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Abstract 

The limitations imposed by traditional sampling methods have restricted the acquisition of data on 
key fisheries parameters. This is particularly the case for juveniles because most traditional gear 
explicitly avoids the capture of juveniles, and the juveniles of many species use habitats in which 
traditional gear is ineffective. The increasing availability and sophistication of Remote Underwater 
Video Techniques(RUVs) such as Baited Remote Underwater Video, Unbaited Remote Underwater 
Video and Remotely Operated Underwater Vehicles offer the opportunity of over-coming some of the 
key limitations of more traditional approaches. However, RUV techniques come with their own set of 
limitations that need to be addressed before they can fully realize their potential to shed new light on 
the early life history of fish. We evaluate key strengths and limitations of RUV techniques, and how 
these can be overcome, in particular by employing bespoke computer vision Artificial Intelligence 
approaches, such as Deep Learning in its Convolutional Neural Networks instantiation. In addition, we 
investigate residual issues that remain to be solved despite the advances made possible by new 
technology, and the role of explicitly identifying and evaluating key residual assumptions  
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Introduction  

Fisheries research and management suffer from a lack of funda -mental data needed to underpin 

some of the most critically important fisheries parameters. Catch records of various types are the 

basis for a substantial part of available fisheries data, and these data are limited in the information 

they can provide. While they supply much of the information needed on the structure of exploited 

components of stocks, they usually provide little information about juveniles and other non-exploited 

elements. This is because most catch data, even fisheries-independent data, come from gears that 

target fish in harvestable size ranges (Aymaet al., 2016; Stoner, Laurel, & Hurst, 2008), and so exclude 

early life-history stages. Consequently, for many, and perhaps most species, there is a dearth of 

information on the spatial distribution, habitat requirements and temporal dynamics of juveniles 

between settlement and entry into the adult population. The mis -match between egg production (or 

spawning potential) of a stock and subsequent recruitment strength is a key barrier to fisheries 

management, as it obscures predictions of harvestable stock size(Magnuson, 1991). For many 

species, mortality during the juvenile phase, between settlement from the pelagic environment and 

entry into the fished population, is critical in determining recruitment strength (Bradford & Cabana, 

1997; Peterman, Bradford, Lo,& Methot, 1988; Rice, Crowder, & Marschall, 1997), and habitat factors 

can be critical in regulating this mortality (Gibson, 1994).Information about this phase is key to 

identify factors that con -strain population success, such as potentially vital juvenile habitats, and to 

understand variation in recruitment strength (Levin &Stunz, 2005). Such information is critical to both 

fisheries and eco-system management and conservation (Bradford & Cabana, 1997;Levin & Stunz, 

2005; Musick et al., 2000) because it provides (a)knowledge of juvenile habitats that need to be 

protected, (b) understanding of the extent and direction of change of populations,(c) the ability to 

predict the size of future harvestable stocks and(d) understanding of the impact of 

habitat/environmental change on recruitment and survival through early life-history stages. To 

understand the factors that constrain population success during the juvenile phase for any fishery, 

key information includes the following: (a) where juveniles are found throughout the sea -scape, and 

which of these locations contribute individuals to fished stocks (Gillanders, Able, Brown, Eggleston, & 

Sheridan, 2003),(b) whether there are particular habitats where predation is reduced and survival is 

higher (Beukers & Jones, 1998), and if so, what habitat qualities are important, (c) what food 

resources are important, and whether there are particular habitats where food resources are more 

abundant and growth is higher (Gibson, 1994).This information is likely to differ throughout ontogeny 

(Bradford& Cabana, 1997), and so is needed for multiple life-history stages, at the very least at the 

settlement/metamorphosis stage, ear-ly-juvenile stage and late-juvenile stage (Eggleston, 1995). This 

information can underpin an understanding of what ontogenetic stages present the most significant 
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population bottlenecks and which resources are limiting factors during these bottlenecks. To inform 

an understanding of yearly recruitment strength and proj -ect future harvestable stock size, key 

information includes variation in the abundance of juveniles in habitats and locations that are known 

to contribute to the fished population, which requires much of the above information along with age-

structured estimates or indices of juvenile abundance (Deyle, Schueller, Ye, Pao,& Sugihara, 2018; 

Zhang, Reid, & Nudds, 2017). 

The Role of a Basic Juvenile Census 

In developing a comprehensive knowledge of juvenile dynamics ina fishery where there is limited data 

on the juvenile phase, there isa logical order in which this information can be produced. Juvenile 

habitats are often imperfectly known (Adams, Wolfe, Kellison, &Victor, 2006; Bradley, Baker, 

Nagelkerken, & Sheaves, 2019; Bradley,Baker, & Sheaves, 2017; Rooper, Boldt, & Zimmermann, 

2007). First, in order to begin gathering data on any aspect of juvenile ecology, a basic census must be 

conducted to determine the locations where juveniles are present and the abundance or density at 

which they occur. Ideally, this knowledge should be comprehensive, giving abroad understanding of 

distribution in the seascape, necessitating broad-scale exploratory surveys. With broad-scale surveys, 

very large areas need to be sampled, with most samples likely to only yield information that the 

juveniles are absent. This results in expensive sampling effort for potentially little gain. Even where 

some juvenile habitats are known, to provide valid detail needed for a basic census of the spatial 

distribution of early life-history stages, sapling an area intensively, and spreading that sampling 

extensively, is required. Once basic patterns of distribution and abundance havebeen determined, 

various approaches must be employed to gain deeper understanding. Measurement of fish condition 

and diet will require the capture of fish for tissue and gut content analyses, often achieved through 

beach seining and trawl sampling (Duffy,Beauchamp, Sweeting, Beamish, & Brennan, 2010). The 

capture of live individuals will also be necessary for experimental studies of growth and survival 

during the juvenile stage (Poletto et al., 2018).However, none of this information can be gathered 

until the spatial distribution of early life-history stages is understood. In this article, we focus 

specifically on current techniques and technologies that can enable the basic censuses needed to 

develop a comprehensive understanding of the spatial distribution of early life-history stages of fish 

and allow the widespread implementation of reliable, repeat-able surveys of juvenile recruitment. 

Various approaches have been used to provide basic census in-formation on juvenile fish. Each has its 

advantages and limitations(see Table 1), so each varies in its applicability to particular questions.For 

instance, many netting or trapping techniques can be used toprovide indices of juvenile recruitment 

strength over time. However, most of these have limited practical applicability for broad-scale 

exploratory surveys, because they can only be employed in habitats for which their capture methods 
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are designed (Paradis, Mingelbier,Brodeur, & Magnan, 2008; Sheaves, 1996a, 1998; Sheaves, 

Johnston,& Abrantes, 2007) and therefore are only effective on species that use those habitats 

extensively, or are highly selective in the species and life stages they can effectively sample. 

Moreover, their habitat specificity means that potentially unknown habitats remain un-censored. 

Surveys aimed at identifying juvenile habitats of species where nurseries are unknown are even more 

challenging because, by their nature, such investigations need to assess the diversity of habitats 

available over large areas. In fact, to be effective as a large-scale technique to provide suitable data 

for fisheries management, surveys of juvenile fish need to meet a diverse set of challenging criteria 

(Figure 1). Clearly, no currently available gear type addresses all the criteria perfectly (see Table 1) 

meaning that compromises are unavoidable, and in turn, the assumptions underpinning these com-

promises need to be identified and their impacts well understood. Inevitably, some limitations will 

render a sampling approach untenable for certain applications. 

