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GENERAL ABSTRACT  
The impacts of anthropogenic habitat disturbance are often asymmetric 

along environmental gradients and among taxa. For species that cannot 

successfully utilize post disturbance habitats, the ability to occupy positions on 

spatial gradients that fall outside of disturbance regimes may offer a key refuge. 

However, decreasing resource availability or quality, and changing ecological and 

behavioural dynamics along gradients may result in substantial physiological 

costs for fringe-dwelling organisms. Assessments of potential refuges therefore 

require nuanced spatially gradated ecological assessments that are often absent 

and difficult to attain.  

Coral reefs are now heavily impacted by climate related disturbance, and 

the greatest rates of biotic attrition among reef fishes generally occur within 

species obligated to associate with live corals. Because key drivers of future coral 

loss (i.e. warm water bleaching and storm events) may attenuate with depth, deep 

reefs hypothetically offer a refuge to vulnerable fishes. However, because of 

access difficulties, most ecological studies on coral reef organisms occur in 

shallow waters of <15 m.  

In Chapter 2, I investigated the natural depth distributions, depth-related 

variation in community structure and coral habitat associations for 123 reef fish 

species at 6 depths between 0m and 40m, and from inner-bay to offshore reefs. 

The results indicated that depth is a stronger driver of reef fish assemblages than 

cross shelf gradients, though complex coral habitats and some associated fish 

species more frequently occupy deeper depths further from shore. Total live hard 

coral cover did not decline with depth in Kimbe Bay, though the cover of habitat-

providing complex corals declined with depth. The major break in the community 

assemblage of reef fishes occurred between 5 m and 10 m, and 25% of species 

were limited to the shallowest 5m. However, 25% of species occurred at all 

depths between 0m and 30m, and 12% between 0m and 40m. In addition, I show 

that 85% of species with strong associations with live complex coral habitats 

occurred at depths of 20m or below. I therefore conclude that deep reef habitats 

in Kimbe Bay can provide a substantial refuge potential if reef degradation does 

attenuate with depth and the ecological costs of occupying deep periphery 

habitats are not prohibitive to long-term population maintenance.  
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In Chapters 3 to 6, I utilized the Chaetodontidae family (Butterflyfishes) to 

further investigate how a broad suit of behaviours and ecological dynamics that 

influence the distribution, vulnerability and success of a wide range of taxa in 

multiple biomes interrelate and vary among reef fishes along a broad coral reef 

depth gradient, from 0 – 40 m.  

Interrelationships among distribution breadth, abundance, and degree of 

resource specialization form the basis of many general models in ecology, as well 

as extinction-risk assessments in conservation biology. Species with narrow 

distributions, low abundance and high resource specialisation are more 

vulnerable to environmental change and risk increases when vulnerability traits 

are combined. In Chapter 3, I evaluate whether depth may mediate these risks 

in coral-specialist fishes. Contrary to expectation, the most coral-specialized 

species were also the most abundant and the most broadly distributed. Further, 

no specialist-species had combined vulnerability traits, and no specialists were 

wholly restricted to shallow-water. Chapter 3 demonstrates that interrelationships 

among vulnerability traits and occupancy depths do not necessarily follow 

traditional ecological expectations on coral reefs, but they do work to mediate 

substantial risks for species vulnerable to shallow-reef habitat declines. 

Chapters 2 and 3 demonstrate that many ecologically vulnerable reef fish 

species may offset the risks associated with shallow-water habitat losses by 

utilising deep habitats. However, the refuge potential of deep peripheral habitats 

may be mediated by the potentially substantial costs of securing sparsely 

distributed resources, which can limit survival and reproductive output. Further, 

depth-related resource shifts are likely to be more detrimental to dietary 

specialists than to generalists. In Chapter 4, I use extensive and intensive in-situ 

behavioural observations in combination with physiological condition 

measurements to examine the costs and benefits of resource-acquisition along 

the depth-gradient in two obligate corallivore reef fishes with contrasting levels of 

dietary specialisiation. I demonstrate that the space utilised to secure coral-

resources increases towards deeper depths, as expected. However, increased 

territory sizes result in equal or greater total resources secured within deep 

territories. Foraging-distance, pairing-behaviour, body condition and fecundity did 

not decline with depth, but competitive interactions did. Unexpectedly, therefore, 

coral-specialist fishes selecting high-quality coral patches in deep water access 



 

     v 

equal or greater resources than their shallow-reef counterparts, with no extra 

costs. 

 As demonstrated in Chapter 4, the capacity for species to successfully 

occupy range peripheries is enhanced by their ability to mediate costs related to 

decreases in quantities and quality of key resources. In Chapter 5, I investigate 

the capacity to of species to employ variation in dietary strategies and energy 

acquisition along depth gradients. I focus on two obligate corallivores with 

differing levels of dietary specialization, as well as their mixotrophic coral prey. 

Total resource availability and total feeding effort did not decline toward deep-

range peripheries in either fish species, but availability of preferred Acropora 

resources did decline. The more specialized species exhibited limited feeding 

plasticity along the depth gradient, and selective feeding effort on the preferred 

coral genus Acropora increased rather than decreased with depth. In contrast, 

the generalist’s diet varied greatly with depth, reflecting changes in prey 

composition. Unexpectedly, the nutritional content of Acropora did not decline 

with depth, with shifts in 13C and 15N indicating increased coral heterotrophy in 

deeper water may offset declines in light energy. Mixed modelling of stable 

isotopes in amino acids of fish muscle tissue revealed a parallel increase in 

plankton-sourced carbon among deep-resident fish. Therefore, deep ranges 

appear to be supported by multiple mechanisms of dietary versatility, but for 

specialist species this versatility occurred at the resource level (corals), rather 

than among the consumers (fish). This dietary variability and trophic plasticity 

may act to buffer costs and bolster refuge potentials associated with dwelling at 

deep range peripheries, even among taxa with differential functional strategies. 

In Chapter 6, I utilize two natural experiments to 1) demonstrate that a 

natural habitat disturbance event (a crown of thorns sea-star outbreak) can result 

in differential impacts and outcomes on shallow and deep populations of the coral 

obligate reef fish Chaetodon baronessa that favour the persistence of deep 

population; and 2) individual fishes are able to migrate downward, away from 

territories in degrading shallow-water habitats to inhabit healthy deep-reef 

habitats when made available via experimental competitor removal.  

Overall, my thesis highlights how interrelationships among vulnerability 

traits, occupancy depths, and deep coral habitats, offer some risk mitigation 

among taxa currently thought to express high vulnerability to global-scale coral 
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declines in shallow-water. The thesis further demonstrates how various 

combinations of stability and plasticity in resource specialization, space use, 

effort, food availability and quality, diet, feeding behaviour, and body condition, 

may aid the successful exploitation of deep refuges by species with contrasting 

functional traits. Finally, severe habitat disturbance can differentially impact fish 

and habitat survival between shallow and deep reefs, and individual fish are 

demonstrably able to utilize downward vertical migration away from declining 

shallow-water habitat to access higher-quality deep-water habitats where prior 

residence is not established. 
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Chapter 1 - GENERAL INTRODUCTION 

Rapid climate change is causing range contractions and 

displacements of many species, increasing extinction risks in most 

taxonomic groups and degrading ecosystems in most of the earth’s biomes 

(Parmesan and Yohe 2003, Thomas et al. 2004, Lenoir and Svenning 2015, 

Scheffers et al. 2016, Pecl et al. 2017). Many currently extant species 

radiated from organisms that survived past global-scale environmental 

change (e.g. Quaternary glacial cycles) in cryptic refugia at range 

peripheries (Stewart and Lister 2001, Provan and Bennett 2008). 

Successful persistence in small peripheral refuges (Scheffers et al. 2014), 

is likely to be important for many species’ long-term resilience to asymmetric 

impacts from current rapid climate changes (Ashcroft 2010, Keppel et al. 

2012). Therefore, investigating the functional characteristics of 1) range 

margins’ as potential refuge locations, and 2) the species that are most likely 

to benefit from this potential, is an increasingly important component of 

ecology in the Anthropocene. 

Understanding patterns in species distributions is fundamental to 

assessing exposure risks and resilience potentials in response to 

environmental change. Most species have distributions that follow 
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environmental gradients such as latitude, altitude and depth (Schall and 

Pianka 1978, Gaston 2000, Connolly et al. 2003). These distributions are 

linked to changes in the physical environment (e.g. temperature, rainfall, 

light and nutrient availability), gradients in biotic habitat structure (e.g. 

vegetation type or canopy height) (Gaston 2000, Hawkins et al. 2003), and 

the interrelationships among these gradients and species’ functional 

strategies (Cogbill and White 1991, Poorter 1999, Lavorel and Garnier 

2002, McGill et al. 2006). A full understanding of species’ distributions and 

distribution drivers therefore requires investigations of trait-specific 

responses to gradients in several environmental dimensions. For example, 

hypothetical frog populations living in mountainous environments may 

express greater resilience to warming temperatures than low-land 

populations. This is because they have the possibility of occupying a 

broader elevational range. Moreover, certain functional traits such as 

particular habitat associations will predispose some species groups to better 

express this resilience capacity than others.  

Vulnerability assessments in conservation biology are often formed 

around commonly recurring ecological interrelationships among distribution 

breadth, abundance and degree of resource specialisation (Rabinowitz 

1981, Gaston et al. 1997, Gaston et al. 2000, Julliard et al. 2004, Graham 

et al. 2011). Species with small distributional ranges, low local abundance 

or high levels of resource specialization, are particularly susceptible to 

localized disturbances (McKinney 1997), the risks of small population size 

(Williams et al. 2008), and declining resources (Gaston et al. 1997). Most 

often, narrow species ranges are related to lower overall abundances 

(Hanski 1982, Brown 1984, Swain and Wade 1993, Gaston 1996, Gaston 

et al. 1997, Lawton 1999, Frisk et al. 2011), and resource specialists often 

have low abundances and narrow ranges, due to the limited distribution and 

abundance of their prey (Gaston et al. 1997, Lawton 1999, Harcourt et al. 

2002). Where these generalizations hold and interact, extinction risk can 

compound to form a ‘double jeopardy’ or ‘triple jeopardy’ (e.g. Harcourt et 

al. 2002, Munday 2004, Swartz et al. 2006, Hughes et al. 2014). However, 

where they do not (e.g. Roberts and Hawkins 1999, Hawkins et al. 2000, 

Munday 2004, Graham et al. 2011), species may mitigate some of the risks 



 

 

associated with rapid and drastic environmental change. This potential may 

be particularly strong where otherwise vulnerable species have peripheral 

populations whose distributions do not overlap with the most disturbed 

habitats in their range. 

Species presence at marginal positions along environmental gradients 

does not always relate to individual success or long-term population viability 

(Booth et al. 2007, Figueira and Booth 2010, Booth et al. 2011, Feary et al. 

2014). The potential for peripheral habitats to act as refuges depends not 

only on a species’ capacity to survive in or disperse to those environments, 

but also on habitat quality and individual performance at these ecological 

extremes. While species’ realized-niches are ideally centred on regions of 

optimal performance along gradients (e.g. González‐Guzmán and Mehlman 

2001, McGill et al. 2006), source-sink dynamics, density-dependence, and 

intra-trophic competition cause species to extend beyond ideal niches 

(Terborgh 1977, Lawton 1993, Pulliam 2000). At range margins, habitats 

and populations often become more fragmented (Brown 1984, Thomas and 

Kunin 1999), occupancy decreases (Kawecki 2008), and there are natural 

reductions in the quantity and or quality of resources (Brown 1984, Thomas 

and Kunin 1999). These changes often result in costs to consumers, 

including both lethal (lower life expectancy) and sublethal (reduced 

reproductive potential, lower condition) responses (Zammuto and Millar 

1985, Badyaev and Ghalambor 2001, Smallhorn-West et al. 2017). 

Understanding key processes at range margins, including the ecological 

factors that limit individual fitness and population viability, the capacity for 

flexible behavioural responses and potential compensatory mechanisms of 

energy acquisition, will be vital to predicting future trajectories for many 

species vulnerable to extirpation and extinction.  

For “energy maximizing” species (Hixon 1982), the ability to persist in 

marginal habitats, such as range peripheries, is likely to be reliant on flexible 

diets or feeding rates (Flesch and Steidl 2010, Yeager et al. 2014). 

Consequently, shifts in resource availability in response to disturbances and 

environmental gradients, tend to result in shifts in consumer communities 

that favour resource generalists over specialists (Clavel et al. 2011). 

Comparisons of dietary strategies and trade-offs at range peripheries 
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among species with differential specialization is, therefore, a promising way 

of studying the ecological mechanisms that drive broad distributions and 

refuge potential at range margins.  

Coral reefs offer an ideal system for assessing ecological changes 

along environmental and resource gradients. Steep gradients in light 

energy, decreased photosynthetic ability, and rapid turnover in the 

composition of coral communities with depth are likely to result in declines 

in the quantity and quality of resources available to coral consumers 

(Crossland et al. 1980, Crossland 1987, Anthony et al. 2002, Einbinder et 

al. 2009, Roberts et al. 2015). Moreover, although coral reefs are 

increasingly affected by anthropogenic climate change (Bellwood et al. 

2004, Hughes et al. 2018), many stressors attenuate with depth  (Marshall 

and Baird 2000, Hughes et al. 2010, Bridge et al. 2016, Muir et al. 2017, 

Baird et al. 2018). As light decreases, coral assemblages and morphologies 

change, resulting in reductions in complex branching forms that are key 

habitat providers for coral reef organisms (Coker et al. 2012). Moreover, 

energetic changes are likely to occur along the light/depth gradient, such as 

changes in energy acquisition and utilisation (Anthony and Fabricius 2000, 

Anthony et al. 2002, Alamaru et al. 2009, Einbinder et al. 2009). Because 

water quality is often poorer near the coast (e.g. Fabricius  et al. 2005, Death 

et al. 2012), depth related effects of habitat and community structure may 

also vary with distance from shore. 

Deep-reefs could offer a potential refuge for coral reef fishes 

vulnerable to shallow-reef habitat loss (Jankowski et al. 2015, Bridge et al. 

2016), and fishes with broad depth ranges are considered at lower risk of 

extinction than species restricted to shallow depths (Graham et al. 2011).  

The ecological, behavioural, and condition responses of coral-dependent 

fishes to coral declines in shallow water are well established. Low densities 

of preferred coral genera are related to increased space use, increased 

effort in resource protection, and changed social dynamics (Hourigan 1989, 

Tricas 1989, Wrathall et al. 1992, Righton et al. 1998, Berumen and 

Pratchett 2006), as well as increased sub-lethal costs, including lower 

reproductive output (Kokita and Nakazono 2001, Pratchett et al. 2004, 

Berumen et al. 2005), with some coral-specialists experiencing double or 



 

 

triple jeopardy, and local or near-global extinctions (e.g. Munday  2004). 

However, if similar dynamics occur along depth gradients, sub lethal costs 

resulting in inadequate reproduction or recruitment (for example) may 

mitigate the refuge potential of deep reefs.  

Numerous studies have examined depth distributions and the factors 

affecting them, but mostly over limited depth ranges of just a few meters 

(McGehee 1994a, Nanami et al. 2005). The few studies that have extended 

into deeper water on coral reefs suggest that both fish density and diversity 

decline with increasing depth (Bouchon-Navaro 1981, Friedlander and 

Parrish 1998, Brokovich 2008, Garcia-sais  2010, Jankowski et al. 2015).  

Moreover, depth stratification of species and assemblages, including during 

larval and settlement phases (Leis 1991, Huebert et al. 2011), is likely to 

strongly influence differential depth-related resilience benefits among taxa 

and functional groups (Brokovich et al. 2009, Graham et al. 2011). Due to 

the difficulty and time limitations of deep-water diving, however, there is a 

paucity of detailed ecological data among vulnerable taxa with extensive 

depth ranges on coral reefs (but see Srinivasan et al. 2003, Smallhorn-West  

et al. 2016) This has lead assessments of extinction threats, and 

commentary on the potential ability of depth to provide refuge for reef fish, 

to largely assume intraspecific ecology is static along steep depth gradients 

(Hawkins et al. 2000, Graham et al. 2011, Darling and Côté 2018) (but see 

Goldstein  et al. 2016a, 2016b, 2017). However, this assumption has not 

been tested in strongly coral associated fishes. 

Butterflyfishes, one of the most abundant and ecologically understood 

coral reef fish families, offer an ideal model group to assess dietary variation 

and plasticity responses to environmental and resource gradients among 

contrasting functional strategies (Nowicki et al. 2013). Butterflyfish occupy 

a broad spectrum of dietary specialization on corals and their feeding bouts 

are conspicuous, so it is possible to record proportional feeding effort on 

different resource types at the core and periphery of their ranges (Cole and 

Pratchett 2013, Pratchett 2013). More specialized coral feeders are known 

to be vulnerable to population declines due to coral loss (Pratchett et al. 

2006, Wilson et al. 2006). Therefore, specialist corallivorous butterflyfishes 

are both vulnerable to anthropogenic coral loss, and gradients in their 
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species distribution, environmental productivity, and disturbance exposure 

are likely to decline in parallel along a depth gradient. However, it is 

unknown whether the ecological strategies of coral-obligate fish observed 

in shallow waters are maintained along the extensive depth gradients most 

likely to confer increased resilience. 

The overarching aim of this thesis was to understand the patterns and 

limiting processes of natural depth distributions in coral reef fishes and 

investigate depth-related ecological changes that may aid or hinder the 

ability of strongly coral associated species to succeed in deep reef 

environments. I hypothesize that deep reefs will show strong potential to act 

as refuges if: 1) Many species have broad or deep depth distributions, 2) 

Ecologically vulnerable species are not limited to shallow waters, 3) Deep-

reef residents can efficiently secure resources without suffering sub-lethal 

costs, 4) Depth related resource changes are met by dietary plasticity or 

other compensatory mechanisms, 5) Deeper reef assemblages are more 

resilient to coral loss, and individuals from degrading shallow water 

environments can benefit from healthy deep-reef habitats. Kimbe Bay in 

Papua New Guinea is a low latitude reef system with abundant spread 

across a gradient from fringing reefs heavily influenced by terrestrial inputs 

through to offshore reefs in clear water with hard coral growth in depths >60 

m. The occurrence of reefs with similar geomorphology across the bay 

provides an ideal location to examine changes in fish distributions, ecology, 

behaviour and condition across environmental gradients.   

In chapter 2, I quantify what portion of a large part of the reef fish 

assemblage are limited to shallow waters and characterize the distributions, 

community structure, and habitat relationships of 123 coral reef fish species 

along depth (0 m - 40 m) and inshore-offshore gradients in Kimbe Bay, 

Papua New Guinea. Specifically, I use depth stratified abundance measures 

test whether: (1) reef fish abundance and diversity decline with depth and 

increase away from the shore. (2) individual species exhibit depth 

preferences within their overall depth range that result in distinct 

assemblages between depth strata, and whether these assemblages also 

extend deeper offshore. (3) whether coral habitat cover declines and 

structural characteristics change with increasing depth and distance from 



 

 

shore, with greater availability of deep complex coral habitat further 

offshore. (4) whether depth distributions of overall fish density, and of coral-

associated fish species are limited by the availability of complex coral 

habitat. and (5) whether coral-fish associations decline with increasing 

depth. 

In chapter 3, I use density distributions and trait measures to 

investigate the influence of pairwise interrelationships between dietary 

specialization, abundance and depth-range in 26 sympatric butterflyfish 

species along the same depth gradient. I further use quantitative modelling 

to examine whether species with vulnerability-conferring traits (i.e. High 

dietary specialisation, low abundance, and narrow depth distribution) are 

particularly associated with shallow-reef habitats and therefore greater 

exposure to habitat degradation. Specifically, I test the following questions: 

(1) Are species with broad depth distributions more abundant?  (2) Are 

species and trait groups with broad depth distributions diet generalists?  (3) 

Are diet generalists more abundant than diet specialists, and is this 

relationship stable along a depth gradient? (4) Are species with narrow 

ranges, low abundances, or high dietary specialization, restricted to shallow 

waters? And, does overlap occur among these traits? (5) Are distributions 

of dietary specialists skewed toward shallow water more than dietary 

generalists? 

