 

%). The parameters identified in this study at Antamina may be applicable elsewhere, 

although a pilot study following the procedure of this study is recommended. 
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2.9. Appendix  

Table A2.1. Summary of host rock mineralogical composition at Antamina (after Escalante, 2008). 
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Gray 60 tr-2 5 tr 5-15 tr - - - 15-20 - tr - - -
Greenish gray 14-33 tr-1 1-14 tr-1 20-60 - - - - 6-35 tr - - - -
Pale green-white 5-30 tr-1 5-25 1 18-60 - tr - - 15-53 tr 1 - tr -
Marble
Tan 25-70 3-6 0.5-3 - 20-55 - - 2 tr 1 - - - - 10-15
Gray 65-80 tr-10 5-18 tr 0.5-10 - tr 0.5 - 2 7-8 tr - tr 2-3
Greenish gray 70 2 5-8 - 5-10 tr tr 2-3 tr 10-12 - tr - - -
Massive white 84-92 tr-0.5 1-2 - tr-2 - - tr-1 - 3-5 0.5-3 tr tr - 0.5
Diffusional white 20-30 2-10 tr-1 1 30-50 - 0.5 tr - 5-20 - - - - -
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1As defined by Escalante (2008). All values are reported in volume per cent. 
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Fig. A2.1. Geochemical characteristics of the Antamina host rocks. Continued on next page. 
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Fig. A2.1. Continued from previous page. Geochemical characteristics of the Antamina host rocks using selected 
major and minor elements. 

 

 

 

Fig. A2.2. SiO2 (wt. %) vs. CaO (wt. %) and Total C (wt. %) contents of skarns, intrusions, and wall rocks. 
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Fig. A2.3. Box and whisker plot comparing Al2O3 contents of endoskarn and exoskarn.
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An age-constrained model for skarn formation at 

the giant Antamina deposit, Peru  
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3.1. Abstract 

The Antamina Cu-Zn-Mo deposit, in Peru, consists of a Miocene multi-phase porphyry 

complex surrounded by the largest continuous body of skarn known in the world today. At 

least 11 porphyry phases have been identified through field observations of cross-cutting 

relationships; only two display a genetic link to the surrounding skarns (i.e., they contain 

endoskarn alteration). All of the porphyries contain magmatic biotite ± hornblende and quartz 

stockwork veins, therefore it is likely that each one contributed hydrothermal fluids to 

enhance the size of this giant ore deposit. The porphyry phases have been classified based on 

relative timing of emplacement in four zones across the deposit (Taco-Bornita, Usupallares, 

Oscarina, and Condorcocha. Different porphyry phases are present in each zone and the 

relative timing of each phase is denoted by the abbreviation P1, P2, P3, etc., where P1 is the 

oldest and P3 is the youngest phase. U-Pb zircon (LA-ICP-MS and CA-TIMS) ages range 

from 10.95 ± 0.20 to 10.24 ± 0.23 Ma for ten porphyry phases dated in this study. The Taco-

Bornita zone comprises the bulk of the economic resource at Antamina and hosts 5 porphyry 

phases (10.95 ± 0.20 to 10.25 ± 0.20 Ma). The Usupallares zone (southwest of the Taco-

Bornita zones) hosts three porphyry phases (10.44 ± 0.14 to 10.24 ± 0.23 Ma). Skarns 

completely surround the Taco-Bornita and Usupallares zones. The Oscarina zone hosts at 

least two subparallel porphyry dykes that cut across skarns in the northeast Taco zone (10.81 

± 0.02 to 10.54 ± 0.11 Ma). The Condorcocha zone hosts at least three porphyry phases (two 

observed and one inferred) and a small skarn located approximately 1 km northwest of the 

Taco zone; only one age was obtains for P2-Condorcocha, 10.61 ± 0.12 Ma. One endoskarn 

titanite sample returned a discordant U-Pb age of 11.2 ± 1.3 Ma, which spans the entire range 

of U-Pb ages for the deposit. Three new 40Ar/39Ar hydrothermal biotite ages include 11.4 ± 

0.5 to 10.5 ± 0.4 Ma in P1-Taco and 10.2 ± 0.2 Ma in P2-Taco. Molybdenite mineralisation 

occurs in two stages across the Taco-Bornita and Usupallares zones. Stage I molybdenite 

occurs in skarns; Re-Os ages include 10.58 ± 0.07 Ma and 10.44 ± 0.05 to 10.39 ± 0.05 Ma. 

Stage II molybdenite + quartz veins cut across P2 and P3 porphyries and Re-Os ages include 

9.99 ± 0.04 and 9.68 ± 0.05 Ma. In general, U-Pb zircon and Re-Os molybdenite ages 

decrease from northeast to southwest along the structurally-controlled axis of the deposit. The 

formation of the giant Antamina skarn deposit is attributed to the emplacement of multiple 

fertile porphyries along a NE-trending, dilational structural corridor, into reactive calcareous 

wall rocks, over approximately 1.1 Ma, starting as early as ~11 million years ago.  
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3.2. Introduction 
3.2.1. Research Subject 

Skarn deposits are related in space and time to a magmatic-hydrothermal fluid sourced from 

an intrusion. This can be an adjacent intrusion or an intrusion at depth that is connected via 

structural pathways. One of the key questions in skarn research is: which is the causative 

intrusion(s)? Because porphyry deposits are often comprised of more than one intrusive 

phase, a study on the skarn-porphyry connection requires careful documentation of each 

phase and its relative timing relationship to the skarns under investigation. 

This chapter presents new observations on the intrusive sequence and its relationship to skarn 

formation at Antamina. Specifically, this research focused on determining the number of 

intrusive phases present in 4 zones of the deposit (based on 4 cross sections; Fig. 1.5). Within 

each zone, cross-cutting relationships were documented in order to determine the relative 

timing of emplacement of each phase, and its relationship to the skarns. New geochronology 

ages were obtained for key porphyry phases in the context of the intrusive sequence. In 

addition to the intrusions, hydrothermal biotite, molybdenite, and skarn titanite were dated to 

provide additional age constraints on the formation and duration of the Antamina magmatic-

hydrothermal system. These data are combined into an age-constrained model for porphyry 

and skarn formation at Antamina. Building upon the deposit geology that is summarized in 

Chapter 1, this chapter begins with a review of the porphyry nomenclature from previous 

work on Antamina. 

3.2.2. Evolution of the Nomenclature of the Antamina Porphyries 

Two different approaches to porphyry classification have been used by previous workers at 

Antamina: one based on relative timing (Pacheco, 1997; Sillitoe, 1997), and another based on 

texture and mineralogy (McKee et al., 1979; CMA, 2007; Love et al., 2003; Lipten and 

Smith, 2005; Escalante, 2008). Sillitoe (1997) noted abrupt contacts between the porphyry 

units at Antamina and suggested a classification scheme based on relative timing (i.e., early- 

and inter-mineral porphyries). Around the same time, Pacheco (1997) suggested a more 

elaborate classification scheme, employing categories for early-, inter-, late-, and post-

mineral porphyries with sub-categories based on alteration intensity, vein type and density, 

mineralisation, and location in the deposit. Sometime between 1997 and 2000, the relative 
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timing classification scheme was abandoned for the texture and mineralogy-based scheme 

that remains in use today, which includes rock units named IPPA (plagioclase-rich porphyry), 

IPPAMO (plagioclase-rich porphyry with K-feldspar megacrysts), IPPAO (plagioclase and 

K-feldspar rich porphyry), and IPPEO (K-feldspar porphyry with minor plagioclase) (Lipten 

and Smith, 2005). In the case of the Oscarina dykes, Escalante (2008) assigned different 

names to these dykes based on their location along strike: exposures along the northeast 

margin of the Taco zone were referred to as the Quarry Bench and Ridge Road dykes (Table 

A3.1); only exposures to the south of the Taco zone were called Oscarina dykes. In this study 

I refer to all of the dykes emplaced along the same structural trend (between Condorcocha 

and south of the Taco zone) as the Oscarina dykes. 

Due to the textural and mineralogical similarities across the entire deposit, I found that 

classification of the Antamina porphyries was most straightforward when performed in the 

context of crosscutting relationships. Therefore, in this study I employ a porphyry 

classification scheme based on relative timing of emplacement. As a result, the unit names I 

have assigned to the porphyries do not always match those published in earlier literature. 

Whenever necessary, the correlative published name and reference is provided for clarity. 

3.3. Methods 

Several methods were employed to establish the intrusive sequence for the APC, 

Condorcocha, and Oscarina, and understand the magmatic-hydrothermal evolution of the 

Antamina deposit, including; (1) documentation of cross-cutting relationships observed in 

drill core and outcrops; (2) U-Pb dating of magmatic zircon by laser ablation-inductively 

coupled plasma-mass spectrometry (LA-ICP-MS) and chemical abrasion-thermal ionization 

mass spectrometry (CA-TIMS); (2) U-Pb dating of hydrothermal titanite in exoskarn by LA-

ICP-MS; (3) 40Ar/39Ar dating of secondary biotite, and; (4) Re-Os dating of molybdenite. 

Geochronology samples were selected from key intrusive phases in each of the four porphyry 

zones with the intention of bracketing the age of magmatism, hydrothermal alteration, and 

mineralisation. 
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3.3.1. Whole Rock Geochemistry 

Whole rock geochemical analyses were conducted at ALS Chemex in Lima, Peru using a 

combination of techniques including X-ray fluorescence (XRF), inductively coupled plasma-

atomic emission spectrometry (ICP-AES), inductively coupled plasma-mass spectrometry 

(ICP-MS), and atomic absorption (AA), for 60 elements including major and trace elements 

and LOI (loss on ignition). The sample digestion and measurement methods with analytical 

detection limits are presented in Digital Appendix 2.1. 

3.3.2. U-Pb Dating of Zircon and Titanite by LA-ICP-MS 

Ten porphyry zircon samples, and one endoskarn titanite sample were selected for U-Pb 

dating. Mineral separation and sample preparation was carried out at the James Cook 

University (JCU) Mineral Separation Laboratory in Townsville, Australia and at the 

University of Tasmania (UTAS) in Hobart, Australia. The JCU heavy mineral extraction and 

sample preparation procedures are described by Holm et al. (2013) and Tucker et al. (2013). 

Least-altered, representative samples were selected for dating; when necessary, groundmass 

was separated from xenoliths and/or quartz veins using a trim saw prior to crushing. Samples 

were crushed and milled to 500 µm, washed and decanted several times to remove the clay-

sized fraction, then dried overnight in an oven. The high-density mineral fraction (including 

zircon, titanite, etc.) was extracted using a combination of heavy liquids (lithium 

heteropolytungstate (LST), density = 2.85 g/mL) and Frantz magnetic separation (magnetic 

current settings up to 1.2 A, side slope 10°). Zircons or titanite in the non-magnetic fraction > 

1.2 A were hand-picked under a binocular microscope and mounted in an epoxy resin puck. 

The puck was polished to reveal mid-sections of grains before carbon coating. In order to 

document zoning, inclusions, and microstructures in the zircons, cathodoluminescence (CL) 

images were obtained prior to laser ablation (for samples analysed at JCU; no CL images 

were obtained for samples analysed at UTAS). 

U-Pb dating by LA-ICP-MS technique (e.g., Chang et al., 2006) was conducted at the JCU 

Advanced Analytical Centre (AAC) in Townsville, Australia using a GeoLas Pro 193 nm ArF 

Excimer laser ablation system coupled with a Bruker (previously Varian) 820-MS inductively 

coupled plasma-mass spectrometer (ICP-MS), following the method described by Tucker et 

al. (2013). Laser energy density was set to 6 J/cm2, and laser spot size and repetition rate 
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were set to 44 µm and 10 Hz, respectively. Total analysis time was 60 seconds; background 

concentrations were measured for the first 30 seconds (gas blank measurement, laser 

operating with shutter closed), followed by 30 seconds of sample ablation. Standard 

bracketing was used to correct for elemental fractionation, mass bias, and instrumental drift 

(Gehrels et al., 2008). For zircon analyses, NIST 612 reference material standard glass 

(USGS working values, 2009) was analysed (for calibration of U and Th concentrations, 

using Si as the internal standard and assuming stoichiometry) at the start, middle, and end of 

each laser session. Two to three analyses each of a primary zircon standard (GJ-1, 608.5 ± 0.4 

Ma; Jackson et al., 2004) and secondary standard (Temora-2, 416.8 ± 0.3 Ma; Black et al., 

2004) were conducted at the start and end of each session, as well as between every 10-12 

unknown zircon analyses (Fig. A3.1). For titanite analysis, bracketing external standards 

included NIST 612 and MKED1 (Spandler et al., 2016), Khan, and OLT1, with 43Ca used as 

the internal standard.  Data reduction for titanite and zircon was performed off-line using 

GLITTER 4.0 software (Van Achterbergh et al., 2001). Time-resolved isotope signals from 

standards and samples were filtered for spikes indicative of inclusions or other 

heterogeneities. The overall data quality for this titanite sample are poor, yielding no 

concordant ages. Therefore the final age was determined using a common Pb-correction and a 

best-fit line through the discordant array. 

Additional U-Pb dating (LA-ICP-MS) of zircon was conducted at the University of Tasmania 

in Hobart. The analyses in this study were performed on an Agilent 7500cs quadrupole ICP-

MS with a 193 nm Coherent ArF laser and the Resonetics S155 ablation cell. The downhole 

fractionation, instrument drift and mass bias correction factors for Pb/U ratios on zircons 

were calculated using 2 analyses on the primary standard (91500 standard of Wiendenbeck et 

al. 1995) and one analysis on each of the secondary standard zircons (Temora standard of 

Black et al., 2003 and GJ-1 of Jackson et al., 2004) analysed at the beginning of the session 

and every 15 unknown zircons (roughly every 1/2 hour) using the same spot size and 

conditions as used on the samples. The correction factor for the 207Pb/206Pb ratio was 

calculated using large spots of NIST 610 analysed every 30 unknowns and corrected using 

the values recommended by Baker et al. (2004).  

Each analysis on the zircons began with a 30 second blank gas measurement followed by a 

further 30 seconds of analysis time when the laser was switched on. Zircons were sampled on 
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32 micron spots using the laser at 5 Hz and a density of approximately 2 J/cm2. A flow of He 

carrier gas at a rate of 0.35 litres/minute carried particles ablated by the laser out of the 

chamber to be mixed with Ar gas and carried to the plasma torch. Isotopes measured were 
49Ti, 56Fe, 90Zr, 178Hf, 202Hg, 204Pb, 206Pb, 207Pb, 208Pb, 232Th and 238U with each element being 

measured  every 0.16 s with longer counting time on the Pb isotopes compared to the other 

elements. Element abundances on zircons were calculated using the method outlined by 

Kosler (2001) using Zr as the internal standard element, assuming stoichiometric proportions 

and using the NIST 610 as the external standard. Data reduction was performed off-line using 

an in-house spreadsheet. 

The reduced data (for both JCU and UTAS samples) were exported to Microsoft Excel and 

age calculations were conducted using Isoplot/Ex 4.15 (Ludwig, 2012). The young ages of 

these samples (~10 Ma) required that all analyses be corrected for initial Th/U disequilibrium 

following Holm et al. (2013); 230Th is excluded during zircon crystallization (due to isotope 

fractionation), which results in a deficit of measured 206Pb as a 230Th decay product (Schärer, 

1984; Parrish, 1990). The upward correction of 206Pb/238U ages (on the order of 100 k.y.) 

utilizes Th/U concentrations determined from LA-ICP-MS and whole rock analyses for each 

sample, taken to represent the Th/U concentration of the melt (Crowley et al., 2007). A 

conservative discordance cut-off of 15% was applied to all data points before calculating the 

weighted average age of each sample (e.g., Buys et al., 2014; Holm and Poke, 2018). The 

youngest zircon population passing the 15% discordance cut-off (minimum n = 3 zircons, 

MSWD ≤ 1.5) was selected to represent the crystallization age of each sample; in many 

cases, older and/or younger zircons did not meet these criteria and are not included in the age 

calculations. Errors were propagated at the 2σ level and the ages are reported at the 95% 

confidence interval level. The complete U-Pb zircon and titanite (LA-ICP-MS) data sets are 

presented in Digital Appendices 3.1 and 3.2. 

3.3.3. U-Pb Dating of Zircon by CA-TIMS 

U-Pb dating by CA-TIMS was conducted at the Pacific Centre for Isotopic and Geochemical 

Research at the University of British Columbia in Vancouver, Canada, using the procedure 

modified from Mundil et al. (2004), Mattinson (2005), and Scoates and Friedman (2008). 

Zircons were handpicked under alcohol from heavy mineral separates of the rock samples. 

The clearest, crack- and inclusion-free grains are selected, photographed and then annealed in 
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quartz glass crucibles at 900˚C for 60 hours. Annealed grains are transferred into 3.5 mL PFA 

screw top beakers, ultrapure HF (up to 50% strength, 500 mL) and HNO3 (up to 14 N, 50 

mL) are added and caps are closed finger tight. The beakers are placed in 125 mL PTFE 

liners (up to four per liner) and about 2 mL HF and 0.2 mL HNO3 of the same strength as 

acid within beakers containing samples are added to the liners. The liners are then slid into 

stainless steel Parr™ high pressure dissolution devices, which are sealed and brought up to a 

maximum of 200˚C for 8-16 hours (typically 175˚C for 12 hours). Beakers are removed from 

liners and zircon is separated from leachate. Zircons are rinsed with >18 MΩ.cm water and 

sub-boiled acetone. Then 2 mL of sub-boiled 6N HCl is added and beakers are set on a 

hotplate at 80˚-130˚C for 30 minutes and again rinsed with water and acetone. Masses are 

estimated from the dimensions (volumes) of grains. Single grains are transferred into clean 

300 mL PFA microcapsules (crucibles), and 50 mL 50% HF and 5 mL 14 N HNO3 are added. 

Each is spiked with a 233-235U-205Pb tracer solution (EARTHTIME ET535), capped and again 

placed in a Parr liner (8-15 microcapsules per liner). HF and nitric acids in a 10:1 ratio, 

respectively, are added to the liner, which is then placed in Parr high pressure device and 

dissolution is achieved at 240˚C for 40 hours. The resulting solutions are dried on a hotplate 

at 130˚C, 50 mL 6N HCl is added to microcapsules and fluorides are dissolved in high 

pressure Parr devices for 12 hours at 210˚C. HCl solutions are transferred into clean 7 mL 

PFA beakers and dried with 2 mL of 0.5 N H3PO4. Samples are loaded onto degassed, zone-

refined Re filaments in 2 mL of silicic acid emitter (Gerstenberger and Haase, 1997). 

Isotopic ratios are measured a modified single collector VG-54R or 354S (with Sector 54 

electronics) thermal ionization mass spectrometer equiped with analogue Daly 

photomultipliers. Analytical blanks are 0.2 pg for U and up to 1 pg for Pb. U fractionation 

was determined directly on individual runs using the EARTHTIME ET535 mixed 233-235U-
205Pb isotopic tracer and Pb isotopic ratios were corrected for fractionation of 0.30%/amu, 

based on replicate analyses of NBS-982 reference material and the values recommended by 

Thirlwall (2000). Data reduction employed the excel-based program of Schmitz and Schoene 

(2007). Standard concordia diagrams were constructed and regression intercepts, weighted 

averages calculated with Isoplot (Ludwig, 2003). Unless otherwise noted all errors are quoted 

at the 2 sigma or 95% level of confidence. Isotopic dates are calculated with the decay 

constants l238=1.55125E-10 and l235=9.8485E-10 (Jaffe et al., 1971). EARTHTIME U-Pb 

synthetic solutions are analysed on an on-going basis to monitor the accuracy of results. Data 
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uncertainties are reported at the 95% confidence interval level. The complete data set is 

presented in Digital Appendix 3.3.  

3.3.4. Re-Os Dating of Molybdenite 

Five molybdenum samples (two endoskarn, one exoskarn, and two quartz + molybdenite 

veins in intrusions) were selected for Re-Os dating. Molybdenite extraction, sample 

preparation, and Re-Os analysis was carried out at the Canadian Centre for Isotopic 

Microanalysis at the University of Alberta, Canada. A molybdenite mineral separate was 

produced by metal-free crushing followed by gravity and magnetic concentration methods. 

Methods used for molybdenite analysis are described in detail by Selby and Creaser (2004) 

and Markey et al. (2007). The 187Re and 187Os concentrations in molybdenite were 

determined by isotope dilution mass spectrometry using Carius-tube, solvent extraction, 

anion chromatography and negative thermal ionization mass spectrometry techniques. A 

mixed double spike containing known amounts of isotopically enriched 185Re, 190Os, and 
188Os analysis is used. Isotopic analysis is made using a ThermoScientific Triton mass 

spectrometer by Faraday collector. Total procedural blanks for Re and Os are less than < 3 

picograms and 2 picograms, respectively, which are insignificant for the Re and Os 

concentrations in molybdenite. The molybdenite powder HLP-5 (Markey et al., 1998) is 

analyzed as a standard, and over a period of one year an average Re-Os date of 220.66 ± 0.21 

Ma (1 standard deviation uncertainty, n = 5) is obtained. This Re-Os age date is identical to 

that reported by Markey et al. (1998) of 221.0 ± 1.0 Ma. The age uncertainty is quoted at the 

2σ level, and includes all known analytical uncertainty, including uncertainty in the decay 

constant of 187Re.  

3.3.5. 40Ar/39Ar Dating of Hydrothermal Biotite 

Three samples of hydrothermal biotite were dated using 40Ar/39Ar geochronology at the 

Argon Geochronology Laboratory at the University of Michigan, USA. Biotite grains (0.5-3 

mm) were handpicked under a binocular microscope. The pure mineral separates were 

wrapped in Al foil and irradiated for 90 MWhr at location 8B at the McMaster Nuclear 

Reactor at McMaster University in Hamilton, Ontario in irradiation packages mc48 and 

mc52. Standard hornblende MMhb-1 was used as a neutron fluence monitor with an assumed 

age of 520.4 Ma (Samson and Alexander, 1987). Following irradiation, the samples were 
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incrementally heated with a Coherent Innova 5 W continuous argon-ion laser until complete 

fusion was achieved. Samples were loaded into 3 adjacent 2 mm diameter wells and degassed 

each laser power setting for 30 seconds. 

Dating was conducted using a standard procedure described by Frey et al. (2007) and Rooney 

et al. (2013). Argon isotopes were measured using a VG1200S mass spectrometer with a 

source operating at 150 µA total emission and equipped with a Daly detector operating in 

analog mode. Mass discrimination was monitored daily using ~4 x 10-9 ccSTP of atmospheric 

Ar. Fusion system blanks were run every five fusion steps and blank levels from argon 

masses 36 through 40 (~2 x 10-14, ~3 x 10-14, ~1 x 10-14, ~3 x 10-14, and 2 x 10-12 ccSTP 

respectively) were subtracted from sample gas fractions. Corrections were also made for the 

decay of 37Ar and 39Ar, as well as interfering nucleogenic reactions from K, Ca, and Cl as 

well as the production of 36Ar from the decay of 36Cl. The step heating data are presented in 

Digital Appendix 3.4 and the age spectra in Fig. A3.2. The plateau ages (and error-weighted 

plateau ages) are used for age reporting. The age uncertainties have incorporated 1% 

combined uncertainties of external factors including decay constants, standard ages and the 
40K/K ratio, and are at the 2-sigma level. 