 

The Use of RUVs for Basic Juvenile Census 

Visual techniques provide a sampling approach that is able to sample structured and unstructured 

habitats effectively. The most obvious limitation of most traditional netting techniques is their 

unsuitability for sampling structurally complex habitats (seeTable 1); probably a large part of the 

reason why the juvenile habitats of many species are poorly resolved. While the use of visual 

techniques across different habitats comes with its own set of limitations and assumptions (see Table 

1), the development of these approaches provides the potential to remedy the lack of information on 

fish early life-history stages, particularly for species that use structured habitats. Of the visual 

techniques, Diver Conducted Underwater Visual Census (DUVC) is a relatively well-developed 

technique that has allowed a massive expansion of knowledge of the fish fauna of many shallow 

water habitats. Remote Underwater Video Techniques (RUVs) such as Baited Remote Underwater 

Video (BRUV), Unbaited Remote Underwater Video (UBRUV) and Remotely Operated Underwater 

Vehicles (ROVs) offer the opportunity of overcoming some of the key limitations of DUVC, principally 

their limitation to use in shallow water, the high cost of conduct-ing diver surveys, the disturbance of 

a human entering a habitat(see Mallet & Pelletier, 2014 for more detail factors) and the riskto divers 

in habitats where dangerous creatures such as crocodiles, sharks or seals are present (Sheaves, 

Johnston, & Baker, 2016). In addition, they bring with them the advantage of providing a permanent 

record of the raw data collected, allowing for later reanalysis (Cappo, Harvey, Malcolm, & Speare, 

2003). However, Remote Underwater Video Techniques (RUVs) come with their own set of limitations 

(see Table 1) that need to be overcome before they can fully realize their potential to shed new light 
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on the early life history of fish and indeed on all fish life-history stages. The impact of these limitations 

can be minimized by understanding the assumptions needed to accommodate them, articulating 

those assumptions explicitly and carefully interpreting data in light of the assumptions. This process is 

actually necessary to make valid use of data of any kind. However, as with every other technique, the 

confidence we can place in the output of RUVs will increase as we limit the constraining impact of the 

assumptions required. As a step towards minimizing the number and potential impact of assumptions 

when employing RUVs, we evaluate key strengths and limitations of RUV techniques, and how these 

can be overcome, in particular by employing bespoke Deep Learning (DL) (LeCun, Bengio, &Hinton, 

2015) approaches, such as Convolutional Neural Networks(CNN). 
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Table 1: Sampling options for juvenile fish census, their advantages, limitations and successes 

gear  advantages l imitat ions  successes  References 

Trawl nets 

• Cover large areas efficiently 
• Can be operated over a 

range of depths  
• Can be deployed at night 
• Collect spatially extensive 

samples 
• Do not require the operator 

to enter the water 
• Sampling area can be 

calculated 

• Limited to unstructured habitats 
• Mesh sizes maybe inappropriate 
• Destructive 
• Usually used to collect samples 

over extensive area so time 
intensive per sample so usually 
provide low spatial replication 

• Representation uncertain due to 
potential for gear avoidance 

• Oozeki et al. (2004) developed an 
effective frame trawl for sampling 
pelagic larval and juvenile fish.  

•  Jůza and Kubečka (2007) used fixed-
frame trawls to estimate juvenile fish 
densities in the offshore zone of 
reservoirs in the Czech republic. The 
trawls worked best at night and for 
pikerperch (S. lucioperca), bream (A. 
brama) and bleak (A. alburnus). 

(Jůza & Kubečka, 2007) 

(Oozeki, Hu, Kubota, Sugisaki, & 
Kimura, 2004) 

(Oozeki, Hu, Tomatsu, & Kubota, 
2012) 

(Rotherham, Johnson, Kesby, & 
Gray, 2012) 

 

Seine nets 

• Can target particular areas 
• Can be operated to minimise 

destructive potential 
• Can be deployed at night 
• Collect moderately spatially 

extensive samples 
• Can be managed so 

operators do not need to 
enter the water  

• Sampling area can be 
calculated 

• Limited to unstructured habitats 
• Most approaches require shallow 

water and a bank to haul on to 
• Usually used to collect samples 

over moderately extensive area so 
time intensive per sample so 
usually provide low spatial 
replication 

• Representation uncertain due to 
potential for gear avoidance 

• Paradis et al. (2008) found seine nets 
most effective at sampling juvenile 
yellow perch.  They received better 
measures of abundance, precision 
and occurrence of juveniles than with 
pop-nets. The nets worked well in 
sparse and densely vegetated areas 
in fresh water environments. 

•  Carassou et al. (2009) captured 
juvenile reef fish with underwater 
seines. In seagrass or macro-algae 
habitats seine nets were most 
effective with juveniles within the 
first meter from the seafloor. 

• Beach seines are more effective at 
catching juvenile silver carp in river-
floodplain systems and beach seines 
better able to capture smaller 
individuals. Beach seines also more 
cost-effective in terms of output per 

(Carassou et al., 2009) 

(Collins, Diana, Butler, & Wahl, 
2017) 

(Espino, González, Haroun, & Tuya, 
2015) 

(Kanou, Sano, & Kohno, 2004) 

(Paradis et al., 2008) 
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gear  advantages l imitat ions  successes  References 

unit effort of labour (Collins et al. 
2017). 

• Espino et al. (2015) demonstrated 
seine nets were effective at assessing 
juvenile parrotfish in seagrass 
habitats and best for accurate size 
measurements. 

Cast nets 

• Can be used across many 
habitats 

• Can be deployed at night 
• Do not require the operator 

to enter the water 
• Able to collect many small 

samples per unit time so 
lends itself to high 
replication 

• Difficult to control sampling area 
precisely 

• Limited to unstructured habitats 
(but can be deployed closely 
adjacent to structured habitats) 

• Representation uncertain due to 
potential for gear avoidance  

• Wang et al. (2009) used sast nests 
used in non-vegetated estuaries and 
mangrove sites/ mudflats. Cast nets 
caught a comparable amount of fish 
but differed in the community 
composition relative to other 
methods (gill net and centipede net) 

(Stevens, 2006) 

(Stein III, Smith, & Smith, 2014) 

(Wang, Huang, Shi, & Wang, 2009) 

Fyke nets 

• Can provide a 
comprehensive sample for 
particular habitat types 

• Provide non-destructive 
samples 

• Limited to particular sampling 
situations 

• Collins et al. (2017) demonstrated 
mini-fyke nets were most effective at 
capturing high densities of juvenile 
silver carp in river floodplains.  Mini-
fyke nets also performed well in 
comparison to other netting 
methods. 

• Fyke netting was used to monitor a 
population of golden galaxias 
(Galaxias auratus) in a man-made 
dam in They asmania by Hardie et al. 
(2006). They found fyke netting was 
most effective at capturing juveniles 
during the day and night in the 
littoral zone. 

(Bonvechio, Sawyers, Bitz, & 
Crawford, 2014) 

(Collins et al., 2017) 

(Hardie, Barmuta, & White, 2006) 

(Van Der Veer et al., 1992) 

 

Baited fish 
traps 

• Can be used across many 
habitats 

• Uncertain and variable extent of 
bait plume makes precise control 

• Merilä (2015) assessed the success of 
baited and unbaited minnow traps to 
sample nine-spine sticklebacks 

(Bosch et al., 2017) 

(Harvey et al., 2012) 
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gear  advantages l imitat ions  successes  References 

• Can be used in structurally 
complex habitats 

• Do not require the operator 
to enter the water 

• Can be deployed at night 
• Able to collect many small 

samples per unit time so 
lends itself to high 
replication 

and knowledge of sampling area 
uncertain 

• Representation uncertain due to 
potential for gear avoidance  

(Pungitius pungitius) in lakes in 
Finland. Baited traps had a similar 
catch-per unit effort for juveniles, but 
baited traps included more adults in 
the sample. 