In chapter 4, I utilise an intensive set of insitu observational studies to 

quantify the behavioural and physiological costs of living at deeper depths 

and how this differs between specialist and generalist coralivores. First, I 

measure territory sizes along a depth gradient from 0 – 30m in two 

corallivorous butterflyfishes (Chaetodon baronessa and C. octofasciatus) 

and investigate depth related patterns in space use and resource access. I 

then quantify competitor densities, the number of competitive interactions, 

foraging distances and time spent pairing for each of the focal territories to 

examine depth related changes in ecology related to resource access. 

Finally, I measure five commonly used body condition metrics from 

individuals within these territories to examine potential physiological costs 

of living at the deep range margin. Specifically, I test whether 1) individuals’ 

space use increased with depth; 2) lower resource densities resulted in 
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fewer secured coral resources in deeper territories; 3) decreased resource 

availability led to behavioural costs related to accessing and securing 

resources at depth; and 4) individual body condition, energy storage and 

fecundity declined with depth. 

In chapter 5, I utilise comprehensive feeding observations of the same 

individuals from these two obligate coral feeding species to examine 

whether flexibility in diets or feeding rates along the depth gradient could 

drive broad depth distributions and therefore increased resilience potential. 

I further use stable isotope analyses and lipid extractions from coral tissues 

to investigate whether compensatory mechanisms of energy provision in 

corals, and energy acquisition in their consumers, may occur at deep range-

peripheries. Specifically I investigate whether: 1) Depth patterns occur in 

overall resource quantity and feeding effort, 2) Changing resource 

composition along the depth gradient results in dietary flexibility, 3) A 

reduction of feeding effort, on and selectivity for, preferred resources occurs 

at depth, and 4) compensatory mechanisms of energy provision in corals, 

and energy acquisition in their consumers may occur at the deep range 

periphery. 

In chapter 6, I utilize a natural experiment to investigate whether deep-

reefs can in fact provide refuge from habitat disturbance events, resulting in 

differential impacts and post disturbance outcomes among shallow and 

deep populations of the coral-obligate butterflyfish species Chaetodon 

baronessa. I further utilise a depth stratified tagging and competitor removal 

experiment in combination with naturally forced shallow-water habitat 

disturbances to test whether individual fishes in this species can migrate 

downward, away from degrading shallow-water habitats and inhabit an 

availability of healthy deeper-reef habitats. Finally, I use depth stratified 

observations of settlement and pre-adult density distributions to examine 

whether natural settlement patterns might be limited to shallow-water 

habitats. 
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Abstract 
Increasing disturbance frequency and severity on coral reefs has 

caused declines in the abundance of structurally complex corals and many 

fish species that depend on them. However, most studies have focused on 

the shallowest 10 m, despite coral habitat extending to >30 m in many 

regions. Reefs in deeper water and offshore locations are less exposed to 

many stressors associated with coral decline and may offer a refuge for 

coral-associated fishes. Understanding how distributions and species-

specific fish-habitat relationships vary along depth and distance-from-shore 

gradients is critical for assessing refuge potential. Here I examined the 

community structure, distributions and coral habitat associations of 123 reef 

fish species along a depth-gradient from <1 m to 40 m, from coastal to 

offshore reefs in Kimbe Bay, Papua New Guinea. Overall fish density and 

species richness declined with increasing depth but increased with distance 

offshore, such that deep offshore assemblages supported similar richness 

to shallow inshore sites. The most distinctive fish assemblage occurred at 

depths <1 m and ~25% of species were observed only in shallowest 5 m. 

However, ~60% of species occurred at or below 20 m and 24% were broadly 

distributed from <1 m to 30 m, with depth ranges of many species increasing 

with distance offshore. Strong relationships between fish abundance and 

coral habitat were observed, and 85% of species that were strongly 

associated with coral occurred at depths ≥20 m. My results suggest that 

while many species are restricted to vulnerable shallow depths, deep 

offshore reefs provide a potential refuge for a substantial proportion of coral-

associated fish threatened by degradation of shallow coastal reefs and 

should be afforded greater consideration for conservation planning of coral 

reef fishes.  

Introduction 
Most species are distributed unevenly along environmental gradients 

such as latitude, altitude and depth (Schall and Pianka 1978, Gaston 2000, 

Connolly et al. 2003). These distributions are usually linked to either 

changes in the physical environment (e.g. temperature, rainfall, light and 

nutrient availability) or gradients in biotic habitat structure, such as 



 

 

vegetation type or canopy height (Gaston 2000, Hawkins et al. 2003). The 

extent to which a species’ distribution is a response to either physical or 

biological factors is often unknown (e.g. Karr and Freemark 1983, Martin 

2001), but may be elucidated through a detailed analysis of covariance 

between species, environmental and habitat variables. Species distributions 

are often influenced by multiple gradients and may reflect the interactions 

among them; for example, plants may have extended altitudinal ranges in 

warmer tropical environments (Cogbill and White 1991). A full 

understanding of species’ distributions therefore requires an understanding 

of responses to gradients in several environmental dimensions. 

Understanding the influence of these important distribution drivers is 

becoming increasingly pertinent as species ranges are increasingly 

impacted by climate change (Parmesan and Yohe 2003, Poloczanska et al. 

2013). 

In aquatic environments, water depth represents a steep physical 

gradient that influences the distributions of many taxa. On tropical coral 

reefs, reef associated fishes are often restricted to particular depths and 

major changes in species composition can occur over narrow depth ranges 

of just a few meters (McGehee 1994, Nanami et al. 2005). Similar changes 

can occur along horizontal gradients from coastal to shelf-edge reefs 

(Williams 1982, Wismer et al. 2009, Emslie et al. 2010). To date, most 

studies on the factors affecting reef fish distributions have occurred in 

shallow water, where distributions are strongly influenced by benthic habitat 

structure, and particularly by the availability of live coral habitat (e.g. Bell 

and Galzin 1984, Syms and Jones 2000, Jones  et al. 2004). The diversity 

(Roberts and Ormond 1987, Messmer et al. 2011), morphology (Nanami et 

al. 2005), and structural complexity  (Luckhurst and Luckhurst 1978, Coker 

et al. 2012, Noonan et al. 2012) of coral habitats also strongly influence reef 

fish assemblages in shallow water.  

The few studies that have extended into deeper water on coral reefs 

suggest that both fish density and diversity decline with increasing depth 

(Bouchon-Navaro 1981, Friedlander and Parrish 1998, Brokovich 2008, 

Garcia-sais 2010, Jankowski et al. 2015). However, fish assemblages in 

depths >15 m remain poorly described in most regions. The extent to which 
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shallow-water fish-habitat associations are maintained at greater depths, 

and consequently the extent to which species’ depth ranges are limited by 

habitat availability is currently unknown. Coral distributions and benthic 

habitat structure vary along depth gradients in response to decreasing light, 

temperature and wave energy (Done 1982, Kleypas et al. 1999, Roberts et 

al. 2015). In clear tropical waters, many coral species occur to depths of 50 

m or more (Jarrett et al. 2005, Bridge et al. 2013, Muir et al. 2015). Greater 

light penetration and reduced terrestrial influence offshore (De’ath and 

Fabricius 2001, Fabricius et al. 2016) may enable complex coral habitats to 

occur at greater depths (e.g. Muir et al. 2015). If fish distributions are 

determined by habitat structure, deeper habitats in clear-water offshore 

locations could be expected to support greater fish diversity and abundance, 

with species exhibiting greater depth ranges further offshore. 

Understanding the mechanisms underlying cross-shelf and depth 

distributions is becoming increasingly important as shallow and near-shore 

reefs become more degraded by climate change impacts and coastal 

development (e.g. Fabricius et al. 2005, Death et al. 2012). Shallow coral 

reefs have experienced ongoing widespread degradation, including 

declines in coral cover and structural complexity, and changes in benthic 

composition (Hughes et al. 2003, Wilkinson 2004, McWilliams et al. 2005). 

These habitat shifts have resulted in large-scale, long-term, multi taxon 

declines in reef fish abundances (Jones et al. 2004, Wilson et al. 2006, 

Wilson et al. 2009), temporally stable shifts in fish communities (Bellwood 

et al. 2012), and local extinction of highly-specialized coral-dependent 

species on shallow near-shore reefs (Munday 2004, Wilson et al. 2006). 

Disturbances such as coral bleaching and storm damage can attenuate 

relatively quickly with increasing depth (Bridge et al. 2013, Smith et al. 

2014), and depth range is identified as a key factor both for mitigating 

extinction risk in corals and coral reef fishes (Carpenter et al. 2008, Graham 

et al. 2011) and for predicting recovery of reefs following disturbance 

(Graham et al. 2015). However, understanding species’ potential for utilising 

deep-reef refuges requires accurate information on how species 

distributions, abundances and fish-habitat associations change along both 

depth and inshore-offshore gradients.  



 

 

Here I characterize changes in coral reef fish distributions and their 

relationship with habitat structure along depth and inshore-offshore 

gradients in Kimbe Bay, Papua New Guinea. Kimbe Bay is a low latitude 

reef system with abundant spread across a gradient from fringing reefs 

heavily influenced by terrestrial inputs through to offshore reefs in clear 

water with hard coral growth in depths >60 m. The occurrence of reefs with 

similar geomorphology across the bay provides an ideal location to examine 

changes in fish distributions across environmental gradients. Specifically, I 

test whether: (1) reef fish abundance and diversity decline with depth and 

increases away from the shore, particularly at depths >10 m; (2) individual 

species exhibit depth preferences within their overall depth range that result 

in distinct assemblages between depth strata, and whether these also 

extend deeper offshore; (3) whether coral habitat cover declines and 

structural characteristics change with increasing depth and distance from 

shore, with greater availability of deep complex coral habitat further 

offshore; (4) whether depth-related distributions of overall fish density, and 

of coral-associated species are limited by the availability of complex coral 

habitat; and (5) whether coral-fish associations decline with increasing 

depth.  

Methods 

Study site 
The study was undertaken in Kimbe Bay, Papua New Guinea (5° 30’ 

S, 150° 05’ E) during April-May of 2013, and June 2014. Ten reefs were 

surveyed from three positions across the bay (‘Bay position’): 3 inshore, 4 

mid-bay, 3 offshore reefs (Fig. S2.1). Inshore reefs were <1km from the 

coast, while mid-bay and offshore reefs experience progressively clearer 

water with less terrestrial influence. Inshore reefs in Kimbe Bay experienced 

high coral loss a decade previously (see Jones et al. 2004, Munday 2004, 

Gardiner & Jones 2005) and are currently in advanced stages of recovery 

but experience ongoing low level pulse perturbances. All reefs in the region 

consist of continuous reef substratum with abundant hard coral growth well 

beyond the maximum study depth, and therefore present no physical 

barriers to fish migration among depths.  The maximum depth of 
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scleractinian coral growth on Kimbe Bay reefs is unknown but extends to 

>60m in some cases (Pers. obs.). 

Data collection 
At each reef, divers recorded high definition digital video transects for 

both fish (30 m x 4 m) and benthic data (30 m x 1 m) at each of five depths: 

<1 m, 5 m, 10 m, 20 m and 30 m, transects were also recorded at 40m on 

two outer bay reefs. Four to six replicates were recorded for each depth at 

each reef (Table S2.1). Cameras faced forward for fish transects and 

directly into the reef for benthic transects. Transect widths were determined 

by pre-filming metric grids laid along the benthos. The use of video lights, a 

cyan balancing light-filter, high definition (1400 pixels) and high frame rates 

(60 frames per sec.) allowed on-screen identification of targeted taxa at all 

depths.  

Reef fish from four non-cryptic, speciose and ecologically varied 

families (Pomacentridae, Chaetodontidae, Pomacanthidae and 

Acanthuridae) were identified to species based on Allen et al. (2003) and 

counted within a standardized lower section of the screen. Slower playback 

speeds and repeat viewings were used where species identification was not 

initially clear or large aggregations occurred. In the latter instance, counts 

were repeated, and consensus or mean abundance was used. If fish left the 

frame partially or entirely and re-entered immediately in the same position 

they were not counted again, otherwise all fish entering the frame were 

considered a new individual. Species richness was recorded as the total 

number of species observed within the four fish families in each transect. 

The proportional cover of 10 benthic groups (massive coral, encrusting 

coral, laminar coral, complex coral, turf algae, crustose calcareous algae, 

sponges, coral rubble, sand and silt, and reef matrix) was recorded utilizing 

‘Coral Point Count with excel extensions’ (Kohler and Gill 2006). Complex 

corals were defined as those considered to be most suitable complex 

habitat for the sheltering of small reef fishes. This included all branching, 

corymbose, hispidose, digitate, foliose and tabulate forms, but not laminar, 

massive, sub-massive or encrusting corals. Sixty random points were 

generated for each transect (six random points assigned within ten video 



 

 

frames extracted using a stratified-random design - equivalent to ten 1m2 

quadrats per transect, spaced approximately three linear meters apart), and 

the benthic component directly under each point was recorded.  

Data analysis 

Influences of depth and position on reef fish density and species richness 
The total abundance and species richness of reef fish were tested for 

unequal distribution between depths (fixed factor) and bay positions (fixed 

factor), after accounting for differences between reefs (random factor 

nested within bay position) using Log10 transformed data using Linear 

Mixed-Effects Models (lme) and ANOVA with the ‘nlme’ package in R 

(Pinheiro et al. 2015). Type III sums of squares were used due to 

unbalanced sample design, and effect size of each model component (R2) 

was calculated by isolating variance components (Table 2.1, Model 1). To 

assess whether offshore sites supported higher fish densities than inshore 

sites at each depth, fish density data were grouped within depths and a 

priori contrasts were made between bay positions (with reef as a random 

nested factor) via ANOVA of lme models. Tukey’s post-hoc pairwise 

comparisons of levels within significant factors were made using the 

‘lsmeans’ package (Lenth and Hervé 2014). 

Influences of depth and bay position on species distributions and 
community structure  

The densities of a subset of 51 abundant species were assessed for 

uneven distributions between depths and bay positions using non-

parametric, permutation-based ANOVA in the multivariate statistical 

program PERMANOVA, from the PRIMER package for ecological statistics 

(Clarke and Gorley 2006). The 51 ‘top ranked’ species consisted of the 20 

most abundant species from each depth, with some species being among 

the most abundant at multiple depths. Species depth ranges were 

determined using presence/absence data from each depth. 

Changes in fish assemblage structure were analyzed in PRIMER 

using Bray Curtis dissimilarity matrices of square root transformed data. 

Very rare species (present <5% of all transects) were excluded, leaving 114 

of 123 species. CLUSTER identified assemblage groupings with averaged-
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linkages, which were visualized on a MDS plot. Formal analyses of changes 

in community composition were undertaken using 3-factor MANOVA in 

PERMANOVA (Depth, Position(Reef)) . Fish species characteristic of 

communities at each depth and their proportional contribution to community 

were identified using SIMPER. 

Habitat variation along the depth gradient 
ANOVAs of lme models (built as per Model 1 above) were used to test 

for uneven cover of hard coral, complex coral, and laminar coral between 

depths and bay positions using square-root transformed data.  

Relative influence of depth and habitat on reef fish distributions 
I assessed the comparative influence of depth and habitat availability 

on total fish abundance (log10) and species richness (log10) by testing the 

level of fit of three lme models; Depth (Model 1a), Complex Coral Cover 

(square root) (Model 2) and Depth and Complex Coral Cover combined 

(Model 3). The best-fit model had the lowest AICc score, provided no model 

with fewer factors fell within two points of the best AICc score. R-squared 

values were used to represent the amount of variation in fish density 

explained by each model (Demidenko 2013).  

Fish-habitat relationships along the depth gradient  
The strength of correlation between overall fish density (log10) and 

cover of complex coral habitat (square root) was assessed at each depth 

and across all depths using linear models in R. I tested for correlation 

between abundances of the 123 fish species and the cover of benthic 

components within each depth stratum and across all depths using ‘cortest’ 

in R using a Dunn-�id�k adjusted alpha of 0.0073 based on the number of 

benthic components. Relationships between the compositions of the fish 

benthic assemblages were assessed using Spearman rank correlations of 

Bray Curtis dissimilarity matrices in RELATE (PRIMER). Data from 40m 

were included in exploratory analyses but excluded from all formal analyses 

because 40 m transects were recorded only for offshore reefs. 



 

 

Results 

Influences of depth and bay position on fish density and species richness 
Overall fish density declined by ~40% between each successive depth 

stratum, resulting in a 10 fold decrease from a peak of ~350 individuals per 

100m2 at <1 m to ~35 individuals per 100m2 at 30 m (Fig. 2.1a). This depth-

associated decline alone accounted for ~50% of variation in fish abundance 

(Table 2.1 – Model-set 1a). The mean number of species present per 

transect within the four fish families also declined with increasing depth 

below 5 m, from 17 ± 0.58 (SE) and 15.5 ± 0.45 species per 120m2 at <1 m 

& 5 m to 9.3 ± 0.53 species at 30 m (Table 2.1, Fig. 2.1b). However, the 

total number of species declined by only ~15% along the depth gradient, 

from 72 species at <1 m to 61 species at the two deepest depths (Fig. 2.1c). 

The mean number of fish species was significantly lower overall at inshore 

sites compared to mid-bay (Tukey’s p = 0.0038) and offshore sites (Tukey’s 

p = 0.0132) (Table 2.1, Fig. 2.1b). Mid-bay and offshore sites also housed 

25-30% more species in total than inshore sites (99, 93 and 70 species 

respectively).  

 

Figure 2.1: (a) The mean total fish density, (b) mean species richness, and (c) 
total species richness at each of 5 depth and 3 bay positions. Dashed lines 
represent the inner bay, solid grey lines the mid bay, and black lines the outer 
bay. Open circles on (c) represent total species count at each depth. 
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Reef fish density and species richness on deep reefs (20 m – 30 m) 

were both significantly higher away from inshore sites (Table 2.2, Table 2.1 

– Model-set 1c). Overall densities at 20 m and 30 m depths were 

significantly higher offshore (~90 and ~47 indv.100m-2) than at equivalent 

depths on inshore reefs (~39 and ~26 indv.100m-2) and densities at 20 m 

sites offshore were equivalent to shallow sites (<1 -10 m) inshore (all 

Tukey’s comparisons p > 0.1, Fig. 2.1a, Table S2.2). Likewise, the mean 

number of species per transect at 20m (8.6 ± 0.84 Spp.120m-2) and 30 m 

(6.75 ± 0.46 Spp.120m-2) on inshore reefs was lower than at equivalent 

depths on mid-bay (13.8 ± 0.61 and 10.2 ± 0.64 Spp.120m-2) and offshore 

reefs (13.6 ± 0.8 and 10.7 ± 0.8 Spp.120m-2) (Fig. 2.1b, Table 2.2), which 

also had ~40% more species in total at these depths (Fig 1c). In addition, 

total species numbers were higher at the deepest depths offshore than at 

the shallowest depths inshore (Fig. 2.1c). Differences in overall fish density 

between bay positions were more prominent but also more variable in 

shallow water. As a result, mean densities at <1 m were much higher on 

mid bay reefs than on inshore and offshore reefs but differences were not 

statistically significant (Table 2.2, Fig 2.1a).  

 

 

 

 

 



 

 

Table 2.1 Summary statistics for 3 models: Model 1 tests for spatial organisation 
in the distributions of reef fish and coral across five depths and three bay 
positions. Model 2 tests for relationships between reef fish and complex coral 
distributions. Model 3 tests for the combined effects of depth and complex coral 
cover on Reef fish distributions. All model results give the influence of 
explanatory variables after first accounting for natural variation between reefs by 
incorporating reefs as a random factor. R2 values represent the proportion of 
variation accounted for by the individual main effects (sub models a,b,c), and 
interaction terms in each model. Significance values: *** p < 0.001, ** p < 0.01, * 
p < 0.05, . p = 0.05, NS = Not Significant (α = 0.05). CV = Estimates of 
Components of Variance, and Fperm = pseudo-F-statistics based on permutation 
in PERMANOVA.  

 

Influences of depth and bay position on species distributions and 
community structure  

The abundances of 41 of the 51 ‘top-ranked’ fish species (see 

methods) (81%) varied significantly with depth, and distribution patterns of 

23 species (45%) varied with depth but not bay position (Table 2.4). Depth 

ranges varied greatly among all species surveyed, with 36 of the 123 

species (29%) present at only one depth (Fig. 2.2a), 29 (24%) present at all 

depths to 30m and a further 16 species (12%) recorded at all depths to 40 

m on outer-bay reefs (e.g. Chaetodon baronessa, Ctenochaetus 

tominiensis). At least one species was uniquely observed at each study 

depth, however the greatest proportion of ‘single depth’ species occurred at 

<1m (Fig 2b). Twenty-nine species (24%) occurred only at depths ≤5m (e.g. 