3.3.6. Major Element Mineral Compositions  

Major element compositions of selected minerals in polished thin sections were determined in 

situ using a JEOL JXA-8200 Superprobe equipped with a wavelength-dispersive 

spectroscopy (WDS) system, housed in the AAC at JCU. WDS analyses were collected for 

plagioclase and biotite in selected Antamina porphyry samples. The microprobe was operated 

at 15 keV acceleration voltage, 20 nA current, and 5 µm beam size. Analytical conditions are 

as follows [element analysed (standard, line, crystal)]: Na (albite, Kα, TAP), Fe (hematite, 

Kα, LIF), Mn (spessartine, Kα, LIFH), F (F-TAP, Kα, TAP), Cl (tugtupite, Kα, PETJ), Si 

(wollastonite, Kα, TAP), Ti (rutile, Kα, LIF), Al (almandine, Kα, TAP), Ca (wollastonite, 

Kα, PETJ), Mg (olivine, Kα, TAP), and K (orthoclase, Kα, PETJ). Element concentrations 

were calculated by applying φρz corrections. The complete data set for igneous biotite and 

plagioclase is available in Digital Appendix 3.5 and 3.6, respectively.  
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3.4. Results 
3.4.1. Cross-Cutting Relationships 

The intrusion paragenesis was determined in each zone through careful examination of 

crosscutting relationships (described below) and porphyry unit names were assigned based on 

the relative timing of emplacement, for example, “P1a-Taco”. The prefix “P” denotes 

“porphyry” and is followed by a number to indicate timing (i.e., P2 cuts P1; P3 cuts both 

units). Where sub-units were later identified, a letter (in alphabetical order) follows the 

number to denote additional order (i.e., P2b cuts P2a and P1; all are cut by P3). The name of 

the zone is denoted after the unit (i.e., P1-Taco, P2a-Taco, etc.); for instance, P1-Taco and 

P1-Usupallares are the earliest intrusions in each respective zone, however they are different 

units. Using this naming scheme, the intrusive sequence was recorded for the APC, 

Condorcocha, and Oscarina. 

Contact relationships between porphyries (of different relative timing) and skarns provide 

important clues for determining the intrusion paragenesis. The APC is comprised of early and 

inter-mineralisation porphyries; all of the porphyries are at least weakly mineralized, not all 

contain endoskarn alteration. Only early porphyries contain endoskarn alteration, because 

they were emplaced during (or slightly before) skarn formation; they occur early in the 

intrusion paragenesis (i.e., P1; Fig. 3.1 A) and are commonly cross-cut by inter-

mineralisation porphyries and/or quartz stockwork veins (Fig. 3.1 B-C).  

The endoskarn-exoskarn contact is a lithological boundary that has been overprinted by skarn 

alteration; it marks the original emplacement contact between wall rock (marble) and an early 

porphyry (P1). Contacts between early porphyries (or skarns) and inter-mineralisation 

porphyries are typically sharp and can be marked by truncated veins, chilled margins, and 

abrupt changes in rock type and/or alteration style (Fig. 3.1 C-D). At Antamina, most 

porphyry units contain stockwork veins, and in general, the volume of stockwork veins 

increases with the relative age of each porphyry unit. As such, each progressively younger 

porphyry unit truncates veins and alteration assemblages in older units (Fig. 3.1 D-E). 

Xenoliths entrained in younger porphyries also provide compelling evidence for the relative 

timing of porphyry emplacement (Fig. 3.1 E). 
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Fig. 3.1. Examples of some cross-cutting relationships used to determine the intrusion sequence at Antamina. A. 
P1-Taco altered to endoskarn, indicating that it was emplaced early in the paragenesis. B. P1-Taco altered to 
endoskarn and cross-cut by quartz + sulphide stockwork veins. C. Fine grained P2b-Taco cuts across P2a-Taco. 
Note the truncated quartz vein. D. P2 breccia truncates quartz stockwork veins in P2a-Taco. E. A xenolith of 
P2a-Taco is enclosed in P3-Taco. F. Metasomatic contact between P1-Usupallares (endoskarn) and exoskarn, 
Usupallares area. G. P1-Usupallares (endoskarn) is cross-cut by P2-Usupallares. H. P2-Usupallares and 
associated quartz stockwork veins are truncated by P3-Usupallares.  
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At Antamina, molybdenum mineralisation occurred in two stages: Stage I occurs as sinuous 

veins and patchy replacements in both P1 (Taco and Usupallares), endoskarn, and exoskarn 

(Fig. 3.2 A-C), whereas Stage II occurs as straight-edged veins of molybdenite + quartz 

cutting across all porphyries and skarns (Fig. 3.2 D-E). The mineral paragenesis is described 

in detail in Chapter 4. 

 

Fig. 3.2. Molybdenite mineralisation stages and samples selected for Re-Os dating. A. Stage I molybdenite vein 
in P1 endoskarn, Taco-Oscarina zone. B. Stage I molybdenite in exoskarn, Taco zone. C. Stage I molybdenite in 
P1 endoskarn, Usupallares zone. D. Stage II molybdenite + quartz vein in P2a, Taco zone. E. Stage II 
molybdenite + quartz vein in P1, Usupallares zone. 

3.4.2. Igneous Rock Types – Mineralogy and Textures 

All of the samples are porphyritic and contain 50-80% phenocrysts, except for P1-Oscarina 

with 40% phenocrysts (Table 3.1). Most phenocrysts are a few millimetres in size. 

Megacrystic K-feldspar (≥ 40 mm) occurs in ~50% of the phases observed and is not 

diagnostic of any specific phase or location in the deposit. Quartz phenocrysts range from 3-

10% of the rock volume and are typically rounded and embayed in the Taco and Oscarina 

zones. All phases contain plagioclase phenocrysts, with the compositions ranging from An23 
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P1-Taco P2a-Taco P2b-Taco P3-Taco P1-Usupallares P2-Usupallares P3-Usupallares P1-Oscarina P2-Oscarina P2-Condorcocha P3-Condorcocha
Rock Type* Trachyandesite 

porphyry
Trachyandesite 

porphyry
Trachyandesit

e porphyry
Trachyandesite 

porphyry
Trachyandesite 

porphyry
Trachyandesite 

porphyry
Trachyandesite 

porphyry
Trachyandesite 

porphyry
Trachyte 
porphyry

Trachyandesite 
porphyry

Andesite 
porphyry

Texture Porphyritic Porphyritic 
(megacrystic)

Porphyritic Porphyritic 
(megacrystic)

Porphyritic 
(megacrystic)

Porphyritic 
(megacrystic)

Porphyritic 
(megacrystic)

Porphyritic Porphyritic Porphyritic Porphyritic

Phenocrysts 75% 80% 65% 60% 80% 85% 65% 40% 60% 65% 50%
Quartz 3-5%, anh, emb, 

≤ 5 mm
5-8%, sub, emb, 
5-10 mm

5-7%, sub, 
emb, ≤ 5 mm

2-8%, sub, emb,  
4-10 mm

7-10%, sub, 5-10 
mm

7-10%, sub-euh, 5-
15 mm

7-10%, sub, 8-10 
mm

3-5%, anh, emb, 
5-8 mm

5-7%, anh, 5-8 
mm

7-10%, sub, 7-
10 mm

3-5%, sub, 5-8 
mm

Plagioclase 40-55%, sub, 2-5 
mm, An23-45

40-50%, sub, 4-
10 mm, An27-30

35-45%, sub,     
1-3 mm

15-30% sub glom, 
4-10 mm, An26-35

40-45%, anh, 5-8 
mm, An25-38

40-45%, sub-euh, 
5-8 mm, An25-30

30-40%, sub, 8-
10 mm

10-15%, sub, 5-8 
mm

20-30%, sub, 3-
5 mm

20-30%, anh-
sub, 5-8 mm

15-25%, sub, 1-
3 mm

K-feldspar 2-5%, anh, 2-4 
mm

10-15%, euh 
mgx ≤ 50 mm

10-15%, sub, 2-
4 mm

10-15%, euh mgx 
≤ 10%, ≤ 50 mm

15-20%, anh, 2-4 
mm

15-20%, sub-euh, 
2-4 mm; mgx ≤ 
10%, ≤ 70 mm

10-15%, sub, 5-
15 mm

10-15%, sub, 5-8 
mm

15-20%, sub, 3-
5 mm

15-20%, sub, 5-
8 mm

10-15%, sub, 2-
4 mm

Biotite 10-15%, 3-5 mm 10-15%, 2-3 8-10%, 2-3 7-10%, 3-5 mm 5-10%, 5-7 mm 5-10%, 5-7 mm 8-15%, 3-5 mm 7-10%, 3-5 mm 5-10%, 2-3 8-12%, 3-5 mm 7-10%, 3-5 mm

Amphibole ≤ 3%, 1-4 mm Nil Nil Nil Nil Nil Nil ≤ 5%, 2-5 mm 3-5%, 2-5 mm 1-3%, 2-5 mm 3-5%, 2-5 mm

Groundmass 25% 20% 35% 40% 20% 15% 35% 60% 40% 35% 50%
Quartz 7-10% 7-10% 10-15% 10-15% 7-10% 5-10% 5-10% 10-15% 5-10% 5-10% 5-10%
Plagioclase 10-15% 7-10% 10-15% 10-15% 5-10% 5-10% 7-10% 15-20% 10-15% 10-15% 10-15%
K-feldspar 5-15% ~5% ~5% 10-15% ~5% ~5% 10-15% 20-25% 10-15% 10-15% 10-15%
Biotite 3% 2% 5% 5% 2% 2% 5% 5% 2% 5% 3%

Qtz Stock-
work Veins

Abundant Abundant Abundant Common Common Common Rare Rare Rare Common Rare

Accessory 
Minerals

Mt, Ap, T it, Zrn Mt, Ap, T it, 
Zrn

Mt, Ap, T it, 
Zrn

Mt, Ap, T it, Zrn Mt, Ap, T it, Zrn Mt, Ap, T it, Zrn Mt, Ap, T it, Zrn Mt, Ap, T it, Zrn Mt, Ap, T it, 
Zrn

Mt, Ap, T it, 
Zrn

Mt, Ap, T it, 
Zrn

Pervasive 
Alteration

≤ 45% sec Bio;  
endo; Chl aft  Bio

≤ 20% sec Bio; 
Chl aft  Bio

≤ 20% sec Bio; 
Chl aft  Bio

≤ 20% sec Bio; 
Chl aft  Bio

≤ 15% sec Bio; 
endo; Chl aft  Bio

≤ 15% sec Bio; 
Chl aft  Bio

≤ 10% Chl aft  
Bio

≤ 10% Chl aft  
Bio; minor Cal + 
Epi + Prh**

≤ 5% Chl aft  
Bio; minor Cal 
+ Ill**

≤ 20% sec Bio; 
minor endo; Chl 
aft  Bio

≤ 10% Chl aft  
Bio; minor Ser

Comments Contains 
unidirectional 
solidification 
textures (UST).

Displays some 
textural and 
compositional 
similarities to 
P2b-Taco.

Displays some 
textural and 
compositional 
similarities to 
P2a-Taco.

Narrow dikes, 
typically along 
pre-existing 
contacts.

Megacrystic 
texture preserved 
in some 
endoskarns.

Similar texture 
and composition, 
compared to P1-
Usupallares, but 
lacks endoskarn.

Abundant 
xenoliths (skarn, 
intrusions), Qtz 
vein fragments.

Dike along thrust 
fault , intercepts 
NE Taco zone.

Dike along 
thrust fault , 
intercepts NE 
Taco zone.

No spatial 
overlap with 
Taco and 
Usupallares.

Dike along 
thrust fault . 
Connects Taco 
zone to 
Condorcocha.

Minerals: An: anorthite; Ap: apatite; Bio: biotite; Cal: calcite; Chl: chlorite; Epi: epidote; Ill: illite; Mt: magnetite; Or: orthoclase; Prh: prehnite; Qtz: quartz; Ser: sericite; T it: t itanite; Zrn: zircon.
Other: aft: after; anh: anhedral; emb: embayed; endo: endoskarn; euh: euhedral; glom: glomerocryst; mgx: megacryst; mm: millimeter; Nil: not observed; sec: secondary; sub: subhedral.
Qtz stockwork veins: Abundant: up to 40% volume; Common: up to 20% volume; Rare: less than 5% by volume. *Nomenclature and classification after Winchester and Floyd (1977). **Determined by XRD.

Table 3.1. Texture, mineralogy, and modal composition of Antamina porphyries. 
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Fig. 3.3. Ternary plot of igneous plagioclase compositions from the Antamina porphyries, determined by 
microprobe analysis. 

 

to An45 (Fig. 3.3 and Digital Appendix 3.6), based on electron microprobe analysis. Igneous 

biotite was observed in all samples and contains up to ~2.31 wt. % F and up to 0.2 wt. % Cl 

(Table 3.2 and Digital Appendix 3.5). Amphibole was only observed in early porphyry 

phases and dykes along the northeast margin of the APC, including P1-Taco, P1-Oscarina, 

P2-Oscarina, P2-Condorcocha, and P3-Condorcocha. All porphyry phases contain 5-15% 

biotite, and accessory minerals magnetite, apatite, titanite and zircon. Microprobe analyses of 

plagioclase and biotite are summarised in Fig. 3.3 and Table 3.2, respectively. 
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Table 3.2. Representative microprobe analyses of biotite from Antamina porphyries. Total Fe (listed as FeO) is 
assumed to be Fe2+ (as in Droop, 1987). 

 

3.4.3. Geochemistry 

The whole rock geochemical composition of all analysed igneous samples is provided in 

Digital Appendix 3.7 and a summary of representative sample compositions is provided in 

Table 3.3. The Antamina porphyries display a narrow range of major element compositions 

dominated by trachyte, trachyandesite, and andesite porphyries (Fig. 3.4). The compositional 

range of most of the individual rock types straddles the division between andesite and 

trachyandesite, however P2-Oscarina (n = 1) and P3-Condorcocha (n = 2) plot exclusively as 

trachyte and andesite, respectively (Fig. 3.4). Effort was made to select the least-altered 

samples, however due to the geological context of the samples, some alteration is to be 

expected (LOI ≤ 2.72 wt. %; Digital Appendix 3.7). 

Trace element data are presented in Fig. 3.5 and Fig. 3.6. All samples show patterns within 

the range of typical arc magmas, with a distinct depletion in Nb and HFSE (such as Zr, Hf, 

and Ti), and enrichment in LILE, including Ba, Rb, K, and Pb. All samples display LREE 

enrichment (average La/Sm = 6.5) and HREE depletion (average Sm/Yb = 5.0), with samples 

from Taco, Usupallares, and Condorcocha showing greater depletion than the Oscarina dykes 

(Fig. 3.5). In general, all samples display listric-shaped REE patterns, which are likely to be 

Rock Unit P1-Taco P2a-Taco P3-Taco P1-Usupallares P2-Usupallares P1-Oscarina
Sample A2084-985 A1391-488 A1391-498 A2589-1142.5 A2589-367.5 AT13-029 
Point no. 91 39 28 110 167 156
SiO2 39.6 37.15 37.44 37.61 37.44 37.07
TiO2 3.73 3.76 3.77 3.90 3.41 3.92
Al2O3 12.79 13.42 13.25 13.06 12.88 13.44
FeO 10.48 15.96 15.21 12.85 15.35 18.19
MnO 0.10 0.18 0.13 0.14 0.13 0.27
MgO 18.12 14.80 14.80 16.16 14.94 12.81
CaO 0.00 0.01 0.04 0.00 0.01 0.01
Na2O 0.14 0.14 0.18 0.20 0.25 0.25
K2O 10.1 9.92 9.91 10.0 9.93 9.58
F 1.11 1.45 0.98 1.08 1.06 0.47
Cl 0.06 0.14 0.14 0.08 0.17 0.09
Total 96.23 96.93 95.85 95.09 95.57 96.10
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Table 3.3. Representative major and trace element data for selected Antamina porphyry samples. 
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Al2O3 14.95 13.20 13.70 13.35 14.70 12.50 15.40 14.75 14.35 16.10 15.01
CaO 0.76 1.84 1.05 2.74 1.74 0.48 1.84 2.39 2.64 2.11 2.00
Fe2O3 3.94 2.28 1.08 1.65 2.28 2.05 2.39 2.14 0.98 2.02 3.83
K2O 9.19 7.85 8.67 6.21 6.13 8.53 6.62 4.15 4.98 6.73 4.05
MgO 1.04 0.17 1.00 0.87 0.95 1.00 1.30 0.79 0.62 1.25 1.32
MnO 0.03 0.08 0.01 0.02 0.03 0.06 0.04 0.03 0.02 0.02 0.06
Na2O 0.70 0.07 1.34 2.53 2.71 1.13 2.88 3.83 3.28 3.10 3.88
P2O5 0.18 0.07 0.14 0.13 0.15 0.15 0.20 0.13 0.13 0.18 0.16
SiO2 64.2 70.6 71.2 69.1 69.5 72.4 67.0 70.2 71.0 67.2 67.8
SrO 0.06 0.01 0.04 0.07 0.07 0.04 0.07 0.07 0.07 0.07 0.07
TiO2 0.50 0.05 0.42 0.37 0.44 0.40 0.56 0.37 0.36 0.54 0.49
LOI 2.47 2.72 0.83 1.83 0.30 0.54 0.63 0.47 1.06 0.81 0.90
Total 105.7 101.7 99.8 100.8 99.4 100.6 99.4 99.5 100.0 101.2 99.6
Ba 1115 194 902 750 947 869 730 667 695 1010 709
Ce 47.7 52.1 40.5 49.5 48.7 26.9 50.2 56.9 45.7 43.4 43.9
Cr 20 20 20 20 30 20 40 20 30 40 8.3
Cs 5.87 16.9 6.80 4.63 3.17 4.20 4.99 1.94 3.79 10.5 2.00
Dy 1.62 3.16 1.68 1.53 1.60 1.40 1.82 1.47 1.29 1.66 1.77
Er 0.83 1.70 0.68 0.56 0.72 0.60 0.93 0.57 0.60 0.81 0.90
Eu 0.26 0.44 0.60 0.78 0.77 0.59 0.96 0.90 0.76 0.82 0.79
Ga 20.9 14.8 22.5 20.2 21.6 20.3 24.5 23.3 22.0 25.4 19.4
Gd 2.39 3.53 2.12 2.20 2.27 1.62 3.06 2.31 2.18 2.72 2.52
Hf 3.5 3.3 3.2 2.9 3.8 3.5 4.6 3.4 3.6 4.0 3.5
Ho 0.25 0.56 0.27 0.22 0.28 0.21 0.37 0.22 0.24 0.25 0.32
La 22.4 29.6 19.8 25.9 25.5 12.8 25.1 29.2 21.8 20.3 22.0
Lu 0.13 0.20 0.07 0.11 0.12 0.1 0.15 0.06 0.08 0.11 0.13
Nb 8.0 29 7.1 6.0 7.2 5.9 6.5 6.3 5.6 6.0 7.9
Nd 23.0 19.6 18.6 19.9 20.2 14.3 24.7 23.3 20.6 22.0 20.2
Pr 5.65 5.74 4.54 5.11 5.50 3.42 6.17 5.86 5.37 5.34 5.24
Rb 320 243 218 119 138 209 158 97.9 132 209 104
Sm 3.90 4.08 3.20 3.16 3.55 2.21 4.22 3.62 3.43 3.89 3.47
Sn 3 2 2 2 2 2 3 2 3 3 2
Sr 440 31.7 627 588 548 296 581 591 535 581 589
Ta 0.7 2.3 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.7
Tb 0.29 0.56 0.31 0.28 0.29 0.23 0.36 0.28 0.25 0.34 0.34
Th 9.1 12 6.7 8.3 9.3 7.7 9.0 11 11 7.9 9.0
Tm 0.13 0.27 0.09 0.12 0.08 0.08 0.14 0.09 0.09 0.11 0.14
U 3.98 4.14 1.35 2.72 2.06 1.09 1.91 3.70 2.88 2.77 3.10
V 78 5 53 53 51 69 84 45 44 69 67
W 7 3 5 3 6 7 6 2 4 5 1
Y 7.8 18 7.2 6.9 7.5 6.5 9.1 7.0 6.4 7.7 8.7
Yb 0.87 1.7 0.66 0.51 0.67 0.59 0.73 0.70 0.43 0.65 0.90
Zr 136 113 122 109 127 128 161 122 117 137 118
Ag 3.8 1.6 2.5 2.5 0.0 1.1 0.0 2.5 0.0 0.7 963
Cu 163 4 88 52 160 2370 623 24 198 682 2227
Li 20 40 50 20 20 30 30 20 10 20 16
Mo 2 1 19 63 65 128 31 1 6 18 1
Ni 3 1 2 1 3 3 1 1 1 4 4
Pb 10000 119 4 8 9 7 8 11 10 12 13
Sc 5 2 4 4 5 4 6 4 3 5 6
Zn 1720 60 12 21 24 25 30 37 26 34 379
As 123 107 4 1 1 1 1 1 10 22 1
Bi 0.71 0.03 0.04 0.12 0.73 0.12 0.04 0.09 0.27 0.28 0.35
Hg 0.034 0.04 0.003 0.008 0.017 0.009 0.013 0.007 0.011 0.013 2.5
Sb 6.8 0.1 1.6 0.0 0.2 0.3 0.6 0.1 1.2 3.6 0.1
Se 1.6 0.6 0.4 0.3 0.5 1.3 0.3 0.3 0.3 0.4 0.2
Te 1.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Fig. 3.4. Trace element classification of the Antamina porphyries (after Winchester and Floyd, 1977). All of the 
samples display porphyry textures. The complete geochemical data set is provided in Digital Appendix 3.7. 

 

derived from fractionation in the presence of amphibole (i.e., Richards and Kerrich, 2007). 

Negative Eu anomalies are observed in the Oscarina samples, but not in any other samples; 

this may be due to high magmatic fO2 or suppression of plagioclase fractionation under high 

pH2O conditions (e.g., Kay et al., 1991; Lang and Titley, 1998; Richards et al., 2001). Lead 

enrichment in P1- and P2-Oscarina is due to mineralisation (Fig. 3.5 B); LOI values for these 

samples range from 2.30-2.72 wt. % (i.e., Table 3.3 and Digital Appendix 3.7). All samples, 

except for P2-Oscarina, display adakite-like signatures (Sr/Y ≥ 20; Fig. 3.6), which could 

also be a result of high-pressure magmatic fractionation. 
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Fig. 3.5. Multi-element N-MORB and chondrite normalized plots for selected major, minor, and trace elements, 
including rare earth elements (after Sun and McDonough, 1989). All samples show patterns within the range of 
typical arc magmas; Pb enrichment in P1- and P2-Oscarina (B) is due to mineralisation. Panel C shows that the 
Oscarina magmas also have depleted Eu and enriched HREE relative to all other samples. The complete data set 
is available in Digital Appendix 3.7. 
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Fig. 3.6. Sr/Y versus Y plot for the Antamina porphyries (after Defant and Drummond, 1993). 

3.4.4. Intrusive Sequence - Taco Zone 

The Taco zone encompasses approximately 85% of the porphyry-skarn alteration and 

mineralisation that defines the economic resource at Antamina. This zone is characterized by 

at least 4 nested porphyry phases surrounded by skarns (from oldest to youngest they are P1, 

P2a, P2b, and P3 (Fig. 3.7 A-D, Fig. 3.8).P1-Taco (trachyandesite porphyry) is the oldest unit 

observed in this zone. It was emplaced as a series of dykes ranging in width from less than 

one meter to tens of meters. Least-altered P1-Taco is porphyritic and contains up to 75% 

phenocrysts of quartz, plagioclase, and K-feldspar; biotite and amphibole are also present, but 

have largely been replaced by secondary biotite and endoskarn (Table 3.1). This unit contains 

continuous pervasive and massive endoskarn alteration along the P1-wall rock (exoskarn) 

contact (Fig. 3.8). P1 and its associated skarns are cut across by P2 and P3 porphyries (Fig. 

3.7 F and H). Frequently P1 (and associated skarns are incorporated into P2 and P3 as 

xenoliths and sometimes as large blocks or dismembered zones, which can include endoskarn 

and exoskarn, surrounded by P2 (Fig. 3.7 K). Stockwork quartz veins also cut across P1 

porphyry, endoskarn, and exoskarn, and locally account for up to 40% of the total rock 

volume in P1 (Table 3.1).  
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Fig. 3.7. Porphyries and cross-cutting relationships in the Taco zone. See text for detail. 
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Fig. 3.8. Cross section A-A’ through the central Taco zone. Section reference line is shown in Fig. 1.5. 