• Sheaves (1996) used baited traps to 
sample juveniles in structurally 
complex habitats. 

(Merilä, 2015) 

(M Sheaves, 1996) 

(Sheaves, Johnston, Johnson, 
Baker, & Connolly, 2013) 

 

Drop samplers 

• Provide comprehensive, 
quantitatively precise 
samples from particular 
habitat types 

• Provide non-destructive 
samples 

• Limited to unstructured, shallow 
water habitats 

• Slow to deploy and involves 
considerable boating activity to 
deploy so likely to result in 
avoidance 

• Produces relatively few samples 
per day so usually provides low 
spatial replication 

• Baltz et al. (1993) utilised drop 
samplers to assess microhabitat use 
by fish in an extensive saltmarsh in 
Louisiana. Over three years drop 
samplers were deployed along 
transects and resulted in 57 different 
fish species all with a high count of 
larval and juvenile stages. 

(Baltz, Rakocinski, & Fleeger, 1993) 

(Rozas & Minello, 2015) 

DUVC 

• Is not restricted by habitat 
type 

• Provides a real-time visual 
sample so allows the 
collection of additional 
information (e.g. behaviour) 
in response to observation 

• Limited to depths that divers can 
access 

• Daytime and night-time samples 
require different techniques so 
have limited comparability 

• Disturbance of having a human 
intruder in a habitat likely to lead 
to avoidance by many species 

• Limits on safe dive-time means 
replication per day is limited, 
reducing cost-effectiveness and 
spatio-temporal replication 

• Involve personnel to enter the 
water leading to unacceptable risks 
such as crocodile attack 

• Observer bias potentially high 

• Espino et al. (2015) used DUVC to 
assess habitat use and abundance of 
parrotfish in seagrass meadows. They 
recorded a similar abundance 
measure of target fish to seine nets 
but because of difficultly detecting 
juveniles, the distribution of juvenile 
sizes was underestimated relative to 
their seine net data. 

(Espino et al., 2015) 

(Lindfield, Harvey, McIlwain, & 
Halford, 2014) 

(Mallet & Pelletier, 2014) 

(Warnock, Harvey, & Newman, 
2016) 
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gear  advantages l imitat ions  successes  References 

ROV 

• Is not restricted by habitat 
type 

• Provides a real-time visual 
sample so allows the 
collection of additional 
information (e.g. behaviour) 
in response to observation 

• No depth limitation 

• Daytime and night-time samples 
require different techniques so 
have limited comparability 

• Disturbance of having a large 
moving device in a habitat likely to 
lead to avoidance by many species 

• Limits on complexity of operation 
means replication per day is 
limited, reducing spatio-temporal 
replication 

• Observer bias potentially high 

•  ROV system with a mounted ‘tickler 
chain’ (to encourage fish movement 
immediately in front of camera) was 
an effective means to locate juvenile 
flatfish and assess their density. This 
technique worked well in    various 
habitat types from fine mud to rocky 
bottoms with kelp and coral 
(Norcross and Mueter 1999). 

(Ayma et al., 2016) 

(Norcross & Mueter, 1999) 

(Mallet & Pelletier, 2014) 

(Struthers, Danylchuk, Wilson, & 
Cooke, 2015) 

(Warnock et al., 2016) 

BRUVS 

• Can be used across all 
habitat types 

• No depth limitation 
• Medium sized camera units 

minimise and localise 
disturbance and therefore 
avoidance 

• Many units can be deployed 
at one time allowing high 
spatial replication 

• Techniques available to 
extend to size measures 

• Uncertain and variable extent of 
bait plume makes precise control 
and knowledge of sampling area 
uncertain and limits value for 
habitat-specific studies 

• Daytime and night-time samples 
require different techniques so 
have limited comparability 

• Limited to relatively high water 
clarity situations and detection 
varies with water clarity 

• Limits on field-of-view, and 
structure in front of camera can 
limit detection 

• Identification of target species and 
life-stages subjective 

• Generates large bodies of data 
making data analysis time 
consuming 

• Observer bias potentially high 

•  Stoner et al. (2008) successfully 
deployed BRUVS to assess the 
relative abundance of juvenile Pacific 
cod in Alaska. This technique 
performed well in seagrass, kelp, and 
open habitats both in shallow and 
deeper waters.   

• Although not specifically sampling for 
juveniles Hardinge et al. (2013) 
successfully recorded the juveniles of 
many fish species in a temperate reef 
system in Western Australia. In their 
comparison between 3 different bait 
treatments (200g, 1000g & 2000g) 
juveniles were present at all baited 
cameras. 

(Bosch et al., 2017) 

(Hardinge et al., 2013) 

(Harvey et al., 2012) 

(Mallet & Pelletier, 2014) 

(Stoner et al., 2008) 

(Struthers et al., 2015) 

 

 

UBRUVS 
• Can be used across all 

habitat types 
• No depth limitation 

• Daytime and night-time samples 
require different techniques so 
have limited comparability 

• Using UBRUVS Bradley, Baker, and 
Sheaves (2017) were able to sample 
fish assembles in previously 

(Bradley et al., 2017) 

(Cullen & Stevens, 2017) 



10 
 

gear  advantages l imitat ions  successes  References 

• Small camera units minimise 
and localise disturbance and 
therefore avoidance 

• No attractant used therefore 
suitable for habitat-specific 
data collection 

• Many units can be deployed 
at one time allowing high 
spatial replication 

• Techniques available to 
extend to size measures 

• Limited to relatively high water 
clarity situations and detection 
varies with water clarity 

• Limits on field-of-view, and 
structure in front of camera can 
limit detection 

• Identification of target species and 
life-stages subjective 

• Generates large bodies of data 
making data analysis time 
consuming 

• Observer bias potentially high 

unstudied deep waters from an 
estuary system in Northern Australia. 
They revealed that 22% of all species 
surveyed were only present as 
juveniles, demonstrating UBRUVS as 
a successful tool for juvenile 
detection.  

• Similarly, Sheaves et al. (2016) 
deployed UBRUVs within mangrove 
forests to produce new insights into 
the use of mangroves by fish 

(Hardinge et al., 2013) 

(Sheaves et al., 2016) 

(Struthers et al., 2015) 
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Figure 1: Issues and solutions relating to effective juvenile fish surveys. (c) indicates approaches where Deep Learning 
provides substantial opportunities for optimization  

RUV Techniques; strengths, limitations and solutions 

Techniques- specific strengths 

Current RUV techniques offer solutions to many of the issues preventing comprehensive 

understanding of the spatial distribution of early life-history stages of fish and limiting the widespread 

implementation of reliable, repeatable surveys of juvenile recruitment (Figure 1a). One obvious 

feature of RUVs is that they are non-destructive and among the least invasive of sampling 

approaches(Mallet & Pelletier, 2014); overcoming the disadvantages shared by many other 

approaches that makes them unsuitable for routine ap-plication to sampling delicate juvenile stages. 