Chrysiptera cyanea, Chromis viridis), while 77 species (62%) occurred at 

depths ≥ 20m (Fig. 2.2c). 

 

M
od

el
 

se
t Explanatory 

Variables 

 

Abundance (log10)        Species richness (log10)  Community    
Composition 

df F p R2 AICc df F p R2 df Fperm p CV 

1 

1a Depth 4,231 79.92 *** 0.498 114.33 4,231 55.25 *** 0.402 4,251 25.12 *** 31.1 

1b Position 2,7 4.48 . 0.048 286.49 2,7 6.95 * 0.074 2,251 15.9 *** 15.9 

1c Depth 
*Position 8,231 4.917 *** 0.595 117.48 8,231 3.41 *** 0.518 2,251 15.7 *** 15.7 

2 Complex Coral 1,242 94.50 *** 0.282 215.85  1,242 23.64 *** 0.089 - - - - 

3 Depth+ 
Complex Coral 1,234 3624.74 *** 0.555 100.52 1,234 3859.1 *** 0.397 - - - - 
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Figure 2.2: MDS plot showing similarities and differences in the composition of 
the reef fish community at each combination of depth and bay position. Similarity 
groupings are calculated via cluster analysis. 

 
 
 
 

Table 2.2: Summary table for pre-planned within-depth contrasts of fish 
abundance between bay positions at each depth. Contrasts = significant 
contrasts (Tukey’s adjusted α), I = inshore, M = mid-bay, O = offshore. 

 
 

Depth 
(m) 

Reef Fish Abundance (log10) Reef Fish Species Richness (log10) Complex Coral Cover (sqrt) 

 df F p Contrasts df F p Contrasts df F p Contrasts 
1 2,7 4.33 0.064 - 2,7 0.423 0.670 - 2,7 6.97 0.022 I<M 
5 2,7 2.72 0.144 - 2,53 1.278 0.287 - 2,7 3.6 0.082 - 
10 2,7 0.91 0.449 - 2,7 2.683 0.138 - 2,7 0.59 0.57 - 
20 2,7 12.09 <0.001 I<M, I<O 2,45 14.5 <0.001 I<M, I<O 2,7 0.756 0.50 - 
30 2,7 6.61 0.032 I<M, I<O 2,7 5.449 0.041 I<M, I<O 2,7 0.267 0.70 - 

 



 

 

 

 

 

Depth patterns in species distributions resulted in significant 

differences in community composition between all depths (Table 2.1) (all 

comparisons; pperm<0.001) and three major depth-related clusters were 

identified. The fish community at <1 m depth was best characterised by 

fourteen species (Fig. 2.3) and was <30% similar to a second community 

cluster that incorporated all other depths (Fig. 2.4). Of the fourteen species 

characteristic of <1 m only four were also characteristic the assemblage at 

5m and none were characteristic of assemblages below 10 m. The next split 

in the fish community separated assemblages at 5-10 m from those at 20-

30 m, with <40% similarity between the two groups. Fewer species 

characterised the deeper assemblage and those that did were mostly a 

subset of species characteristic of the assemblage at 5 m (Fig. 2.3). 

 

 

Figure 2.3: (a) The number of species recorded at 1 to 5 of the study depths 
(n=123). (b) The number of species that occurred at a single depth only, within 
each depth. (c) The percentage of species with occurrence restricted to each 
cumulative depth bracket.  

 
 

The distributions of 18 ‘top-ranked’ species (40%) varied among bay 

positions (e.g. Chrysiptera viridis, Chaetodon ornatissimus) and while the 

community was similar between mid-bay and offshore positions within the 
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same depths (pperm= 0.232), inshore assemblages differed from both mid-

bay and offshore assemblages (pperm< 0.001, pperm= 0.019 respectively),  

Approximately half of the ‘top-ranked’ species were recorded at 

greater depths or in greater abundance at deeper depths offshore than on 

inshore reefs (25 spp.), and 18 species distributions were significantly 

influenced by the interaction of depth and bay position (Table 2.3). Eleven 

of these interactions between depth and bay position (60%) occurred in 

species distributed in the shallowest 5m, where small damselfish species 

had high peak densities in one or two bay positions only. Some 

characteristic deep-water species increased in density toward the outer bay 

(e.g. Chromis amboinensis, Chromis delta, Chromis retrofasciata and 

Ctenochaetus tominiensis), whereas others were more numerous in the 

inner bay (eg. Chaetodon octofasciatus, Chrysiptera rollandi and 

Pomacentrus nigromanus). In one example the coral feeding butterflyfish 

Chaetodon lunulatus, was very rare below 10m at inshore sites but equally 

abundant at all depths to 30m in the mid-bay and offshore reefs. These 

species patterns resulted in the depth related separation of the fish 

assemblage being strongest inshore, with the deep assemblages (20 m - 

30 m) in the mid-bay and offshore positions being more similar to the mid-

water (5-10 m) assemblages (Fig. 2.4).  

Habitat variation along the depth gradient 
Total hard coral cover (HCC) was relatively high (48-60%) at all sites (Fig. 

2.5a), though small (<12% cover) significant changes did occur among 

depths and bay positions, with no significant interaction between the two 

(Table 2.4, Fig. 2.5a). Total coral cover was significantly higher at 5m and 

10m than at 30m (Tukey’s p = 0.008 and p = 0.001), and was generally 

~12% higher in the mid-bay than the outer bay (Tukey’s p = 0.025). The 

functional composition of coral growth forms changed more substantially 

over the depth gradient. For example, where complex coral cover declined 

overall below 10m (Fig. 2.5b, Table 2.4), laminar corals increased with 

depth at all bay positions (Fig. 2.5c, Table 2.4), with depth accounting for 

~20% of variation in complex coral cover (R2=0.189, Table 2.4). 



 

 

 

Figure 2.4: The species most characteristic of the assemblage at each depth, and their proportional contribution to within-depth 

similarities.  
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Figure 2.5: The mean per cent cover of (a) All Hard Corals, (b) Complex Corals, 
(c) Laminar and Tiered Corals, at each of five study depths, and three bay 
positions, inner bay (dotted grey lines), mid bay (solid grey lines), and outer bay 
(dark lines). 

 
The highest cover of complex coral habitat was in shallow water (≤10 

m) on mid-bay reefs (~51%), (all Tukey’s comparisons <1-10 m p > 0.9, all 

comparisons <10 m against >10 m p < 0.05), and varied substantially in the 

shallowest 1 m (Table 2.2). Although complex coral cover was twice as high 

at 20 m on mid-bay (~17%) and offshore reefs (~19 %) than inshore reefs 

(~9%), cover was not significantly different between bay positions at depths 

below 5 m (Table 2.2). 

Relative influence of depth and habitat on reef fish distributions  
Depth distributions were not strongly habitat limited. After accounting 

for between-reef differences, the combined influences of depth and complex 

coral cover explained 55% of the variation in overall fish density and was 

the best-fit model (Table 2.1, Model-set 3). However, depth alone explained 

a similarly high proportion of variation (50%) (Table 2.1, Model-set 1a), 

which was almost twice that explained by complex coral cover alone (28%) 

(Table 2.1, Model-set 2). Similarly, more than double the number of density 

distributions in the 51 ‘Top-ranked’ species varied with depth (41 species - 

80%) than with complex coral cover (13 species - 25%) (Table 2.4). Eleven 

of the thirteen Top-ranked species (85%) with correlations to complex coral 

<1

5

10

20

30

0 5 10 15 20 25

Laminar Coral Cover 
(%±SE)

<1

5

10

20

30

0 20 40 60

Complex Coral Cover  
(%±SE)

<1

5

10

20

30

0 20 40 60 80

Hard Coral Cover 
(%±SE)

a cb

D
ep

th
 (m

)

D
ep

th
 (m

)

D
ep

th
 (m

)



 

40   
 

cover however were broadly distributed to 20 m or deeper with the other two 

species limited to the shallowest 5 m. 

 

Figure 2.6: The number of species with distributions that have a significant 
positive correlation (α = 0.0031 with Bonferoni adjustment) within each depth, 
and across all depths, to (a) complex coral cover and (b) one or more benthic 
habitat types at each depth. 

 
 

Fish-habitat relationships along the depth gradient  
Fish-habitat relationships were not strongly depth dependent. The 

strength of relationships between total fish density and the availability of 

complex coral cover did not decline uniformly with depth (Fig. 2.7, Table 

2.5). Positive correlations between the two occurred at <1 m and at 20 m, 

but not at other depths. Overall, 18% of all species distributions (22 of 123 

spp.) were positively correlated to the availability of complex coral habitat 

when considered across all depths (Fig. 2.6a), 36% (44 spp.) were 

correlated to at least one benthic habitat category (Fig. 2.6b). Again there 

was no uniform decline with increasing depth in the number of species 

distributions correlated to the cover of complex coral habitat or other benthic 

habitats (Fig. 2.6). However, association with complex coral habitat was 

stronger among fish species characteristic of shallow-water assemblages 

than characteristically deep-water species. The distributions of eight of the 

fourteen (57%) species most characteristic of the fish assemblages 

between <1m and 5m (see Fig. 2.4) were correlated to the availability of 

complex coral habitat when habitat availability was considered across all 
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depths, and 71% (10 spp.) were negatively correlated to laminar coral cover. 

In contrast, the densities of 55% of fish species characteristic of 

assemblages below 10 m (5 of 9 spp.) were positively correlated with 

laminar coral cover, and three species were negatively related to the 

availability of complex coral habitat. Only two characteristically deep-water 

species were correlated strongly with complex coral habitat cover. 

 

 

Figure 2.7: Correlations between total fish density and cover of complex corals at 
five depths along a gradient from <1m-30 m, and across all depths. Regressions 
at <1 m, 10 m, 20 m, and across all depths are significant. Dotted lines represent 
95% confidence intervals. 
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Table 2.3: Mean abundance of 51 ‘Top-Rank’ species at each depth, factors of 
spatial organization and their correlations to complex coral habitat. Bold numbers 
indicate depths at which a species is among the top 20 most abundant. 
Significance values from PERMANOVA: *** p < 0.001, ** p < 0.01, * p < 0.05, NS 
= Not Significant (α = 0.05). Significant correlations to complex coral; α = 0.0073. 
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Twenty-three per cent of overall variation in the composition of the fish 

community was explained by changes in the benthic structure and the 

structures of fish and benthic communities were significantly correlated 

within three of the five depth strata (Table 2.5). Again, however, there was 

no linear trend through the depth gradient. While the strongest correlations 

were in the shallowest water (<1 m), there was no correlation at either 5 m 

or 10 m, and significant correlations occurred at 20 m and 30 m.  

 

Table 2.4: Summary statistics tests for spatial organisation in the distributions of 
coral habitat across five depths and three bay positions. R2 values represent the 
proportion of variation accounted for by the individual main effects (sub models 
a,b,c), and interaction terms in each model. Significance values: *** p < 0.001, ** 
p < 0.01, * p < 0.05, p = 0.05, NS = Not Significant (α = 0.05). Fperm = pseudo-F-
statistics based on permutation in PERMANOVA. 

 

 

Discussion 
The presence of contiguous reef habitat to depths of ≥40m in Kimbe 

Bay allowed me to address a number of questions concerning depth 

distributions of reef fish and the extent to which depth ranges are influenced 

by habitat availability and bay position across a wide depth range from the 

surface to upper mesophotic depths. Overall, my results suggest that a 

considerable proportion of fish species can occur across a broad depth 

range and may be capable of utilising deep refuges if habitat degradation is 

depth-dependent. Furthermore, depth ranges and/or abundances at greater 

depths increased with distance offshore for many species suggesting that 

deep habitats on clear-water, offshore reefs may be particularly important 

Model 
set 

Explanatory 
Variables 

Coral Cover 

Hard Coral Cover Complex Coral Cover Laminar Coral Cover 
df F p R2 df F p R2 df F p R2 

1 1a Depth 4,231 4.79 * 0.018 4,231 22.61 *** 0.189 4,231 16.27 *** 0.159 

1b Position 2,7 15.2
5 

** 0.101 2,7 7.25 * 0.113 2,7 0.225 NS 0.011 

1c Depth*Positio
n 

8,231 1.65 NS 0.120 8,231 3.89 * 0.383 8,231 0.893 NS 0.188 



 

 

refuges. However, approximately 25% of all species were restricted to 

shallow depths (<5 m), suggesting some species are unlikely to benefit from 

potential depth refuges unless their depth ranges shift. 

As expected, the overall abundance and mean species richness of 

reef fishes per unit area declined significantly with increasing depth, while 

the total number of species declined by only 15% between <1 m – 30 m. 

The abundance of the majority of individual fish species also varied with 

depth, with the greatest changes in community composition occurring 

between the shallowest depth (<1 m) and all other depths. While some 

species were restricted to a narrow depth range, others were broadly 

distributed throughout the depth gradient, particularly on offshore reefs. At 

greater depths (20 m – 30 m), more fish species and higher abundances 

occurred on offshore reefs. This resulted in similar total fish abundance and 

species richness between deep offshore and shallow inshore reefs.  

Although depth was the most important single factor influencing fish 

distributions, some species were also strongly associated with habitat 

structure.  Despite high hard coral cover at all depths and bay positions, the 

functional composition of coral habitat varied with depth, which facilitated 

deep distributions of some fish species, including some coral specialists, 

but not others. The strength of association between fishes and complex 

corals did not decline uniformly with depth, with some of the strongest 

correlations occurring at 20 m.   

Fish distributions along the depth gradient 
The general depth-related declines in abundance and species 

richness observed in Kimbe Bay are consistent with previous studies (eg. 

Bouchon-Navarro 1981, Nagelkerken  2001, Brokovich 2008, Kahng et al. 

2010). Species depth distributions varied substantially and species with 

narrow depth ranges occurred most often in shallow depths, which is 

consistent with previous observations and experiments showing narrower 

distributions in shallow-water specialists versus deep-water specialists 

(Bean et al. 2002, Srinivasan 2003, Jankowski et al. 2015). 

The average depth distributions in Kimbe Bay were narrower than 

those reported for a comparable, but deeper gradient in Puerto Rico. In this 
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study 25% of all species occurred only in shallowest 5m, a further 25% of 

species occurred from <1 to 30 m, and more than half of all recorded 

species occurred at depths ≥20 m, with a further 10% distributed from <1 m 

to 40 m on offshore reefs. Garcia-Sais (2010) surveyed at 30 m and 40 m, 

and from 15 – 50 m in two different Puerto Rican locations and reported 

species assemblages similar to nearby shallow reefs, with three-quarters of 

all species observed deeper than 30 m, and two thirds observed at all 

depths. Similarly, ~80% of species surveyed from 32 – 78 m at Johnston 

Atoll in the central Pacific are also known from shallow water surveys 

(Wagner et al. 2014). The inclusion of the more unique fish assemblage in 

shallower water in this study, as well as regional differences in fish 

biodiversity and the differing taxonomic breadth of the studies may account 

for some of these differences. The inclusion of more fish families, 

particularly larger bodied species and some planktivores (e.g. Anthiinae) 

that tend to have broader and deeper depth ranges (e.g. Kulbicki et al. 2015, 

Bridge et al. 2016) would likely increase proportional species richness at 

deeper depths in Kimbe Bay. Additionally, many species of the parrotfish 

and wrasse families commonly have distributions centred on the reef flat 

and future depth distribution studies should focus on these families also.  

Influence of bay position on depth-distributions 
Our study confirmed that both depth and bay position influence the 

composition of fish communities in Kimbe Bay. The effects of bay position, 

including changes in species richness and composition offshore, were 

similar to previous studies along cross-shelf gradients in other regions (e.g. 

Williams 1982, Malcolm et al. 2010), with differences generally separating 

inshore reefs from those further offshore. The simultaneous assessment of 

both depth and bay position here enabled us to provide the first analysis of 

the interaction between these two factors. Half of the species distributions 

that varied by depth also varied among bay positions. Many species had 

broader depth ranges on offshore reefs, where community assemblages 

were more similar between depths. Importantly, deep offshore reefs in this 

study showed substantial ecological value, supporting high fish diversity and 

densities equivalent to shallow inshore reefs.  



 

 

Depth influences on habitat availability and fish-habitat relationships 
Hard coral cover was prominent throughout the depth gradient and 

was high at 30 m compared to most contemporary shallow reef systems 

(Gardner et al. 2003, Bellwood  et al. 2004, Wilson et al. 2009, Chong-Seng 

et al. 2012, De’ath et al. 2012). The cover of habitat-forming complex coral 

declined with increasing depth in Kimbe Bay, but was comparable or higher 

at 20 m and 30 m than on shallow reefs that have ‘recovered’ from severe 

disturbances in other regions (e.g. Wilson et al. 2009, Chong-Seng et al. 

2012). Bay position exerted less influence on coral cover and habitat 

structure than expected, and was most prominent in shallow mid-bay 

habitats, where complex coral cover was twice as high compared to 

equivalent depths either inshore and offshore. This potentially results from 

mid-bay reefs being less exposed to storms than offshore reefs (sensu 

Roberts et al. 2015) and less influenced by anthropogenic and terrestrial 

pressures than reefs inshore (Jones et al. 2004). There was some evidence 

to suggest deeper extensions of complex coral habitat availability on 

offshore reefs, where cover at 20 m was generally ~50% higher than on 

inshore reefs, although there was some variability among reefs.  

The strength of relationships between reef fish distributions and 

benthic habitat structure overall was similar to other studies from shallow 

depths (e.g. Wilson et al. 2008), with the strongest relationships observed 

at the shallowest depth (<1 m). Surprisingly however, the strength of 

relationships did not decline uniformly with depth; instead, fish-habitat 

relationships were weak or non-existent at 5 m and 10 m, but strong at 20 

m. Jankowski et al. (2015) recently reported an increasing strength of fish-

coral habitat relationships with depth to 20 m on the GBR, suggesting 

general depth patterns may differ from expectations of a general decline in 

fish-coral associations with increasing depth.  

The relatively weak fish-habitat relationships at 5 m - 10 m were 

surprising given some species observed at these depths are known to 

associate strongly with live coral (Srinivasan and Jones 2006, Bonin 2012, 

Boström-Einarsson et al. 2013). Potentially, variation in microhabitat 

structure among depths may account for this observation and further, more 
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detailed analysis within depths may be warranted to further elucidate fine-

scale patterns of microhabitat use.  

The distributions of characteristic shallow-water species tended to 

correlate positively with complex coral habitat availability and/or negatively 

with laminar coral cover, whereas the distributions of characteristic deep-

water species were more often positively correlated with laminar coral 

cover. However, the distributions of some deep-water species were related 

to the continued presence of complex corals to at least 30 m. For example, 

Chrysiptera arnarzae (formerly Chrysiptera parasema) associates strongly  

with complex coral habitat in waters ≤ 10m (Srinivasan and Jones 2006, 

Bonin 2012, Boström-Einarsson et al. 2013), and is considered highly 

vulnerable to coral habitat loss in shallow water (Bonin 2012). The 

relationships in deeper water recorded here may therefore reduce the 

vulnerability of this and similar species from shallow water coral loss. 

Comparing the influences of depth and habitat availability 
Depth-related changes in habitat structure significantly influenced 

overall reef fish abundance and many species’ distributions along the depth 

gradient. However, depth alone explained more variation in overall fish 

abundance and influenced more species distributions than did depth-related 

variation in habitat availability. Though finer scale surveys of micro-habitat 

association may reveal more about the importance of fish-habitat 

relationships at deeper depths, it is probable that depth influences other 

important ecological processes apart from its influence on habitat 

composition alone, as suggested by experimental studies (Srinivasan and 

Jones 2006).  

It is unclear why some coral-associated species did not occur in deep 

water even where suitable habitat was available, while others did. Depth 

preferences may be related to other ecological processes that control 

species niches such as differences in settlement depth of juveniles (Leis 

1991, Srinivasan 2003), adult dispersal capacity (e.g. Frederick 1997), 

interspecific competition (e.g. Böstrom-Einarsson 2013), or predation 

pressure (e.g. Beukers and Jones 1998). Likewise, subtle physiological 



 

 

differences may also influence the success of species, or individuals on 

deep reef habitat (e.g. Brokovich  et al. 2010). It is not clearly understood if 

deeper habitat use incurs higher energetic costs, though some shallow 

water species experience a greater cost of being outside their preferred 

depth range than deeper species (Srinivasan and Jones 2003), while one 

species of rubble-dwelling damselfish is known to alter energy allocation 

according to depth (Hoey et al. 2007).   