A comb quartz unidirectional solidification texture (UST) was recognized in P1-Taco, in drill 

hole A545 between approximately 150-200 meters depth, in the northeast section of the Taco 

zone (Fig. 3.7 E, Fig. 3.9). The UST layers are 0.5-5 mm thick with porphyritic aplite 

interlayers. The UST aplite groundmass consists of fine-grained quartz and K-feldspar with 

up to 30% phenocrysts of quartz, K-feldspar, and biotite with lesser plagioclase and 

hornblende (Table 3.1). 
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Fig. 3.9. Cross section B-B’ through the Taco and Oscarina zones. Section reference line is shown in Fig. 1.5. 

P2-Taco (trachyandesite porphyry) forms broad dykes and a stock that occupies the centre of 

the Taco zone (Fig. 3.8). P2-Taco is comprised of two compositionally similar trachyandesite 

porphyries, P2a and P2b (Fig. 3.7 B-C). Compared with P1-Taco, P2 contains up to 5% more 

quartz and up to 10% K-feldspar phenocrysts, and the plagioclase with slightly higher Na 

contents (Table 3.1 and Digital Appendix 3.6). Texturally, P2a is slightly coarser grained 

compared to P2b and displays a variably megacrystic porphyry texture; however in the 

absence of megacrysts the two units are difficult to tell apart. P2b-Taco truncates veins in 
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P2a-Taco (Fig. 3.7 G). Neither P2a nor P2b contain endoskarn alteration, and they cut across 

endoskarn and exoskarn (e.g., Fig. 3.7 F). Stockwork quartz veins are variable in abundance 

and account for up to 25% volume of P2a and P2b, with local increases up to ~40%. 

P3-Taco (trachyandesite porphyry) is the youngest porphyry phase observed in the Taco 

section (Fig. 3.7 D). The true thickness and morphology of this unit are not accurately known 

as it has only been observed in drill core and as isolated blocks in the open pit mine. Drill 

thickness is highly variable from < 1 m to tens of meters. In drill core, P3 dykes display sharp 

contacts (straight edges, occasionally chilled margins) with all older units (Fig. 3.7 I-J). Key 

mineralogical features of P3-Taco include plagioclase glomerocrysts and K-feldspar 

megacrysts, which lack perthite exsolution textures and can exceed 50 mm in length (Table 

3.1). Compared to P1- and P2-Taco, P3-Taco contains significantly fewer stockwork veins 

(Table 3.1). 

3.4.5. Intrusive Sequence – Bornita Zone (Taco South) 

The Bornita zone is located approximately 500 m southwest of the Taco zone (Fig. 3.10). The 

geology of this section is correlative with the Taco zone; igneous units include P1-Taco and 

P2a-Taco (Fig. 3.8). The dyke morphology of these porphyry phases is more evident in the 

Bornita zone even though a post-mineralisation fault cuts through the centre of the section 

(Fig. 3.10); displacement appears to be oblique-normal and offset is minor (≤ 50 m). 

3.4.6. Intrusive Sequence - Usupallares Zone 

The Usupallares zone is located SW of the Taco zone and is connected via a narrow isthmus 

of skarn (Fig. 3.11). Tapering of the Valley Fault dilational zone may have influenced 

intrusion morphology in this zone, as most porphyries were emplaced as narrow (typically < 

10 m wide) dykes and the entire zone is ≤ 500 m wide (Fig. 3.11). Three major porphyry 

phases have been identified in this zone: P1, P2, and P3 (Fig. 3.11 and Fig. 3.12 A-C). 

Compositions trachyandesite, and all phases have plagioclase-phyric porphyry textures with 

K-feldspar megacrysts (Table 3.1). 
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Fig. 3.10. Cross section C-C’ through the Bornita (Taco south) zone. Section reference line is shown in Fig. 1.5. 

P1-Usupallares (trachyandesite porphyry) is the oldest phase in this zone and, like P1-Taco, it 

displays endoskarn alteration along outer margins in contact with exoskarn-altered country 

rock (Fig. 3.11 and Fig. 3.12 A). Endoskarn-altered dyke margins grade into a core of less-

altered P1 porphyry with weak secondary biotite alteration (Fig. 3.11). In the Usupallares 

zone, P1 and P2 have similar textures and compositions (Table 3.1), however P2 (Fig. 3.12 

B) lacks endoskarn alteration and cuts across P1 with sharp contacts (Fig. 3.11 and Fig. 3.12 

E), which confirms the relative timing of emplacement and the genetic relationship between 

P1 endoskarn and P1 exoskarn. Both P1- and P2-Usupallares contain up to 20% (by volume) 

quartz veins. Quartz veins also cut across P1 endoskarn and exoskarn.  
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Fig. 3.11. Cross section D-D’ through the Usupallares zone. Section reference line is shown in Fig. 1.5. 
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Fig. 3.12. Porphyries and cross-cutting relationships in the Usupallares zone. 
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P3-Usupallares (andesite porphyry) has a dark grey groundmass and abundant skarn xenoliths 

(Fig. 3.12 C), which gives it a distinctly different appearance compared to P1- and P2-

Usupallares. P3-Usupallares occurs as narrow dykes along P1-P2 contacts and is the youngest 

porphyry unit observed in the Usupallares zone (Fig. 3.11). P3-Usupallares cuts across P2-

Usupallares and truncates veins in it (Fig. 3.12 F), and contains clasts of skarns related to P1 

(Fig. 3.12 G). It lacks endoskarn alteration, and rarely contains quartz veins (Fig. 3.12 C, G). 

 

Fig. 3.13. Porphyries and cross-cutting relationships in the Condorcocha zone. Map shows detailed geology 
from Fig. 1.5, Inset B (modified after Escalante et al., 2010). 
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3.4.7. Intrusive Sequence - Condorcocha Zone 

The Condorcocha zone is located approximately 1 km NNW of the Taco zone where it forms 

an isolated porphyry centre, approximately 600 m wide, surrounded by a weakly mineralised 

skarn that is partially concealed under Lake Condorcocha (Fig. 1.5 and Fig. 3.13). Two 

porphyry phases have been identified here and a third (the causative intrusion) is inferred 

based on field relationships. In the field, only exoskarn was observed (no endoskarn), but 

given that much of the skarn is concealed under Lake Condorcocha, P1-Condorcocha is 

inferred beneath the lake surface or at depth (Fig. 3.13). P1-exoskarn is cut across by P2-

Condorcocha, which is a trachyandesite porphyry that lacks endoskarn but contains 

hydrothermal biotite veinlets (potassic alteration) and quartz stockwork veins, locally up to 

20% rock volume (Fig. 3.13). P3-Condorcocha is an andesite porphyry dyke with up to 5% 

hornblende, up to 10% biotite, and no quartz stockworks. Based on mapping by Antamina 

geologists, it cuts across P1-Condorcocha skarns and P2-Condorcocha (Fig. 3.13). Alteration 

of P3-Condorcocha consists of minor chlorite after biotite and amphibole (Table 3.1). P3-

Condorcocha occurs along strike of the Oscarina dykes (described below) and is texturally 

and compositionally similar to the Fortuna dykes of Escalante (2008). 

3.4.8. Intrusive Sequence - Oscarina Zone 

The Oscarina zone comprises a set of dykes that intersect the northeast margin of the Taco 

and Condorcocha zones (Figs. 1.5 and 3.9). The dykes were emplaced along steeply dipping 

(~80°), SE-striking (~140°), regional thrust faults (McCuaig, 2003) and exploration mapping 

shows that the dykes are intermittently exposed for approximately 7 km (Fig. 1.5). Both P1- 

and P2-Oscarina display porphyritic textures with 40-60% groundmass; phenocrysts include 

quartz, K-feldspar, plagioclase, biotite and hornblende (Table 3.1). P1-Oscarina is a 

trachyandesite porphyry with localised patches of calcite + epidote ± prehnite alteration (Fig. 

3.14 A and Table 3.1). P2-Oscarina is a trachyte porphyry that contains patchy, weak 

pervasive calcite + chlorite + illite/muscovite alteration (Fig. 3.14 B and Table 3.1). The 

Oscarina dykes lack endoskarn alteration and cut across limestone and marble to the east of 

the deposit (Fig. 3.14 C), and skarns in the northeast Taco zone (Figs. 3.9 and 3.14 D). Quartz 

veins are rare in the Oscarina dykes.  
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Fig. 3.14. Porphyries and cross-cutting relationships in the Oscarina zone. 

3.4.9. U-Pb Zircon Dating Results 

Ten igneous rocks were sampled for U-Pb zircon dating (Figs. 3.15 and 3.16). The selected 

samples represent the porphyry phases most commonly encountered at Taco, Usupallares, 

Oscarina, and Condorcocha and were selected based on cross-cutting relationships and lowest 

alteration intensity. Samples include P1-Taco (A2084-985.0, A545-178.5), P2a-Taco 

(A1854-670.8), P3-Taco (A1854-192.0), P1-Usupallares (A2589-1120.0), P2-Usupallares 

(A2589-367.5), P3-Usupallares (A2589-300.4), P1-Oscarina (AT13-029), P2-Oscarina 

(A2820-186.0), and P2-Condorcocha (M-22). 

Zircons extracted from these samples share some common features: they are euhedral and 

prismatic (ranging from short and equant to elongate and acicular in all samples), up to 400 m 

long, and are invariably pale pink (Fig. 3.17 A-B). Cathodoluminescence (CL) imaging (Fig. 

3.17 C-F) reveals that the Antamina zircons display magmatic oscillatory zoning. several are 

‘antecrysts’, which are early magmatic zircons incorporated into later magmatic pulses (e.g., 

Miller et al., 2007); these display typical magmatic CL textures, but are slightly older than 
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Fig. 3.15. Porphyry samples dated in this study using the U-Pb zircon dating method. 
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Fig. 3.16. Map and cross section E-E’ showing sample location, age, and dating method. Map modified after 
Redwood (2004) and Escalante et al. (2010). Cross section geology is based on logged drill core (this study). 
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juvenile magmatic zircons. Commonly, a juvenile magmatic zircon rim surrounds an 

antecryst core of similar brightness (Fig. 3.17 C-F). A few inherited (Paleozoic to Eocene) 

zircons were encountered in approximately 60% of the samples dated; CL features of these 

zircons typically include bright xenocryst cores surrounded by darker magmatic rims (e.g., 

Fig. 3.17 C-F). Due to the presence and abundance of antecrysts and inherited xenocrysts, 

zircon rims were targeted during laser ablation dating. Analysis of inherited or antecrystic 

zircon domains were not included in our age calculations.

 

Fig. 3.17. Transmitted light and cathodoluminescence (CL) images of representative zircons from four different 
intrusive phases at Antamina. A-B. Transmitted light images of light pink to brown zircons from samples 
A2084-985.0 (P1-Taco) and A2589-367.5 (P2-Usupallares), respectively. Note the pale pink-brown colour of 
the zircons observed in all of the Antamina porphyies. C-D: Zircons dated by the CA-TIMS method (A2084-
985.0 and AT13-029; red outlines). E-F: Samples A2589-367.5 and A1854-192.0 were dated by the LA-ICP-
MS method. Laser ablation spots are denoted by red circles. Zircons outlined in yellow display bright inherited 
cores, while zircons outlined in blue are magmatic antecrysts. See text for detail.  
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Table 3.4 provides a summary of zircon U-Pb dating results. Weighted mean and Tera-

Wasserburg concordia plots (Tera and Wasserburg, 1972) are provided in Fig. 3.18. In most 

cases, Tera-Wasserburg plots show significant age dispersion and overlap along Concordia 

over 2-3 Ma (e.g., Fig. 3.18); therefore weighted mean 206Pb/238U ages were calculated using 

the method described above (for U-Pb zircon, LA-ICP-MS), and are herein reported as 

crystallization ages. Tera-Wasserburg concordia plots are included to illustrate the spread of 

the data and to highlight the points used in our weighted mean age calculations, but they have 

not been used to calculate ages. 

Table 3.4. New U-Pb (LA-ICP-MS and CA-TIMS) zircon ages for the Antamina Porphyry Complex. 

 

P1-Taco (A2084-985.0, A545-178.5): P1-Taco is the oldest unit identified in the APC based 

on cross-cutting relationships. Two samples of P1 were collected from drill core in the Taco 

section (Fig. 3.8, Fig. 3.9, and Fig. 3.16). Sample A2084-985.0 displays strong potassic 

alteration and abundant quartz stockwork veins (Fig. 3.15 A), whereas sample A545-178.5 

displays only traces of chlorite alteration after weak potassic alteration (Fig. 3.15 B). Sample 

A2084-985.0 returned a weighted mean 206Pb/238U age of 10.96 ± 0.06 Ma (MSWD = 1.6) 

based on 3 CA-TIMS analyses (Table 3.4, Fig. 3.18 A-B). Sample A545-178.5 was collected 

from the northeast extension of the Taco section (Fig. 3.9) and returned an age of 10.95 ± 

0.20 Ma (MSWD = 0.02) for 3 LA-ICP-MS zircon analyses (Table 3.4, Fig. 3.18 C-D). They 

are statistically identical, however the CA-TIMS date has much higher precision. Sample 

A545-178.5 contained zircon antecrysts and two inherited zircon grains dated at ~34 Ma 

(Eocene) and ~165 Ma (Middle Jurassic); these are not included in the age calculation.  

Sample ID Rock Type
Intrusive 

phase
Age 
(Ma)

±2σ 
(Ma) MSWD Probability n Method

Taco
A1854-192.0 Megacrystic quartz monzonite porphyry P3 10.25 0.20 1.4 0.23 5 LA-ICPMS
A1854-670.8 Megacrystic granite porphyry P2a 10.71 0.11 0.63 0.82 13 LA-ICPMS
A2084-985.0 Quartz monzonite porphyry P1 10.96 0.06 1.6 0.20 3 CA-TIMS
A545-178.5 Quartz monzonite porphyry P1 10.95 0.20 0.02 0.98 3 LA-ICPMS
Usupallares
A2589-300.4 Megacrystic quartz monzonite porphyry P3 10.24 0.23 0.97 0.38 3 LA-ICPMS
A2589-367.5 Megacrystic granite porphyry P2 10.44 0.14 1.4 0.21 8 LA-ICPMS
A2589-1120.0 Megacrystic granite porphyry P1 10.42 0.11 0.78 0.69 15 LA-ICPMS
Oscarina
A2820-186.0 Granite porphyry P2 10.54 0.11 0.98 0.44 7 LA-ICPMS
AT13-029 Quartz monzonite porphyry P1 10.81 0.02 0.46 0.63 3 CA-TIMS
Condorcocha
M-22 Quartz monzonite porphyry P2 10.61 0.12 0.86 0.59 13 LA-ICPMS



81 

 

 

Fig. 3.18. Weighted mean and Tera-Wasserburg concordia plots (Tera and Wasserburg, 1972) for U-all zircon 
samples dated by Pb geochronology (LA-ICP-MS and CA-TIMS). Ages were calculated using weighted means; 
concordia plots are presented only to show the spread of the data. Continued on next page. 
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Fig. 3.18. Continued. 
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Fig. 3.18. Continued. 
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Fig. 3.18. Continued. 

P2a-Taco (A1854-670.8): One sample of P2a was collected from the drill hole A1854 in the 

central Taco section (Figs. 3.8 and 3.16). The sample contained some veins and clots of light 

brown hydrothermal biotite (also dated in this study; Fig. 3.15 C). Sample A1854-670.8 

yielded an age of 10.71 ± 0.11 Ma (MSWD = 0.63) based on 13 grains (Table 3.4, Fig. 3.18 

E-F). This sample contained zircon antecrysts up to 11.43 ± 0.65 Ma (not included in the 

final age calculation) and no inherited zircons. 

P3-Taco (A1854-192.0): One P3 dyke was sampled (Figs. 3.8 and 3.16). Overall, this sample 

has a well-defined porphyry texture with sharp mineral boundaries and no veining (Fig. 3.15 

D). Alteration consists of minor chloritization after hydrothermal biotite. An age of 10.25 ± 

0.20 Ma (MSWD = 1.4) is reported for 5 zircon grains (Table 3.4, Fig. 3.18 G-H). This 

sample contained zircon antecrysts up to 11.41 ± 0.26 Ma and two inherited zircon grains 

dated at ~80 Ma (Upper Cretaceous) and ~207 Ma (Upper Triassic); these are not included in 

the final age calculation. 

P1-Oscarina (AT13-029): This sample was collected from a surface outcrop of an Oscarina 

dyke behind the haul truck maintenance bay, outside of the open pit mine (Fig. 3.16). The 

sample is a sub-equigranular biotite hornblende trachyandesite porphyry with up to 5% 

secondary biotite after primary biotite and hornblende (Fig. 3.15 E). Age determination by 

CA-TIMS yielded 10.81 ± 0.02 Ma (MSWD = 0.46) for 3 zircons (Table 3.4, Fig. 3.18 I-J). 
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P2-Oscarina (A2820-186.0): This sample was collected from the northernmost dyke in the 

Oscarina zone, along the northeast margin of the APC (Figs. 3.9 and 3.16). The sample is an 

equigranular trachyte porphyry with < 10% chloritized hornblende (Fig. 3.15 F). An age of 

10.54 ± 0.11 Ma (MSWD = 0.98) for 7 zircons was determined by LA-ICP-MS (Table 3.4, 

Fig. 3.18 K-L). Together with sample AT13-029 (P1-Oscarina), these samples constrain the 

age of the Oscarina dykes from 10.81 ± 0.02 to 10.54 ± 0.11 Ma. The oldest zircon antecryst 

is 11.46 ± 0.34 Ma, and two inherited zircon grains were dated at ~102 Ma (Lower 

Cretaceous) and ~255 Ma (Permian); these are not included in the final age calculation. 

P1-Usupallares (A2589-1120.0): This sample shows weak secondary biotite alteration and 

patchy endoskarn alteration, and is cross-cut by a quartz-molybdenum-pyrite vein (also dated 

in this study; Figs. 3.11, 3.15 G, and 3.16). Fifteen zircon grains yielded a weighted mean age 

of 10.42 ± 0.11 Ma (MSWD = 0.78; Table 3.4, Fig. 3.18 M-N). This sample contained zircon 

antecrysts up to 11.28 ± 0.62 Ma (not included in the final age calculation) and no inherited 

zircons. 

P2-Usupallares (A2589-367.5): This sample comes from the northernmost P2-dyke in the 

Usupallares section (Figs. 3.12 and 3.16). It displays minor secondary biotite alteration and < 

2% quartz vein density (Fig. 3.15 H). Based on 8 zircons, the sample yielded a weighted 

mean age of 10.44 ± 0.14 Ma (MSWD = 1.4; Table 3.4, Fig. 3.18 O-P). This sample 

contained zircon antecrysts up to 12.17 ± 0.93 Ma and one inherited zircons dated at ~417 

Ma (Lower Devonian); these are not included in the final age calculation. 

P3-Usupallares (A2589-300.4): This sample is from a narrow (~50 cm) P3 dyke (Figs. 3.11 

and 3.16). Like other P3 dykes, this specific dyke has a dark groundmass and is essentially 

free of cross-cutting veins; however unlike other P3 samples, this dyke contains xenoliths of 

P2, skarn, quartz vein fragments, and traces of chalcopyrite (Fig. 3.15 I). In order to date this 

unit, groundmass was separated from xenoliths using a trim saw; xenolith-free groundmass 

was send to UTAS for dating (as described above). Based on 3 zircon analyses, an age of 

10.24 ± 0.23 Ma (MSWD = 0.97) was obtained (Table 3.4, Fig. 3.18 Q-R). This age is coeval 

with P3-Taco dykes (10.25 ± 0.20 Ma) observed 500 m to the northeast of Usupallares (Fig. 

3.16). This sample also contained antecrysts up to 12.03 ± 0.44 Ma and two inherited zircons 

dated at ~90 Ma (Upper Cretaceous) and ~223 Ma (Upper Triassic), which are not included 

in the final age calculation. 
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P2-Condorcocha (M-22): This sample is from an outcrop of the Condorcocha stock (Figs. 

3.13 and 3.16). It is a crowded trachyandesite porphyry with approximately 15% fine-grained 

secondary biotite in the groundmass, and is cross-cut by 5% quartz-pyrite stockwork veins 

(Fig. 3.15 J). Based on 13 zircons, an age of 10.61 ± 0.12 Ma (MSWD = 0.86) is reported for 

the Condorcocha stock (Table 3.4, Fig. 3.18 S-T). This sample contained zircon antecrysts up 

to 11.59 ± 0.98 Ma (not included in the final age calculation) and no inherited zircons. 

 

Fig. 3.19. U-Pb (LA-ICP-MS) age and 2σ error for endoskarn titanite sample A545-214.5, northeast Taco zone. 
B-C: photomicrographs showing the mineralogical context and size variability of titanite in the ablated sample 
(cross-polarized light). Abbreviations: Cal: calcite, Cpx: clinopyroxene, Qtz: quartz, Ti: titanite. 
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3.4.10. U-Pb Titanite Dating Results 

Endoskarn sample A545-214.9 (northeast Taco zone; Fig. 3.16) returned an age of 11.2 ± 1.3 

Ma (MSWD = 1.6), based on 10 analyses of five titanite grains (Fig. 3.19). Four analyses 

were excluded from the final age estimate due to signal interference from inclusions. The 

sample contained many titanite grains that were too small to accommodate the 44 µm laser 

beam, whereas some larger titanite grains were ablated in 2-3 spots (as noted in Digital 

Appendix 3.2). 

3.4.11. 40Ar/39Ar Biotite Dating Results 

Three new hydrothermal biotite ages are reported in this study, two samples from P1-Taco 

groundmass and one from a biotite vein cutting across P2a-Taco. 

 

Fig. 3.20. Hydrothermal biotite samples dated in this study using the 40Ar/39Ar step-heating method. 

P1-Taco (A2629-198.0 and A1623-203.0): Sample A2629-198.0 is located approximately 

400 m northeast of the central Taco zone and sample A1623-203.0 is located approximately 

300 m southeast of the central Taco zone (Fig. 3.16). These samples contain pervasive 

secondary biotite with incipient clinopyroxene endoskarn alteration (Fig. 3.20 A) and some 

quartz veins (Fig. 3.20 B). Care was taken to avoid including quartz vein fragments in the 

mineral separates, which also contained fine (≤ 0.5 mm) medium-dark brown biotite flakes. 

Two analytical runs (denoted as -a and -b) were completed for each sample A2629-198.0 and 

A1623-203.0 (Table 3.5). For both samples the “-a” analyses are preferred due to the 100% 
39Ar gas release plateau (Fig. A3.2 A, C). In contrast, the “-b” analyses show some evidence 

for disturbance; A2629-198.0-b has high apparent ages at low temperature (Fig. A3.2 B) and 

A1623-203.0-b spectrum displays a slight saddle shape (Fig. A3.2 D). Despite these minor 
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differences, the two sets of results are similar. The presence of a Ca-rich mineral (most likely 

clinopyroxene ± calcite) is also noted in the high Ca/K part of each spectrum (Fig. A3.2 A-

D). These may be inclusions or contaminants from the host rock; in either case they do not 

appear to have significantly affected the age spectra. It is interesting to note that the total gas 

ages are more similar than the plateau ages for each sample, indicating that some of the 

disturbance features of the "-b" analyses may be due to internal redistribution of 39Ar between 

inclusions and the biotite host mineral; this could explain the younger plateau ages reported 

for “-b” analyses (Table 3.5). The preferred ages for A2629-198.0 and A1623-203.0 are 11.4 

± 0.5 Ma and 10.5 ± 0.4 Ma, respectively (Table 3.5; Fig. A3.2 A-D). 

Table 3.5. 40Ar/39Ar hydrothermal biotite ages for the Taco zone, Antamina deposit. 