A second advantage is that RUVs can be deployed effectively in almost any habitat type and at all 

depths (Ayma et al., 2016; Mallet & Pelletier, 2014), al-though modifications may be required for use 

in very deep waters(Norcross & Mueter, 1999).Because of their different operational characteristics, 

the various RUVs differ in the roles they can play and to biases that come with their deployment. This 

makes their values situation-specific. For instance, while ROVs provide the possibilities for large-scale 

transect-based surveys, the data produced may be biased compared to the minimal disturbance 

caused by stationary approaches such as UBRUVs. While it is possible to operate ROVs without 

personnel in the water, the size and motion of most ROVs means they are still have the potential for 

disturbance leading to avoidance by some species (Ayma et al., 2016). This means that the value of 

ROVs will often need to be established on a use-by-use basis, relative to particular situations and 

goals. Small stationary BRUVs and UBRUVs largely overcome the problem of fish avoidance due to 

movement, and the ability to deploy them without continual operator control means they can provide 

high spatial replication (Mallet & Pelletier, 2014).The aggregating effect of their bait plume makes 

BRUVs particularly useful in situations where fish densities are low (Mallet &Pelletier, 2014) but the 

presence of bait and variation in the area of attraction means they produce estimates with biases that 

are difficult to assess (Hardinge, Harvey, Saunders, & Newman, 2013). Consequently, where habitat-

specific information is required UBRUVs provide an obvious advantage over BRUVs because, in not 

relying on a bait plume to attract fish to the camera, the fish they record can be assumed to be 

normal inhabitants of the habitat in which they are deployed. 

Current Limitations that could be addressed by emerging DL technologies 

The list of potential limitations for RUVs is extensive (Figure 1).Perhaps most crucially, while the 

stream of video information provided by RUVs is one of their strengths it also brings with it one of 

their greatest limitations, that they inevitably produce massive volumes of data (Mallet & Pelletier, 
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2014; Matabos et al., 2017).Combined with the high replication that can be achieved, particularly 

with BRUVs and UBRUVs, the amount of data that needs to be pro -cessed can quickly overwhelm the 

resources of human video view -ers. This often renders video analysis prohibitively costly, militating 

against consistent high-quality assessment or resulting in reliance on rudimentary summary 

information from massive data collections. Recent development of computer vision Deep Learning 

approaches could potentially overcome this limitation. Deep Learning (DL), asub-discipline within 

Artificial Intelligence research, has proven to be useful in detecting and classifying objects from 

images, in particular through the use of Convolutional Neural Networks (CNN) variations(Konovalov et 

al., 2019; LeCun et al., 2015). CNN and relevant programming packages (e.g., Keras, Tensorflow and 

PyTorch) have made it possible to train and implement fish image detectors and classifiers for 

research (Konovalov et al., 2019). This substantially reduce the amount of video that needs to be 

assessed by human viewers. Although this seems a modest ability, over time as training data and 

network models improve, this would free research staff from watching and labelling videos, removing 

a major cost impediment and al-lowing staff to devote that time to the research component of the 

work. Observer bias is a problem for traditional video analysis. Becauseit relies entirely on humans to 

detect and identify fish, consistency of detection and identification varies complexly over time, 

influenced by both the viewer's level of proficiency and experience, and their fatigue levels (Rattray, 

Ierodiaconou, Monk, Laurenson, &Kennedy, 2014). This problem is magnified when multiple viewers 

are involved because different viewers are likely to have different levels of detection and 

identification skills. Moreover, even rudimentary quality control requires multiple viewing of at least a 

proportion of videos. The use of multiple viewers brings with it the possibility of a type of cognitive 

bias (Keil, Depledge, & Rai, 2007), where a doubtful identification is converted into a confident one 

due to the reinforcement of multiple subjective opinions. Deep Learning (DL)can help minimize 

cognitive bias; by acting as an empirically deter-mined statistical model, DL can provide detection and 

identification with a consistent, defined level of error. Additionally, because it uses explicit criteria, DL 

can help overcome the related problem of human observers making positive identification based on 

“experience” rather than on empirical characteristics in situations where difficult conditions (e.g., 

poor water clarity) make recognition of defining characteristics uncertain. However, DL introduces its 

own biases (i.e., data bias and/or algorithm bias). Although these will usually be easy to identify, 

justify and control, it is important that they are explicitly assessed and accounted for.The problem of 

observer bias is even more problematic in studying juveniles because of the need to consistently 

differentiate juveniles from later stages. Juveniles often have marking patterns or morphological 

characteristics that are different from those of sub-adults or adults. In some cases, these differences 

may be distinct enough for relatively easy identification by human observer. However, even then 
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there is the problem of subjectivity involved in deciding when a shape or pattern is distinctive enough 

to trigger positive differentiation into either juvenile or non-juvenile categories. The extent of the 

problem is non-trivial, with different human assessors producing different estimates of even simple 

parameters when viewing underwater video (Mataboset al., 2017). Added to this is the problem of 

drift in stage-identification as observers come to recognize additional characteristics, and so subtly 

(and usually unconsciously) change the criteria they are using. Because of its explicit criteria, trained 

CNN can provide a solution by enabling consistent differentiation of individuals into categories based 

on characteristic sets using specific cut-off points that do not vary over time and have a known error 

associated with the cut-offs. Because CNN models involve explicit parameter definitions (categories, 

weights and bias) and training over many samples, they can provide consistent differentiation in 

situations where human observers’ decisions would diverge or vary over time. Because DL techniques 

are continually evolving, new cut-off points can be developed as prediction models improve and can 

be applied to video that has been assessed previously, if  that is necessary 

Limitations and Challenges Associated with the Application of DL to RUV 

Some of the challenges that have limited CNN use in ecology areas follows: (a) complex and dynamic 

backgrounds in natural settings that hinder object detection and classification; (b) object 

deformation, where the variant scale, orientation and flexible shape of an entity might reduce CNN 

accuracy; and (c) analysis time. The suc-cess of CNN largely depends on the quality of data, optimized 

hard-ware required to handle and process data (e.g. large memory CPUs and GPUs) and software 

(Abadi et al., 2016; Campbell, Salisbury, First and foremost, the strategy used for collecting data 

should be determined by (a) the study question and aim, (b) infrastructure capabilities and (c) the 

expertise of the research/organization team. Thus, as with any other enterprise, developing DL 

solutions in fisheries leans on securing appropriate budget and yielding the required domain 

knowledge (e.g., fish biology, computer and data science).Based on this premise, the following section 

constitutes a set of guidelines, recommendations and considerations that researchers and managers 

should consider when planning and executing data collection with the purpose of training detectors 

and classifiers of juvenile fish. 

Understanding Computer Vision Tasks 

 

There are three foundational tasks in computer vision that under-pin, and would enable, more 

sophisticated fisheries solutions: fish detection, fish segmentation and fish classification. These are 

the computing ability to detect and localize fish in an image, the computing ability to isolate fish from 
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background and the computing ability to correctly classify detected fish with one or multiple 

“labels,”respectively. There are several algorithms and combinations of algorithms capable of 

achieving detection, segmentation and classification of fish (Kaur & Kaur, 2014; Matai, Kastner, 

Cutter, & Demer,2012; Shafait et al., 2016; Villon et al., 2016), see historical over-view by Salman et 

al. (2016). However, in recent years Convolutional Neural Networks (CNN, Fukushima, 1980; LeCun, 

Bottou, Bengio,& Haffner, 1998) have become the most common and success-ful computational 

approach used in fish detection and classification (Konovalov et al., 2019; Li, Shang, Qin, & Chen, 

2015; Mandal,Connolly, Schlacher, & Stantic, 2018; Salman et al., 2016; Storbeck& Daan, 2001; Villon 

et al., 2016). It has been demonstrated with-out a doubt that a modern CNN, for example the state-

of-the-art EfficientNet (Tan & Le, 2019), could achieve human-expert-level accuracy if a sufficiently 

large and diverse training set of labelled images is available. When a novel class of objects does not 

have a large corresponding data set of labelled images, the main practical (and project-cost) challenge 

is currently associated with creating such a CNN training data set. A typical overall labelling cost is $1–

$10 per labelled image, where the per-image-cost naturally decreases with   larger volumes. 