Are deep reefs a potential refuge? 
Shallow coastal reefs are often more vulnerable to degradation and 

are likely to be at greater risk from disturbances such as storms, bleaching 

and sedimentation than reefs in deeper water and further offshore (Bridge 

et al. 2013). Consequently, fish species restricted to shallow, inshore 

habitats and that are strongly dependent on live coral are most at risk from 

habitat degradation (e.g. Munday 2004, Wilson et al. 2008, Graham et al. 

2011). Deep, offshore reefs may help mitigate disturbance-associated 

declines at local to regional scales by providing a refuge for species with 

more general habitat requirements or coral-associated species with broad 

depth distributions. Approximately a quarter of my study species occurred 

exclusively in the shallowest 5 m and the fish community at <1 m was more 

abundant, more diverse and had the stronger relationships to complex coral 

habitat at both community and species levels than at deeper depths. This 

suggests that a considerable proportion of species are likely to be 

substantially affected by reef degradation (Jones et al. 2004, Munday 2004, 

Wilson et al. 2008, Graham 2011) and are unlikely to benefit from a depth 

refuge. However, the majority of species in Kimbe Bay can occur in 

relatively deep water and may be capable of persisting through disturbance 

events in deep, offshore habitats. Deep offshore sites supported a high 

abundance of complex coral habitat and were occupied by many fish 

species with both general and highly specialized habitat requirements. 

Many species were highly flexible in their spatial distribution and/or habitat 

requirements, with as many as half extending into deeper water further 

offshore. A quarter of all species were broadly distributed from <1 m to 30 

m, and half were present at 20 m. In addition, more than half of the most 

abundant species were distributed independently of complex coral habitat 
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availability. Surprisingly, a high proportion of the abundant species with 

distributions correlated to complex coral availability were present to at least 

20 m and in most cases 30 m, suggesting that depth offers a potential refuge 

even for some coral specialists.  

My study contributes to an emerging body of work that suggests deep 

reefs may act as a refuge for reef fishes if deeper reefs are less exposed to 

disturbances. A more complete understanding of the refuge potential will 

require further detailed assessments of the ecological and physiological 

processes that control species niches and depth ranges along extended 

depth gradients. Tests for the detrimental impacts and sub-lethal effects of 

changes in micro-habitat use, diet, prey quality, movement ecology and 

competitor densities are well established along horizontal ecological 

gradients for many reef fish species and should be easily adapted to studies 

along depth gradients. 

  



 

 

Chapter 3 - BROAD DEPTH RANGES AND HIGH 
ABUNDANCES MEDIATE RISKS FOR A 
CORAL-SPECIALIST REEF FISH GUILD 
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Abstract  
Interrelationships among distribution breadth, abundance and degree 

of resource specialization form the basis of many general models in 

ecology. Widely distributed species are often more abundant than those 

with narrow distributions, and resource specialists often exhibit narrow 

distributions and numerically rarity. Understanding whether these ecological 

generalizations hold is important in conservation ecology, as species with 

narrow distributions, low abundance and/or specialized resource 

requirements are increasingly at risk from habitat loss. On coral reefs, 

specialized coral-associated fishes may be highly vulnerable to declining 

coral cover in shallow-water. However, risk assessments incorporating 

detailed vertical distribution data are rare. To evaluate whether depth may 

mediate risk in coral-specialist fishes I tested: (1) whether the pair-wise 

relationships between depth distributions, local densities and diet 

specialization are consistent with traditional expectations, and (2) what 

proportion of species with traits conferring vulnerability, (narrow depth-

distributions, low abundance or high diet-specialization) were restricted to 

shallow-reef habitats. To do this, I quantified depth distributions and 

abundance for 25 Chaetodontidae species, between 0 and 40 m in Kimbe 

Bay, Papua New Guinea, and utilized dietary specialization indices for eight 

species, from the literature. As predicted, species with the broadest depth-

distributions were also the most abundant. However, contrary to 

expectation, the most specialized species were also the most abundant and 

the most broadly distributed. Further, no specialist-species experienced 

combined vulnerability traits, and no specialists were wholly restricted to 

shallow-water, where habitat disturbance is often highest. However, despite 

the resilience potential broad depth ranges and high abundances may 

confer to dietary specialists, their distributions were strongly biased toward 

shallow-water. My results support the conclusion that interrelationships 

among vulnerability traits and occupancy depths do not necessarily follow 

traditional ecological expectations, but on coral reefs they do work to 

mediate substantial risks in a family of reef fish vulnerable to shallow-water 

coral habitat losses.  



 

 

 

Introduction 
Interrelationships among distribution breadth, abundance and degree 

of resource specialization form the basis of a number of general models in 

ecology (Brown 1984, Gaston et al. 1997, 2000). They also inform 

vulnerability assessments in conservation biology (Rabinowitz 1981, 

Julliard et al. 2004, Graham et al. 2011). Most often, narrow species ranges 

are related to lower overall abundances (Hanski 1982, Brown 1984, Swain 

and Wade 1993, Gaston 1996, Gaston et al. 1997, Lawton 1999, Frisk et al. 

2011), and resource specialists often have low abundances and narrow 

ranges, due to the limited distribution and abundance of their prey (Gaston 

et al. 1997, Lawton 1999, Harcourt et al. 2002). However, these 

generalizations do not always hold. For example, resource specialists can 

reach high abundances where they exploit locally dense resources (Gaston 

et al. 1997), and resource specialists that utilize widespread resources 

should themselves have broad distributions (e.g. Quinn et al. 1997, Gaston 

et al. 1997, Gregory and Gaston 2000, Jones et al. 2002). Therefore, links 

between distribution, abundance and resource specialization remain 

equivocal, with studies both supporting (Harcourt et al. 2002, Munday 2004, 

Pratchett 2013) and refuting (Gaston et al. 1997, Gregory and Gaston 2000, 

Jones et al. 2002) such generalizations, in both terrestrial and marine 

systems. Further, the pair-wise relationships between distribution, 

abundance and resource specialization may be context specific (Gaston et 

al. 1997) and need to be evaluated for a wider range of species, 

ecosystems, and regions - especially where organisms are likely to 

experience heightened vulnerability due to elevated environmental change. 

Species with small distributional ranges, low local abundance or high 

levels of specialization, will be particularly susceptible to localized 

disturbances (Mckinney 1997), the risks of small population size (Williams 

et al. 2008), and loss of a resource (Gaston et al. 1997). Species that are 

subject to two or three different sets of these risk factors are considered to 

be in “double jeopardy” or “triple jeopardy” (e.g. Harcourt et al. 2002, 

Munday 2004, Swartz et al. 2006, Hughes et al. 2014), and may be more 
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vulnerable to local extinction (Gaston 1996, Johnson 1998). However, the 

extinction risk really depends upon how much species with these 

vulnerability trait combinations are subject to an increasing array of 

environmental disturbances.  

Increases in climate change related habitat disturbances and species 

displacements have strengthened the impetus to understand links among 

distribution, abundance, resource specialization, and their associated 

vulnerability risks (Thomas et al. 2004, Harris and Pimm 2008, Angert et al. 

2011, Chen et al. 2011). Disturbances are often spatially patchy and can 

attenuate along environmental gradients. For example, fire disturbance 

frequencies attenuate with decreasing aridity along latitudinal (Pausas and 

Bradstock 2007) and elevation gradients (Harmon et al. 1984, Bekker and 

Taylor 2010). Strong overlaps between disturbance pressures and the 

central ranges of vulnerable organisms will elevate extinction risks (Thomas 

et al. 2004). However, species may mediate risk through low spatial overlap 

with disturbances, or by having broad distributions, high abundances, 

and/or generalist resource requirements (e.g. Roberts and Hawkins 1999, 

Hawkins et al. 2000, Munday 2004, Graham et al. 2011). In terrestrial 

systems, vertical gradients in disturbance, distributions, and ecological 

processes can strongly influence these resilience outcomes (Parmesan  

and Yohe 2003, Raxworthy et al. 2008, Chen et al. 2011). However, the 

ecological correlates of depth ranges and the influence of depth on pair-

wise relationships among vulnerability traits are grossly under-studied in 

marine systems, and generalizations from terrestrial theory may not hold.  

Coral reef ecosystems offer a good testing ground for ecological 

theories of the spatial distributions of vulnerability traits and disturbances; 

they support high abundance and diversity, and depth offers steep 

environmental and habitat gradients over short spatial scales, with few 

physical barriers to vertical dispersal. Moreover, shallow-water coral reefs 

are immediately imperilled by climate-change related habitat degradation 

(e.g. Bellwood et al. 2004, Hughes et al. 2018), and improved knowledge of 

how risk and resilience factors play out among vulnerable species groups is 

imperative (Munday 2004, Graham et al. 2011). In shallow waters, 



 

 

interrelationship patterns among vulnerability traits for reef fish are 

equivocal (Bean et al. 2002, Jones et al. 2002, Munday 2004, Ollerton et al. 

2007, Hobbs et al. 2010, Lawton et al. 2012, Pratchett et al. 2013). However, 

coral resource specialists are consistently the most vulnerable to habitat 

losses (Hawkins 2000, Jones et al. 2004, Wilson et al. 2006, Pratchett et al. 

2008). Some such coral-specialists experience double or triple jeopardy, 

and local or near-global extinctions (e.g. Munday 2004). However, a broad 

availability of key coral resources in shallow waters largely results in broad 

shallow-water geographic (SWG) distributions (Jones et al. 2002, Lawton 

and Pratchett 2012) and high local abundances (Pratchett et al. 2008) that 

currently mediate some risk in the majority of this group. As severe warm-

water and storm-related habitat degradation becomes more geographically 

and temporarily ubiquitous in shallow waters (e.g. Hughes et al. 2018) this 

resilience is likely to be compromised. However, because such events often 

have differential impacts along depth gradients (e.g. Bridge et al. 2013), 

depth range and depth influences on specialization and abundance traits 

are likely to become increasingly important components of risk mitigation 

strategies and resilience outcomes for reef fishes (e.g. Roberts and 

Hawkins 1999). In general, depth is expected to exert strong environmental 

filters on coral resources and coral specialization traits, which would limit 

the depth refuge potential for many vulnerable coral-specialist reef fishes. 

However, to date, the influence of depth on ecological determinants of reef-

fish distributions, and the relationships between vulnerability traits and 

depth distributions are poorly understood outside of very shallow waters (< 

12 m). 

Here I investigated the influence of pairwise interrelationships between 

dietary specialization, abundance and depth-range in 26 sympatric 

butterflyfish (Chaetodontidae) species between 0 m and 40 m depths on 

coral reefs in Kimbe Bay, Papua New Guinea. I also examined whether 

species with vulnerability-conferring traits were particularly associated with 

shallow habitats. Chaetodontidae is a ubiquitous family and frequently used 

as a model group in shallow-water ecological studies. Coral dietary 

specialization ranges from obligate and facultative coral feeders to non-

coral invertebrate feeders (Pratchett 2013), which are the three reef fish 
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dietary groups facing the greatest extinction threats (Graham et al. 2011). 

Risk and resilience potential are often assessed among such diet-trait 

groups. However, the finer degrees of trait expression that occur within 

groups may further differentiate these potentials (e.g. Lawton et al 2012b), 

and dual assessments among and within trait groups may highlight the 

broad-scale applicability of vulnerability and resilience measured at trait-

group levels. I therefore investigated patterns at both levels. Specifically, I 

tested the following questions: (1) Are species with broad depth distributions 

more abundant?  (2) Are species and trait groups with broad depth 

distributions diet generalists?  (3) Are diet generalists more abundant than 

diet specialists, and is this relationship stable along a depth gradient? (4) 

Are species with narrow ranges, low abundances, or high dietary 

specialization, restricted to shallow waters? And, does overlap occur among 

these traits? (5) Are distributions of dietary specialists skewed toward 

shallow water more than dietary generalists? 

Methods 

Field methods 
I recorded the abundance of 26 Chaetodontidae species (butterflyfish) 

at each of five depths (<1m, 5m, 10m, 20m, 30m), on 10 reefs in Kimbe 

Bay, Papua New Guinea, with diver operated video. Opportunistic transects 

were recorded at 40 m depth on two of these reefs. I recorded 4 – 6 

transects per depth, per reef, with a total of 273 30 m x 4 m fish transects.  

Dietary specialization 
All Chaetodontidae species were classified into one of three diet-trait 

groups, Obligate (OBL), facultative (FAC), or non-coral benthic invertebrate 

(NON) feeders, according to Cole et al. (2008). The groups represent a 

gradient of decreasing dietary reliance on corals. I further assigned dietary-

specialization levels to ten species from literature with comparable indices 

(Pratchett 2007, supplemental table S3.1); little variation occurs in dietary 

specialization levels among my study location and the location where 

indices were developed (Lawton et al. 2012b). To limit potentially spurious 



 

 

range estimates (e.g. Brown 1984, Gaston et al. 1997), rare species 

(occurring < 2 % of transects) were removed from all analyses except where 

grouped total abundance counts utilized multiple species (supplemental 

table S3.2). 

Analyses  
I undertook all analyses in R version 3.3.2 (R Core Team 2016). I 

tested for differences in mean depth ranges among trait groups using 

general linear models (GLM) with each member species' total depth range. 

I analyzed the influence of species-level dietary specialization on depth 

ranges using simple linear regression models (LM). I also used LMs to test 

abundance ~ depth-range relationships across all species, as well as 

among species within each diet-trait group. Species abundance was log-

transformed to meet normality assumptions. I tested for differences in 

overall and within-depth abundances among the three trait groups by 

building generalized linear mixed models (GLMM) from raw count data 

using the package ‘lme4’.  I used the negative binomial error family with a 

log link to constrain model dispersion. I tested for overall differences in 

counts among diet trait groups (Count~Group), and also for the predicted 

variation in those patterns with increasing depth (+Group:Depth). I tested 

models for goodness of fit and over-dispersion by comparing sums of 

squared Pearson residuals to residual degrees of freedom. I also tested 

models for heteroskedastic variance, zero-inflation and spatial 

autocorrelation using the ‘DAHRMa’ package. All tests were passed. I then 

used ‘car::Anova’ and ‘lsmeans::contrasts’ to compare factors and levels of 

interest. All effect and error estimates were back-transformed using the 

exponent as the inverse of the log link before presenting results. I also 

tested for depth related variation in species level abundance-specialization 

relationships with LMs of mean species abundance as a function of dietary 

specialization, across all depths and within each depth. 

I assessed whether species with any of the three vulnerability traits 

(narrow distribution, low abundance, and high dietary-specialization) were 

restricted to shallow water by regressing each risk trait against the 

shallowest and deepest depths occupied by species using LMs. Narrow-
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range was set at < 15m, low-abundance at 20 individuals  (a mean of < 2 

individuals per reef), and high-specialization was set at the level where 

substantial shallow water attrition and sub-lethal costs have been recorded 

in response to habitat loss  (here, > 4.25 on a logΧ2 scale). 

I investigated differential distributions along the depth gradient among 

levels of dietary specialization using hierarchical logistic regression models 

(Huisman et al. 1993, Jansen and Oksanen 2013) of presence/absence 

data for the three diet trait groups (OBL, FAC and NON), and for four focal 

species from the OBL group. I determined the best model fit for each 

distribution using Akaike information criteria (AICc) and by comparing 

Akaike weights (wi) between each of seven model types (see supplemental 

methods note) in ‘eHOF’ (Jansen and Oksanen 2013).  I then tested model 

selection stability across 1000 bootstrapped iterations. I set the species 

occurrence cut-off at 30, and the frequency of species occurrences ranged 

moderately from 0.13 - 0.30 (see Supplemental table S3.2).  

Results 

Interrelationships 
There was no relationship between depth-range and abundance at the 

trait group level, with high variation occurring within facultative and non 

coral-feeding groups (OBL, F1,4 = 6.54, p = 0.063, FAC, F1,2 = 1.19, p = 0.39;  

NON, F1,5 = 1.40, p = 0.29) (Fig. 3.1a).  However, at the species-level, there 

was a significant relationship, with abundant species utilizing broader depth 

ranges than rarer species (log-linear: R2 = 0.39, F1,15 = 9.55, p = 0.008) (Fig. 

3.1b).  

Dietary specialization did not significantly influence depth ranges 

among trait groups (F2, 21 = 1.092, p = 0.35) (Fig. 3.1c), with the depth 

ranges of obligate coral feeders being no more constrained than facultative 

or non-coral feeders. However, a strong positive log-linear relationship was 

evident across all 26 species (R2 = 0.84, F(1,6) = 30.53, p = 0.002), with more 

specialized species having broader depth ranges (Fig. 3.1d).  



 

 

Higher abundance was clearly related to higher dietary specialization 

at the trait group (Chi-sq = 75.18, df = 2, p < 0.001), and species levels (R2 

= 0.58, F1,7 = 9.66, p = 0.02), when considered across all depths. Obligate 

coral feeders were approximately three times more abundant than both the 

facultative and non-coral feeders overall (Fig. 3.1e), and the most specialist 

species was ~25 times more abundant than the most generalist species 

(Fig. 3.1f).  

The relationship between abundance and dietary specialization varied 

among depth strata (Fig. 3.2). Obligate corallivores were the most abundant 

trait group within each depth up to, but not including, 40 m (Chi-sq = 70.52, 

df = 15, p < 0.001). However, facultative feeders were only more abundant 

than non-coral feeders at the shallowest depth, with a clear crossover in 

abundances occurring at 10 m depth (Fig. 3.2a; and see Supplemental 

figure S1 for estimates of pairwise differences). The species level 

relationship attenuated more strongly with depth (Fig. 3.2b) and was only 

supported in shallow waters of ≤ 5m depth (< 1 m, R2 = 0.58, F1,7 = 9.46, p 

= 0.02; 5m, R2 = 0.60, F1,7 = 10.38, p = 0.014). There was a significant 

decrease in slopes of the relationship with increasing depth (F5,41 = 3.274, 

P = 0.014) (Fig 2b). For example, at <1 m the most specialized species was 

~ 38 times more abundant than the least specialized species, but by 5 m 

the difference was ~ 8 fold, and at 10 m there was no detectable difference. 

Model effect size (R2) also decreased with depth (R2 = 0.77, F1,3 = 9.92, p 

= 0.051) (Supplemental figure S2).  
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Figure 3.1: Plots of pairwise interrelationships between dietary specialization, 
abundance and depth-range among diet trait groups (left column) and species 
(right column) in the family Chaetodontidae; (a-b) relationships between depth 
range and abundance for 3 trait groups (a), and 25 species (b); (c-d) 
relationships between depth range and dietary specialization; (e-f) relationships 
between abundance and dietary specialization. The three dietary trait groups on 
the left side represent a gradient in dietary reliance on corals from Obligate (OBL, 
yellow), to facultative (FAC, blue), and non-coral (NON, purple) feeders. Error 
bands and error bars represent the 95% confidence intervals and the solid lines 
on the right side plots represent mean model fits. The dotted lines in (a) 
represent the depth range within which data were collected. 

 

 



 

 

Figure 3.2: (a) Comparisons among mean densities of the three major diet trait 
groups in the coral reef fish family Chaetodontidae (butterflyfish), at each of six 
depths in Kimbe Bay, PNG. Error bands are 95% confidence intervals. OBL 
(yellow) = obligate coral feeders, FAC (blue) = facultative coral feeders, NON 
(purple) = non-coral benthic invertebrate feeders. Plot (b) shows the relationship 
between mean species abundance and dietary specialization among eight 
species within each of six study depths. Colors in (b) indicate water depth as per 
legend; solid lines represent statistically significant regressions (plotted with 95% 
confidence bands), and dashed lines represent non-significant regressions (α = 
0.05).  

Association of vulnerability traits with shallow water 
Three species had narrow ranges that occurred wholly in the 

shallowest 15 m, with no species occurring solely in deep water (Fig. 3.3a). 

The deepest depth occupied by a species was strongly positively related to 

its overall depth range (R2 = 0.96, F1,14 = 400.7, p < 0.001) (Fig. 3.3a - black), 

and all three species with depth ranges of ≤ 10m occurred solely in the 

shallowest 10 m. Species that had any part of their distribution in the 

shallowest depth (< 1 m) also had the broadest depth ranges (R2 = 0.42, F1,15 

= 11.03, p = 0.005) (Fig. 3.3a - white).  