 

A sample of hydrothermal biotite in P2a-Taco (A1854-670.8) was collected from the central 

Taco zone (Fig. 3.16). It contained clots and veins of coarse-grained (1-2 mm), light brown 

biotite flakes that were easily separated from the igneous groundmass (Fig. 3.20 C). No 

quartz veins are noted in this sample. The sample returned an error weighted plateau age of 

10.2 ± 0.2 Ma (Table 3.5; Fig. A3.2 E-F). In comparison, zircon from this same sample 

returned a U-Pb age of 10.71 ± 0.11 Ma (Table 3.5). 

3.4.12. Re-Os Molybdenite Dating Results 

Five molybdenite samples were dated in order to constrain the age of mineralisation with 

respect to porphyry emplacement and skarn formation. All Re-Os dates reported here 

represent the age of mineralisation (Table 3.6); these are the first Re-Os ages reported for 

Antamina (Fig. 3.16). 

  

Sample ID Unit
Plateau 

age (Ma)
1σ 

(Ma)
% 39Ar 
released

Total gas 
age (Ma)

1σ 
(Ma)

Preferred 
age (Ma)

2σ 
(Ma) Comment

A1854-671.8-a P2a-Taco 10.21 0.05 98.8 10.12 0.08
A1854-671.8-b P2a-Taco 10.10 0.07 50.3 10.73 0.07
A1623-703.0-a P1-Taco 10.50 0.16 100 10.67 0.21 10.5 0.4 Plateau age
A1623-703.0-b P1-Taco 9.68 0.15 82.7 11.04 0.15 - - -
A2629-198.0-a P1-Taco 11.41 0.24 100 11.14 0.29 11.4 0.5 Plateau age
A2629-198.0-b P1-Taco 9.84 0.20 91.1 10.86 0.31 - - -

10.2 0.2 Error weighted plateau age
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Table 3.6. Re-Os molybdenite ages for the Antamina deposit. 

 

Molybdenite samples were selected from endoskarn, exoskarn, and veins in P1-Usupallares, 

and P2a-Taco (Fig. 3.2). Two non-overlapping mineralisation ages are observed in skarns, 

from 10.58 ± 0.07 to 10.44 ± 0.05 and 10.39 ± 0.05 Ma. Two younger, also non-overlapping, 

ages are reported for veins hosted in P2a-Taco and P1-Usupallares, 9.99 ± 0.04 and 9.68 ± 

0.05 Ma, respectively (Table 3.6; Fig. 3.16). In the northeast Taco zone, molybdenite from 

endoskarn is younger (10.58 ± 0.07 Ma; A2629-198.0) than hydrothermal biotite in the 

groundmass of the same sample (11.4 ± 0.5 Ma); the nearest P1 U-Pb zircon age is 10.95 ± 

0.20 Ma, approximately 600 m to the southeast (Fig. 3.16). In the Bornita zone, the age of 

molybdenite in exoskarn (10.44 ± 0.05 Ma; A1390-580.2) overlaps with hydrothermal biotite 

in P1-Taco (10.5 ± 0.4 Ma; A1623-703.0), approximately 500 m to the northeast (Fig. 3.16). 

In the Usupallares zone, a molybdenite age in endoskarn (10.39 ± 0.05 Ma; A1974-480.0) is 

indistinguishable from P1-, P2-, and P3-Usupallares zircon ages (10.44 ± 0.14 to 10.24 ± 0.23 

Ma) approximately 700 m to the northeast (Fig. 3.16). A molybdenum + quartz vein in P2a-

Taco is younger (9.99 ± 0.04 Ma; A1536-195.0) than zircon in its equivalent host rock (10.71 

± 0.11 Ma, A1854-670.8; Fig. 3.18 E). Similarly, another molybdenum + quartz vein from 

the Usupallares zone is younger (9.68 ± 0.05 Ma; A2589-1120.0) than its P1 host rock (10.42 

± 0.11 Ma; A2589-1120.3; Fig. 3.18 M). 

3.5. Discussion 
3.5.1. Role of P1 in Skarn Formation 

All of the porphyry phases documented at Antamina display evidence for mineralising 

potential, including the presence of magmatic biotite ± hornblende, quartz stockwork veins, 

and weak to strong potassic alteration. However, only two of the documented phases (P1-

Sample ID Zone
Rock    
Type

Re 
(ppm) ± 2σ

187Re 
(ppb) ± 2σ

187Os 
(ppm) ± 2σ

Age 
(Ma) ± 2σ

Paragenetic 
Stage*

Quartz-molybdenite veins in intrusions
A2589-1120.3 Usupallares P1 29.51 0.08 18548 49 2.991 0.007 9.68 0.05 Stage II
A1536-195.0 Taco P2a 133.5 0.30 83928 217 13.964 0.012 9.99 0.04 Stage II
Skarns
A1974-480.0 Usupallares Endoskarn 69.08 0.23 43420 150 7.514 0.019 10.39 0.05 Stage I
A1390-580.2 Taco Exoskarn 78.01 0.20 49034 127 8.528 0.025 10.44 0.05 Stage I
A2629-198.0 Taco Endoskarn 75.92 0.24 47720 150 8.409 0.042 10.58 0.07 Stage I
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Taco and P1-Usupallares) display endoskarn alteration, which provides a clear genetic link to 

the surrounding exoskarns. P1-Condorcocha has an associated skarn, but is inferred under 

cover. P1-Oscarina, P2-Oscarina, and P3-Condorcocha contain hornblende and biotite, but 

lack potassic alteration, endoskarn, and quartz stockwork veins, indicating lower 

temperatures of formation and weaker mineralising potential. Here we examine the 

relationship between P1 porphyries and skarn formation at Antamina. 

Emplacement of P1-Taco (10.95 ± 0.20 Ma) was accompanied by multiple pulses of 

magmatic fluid exsolution (and hydrothermal alteration), as indicated by the presence of UST 

quartz layers and locally high densities of quartz stockworks in the Taco zone. Comb-layered 

quartz is an igneous texture that forms in the cupola zone of shallow felsic intrusions and 

each layer is indicative of fluid exsolution and release from a crystallising magma 

(Lowenstern and Sinclair, 1996). Release of magmatic fluids is also indicated by quartz 

stockwork veins, which form in response to hydraulic fracturing of wall rocks (including the 

crystallised margin of P1-Taco), and subsequent fluid egress (e.g., Burnham, 1997). 

Interaction of these magmatic-hydrothermal fluids with calcareous wall rocks drove the 

formation of endoskarns and exoskarns associated with P1-Taco. Stockwork veins observed 

in P1-Usupallares indicate a similar process took place at approximately 10.42 ± 0.11 Ma, 

leading to the formation of slightly younger skarns southwest of the Taco zone. Between the 

Taco and Usupallares zones, the skarns coalesce, creating one continuous aureole of skarn 

alteration around (and in) the APC. 

Titanite dated from a P1-Taco endoskarn (11.2 ± 1.3 Ma) overlaps the entire range of 

magmatic and hydrothermal ages reported in this study. The poor quality of the analyses have 

contributed to the large error, which is likely due to the presence of inclusions or open-system 

behaviour during skarn formation. 

3.5.2. P2 and P3 Inter-Mineralisation Porphyries 

In the Taco zone, P2a-, P2b- and P3 (10.71 ± 0.11 Ma to 10.25 ± 0.2 Ma) cut across P1 and 

its associated skarns, thereby constraining the age of the early skarn formation. Similarly, in 

the Usupallares zone, P2 and P3 (10.44 ± 0.14 to 10.24 ± 0.23 Ma) constrain the age of P1 

skarns. Inter-mineralisation porphyries (P2, P3) in the Taco and Usupallares zones may have 

also contributed metals to the earlier skarns, thereby increasing the endowment of the whole 
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system.  These inter-mineralisation porphyries share many similarities with P1 in terms of 

magmatic-hydrothermal potential; they all contain magmatic biotite, quartz stockworks, and 

localized potassic alteration. One key difference is that they lack endoskarn alteration. The 

absence of endoskarn in these inter-mineralisation porphyries does not preclude their skarn-

forming potential, though it does indicate that there was a lack of proximal reactive wall rock 

and Ca available to drive skarn alteration. Magmatic-hydrothermal fluids associated with the 

emplacement of P1 consumed most (if not all) of the proximal carbonate rocks during early 

skarn formation. As a result, any fluids released from these inter-mineralisation porphyries 

would have to be transported to the marble front before any further skarn-forming reactions 

could take place. It is conceivable that any reactive wallrocks encountered by these fluids 

would form another generation of skarn, coalescing with early P1 skarns. Quartz stockworks 

cutting across P1-skarns provide some evidence that hydrothermal fluids were transported 

away from the porphyry centres into existing skarns, and beyond. 

3.5.3. Condorcocha 

The 238U/206Pb zircon age reported for P2-Concorcocha (10.61 ± 0.12 Ma; this study) is 

within error of the previously reported 40Ar/39Ar ages for biotite (11.02 ± 0.09 Ma; Love et 

al., 2003) and hornblende (10.85 ± 0.25 Ma; Escalante, 2008) from the same area. The 
238U/206Pb zircon age of P2-Condorcocha (10.61 ± 0.12 Ma; this study) overlaps with P2a-

Taco (10.71 ± 0.11 Ma), P2-Oscarina (10.54 ± 0.11 Ma), and P1- to P2-Usupallares (10.42 ± 

0.14 to 10.44 ± 0.14 Ma). The timing of emplacement coincides with a peak in magmatic-

hydrothermal activity in the adjacent APC, where porphyry emplacement, skarn formation, 

and mineralisation was actively taking place. Given the ~1 km proximity of Condorcocha to 

Antamina, and the age and textural similarities, it is reasonable to question why Condorcocha 

did not acquire a metalendowment on the same scale as Antamina. Field evidence indicates 

that the APC comprises at least seven syn-mineralisation porphyry phases, in contrast to 

Condorcocha where only two porphyry phases (P1 inferred and P2 documented) comprise the 

main stock, which are cut by a later porphyry (P3). This indicates that the emplacement of 

multiple fertile porphyry phases (versus one or two) can have a cumulative effect on 

enhancing the grade and tonnage of a magmatic-hydrothermal ore deposit. 
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3.5.4. Oscarina Dykes 

The Oscarina dykes were emplaced along thrust faults roughly perpendicular to the 

orientation of the APC. Based on 40Ar/39Ar ages, Escalante (2008) concluded that the 

Oscarina dykes were slightly older than the APC intrusions. Our new U-Pb zircon ages 

(Table 3.4), however, show that P1-Oscarina (10.81 ± 0.02 Ma) was emplaced after P1-Taco 

(10.96 ± 0.06 Ma). Cross-cutting relationships were not observed between the Oscarina dykes 

and any of the Taco porphyries, although the dykes lack endoskarn alteration and quartz 

stockwork veins, and cut across Taco exoskarns (Fig. 3.9 and Fig. 3.14 D). Based on these 

observations, the Oscarina dykes do not appear to be related to skarn formation at Antamina. 

Furthermore, their different structural orientation (Fig. 1.5), geochemical composition (Fig. 

3.5 B-C), and lack of high-temperature alteration assemblages (potassic, endoskarn; Table 

3.1) may indicate that they were sourced from a separate magma chamber, or via a different 

fractionation process, than the APC porphyries. 

3.5.5. Protracted and Pulsed Magmatism 

Based on the age dispersion along concordia (on the order of approximately 1.8 to 3.6 million 

years) and overlap observed in these porphyry samples, it appears that a protracted period of 

zircon growth and recycling was a standard process in the magma reservoir(s) underlying the 

Antamina deposit. Some degree of overlap is expected due to the precision of the LA-ICP-

MS dating method (compared to the higher precision TIMS method); nonetheless, some 

samples show a distinct age gap between the oldest and youngest concordant zircon. For 

example, A1854-192.0 (P3-Taco) shows approximately 1.9 Ma of age dispersion [(oldest 

zircon + 2σ error) – (youngest zircon - 2σ error)] along concordia and an age gap [(oldest 

zircon - 2σ error) – (youngest zircon + 2σ error)] of approximately 0.8 Ma between the oldest 

(age + 2σ error) and youngest (age - 2σ error) concordant zircons (Fig. 3.18). Likewise, 

zircon ages from A2589-367.5 (P2-Usupallares) are dispersed along concordia by 

approximately 2.2 Ma with an age gap of approximately 0.9 Ma (Fig. 3.18). While the 

youngest concordant zircons in each sample have been selected to represent the age of final 

crystallization, the older concordant zircons are most likely to be antecrysts recycled in the 

same magma chamber (e.g., Miller et al., 2007). It is through this process that each 

successively younger porphyry phase obtained a range of zircon ages spanning up to 

approximately 3 million years with no overlap between the oldest and youngest concordant 



93 

 

ages. This idea is supported by zircon CL textures displaying magmatic rims surrounding 

partially resorbed cores of similar brightness (Fig. 3.17). While the LA-ICP-MS data lack the 

precision of CA-TIMS, a subtle inheritance trend is still apparent, which is reasonable for a 

porphyry system. 

It is interesting to note that many of the samples also contain zircons inherited either from the 

source or the host rocks. These zircons range in age from Lower Devonian to Eocene and can 

be recognized by their bright CL response (Fig. 3.17). Geological units that correspond with 

these ages comprise the bedrock that hosts and underlies the Antamina deposit. This indicates 

that there has been some amount of crustal interaction and assimilation with these magmas, 

which is an expected process in a subduction-related continental arc (Hildreth and Moorbath, 

1988). 

3.5.6. Timing of Mineralisation 

In the Taco zone, Stage I molybdenite ages range from 10.58 ± 0.07 to 10.44 ± 0.05 Ma and 

overlap with P2a (10.71 ± 0.11 Ma) and P3 (10.25 ± 0.20 Ma) U-Pb zircon ages; these ages 

are significantly younger than P1 zircon ages in the Taco zone (10.95 ± 0.20. Ma). In the 

Usupallares zone, Stage I molybdenite (10.39 ± 0.05 Ma) overlaps with all of the intrusions 

in that zone, from P1 (10.42 ± 0.14) to P3 (10.24 ± 0.23 Ma). Stage II molybdenite ranges 

from 9.99 ± 0.04 Ma in the Taco area to 9.68 ± 0.05 Ma in the Usupallares area; these ages 

do not appear to overlap with any of the porphyries dated in this study. 

Because zircon ages record early-stage magma crystallisation (at temperatures near or 

exceeding 900°C) and molybdenite deposition occurs once temperatures have cooled to 

hydrothermal conditions (approximately <450°C), the molybdenite stages identified in this 

study cannot be definitively linked to any specific porphyry. However, these new Re-Os 

molybdenite ages display a spatial relationships with the Antamina porphyries. Both Stage I 

and Stage II molybdenite ages decrease from northeast (Taco) to southwest (Usupallares) 

along the axis of the deposit (Fig. 3.16). This pattern of southwest-sweeping mineralisation 

along the axis of the APC is in cadence with the northeast to southwest younging of U-Pb 

ages in the APC porphyries (Fig. 3.16). Together, the zircon and molybdenite ages constrain 

the duration of magmatic-hydrothermal activity in the APC to approximately 1.52 million 

years, with the main phase occurring over a maximum duration of 0.52 Ma (P2a-Taco (10.71 
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± 0.11 Ma) to P2-Usupallares (10.44 ± 0.14 Ma), including Stage I molybdenite (10.39 ± 

0.05 Ma)). 

3.5.7. Width and Lateral Continuity of the Antamina Skarn 

Field evidence indicates that P1-Taco and P1-Usupallares were emplaced as dykes extending 

upward into the wall rock, likely from a shallow stock (e.g., Fig. 3.7 K). This irregular 

porphyry geometry increased the reaction surface area at the porphyry-wall rock interface and 

each apophysis acted as a conduit for skarn-forming fluids, as evidenced by the pervasive 

endoskarn alteration of both P1-Taco and P1-Usupallares dykes. Additional factors such as 

the redox potential of the magma and wall rock, volume and duration of fluids released, as 

well as formation depth likely contributed to the width, lateral extent, and continuity of the 

Antamina skarns. All of the porphyries examined in this study contain magnetite (no 

ilmenite), which is indicative of oxidised magmas. The wall rocks are medium grey to black, 

with various amount of organic carbon; some rocks contain up to 3.6% organic carbon 

(Chapter 2 and Digital Appendix 2.3). The high organic carbon content is not favourable for 

skarn formation, as during thermal metamorphism the organic carbon may be heated and 

converted to CO2. This CO2 in the system will suppress subsequent skarn formation, as the 

process of skarn formation also produces CO2 (e.g., quartz + carbonate  wollastonite + 

CO2). The higher XCO2 caused by reaction of organic carbon will retard or even stop the 

skarn forming reactions. On the other hand, skarn formation at shallow depths tends to be 

more laterally extensive than at greater depths (e.g., Chang and Meinert, 2008), because at 

shallow depths the wall rocks are more amenable to brittle deformation and fracturing, which 

provides effective fluid flow channels to allow escape of the CO2 generated during thermal 

metamorphism, and more extensive penetration of skarn-forming magmatic hydrothermal 

fluids into the country rocks (Meinert, 2005). In contrast, at depths exceeding ~8 km wall 

rocks tend to be ductile, which significantly decreases the fracture densities of the rocks, 

thereby blocking fluid flow and resulting in narrower skarn zones (Chang and Meinert, 

2008). In addition, at greater depths the water solubility in magmas is higher (e.g., Burnham, 

1997), which is unfavourable for hydrothermal fluid exsolution and skarn formation. A 

shallow depth of emplacement for P1-Taco is supported by the narrow thermal metamorphic 

halo (~500-800 m wide), ~800-1000 m wide skarn zone and numerous apophyses 

(presumably taking advantage of brittle fractures in the shallow crust) surrounded by skarn. 
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The combination of multiple pulses of oxidizing magma emplaced in a shallow crustal setting 

may have subdued the reducing potential of the wall rocks to favour the development of 

laterally extensive, coalesced skarns at Antamina. 

3.5.8. Structural Controls 

Skarn alteration zones are narrower in the Usupallares zone (~500 m) compared to the Taco 

zone (~800-1000 m), and at Usupallares it is possible to see the outward zoning of 

endoskarn-exoskarn-marble over tens of meters along open pit highwalls (e.g., Fig. 3.12 H). 

This is likely due to the influence of the Valley Fault; the Taco zone coincides with 

maximum dilation along this structure, whereas Usupallares formed in a structurally-

controlled hanging valley perpendicular to the main Valley Fault zone (Fig. 1.5). In addition 

to a shallow depth of emplacement, the Valley Fault probably influenced fluid flow, the 

width of alteration zones, and the overall shape of the deposit (McCuaig, 2003). 

3.5.9. Formation of the Giant Antamina Deposit 

In the largest porphyry districts around the world, economic deposits are typically formed by 

clusters of fertile porphyry phases emplaced in several pulses on the order of millions to 

hundreds of thousands of years; examples include El Teniente, Chile (Maksaev et al., 2004), 

Tampakan, Philippines (Rohrlach and Loucks, 2005), Grasberg, Indonesia (Pollard et al., 

2005), Yanacocha, Peru (Longo et al., 2010), and Coroccohuayaco, Peru (Chelle-Michou et 

al., 2015). The ages in context with the intrusion paragenesis at Antamina show that this giant 

deposit formed in several short magmatic-hydrothermal pulses rather than a protracted period 

of intense magmatic-hydrothermal activity. The bulk of the economic resource formed in the 

Taco zone over approximately half a million years; this does not include Stage II molybdenite 

mineralisation, which formed at least 0.02 million years after P3-Taco emplacement. P1- and 

P2-Usupallares were emplaced during P2- and P3-Taco magmatism and the Usupallares zone 

formed over approximately 0.9 million years. The southeastwardly progressive younging of 

relatively short duration magmatic-hydrothermal events was likely controlled by dilation 

along the Valley Fault; the coalescing of skarns and porphyries along this structural corridor 

resulted in the formation of the giant Antamina deposit.  
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Fig. 3.21. A model for the vertical and lateral extent of the Antamina skarn deposit. A. Intrusion of P1into 
marble forms early skarns and mineralisation. Stockwork veins form in P1, but they do not propagate into the 
wall rock as porphyry-style alteration; skarns form instead. B. Intrusion of P2. Stockwork veins associated with 
P2 cut across P1 and earlier skarns, but where marble is available skarns form. C. Intrusion of P3/late 
porphyries. Associated stockwork veins cut across P1, P2, and earlier formed skarns. If marble is available, new 
skarns are formed. In case B and C, newly formed skarns coalesce with existing skarns. In A, B, and C 
mineralisation is added to the skarns and porphyries in each step, thereby enhancing the ore grade as well as the 
vertical and lateral extent of skarn alteration. 

3.5.10. Exploration 

Considerations for district-scale exploration include the composition of the host rocks, 

structural controls, the number of porphyry phases emplaced, and the presence of multiple 

fertility indicators (composition, mineralogy, texture) in an intrusive centre. Intrusive centres 

comprised of several hydrous (i.e., containing hornblende and/or biotite) porphyries are 

favoured over isolated stocks for enhancing the magmatic-hydrothermal potential. Multiple 

generations of quartz stockwork veins indicate good hydrothermal potential of a magma. 

Additional, more obvious, indicators of fertility include the presence of hydrothermal 

alteration (potassic or skarn) and visible mineralisation. The high Sr/Y (42-87, average 65) in 

all Antamina porphyries, except for P2-Oscarina, indicate that they are prospective for 

porphyry Cu ± Mo ± Au (and associated skarn) deposits (Richards, 2011). The REE patterns 

observed for all porphyries (with exception to P1- and P2-Oscarina) show enriched LREE 

and depleted HREE, which is consistent with amphibole fractionation and is another 
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prospectivity indicator (Richards, 2011). These geochemical compositions, coupled with the 

presence of biotite ± hornblende, are indicative of a high magmatic water contents that are 

needed to drive the formation of large mineralised systems. Structurally-focused porphyry 

emplacement (e.g., McCuaig, 2003) into reactive wall rocks is ideal; the lateral and/or 

vertical migration in porphyry emplacement coupled with uplift over time allows 

progressively younger magmas to interact with carbonate wall rocks, which is necessary for 

skarn formation and mineralisation. 

3.6. Conclusions 

Formation of the giant Antamina skarn-porphyry deposit occurred over a relatively short time 

period on the order of up to 1 Ma, based on the approximate time elapsed between 

emplacement of P1-Taco (10.95 ± 0.20 Ma) and P3-Usupallares (10.24 ± 0.23 Ma). In this 

study I have identified several factors that played an important role in promoting skarn 

formation at Antamina, including the emplacement of at least 11 fluid-rich porphyries, 

structural focussing of magmas and hydrothermal fluids, and an abundant supply of carbonate 

in favourable host rock for skarn formation and mineralisation. While each factor alone is not 

unique to Antamina, it is the combination of these factors at the right time and location that 

enhanced the otherwise typical ore-forming processes in this active arc setting. 

Eleven porphyry phases have been documented in the APC, Oscarina, and Condorcocha 

zones; all phases (except the Oscarina dykes) contain quartz stockwork veins and weak to 

moderate potassic alteration, but only 3 display a genetic relationship to their surrounding 

skarns (P1-Taco, P1-Usupallares, and P1-Condorcocha). Uranium-Pb zircon ages for all of 

the porphyries show dispersion (~2-3 million years) and overlap along Concordia, indicative 

of recycling and recharge in a large composite magma chamber. In contrast, U-Pb zircon ages 

the adjacent Condorcocha stock show a single age population and less complex magmatic 

history. The APC is comprised of intermediate composition porphyries (trachyte-

trachyandesite-andesite compositions), they contain biotite ± hornblende, and all phases are 

cross-cut by quartz stockwork veins. Porphyry emplacement was strongly influenced by the 

pre-existing structural framework, including a series of NW-trending thrust faults intersected 

by the NE-trending Valley Fault system. In general, porphyry ages (U-Pb zircon) and 

mineralisation ages (Re-Os molybdenite) display younging to the southwest along the axis of 
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the Valley Fault from Taco to Usupallares (NE to SW). Exceptions include the Oscarina 

dykes and the Condorcocha stock, both of which have different structural controls and 

potentially different source magma chambers from the APC. The formation of the giant 

Antamina porphyry-skarn deposit can be attributed to the emplacement of multiple fertile 

porphyries along a NE-trending, dilational structural corridor, into reactive calcareous wall 

rocks, over a relatively short timeframe, between 10.95 ± 0.20 to 10.24 ± 0.23 Ma.  
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3.8. Appendix 

Table A3.1. Previously published geochronology for the Antamina and Condorcocha deposits. 