Constructing a training library for effective Deep Learning 

The effective number of images/videos required to develop CNNs for detection and classification of 

juvenile fish is not a trivial matter. The image set must capture the variability of conditions expected 

during CNN implementation. In many situations, this would mean capturing images for the target fish 

across all underwater habitats and conditions the species occupy. In addition, the image set would 

ideally contain all possible representations of the target species. Of particular importance is variation 

in fish shape during swimming (Shafait et al., 2016), variation in phenotype, which occurs both at a 

population level and in response to environmental cues(Meuthen, Baldauf, Bakker, & Thünken, 2018) 

and throughout development, which can also differ in response to environmental con -text (Nyboer, 

Gray, & Chapman, 2014). Failing to account for those variability sources would limit the generalization 

capabilities of the CNN model, compromising DL success over large spatial scales and  broader 

applications. Gathering a data set with the characteristics described above can be expensive. There 

are costs associated with sampling, data curation and labelling. With the current trend of 

improvement and cost reduction of necessary DL equipment, as well as the increasing diversity of DL 

open source and freeware software, costs associated with data collection and curation are likely to 

become the most important challenges to tackle. However, three strategies can be used to overcome 

this challenge. Firstly, researchers and managers can take advantage of historical images and video 

recordings which can be repurposed to train CNN. Secondly, using data augmentation or transferring 

learning (see Table 2) small data sets can be trained with moderate generalization capabilities. 
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Thirdly, curation and ground truth labelling can be partially automated using already available fish 

detectors and other computer vision algorithms (motion detection and object segmentation). 

Table 2: Table of considerations for the application of DL to RUVs 

Component Consideration 

Infrastructure for data storage and processing: 

Footage should be stored in a medium that 

protects data and allows for easy retrieval, 

therefore minimizing the cost of sharing and 

reusing it. Data protection implies physically 

safeguarding data from damage, but also 

ensuring it lasts into the future in mediums and 

formats that can be later consulted. Processing 

of footage is faster if run on appropriate 

hardware such as Graphic Processor Units 

(GPUs) 

Meticulously curated metadata improves 

processing data fetch into the AI algorithms and 

facilitates searching and finding data of interest 

With the advent of high-quality image sensors 

with high resolution(e.g., 4K), storage and 

processing are something that should be 

thoughtfully considered. When used for large 

spatio-temporal scale monitoring, the universally 

accessible nature of video technology is 

challenged by the expense of storing and 

processing big volumes ofraw data 

Labelling: 

A data set of training images/videos in which 

the objects of interest are identified (and 

preferably verified), is required for training 

supervised DL/CNN. Labelling is the most time-

consuming task on the analysis cycle and 

requires prior expert knowledge. There are 

three main types of labelling: image/video-

level, bounding box and mask. As their names 

indicate, image-level label specifies the target 

fish present or not anywhere in the image (or 

video for the video level), a bounding box label 

enclose the target fish inside abox or region of 

interest, while a mask label segments the 

target fish(crop around fish contour) from the 

background. CNN models and architectures are 

designed to work with either of these labels’ 

It is important to remember that generally 

supervised DL/CNN will learn from the 

training/validation data set, and then when 

presented with new data will make predictions 

based on what it has learnt.For this reason, and 

depending on the specific DL/CNN task, data 

collection should include samples of most of the 

potential cases expected. For detecting different 

life stages of fish, obtaining highly accurate 

training images is crucial. To ground truth images 

of different life stages/size-classes, ideally fish 

should be captured, imaged throughout their 

growth from early-juvenile to adult, then 

euthanized and aged to determine an accurate 

age estimate for each set of images throughout 

the life cycle. Otherwise, the DL/CNN will 
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types.Lastly, there is an increasing use and 

demand of mask label data. The type of 

labelling would ultimately depend on the 

research purpose and CNN type used, where 

the image-level labelling is the easiest/fastest 

(and hence least costly) to curate, followed the 

bounding boxes and then by the most time-

consuming segmentation masks 

inherent any inconsistencies and biases from 

subjective human identification 

Augmentation: 

Data augmentation refers to the process of 

applying a series of random changes in the 

appearance of the images set. Changes include 

rotation, warping, scaling, contrast and many 

more. Thus, a given image set can be 

augmented by randomly applying these 

transformations during training (or validation 

or testing). Artificially creating variation is 

useful to increase the CNN generalization 

capability 

Depending on the classification task, researchers 

can select which modifications can be 

appropriate to generate variation and improve 

model generalization, and which ones should be 

avoided. The magnitude of change can also be 

restricted. Augmentation must be severe enough 

to give flexibility to the network, but not so great 

that it leads to misidentification 

Network selection: 

Depending on the topology of the neural layers 

used, Deep Learning algorithms are classified 

according to their different known CNN 

architectures (e.g., ResNet-50 He, Zhang, Ren, 

& Sun, 2016), which balance accuracy against 

speed in different ways. Networks can also be 

individually customized to improve 

performance 

The advantages of customization may be 

outweighed by the reproducibility and 

transparency in using publicly available networks 

“off the shelf” (discussed above) 
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Training, validation and testing—Learning: 

The network trains on a set of training images, 

then it can be tuned using validation images, 

re-trains based on these results, and tests itself 

on a separate set of testing images 

The behaviour of the network, including levels of 

accuracy required, can be set by researchers. 

Here, important decisions must be made about 

the relative acceptability of false positives versus 

false negatives. In general, either false positives 

or false negatives could be easily reduce but not 

both (Fawcett, 2006) 

Observing the prediction model: 

Once the prediction model has been 

developed, the criteria used by the AI to 

distinguish between species and life stages can 

be extracted, summarized and presented. 

Here, researchers can determine whether the 

criteria developed by theAI are 

biologically/ecologically relevant 

Applying the DL/CNN model—automated 

processing of data: 

If the DL/CNN model achieved acceptable 

performance on test and validation 

images/videos, it can now be used to 

automatically process unlabelled video 

Here, a balance must be reached between 

comprehensive processing of the video sample 

and acceptable processing time. Analysis speed is 

needed to be at least at the video's fps or faster 

(i.e., 30 frames of30 fps footage then would take 

<1 s to process). For the identification of fish, it 

may be acceptable not to process every frame, 

as fish usually inhabit the frame for >1 s (i.e. 

could be detected in at least 30 frames) 

 

 

Pilot case-study: detecting early-juveniles in RUV surveys 

 

To illustrate the feasibility of DL/CNN-based processing of RUVs, we present a pilot case-study of 

detecting early-juvenile mangrove snap-per (Lutjanus argentimaculatus, Lutjanidae) in videos. 