Two species with low abundance also occurred wholly in the 

shallowest 15 m. Species with shallower overall distributions generally had 

lower abundances. The deepest depth occupied by a species was 

moderately positively related to its overall abundance (R2 = 0.50, F1,14 = 

13.95, p = 0.002, log-linear, (Fig. 3.3b - black). However, some species with 

low abundances also occurred in depths ≤ 20 m, and species that had some 

occupancy in the shallowest depths (< 1 m) also generally, though not always, 
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had the highest abundances (R2 = 0.36, F1,14 = 7.90, p = 0.014) (Fig. 3.3b - 

white).  

No highly specialized species was limited to shallow water. Further, 

there was no general relationship between shallow-water association and 

dietary specialization (Deepest occupied depth ~ specialization index, R2 = 

0.12, F1,6 = 0.80, p = 0.41; Shallowest occupied depth ~ specialization index, 

R2 = 0.15, F1,6 = 1.04, p = 0.35) (Fig 3c). All species with dietary specialization 

data available had some occupancy in waters ≤ 5m in depth. However, most 

(75%) also had some occupancy at depths ≥ 30m  

Double jeopardy 
Three species had narrow depth ranges, seven species had low 

abundance, and two of these species overlapped, creating a double 

jeopardy (Fig 3d). Two species had high dietary specialization, but both 

species had broad depth ranges and high abundance. Therefore, no 

species expressed a triple jeopardy situation. One highly specialized 

species (Chaetodon trifascialis) was too rare to include in formal analyses 

of depth ranges (4 individuals in 32,760 m2). It also expresses double 

jeopardy (Fig. 3.3d – dotted lines), though depth may offer some risk 

mediation, as one of the four observed individuals was at 20 m depth. 

Shallow biased specialists 
Distributions were skewed toward shallow water among trait groups 

with higher reliance on corals (Fig. 3.4a) and among coral-obligate species 

with higher dietary specialization (Fig. 3.4b), but not among dietary 

generalists at either level. Occurrence probabilities declined monotonically 

with increasing depth for both the obligate and facultative coral feeding 

groups (max slopes: OBL, y = - 0.49x; FAC, y = - 0.37x). In contrast non-

coral feeders were symmetrically distributed along the gradient, with peak 

distributions occurring in mid depths of 10 m – 20 m (Fig. 3.4a). Depth 

distributions differed among all four focal coral-obligate species, with a 

positive relationship apparent between increasing dietary specialization and 

increased distribution asymmetry toward shallow-water (Fig. 3.4b). C. 

baronessa was the most specialized species and the most common in 



 

 

shallow water, but its probability of occurrence declined steeply from ~ 0.6 

at <1 m to ~ 0.2 by 10 m (max slope y = - 1.43x), though the rate of decline 

decreased in deeper water. C. lunulatus occurrence probabilities also 

declined monotonically with depth, though at a lesser rate than C. 

baronessa, from ~ 0.4 at <1 m to ~ 0.2 at 30 m (max slope y = - 0.33x), and 

in a linear fashion (Fig. 3.4a). C. ornatissimus did not respond to the depth 

gradient, with a probability of occurrence of ~ 0.18 at all depths (Fig. 3.4b). 

The fourth and most generalized of the species, C. octofasciatus had an 

asymptotic threshold response to the depth gradient, where it was almost 

completely absent from waters ≤ 5 m, but occurrence probability was equal 

(~ 0.2) at all depths beyond 10 m (Fig. 3.4b).  
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Figure 3.3: Relationships between shallow-water occupancy and: (a) depth 
ranges; (b) local abundance; and (c) diet specialization, among 26 species in the 
coral-reef fish family Chaetodontidae, in Kimbe Bay, PNG. White dots represent 
the shallowest depth occupied by a species, black dots represent the deepest 
occupied depths, and grey translucent bars represent the full depth range. 
Because surveys were depth stratified, multiple species in (a) have the same 
depth-ranges and overlap entirely. Solid lines are mean model fits (white = 
shallowest depth and black = deepest depth on the y axis).  Dotted bands are 
95% confidence intervals. Red, orange and green sections represent quadrants 
of hypothetical stress exposures in a-c, and increasing extinction risk in (d). The 
dotted petal in (d) represents one rare species with high dietary specialization 
excluded from formal analyses due to lack of confidence in range estimates. 

 

 

 



 

 

 

 

Figure 3.4: Distribution responses to the depth gradient among (a) three dietary 
trait groups, and (b) four focal obligate coral feeding species of the coral-reef fish 
family, Chaetodontidae. Each column is arranged in increasing level of dietary 
specialization from the bottom plot to the top plot. Modelled data are probability of 
occurrence. OBL = obligate coral feeders, FAC = facultative coral feeders, NON 
= non-coral benthic invertebrate feeders. Bold solid lines represent the best-fit of 
constrained hierarchical logistic regression (or, HOF) models. Dotted lines 
(sometimes obscured) represent best-fit GAM models, which give an 
unconstrained representation of the data. Dashed lines are 95% confidence limits 
for the GAM fits. Line colors indicate different types of HOF model fits (I-VII), 
which are indicated in the top right of each plot with roman numerals. After the 
model type, the weighted AICc score (0.0 – 1.0) of the model, and the percent of 
bootstrapped models confirming HOF fits, over 1000 iterations, are given. 

 

C
h

a
e

to
d
o

n
 

b
a
ro

n
e
s
s
a

 II, 0.46, 78% 

C
h

a
e
to

d
o
n

 
lu

n
u

la
tu

s
 

II, 0.40, 49% 

C
h

a
e

to
d
o

n
 

o
rn

a
ti
s
s
im

u
s
 I, 0.52, 62% 

C
h
a

e
to

d
o
n

  
o

c
to

fa
s
c
ia

tu
s
 

III, 0.55, 76% 

In
cr

ea
si

ng
 d

ie
ta

ry
 s

pe
ci

al
iz

at
io

n 

Species level (obligates) 

Depth (m) 

1.0 
0.8 

0.6 

0.4 

0.2 

0.0 

1.0 
0.8 

0.6 

0.4 

0.2 

0.0 

1.0 
0.8 

0.6 

0.4 

0.2 

0.0 
1.0 
0.8 

0.6 

0.4 

0.2 

0.0 

0 5 10 20 30 15 25 

Pr
ob

ab
ilit

y 
Pr

ob
ab

ilit
y 

Pr
ob

ab
ilit

y 
Pr

ob
ab

ilit
y 

(b) 
Trait group level 

II, 0.47, 52% 

II, 0.44, 67% 

IV, 0.42, 53% 

(a) 

Depth (m) 

1.0 
0.8 

0.6 

0.4 

0.2 

0.0 
1.0 
0.8 

0.6 

0.4 

0.2 

0.0 
1.0 
0.8 

0.6 

0.4 

0.2 

0.0 

0 5 10 20 30 15 25 

Pr
ob

ab
ilit

y 
Pr

ob
ab

ilit
y 

Pr
ob

ab
ilit

y 

In
cr

ea
si

ng
 d

ie
ta

ry
 s

pe
ci

al
iz

at
io

n 

O
BL

 
FA

C
 

N
O

N
 



 

  65 
 

Discussion 
The interrelationships among depth distributions, local densities and 

diet specialization among butterflyfish in Kimbe Bay were not consistent with 

all traditional ecological expectations. Species with broad depth 

distributions reached greater local abundances as predicted; hence, rarer 

species had narrower distributions and narrow distributions should increase 

extinction risk from localized environmental change. However, contrary to 

expectations, the most-specialized coral-feeders (the group most 

vulnerable to habitat loss and extinction in shallow water, also had the 

broadest depth ranges and highest local abundances. Only three of the 

twenty-six study species (12%) occurred entirely in shallow water (< 15 m), 

where the greatest coral-habitat losses are likely to occur. Two of these 

species expressed a double-jeopardy situation by also having low 

abundances. However, all three species limited to shallow-water again had 

non-specialist (facultative or non-coral) diets. Therefore, the species most 

at risk from numerical rarity and restricted depth ranges may not be those 

with high dietary specialization, and lower coral reliance among these 

generalist species may therefore mediate some of the risk associated with 

shallow ranges. Overall, the results point to an unexpected resilience for 

some fish species previously considered vulnerable to shallow-water habitat 

losses on coral reefs and suggest deep reef slopes may offer them a 

potential refuge.   

Despite the resilience potential conferred to dietary specialists by 

broad overall depth ranges, they are unlikely to be a panacea. As predicted, 

obligate coral-feeders, particularly specialist species, were strongly 

aggregated in shallow waters. If these distribution patterns are symptomatic 

of energetic or demographic costs that limit the success of deep-water 

residents, and downward vertical migration is not possible, habitat 

disturbances limited to shallow waters may lead to disproportionate 

numerical losses among the fittest members of coral-specialist species. In 

such cases, hypothetical refuge-populations of coral-specialists in deep-

water might remain small, thus introducing a new set of risk factors. 



 

 

Range and abundance  
The ecologically common combination of narrow distributions and 

small populations (see Gaston et al. 2000) puts species at risk from both 

environmental change (Mckinney 1997) and population fluctuations 

(Williams et al. 2009). The classic examples of positive range ~ abundance 

relationships occurred at multiple spatial scales, across diverse taxa (Brown 

1984). However, positive range ~ abundance relationships among reef-fish 

species have not been supported previously in broad SWG investigations, 

with some studies finding no relationships (Butterflyfishes: Jones et al. 

2002, Lawton et al. 2012a), and others finding negative relationships 

(Angelfishes: Hobbs et al. 2010, Multiple taxa: Hughes et al. 2014). My 

results counter the findings of SWG reef-fish studies, and instead are 

congruent with general ecological theory. Butterflyfish species with broad 

depth-distributions had greater local abundances, and rarer species had 

narrower distributions.  

One consequence of positive depth-range ~ abundance relationships 

is that rare species have the dual risk of population losses where 

environmental disturbances on reefs are patchy and vertically constrained. 

However, another potential ecological byproduct is the ‘rescue effect’, 

where members of abundant species migrate from the range core toward 

peripheries and reduce extinction risk at range margins (Hanski and 

Gyllenberg 1993, Lawton 1993). Therefore, abundant coral-specialists may 

have two sources of compensation for localized disturbances. Firstly, a 

greater number of individuals may buffer population losses, and secondly, 

such species have a greater potential for downward population range-shifts 

and additional re-seeding from deep range margins post disturbance. 

However, these benefits will be limited to cases where deep range margins 

provide viable habitats, and populations within core source habitats (e.g. 

shallow water) are not fully depleted. 

Range and specialization 
Specialist species are also expected to be vulnerable to environmental 

change because their distributions are spatially limited to locations where 

specific resource needs are met (Gaston et al. 1997). Range ~ 
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specialization relationship have not been supported among reef fishes when 

considered across SWG ranges (Butterflyfishes: Jones et al. 2002, 

Anenomefishes: Jones et al. 2002, Ollerton et al. 2007, Anglefishes: Hobbs 

et al. 2010). Here, the most specialized coral-feeders also had the broadest 

vertical ranges, which was contrary to expectations from generalized 

ecological theory and from SWG range studies. However, previous studies 

have theorized and demonstrated that resource specialists utilizing 

widespread resources should themselves have broad distributions (e.g. 

Quinn et al. 1997, Gaston et al. 1997, Gregory and Gaston 2000). This 

suggests locations with suitable deep-water coral habitats can 

accommodate coral-specialist species, relieving some of the predicted, and 

increasingly evident pressures of shallow-water coral-habitat losses 

(Hughes et al. 2018). However, the comparatively limited depth-range of 

generalist species here also means that generalists themselves are not 

immune to risk from shallow-water habitat losses, especially because the 

loss of structural complexity associated with disturbances such as storm 

damage or successive bleaching events leads to high attrition rates even 

among facultative coral-feeders (Graham et al. 2009) and some non coral-

associates (Jones et al. 2004).  

Specialization and abundance along a depth gradient 
Resource specialists also have higher extinction risks because the 

limited distribution and density of their prey results in low total abundances 

(Gaston et al. 1997, Lawton 1999, Harcourt et al. 2002). In turn, low 

abundance increases the risks associated with stochastic population 

dynamics (Williams et al. 2008). In shallow waters, reef fish abundance ~ 

specialization relationships have equivocal support, with multiple studies 

finding negative relationships (gobies: Munday 2004), no relationships 

(multiple families: Jones et al. 2002, angelfishes: Hobbs et al. 2010), and 

positive relationships, including among butterflyfishes (triggerfishes: Bean 

et al, 2002, butterflyfishes: Pratchett et al. 2013). My results supported 

positive abundance ~ specialization relationships, and confirm this unusual 

relationship in butterflyfishes from shallow water studies. High abundances 

may therefore partially mediate vulnerability to shallow-water habitat loss 



 

 

among some coral-specialists. This unexpected pattern has previously 

conferred long-term resilience to species in other systems. For example, in 

wet tropical rainforests, seemingly at-risk specialists have surprisingly 

maintained high populations and persisted over evolutionary time periods 

that included multiple intensive disturbances (Williams et al. 2009). The 

presence of this pattern across depths, as well as within shallow waters at 

the SWG scale demonstrates that resilience factors can operate 

concurrently at multiple spatial scales and resilience may be maintained if 

large tracts of shallow-water coral habitats are lost in the future. 

Additive risk – multiple vulnerability traits and shallow water 
Species with two or three way vulnerability combinations have 

increased extinction risks (Gaston 1996, Johnson 1998), particularly where 

ranges are restricted to highly disturbed locations (Thomas et al. 2004). To 

date, studies quantifying the proportion of species expressing single or 

multiple vulnerability traits and whose ranges also wholly or mostly overlap 

shallow waters have been surprisingly rare within coral-reef systems. 

Among the 26 butterflyfish species assessed here, twelve (33%) expressed 

at least one vulnerability trait. Two species (8%) experienced ‘double-

jeopardy’, from combined narrow depth-range and low abundance. 

However, no species experienced ‘triple-jeopardy’, as all species with 

secondary vulnerability traits had broad dietary niches or were non-

corallivores. Three species (12%) expressed at least one vulnerability trait 

and had a shallow range, but none of these were highly specialized coral-

feeders. The fact that highly coral-specialized Chaetodontidae family 

members do not appear to suffer double jeopardy, nor are restricted to 

shallow waters in my study system, is encouraging for their persistence 

prospects under current and future conditions.  

Potential costs of range contractions 
Abundances have long been known to decline toward range margins 

(Grinnell 1922). Here the most coral-specialized species had strong biases 

toward shallow water and much lower abundances at deep range margins. 

This relationship held across trait groups, as well as among coral-obligate 

species. This pattern was expected but is striking here because the most 
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coral-specialized species were also the most abundant and had the 

broadest depth ranges in this study system. Asymmetric distributions may 

follow asymmetric availability of quality resources (e.g. MacDonald et al. 

2016), or be driven by population dynamics that differentially enhance and 

limit success between shallow and deep locations (sensu Holt and Keitt 

2000). In the later cases, core source populations often feed more marginal 

sink locations (e.g. Lawton 1993), and future range contractions toward 

deep-water may compromise the persistence of specialist species if current 

deep ranges are strongly reliant on population substitution from shallow-

water sources. Greater knowledge will be needed about possible ecological 

limitations to (e.g. Srinivasan et al. 2003, Bridge et al. 2016, MacDonald et 

al. 2018), and the potential energetic costs of (e.g. Smallhorn-West et al. 

2017), deep residence in this group of vulnerable fishes. In addition, if 

shallow-water does provide keystone habitats (sensu Hitchman et al. 2018) 

and species are not able to reside solely at depth across multiple 

generations, range-only estimates of extinction risk may overestimate the 

mitigation factor of deep residence  

 Conclusions 
Vertical ranges are often a good predictor of resilience to global 

environmental change in terrestrial systems (Parmesan and Yohe 2003, 

Raxworthy et al. 2008, Chen et al. 2011). Similarly, broad depth-ranges are 

likely to become an increasingly important factor in ecological 

resilience/recovery, and species persistence, among coral–reef taxa as 

shallow-limited species become increasingly more exposed to habitat 

disturbance (e.g. Graham et al. 2011, 2015). My results demonstrate that 

interrelationships among vulnerability traits along depth gradients in coral 

reef systems do not necessarily follow generalized expectations from 

ecological theory, or from coral reef studies in shallow waters. However, the 

results do support the conclusion that interrelationships among vulnerability 

traits and occupancy depths mediate a substantial component of risk among 

a family consisting mostly of vulnerable coral-reef fishes. Specialization is 

considered a fundamental trait that increases extinction risk across 

widespread taxa (Foufopoulos and Ives 1999, Fisher et al. 2003, Julliard et 



 

 

al. 2004), and this is also the case among reef-fish (Roberts and Hawkins 

1999, Wilson et al. 2006, Graham et al. 2011). However, the most 

specialized species here were also the most abundant and the most broadly 

distributed, with no specialist species experiencing double or triple jeopardy 

or being wholly restricted to shallow water, where habitat disturbance is 

often highest. Thus, deep distributions and high abundances appear to 

mediate some risk associated with strong habitat reliance in this group.  On 

the other hand, the distributions of specialist species were also strongly 

biased toward shallow waters. The underlying reasons for declining 

abundance with depth are not clearly established, and further work is 

needed to determine the potential for deep water to act as a temporary or 

permanent refuge for strongly coral associated reef fish species. 
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Chapter 4 - MARGINAL SINKS OR POTENTIAL 
REFUGES? DEEP HABITATS INCREASE 
RESOURCE ACCESS AND CONFER NO 
SUB-LETHAL COSTS IN A VULNERABLE 
GUILD OF CORAL-OBLIGATE REEF 
FISHES. 

Published with revised discussion as: 

MacDonald C, Jones GP, & Bridge TC (2018) Marginal sinks or 

potential refuges? Costs and benefits for coral-obligate reef fishes at deep 

range margins. In Proceedings of the Royal Society B. 20181545. 
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Abstract 
Escalating climate-related disturbances and asymmetric habitat-

losses will increasingly result in species living near current range margins. 

Marginal habitats may represent important refuges for these species, as 

long as individuals can acquire adequate resources to survive and 

reproduce. However, the costs of securing sparsely distributed resources at 

range margins can be substantial and may result in sub-optimal individuals 

forming non-self-sustaining sink-populations. Shifting resource availability 

is likely to be particularly problematic for dietary specialists. Here, I use 

extensive in-situ behavioural observations and physiological condition 

measurements to examine the costs and benefits of resource-acquisition 

along a depth-gradient in two obligate corallivore reef fishes with contrasting 

levels of dietary specialisiation. I show that the space utilised to secure 

coral-resources increased towards the lower depth limit as expected. 

However, increased territory sizes resulted in equal or greater total 

resources secured within deep territories. I observed no differences in 

foraging-distance, pairing-behaviour, body condition or fecundity at greater 

depths, as well as decreased competition. Contrary to expectation, my 

results demonstrate that deep-water coral-obligate fishes can select high-

quality coral patches to access equal or greater resources than their 

shallow-water counterparts, with no extra costs. This suggests depth offers 

a viable potential refuge for some at-risk coral-specialist fishes. 
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Introduction 
Rapid climate change has increased ecosystem degradation and 

extinction risk across most of the earth’s biomes and taxonomic groups, with 

many species experiencing range contractions or displacements from core 

ranges (Parmesan and Yohe 2003, Thomas et al. 2004, Lenoir and 

Svenning 2015, Scheffers et al. 2016, Pecl et al. 2017). Many currently 

extant species radiated from organisms that survived past global-scale 

environmental change (e.g. Quaternary glacial cycles) in cryptic refugia at 

range peripheries (Stewart and Lister 2001, Provan and Bennett 2008). 

Successful survivorship and reproduction in small refuges, often at range 

peripheries (Scheffers et al. 2014), is likely to be important for many species’ 

long-term resilience to asymmetric impacts from current rapid climate 

changes (Ashcroft 2010, Keppel et al. 2012). The potential for peripheral 

habitats to act as refuges largely depends on individual performance at 

these ecological extremes. Species presence does not always relate to 

individual success or population viability, therefore understanding the 

ecological factors that limit population success at range margins is critical 

for predicting future trajectories. 