 

Sample ID
UTM 
East

UTM 
North Location Description Mineral Method

Age 
(Ma)

± 2σ 
(Ma) Reference

L-14 8945138 273508 Taco Pit K-altered Qtz monzonite ppy K-feldspar K-Ar 9.6 0.2 McKee et al. (1979)
CMA 335 8945425 273862 Taco Pit K-altered Qtz monzonite ppy Ser Ar-Ar 9.75 0.07 Love et al. (2003)
CMA 206 8944898 273464 Taco Pit Late white endoskarn Ser, Plg Ar-Ar 9.8 0.1 Love et al. (2003)
CMA 009 8945310 274050 Taco Pit Phyllic altered Qtz monzonite ppy Ser Ar-Ar 9.81 0.06 Love et al. (2003)
CMA 190 8945308 274047 Taco Pit K-altered Qtz monzonite ppy K-feldspar Ar-Ar 9.87 0.07 Love et al. (2003)
CMA 238 8945482 273670 Taco Pit Phyllic altered Qtz monzonite ppy Ser Ar-Ar 9.9 0.1 Love et al. (2003)
CMA 179 8945306 274043 Taco Pit K-altered Qtz monzonite ppy Plg Ar-Ar 9.98 0.09 Love et al. (2003)
CMA 206 8944898 273464 Taco Pit Early massive endoskarn Ser, Plg Ar-Ar 10.00 0.16 Love et al. (2003)
CMA 009 8945310 274050 Taco Pit Phyllic altered Qtz monzonite ppy Bio Ar-Ar 10.09 0.07 Love et al. (2003)
R-16 8945138 273508 Taco Pit K-altered Qtz monzonite ppy Bio K-Ar 10.1 0.6 McKee et al. (1979)
CMA 226 8945180 274100 Taco Pit Coarse grained ppy Bio Ar-Ar 10.18 0.07 Love et al. (2003)
2PAT-02 8945299 273553 Taco Pit Endoskarn Bio Ar-Ar 10.29 0.36 Escalante (2008)
CMA 238 8945480 273670 Taco Pit Phyllic altered Qtz monzonite ppy Bio Ar-Ar 10.12 0.07 Love et al. (2003)
CMA 335 8945425 273862 Taco Pit K-altered Qtz monzonite ppy Bio Ar-Ar 10.18 0.07 Love et al. (2003)
CMA 179 8945310 274040 Taco Pit K-altered Qtz monzonite ppy Bio Ar-Ar 10.3 0.07 Love et al. (2003)
CMA 190 8945310 274048 Taco Pit K-altered Qtz monzonite ppy Bio Ar-Ar 10.39 0.08 Love et al. (2003)
2PAT-18 8945324 273621 Taco Pit Late dike Zircon U-Pb 10.52 0.17 Escalante (2008)
2PAT-11 8945467 273755 Taco Pit Bio-Plg-ppy Zircon U-Pb 10.73 0.1 Escalante (2008)
ANT-183 8943982 272830 Usupallares I-2-C ppy K-feldspar Ar-Ar 10.1 0.1 Love et al. (2003)
ANT-WEST-F 8944026 272599 Usupallares K-altered, plg-rich ppy with Ksp megacrysts K-feldspar K-Ar 10.4 0.4 McKee et al. (1979)
2PAT-08 8945101 273564 Usupallares Bio-orthoclase-megacryst dike Zircon U-Pb 10.56 0.21 Escalante (2008)
ANT-1 8945516 274970 Oscarina Potassic-propylitic altered Qtz monzonite ppy Bio K-Ar 9.1 0.4 McKee et al. (1979)
ANT-EES 8946248 274233 Ridge Road Phyllic altered Qtz monzonite ppy K-feldspar K-Ar 10.2 0.3 McKee et al. (1979)
2PAT-06 8945202 274744 Oscarina dike Hbl-Bio-Plg ppy Hbl Ar-Ar 10.6 1.1 Escalante (2008)
2PAT-06 8945202 274744 Condorcocha Hbl-Bio-Plg ppy Bio Ar-Ar 10.76 0.16 Escalante (2008)
4PAA231 8945984 273918 Quarry Bench Qtz feldspar ppy dike Bio Ar-Ar 10.85 0.07 Escalante (2008)
4PAA127 8947008 273049 Condorcocha Qtz feldspar ppy dike Hbl Ar-Ar 10.85 0.25 Escalante (2008)
4PAA230 8946100 273819 Quarry Bench Qtz feldspar ppy dike Bio Ar-Ar 10.93 0.09 Escalante (2008)
4PAA125 8946332 273323 Fortuna dike Silicified dacite ppy dike Bio Ar-Ar 10.94 0.08 Escalante (2008)
ANT-198 8947000 273000 Condorcocha Qtz feldspar ppy dike Bio Ar-Ar 11.02 0.09 Love et al. (2003)
Abbreviations: Biotite (Bio); hornblende (Hbl); plagioclase (Plg); quartz (Qtz); sericite (Ser); porphyry (ppy).
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Fig. A3.1. Weighted average and Concordia plot for Temora-2 U-Pb zircon geochronology standard. 
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Fig. A3.2. Age spectra plots of 40Ar/39Ar step-heating experiments on hydrothermal biotite. Continued on next 
page. 
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Fig. A3.2. Age spectra plots of 40Ar/39Ar step-heating experiments on hydrothermal biotite. Continued from 
previous page.



111

Chapter 4: 
Alteration and Mineralisation 

 



112 

 

4.1. Abstract 

The Antamina Cu-Zn-Mo deposit, in Peru is the largest skarn in the world with resources of 

~2,968 Mt, averaging 0.89% Cu, 0.77% Zn, 11 g/t Ag and 0.02% Mo as of 2015. The deposit 

displays systematic patterns of alteration and mineralisation centred on a multi-phase 

porphyry centre that is surrounded by skarns. Outward from the centre of the Taco zone the 

alteration consists of potassic alteration (hydrothermal biotite) transitioning into endoskarn, 

then exoskarn, bleached marble, and fluid escape structures in the most distal reaches of the 

deposit. Within the skarns there are systematic zoning patterns defined by garnet colour, 

garnet:clinopyroxene ratio, and garnet and clinopyroxene compositions. Garnet colour 

changes from pink to red to brown in endoskarn and from red to brown and green (from 

proximal to distal) in exoskarn. Overall, the skarn mineralogy is dominated by garnet with 

lesser clinopyroxene, and the change in abundance is partly controlled by the fO2 of the wall 

rocks, as well as distance from the central porphyry complex; garnet > clinopyroxene 

typically occurs proximal to the endoskarn contact and in wall rocks with low organic carbon 

contents, such as marble in the Jumasha and/or Celendín formations. Clinopyroxene > garnet 

tends to occur in distal exoskarns or in wall rock precursors with higher organic carbon 

contents, such as the Celendín Formation in the Usupallares section. Garnet becomes more 

andradite-rich and grossularite-poor from proximal to distal skarns, and clinopyroxene 

becomes more hedenbergite-rich and diopside-poor along the same spatial trend. 

Mineralisation and metal zoning shows an outward progression from Mo ± Cu in the central 

porphyry, to Cu (± Ag, Bi)-Zn-Pb from proximal to distal exoskarns. The ore mineralogy is 

dominated by molybdenite, chalcopyrite, bornite, and sphalerite with lesser galena and minor 

Bi-Ag-S minerals. Fluid inclusions in a unidirectional solidification texture (UST) sample 

from P1-Taco consist of four types assigned to primary and secondary assemblages. Primary 

inclusions are highly saline with liquid-vapour-solid phases and contain up to 5 translucent 

daughters plus a triangular opaque daughter. Secondary inclusions display variable 

proportions of liquid-vapour-solid phases, but are generally less saline and more vapour-rich 

than primary inclusions. Primary inclusions homogenise by halite disappearance, whereas 

secondary inclusions homogenise to the liquid state. Lithostatic pressure estimates from 

primary fluid inclusions range from 1.2 to 0.95 kbar, which equates to a depth of formation 

range from ~4.6 to 3.5 km. Coupled with estimates of surface uplift and erosion in the 

Central Peruvian Andes (from the early Miocene to present), the ideal depth of formation is 
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between 4.0 to 3.5 km, which is within error of the estimates derived from fluid inclusion 

microthermometry in this study. 

4.2. Introduction 

This research was conducted for the purpose of establishing the broad- and local-scale zoning 

patterns intrinsic to the porphyry-skarn transition at Antamina. Understanding these patterns 

is important because zoning trends in magmatic-hydrothermal systems, such as skarns and 

porphyries, can be used to understand fluid origins and to improve the prediction of ore 

zones. This chapter combines new results from core logging and field observations to refine 

the current understanding of orebody geometry at Antamina. 

Skarns and porphyry deposits typically display well-developed mineralogical zoning patterns 

that can be used to understand fluid origins and to predict the location of ore zones. 

Establishing the composition and distribution of alteration minerals is a fundamental aspect 

of any study of these deposit types. Many skarns and porphyries are related in time and space, 

so the study of one can provide insight on the other. 

Porphyry deposits are one of the most thoroughly studied deposits types and typical porphyry 

alteration zoning is well-documented; the simplified alteration pattern includes a multi-phase 

intrusive centre containing potassic alteration surrounded by propylitic alteration on the sides 

and advanced argillic alteration on the top, cut by phyllic alteration (Gustafson and Hunt, 

1975; Sillitoe, 2010). However, if the wall rocks are calcareous, skarns may form along the 

margins of a porphyry deposit or a subeconomic intrusion (Meinert, 2005; Sillitoe, 2010). 

The skarns will also display systematic mineralogical zoning that is largely dependent on the 

composition and oxidation state of the intrusions and wall rocks (i.e., Meinert, 1995; Chang 

and Meinert, 2008). Generalised patterns include garnet colour becoming lighter away for the 

causative intrusion, and proximal garnet to distal clinopyroxene ± wollastonite if the 

causative intrusion is oxidized and the wallrocks are reduced. Beyond the skarn alteration, a 

zone of contact metamorphosed and pervasively bleached country rock transitions into 

progressively narrower bleached veins along fluid escape structures. From a combined-

system approach, these patterns provide a framework in which to examine the porphyry-skarn 

transition. 
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Previous studies on the Antamina deposit have identified several features typical of 

porphyries and skarns. These include a multi-phase porphyry centre surrounded by well-

developed skarns. The skarns zoned outward from the porphyry centre as follows: brown 

garnet endoskarn, mixed brown and green garnet indeterminate skarn, mixed brown and 

green garnet exoskarn, green garnet exoskarn, diopside exoskarn, wollastonite exoskarn, 

hornfels, marble, and limestone (Lipten and Smith, 2005). The principal ore minerals include 

chalcopyrite, sphalerite, and molybdenite, with lesser bornite, galena, and Cu-Bi-Ag-Fe 

sulphides. In general, metal zoning patterns show that Mo is largely confined to the APC (and 

stockwork veins extending outward from the deposit centre), Cu is most abundant in 

proximal endoskarns and exoskarns, and Zn is concentrated in distal exoskarns near the 

marble front.  

The work of previous researchers established the broad-scale zoning patterns of alteration and 

mineralisation, however many questions remain. To answer these questions, samples from 

outcrops and drill core were studied to determine mineralogy and mineral chemistry. The 

major alteration styles and zoning patterns were characterised from the central porphyry 

complex outward beyond the distal skarns. Fluid inclusions in quartz from a unidirectional 

solidification texture (UST) provide insight on fluid chemistry and depth of deposit 

formation. The results of this chapter are combined into a model for skarn and ore formation 

in the context of a dynamic early Miocene magmatic arc undergoing active uplift and erosion. 

4.3. Samples and Methods 
4.3.1. Core Logging and Sampling 

Thirty-one drill holes were logged, accounting for approximately 15,500 m of drill core from 

five cross sections (Fig. 1.5). A summary of the drill holes logged in this study is presented in 

Table A4.1. Core logging criteria included: rock type and description, garnet/clinopyroxene 

ratio, garnet colour, intrusion alteration and intensity, and retrograde alteration and intensity. 

Representative samples of drill core (½ NQ diameter) were selected from each rock type. A 

total of 869 samples were documented in the field and/or collected for analysis by the 

methods described in this section. Several samples were polished and scanned at high 

resolution to document specific features of alteration and/or mineralisation.  
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4.3.2. Petrography 

Polished thin sections of the representative rock types were prepared by Lanfang Hongxin 

Geology and Exploration Service Co. Ltd. in Hebei, China. Photomicrographs were acquired 

using Leica DM 4000 microscope. 

4.3.3. Electron Microprobe WDS Spot Analyses 

Major-element compositions of selected minerals in polished thin sections were determined 

in situ using a JEOL JXA-8200 Superprobe equipped with five wavelength-dispersive 

spectroscopy (WDS) detectors, housed in the Advanced Analytical Centre (AAC) at James 

Cook University (JCU). WDS spot analyses were collected for sphalerite (n = 40) and 

silicates, including garnet (n = 176), clinopyroxene (n = 186), feldspars (n = 48), vesuvianite 

(n = 7), epidote (n = 27), chlorite (n = 24), and amphibole (n = 23), and biotite (Digital 

Appendix 4.1). Microprobe operating conditions and analytical conditions [element analysed 

(standard, line, crystal)] for each routine are listed as follows: Sphalerite: 20 keV acceleration 

voltage, 20 nA current, absolute minimum (2-3 µm) beam diameter, and 10 µm working 

distance; Zn (Tsphal20k, Kα, LIF), Fe (a1marc20k, Kα, LIFH), S (Tsphal20k, Kα, PETJ). 

Silicates: 15 keV acceleration voltage, 20 nA current, 5 µm beam size, and 10 µm working 

distance; Na (albite, Kα, TAP), Fe (hematite, Kα, LIF), Mn (spessartine, Kα, LIFH), F (F-

TAP, Kα, TAP), Cl (tugtupite, Kα, PETJ), Si (wollastonite, Kα, TAP), Ti (rutile, Kα, LIF), 

Al (almandine, Kα, TAP), Ca (wollastonite, Kα, PETJ), Mg (olivine, Kα, TAP), and K 

(orthoclase, Kα, PETJ). 

4.3.4. WDS Element Mapping 

The distribution of selected elements was mapped using an electron microprobe equipped 

with WDS detectors (as above). Maps were created for comb-layered quartz (UST) and to 

locate zircon in skarn-altered rocks. Zircon maps were acquired using a 50 µm electron beam 

with an accelerating voltage of 15 kV, a beam current of 100 nA, a step size of 50 µm and 

100 ms dwell time. Spectrometers collected data for P (Kα, TAP), Ti (Kα, LIF), Zr (Lα, 

PETH), Al (Kα, TAP), and Ca (Kα, PETJ). Comb quartz maps were acquired using a 6 µm 

electron beam with an accelerating voltage of 20 kV, a beam current of 200 nA, step size of 6 

µm and 100 ms dwell time. Spectrometers collected data for Si (Kα, TAP), Fe (Kα, LIF), Ti 
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(Kα, LIFH), Al (Kα, TAP), and K (Kα, PETJ). Another comb quartz map was acquired using 

a 3 µm electron beam with an accelerating voltage of 20 kV, a beam current of 500 nA, step 

size of 4 µm and 150 ms dwell time. Spectrometer settings were the same as for the previous 

comb quartz map. Element maps were processed offline using ImageJ software. 

4.3.5. X-Ray Diffraction 

The qualitative mineralogy of selected samples was determined using X-ray diffraction 

(XRD). Hand-picked mineral separates and whole rock samples were crushed and milled to a 

finely-ground, homogenous powder (at least 0.5 grams). The powder was mounted in a 

sample holder and analysed using a Siemens D5000 Diffractometer equipped with 

Theta/2Theta goniometer and copper anode X-ray tube housed at the JCU AAC. The data 

were collected and analysed using Bruker DiffracPlus software, the search/match option, and 

the ICDD PDF-2 (2011) database. Interpretation was performed by an Intertek minerals 

specialist in Townsville, Queensland, Australia. Mineral abundances were reported as 

follows: dominant (> 50%), major (> 10%), minor (< 10%), trace (< 1%), and possible (may 

be present; designation is not unambiguous). 

4.3.6. Sulfur Isotopes 

Twenty-one samples were selected for analysis from Stage 2 sulphides in skarns and calc-

silicate hornfels. Prepared mineral separates that included pyrite, sphalerite, galena, and 

bornite were selected for 34S analyses. Isotopic analyses were conducted at the USGS stable 

isotope lab Denver, Colourado. Mineral separates were combined with vanadium pentoxide 

powder (catalyst for combustion) in tin capsules and analyzed by continuous flow mass 

spectrometry, following pyrolysis of the sample to SO2 gas using methods modified from 

Giesemann et al. (1994). Instrumentation includes a CE Elantech Inc. Flash 2000 Elemental 

Analyzer with a Conflo III interface, coupled to a Thermo-Finnigan Delta Plus XP 

continuous flow mass spectrometer. Samples were analyzed alongside internationally 

accepted standards, including NBS123 and IAEA-S-3 (Coplen et al., 2001). Values of δ34S 

are expressed relative to the Vienna Cañon Diablo Troilite (VCDT) with a precision of 0.2‰, 

based on replicate analyses. 
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4.3.7. Fluid Inclusions 

Doubly-polished fluid inclusion sections, approximately 300 µm thick, were prepared by 

Langfang Hongxin Geology and Exploration Service Co. Ltd. in Hebei, China. Each section 

was mounted on a glass slide using acetone-soluble glue, which was removed through 

repeated cycles of soaking and refreshing in concentrated acetone until no glue residue 

remained. Petrographic observations were made for each section and schematic maps were 

drawn to scale for areas of interest. Each map includes layers representing the z-dimension at 

5°-10° increments for precise spatial orientation and to facilitate the depiction of 3D sample 

details in 2D. Physical parameters (length, width, degree of fill, number of phases, etc.) were 

recorded prior to breaking the sample into smaller chips, up to 8 mm, to fit in the sample 

carrier on the heating-freezing stage. 

Microthermometry was conducted using a Linkam MDS600 heating-freezing stage with 

temperature limits of -190°C to 600°C, attached to an Olympus BX52 microscope equipped 

with 40x and 50x long working distance objectives. The stage conditions (heating/freezing), 

temperature limits, and real-time video observation were controlled through Linksys32 

software provided by Linkam. Low-temperature calibration was conducted using a standard 

CO2-H2O fluid inclusion (manufactured by FluidInc) in which the solid to liquid phase 

changes of CO2 (-56.6°C) and H2O (0.0°C) were reproduced to within ± 0.3°C prior to taking 

measurements on the test samples. For higher temperatures the stage was calibrated based on 

the critical homogenesation of pure H2O in synthetic quartz fluid inclusions (374.1°C),  

Phase transitions measured in the test samples include the last ice melting temperature (Tm) 

and/or the homogenization temperature (Th). Effort was made to obtain both Tm and Th for 

each inclusion measured, however due to physical limitations (small size, poor clarity, 

metastable behaviour, etc.), this was not always possible. In order to observe Tm, the sample 

was cooled to at least -100°C, then heated to 0°C at an initial rate of 20°C/min, then 

progressively slowing to a rate of < 2°C/min approaching the phase change. Homogenization 

temperatures were measured using the strategy, heating at higher rate initially then 

progressing to a slower heating rate approaching the phase change. Measurement of Th was 

determined by observing the gradual shrinking and subsequent disappearance of the vapor 

bubble, followed by at least 10°C of rapid cooling to test for bubble reappearance. Failure of 

the vapour bubble to immediately reappear was a good indication of complete 
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homogenization; however, an error of ± 5°C is applied to all Th measurements to account for 

the difficulty in observing this phase change once the bubble size diminishes beyond visual 

recognition. 

Solid, liquid, and vapour phase compositions were measured using a WITec Alpha300 R 

confocal Raman microscope housed in the JCU AAC. An Ar+ ion laser operating at 44 mW 

was used to produce an excitation wavelength of 532 nm line. The scanning range of spectra 

was set between 100 and 4000 cm-1 with an accumulation time of 10 seconds for each scan, 

and a spectral resolution of 0.65 cm-1. The Raman shift of a monocrystalline silicon piece was 

measured to be 520.7 cm-1 before the analysis. Further information on the analysis procedure 

is available in Burke (2001).  

4.4. Results 

The Antamina deposit displays a continuum of alteration styles between porphyry and skarn 

end-members and, with few exceptions, all rocks at Antamina have been altered to some 

degree. Three major stages of alteration are recognised across the porphyry-skarn transition at 

Antamina: potassic and prograde alteration (Stage 1), retrograde alteration and Cu-Mo-Zn-Pb 

mineralisation (Stage 2), and late phyllic alteration and Mo mineralisation (Stage 3; Fig. 4.1). 

Most of the features described in this section are common across the Taco, Oscarina, and 

Usupallares zones, unless otherwise specified. 

4.4.1. Stage 1: Potassic and Prograde Skarn Alteration 

Early alteration consists of hydrothermal biotite ± K-feldspar (potassic alteration) in intrusive 

rocks, and garnet ± clinopyroxene in prograde endoskarn and exoskarn (Fig. 4.2 A-D). 

Hydrothermal biotite occurs as a disseminated and selectively pervasive replacement of 

igneous biotite and/or amphibole (Fig. 4.2 A), or as veinlet-controlled alteration (equivalent 

of A-veinlets of Titley, 1982). In these potassic-altered rocks, disseminated pyrite is visible 

with the naked eye and the rocks are weakly magnetic, indicating that disseminated magnetite 

is present (Fig. 4.1). In the central Taco zone (below 3,500 m above sea level), purple 

anhydrite + quartz veins were observed in potassically-altered rocks (Fig. 4.2 B). 
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Fig. 4.1. Alteration and mineralisation paragenesis chart for the Antamina deposit. See text for detail. 
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Fig. 4.2. Caption on next page. 
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Fig. 4.2. Stage 1 (early) potassic and prograde skarn alteration. A. Hydrothermal biotite A-veinlets in P1-Taco. B. 
Quartz-anhydrite vein cutting across P1-Taco. C. Cpx veinlets and weak potassic alteration in P1-Taco. D. Strong 
potassic alteration + endoskarn in A1623-511.3, P1-Taco. E. Endoskarn vein cutting across P1-Taco. F. 
Moderately strong endoskarn (porphyry texture still apparent) showing cpx veinlets. G. Garnet endoskarn in P1-
Usupallares, porphyritic texture preserved, A2589-198.3. H. Exoskarn-endoskarn contact in A2589-694.0, P1-
Usupallares. I. Red garnet + wollastonite exoskarn, Taco zone. J. Garnet + clinopyroxene exoskarn, Taco zone. 
K. Clinopyroxene exoskarn cut across by Stage 2 chlorite, Taco zone. L. Wollastonite exoskarn with Stage 2 
sphalerite, A206-332.0, Taco zone. All scales in cm.  Abbreviations: Hyd. Bio: hydrothermal biotite; Gt: garnet; 
Cpx: clinopyroxene; Endo: endoskarn; Exo: exoskarn; Sph: sphalerite; Woll: wollastonite. 

 

Fig. 4.3. Ternary composition plots of skarn garnet and clinopyroxene. Compositions are expressed in terms of 
end members Ad: andradite, Gr: grossularite; Sp: spessartine; Al: almandine; Pyr: pyrope; Di; diopside; Hd: 
hedenbergite; Jo: johanssenite. Fields for Zn and Cu skarns are after Meinert et al. (2005). 