Mangrove snap-per are an important commercial and recreational fisheries species, distributed 

widely throughout the Indo-Pacific. With spatially distinct juvenile and adult populations, knowledge 

of recruitment variability and early-juvenile habitat requirements is critical for a complete un-

understanding of the fishery. Initially, Konovalov et al. (2019) developed a human-labour efficient 
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labelling approach for detecting fish in under-water videos, where habitat-specific video clips with 

and without fish were manually cropped and then converted to individual images (one image per 

video frame). Xception CNN (François Chollet, 2017) was used within the Keras deep learning 

framework running via Tensorflow as the backend. For 20 different habitat types considered, four 

thou-sand labelled images of target fish species were sufficient to train the Xception CNN to achieve 

0.17% false positives and 0.61% false negatives on the project's 36,000 test images. For our pilot 

study focusing on the early-juvenile phase of mangrove snapper (see Figure 2), we only used a small 

initial set of training images (140 positives and 1,398negatives). Following the labelling approach of 

Konovalov et al. (2019),we trained a PyTorch-based Xception CNN using the training pipe-line from 

Konovalov et al. (2020). To achieve a high level of accuracy, we developed a novel technique of 

training a CNN on mixed resolution images. Each high-resolution image was cut into four quarters   

and combined with a downsized version of the original image. Hence, each training image yielded five 

distinct images (the four quarters and the downsized version). When processing, each frame was 

converted to five images in a similar fashion. Figure 3 presents an example of a CNN prediction where 

the target juvenile fish was detected (blue highlights in Figure 3) in both the original high-definition 

resolution and the downsized version. However, it was equally common to see detections only in the 

high resolution or only in the lower resolution.Typically, very small (on the image scale) juveniles 

where only detected in high resolution and very large visual instances were detected only in lower 

resolution. For full details of the training and testing procedure, see Supplementary Materials.  The 

CNN we created was able to identify early-juvenile man-grove snapper from a new set of videos with 

a high level of accuracy(95%) compared to a human viewer. These videos contained a range of 

different fish species, habitats and conditions. Importantly, these videos also contained late-juvenile 

mangrove snapper, and the CNN was successfully able to distinguish between them and our target—

the early-juvenile stage. The CNN usually detected target fish at the same point in the video as the 

human viewer and in some cases detected them before the human viewer. The results of this pilot 

study(see Table 3) demonstrate that human-level detection accuracy of particular juvenile stages of a 

fish species can be achieved with a modest set of training images. 
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Figure 2: Sample image of early-juvenile mangrove snapper(Lutjanus argentimaculatus, Lutjanidae) 

 

 

Figure 3: Sample of correct CNN detection and localization in the 1,920 × 1,080 resolution image 

(bottom subfigure) and the downsized 1,024 × 512 resolution image (top subfigure) 
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Tabel 3: Summary of comparison between trained network andhuman viewer on a set of video 

deployments not used in training. 

Number of video deployments 49 
Total footage (min) 735 min 

Number of targets detected by human viewer 42 
Number of targets detected by network 40 

Network accuracy compared to human viewer 95% 
Instances where network detected target before human viewer 17% 

Instances where network detected target at a similar point in video  (±3 s) 43% 
Instances where network detected target after human viewer 38% 

 

Residual issues 

Although DL-enhanced RUV techniques offer solutions to some of the fundamental issues that have 

inhibited understanding of the ecology of juveniles of many species, a number of residual issues 

remain (Figure 1d). The problem of species-specific bias is common across sampling methodologies 

(Baker & Minello, 2011; Rotherham,Johnson, Kesby, & Gray, 2012; Sheaves, 1995). Most obviously is 

the problem of attraction or repulsion caused by imposing a foreign object in a habitat, the 

disturbance associated with deployment of the equipment or the specific attraction that is part of 

baited sampling techniques. The problem of differential attraction is obviously a concern for BRUVs, 

where different species are likely to be attracted(or repulsed) by the bait plume (Hardinge et al., 

2013), and where the attractive effect varies with the extent and direction of water movement. 

Moreover, what is attracted also depends on the mix of habitat types intersected by the bait plume 

(Logan, Young, Harvey,Schimel, & Ierodiaconou, 2017). The utility of BRUVs for the question at hand 

should be carefully considered, and at the very least, an understanding of species/community bait 

response, plume size and surrounding seascape should be acquired before results are interpreted 

(Ghazilou, Shokri, & Gladstone, 2016; Heagney, Lynch,Babcock, & Suthers, 2007; Klages, Broad, 

Kelaher, & Davis, 2014;Taylor, Baker, & Suthers, 2013). A more localized issue relates to attraction to 

the flashing lights enabled on many videos that indicate they are recording. Impacts of attraction or 

repulsion are likely tobe minimized by the use of small, stationary, unbaited video units with neutral 

(e.g., black) coloured casings and no flashing light, and by careful deployment that minimizes 

disturbance. While this mix of characteristics and operating procedures is likely to minimize impacts, 

they are unlikely to be completely eliminated. Consequently, the assumption of no impact needs to 

be kept in mind when analysing video data and should be considered as a matter of course. A second 

source of species-specific bias relates to the extent to which a video sample represents the range of 

habitats available. In part, this is solved by careful spatial sampling design, and however, some issues 
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remain. One particular problem relates to the extent of the water column sampled by video methods. 

For example, vid-eos placed on the substratum with only a few centimetres of water over them, may 

sample the whole water column and therefore include pelagic species, while those deployed in only 

slightly deeper water will often miss those pelagic even if they are present. The only way around this 

is to use stacked cameras to cover the whole water column, something that quickly becomes 

infeasible as water depth increases. Consequently, where only a single camera is used(either bottom-

set or floating), there is inherent assumption that the recorded video data only represent the layer of 

the water column covered. Although this assumption is rarely explicitly stated, if not considered, it 

has the potential to produce anomalous interpretations. As a result, it is advisable that this water 

column coverage assumption is routinely explicitly addressed in RUV studies. As with all gears (Gwinn, 

Allen, & Rogers, 2010; Kubečkaet al., 2012; Sheaves, Johnston, & Connolly, 2010), size-specific biases 

place limits on interpretation. With RUVs, the sizes of fish that can be detected and identified varies 

with the angle of view, the characteristics of the lens and water clarity (Mallet & Pelletier, 

2014),leading to a trade-off between such things as the area that can be viewed and the ability to 

detect and identify small fish. Not only does this mean that an explicit decision is needed about the 

lens, angle of view, etc., based on the main purpose of the study, but that videos collected with 

different lenses, such as wide angle versus narrow, will be implicitly incomparable for some purposes. 

Added to this, large fish distant from the video are easier to detect and identify than small fish at the 

same distance, adding to size-specific bias. This problem is intertwined with the questions of defining 

the area sampled (Kubečka et al., 2012) and accounting for water clarity (Boland& Lewbel, 1986). 

Stereo video or laser techniques to measure distance and area sampled, and standardize sampling 

accordingly, offer possible solutions. The question of defining the area/volume sampled is one of the 

most vexed for underwater video (Mallet & Pelletier, 2014). Although this is in part controllable by 

maintaining a constant angle of view, the issue of increasing field of view with distance from the 

camera remains. Moreover, the distance from the camera in which fish can be detected and 

identified varies with both habitat complexity and water clarity, and in shallow water is further 

complicated by effects such as backscattering and lens flare. Complex habitat features, for example 

macroalgal fronds, mangrove roots or seagrass blades, can  block visibility of fish. While the most 

severe of these effects can be overcome by accepting or rejecting video samples based on degree of 

obstruction of the field of view, the effects of detectability of fish between structured and 

unstructured habitats remain. For species that actively move through their surroundings, it is an issue 

of allow-ing adequate sampling time to encounter individuals, whereas for species that are relatively 

stationary, this presents a serious limitation. Water clarity is also complex, affected by both dissolved 

(e.g.,tannins) and particulate (inorganic or organic) matter. The various components have different 
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impacts on the optical properties of water (Mobley, 2001) and combine to influence light 

transmission and scattering in complex ways. Dissolved organic components principally impact light 

transmission while organic and inorganic particles effect backscatter in complex ways so their 

influence varies substantially in responses to factors like the angle of the sun. It is common practice to 

measure water clarity and only deploy RUVs when clarity is above a pre-determined threshold. This is 

fraught with difficulties, however. Firstly, different approaches (e.g., using a nephelometer vs. a 

Secchi disk) measure water clarity in different ways and provide inconsistent information depending 

on the source of turbidity (dissolved materials, different types of particles; Davies-Colley & Smith, 

2001). It is also often difficult to take measurements at the actual depth where the camera is 

deployed. In attempting to account for water clarity, it is common to employ a marker at a set 

distance from the video (e.g., a card with field of dots at different densities) as a way of determining 

water clarity. In practice, it can be difficult to link this to objective criteria, although it does provide an 

opportunity for further development, especially when these measurements can be objectively 

automated with DL technology.Although emerging technologies can help, the issue of variable 

sampling area/volume remains problematic for two-dimensional video recordings where water 

clarity, and visibility in general, is subject to complex variability. Quite often there will be no simple 

solution beyond limiting interpretation to videos with some identifiable level of water clarity or 

obstruction. This is not only subjective but does not provide consistency of sample area/volume. 