Individuals occupying a species’ range margin face many potential 

costs. While species’ realized-niches are ideally centred on regions of 

optimal performance along gradients (e.g. (González‐Guzmán and 

Mehlman 2001, McGill et al. 2006)), source-sink dynamics, density-

dependence, and intra-trophic competition cause species to extend beyond 

ideal niches (Terborgh 1977, Lawton 1993, Pulliam 2000). At range 

margins, habitats and populations often become more fragmented (Brown 

1984, Thomas and Kunin 1999), occupancy decreases (Kawecki 2008), and 

individuals may exhibit behavioural changes and/or experience 

physiological costs (Zammuto and Millar 1985, Badyaev and Ghalambor 

2001, Smallhorn-West et al. 2017) in relation to securing sparcer resources. 

For example, the summer ranges of roe deer are much larger at higher 

altitudes, where food resources are sparser (Mysterud 1999), and greater 

reliance on high-altitude habitats results in lower body condition among red 



 

 

deer (Mysterud et al. 2001), and lower avian fecundity (Krementz and 

Handford 1984). 

Despite these costs, occupying range margins may also present 

advantages, such as reduced competition (Goldberg and Novoplansky 

1997, Choler et al. 2001). In addition, although population abundances may 

be lower in fragmented peripheral habitats, inhabited patches may not differ 

greatly from ideal conditions within range centres (Carter and Prince 1981, 

Holt et al. 2005). In such cases, margin dwellers may incur little fitness cost 

(Prince and Carter 1985, Samis and Eckert 2009, Sexton et al. 2009). 

Asymmetric disturbance impacts may also result in previously optimal 

habitats becoming suboptimal, while marginal habitats remain stable. 

Consequently, marginal habitats can serve as good candidates for refuge 

populations if costs are not high. Assessing individual performance among 

marginal populations requires detailed knowledge of changes in key 

ecological strategies and demographic traits between the range core and 

periphery habitats. However, range peripheries are typically under-

sampled, and detailed ecological assessments of individual space-use, 

resource-access, and physiological-condition at range margins constituting 

potential refuges are rare among animals (Feldman and McGill 2013). 

Coral reefs are highly diverse ecosystems and exhibit strong 

ecological gradients over small spatial scales (e.g. (Done 1982, Williams 

1982, McGehee 1994b, Berumen et al. 2005)). Coral habitats are also 

highly vulnerable to global-scale degradation (Pandolfi et al. 2003, Bellwood 

et al. 2004, Hughes et al. 2017), however, highly divergent responses often 

occur at smaller spatial scales (e.g. (Nyström and Folke 2001, Graham et 

al. 2015, Roche et al. 2018)). Therefore coral reefs provide an ideal model 

ecosystem for assessing drivers of differential responses to climate change 

and habitat degradation along environmental gradients (Graham et al. 

2015). While warm-water bleaching events are increasing (Hughes et al. 

2018, Lough et al. 2018), impacts frequently attenuate with depth (Marshall 

and Baird 2000, Bridge et al. 2013, Muir et al. 2017). Deep-water could offer 

a potential refuge for coral reef fishes vulnerable to shallow-water habitat 

loss (e.g. (Jankowski et al. 2015, Bridge et al. 2016, MacDonald et al. 

2016)), and fishes with broad depth ranges are considered at lower risk of 
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extinction than species restricted to shallow depths (Graham et al. 2011). 

Furthermore, recent studies have demonstrated large proportions (up to 

85%) of coral-associated fish species occur at or below 20 m depth in some 

systems (MacDonald et al. 2016). Despite these broad depth ranges and a 

lack of obvious dispersal barriers, densities of coral-specialists can decline 

dramatically with depth (Chapter 3), presumably in response to concomitant 

declines in resource quantity and/or quality (MacDonald et al. 2016). While 

it is clear that many coral-obligate reef fish species occur at greater depths 

than currently appreciated, the ecological and physiological costs of deep 

residence on reefs remain unknown.  

The ecological, behavioural, and condition responses of coral-

dependent fishes to coral declines in shallow water are well established. 

Low densities of preferred coral genera are related to increased space use, 

increased effort in resource protection, and changed social dynamics 

(Hourigan 1989, Tricas 1989, Wrathall et al. 1992, Righton et al. 1998, 

Berumen and Pratchett 2006), as well as increased sub-lethal costs (Kokita 

and Nakazono 2001, Pratchett et al. 2004, Berumen et al. 2005). If similar 

dynamics occur along depth gradients, this may mitigate the refuge potential 

of deep reefs. However, due to the difficulty and time limitations of deep-

water diving, there is a paucity of detailed ecological data among vulnerable 

taxa with extensive depth ranges on coral reefs (but see Smallhorn-West et 

al. 2017). This has lead assessments of extinction threats, and commentary 

on the potential ability of depth to provide refuge for reef fish, to largely 

assume intraspecific ecology is static along steep depth gradients (Hawkins 

et al. 2000, Graham et al. 2011, Darling and Côté 2018). However, this 

assumption has not been tested.  Here I examine changes in the ecology of 

two corallivorous butterflyfishes (Chaetodon baronessa and C. 

octofasciatus) with contrasting levels of dietary specialization along a depth 

gradient from 0 - 35 m to investigate the behavioural and physiological costs 

of living at greater depths. Specifically, I tested whether 1) individuals’ space 

use increased with depth; 2) lower resource densities resulted in fewer 

secured coral resources in deeper territories; 3) decreased resource 

availability led to behavioural costs related to accessing and securing 



 

 

resources at depth; and 4) individual body condition, energy storage and 

fecundity declined with depth.  

Methods 

Study site and focal species 
I recorded the spatial parameters, conspecific-neighbour densities, 

rates of maintenance behaviours, and coral resource densities over 24-

weeks of observations within all territories of two obligate coral-feeding 

butterflyfish species, between <1 m and 35 m depths within a 250 m wide 

section of Christine’s reef in Kimbe Bay, Papua New Guinea. The vertically 

continuous coral habitat along the entire depth gradient of the focal reef is 

representative of reefs in the region and presents no physical barriers to 

movement among depths. I chose two obligate corallivore focal species with 

equivalent total depth ranges (0 - 40 m), but with contrasting density 

distributions within depth ranges, and contrasting levels of specialization 

within their coral-obligate diets. Chaetodon baronessa (n = 39 territorial 

pairs) is termed here a ‘Shallow-Specialist’ as its distribution is strongly 

skewed toward shallow water and it has a narrow dietary niche (niche 

breadth = 0.07), with high selectivity for Acropora corals (Chapter 3, Chapter 

5). In contrast, Chaetodon octofasciatus (n = 21 territorial pairs) is termed a 

‘Deep-Generalist’ as it has a broad dietary niche (niche breadth = 0.23) and 

occurs infrequently in waters of ≤5 m but is distributed equally from 10 m – 

30 m (Chapter 3, Chapter 5).  

Territory size 
Territorial butterflyfish patrol territory perimeters frequently, using 

habitual swim paths (Righton et al. 1998). Territorial pairs were identified 

using individual markings, external tags (Floyd T-bar) and their site fidelity, 

which was confirmed from many repeat observations over the course of the 

study. I demarcated territories by observing pairs for multiple 5-15 minute 

periods (minimum of 3 initial observations), marking swim paths and 

territorial boundaries with flagging tape. Territories were confirmed via 

frequent re-visitations over multiple weeks, and the perimeter, minimum and 
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maximum depths of territories were measured in-situ (see supplemental 

methods).  

Within territory resource density and "total secured resources” 
I recorded the density of ‘total-coral’ resources and of the highly 

preferred genus ‘Acropora’ within each territory, from 1 m2 photographed 

benthic quadrats at ~ 2 m intervals around each perimeter. The benthic 

component directly under each of 25 randomly allocated points was 

recorded for each quadrat in Coral Point Count e (CPCe) (Kohler and Gill 

2006). Corals were recorded to genus level. I calculated ‘Total Secured 

Resources’ of total-corals (TSRT) and Acropora corals (TSRA) within 

territories by multiplying the mean density of each resource by the area 

encompassed within a 1m internal border around the perimeter length. For 

local comparisons, total coral cover and Acropora coral cover were also 

recorded from 60 random points in 4 – 6 replicate transects at depths of 

<1m, 5m, 10m, 20m, and 30m, on ten reefs throughout Kimbe Bay 

(MacDonald et al. 2016). I used more intensive benthic sampling on the 

focal reef from 90 - 120 replicate photo-quadrats per depth (~1 m2) at <1 m, 

5 m, 10 m, 15 m, 20 m, 25 m and 30 m. 

Behaviour 
I recorded rates of territorial interactions, movement, and pairing within 

the same focal territories. Observations were recorded simultaneously 

during 4 - 6 replicate three-minute observation periods for each pair, with 

focal fish followed at a distance of ~ 2 - 4 m. Movement paths were marked 

approximately every 0.5 – 1 m, and total distance measured. Pairing status 

and water depth were recorded every 15 seconds (paired, ≤ 2 m from 

partner). Observations were not recorded if focal fish showed flight or 

aggressive display responses. Conspecific density was calculated as the 

number of directly adjoining territories divided by the length of the focal 

perimeter. 



 

 

Body condition 
I determined the condition of fish residing at different depths with five 

commonly used metrics. After collection of behavioural data, fish from most 

territories were harvested by spear in January 2016 (C. baronessa = 35 

females, 31 males, C. octofasciatus = 16 females and 15 males). A further 

10 males and 21 female C. octofasciatus were collected in November 2016. 

All fish were gutted, weighed, and measured. Gonads and livers were 

removed, weighed and stored in 4% calcium buffered formalin. The five 

physiological condition metrics were: Total length (TL); Fulton’s K (K = 100 

* Wgutted / TL3); Histosomatic index (HSI) (HSI = 100 * W liver / Wgutted); 

Gonadosomatic index (GSI) in females (GSI = 100 * Wgonad / Wgutted); and 

proportion of vacuolated hepatocyte cells in males.  

Hepatocyte vacuolation uses the proportion of hepatic cells with lipid 

storage vacuoles as a measure of energy storage, where a higher 

proportion of vacuolated cells equates to greater energy stores and better 

condition (Pratchett et al. 2004). Livers were dehydrated in a graded ethanol 

series in the laboratory, embedded in paraffin wax, sectioned to 5μm, and 

stained with Mayer’s haematoxylin and eosin. Sections were digitally 

photographed at 400x magnification and each frame was overlaid with 50 

random stratified points in CPCe. The proportion of points intersecting 

vacuoles was recorded from three frames from each of three sections per 

liver, resulting in nine replicate 50-point-counts per fish.  

Analyses 
Differences in territory sizes among depths were examined using 

linear models (lm) of log(perimeter) length against median-territory-depth 

(med.ter.depth). The density of each coral resource (total-corals, and 

Acropora) was modeled against med.ter.depth using binomial comparisons 

of the number of points identifying 1) coral and non-coral substrata, and 2) 

Acropora and non-Acropora substrata within territories. Models were 

performed in glmer, from the r package lme4 using quadrat as a random 

factor. TSRT and TSRA were modeled against med.ter.depth using lm. 

Conspecific-density was modeled against med.ter.depth using glm with a 

Poisson error-wise family. Rates of territorial interactions were modeled 
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against med.ter.depth using a Poisson error-wise family in glmer. Territory 

(ID), and observation (Obs), were included as random factors. The log of 

distance moved, was modeled against med.ter.depth in lmer, with ID and 

Obs included as random factors. Pairing ratios were modeled against 

med.ter.depth in glmer, using a binomial comparison of paired and not-

paired observation counts, with ID and Obs included as random factors. TL, 

Fulton’s K, HSI, and GSI were modeled for variation among med.ter.depth 

using lm. Variation in hepatocyte vacuolation rates with med.ter.depth was 

tested using a binomial comparison of vacuolated and non-vacuolated cell 

counts in glmer, with ID and Obs included as random factors. For models fit 

in lmer and glmer; r.squaredGLMM was used to obtain pseudo-R-square 

estimates; dispersion_glmer was used to test for over-dispersion; deviance 

based tests of fit were undertaken; confint was used to obtain confidence 

intervals; and glht was used to obtain probability estimates of effects.  For 

C. octofasciatus, analyses of body condition metrics first incorporated 

collection date as an interaction term. No interactions were present (no 95% 

CI crossed zero, all p > 0.10), so the term was excluded from final models 

(condition.metrici ~ med.ter.depth). All analyses were therefore consistent 

between each species and were undertaken in R version 3.3.2 (R Core 

Team 2016). 

Results 

Territory size 
Mean territory sizes did not differ between the two species overall 

(Table 4.1, Fig. 4.1a). However, the hypothesis that territory area would 

increase with depth was supported for one of the two species: mean territory 

size increased approximately three-fold along the depth gradient for C. 

baronessa - the shallow-specialist (Fig. 4.1b) but did not change for C. 

octofasciatus - the deep-generalist (Fig. 4.1c).  



 

 

 

Figure 4.1: (a) Interspecific similarities in territory size between a shallow-
specialist (Chaetodon baronessa - red) and deep-generalist (C. octofasciatus - 
blue) obligate coral-feeding butterflyfish species, and intraspecific variation in 
territory size along a depth gradient from 0 – 30 m for (b); the shallow-specialist 
species and (c); the deep-generalist. (d-f) Within-territory resource densities, 
showing (d) the interspecific similarities, (e) intraspecific variation along the depth 
gradient for the shallow-specialist, and (f); depth variation for the deep-generalist. 
(g-i) Total secured resources within territories, showing (g); interspecific 
similarities, (h); intraspecific variation along the depth gradient for the shallow-
specialist, and (i) depth variation for the deep-generalist. Lines above bars in a, 
d, g, represent statistically similar means. In regression plots, each variable is 
modeled against the median depth of territories; solid lines and straight dotted 
lines represent best fits, bands represent 95 % confidence intervals, and each 
data point represents a territory. 

 

Resource availability 
 Total hard coral cover throughout the bay did not decline with depth (mean 

~ 55% at all depths), but the cover of Acropora, the preferred prey of my 

two focal species declined from ~ 25% at <1 m to ~ 2% at 30 m 

(supplemental figure S1). Within the focal reef, total hard coral cover peaked 
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at 15 m (~72%) and was lowest at 30m (~ 48%) (F(1,5) = 10.79, p < 0.001).  

Acropora cover on the focal reef was highest at < 5 m (~ 23 %) and lowest 

at 30 m (~ 7%) (F(1,5) = 10.91, p < 0.001). 

 The hypothesis that within-territory resource densities would 

decrease with depth was not supported for either species (Table 4.1).  Mean 

densities of both total-coral and Acropora resources did not vary between 

territories of the two species overall (Fig. 4.1d) and did not decline with 

depth in the territories of either species (Fig. 4.1e & 1f). In fact, the density 

of total-coral resources increased ~ 15% along the depth gradient for the 

shallow-specialist (Fig. 4.1e). As a result of increasing territory size and 

stable or increasing resource densities with depth, TSRT and TSRA within 

territories of the shallow-specialist both increased approximately three-fold 

along the depth gradient (Fig. 4.1h). In contrast, TSRT declined by almost 

half between the shallowest and deepest territories of the deep-generalist 

species, while TSRA was consistent along the gradient (Fig. 4.1i).  

 

Neighbour density and maintenance effort 
There was no apparent increase in neighbour density or maintenance 

effort with depth (Table 4.2).  For the shallow-specialist, the number of 

directly neighbouring conspecific territories decreased with depth (Table 

4.2, Fig. 4.2a). Correspondingly, mean neighbour densities declined almost 

five-fold between shallow and deep territories (Fig 2b). The rate of territorial 

interactions for the shallow-specialist also declined by over two-thirds along 

the gradient (Fig. 4.2c). Depth explained a small proportion of variation in 

movement rates of the shallow-specialist, with mean rates declining by 

approximately one third from the shallowest to deepest territories (Fig. 

4.2d). Pairing behaviour in the shallow specialist did not vary with depth. In 

contrast, there was no depth-related change in neighbour density (Fig. 

4.2a), territorial interaction rates (Fig. 4.2b), or movement rates for the deep-

generalist (Fig. 4.2c), and pairing rates of the deep-generalist also did not 

decline with depth (Fig. 4.2d). 

 



 

 

 

 

 

 

Figure 4.2: Depth related variation in competitor density and territorial 
maintenance effort. (a) The density of directly neighbouring conspecifics around 
territory perimeters. (b) The number of territorial interactions (insert shows 
shallow-specialist only), (c) the distance moved, and (d) mean paring ratios. Solid 
lines represent the best fit for generalized linear models and bands are 95% 
confidence intervals 
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Table 4.1: Result summaries of depth related variation in territory size, within 
territory densities and total-availability of major coral resources, and the number 
of directly neighbouring territories. 

 

 

Table 4.2: Result summaries for models of depth related variation in territory 
maintenance effort. 

 
^Estimates and confidence intervals based on log link for the Poisson error family are 
factorial. In this case, evidence does not support an effect where confidence intervals 
cross one. 

Species Metric 
Response  
variable 

R2 
Estimate 

± SE 
Intercept 

± SE 
F(df) p-value 

C
h

ae
to

d
o

n
 b

ar
o

n
es

sa
  

(s
p

ec
ia

li
st

) 

Territory size Perimeter 0.42 1.45 ± 0.14 
23.39 ± 

4.14 
27.09(1, 

38) 
< 0.001 

Resource 
Density 

Total-
coral 

0.14 0.52 ± 0.11 
55.96 ± 

3.37 
5.37(1,32) 0.027 

Acropora 0.05 0.41 ± 0.17 
21.26 ± 

4.90 
1.56(1,32) 0.22 

Total Secured 
Resources 

 (TSR) 

Total-
coral 

0.46 0.96 ± 0.10 
13.56 ± 

2.78 
26.66(1,32) < 0.001 

Acropora 0.44 0.42 ± 0.09 
4.75 ± 
1.28 

24.76(1,32) < 0.001 

Neighbour 
density 

conspD 0.40 
-0.004 ± 
0.0009 

0.14 ± 
0.01 

20.20(1,31) < 0.001 

C
h

ae
to

d
o

n
 o

ct
o

fa
sc

ia
tu

s 
(g

en
er

al
is

t)
 

Territory size Perimeter 0.02 -0.25 ± 0.39 
45.87 ± 

8.00 
0.43(1, 19) 0.52 

Resource 
Density 

Total-
coral 

0.26 -0.56 ± 0.24 
34.81 ± 

4.86 
5.50(1,16) 0.032 

Acropora 0.16 -0.32 ± 0.19 
12.98 ± 

3.79 
2.99(1,16) 0.10 

Total Secured 
Resources 

 (TSR) 

Total-
coral 

0.06 -0.50 ± 0.50 
70.52 ± 
10.20 

1.01(1,16) 0.33 

Acropora 0.04 -0.46 ± 0.54 
27.00 ± 
11.08 

0.74(1,16) 0.40 

Neighbour 
density 

conspD 0.03 
-0.0009 ± 

0.002 
0.07 ± 
0.03 

0.55(1,19) 0.47 

Species Relationship 
Response  
variable 

R2marg R2cond Estimate 
Conf. int. (95%) 

z p 
lower upper 

C
h

ae
to

d
o

n
 

b
ar

o
n

es
sa

  
(s

p
ec

ia
li

st
) Distance moved log(distance)  0.04 0.26 -0.02 -0.04 1.55-03 -1.85 0.098 

Interactions interactions  0.14 0.22 0.92^  0.87^ 0.97^ -3.29 0.001 

Pairing Cbind(p,np)  <0.00 <0.00 0.49 0.47 0.51 -1.05 0.315 

C
h

ae
to

d
o

n
 

o
ct

o
fa

sc
ia

tu
s 

(g
en

er
al

is
t)

 Distance moved log(distance) 0.06 0.35 0.02 -0.04 0.04 1.61 0.134 

Interactions interactions  0.09 0.17 0.91^ 0.80^ 1.01^ -1.79 0.073 

Pairing Cbind(p,np)  <0.00 0.31 0.56 0.45 0.56 0.25 0.802 



 

 

 

Body condition 
No aspect of physiological condition declined significantly with depth 

in either fish species (Table 4.3, Fig. 4.3). Neither female nor male C. 

baronessa total lengths (TL) declined with depth (Fig. 4.3a). Similarly, 

neither relative body mass nor hepatosomatic index declined with depth in 

either sex (Fig. 4.3b, c). The fecundity (GSI) of female C. baronessa did not 

decline with depth (Fig. 4.3d), and neither did energy storage (hepatocyte 

vacuolation) among males (Fig. 4.3e). However, there was some indication 

that a small proportion of variation in body mass of male C. baronessa, and 

the fecundity and HSI of females may have depth trends (all; R2 < 0.13, 

probability = 0.1 <p> 0.05, Table 4.3). For C. octofasciatus, neither total 

lengths, relative body mass, nor hepatosomatic index declined with depth 

for either sex (Fig. 4.3f-h). The GSI of female C. octofasciatus did not 

decline with depth (Fig. 4.3i), and neither did energy storage among males 

(Fig. 4.3j).  
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Figure 4.3: Relationships between body condition and depth. Metrics are: (a & f) 
total length; (b & g) relative body-mass; (c & h) hepatosomatic index (d & i) 
reproductive potential; (e & j) energy storage. Data points = individual fish. 
Closed circles = females. Open circles = males. 
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Table 4.3: Result summaries of depth-related variation in body condition. 
Italicized P-values show metrics approaching statistical significance. 