Endoskarn and exoskarn formed early during prograde skarn alteration in igneous rocks and 

wall rocks, respectively. Both endoskarn and exoskarn occur as massive to partial 

replacements of their respective host rocks, but are sometimes difficult to tell apart due to the 

range of inherited textures that are not always diagnostic of skarn type (Chapter 2). Prograde 

skarn mineralogy is dominated by garnet with lesser clinopyroxene ± wollastonite (Fig. 4.2 

E-L). Garnet compositions, measured in mol % andradite (Ad) – grossularite (Gr) – and 

spessartine-almandine-pyrope (Sp+Al+Pyr) end members, range from Ad35-91Gr04-62 in 

endoskarn and Ad30-99Gr01-89 in exoskarn; the Sp+Al+Pyr contents of all skarn garnets do not 

exceed 5.8 mol % (Fig. 4.3 and Digital Appendix 4.1). Endoskarn garnet is pink to red and 

exoskarn garnet is red-brown-green. Garnet in calc-silicate hornfels ranges from Ad7-64, and 

in one vein sample Ad72-85 (Fig. 4.3). Clinopyroxene colour is invariably medium to dark 
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green (Fig. 4.2) and the compositions range from Hd1-98 in exoskarn, Hd3-55 in endoskarn, and 

Hd5-33 in calc-silicate hornfels (Fig. 4.3). The johannsenite component is all less 10 mol 

percent. Plagioclase (common) and K-feldspar (rare) are present in both endoskarn and 

exoskarn; plagioclase compositions, measured in mol % anorthite endmember, (An) range 

from ~An19-60 in endoskarn (n = 34) and ~An41-44 in exoskarn (n = 3; Fig. 4.4, Digital 

Appendix 4.1). K-feldspar also occurs in both skarn types (Fig. 4.4, Digital Appendix 4.1). 

Endoskarn occurs in P1 porphyries in the Taco, Usupallares, and Condorcocha zones (P1-

Oscarina cuts across skarn alteration); it was not observed in any P2 porphyry, indicating that 

this alteration stage is related to early magmatic-hydrothermal activity. Prograde endoskarn 

alteration is well-developed along the outer margin of P1 (Fig. 4.5). The transition from skarn 

to porphyry-style alteration (toward the centre of P1) is marked by either a gradational 

change from endoskarn (clinopyroxene ± garnet) to potassic (hydrothermal biotite) alteration 

(Fig. 4.5), or by the presence of endoskarn veins infiltrating potassic-altered igneous rocks 

(Fig. 4.2 C-F). The endoskarn veins observed at Antamina are similar to those described by 

Chang and Meinert (2008); they are composed of garnet ± clinopyroxene, range in size from 

1 mm up to about 1 cm, display irregular shapes and edges, are discontinuous, and may join 

other endoskarn veins to form coalesced skarn-altered zones. Exoskarn occurs as a massive 

replacement of marble wall rocks in contact with early P1 porphyries. As a result, exoskarn 

forms a shell around the early, endoskarn-altered porphyries that comprise the centre of the 

Antamina deposit (Fig. 4.5). The prograde exoskarn mineralogy is dominated by garnet ± 

clinopyroxene and lesser, distal wollastonite (Fig. 4.2 H-L). 

4.4.2. Stage 2: Retrograde Skarn Alteration and Cu-Mo-Zn-Pb Mineralisation 

Retrograde alteration is common in both endoskarn and exoskarn at Antamina, and the 

intensity is structurally controlled, with the strongest alteration noted along contacts or veins. 

The dominant retrograde assemblage consists of quartz + sulphides ± calcite ± epidote ± 

vesuvianite ± chlorite ± magnetite, with lesser fluorite, phlogopite, and rare ilvaite (Figs. 4.6 

to 4.11). Quartz + sulphides ± calcite fills interstices between garnet and clinopyroxene, and 

forms veins that cut across the skarns (Fig. 4.6 A). Chlorite occurs as a selvage around some 

quartz + sulphide ± calcite veins, and as a partial replacement of garnet-clinopyroxene (Fig. 

4.6 G). Vesuvianite and epidote replace garnet and/or clinopyroxene (Fig. 4.6 B, I-K, C-E) 

and occurs as veins/ selvages with quartz ± calcite ± pyrite ± magnetite (Fig. 4.6 F).  
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Fig. 4.4. Ternary plot of plagioclase and K-feldspar compositions in endoskarn and exoskarn (igneous 
compositions from Antamina porphyries are included for comparison). 
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Fig. 4.5. Alteration and metal zoning in the Taco section (cross section A-A’). 
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Fig. 4.6. Stage 2 retrograde alteration assemblages. A. Quartz-sulphide-calcite vein cuts across prograde garnet 
endoskarn. Garnet is partially replaced by vesuvianite. B. Vesuvianite-diopside after garnet in calc-silicate 
hornfels. C-E. Massive garnet exoskarn partially replaced by epidote (photomircographs D: plane polarised light, 
E: cross-polarised light). F. Epidote-quartz vein cuts across garnet exoskarn. D. Chlorite veinlets cut across 
clinopyroxene exoskarn. H. Epidote after garnet and prehnite after feldspar(?) in P1-Oscarina. I-K: 
photomicrographs showing the replacement of prograde clinopyroxene and titanite by calcite and sphalerite (I: 
plane polarised light, J: cross-polarised light, K: reflected light). Abbreviations: Cal: calcite; Chl: chlorite; Cpx: 
clinopyroxene; Di: diopside; Epi: epidote; Gt: garnet; Ksp: K-feldspar; Prh: prehnite; Py: pyrite; Qtz: quartz; Sph: 
sphalerite; Ti: titanite; Ves: vesuvianite. 
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Fig. 4.7. Stage 2 chalcopyrite and bornite mineralisation. A. Chalcopyrite replacement in brown garnet exoskarn. 
B. Intermineralisation chalcopyrite vein cuts a quartz vein and is cut by a later quartz vein. C. Bornite-
chalcopyrite-quartz vein. D. Proximal green garnet exoskarn replaced by bornite-chalcopyrite. E-F. Reflected 
light photomicrographs of sulphides in (D), showing bornite exsolution textures (Bn-1, Bn-2), and related 
sulphides. See text for detail. Abbreviations: Ap: apatite; Bn: bornite; Bn-1: bornite solid solution composition 
#1; Bn-2: bornite solid solution composition #2; Gt: garnet; Cp: chalcopyrite; Gn: galena; Qtz: quartz; Sph: 
sphalerite; Wit: wittichenite. 
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Fig. 4.8. Stage 2 and 3 molybdenite mineralisation. A-B. Stage 2 molybdenite in endoskarn. C. Stage 2 
molybdenite in exoskarn. D: Stage 3 banded molybdenite veins cutting across Stage 1 porphyry and exoskarn. E. 
Stage 3 banded molybdenite + quartz + purple anhydrite vein cutting across Stage 1 potassic alteration. F. Stage 
2 molybdenite cut by a quartz vein. G. Stage 3 molybdenite cutting across a Stage 1 exoskarn. H. Stage 3 
molybdenite + quartz vein cut across by a Stage 3 pyrite vein. I. Stage 3 molybdenite cutting across earlier quartz 
veins. J. Stage 3 molybdenite cutting across P3-Taco and a Stage 2(?) biotite vein. K. Stage 3 molybdenite + 
quartz vein cutting across Stage 1 quartz + anhydrite veins in P1-Taco. Abbreviations: Anh: anhydrite; Bio: 
biotite; Chl: chlorite; Cpx: clinopyroxene; Exo: exoskarn; Endo: endoskarn; Gt: garnet; Mo: molybdenite; Qtz: 
quartz. 
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Fig. 4.9. Stage 2 retrograde mineral assemblages. A. A2669-865.9, chalcopyrite + sphalerite in exoskarn at the 
marble front. B-E. Examples of distal ore assemblages in exoskarn. F. Sphalerite displaying chalcopyrite disease 
in proximal garnet exoskarn, sample A206-299.5, Taco-Bornita zone. G-H. Sphalerite + galena ± fluorite vein 
cutting across P2-Oscarina dyke. I-K: Sample A1390-307.0, a Stage 2 retrograde assemblage consisting of 
vesuvianite intergrown with sphalerite, calcite, pyrite, and chalcopyrite cut across Stage 1 exoskarn. 
Abbreviations: Bn: bornite; Cal: calcite; Cpy: chalcopyrite; Gn: galena; Gt: garnet; Plg: plagioclase; Py: pyrite; 
Qtz: quartz; Sph: sphalerite; Ves: vesuvianite; Woll: wollastonite. 
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Fig. 4.10. Stage 2 and Stage 3 alteration and mineralisation assemblages. A-I: Pyrite and pyrrhotite (Stage 2), J-
M: pyrite stage 3. Abbreviations: Cal: calcite; Chl: chlorite; Cpy: chalcopyrite; Epi: epidote; Exo: exoskarn; Gt: 
garnet; Ksp: K-feldspar; Mo: molybdenite; Mt: magnetite; Py: pyrite; Qtz: quartz; Sph: sphalerite; Ves: 
vesuvianite.  
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Fig. 4.11. Stage 2 and Stage 3 rare minerals. A. Sample A3053-23.4, fluorite-pyrite-quartz-K-feldspar-calcite in 
P2-Taco. B. Quartz-calcite-ilvaite in exoskarn. C. Sample A545-154.9, garnet + scheelite vein cuts across prehnite 
alteration in P1-Taco. D. Photomicrograph (crossed polars) detail of garnet + scheelite vein from (C). E. 
Cathodoluminescence image of a scheelite crystal from (D). Abbreviations: Anh: anhydrite; Cal: calcite; Gt: 
garnet; Ksp: K-feldspar; Py: pyrite; Qtz: quartz; Sch: scheelite. 

 

The majority of mineralisation at Antamina formed during Stage 2 retrograde alteration and 

occurs in endoskarns, exoskarns, and in veins cutting across porphyries. A minor amount of 

mineralisation is noted in marble and hornfels. Copper, molybdenum, and zinc sulphides 

comprise the principal ore minerals; these include chalcopyrite (CuFeS2), bornite (Cu5FeS4), 

molybdenite (MoS2), and sphalerite (ZnS). Pyrite (FeS2) and magnetite (Fe3O4) are common, 

but of lesser economic importance. Minor minerals include galena (PbS) and pyrrhotite (Fe(1-

x)S). Rare occurrences of chalcocite (Cu2S) and wittichenite (Cu3BiS3) have also been noted 

(Fig. 4.1). 

Chalcopyrite is the major host for copper at Antamina. It is widely distributed among distal 

and proximal skarns and porphyries, and occurs as disseminations, patchy replacements, and 

veins (Fig. 4.7). In distal exoskarns, chalcopyrite is typically patchy and intergrown with 

pyrite ± sphalerite (Fig. 4.7 A-B), whereas in proximal exoskarns it occurs with bornite and 
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inside sphalerite as chalcopyrite disease texture (Fig. 4.7 C-F). Veins containing chalcopyrite 

± pyrite ± quartz ± calcite cut across porphyries (Fig. 4.7 B).  

Bornite is locally abundant and restricted to the Bornita Zone, southwest of the Taco zone. It 

occurs with chalcopyrite ± quartz in the interstices between garnet ± clinopyroxene (Fig. 4.7 

D). Assays from this zone show a significant enrichment in Cu and Bi. Under reflected light, 

bornite is purple (Bn-1) with pinkish-purple blebs (Bn-2) and displays a complex suite of 

cleavage-controlled exsolution minerals, including chalcocite and wittichenite (Fig. 4.7 E-F). 

Despite the colour difference, Bn-1 and Bn-2 both fall within the range of natural bornite 

solid solution (as determined by EDS), although Bn-1 is slightly enriched in Cu and Fe 

compared to Bn-2. Cleavage-controlled exsolution of chalcopyrite, wittichenite, chalcocite, 

an Ag-sulfosalt, and galena are spatially associated with Bn-1 (Fig. 4.7 E-F). 

Molybdenite is the primary source of molybdenum (Mo) at Antamina. The highest Mo 

concentrations occur in and surrounding the Taco porphyry centre, but a considerable amount 

of molybdenite is also hosted in the skarns (Fig. 4.6 and Fig. 4.8). Based on Re-Os ages 

(Chapter 3) and field observations, molybdenite mineralisation took place over at least 3 

stages spanning the formation of the Antamina deposit. Three styles of molybdenite 

mineralisation are observed at Antamina: Type 1 consists of early stringer veins containing 

molybdenum ± quartz (10.58 ± 0.07 Ma, Fig. 4.8 A-B), Type 2 early patchy replacements in 

exoskarns (10.44 ± 0.05 to 10.39 ± 0.05 Ma; Fig. 4.8 C), and Type 3 consists of late banded 

quartz + molybdenite veins (9.99 ± 0.04 Ma and 9.68 ± 0.05 Ma; Fig. 4.8 D-E). Stage 2 

molybdenite ± quartz stringer veins are narrow (typically maximum 5 mm wide), 

discontinuous, wavy veins that cut across P1 potassic- and endoskarn-altered porphyries (Fig. 

4.8 A-B). Frequently, they are cut by later quartz veins (Fig. 4.8 F). Patchy molybdenite ± 

chlorite is observed in exoskarns (Fig. 4.8 C). Banded molybdenum + quartz veins are 

described in Stage 3 of the paragenesis, as they cut across earlier mineralised skarns, 

porphyries, and veins, including quartz + anhydrite veins (Fig. 4.8 K). 

Sphalerite is the dominant ore mineral in distal exoskarn with lesser amounts occurring in 

proximal exoskarn, and only rare occurrences in endoskarn (Fig. 4.5). The colour varies from 

light to dark brown and the crystals are typically subhedral to anhedral. Two modes of 

occurrence have been observed: veins and patchy to semi-massive replacements (Fig. 4.9). 

Disseminated, patchy, and semi-massive replacements are the most common style of Zn 
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mineralisation at Antamina. This style is observed in distal exoskarns and is dominated by 

fine to coarse grained intergrowths of sphalerite with lesser chalcopyrite ± pyrite ± galena ± 

calcite ± quartz ± wollastonite ± vesuvianite (Fig. 4.9). Less commonly, sphalerite occurs 

interstitial to green garnet with bornite, chalcopyrite, and minor quartz in the proximal 

exoskarns of the central Taco zone; this mode of occurrence displays “chalcopyrite disease”, 

whereas semi-massive replacements and veins do not (Fig. 4.9 F). In drill hole A2890, 

sphalerite + galena + calcite + fluorite veins cut across the Oscarina dykes (Fig. 4.9 G-H). 

The Fe content of disseminated, patchy and semi-massive sphalerite varies from 2.4 to 5.3 wt. 

% (average 3.3 wt. %, n = 30) except for one sample that ranges from 6.6 to 10.2 wt. % 

(average 8.6 wt. %, n = 6; Digital Appendix 4.1). One interstitial sample with chalcopyrite 

disease has significantly lower Fe contents than the patchy and semi-massive samples, 

ranging from 0.3 to 0.4 wt. % (average 0.3 wt. %, n = 6; Digital Appendix 4.1). 

Galena occurs as subhedral to anhedral crystals, up to a few millimetres, and is mainly 

intergrown with pyrite and sphalerite (Fig. 4.9). The abundance of galena is localized to distal 

skarns and polymetallic veins, some of which extend beyond the skarns into marble and 

hornfels; it also occurs in in trace amounts with the bornite exsolution assemblage (described 

above) observed in proximal exoskarn (Fig. 4.7 F). 

Pyrite occurs in all rock types at Antamina, and it is most abundant in Stage 2 retrograde 

skarn alteration. Stage 2 pyrite ranges from coarse grained (up to 3 cm), euhedral cubes to 

subhedral patchy clusters intergrown with sphalerite, chalcopyrite, quartz, and calcite; the 

same assemblage also occurs as veins that cut across skarns and porphyries (Fig. 4.10 A-H). 

Within the skarn zones at Antamina, pyrite is the most common Fe-sulphide, however 

beyond the outer limits of skarn alteration, pyrrhotite becomes more abundant than pyrite. 

Pyrrhotite is most commonly observed as fine disseminations or veins cutting across marble, 

often surrounded by a bleached halo (Fig. 4.10 I). The transition from proximal pyrite (in the 

skarns and porphyries of Antamina) to distal pyrrhotite (in the surrounding metamorphic 

rocks) delineates the extent of oxidised hydrothermal fluid interaction with the reduced wall 

rocks. 

Magnetite occurs as fine disseminations in potassic-altered porphyries along with 

disseminated pyrite and hydrothermal biotite; its presence is revealed by weak magnetism. In 

the skarns, magnetite comprises a significant proportion of retrograde ores and forms semi-
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massive replacements of garnet ± clinopyroxene (Fig. 4.10 H, J). Magnetite also occurs in 

veins with pyrite ± quartz and an epidote selvage, cutting across exoskarn (Fig. 4.10 F). 

Other rare mineral occurrences associated with Stage 2 alteration and mineralisation include 

fluorite (CaF2), ilvaite (CaFe3(SiO4)2OH), and prehnite (Ca2Al2Si3O10(OH)2). Fluorite is 

typically purple, although one occurrence of green fluorite is noted in drill hole A2890 in a 

sphalerite + galena + pyrite vein cutting across an Oscarina dyke (Fig. 4.9 H). Fluorite also 

occurs in the Oscarina zone as veins and patches associated with pyrite (Fig. 4.11 A). An 

isolated occurrence of ilvaite was observed in the Usupallares zone with calcite + quartz + 

phlogopite in exoskarn. Prehnite is pink and appears to replace feldspar; its distribution is 

localized to the northeast corner of the APC in P1-Taco (Oscarina zone). 

4.4.3. Stage 3: Late Alteration and Molybdenite Mineralisation 

The last stage of alteration recognized at Antamina consists of banded molybdenum + quartz 

veins, pyrite + calcite + quartz + chlorite veins, and trace garnet + scheelite + sericite veins; 

these cut across Stage 2 alteration and mineralisation (Fig. 4.11). Banded quartz + 

molybdenite veins are the youngest molybdenite stage observed; these veins are 0.5 to 3 cm 

thick with straight walls and contain thin bands of molybdenite and sugary quartz (Fig. 4.8 D-

E, G-K). They cut across Cu-mineralised skarns and P1-P3 porphyries (Fig. 4.8 G-K). In the 

central Taco zone (below 3,500 m above sea level), purple anhydrite was observed in some 

banded molybdenite + quartz veins (Fig. 4.8 E). However, banded quartz + molybdenite 

veins have also been observed cutting across quartz + anhydrite veins in the same zone (Fig. 

4.8 K). 

Stage 3 pyrite occurs in veins with molybdenite + quartz (Fig. 4.10 M). Stage 3 pyrite veins 

also cut across Stage 1 garnet and Stage 2 magnetite (Fig. 4.10 J), Stage 1 garnet and Stage 2 

vesuvianite + sphalerite (Fig. 4.10 K), and P2a and Stage 1 exoskarn in the Taco zone (Fig. 

4.10 L). 

A single occurrence of scheelite is noted in a sericite + garnet vein in the Oscarina zone. This 

vein cuts across P1-Taco and an alteration assemblage that includes garnet + epidote + 

prehnite (Fig. 4.11 C-E). 
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4.4.4. Sulphur Isotopes 

The δ34S values for sulphide minerals (pyrite, sphalerite, bornite, and galena) from the 

Antamina deposit range from -2.8 to 4.9‰, with an average value of 1.1‰ (Fig. 4.12 and 

Digital Appendix 4.2). Bornite samples (n = 2) are sampled from two different locations in 

proximal exoskarn (in the Bornita Zone) and show δ34S compositions ranging from -0.7 to -

0.4‰; pyrite from the same samples is reported at -0.3‰ for both samples (Fig. 4.12 and 

Digital Appendix 4.2). Additional samples of pyrite and sphalerite in endoskarn and exoskarn 

range from -0.7 to 4.9‰. Pyrite and sphalerite from the same samples report as consecutive 

pairs of δ34S values (Digital Appendix 4.2), which indicates they formed from the same 

sulphur source. Pyrite from distal hornfels returned the lowest δ34S value (2.8‰; Fig. 4.12). 

 

Fig. 4.12. Sulphur isotope compositions of Stage 2 sulphide minerals. 

 

4.4.5. Alteration Zonation 

At Antamina, zoning patterns of alteration and metal distribution are systematic and centred 

on the Taco zone, and to a lesser extent, the Usupallares zone. Alteration styles are largely 

controlled by the host rocks and are well-preserved, due to minimal post-mineralisation 

faulting. Porphyry style alteration (i.e., potassic alteration) is confined to the central 

intrusions, whereas skarn alteration occurs along P1 intrusion margins and in the surrounding 

country rock. A typical alteration zoning pattern in P1-Taco comprises a core of potassic 

alteration (hydrothermal biotite), which is transitional into weak endoskarn (patchy, localized 
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endoskarn veins), intensifying to massive and pervasive endoskarn proximal to the exoskarn 

contact (Fig. 4.5). In the wall rocks, exoskarn is the dominant alteration style and within 

exoskarn there are zoning patterns defined by mineralogy, garnet colour, and garnet-

clinopyroxene composition (described in detail below). Beyond the exoskarn alteration zone, 

fluid escape structures in marble are the most distal expression of alteration at Antamina (Fig. 

4.10 I). 

4.4.6. Metal Zonation 

Metal zonation is well-developed at the deposit scale, with clear patterns of proximal Mo-Cu 

± Ag and distal Zn-Pb ±Ag ± Bi observed in plan view (Fig. 4.13), and grade contours of the 

main ore metals in plan view and cross section (Fig. 4.14). In plan view, these metals are 

distributed in a ring shape around the Taco porphyry centre (Fig. 4.13 and Fig. 4.14). In cross 

section, an inverted cup-shaped distribution is noted for these same metals in the Taco zone 

(Fig. 4.5); the same pattern is broadly discernible in long section (Fig. 4.14). By rock type, 

the highest concentrations of Zn are hosted in exoskarn, Cu in endoskarn and exoskarn, and 

Mo in endoskarn and P2 (Taco and Usupallares; Fig. 4.14). Bismuth displays two prominent 

zones of high concentration, one in the north-northeast Taco zone and another in the Bornita 

zone (Fig. 4.13). Bismuth in the Bornita zone is contained in the mineral wittichenite, which 

occurs in close association with the highest concentrations of bornite (Fig. 4.7). Silver 

distribution overlaps with copper and zinc, indicating that minor Ag-bearing minerals might 

be more common than documented, and/or that chalcopyrite, bornite, and sphalerite are 

enriched in Ag, to some extent (Fig. 4.13). 

Zonation of the main ore minerals mostly follows the same trend as their constituent metals, 

with molybdenite concentrated in the Taco and Bornita porphyry centres, chalcopyrite 

slightly outward of molybdenite in endoskarn and exoskarn, and sphalerite outward from 

chalcopyrite in exoskarns. The patterns of chalcopyrite and sphalerite are similar in the 

Usupallares zone, however the minerals are less abundant. Bornite has a more localized 

distribution, occurring mostly southwest of the Taco zone in the Bornita zone (Fig. 4.15). 

Galena (not shown in Fig. 4.15) occurs in minor amounts in distal exoskarns where its 

occurrence overlaps with sphalerite. Scheelite was observed in only one occurrence in the 

northeast Taco/Oscarina zone, although the distribution of W indicates that it may be more 

common than noted in distal exoskarns.  
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Fig. 4.13. Deposit-scale metal zonation (plan view), with drill holes projected to the surface.  
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Fig. 4.14. Grade contours for Zn, Cu, and Mo in plan view (4,000 masl) and long section. 
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Fig. 4.15. Distribution of selected sulphide minerals in plan view (approximate, based on core logging and assays). 
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4.4.7. Garnet:Clinopyroxene Zonation 

At Antamina, both endoskarn and exoskarn display proximal to distal mineralogical zoning 

patterns with respect to the porphyry-wall rock contact. Garnet is the dominant skarn mineral 

throughout the deposit (Fig. 4.16). However, clinopyroxene abundance increases toward the 

southwest with localized horizons of clinopyroxene > garnet in the Usupallares section (Fig. 