Consequently, in most situations it is advisable to focus on robust measures such as probability of 

encounter (Sheaves, Johnston, & Connolly, 2012) and clearly address the assumption involved in even 

that interpretation. Other more complex measures such as NMax can provide unreliable estimates 

(Schobernd, Bacheler, & Conn, 2013) so should be used with caution, again with the assumption 

clearly stated. Finally, there is the question of the differential effectiveness of current video 

technology between low versus high light situations, particularly at night. For instance, although 

specialized systems have been developed for specific applications (Hung et al., 2016), current 

technology requires lighting to be used in most low light and night situations. There are obvious 

issues of differential attraction suchas those described above. In effect, this places limits on many ap-

plications of RUV techniques. In particular, at the moment it is only practical to utilize daytime video 

data when investigating habitat utilization, leaving a gap in understanding of changes in habitat 

occupancy at night. The use of artificial illumination and ultrasensitive low-light cameras have the 

potential to fill this gap (Fitzpatrick,McLean, & Harvey, 2013) but the extent of the advantages they 

provide still needs to be quantified and the specific assumptions as -sociated with their use 

understood. Another strategy that can help overcome some of the limitations resulting from low light 

limitations is to link video collected at times of high light (e.g., daytime) with information from 
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complimentary sources, such acoustic telemetry(Cooke et al., 2005) that can provide metre 

resolution of the location of a fish over time. Given the potential of bias, if day–night changes in 

habitat utilization are not considered, linking video surveys to such complementary techniques should 

be employed, if at all possible, in studies where understanding fish–habitat relationships is the object.
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Figure 4: A framework for assessing issues and biases in RUV projects, understanding limitations and determining reasonable, defensible solutions. 

Examples:
• Water clarity
• Lighting
• Field of view

Determine the level at 
which the issue 
becomes important.

Evaluate the likely 
impacts relative to the 
question, the species, 
the situation etc.

Develop approaches to 
overcome the issue in 
the situation it will be 
used

Explicitly detail the 
assumptions that need 
to be made after the 
best possible solutions 
have been 
implimented.

Establish and explicitly 
detail the 
consequences of 
failure of each 
assumption

Review the constraints 
that the assumption-
consequence 
conjunction places on 
interpretaton 

Given the constrains 
on interpretation 
determine the value/ 
feasibility of the 
proposed work

To the extent that is 
possible, develop a 
statement of likely 
‘error’ that can be 
associated with 
reported results

Publish Protocols and 
Limitations (e.g. on 
Open Science 
Framework)

Still feasible 
after 
constraints are 
evaluated

Not feasible after 
constraints are 
evaluated

The issues and/or 
constraints on 
interpretation are such 
that RUV will not 
provide useful 
information so should 
not be used

Attempts to develop a 
solution prove futile
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A Solution Framework 

The range of residual issues (Figure 1d) suggests that RUVs may have limited value in many situations. 

However, similar issues accompany most other data collection approaches. To move forward, it is 

necessary to consider; (a) how to overcome or minimize limitations, (b) how limitations constrain 

reasonable interpretation, (c) whether RUV approaches are suitable to address specific questions in 

specific circumstances and (iv) how to ensure that the use and interpretation of RUVs are valid and 

useful. These questions are best addressed by developing a standard framework for assessing and 

resolving issues and biases (Figure 4).The first step (Figure 4a) involves determining when a specific 

issue is likely to constrain interpretation and evaluating its likely impact on the investigation (e.g. 

variability of the bait plume in BRUV sampling). Once the impact of the issue is clear, it may be 

possible to develop a solution (Figure 4b), often procedural or mechanical, to partially or completely 

overcome the issue for the particular situation (e.g., standardizing BRUV data based on relative plume 

size,Taylor et al., 2013). However, there are few situations where all issues can be overcome, and as a 

result, interpretation of RUV data will be constrained by residual assumptions. The extent to which 

these assumptions are justified will limit interpretation of data, the generality of findings and, 

ultimately, the value of using RUV to address the question at hand (e.g., the use of BRUVS for fish 

community studies where there is differential attraction to bait). Consequently, it is important that 

these residual assumptions and their consequences are clearly understood and explicitly stated 

(Figure 4c). If the use of RUV techniques is feasible under this framework, all protocols, assumptions, 

limitations and associated estimates of error should be made explicit. This is best done using a 

transparent process, for instance, by using the Open Science Framework (https://osf.io/). This would 

enable others to be confident in the interpretation, share solutions and produce complementary 

data. Faced with the innate uncertainty of ecological systems (Harris & Heathwaite, 2012), 

recognizing key assumptions, and the constraints they place on interpretation, is critical, and often 

overlooked. An assessment of feasibility allows for either the informed implementation of a RUV 

solution (Figure 4e) or recognition that RUV is not a viable option (Figure 4f). In sum, RUV techniques, 

combined with deep learning technology and the explicit evaluation of assumptions, provide a 

promising tool for performing basic juvenile surveys to fill critical knowledge gaps in fisheries ecology. 

While not relevant to all species, the carefully considered application of RUV techniques would be 

suitable for a wide variety of species, particularly demersal species. Once the location of juveniles and 

key habitats are understood, more intensive, destructive expensive sampling techniques can be 

employed in a targeted and informed way to fully understand requirements throughout ontogeny and 

factors limiting population success. While traditional gears will need to be employed into the future, 
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the ease of deployment of RUVs make them an attractive tool for use by fisheries management 

organizations as repeatable surveys that could directly inform recruitment strength as part of annual 

stock assessments. 