 

 
 
 
 

Discussion 
Contrary to expectations, neither the shallow-specialist (Chaetodon 

baronessa), nor the deep-generalist (C. octofasciatus) obligate corallivores 

experienced significant ecological or physiological costs from residing at 

depths down to 35 m. While the size of C. baronessa territories did increase 

along the depth gradient as expected, there was no decrease in within-

territory resource densities; indicative of individuals establishing territories 

on high quality resource patches. Instead, deeper territories had up to three 

times the amount of highly preferred resources secured within deeper 

territories of the shallow-specialist, for apparently little or no cost in terms of 

defense effort, movement rates, or time paired.  In addition, deep residence 

had little effect on a range physiological condition factors, including 

fecundity. While the territory sizes of C. octofasciatus did not increase at 

Species 
Condition 
(metric) 

Sex R2 
Estimate 

± SE 
Intercept 

± SE 
Test Statistic p-value 

C
h

ae
to

d
o

n
 b

ar
o

n
e

ss
a 

(s
p

ec
ia

li
st

) 

Body Length 
(Total Length) 

F 0.02 0.08 ± 0.10 91.34 ± 1.62 F = 0.58(1, 30) 0.454 
M 0.06 0.13 ± 0.09 91.43 ± 1.50 F = 1.85(1, 28) 0.184 

Relative Body 
Mass 

(Fulton’s K) 

F 0.04 -3.46-06 ± 3.23-06 3.05-03 ± 5.18 -05 F = 1.14(1, 30) 0.294 

M 0.12 -1.11-05 ± 5.67-06 3.37-03 ± 9.33-05 F = 3.811, 28) 0.061 

Relative Liver 
Mass 
(LSI) 

F 0.11 -0.01 ± 3.73-03 1.38 ± 0.06 F = 3.83(1, 30) 0.060 

M 0.06 -0.01 ± 0.01 1.16 ± 0.10 F = 1.72(1,28) 0.201 

Fecundity 
(GSI) 

F 0.10 -0.025 ± 0.01 2.56 ± 0.22 F = 3.44(1, 30) 0.074 

Energy Storage 
(Hypatocyte 
vacuolation) 

M - 0.01 ± 0.01 -1.30 ± 0.20 z = 0.79(1, 19) 0.429 

C
h

ae
to

d
o

n
 o

ct
o

fa
sc

ia
tu

s 
(g

en
er

al
is

t)
 

Body Length 
(Total Length) 

F 3.96-07 -3.16-04 ± 0.09 71.90 ± 1.40 F = 1.39-0.5(1, 35) 0.997 
M 0.08 -1.18 ± 0.13 70.69 ± 2.23 F = 1.93(1, 23) 0.178 

Relative Body 
Mass 

(Fulton’s K) 

F 0.02 3.26-03 ± 7.67-05 -34.34-06 ± 4.65-06 F = 0.27(1, 35) 0.606 

M 7.16-04 -9.96-07 ± 7.53-06 3.26-03 ± 1.37-04 F = 0.02(1, 23) 0.899 

Relative Liver 
Mass 
(LSI) 

F 0.01 -3.13-03 ± 0.01 1.03 ± 0.09 F = 0.31(1,34) 0.581 

M 1.37-04 -3.45-04 ± 0.01 1.00 ± 0.11 F = 3.02-03(1,23) 0.957 

Fecundity 
(GSI) 

F 5.41-04 -2.96-03 ± 0.02 2.16 ± 0.35 F = 0.02(1, 34) 0.893 

Energy Storage 
(Hypatocyte 
vacuolation) 

M - -0.03 ± 0.02 -1.62 ± 0.46 z = -1.17(1, 23) 0.243 
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greater depths, and the species did experience some decline in within-

territory resource densities, this did not equate to declines in total secured 

resources (TSR), or to increases in sub-lethal costs. Taken together, my 

results indicate that living at deeper depths may not confer costs to coral-

specialized fishes as previously assumed. Instead, under similar 

circumstances, even where the density and composition of coral resources 

decline along the depth gradient, deep-reef habitats may offer substantial 

refuge potential to populations of reef fishes vulnerable to coral loss in 

shallow waters.  

It has been assumed that frequent territory size increases in response 

to lower local resource densities, and vise-versa, are a product of in within-

territory resource densities declines (Tricas 1989, Wrathall et al. 1992, 

Berumen and Pratchett 2006), so that TSR remain similar between different 

levels of surrounding resource availability, or at least TSR does not decline 

as strongly as surrounding resource densities. However, this has only been 

tested via manipulative experimentation (e.g. (Tricas 1989)). Here, I show 

that despite being situated in areas of lower overall resource availability 

deep territories are established in pockets of comparatively high resource 

density; or at least the regular swim paths used for feeding around territory 

perimeters navigate through high-density paths. Lower overall resource 

availability may therefore influence reduced population densities at deeper 

depths, but not at the cost of resource access for the fewer individuals 

utilizing these peripheral habitats.  

The fact that deeper residents of the shallow-specialist species had 

higher TSR than their shallow counterparts suggests that factors other than 

resource accessibility may drive the strong distributions bias toward shallow 

water (Chapter 2). Rather than a direct response to resource dynamics, 

spatial-use increases may be a response to the lower conspecific 

competition observed at greater depths. Spatial increases have previously 

been linked to decreased competitor density, in addition to food availability 

(Sutton 1985, Tricas 1989). Therefore, the territories of shallow residents 

may be spatially constrained by density dynamics, instead of being of 

optimal size (Hixon 1980). In contrast, lower competitor density and 



 

 

therefore greater space availability at greater depths may reduce the 

comparative cost of resource access for deep residents.  

Cost-benefit models link territory sizes to economic defendability 

(Mitani and Rodman 1979, Brown 1984), with increased resource access 

benefits in larger territories being offset by behavioral costs related to higher 

maintenance and greater vigilance efforts  (Hamilton III and Watt 1970, 

Hixon 1980, Roberts and Ormond 1992). That expectation was not met in 

this study. Despite shallow-specialist territories being larger at deeper 

depths, lower conspecific density was related to decreased territorial 

interactions, trends toward lower patrol efforts, and no changes in paring 

behaviour. This is important, because increases in all three are related to 

lower feeding rates. Therefore, residing at distribution peripheries resulted 

in net benefits rather than costs. My results contrast the few other studies 

utilizing steep vertical gradients to investigate the energetic costs and 

ecological drivers of core – periphery range dynamics in animals (Feinsinger 

et al. 1979, Feldman and McGill 2013). For example, some territorial 

hummingbird species experience greater net energetic costs with altitude, 

where flight effort and activity levels increase, and foraging rates decrease; 

though rates of competitive intrusion remain constant (Feinsinger et al. 

1979). While covariation between physiological condition and 

environmental gradients are commonplace in a multitude of systems 

(Hjeljord and Histøl 1999, Yoshinori and Shigeru 2000, Sullivan and Miller 

2007, Gardner et al. 2009), including among butterflyfishes in shallow reef 

waters (Kokita and Nakazono 2001, Pratchett et al. 2004, Berumen et al. 

2005), I found no evidence here of reduced body condition at depth in either 

focal species. My results show that the costs and benefits of occurring at 

range margins are likely to be species- and ecosystem-specific. This 

highlights the importance of examining different ecological and 

physiological indices to properly assess costs and refuge potential at range 

margins. 
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Conclusion 
Investigations including the potential for deep reefs to mediate impacts 

for species affected by shallow water habitat loss have largely assumed 

intraspecific ecology and condition is static along a steep environmental 

gradient (Hawkins et al. 2000, Graham et al. 2011, Darling and Côté 2018). 

Here, I demonstrate this is not the case for spatial ecology and behavior, 

which can vary within 30m of depth gradient, and can also differ between 

species with different levels of depth- and dietary- specialisation. However, 

the ecological responses did not follow the expectations developed from 

studies along shallow water resource quality gradients, or from other 

systems, but surprisingly indicate that deep residence does not confer 

substantial sub-lethal costs for coral obligate fishes. Overall, I found no 

evidence that costs of deep residence would mitigate the benefits of 

potential depth refuges in my study system. If asymmetric habitat 

disturbances and extinction threats increase in response to rapid and 

ongoing climate change, marginal habitats may provide potential local-scale 

refuges. Here I show deep coral habitats on coral reefs are one such 

potential refuge. Further investigations of this potential among marginal 

habitats are now imperative.   



 

 

Chapter 5 - ALTERNATIVE DIETARY STRATEGIES AND 
ALTERED CARBON PATHWAYS FACILITATE 
BROAD DEPTH RANGES IN CORAL-
OBLIGATE REEF FISHES 
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Abstract: 
Asymmetric habitat degradation and climate-induced range shifts will 

result in an increasingly large proportion of species’ populations living at 

current range margins where some taxa will benefit from spatial refuges. 

However, the capacity for persistence at range peripheries will be 

determined in part by species-specific abilities to mediate costs related to 

decreases in quantities and quality of key resources. Here, I compare 

variation in dietary strategies and energy acquisition trade-offs along range-

core to range-periphery depth gradients in two obligate corallivores with 

differing levels of diet specialization, as well as in their mixotrophic prey. I 

found no changes in feeding effort or total resource availability (total coral 

cover) toward the deep range peripheries, but availability of the preferred 

resource (Acropora coral) declined. While both fish species selectively 

targeted Acropora, the more specialized species (Chaetodon baronessa) 

exhibited limited feeding plasticity along the depth gradient, and selective 

feeding effort on the preferred resource increased rather than decreased 

with depth, being 40 times more than expected at their range periphery. In 

contrast, the generalist’s diet (C. octofasciatus) varied greatly with depth-

related changes in prey composition. Unexpectedly, the nutritional content 

of Acropora did not decline with depth, with shifts in 13C and 15N indicating 

energy offsets from increased coral heterotrophy in deeper water. Mixed 

modelling revealed a parallel 20% increase in plankton-sourced carbon in 

the muscle tissue of deep-resident fish. My results indicate that deep ranges 

in coral-obligate reef fishes, a prerequisite for deep refuge from shallow-

water coral-loss, are supported by multiple mechanisms of dietary 

versatility, but for specialist species this versatility may be at the resource 

level (corals), rather than among the consumers. For species vulnerable to 

increasing anthropogenic impacts at range cores, variable and multi-trophic 

functional responses can act to buffer costs and bolster refuge potentials 

associated with dwelling at range peripheries (here, deep habitats), even 

among taxa with differential functional strategies. 



 

 

Introduction: 
Asymmetric habitat declines and range shifts related to rapid 

environmental change are likely to result in an increasingly larger proportion 

of species’ populations living at current range margins (Cartwright et al. 

2004, Thomas et al. 2004, Harris and Pimm 2008, Angert et al. 2011). As 

environments change, species with viable populations at range margins 

may show greater resilience, recovery, and long-term persistence potentials 

(i.e. a refuge effect) (Keppel et al. 2012, Reside et al. 2014). However, range 

peripheries are commonly associated with natural reductions in the quantity 

and or quality of resources (Brown 1984, Thomas and Kunin 1999) that 

often result in costs to consumers (Zammuto and Millar 1985, Badyaev and 

Ghalambor 2001, Mysterud et al. 2001). Understanding potential trade-offs 

and compensatory mechanisms of energy acquisition at range peripheries, 

therefore, will be vital to predicting future trajectories for many species 

vulnerable to extirpation and extinction.  

For energy maximizing species, the ability to persist in marginal 

habitats, such as range peripheries, is likely to be reliant on flexibility in diets 

or feeding rates (Flesch and Steidl 2010, Yeager et al. 2014). Consequently, 

shifts in resource availability in response to disturbances and environmental 

gradients, tend to result in shifts in consumer communities that favour 

resource generalists over specialists (Clavel et al. 2011). For example, 

forest cover reduction in the Brazilian Atlantic Forest has resulted in much 

greater losses among specialist forest insectivore and fruigivore birds than 

habitat and diet generalists (Morante-Filho et al. 2015),  and high elevation 

habitats are dominated by dietary generalists among wood-boring beetles, 

pollinator bees, and butterflies (Pellissier et al. 2012, Rasmann et al. 2014). 

Where disturbance gradients run parallel to resource production gradients 

and overlap the core ranges of consumers, individuals and populations at 

range peripheries may occupy more stable but less productive habitats 

(Thomas et al. 2004). Comparisons of dietary strategies and trade-offs at 

range peripheries among species with differential specialization is, 

therefore, a promising way of studying the ecological mechanisms that drive 

broad distributions and therefore refuge potential at range margins.  
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Natural environmental gradients provide powerful systems for testing 

hypotheses regarding the role of functional strategies in coping with 

environmental variation at range peripheries (Keppel et al. 2012, 

MacDonald et al. 2016). Species may have to develop response strategies 

to overcome two types of resource declines at these margins. First, 

increased patchiness, decreased resource densities, or resource turnover 

toward range peripheries may result in fewer preferred resources (Thomas 

and Kunin 1999). Secondly, even where preferred resources are available 

at range margins (e.g. in patches), declines in environmental nutrients or 

energy availability may result in lower productivity in food resources that 

confer less energy per unit effort to consumers. In either case, versatile 

generalists often exhibit flexible phenotypic responses to prevailing 

environmental conditions or resource declines in suboptimal and variable 

conditions (Kassen 2002) whereas specialists may be maladapted to new 

resource bases (Sol et al. 2002). Therefore, where distribution, productivity 

and disturbance gradients all run parallel, specialists will be vulnerable to 

population declines or extinction due to the dual pressures of habitat 

disturbance at the range core and resource limitation at the range periphery, 

resulting in specialist populations showing lower resilience and recovery 

potential (Deutsch et al. 2008, Williams et al. 2008, Moritz and Agudo 2013).  

However, functional strategies observed at the range core do not 

always hold at range peripheries (Cordell et al. 1998, McGill et al. 2006, 

Albert et al. 2010, Chevin and Lande 2011). Therefore, species showing 

specialist diets in the range core may have more flexible diets, or utilize 

compensatory mechanisms, at the range periphery. Changes in dietary 

specialization across a species range may result in species possessing 

greater resilience and post-disturbance recovery potential than predicted 

from observations of behaviour at the range core (Kawecki 2008). However, 

investigations of compensatory dietary strategies at range peripheries are 

rare, particularly among specialized taxa considered vulnerable to habitat 

degradation. 

 



 

 

Coral reefs offer an ideal system for assessing ecological changes 

along environmental and resource gradients. Steep gradients in light 

energy, decreased photosynthetic ability, and rapid turnover in the 

composition of coral communities with depth are likely to result in declines 

in the quantity and quality of resources available to coral consumers 

(Crossland et al. 1980, Crossland 1987, Anthony et al. 2002, Einbinder et 

al. 2009, Roberts et al. 2015). Moreover, although coral reefs are 

increasingly affected by anthropogenic climate change (Bellwood et al. 

2004, Hughes et al. 2018), many stressors attenuate with depth (e.g. 

(Marshall and Baird 2000, Bridge et al. 2016, Muir et al. 2017)).  

Butterflyfishes, one of the most abundant coral reef fish families, offer an 

ideal model group to assess dietary variation and plasticity responses to 

environmental and resource gradients among contrasting functional 

strategies (Nowicki et al. 2013). Butterflyfish occupy a broad spectrum of 

dietary specialization on corals and their feeding bouts are conspicuous, so 

it is possible to record proportional feeding effort on different resource types 

at the core and periphery of their ranges (Cole and Pratchett 2013, Pratchett 

2013). More specialized coral feeders also have stronger asymmetrical 

distribution biases toward shallow water than generalists (MacDonald et al. 

2016, Chapter 2, Chapter 3) and are known to be vulnerable to population 

declines due to coral loss (Pratchett et al. 2006, Wilson et al. 2006). 

Therefore, specialist corallivorous butterflyfishes are both vulnerable to 

anthropogenic coral loss, and gradients in their species distribution, 

environmental productivity, and disturbance exposure are likely to decline 

in parallel along a depth gradient. Recent studies have shown that even the 

most specialized corallivore butterflyfishes can occur over broader depth 

ranges than previously thought, occurring to at least 40 m depth (Chapter 

2). Consequently, dietary flexibility along a depth gradient may facilitate the 

persistence of refuge populations in deep water following disturbance, 

thereby mediating local extinction. However, it is unknown whether the 

dietary strategies of coral-obligate fish observed in shallow waters are 

maintained along the extensive depth gradients most likely to confer 

increased resilience. 
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Here, I examine whether flexible diets or feeding rates along a depth 

gradient could drive broad depth distributions, and therefore increased 

resilience potential, for two obligate coral feeders with common deep depth 

ranges but divergent dietary and depth specialization. I examine two 

obligate corallivore species with contrasting ecological niches and dietary 

breadths: a coral-resource specialist with a shallow-biased depth 

distribution (shallow-specialist, Chaetodon baronessa), and a coral-

resource generalist with a depth-generalist distribution (deep-generalist, C. 

octofasciatus). Specifically I investigated whether: 1) Depth patterns occur 

in overall resource quantity and feeding effort, 2) Changing resource 

composition along the depth gradient results in dietary flexibility, 3) A 

reduction of feeding effort, on and selectivity for, preferred resources occurs 

at depth, and 4) compensatory mechanisms of energy provision in corals, 

and energy acquisition in their consumers may occur at the deep range 

periphery. 

Methods: 

Study site and species 
The study took place in Kimbe Bay, Papua New Guinea between May 

and December, 2015.  The vertically continuous coral habitats along the 

entire depth gradient of the reefs in the region present no physical barriers 

to species distributions. I examined two butterflyfish species, C. baronessa 

and C. octofasciatus, both of which are obligate coral-feeders but with 

differing levels of dietary specialization (Pratchett 2013, Madduppa et al. 

2014). While both species occur across a relatively broad depth range of 

>30 m, individuals from both species maintain territories with discrete and 

relatively narrow depth ranges (mean depth range of both species ~7 (± 0.5 

SE) m: Chapter 4), enabling examination of variation in dietary and feeding 

ecology among depths. The feeding ecology of the two species is well-

documented in shallow water: (Pratchett 2013, Madduppa et al. 2014) C. 

baronessa, a dietary specialist, strongly selects corals of the genus 

Acropora. In contrast, C. octofasciatus feeds on a much broader range of 

other coral taxa (Ghaffar et al. 2006), but does also selectively feed on 



 

 

Acropora (Madduppa et al. 2014). The abundance of both species also 

varies along the depth gradient (Chapter 3): C. baronessa is most abundant 

in shallow water (< 5 m) and declines with increasing depth, while C. 

octofasciatus is least abundant in water < 5m, and most abundant at 25 m. 

Data collection 

Depth patterns in overall resource quantity and feeding effort 
To examine broad-scale spatial patterns in potential coral prey across 

Kimbe Bay, I quantified the abundance of all hard corals and of the preferred 

genus Acropora (as % cover) from photo-quadrats at 5 depths (<1 m, 5 m, 

10 m, 20 m, and 30 m) on 10 reefs across Kimbe Bay (see Chapter 2 for 

complete methods). In order to quantify overall feeding effort, I recorded bite 

rates of individuals from both fish species pooled across all hard coral types 

on 6 reefs (Vanessa’s, South Ema, and Otto reefs, Christine’s reef, Kimbe 

Island, and Tuare Island; C. baronessa total n = 344, C. octofasciatus total 

n = 107). ‘Feeding Observations Protocol’ - Focal fish were followed for 3 

minutes at a distance of ~ 2-3 m by scuba divers, and the total number of 

bites, the coral genus targeted by each bite and the minimum and maximum 

depth of the observation period were recorded. Some feeding obervations 

were replicated among identified fish pairs. Most of these replicate 

observations were non-sequential in time and possible pseudo-replication 

among this subset of observations was accounted for in formal analyses, as 

outlined in the Data analysis section below.  