4.16). In general, clinopyroxene abundance increases with depth in the Usupallares section, 

which appears to be correlated with the change of wall rock composition from Hd24 to Hd35 

(Fig. 4.16). Wollastonite is locally abundant in distal exoskarns along the marble front, but is 

not a continuous mineralogical feature around the deposit. 

4.4.8. Garnet Colour Zonation 

In general, there is a systematic change in garnet colour from pink-red-brown-green from 

endoskarn to distal exoskarn (Fig. 4.17). Spatially, pink garnet occurs exclusively in 

endoskarn and green garnet occurs exclusively in distal exoskarn (i.e., near the marble front), 

whereas red and brown garnet are observed both in endoskarn and exoskarn proximal to the 

intrusion-wall rock contact (Fig. 4.17). Within each cross section, exoskarn garnet colour 

displays subtle differences with increasing depth and range (proximal to distal), while 

endoskarn garnet colour does not appear to change with depth or range. 

In the Oscarina section, exoskarn garnet is dominantly brown with discontinuous patches of 

green garnet along the marble front (Fig. 4.17). The Taco section shows exoskarn garnet 

colour changing from red to brown to green with depth and range (Fig. 4.17). Xenoliths of 

exoskarn (entrained in P2 porphyry phases) contain red > pink garnet. In the Bornita section 

(Fig. 4.17), exoskarn garnet varies from green to brown with depth and, like the Taco section, 

green garnet is most abundant along the marble front (Fig. 4.17). Exoskarn garnet in the 

Usupallares section is dominantly brown and red with minor green garnet occurring at the top 

of the section in drill hole A2589 (Fig. 4.17). 
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Fig. 4.16. Garnet/clinopyroxene ratios in logged drill cores from cross sections A-A’ to D-D’ (Fig. 1.5). 
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Fig. 4.17. Garnet colour in logged drill cores from cross sections A-A’ to D-D’ (Fig. 1.5). 

4.4.9. Garnet Compositional Zoning 

Garnet compositions (in terms of endmember andradite, Ad) are plotted for the Taco, Bornita, 

and Usupallares sections (Fig. 4.18 to Fig. 4.20). The average andradite content of garnet in 

exoskarn generally increases with vertical and lateral distance from the endoskarn contact in 
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the Bornita and Usupallares sections (Figs. 4.19-4.20). In drill hole A2589 (Usupallares 

section), the average andradite composition increases from Ad63 in endoskarn to Ad85 in 

exoskarn downhole over approximately 300 m (Fig. 4.20). In comparison, in the Bornita 

section the average andradite composition increases only slightly from Ad80 to Ad85 over 

approximately 285 m downhole (Fig. 4.19). In the Taco section, garnet compositional zoning 

patterns are less straightforward, however subtle patterns are detected in drill holes A1536 

and A1602 where andradite content increases from Ad83 to Ad97 in exoskarn over 

approximately 200 m depth. One sample of endoskarn from drill hole A1854 shows an 

average andradite composition of Ad37, which extends the lateral zonation of andradite 

content from Ad37 in endoskarn to Ad97 in exoskarn (drill hole A1602) over approximately 

200 m. However, this endoskarn sample (Ad37) is approximately 50 m deeper than the nearest 

exoskarn sample (Ad97), which introduces some ambiguity to the relationship between garnet 

compositional zoning and depth in the Taco section (Fig. 4.17). 

4.4.10. Clinopyroxene Compositional Zoning 

Clinopyroxene compositions, measured in mol % hedenbergite (Hd) – diopside (Di) – and 

johanssenite (Jo) endmembers, range from Hd03-55Jo05(max) in endoskarn to Hd03-98Jo10(max) in 

exoskarn. Across the deposit, the change in clinopyroxene composition is less straightforward 

than the change in garnet composition due to the generally lower abundance of clinopyroxene 

at Antamina. The Usupallares section displays the highest abundance of clinopyroxene across 

the deposit, and also shows the most systematic zoning clinopyroxene patterns (Fig. 4.20). In 

drill hole A2589, the average clinopyroxene composition increases from Hd18 in endoskarn to 

Hd35 in exoskarn approximately 300 m down hole (Fig. 4.20). The Usupallares section also 

shows the highest variability in wall rock composition (due to interlayered marble and 

hornfels from the cm to m scale). A clinopyroxene composition of Hd32 was analysed in 

exoskarn near the top of the Usupallares section (A1168); this analysis does not fit the trend 

of increasing Hd downhole, which could be due to local compositional variations in the wall 

rocks. A similar pattern is noted in the Bornita section where the average clinopyroxene 

composition increases from Hd15 in endoskarn to Hd54 in exoskarn over approximately 400 m 

down hole and away from the endoskarn contact (Fig. 4.19). In the Taco section, there is 

limited clinopyroxene, but one sample at ~3,500 m elevation has a composition of Hd17. In a 

nearby deep drill hole, A2491 (collared between the Taco and Bornita sections), hedenbergite 
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composition increases with depth from Hd79 at ~2,500 masl to Hd90 at ~2,400 masl (1,516 

and 1,725 m depth along the drill trace; Fig. 4.21). These samples are located approximately 

1,000 vertical m below the sample in the Taco section; taken together, these samples show a 

trend of increasing Hd content in clinopyroxene with depth. There is not enough systematic 

clinopyroxene data available from the Oscarina section to interpret compositional zoning 

patterns. 

 

Fig. 4.18. Garnet and clinopyroxene compositional zoning in the Taco zone. See text for detail.  
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Fig. 4.19. Garnet and clinopyroxene compositional zoning in the Bornita (Taco south) zone. See text for detail. 

4.4.11. Fluid Inclusion Analysis – Context and Sample Description 

A sample of comb-layered quartz (UST) from drill hole A545-193.6 was selected for this 

fluid inclusion study. The sample is correlative with Stage 1 quartz in the mineral paragenesis 

and the UST structure is indicative of early fluid exsolution from P1, therefore this sample 

has the potential to provide insight on early magmatic-hydrothermal conditions at Antamina. 
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Fig. 4.20. Garnet and clinopyroxene compositional zoning in the Usupallares zone. See text for detail. 
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Fig. 4.21. Garnet-Clinopyroxene zonation patterns in deep drill hole A2491, Taco-Bornita zone. 

The term ‘unidirectional solidification texture’ (UST) refers to several common, but 

volumetrically minor, oriented mineral textures that can be found in the roof zones of shallow 
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porphyry Mo, W, and Cu systems (e.g., Shannon et al., 1982; Kirkham and Sinclair, 1988; 

Lowenstern and Sinclair, 1996; Shafaroudi et al., 2015). Comb-layered quartz is a type of 

UST characterized by alternating layers of euhedral quartz and granitoid aplite (± 

phenocrysts); the quartz layers originate from a planar growth surface and their terminations 

point in the same direction, inward toward the centre of the crystallising intrusion. Layer 

thickness is variable, ranging from millim to m, as is the number of layers. Comb-layered 

quartz textures form via a repetitive process of pressure build up then decompression in the 

magma chamber (Lowenstern and Sinclair, 1996). As volatiles accumulate in the cupola, 

quartz nucleates along the tops and sides of the magma chamber; crystals continue to grow 

inward (perpendicular to the intrusion walls) until the system overpressures and aqueous 

fluids are released. Decompression causes fluid release, which quenches the magma, forming 

aplite interlayers that re-seal the system and start the process again. As the intrusion 

continues to cool and crystallise, the magma chamber wall migrates inward and another UST 

layer forms. The fluids that escape during decompression cause alteration (± mineralisation) 

in the adjacent and overlying rocks, hence the presence of these textures provides unique 

insight into the formation of some magmatic-hydrothermal ore deposits. 

Because USTs form near the top of shallow magma chambers, this sample can provide a 

crude spatial context for microthermometry results. As in other samples of typical UST 

comb-quartz (e.g., Lowenstern and Sinclair, 1996), this sample displays layers of euhedral 

quartz crystals oriented roughly perpendicular to a sub-planar growth surface (Fig. 4.22 A-

D). The individual quartz layers range from approximately 0.5 to 5 mm wide and are 

separated by porphyritic aplite interlayers with widths up to 3 cm (Fig. 4.22 A-B). The aplite 

interlayers are composed of quartz + K-feldspar and contain euhedral quartz phenocrysts, 

similar to those described by Lowenstern and Sinclair (1996); additional igneous phenocrysts 

include biotite, amphibole, plagioclase, and K-feldspar and the aplite groundmass is 

dominated by aphanitic (5-20 µm) quartz and K-feldspar. The sample has been subject to 

Stage 1 alteration, including local replacement by garnet (Ad72-85) along the comb quartz 

veins and a weak overprint of Stage 2 prehnite + epidote + calcite that is noted in the 

groundmass. Despite this overprinting alteration, CL imaging reveals that primary growth 

zones in the UST have been largely retained, indicating that the quartz has not been 

recrystallized by later hydrothermal events.  
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Fig. 4.22. Unidirectional solidification texture (comb quartz) in sample A545-193.6. A. core sample showing 
location of thin section. B. Sketch of key mineralogical and textural features from (A). C. Plane polarized light 
photomicrograph of the UST showing partial replacement by garnet. D. Cross-polarized light photomicrograph. 
E. Fluid inclusion sample showing the location of chips analysed. F. CL image of the UST showing primary 
magmatic zoning in the comb quartz. The approximate location of fluid inclusion chips are outlined in red. 

4.4.12. Fluid Inclusion Analysis – Microthermometry Results 

Fluid inclusions have been classified as four different types (I-IV) based on physical 

properties at room temperature (Table 4.1); the complete data set is available in Digital 

Appendix 4.3. Based on spatial relationships and petrographic observations, Type I inclusions 

are primary, and Type II likely contains a mixture of primary and secondary inclusions, and 

Types III and IV are most likely to be secondary. With few exceptions, temporal relationships 
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between the fluid inclusion types could not be established with a high degree of confidence. 

Isolated inclusions, which are commonly indicative of primary populations, were observed in 

all types. Type I inclusions are typically isolated or in clusters (Table 4.1). Trails of 

inclusions, which are commonly indicative of secondary inclusions, were observed in types II 

and III. Some type III inclusions occur in distinct trails cutting across mineral grain 

boundaries, indicating that they are secondary, while some Type II inclusions also occur in 

trails or possibly crystal growth zones; the latter scenario would indicate that they are 

primary. Only Type IV inclusions occur exclusively as isolated inclusions, however these 

comprise the smallest population and provide the most limited and inconsistent 

microthermometry results. 

Table 4.1. Summary of fluid inclusion types, physical properties at 25°C, and microthermometry results. 

 

All fluid inclusion types recognised in this study are liquid-rich with vapour ± daughter 

minerals. Type I (n = 10) consists of liquid + vapour + halite + additional translucent 

daughter minerals other than halite (typically 1 to 2) + a triangular opaque phase. Type II (n = 

53) consists of liquid + vapour + halite ± additional translucent daughter minerals. Type III (n 

= 40) consists of liquid + vapour. Type IV (n = 4) consists of two liquid phases (H2O and 

CO2) + vapour. 

Type I inclusions display euhedral to subhedral negative crystal shapes. They range in size 

from 12 to 24 µm. All contain a small vapour bubble (vapour fraction ranges from 5% to 

20%), and contain halite plus at least one other daughter crystal at 25°C, though up to four 

have been observed in a single fluid inclusion (Fig. 4.23). Halite (isotropic) is always present; 

Type Components n Vf (%)
Sub-

Type* n Spatial TmIce (°C) Th (°C)
Hom. 
Mode

ThHalite 
(°C)

Salinity      
(wt. % NaCleq)

Density 
(g/cm3)

I L + V + S1-4 + O 10 5-20 - - I, C -28.5 to -25.5 318-367 H 405-420 46.7-52.3 1.1-1.2

A 5 I,C -28.0 to -27.0 302-345 H 405-494 49.5-51.4 1.2-1.3
B 48 I,C,T -36.1 to -16.5 244-413 L N/A 29.9-66.8 0.9-1.1

III L + V 40 10-60 - - I, C, T -14.0 to -3.0 200-348 L N/A 5.4-25.3 0.8-0.9
IV L2 + V 4 50-60 - - I -11.0 to -4.0 N/O N/O N/A 7.3-20.0 N/A

*Sub-type classification is based on homogenisation mode.
Salinities were calculated using the final ice melting temperature, based on the NaCl-H2O system (Bodnar, 1993).
Densities were calculated using the HokieFlincs spreadsheet (Steele-MacInnes et al., 2012).
Abbreviations: L = liquid; V = vapour; S = solid (translucent daughter minerals including halite); O = opaque daughter 
mineral; Vf = vapour fraction; I = isolated; C = cluster; T = trail; Hom. Mode = homogenization mode where H = 
homogenization by halite dissolution and L = homogenisation to liquid.

II L + V + S1-4 53 5-50
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additional solid phases are colourless and cubic to tabular in shape, but the mineral species 

could not be identified with confidence. They may include sylvite (KCl; based on cubic 

shape, isotropism, low relief) and a sulfate or carbonate (based on the tabular shape and the 

weak birefringence). Two out of ten inclusions formed pale brown crystal masses during 

freezing, indicating the presence of CaCl2. A triangular opaque solid, up to 3 µm, was 

observed in all Type I inclusions. Laser Raman analysis of these opaque solids yielded 

inconclusive results, possibly due to the depth of the inclusions. However, because triangular 

opaque daughter crystals have been confirmed as chalcopyrite in other porphyry copper 

deposits (i.e., Cline and Bodnar, 1994; Mavrogenes and Bodnar, 1994; Rusk et al., 2008; Vry, 

2010), chalcopyrite is a contextually reasonable assumption in this case. Based on the similar 

physical properties of fluid inclusions containing triangular opaques (Table 4.1), they are 

most likely to be daughters rather than randomly trapped crystals. 

 

Fig. 4.23. Photomicrographs of fluid inclusion types identified in this study. 
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Four out of ten Type I inclusions displayed first ice melting between -28.5°C and -25.5°C 

(Fig. 4.24), which is below the eutectic temperature for the H2O-NaCl system; this indicates 

components in addition to NaCl are present, which is consistent with the presence of other 

daughter minerals in addition to halite in the fluid inclusions. Calculated salinity (after 

Bodnar, 1993) ranges from 46.7-52.3 wt. % NaCl equivalent (based on TmIce; Fig. 4.24, 

Table 4.1), which is essentially a brine. All of these inclusions homogenise by halite 

disappearance; that is, the liquid phase homogenizes before halite dissolves. Liquid 

homogenisation temperatures ranged from 318°C to 367°C, and halite homogenisation 

temperatures ranged from 405°C to 420°C. Opaque daughters failed to homogenise through 

temperatures up to 600°C, which is the upper limit for the heating stage. This behaviour is 

consistent with that reported by Spencer et al. (2015) and Mavrogenes and Bodnar (1994). 

Post-entrapment modification, specifically hydrogen diffusion into and out of the fluid 

inclusion, is one possible explanation for this observed behaviour (Mavrogenes and Bodnar, 

1994). 

Type II fluid inclusions have been subdivided according to homogenization mode; Type IIA 

inclusions (n = 5) homogenise by halite disappearance, while Type IIB inclusions (n = 48) 

homogenise to the liquid state (Table 4.1). Type IIA fluid inclusions occur as isolated 

inclusions and in clusters, while Type IIB occurs in clusters, trails, and as isolated inclusions. 

Sizes range from 12 to 48 µm (Type IIA) and 5.5 to 46.5 µm (Type IIB). The most common 

shapes are irregular, oblong, and rounded squares, and negative crystals. The vapour fraction 

ranges from 5-30% (Type IIA) and from 5-50% (Type IIB; Table 4.1). Type II inclusions 

always contain halite, but an additional translucent, isotropic daughter (sylvite?) was 

observed in 21 inclusions. Prior to microthermometry experiments (i.e., at room temperature), 

six of these inclusions displayed only liquid and vapour phases; however after heating up to 

200°C solids (probably halite) formed and persisted throughout the remaining heating and 

freezing experiments. Four Type IIA inclusions, and at least 25 Type IIB inclusions formed 

pale brown crystals during freezing, which is attributed to the presence of CaCl2. Salinity 

ranges from 49.5-51.4 wt. % NaCl equivalent in Type IIA inclusions, and from 29.9-66.8 wt. 

% NaCl equivalent in Type IIB inclusions (Fig. 4.24, Table 4.1). TmIce measurements in 

Type IIA range from -28.0 to -27.0°C. TmIce measurements in Type IIB range from -36.1°C 

to -16.5°C with a mode at -24.5°C (Fig. 4.24, Table 4.1). Homogenisation temperatures in 

Type IIA range from approximately 302-345°C, and from 244°C to 413°C (with a mode at 
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310°C) in Type IIB (Fig. 4.24, Table 4.1). While Type IIA fluid inclusions lack an opaque 

daughter, they share many similarities with Type I fluid inclusions (such as homogenisation 

by halite disappearance, high salinity, and spatial occurrence, among other characteristics 

listed in Table 4.1); this subset of Type II fluid inclusions are likely to be primary fluid 

inclusions that have been undergone some degree of post-entrapment modification (as 

indicated by the variability in daughter minerals and the presence of CaCl2, as described 

above). 

Type III inclusions contain only liquid and vapour and occur in clusters, trails, and as isolated 

inclusions. Shapes are variable and include round-oblong, negative crystal, and rectangular or 

irregular, and sizes range from 5.2 to 51 µm. The vapour fraction ranges from 10-60% and all 

homogenise to the liquid phase. No daughters were observed in Type III inclusions. 

Calculated salinity ranges from 5.4 to 25.3 wt. % NaCl equivalent based on TmIce 

measurements ranging from -14°C to -3°C (Fig. 4.24, Table 4.1). Homogenization 

temperatures range from 200°C to 348°C (Fig. 4.24, Table 4.1). 

 

Fig. 4.24. Fluid inclusion microthermometry results. 
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Type IV inclusions include a small population (n = 4) of isolated inclusions containing liquid 

H2O + liquid CO2 + vapour H2O. They range in size from 14-60 µm and display irregular 

shapes. These inclusions are generally dark or shadowy and therefore difficult to observe, 

however, the largest one (60 µm) displays a double bubble and initial melting of CO2 was 

observed at -56.7°C. A double bubble was not observed in the remaining three samples, 

although a bubble shift was observed between -56.6°C to -56.5°C, indicating the likely 

presence of liquid CO2. One of these inclusions produced a pale brown solid upon freezing to 

-100°C, which slowly melted between -56.7°C and -10°C; this freezing and melting 

behaviour indicates the presence of CaCl2 and NaCl. Two measurements of TmIce were 

recorded at -10°C and -4°C on two different inclusions, and the corresponding salinity was 

calculated at 7.3 to 20 wt. % NaCl equivalent, respectively (Fig. 4.24, Table 4.1). 

Homogenization temperatures were not obtained prior to decrepitation of the sample, 

therefore the mode of homogenisation is not known. 

4.5. Discussion 
4.5.1. Controls on Skarn Silicate Mineralogy and Zonation 

The redox state of the wall rocks, coupled with oxidized magmatic-hydrothermal fluids, 

controls the distribution of garnet versus clinopyroxene in the Antamina skarns. In particular, 

organic carbon in the wall rocks creates reducing conditions where Fe2+ (i.e., reduced Fe) 

minerals such as clinopyroxene (Ca(Mg,Fe2+)Si2O6) are stable over Fe3+ minerals (such as 

andradite garnet). This is most evident in the Usupallares section (Fig. 4.20) where 

garnet:clinopyroxene ratios in exoskarn are  < 1, compared to exoskarns in the Taco, Bornita, 

and Oscarina sections, which are dominated by garnet and display garnet:clinopyroxene 

ratios ≥ 1 (Fig. 4.16). It is suspected that exoskarns with garnet:clinopyroxene ≥ 1 formed in 

wall rocks with low organic carbon contents (possibly marble-dominant lithologies), and 

exoskarns with garnet:clinopyroxene < 1 formed in wall rocks with higher organic carbon 

contents, such as shale or marl. Because both the Celendín and Jumasha Formations contain 

marble, it is difficult to be certain about which unit hosts the garnet-dominant exoskarns; 

however, given that marl and shale comprise the majority of the Celendín Formation, it is 

likely that clinopyroxene-dominant exoskarns are hosted in the Celendín Formation. In 

contrast with the exoskarns, all of the endoskarns formed in relatively oxidised, magnetite-

bearing intrusions, which favour the stability of Fe3+ minerals (i.e., andradite garnet, 
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Ca(Fe3+)2Si3O12). This can explain why garnet is the dominant skarn minerals in most 

endoskarns. 

The range of garnet and clinopyroxene compositions analysed in this study is compatible 

with typical Cu skarns and the low johanssenite contents of clinopyroxene distinguish 

Antamina from typical Zn skarns (Fig. 4.3; Meinert, 2005). At the deposit scale, skarn silicate 

mineral zonation shows a general increase in the hedenbergite content of clinopyroxene and 

the andradite content of garnet in exoskarns with increasing depth and distance from the 

endoskarn contact (Figs. 4.19-4.20). The highest Hd contents are observed at approximately 

2,000 m elevation, near the bottom of the skarn system. The observed compositional changes 

can be attributed to several factors. One is the change from proximal oxidizing conditions to 

distal reducing conditions controlled largely by the composition of the wall rocks. The 

coincidence of increasing andradite and hedenbergite compositions with depth and distance 

from the endoskarn contact seems contradictory; however because the skarns are dominated 

by garnet, the overall redox state must have favoured the formation of a higher Fe3+ 

mineralogy in most cases. One possible explanation for the increasing andradite/decreasing 

grossularite contents of exoskarns away from the endoskarn contact is that the low solubility 

of Al causes grossularite to precipitate in proximal skarns (versus higher solubility Fe, which 

will be more likely to precipitate in distal skarn garnet). The same trend of increasing Fe 

contents of clinopyroxene away from the fluid source is explained using similar logic; Mg is 

a better fit than Fe in the clinopyroxene crystal structure, therefore Mg is preferentially 

incorporated into proximal diopside, whereas Fe is incorporated into distal hedenbergite. 

4.5.2. Controls on Mineralisation and Fluid Composition 

Ore mineral distribution and composition indicates that the Taco zone was the major 

hydrothermal centre for the Antamina deposit. From the central Taco porphyry complex 

outward to the marble front, there is a transition from high temperature/low solubility to low 

temperature/high solubility metals, namely proximal Mo-Cu to distal Zn-Pb (Fig. 4.13). The 

coexisting Cu and Zn mineralisation is unusual as skarns with such metal associations are 

rare (e.g., Chang and Meinert, 2004); however, aside from the abundance of Zn, Antamina 

displays the genetic characteristics of a Cu skarn system. The overall ore mineral zoning is 

consistent with that observed in typical continental arc Mo-Cu porphyries (proximal 

molybdenite-bornite-chalcopyrite to distal sphalerite-galena), and the narrow range of δ34S 
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values in these samples is consistent with sulphide values reported for porphyry Cu systems 

(range is from 1-8‰; Seal, 2006). While most of these data report in the typical porphyry Cu 

range, there is some minor spread towards negative δ34S values, which may be indicative of 

reduced sedimentary sulphur mixing with magmatic sulphur with increasing distance from 

the magmatic source (Seal, 2006). 

Outside of the central molybdenite zone, a localized concentration of bornite marks a zone of 

high-temperature Cu-sulphide precipitation (Fig. 4.15). At temperatures above 500°C within 

the Cu-Fe-S system, there are extensive regions of solid solution and high-temperature 

bornite can incorporate a variety of trace elements including Bi > 17 wt. % and Ag ~8,000 

ppm (Cook et al., 2011). Upon cooling below 400°C, a large number of mineral phases can 

precipitate through exsolution, the most common of which include chalcopyrite, chalcocite, 

digenite, and wittichenite (if appreciable Bi is present). The observed textures and 

compositions indicate that bornite likely precipitated early as a high-temperature solid 

solution (~400-500°C), which is approaching the temperature of late-stage potassic alteration. 