 

The Future of RUV Optimization for Ecology 

In a general sense, the optimization of RUVs with emerging techno -logical solutions (e.g. marrying 

RUVs outputs with DL and Big Data solutions) is a fertile area of methodological development. While 

we have evaluated these techniques in the context of juvenile fisher-ies surveys, DL and other 

computer vision technologies hold much promise for enabling previously unavailable data streams, 

new areas of enquiry, new ways of looking at the world (e.g., a 360° field of view, Campbell et al., 

2018) and greatly enhanced knowledge in many areas of ecology. Not only could this boost of 

knowledge on composition, abundance, size and habitat utilization of countless fauna, but there is the 

potential to extract entirely new lines of information relating to phenology, environment, behaviour 

and activity, from both existing and future footage. For example, Herrera, Baker, Sheaves, &Sheaves 

(2020) demonstrated the capabilities of image-based sampling and computer vision analysis to obtain 

ecological data on small invertebrate behaviour and bioturbation rate. There are many challenges 

associated with going from what is theoretically possible with DL to being able to use the technology 

in these new ways (e.g., using Long Short Term Memory and/or Generative Adversarial Networks 

methods to model and understand fish movement and swimming de-formations). However, by 

making sampling and analysis workflows available, and clearly explaining sampling and analysis 

assumptions(Herrera, Sheaves, Baker, & Sheaves, 2020), DL and computer vision approaches will 

likely be adopted by diverse researchers, catalysing new developments and improvements. Close 

partnerships between marine/freshwater ecologists, fisheries scientists, engineers and machine 

learning researchers will become increasingly important, as well as mutually beneficial (Weinstein, 

2018). Furthermore, by marrying optimized ROVs with Big Data, environmental sensors and the 

Internet of Things, a range of new information streams for ecol -ogy, conservation and fisheries 

management will become possible, with collaboration in this space becoming fundamental. However, 

there will always be merit in at least some human viewing of footage. Underwater footage is a rich 

source of observational information. For any resulting data to be understood properly, domain 

experts, in this case ecologists, must engage in considered observation of footage, in order to 

understand the context of the data, make new observations and generate new hypotheses. Now that 

video data and computer vision are becoming common-place, researchers and practitioners are faced 

with various pathways for the organization of these new technologies (Wu, Hou, Zhu, Zhang,& Peha, 



28 
 

2001). In terms of the DL architecture itself, it is possible to use off-the-shelf solutions or to develop 

bespoke solutions optimized for particular situations. This flexibility has encouraged the creation of 

many in-house solutions for fish detection and identification. Different research domains will clearly 

require different DL tools, and however, there are advantages in standardizing practises and DL 

approaches across the community. Advancements can be shared between groups more easily, and 

common and robust DL system for fish detection and identification developed and tuned to particular 

domains. These can be made freely available and constantly updated. The extension of this logic calls 

for the use of standardized methods for the assessment and quality control of DL solutions and 

outputs, or the use of a single DL by multiple groups working on the same species. An important 

resource that should be shared across the community are curated video data-bases (Myers, 

Trevathan, & Atkinson, 2012), particularly labelled training image or video sets. This will allow for the 

rapid development of powerful DL and maintain consensus and agreement in identification between 

them. Additionally, the set of procedures used in augmentation during network training, many of 

which require prior knowledge, can be published for peer review and permanently attached to 

publications emanating from DL efforts. Unlike human processing, all prior “ex-pert knowledge” used 

to train DL in classification of different species and life stages can be made available through the 

publication of training image/video sets for peer review. Similarly, the criteria developed by DL to 

differentiate between species and life stages based on these im-ages can be extracted during post-

processing and published as freely available CNN architecture. This makes all steps in video processing 

transparent and repeatable in a way that the “black-box” of human pro-cessing is not, eliminating 

much of the subjectivity that plagues ecological survey data. More broadly, one of the most important 

benefits of image and video sampling is the capacity to revisit raw data, make new observations or 

substantiate old ones, and perform new analyses under new paradigms, and this should be fostered 

throughout the community. 
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TA B L E 2 Table of considerations for the application of DL to RUVsComponent 

ConsiderationInfrastructure for data storage and processing:Footage should be stored in a medium 

that protects data and allowsfor easy retrieval, therefore minimizing the cost of sharing andreusing it. 

Data protection implies physically safeguarding data fromdamage, but also ensuring it lasts into the 

future in mediums andformats that can be later consulted. Processing of footage is faster ifrun on 

appropriate hardware such as Graphic Processor Units (GPUs)Meticulously curated metadata 

improves processing data fetch into theAI algorithms and facilitates searching and finding data of 

interestWith the advent of high-quality image sensors with high resolution(e.g., 4K), storage and 

processing are something that should bethoughtfully considered. When used for large spatio-

temporal scalemonitoring, the universally accessible nature of video technology ischallenged by the 

expense of storing and processing big volumes ofraw dataLabelling:A data set of training 

images/videos in which the objects of interestare identified (and preferably verified), is required for 

trainingsupervised DL/CNN. Labelling is the most time-consuming task onthe analysis cycle and 

requires prior expert knowledge.There are three main types of labelling: image/video-level, 

boundingbox and mask. As their names indicate, image-level label specifiesif the target fish present or 

not anywhere in the image (or video forthe video-level), a bounding box label enclose the target fish 

inside abox or region of interest, while a mask label segments the target fish(crop around fish 

contour) from the background. CNN models andarchitectures are designed to work with either of 

these labels’ types.Lastly, there is an increasing use and demand of mask label data. Thetype of 

labelling would ultimately depend on the research purposeand CNN type used, where the image-level 

labelling is the easiest/fastest (and hence least costly) to curate, followed the boundingboxes and 

then by the most time-consuming segmentation masksIt is important to remember that generally 

supervised DL/CNN willlearn from the training/validation data set, and then when presentedwith new 

data will make predictions based on what it has learnt.For this reason, and depending on the specific 

DL/CNN task, datacollection should include samples of most of the potential casesexpected. For 

detecting different life stages of fish, obtaining highlyaccurate training images is crucial. To ground 

truth images of differentlife stages/size-classes, ideally fish should be captured, imagedthroughout 

their growth from early-juvenile to adult, then euthanizedand aged to determine an accurate age 

estimate for each set of imagesthroughout the life cycle. Otherwise, the DL/CNN will inherent 

anyinconsistencies and biases from subjective human identificationAugmentation:Data augmentation 

refers to the process of applying a series ofrandom changes in the appearance of the images set. 

Changesinclude rotation, warping, scaling, contrast and many more. Thus,a given image set can be 

augmented by randomly applying thesetransformations during training (or validation or testing). 

Artificiallycreating variation is useful to increase the CNN generalizationcapabilityDepending on the 
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classification task, researchers can select whichmodifications can be appropriate to generate variation 

and improvemodel generalization, and which ones should be avoided. Themagnitude of change can 

also be restricted. Augmentation must besevere enough to give flexibility to the network, but not so 

great thatit leads to misidentificationNetwork selection:Depending on the topology of the neural 

layers used, Deep Learningalgorithms are classified according to their different known 

CNNarchitectures (e.g., ResNet-50 He, Zhang, Ren, & Sun, 2016), whichbalance accuracy against 

speed in different ways. Networks can alsobe individually customized to improve performanceThe 

advantages of customization may be outweighed by thereproducibility and transparency in using 

publicly available networks“off the shelf” (discussed above)Training, validation and testing—

Learning:The network trains on a set of training images, then it can be tunedusing validation images, 

re-trains based on these results, and testsitself on a separate set of testing imagesThe behaviour of 

the network, including levels of accuracy required,can be set by researchers. Here, important 

decisions must bemade about the relative acceptability of false positives versus falsenegatives. In 

general, either false positives or false negatives could beeasily reduce but not both (Fawcett, 

2006)Observing the prediction model:Once the prediction model has been developed, the criteria 

usedby the AI to distinguish between species and life stages can beextracted, summarized and 

presented.Here, researchers can determine whether the criteria developed by theAI are 

biologically/ecologically relevantApplying the DL/CNN model—automated processing of data:If the 

DL/CNN model achieved acceptable performance on test andvalidation images/videos, it can now be 

used to automatically processunlabelled videoHere, a balance must be reached between 

comprehensive processingof the video sample and acceptable processing time. Analysis speedis 

needed to be at least at the video's fps or faster (i.e., 30 frames of30 fps footage then would take <1 s 

to process). For the identificationof fish, it may be acceptable not to process every frame, as fish 

usuallyinhabit the frame for >1 s (i.e. could be detected in at least 30 frames) 
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