Upon cooling, this solid solution would have exsolved into multiple lower temperature 

phases including chalcopyrite + wittichenite + chalcocite (Fig. 4.7). Bismuth, which was 

stable in solid solution, was partitioned into wittichenite. These observations are supported by 

the mineral paragenesis (Fig. 4.1) and are compatible with the observations of Cook et al. 

(2011). 

Sulphide mineral zonation progresses outward from molybdenite to bornite-chalcopyrite and 

sphalerite ± galena. The deposition (and resultant spatial distribution) of these sulphides is 

likely related to a complex interplay of factors including metal solubility, transport ligands, 

temperature, and pH, to name a few (i.e., Wood and Samson, 1998; Williams-Jones et al., 

2010; Zhong et al., 2014; Spencer et al., 2015, Shu et al., 2017; and references therein). Metal 

sulphide deposition patterns appear to be primarily controlled by transport distance away 

from the magmatic-hydrothermal centre, which is also related to falling temperatures and 

increasing pH (caused by neutralisation of acidic magmatic-hydrothermal fluids by 

interaction with carbonate-rich wall rocks). Metals with higher solubilities (i.e., Zn, Pb) were 

transported further than metals with low solubility (i.e., Mo, Cu). Previous studies report on 

the importance of chloride complexes as agents of transport in hydrothermal fluids (e.g., 

Sverjensky, 1987; Yardley, 2005; Spencer et al, 2015); however a recent study by Zhong et 
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al. (2015) demonstrates that high-salinity fluids are not always required for metal transport 

and deposition in high temperature deposits such as skarns and porphyries. Based on the 

hypersaline composition of some fluid inclusions reported in this study, and their spatial 

association with Cu (± Mo) mineralisation, transport of these metals was likely facilitated, at 

least to some degree, by chloride complexes. If Zn and Pb were also transported by chloride 

complexes, precipitation may have been triggered by hydrothermal fluid interaction with 

reduced S in meteoric water or wall rocks with increasing distance from the magmatic source 

(e.g., Zhong et al., 2015). Alternatively, bisulfide complexes may have played a role in 

transporting Zn-Pb ± Cu (based on the δ34S compositions of these sulphides indicating a 

potential magmatic source); in this case the spatial distribution of Cu-Zn-Pb can be explained 

by cooling and de-complexing of S in the hydrothermal fluids (e.g., Zhong et al., 2015). The 

transition from pyrite (as the dominant Fe-sulphide in the porphyry-skarn zone) to pyrrhotite 

(in limestone near the contact metamorphic aureole; Escalante, 2008) is probably related to 

lower fO2 conditions induced by organic carbon in limestone (i.e., up to 3.63 wt. % C; 

Chapter 2), as well as decreasing fS2 and Fe/S with increasing distance from the magmatic 

fluid source. 

4.5.3. Constraining the Depth of Formation 

One of the aims of this study is to estimate the depth of formation of the Antamina deposit by 

using microthermometry measurements of fluid inclusions (FI) to calculate pressure, which 

can then be related to depth the equation: P = ρgz, where P = pressure (Pa), ρ = density 

(kg/m3), g = acceleration due to gravity (m/s2), and z = depth (m). Because fluid inclusions 

can provide the data needed to calculate pressure, and because multiple populations of FI can 

coexist in a single sample, the selection of FI for this purpose is a non-trivial task. Each FI 

population records a specific geological event, therefore the first step is to identify which 

process is recorded by each population, as this will determine the significance of any further 

calculations. In this study, four types of FI were identified. Of these, Type I is most likely to 

be primary, whereas all other types are likely to be secondary (based on petrographic 

observations). In this UST sample, primary FI are most likely to have trapped early magmatic 

fluid compositions under pressure conditions that existed near the top of the magma chamber. 

Therefore, they are the most suitable FI population to use for pressure calculations relating to 

the depth of formation. 
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Table 4.2. Calculated pressure and density of fluid inclusions that homogenise by halite disappearance. 

 

In order to most closely approximate the trapping pressure, it is ideal to use primary FI that 

have not been subject to post-entrapment modification or leakage. There is some variability 

in the compositions of the primary FI which may indicate that post-entrapment modification 

or leaking has taken place. For instance, the formation of pale brown crystals during freezing 

was observed in 2 out of 10 primary inclusions, whereas it is a more common feature of the 

secondary FIs that formed temporally later. Because the primary FI in the UST should have 

trapped the earliest fluids to exsolve directly from the magma, the introduction of Ca into 

these FI may be a by-product from skarn formation, which began just slightly later than the 

initial release of magmatic-hydrothermal fluids from the magma chamber. Therefore, the 

presence of CaCl2 may be indicative of open-system behaviour (i.e. post-entrapment 

modification), so these FI were not included in the pressure calculation because they cannot 

provide meaningful estimations of P-T conditions (Audétat and Günther, 1999). Another 

consideration is the presence of opaque daughters, which were only observed in primary 

inclusions. As similar FI have been observed in other porphyry and UST samples (i.e., Harris 

et al., 2004; Rusk et al., 2008), these are considered to provide a fair representation of early 

fluid compositions and so FI containing opaques, but lacking indications of CaCl2, were 

retained for the pressure calculation. 

A consistent feature of the primary FI identified in this study is homogenisation by halite 

disappearance. Fluid inclusions that homogenise by halite disappearance are relatively 

common in skarns and porphyry copper deposits (e.g., Bodnar and Beane, 1980; Dilles and 

Chip ID FI ID ThNaCl (°C) ThL-V (°C)

ρBULK 

(g/cm3)
Phom 

(kbar)

UST-002 IK-01 405 318 1.2 1.2
UST-002 IE-01 405 322 1.2 1.1
UST-002 JF-01 410 325 1.2 1.1
UST-002 IJ-01 415 328 1.2 1.1
UST-002 HD-01 420 328 1.2 1.2
UST-002 HD-02 415 332 1.2 1.1
UST-001 FF-02 410 333 1.2 1.0
UST-001 FJ-01 415 340 1.2 0.9
FI: fluid inclusion; Th: homogenisation temperature;
Phom: pressure at homogenisation; ρBULK: fluid density.
All calculations after Steele-MacInnes et al. (2012).
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Einaudi, 1992; Cline and Bodnar, 1994; Baker and Lang, 2003; Harris et al., 2004; Rusk et 

al., 2008; Maydagán et al., 2015), but until recently, the interpretation of such inclusions has 

presented challenges due to a lack of experimental data. One of the difficulties in dealing 

with these types of FI is that salinity cannot be directly calculated when there is no vapour 

phase present during halite dissolution, as equations that relate halite dissolution temperature 

to salinity are only valid under vapour-saturated conditions (Lecumberri-Sanchez et al., 

2012). Recent contributions on this subject (Becker et al., 2008; Lecumberri-Sanchez et al., 

2012) have made it easier to constrain the PVTX properties of FI that homogenize by halite 

disappearance, which is directly applicable to this study. The pressure and fluid density of 

primary FI in this UST sample have been calculated according to the calculations of 

Lecumberri-Sanchez et al. (2012) by utilising the HokieFlincs spreadsheet (Steele-MacInnis 

et al., 2012; Table 4.2). Pressure ranges from 0.95 to 1.2 kbar and fluid density ranges from 

1.1 to 1.2 g/cm3 (Fig. 4.25). These pressures are lithostatic pressures and indicate a maximum 

formation depth ranging from 4.6 to 3.5 km (averaging 4.1 km) when calculated using Eq. 

4.1, assuming an average bulk rock density of 2.7 g/cm3 (Olhoeft and Johnson, 1984). 

 

Fig. 4.25. Pressure and fluid density plots for fluid inclusions that homogenize by halite disappearance. 

4.5.4. Uplift and Unroofing of the Deposit 

Since the mid-Miocene, the central Andes of Peru have experienced surface uplift on the 

order of 3,500 m (Gregory-Wodzicki, 2000). In order to validate the depth of formation 

estimate, a model that incorporates uplift and glacial unroofing of the deposit is proposed.  
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The top of the APC was partially exposed in the Antamina cirque, beneath Lake Antamina 

(~4,300 masl) when the deposit was discovered. Drilling revealed USTs at ~4,200 masl; 

given that USTs form in the apical portions of intrusions, this indicates that the top of the 

system was largely intact and only minimally eroded by glaciation. Based on the depth of the 

cirque compared to the elevation of the surrounding peaks, it is estimated that glaciation 

removed up to 500 m of rock from above the deposit. Two scenarios (maximum versus 

minimum depth of emplacement) are proposed to constrain the depth of formation. 

Scenario 1 (Fig. 4.26) utilizes the maximum calculated depth of emplacement of 4.6 km 

coupled with an estimated 3.5 km (3,500 m) of surface uplift since emplacement during the 

early Miocene; this places the top of the deposit at a depth of ~1.1 km below the present-day 

surface. Assuming Pleistocene glacial erosion of ~500 m, the top of the deposit would still be 

0.6 km below the present-day surface, which is slightly too deep. 

 

Fig. 4.26. Emplacement depth, uplift, and erosion scenarios for the Antamina deposit. 



160 

 

Scenario 2 (Fig. 4.26) utilizes the minimum calculated emplacement depth of 3.5 km coupled 

with 3.5 km of surface uplift to project the top of the deposit to the present-day surface. 

Again, assuming 500 m of glacial erosion, this removes the top ~500 m of the deposit, which 

places the top of the system more or less where it is today. 

Therefore, the ideal scenario is explained by shallower depth of emplacement between ~4.0 

and 3.5 km assuming maximum surface uplift of 3.5 km (since the early Miocene) and 

Pleistocene glacial erosion on the order of ~500 m. 

4.5.5. Additional Constraints on Deposit Formation 

From the highest elevation skarns exposed at the surface of the Taco-Oscarina zone, at 

approximately 4,500 m elevation, to the bottom of the system, at approximately 2,400 masl 

(Taco zone), the skarns have a vertical extension ≥ 2,100 m. In the Usupallares zone the top 

of the skarns outcrops at approximately 4,300 m elevation and the bottom is at least 2,700 m 

elevation, accounting for a vertical extension ≥ 1,800 m. In the Taco zone, the skarn has a 

variable width along its vertical extension, ranging from ~50 to 200 m wide between 4,200 to 

3,500 masl, to 200 m wide at ~2,400 masl; this variation in width is opposite to what is 

expected for a skarn forming under homogeneous conditions where the skarn alteration zone 

should narrow with increasing depth. One possible explanation for this is a stratigraphic 

change in wall rock composition with depth. Assuming that the local stratigraphy is not 

overturned, the top of the deposit should have formed in the calcareous siltstones and silty 

limestones of the Celendín Formation, and the lower extension of the deposit should have 

formed in the relatively pure limestones of the Jumasha Formation. The width of the skarn 

zone is somewhat dependent on the composition of the wall rocks, and limestones are more 

favourable than calcareous siltstones to the development of broad skarn zones. Variations in 

width near the top of the skarn system may be attributed to the stratigraphic variability in the 

Celendín Formation, which contains rock types ranging from shale to limestone. Fluids 

interacting with this unit would be expected to create broad skarn zones in the more receptive 

limestone layers and narrow skarn zones in mudstones. Overall, the Jumasha Formation is a 

more receptive host rock, so skarn formation is favoured when fluids interact with this unit. 
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4.6. Conclusions 

The Antamina deposit is comprised of a central porphyry complex surrounded by skarns with 

an ore mineralisation suite dominated by Cu-Mo-Zn. The system displays well-developed 

zoning patterns with respect to alteration, metal zonation, and skarn mineral composition. 

Alteration zoning pattern includes potassic alteration in the porphyry centre, transitional into 

endoskarn along the porphyry margins, then exoskarn and distal fluid escape structures in 

marble. Exoskarns are zoned with respect to garnet colour, from pink-red-brown-green 

(proximal to distal), and also in garnet/clinopyroxene ratio, garnet and clinopyroxene 

compositions, and metal endowment. Clinopyroxene and garnet compositions are mostly 

within the range of typical copper skarns. Hedenbergite content of clinopyroxene in exoskarn 

generally increases with depth and distance away from the endoskarn contact, as do andradite 

compositions in garnet, which indicate that skarn-forming fluids were expelled near the top of 

the system, rather than at varying depths. Metal zoning shows an outward progression from 

Mo ± Cu in the central porphyry, to Cu (± Ag, Bi)-Zn-Pb in distal exoskarns. Fluorite is 

locally abundant in the Oscarina zone, and scheelite occurrences have been noted; however 

they do not appear to be associated with respect to the mineral paragenesis. Fluid inclusions 

indicate that the ore fluids were highly saline. Stable isotopes (δ34S) indicate a magmatic 

source of sulphur that is consistent with δ34S values observed in other porphyry Cu deposits 

(Seal, 2006). Pressure estimates from fluid inclusion microthermometry in the UST sample 

indicate that the deposit formed between 1,234 to 946 bar lithostatic pressure, which equates 

to a depth range of approximately 4.6 to 3.5 km. Coupled with uplift estimates for the central 

Andes of Peru and erosion due to glaciation, the most likely scenario is explained by depth of 

emplacement between ~4.0 and 3.5 km, consistent with 3.5 km of uplift and erosion from the 

early Miocene to present. 
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4.8. Appendix  

Table A4.1. Drill holes logged in this study. 

Drill Hole Depth from (m) Depth to (m) Total meters Zone
A1008 0 325 325 Oscarina
A1378 0 100 100 Oscarina
A1579 256 327 71 Oscarina
A1600 0 642.6 642.6 Oscarina
A1868 0 421 421 Oscarina
A2213 0 68 68 Oscarina
A2623 0 251 251 Oscarina
A2629 174 278.4 104.4 Oscarina
A2669 0 915.5 915.5 Oscarina
A2810 0 300 300 Oscarina
A2820 0 260 260 Oscarina
A2835 0 250 250 Oscarina
A2890 0 500 500 Oscarina
A545 0 300 300 Oscarina
A136 0 240 240 Taco
A139 0 406 406 Taco
A1536 0 472 472 Taco
A1602 0 601.7 601.7 Taco
A1623 0 580 580 Taco
A1854 0 750 750 Taco
A2084 0 2000 2000 Between Taco and Bornita
A2491 0 2000 2000 Between Taco and Bornita
A1390 0 616 616 Bornita
A1391 0 574 574 Bornita
A1465 0 685 685 Bornita
A170 0 355 355 Bornita
A206 0 340.1 340.1 Bornita
A2887 467 564 97 SW of Bornita
A2887 1700 2006 306 SW of Bornita
A1168 34 88 54 Usupallares
A1902 0 800 800 Usupallares
A2589 246 366 120 Usupallares
31 Drill holes 15,505.30 meters 
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5.1. Summary of Key Findings 

This chapter reviews the key findings of this study and summarizes the interpretations from 

previous chapters to provide a comprehensive model for formation of the Antamina deposit. 

In Chapter 2, I investigated the geochemical changes that take place in the host rocks during 

skarn formation and ways to distinguish endoskarn and exoskarn. Key findings include: 

• Traditional field logging criteria, such as skarn texture and garnet colour, are less 

reliable that geochemical composition in the recognition of massive endoskarn and 

exoskarn. 

• Several pairs of discriminating elements were identified from the whole rock data set: 

the most effective discriminating pairs are TiO2 vs. Y, HREE; Al2O3 vs. HREE, Y, Ni, 

and Sc, plus Al2O3 alone (endoskarns contain > 11.5 wt. % Al2O3, whereas exoskarns 

contain < 11.5 wt. %). 

• After reclassifying the skarns based on their geochemical compositions, it is found that 

some “endoskarn” samples should be reclassified as exoskarn, which reduces the 

previous estimates of high volumes of endoskarn at Antamina.  

• Skarn formation (both endoskarn and exoskarn) involves relatively little mass change 

even though there are significant geochemical compositional changes in the host rocks 

(i.e., marble, intrusions). 

Chapter 3 provides a detailed intrusive sequence and new geochronological constraints on the 

timing of porphyry emplacement, skarn formation, and mineralisation at Antamina using the 

U-Pb zircon (LA-ICP-MS and CA-TIMS methods), 40Ar/39Ar biotite, and Re-Os molybdenite 

dating techniques. The intrusive sequence was based on cross-cutting relationships observed 

through the logging of approximately 15 km of diamond drill core plus highwall mapping. It 

was found that at least 11 porphyry phases comprise the Antamina porphyry complex (and 

the adjacent Oscarina and Condorcocha zones). The porphyries display a similar range of 

compositions ranging from trachyte to andesite porphyry and all of them contain 5-15 % 

biotite ± 1-5 % hornblende, indicating high magmatic water contents of at least 4 wt. % 

(Burnham, 1997). All phases, except for the Oscarina dykes, contain at least some quartz 

stockwork veins and secondary biotite alteration. Furthermore, all phases except for P2-

Oscarina dykes, display adakite-like compositions, which provides additional confirmation of 
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high magmatic water contents. All early phases (P1) and some P2 phases (except for the 

Oscarina dykes) contain a central zone of potassic alteration; only P1-Taco and 

Usupallaresphases contain endoskarn along their margins in contact with exoskarn. Because 

the porphyries are so similar in composition and texture, the only sure way to tell them apart 

is by using cross-cutting relationships. 

New U-Pb zircon ages reported in this study range from 10.95 ± 0.20 Ma (P1-Taco) to 10.24 

± 0.23 Ma (P3-Usupallares), which equates to approximately 1.1 million years of magmatic 

activity. Hydrothermal biotite results are within the analytical error of these U-Pb zircon 

ages. Molybdenite occurs in two stages and Re-Os ages of molybdenite range from 10.58 ± 

0.07 to 10.39 ± 0.05 Ma (Stage I), and 9.99 ± 0.04 and 9.68 ± 0.05 Ma (Stage II). The 

youngest molybdenite age extends that duration of magmatic-hydrothermal activity at 

Antamina to 1.52 million years. The molybdenite Re-Os ages and biotite Ar-Ar ages are 

slightly younger than the zircon U-Pb ages at the sites where the various types of high-

precision dating were done by at least 0.43 million years. This is likely because zircon 

crystalized at higher temperatures (closure temperature > 900°C; Cherniak and Watson, 

2001) early in the history of the melt evolution, before water exsolved from the melt, whereas 

the potassic alteration and molybdenite formation occurred later after the magmatic 

hydrothermal fluids exsolved from the melt and escaped from the magma chamber. The time 

difference is short (e.g., > 100 Ma) and is only detectable because of the young age of these 

rocks and the high precision of the dating method (e.g., CA-TIMS, Re-Os) used in this study. 

The dating methods have relatively consistent relative errors regardless of the absolute age. 

For example, at 0.5% relative error, the uncertainty for a 1000 Ma sample is ± 5 Ma, whereas 

for a 10 Ma sample the uncertainty is only ± 0.05 Ma (or 50,000 years). 

Both the zircon crystallization ages and the alteration-mineralisation ages have shown that 

there are 3 intrusive centres in the Antamina porphyry complex, namely the Taco Zone in the 

NE and the main body, the smaller Usupallares Zone in the SW, and the Oscarina Zone dykes 

overprinting the Taco zone at the NE corner. There is another geographically separate 

intrusive centre, the Condorcocha Zone, ~1 km NW of the Taco Zone of the APC. The 

mineralisation is mainly related to hydrothermal activity associated with the Taco and 

Usupallares intrusions. 
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The dating results show a clear trend of younging towards the SW in both the zircon 

crysallization ages of the intrusions, and alteration-mineralisation ages. From northeast to 

southwest along the axis of the deposit, zircon crystallisation ages range from 10.95 ± 0.20 to 

10.24 ± 0.23 Ma, Stage I molybdenite ages range from 10.58 ± 0.07 to 10.39 ± 0.05 Ma, and 

Stage II molybdenite ages range from 9.99 ± 0.04 to 9.68 ± 0.05 Ma. There is also a subtle 

younging trend with increasing depth at Usupallares. There are not enough data at other 

locations but it is suspected that the same trend exists throughout the deposit. 

At each zone the earliest intrusions (P1s) display porphyry-style stockworks that transition 

outwards to endoskarns at the marginal zones of the intrusions; these intrusions are 

surrounded by exoskarns in the wallrocks. The later intrusions (P2-P3) display varying 

intensities of quartz veining/stockworking, but no endoskarn alteration. Because the late 

intrusions were still rich in fluids (as evidenced by the quartz stockworks and the K-

alteration), these intrusions enhanced the size and metal endowment of the Antamina system 

by contributing more mineralisation to the existing skarns in the form of cross-cutting quartz-

sulphide veins. It is also possible that these same fluids escaped through existing skarns to 

form new exoskarn along the marble front of the system, thereby coalescing late exoskarns 

with early exoskarns and enhancing the overall size and continuity of the skarn body. 

Chapter 4 shows that the alteration and mineralisation patterns at Antamina are centred on the 

Taco-Bornita zone and that patterns in mineralogy and mineral composition change 

systematically from proximal to distal regions of the deposit. Key proximal to distal patterns 

include the change in garnet colour from pink to red to brown to green; a slight decrease in 

the garnet to clinopyroxene ratio (most notable in drill holes that exceed 1,500 m depth and in 

the Usupallares zone); and increasing Fe contents of both clinopyroxene and garnet, for 

which mineral colour (lighter to darker) is an rough proxy. Bornite is found exclusively in 

this zone, as well intense potassic alteration; these are indicative of the highest temperature 

zone in the deposit. Outward from this high-temperature centre, the metal distribution shows 

a trend towards lower temperature/higher solubility metals (from Mo-Cu ± Ag-Bi to Zn-Pb ± 

Ag) precipitated in the distal reaches of the deposit. Fluid inclusion results from a UST 

sample in the Taco zone indicate that the deposit formed between~3.5 to 4 km depth. 

Miocene uplift estimates of 3.5 km, coupled with glacial erosion on the order of 500 m, place 

the deposit at the present-day surface. 
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5.2. How did Antamina become a giant ore deposit? 

Several geological factors contributed to the location and size of the Antamina deposit. The 

individual factors are not particularly unusual, however it is the precise combination of these 

factors in space and time that had an optimising effect on the ore forming process at 

Antamina. Key factors include: 

• Emplacement of multiple porphyries, all with high magmatic water contents. 

• A locally abundant supply of reactive carbonate wall rocks 

• Ideal depth of emplacement (not too shallow, not too deep) 

• A strong structural control imposed by the Valley Fault System on porphyry 

emplacement and hydrothermal fluid flow 

• A favourable uplift and erosion history 

The southwest-trending younging of porphyries emplaced along the Valley Fault, coupled 

with the availability of reactive carbonate rocks along this trend facilitated the lateral 

continunity of skarns and mineralisation. The Valley Fault system served to focus porphyry 

emplacement and hydrothermal fluids to concentrate ore grades in a relatively localised area. 

The subvertical structure and dilation of the Valley Fault, coupled with an increase in marble 

at depth (stratigraphic change from the Celendín to Jumasha formation at depth) may have 

influenced the vertical extent of the deposit, which exceeds 2 km in the Taco zone. 

Multiple fertile intrusions were emplaced along a narrow structural corridor that focussed 

hydrothermal fluids and increased the reaction surface area between fluids and carbonate 

rocks, thereby promoting extensive skarn formation. In contrast, if the intrusions were 

emplaced in a nested geometry, the skarn-forming potential would be limited by the reduced 

surface area in contact with carbonate rocks. In the context of regional uplift and erosion, 

deeper emplacement would change the economics of mining, as more waste would need to be 

stripped to access the ores. Shallower emplacement coupled with uplift and erosion would 

have removed some of the highest ore grades. The formation of the giant Antamina deposit 

required all of these factors to operate in tandem at precisely the right time and location. 
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