Depth related variation in resource composition and feeding flexibility 
In order to assess variation in resource composition along the depth 

gradient I recorded the availability of 9 key targeted-coral-prey taxa 

(reviewed in (Pratchett 2013); Acropora, Galaxia, Fungia, Pavona, 

Montipora, Porites, Pocillopora, Echinopora, and Platygyra) from 90 - 120 

replicate photo-quadrats in each of 6 depth bins  at 0-5 m, 5-10 m, 10-15 m, 

15-20 m, 20-25 m and 25-30 m on one reef (Christine's Reef). I used Coral 

Point Count with Excel extensions (Kohler and Gill 2006) to record the 

benthic component under each of six random points within each quadrat, (≥ 
min 540 points per depth). In order to assess feeding variation along the 

depth gradient I used the same ‘Feeding Observations Protocol’ above to 
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record the proportion of bites taken from each of 37 coral genera (See 

supplemental table 1) at random depths on Christine’s reef, Kimbe Island, 

and Tuare Island (C. baronessa n = 276, C. octofasciatus n = 90).  

The level of selective feeding effort on the 9 key coral prey genera by 

both species was calculated across all depths and within each 5m depth bin 

depth on the focal reef. I used Manly resource selection ratios (Manly et al. 

2002), calculated using the formula: 

 
ŵi = oi / ai 

 
where ŵi is the resource selection ratio for coral prey genera i, oi is the 

proportion of prey genera i used, and ai is the proportion of prey genera i 

available. Selection indices above 1.0 indicate preference; values less than 

1.0 indicate avoidance. Selectivity was confirmed by comparing observed 

and expected bite frequencies on each prey genera, for each fish species 

and depth combination, using chi-squared tests.  

Feeding observations 
I recorded the bite rates of individuals from both fish species on 37 

coral genera (See supplemental table 4.1) at random positions along the 

depth gradient on three reefs (Christine’s reef, Kimbe Island, and Tuare 

Island) (C. baronessa n = 276, C. octofasciatus n = 90). I also made 

additional counts of non-genus specific bite rates (ie. Total bites pooled 

across all hard coral types) on 6 reefs (those above, and Vanessa’s, South 

Ema, and Otto reefs) (C. baronessa total n = 344, C. octofasciatus total n = 

107). Individual fishes were followed for 3 minutes at a distance of ~ 2-3 m 

by scuba divers, and the total number of bites, the coral genus targeted by 

each bite and the minimum and maximum depth of the observation period 

were recorded. Observations were abandoned if the focal fishes showed 

signs of distress due to diver presence (i.e. erratic burst swimming or 

defensive displays). Some feeding observations were replicated among 

identified fish pairs. Most of these replicate observations were non-

sequential in time and possible pseudo-replication among this subset of 



 

 

observations was accounted for in formal analyses, see below. All other 

replicate observations were independent. 

Trophic carbon pathways of corals and fish 
Potential depth related shifts in the trophic position and carbon 

pathways supporting coral prey were analyzed using bulk stable isotope 

analysis (SIAB) of tissue samples from 6 shallow (0 - 5 m) and 4 deep (30  - 

40 m) Acropora colonies. Decalcified, dried, and homogenized non-lipid 

extracted samples were combusted and analyzed for 13C and 15N isotope 

values on a Costech elemental analyzer coupled to a ThermoFinnigan 

Delta-V gas source isotope-ratio-monitoring mass spectrometer (EA-IRMS) 

at the Advanced Analytical Centre, James Cook University, Australia. Stable 

isotope results are reported using standard delta () notation in parts per 

thousand (‰) relative to standards Vienna Pee Dee Belemnite for carbon 

and atmospheric N2 for nitrogen. Reproducibility of lab standards was ± 0.1 

‰ and ± 0.2 ‰ for 13C and 15N, respectively.  

To examine the food-web baseline carbon sources supporting corals 

and coral-feeding butterflyfishes, I used a compound-specific isotope 

analysis of amino acids (SIAcs) of Chaetodon baronessa white muscle tissue 

(n = 5 fish per depth) and lipid-extracted coral tissue (n = 6 colonies per 

depth) from shallow (0 - 5 m) and deep reefs (30 - 40 m). Upper and lower 

depth boundaries were determined for all sampled fish during previous 

territorial observations (Chapter 4). Territories of shallow fish were wholly in 

≤ 5 m water depth, deep fish were wholly ≥ 20 m (max = 40 m) depths. The 

total lengths (TL) of fish did not differ between depths (C. baronessa; 

TLshallow = 93.9 mm, TLdeep = 94.6, t = 0.24, df = 7.15, p = 0.82). All fish and 

coral-tissue samples were dried, homogenized, and acid hydrolyzed prior to 

derivatization to trifluoroacetyl/isopropyl esters as detailed in McMahon et 

al. (2018). Derivatized amino acids were analyzed on a Thermo Trace Ultra 

gas chromatograph coupled to a Finnegan MAT DeltaPlus XL EA-IRMS at 

the University of California, Santa Cruz. Standardization of runs was 

achieved using intermittent pulses of a CO2 reference gas of known isotopic 

value and internal nor-Leucine standards. All SIAcs samples were analyzed 

in triplicate along with amino acids standards of known isotopic composition 
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(Sigma-Aldrich Co.). The estimate of full protocol reproducibility was  

0.7‰.  

Data Analysis 
All analyses were undertaken in R (R Core Team 2016), unless 

otherwise specified. Acceptable dispersion parameters and homogeneity of 

variance in residuals were met for each model presented. All reported 

models were also tested against potential candidate models with other 

transformations or distributions where appropriate, using the Akaike 

information criterion with corrections for small sample sizes (AICc) in the 

MuMIn package (Barton 2016). In all cases, the presented model had the 

lowest AICc score (≥ 2 points difference).   

Potential depth related variation in total bite rates within fish species 

was analyzed using negative binomial general linear mixed effect models 

(glmm). Total bites per observation was modelled against the median 

observation depth in lme4 (Bates et al. 2014). Reef and known individual 

fish were included as nested random effects. Depth related variation in the 

mean proportion of bites on key coral prey genera were analysed among 

discrete 5m depth bins (min and max depth of observations completely 

within predetermined 5 m depth bins) for each species using glmms on 

square-root transformed proportional bite data and Gaussian distributions 

(AICc < for binomial models), with individual fish as a random effect. 

Pairwise comparisons of differences between depths were tested using 

Tukey’s adjusted paired t-tests with the glht function in multcomp (Hothorn 

et al. 2017).  

Depth patterns in dietary niche and coral prey composition 
Dietary niche breadth was calculated within each depth bin and across 

all depths for each species using a basic measure of richness (n of genera) 

and a standardized Levins’ index using pop.diet in RInSp (Zaccarelli et al. 

2013). Niche dietary overlap and variance were calculated across all depths 

for each species, and among 5 m depth bins within species, using the 

Pianka-modification of the MacArthur-Levin’s niche overlap index as per 

Krebs (Krebs 1999) in EcoSimR (Gotelli et al. 2015). Niche overlap among 



 

 

depths was calculated on the total number of bites per coral genera within 

each depth bin for each species. 

Depth patterns in the carbon pathways of corals and fish. 

Differences in bulk 13C and 15N values in between shallow and deep 

coral colonies were tested using Welch’s t-tests. To quantify the relative 

contribution of carbon sources to shallow and deep populations of the 

dietary specialist butterflyfish Chaetodon baronessa, I used an amino acid 

carbon isotope fingerprinting approach within a fully Bayesian mixing model 

(sensu (Ward et al. 2010). I used 13C values from five essential amino acids 

(threonine, isoleucine, valine, phenylalanine, and leucine), to identify unique 

isotopic signatures for three potentially important source end-members to 

fish diets; (i) local shallow and deep-resident Acropora coral colonies, (ii) 

water column phytoplankton, (iii) microbially reprocessed detritus 

(McMahon et al. 2016) (Supplemental Table X). Separate mixing models 

were used for shallow and deep butterflyfishes via the siarsolomcmcv4 

function within SIAR (Parnell et al. 2010) (mean model variance = 7  4%). 

To facilitate comparisons of amino acid “fingerprints” across systems and 

environmental conditions, all essential amino acid 13C values were 

normalized to the mean values within each individual (sensu (Larsen et al. 

2013); see supplemental material). I used a small non-zero trophic 

discrimination factor (minimal trophic fractionation) of 0.1  0.1‰ (McMahon 

et al. 2010). I tested for statistical significance in depth related differences 

in proportional carbon-source contributions in fish samples using a glmm of 

a randomized dataset comprised of 1000 values for each individual based 

on means and standard deviations produced by SIAR results, and with 

individual fish used as random variable. 
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Results: 

Depth patterns in overall resource quantity and feeding effort 
Availability of the highly preferred dietary coral genus Acropora 

declined with depth throughout Kimbe Bay, more than halving between the 

shallowest 5 m (17.0 ± 1.9 SE %) and 30 m (8.3 ± 1.8 %) (z = -3.25, p = 

0.006) (Fig. 5.1a). Despite these Acropora declines, the availability of all 

potential coral food sources to coral-feeding fishes (total hard coral cover) 

was relatively high at all depths throughout the bay (F1,3 = 2.74, p = 0.20), 

and ranged from 49 - 62 % mean cover (Fig. 5.1a). Correspondingly, overall 

feeding rates on all hard coral types did not decline with depth in either fish 

species. (C. baronessa, z = 0.64, p = 0.52; C. octofasciatus, z = 1.15, p = 

0.25) (Fig. 5.1 b,c). 

Depth related variation in resource composition and feeding flexibility  

Changes in available coral resource types 
Total hard coral cover on the focal reef used for the detailed feeding 

ecology component of this study was high throughout the gradient, but 

increased from 54.9 (± 2.1) % at 0 - 5 m to a peak of 72.5 (± 2.4) % at 10 – 

15 m (t = 4.84, p < 0.001), before declining to a low of 39.3 (± 2.6) % at 25-

30 m (t = -7.58, p < 0.001) (Fig. 5.2a). Acropora cover (Fig. 5.2b) declined 

monotonically (F5,674  = 10.91, p < 0.001), decreasing four fold from 22.3 (± 

2.0) % at 0 - 5 m to 5.3 (± 1.5) % at 25 – 30m (t = -6.35, p < 0.001) (Fig. 

5.2a). The distribution of other highly targeted coral genera also varied with 

depth (Fig. 5.2a). The cover of Porites corals closely followed that of total 

hard corals and doubled from 14.6 (± 1.3) % cover at 0 - 5 m to 30.8 (± 2.6) 

% at 10 – 15 m (t = 5.97, p < 0.001), then declined by a third to a low of 10.5 

(± 1.1) % at 25 – 30 m (t = -6.25, p < 0.001). The cover of Montipora was 

much lower than Porites and Acropora and peaked at 10 m (10.0 ± 0.6 %), 

where it was approximately three times higher than at other depths (2.6 – 

3.4 %; all comparisons p < 0.01). Cover of Echinopora corals was 

comparatively low overall and was lower at 0 - 5 m (0.7 ± 0.3 %) than at all 

other depths (3.2 – 5.6 %; all comparisons p < 0.01) except 10 - 15 m (2.3 

± 0.6 %; t = 2.50, p = 0.13) (Fig. 5.2a).  



 

 

 

 

 

Figure 5.1: (a) The mean cover (± 95% CI) of total hard coral and Acropora coral 
resources along a depth gradient from 0 to 30 m in Kimbe Bay, PNG, and; Total 
feeding effort on all corals along the same depth gradient for (b) the ‘shallow-
specialist’ butterflyfish Cheatodon baronessa (grey fish) and (c) the ‘deep-
generalist’ butterflyfish C. octofasciatus (yellow fish). Each data point represents 
the total number of bites observed during a three-minute feeding observation. 
Data points are semi-translucent and darker areas represent overlapping data 
points.  

 

 
 
 
 
 
 
 
 
 
 



 

  103 
 

 

Depth related changes in corallivore diets 
The shallow-specialist, C. baronessa, had a highly specialized overall 

dietary niche breadth, and specialization remained high along the gradient 

(Fig. 5.2 c,e). The overall niche breadth was 0.07, and the species fed on a 

total of 18 coral genera across the depth gradient. Niche overlap among all 

depths was 0.95, and neither niche breadth (F1,4 = 0.467, p = 0.53) nor the 

total number of dietary genera (F1,4 = 0.233, p = 0.65) increased with depth. 

There was a small increasing trend in niche breadth between 5-10 m (0.1) 

and 20-25 m (0.9) (Fig 2e). However, niche breadth was highest in the 

shallowest depth (0.21), where the most dietary genera (15) were also 

utilized. The lowest overlap in the dietary niche of the shallow-specialist 

population was 0.86 and occurred between 0-5 m and 25-30 m depths.   

In contrast, the deep-generalist, C. octofasciatus, had a broad overall 

dietary niche (niche breadth = 0.23, 36 genera), low niche overlap between 

depths (0.36), and an increasing breadth of utilized genera from 7 genera 

at 0-5 m to 25 genera at 25-30 m (F1,4 = 8.41, p = 0.044, R2 = 0.597) (Fig. 

5.2 d,f). The dietary niche realized by the deep-generalist did not broaden 

significantly with increasing depth (F1,4 = 1.41, p = 0.30, R2 = 0.597). Instead, 

a general increase occurred between 5 m (0.12) and 30 m (0.26) but was 

punctuated by 65 - 75 % decrease in niche at 15 - 20 m (0.07) compared to 

other depths (Fig. 5.2f). There was high variation in dietary overlap between 

depths for the deep generalist (0.229 – 0.895), though there was no clear 

depth related patterns in this variation.  

 

 



 

 

 

Figure 5.2: Depth-related variation in resource availability (a), and diet (c-f) and 
selectivity (g, h) of a shallow-specialist (grey fish) and deep-generalist (yellow 
fish) corallivore, along a coral reef depth gradient. (a) The percent cover of 
primary coral genera within each 5 m depth-bin on the focal reef (total bar height 
= total cover). (b) A stand of Acropora colonies, the preferred dietary coral of 
many butterflyfish species including Chaetodon baronessa. (c & d) The 
proportional number of bites on primary dietary coral genera. (e & f) The breadth 
of dietary niche. (g & h) Dietary selection for the preferred coral genus Acropora. 
Dotted lines in e & h indicate overall metrics across all depths. In g & h, values < 
1 (greyed-out area) indicate avoidance of Acropora, and values > 1 indicate 
positive selection for the genus. Photo credit: C. MacDonald. 
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Depth related variation in the utilization and selectivity of preferred 
resources  

Proportional foraging on the preferred coral resource, Acropora, was 

higher overall than on any other coral genus for both fish species and did 

not decrease uniformly with depth among either species (Fig. 5.2 c,d). 

However, some non-linear differences among depths were evident. C. 

baronessa fed predominantly on Acropora within each depth (75 % of all 

bites) (Fig. 5.2c, Supplemental figure 1), but utilized the genus 

approximately 1.5 - 2 time less in the shallowest depth  (0 - 5 m, ~ 45% of 

bites) compared to deeper depths (all comparisons, p < 0.05), with no 

significant difference among depths deeper than 5 m (all comparisons, p > 

0.10). C. octofasciatus took less than half as many bites from Acropora 

overall (31 % of all bites) and fed on Acropora more than any other coral 

genera at depths deeper than 15 m (Fig. 5.2 d, Supplemental figure 1).  This 

species did not feed on Acropora at 0 - 5 m and took a higher proportion of 

bites on Acropora at 15 - 20 m (55 %) than at 5 - 10 m (z = -2.90, p = 0.039), 

but not at other depths (all comparisons, p > 0.10).  

Overall, both fish species fed on Acropora colonies more than 

expected given Acropora availability (Table 5.1, Fig. 5.2 g,h). However, the 

level of selective feeding increased, rather than decreased with depth in 

both species. The strength of C. baronessa’s selection for Acropora 

increased linearly between 0 - 5 m (selectivity ratio = 2.77) and 20 - 25 m 

(selectivity ratio = 8.48) (F1,3 = 12.79, p = 0.034, R2 = 0.75), then more than 

quadrupled between 20 - 25 m and 25 - 30 m, where the proportion of bites 

targeting Acropora was 43 times more than its proportional cover (selectivity 

ratio; 43.3) (Fig. 5.2g, Table 5.1). The level of selective feeding on Acropora 

by C. octofasciatus also increased linearly with depth (F1,4 = 24.72, p = 

0.007, R2 = 0.83). However, the species avoided feeding on Acropora 

colonies between 0 - 10 m, fed on them in proportion to availability at 10 - 

15 m, and selectively fed on them at depths deeper than 15m (all depths; p 

< 0.001) (Fig. 5.2h).  



 

 

 

Compensatory mechanisms of energy acquisition  
There was no evidence to support decreased energy availability in the 

tissue of deep-reef corals. However, there were indications of compensatory 

energy acquisition in deep Acropora corals and in the deep residents of the 

shallow-specialist corallivore (Fig. 3). The total lipid content (energy 

availability) in Acropora coral tissue was not related to depth (z = -0.42, p = 

0.67) (Fig. 5.3a). Tissue from deep-reef Acropora colonies had lower bulk 

13C values than shallow-reef Acropora (t = 10.16, p = 0.001) (Fig. 5.3b), as 

did the compound specific 13C of essential Amino Acids within Acropora 

tissues (Fig. 5.3c). Taken together, the SIAb and SIAcs results strongly 

suggest altered carbon pathways occurred in deep-reef Acroporas. 

Corresponding increases in bulk 15N values with depth (t = -12.52, p < 

0.001) also indicated a higher coral trophic position at deeper depths (Fig 

3b).  

Compound specific 13C of essential Amino Acids within C. baronessa 

muscle tissue were also lower among deep-reef residents (Fig 3c). Mixed-

modelling of SIAcs carbon contributions to C. baronessa muscle tissue 

further supported differentiation in the dietary carbon pathways of shallow-

reef and deep-reef butterflyfish populations (Fig 3d). As expected, coral was 

the dominant carbon source supporting C. baronessa overall (79  13%). 

However, the relative contribution of coral-sourced carbon to the food web 

supporting C. baronessa decreased between the shallow-reef and deep-

reef (Deep 90  2% (SD); Shallow: 67  5%). In contrast, the corresponding 

contribution of water column-derived planktonic carbon increased 

substantially among deep-resident fish (Deep: 27  4%; Shallow: 7  2%) 

(Fig. 5.3d).  
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Figure 5.3: (a) The proportional lipid content of Acropora tissue along a depth 
gradient from 0 – 40 m. (b) Differences in isotopic space between shallow (grey) 
and deep (black) Acropora corals. (c) Altered carbon pathway signals in the 
essential amino acids of Acropora colonies (dots) and Chaetodon baronessa 
individuals (diamonds) on the deep reef. Note the greater change among the 
later. (d) Relative contribution of local coral, water column-derived plankton, and 
microbially reprocessed detritus to Chaetodon baronessa residents in shallow-
reef (0 – 5 m) and deep-reef (20 – 40 m) depths. In d, each bar represents an 
individual fish. 

 

 

 

 

 



 

 

 

Table 5.1: Dietary niche breadth and overlap between 5 m depth bins for two 
Chaetodon species between 0 m and 30 m. (0 = no dietary overlap, 1 = full 
dietary overlap. 

 

 

Discussion 
Specialist resource strategies are characterized by the targeting of a 

limited set of resources that are expertly exploited (Clavel et al. 2011). 

However, this strategy produces trade-offs in habitat utilization along spatial 

and temporal changes in resource quality (Caley and Munday 2003) that 

frequently result in attrition (Wilson et al. 2006) and occasionally extirpation 

(Munday 2004). Specialist species with distributions that overlap 

disturbance exposure, such coral-resource specialists on shallow-water 

coral reefs, are particularly vulnerable to anthropogenic forcing of climate 

changes and habitat losses (Wilson et al. 2006, Graham et al. 2011). While 

range peripheries are theoretically well positioned as potential refuges in 

some systems, the costs associated with resource turnover and declining 

resource quantity and quality along production gradients are expected to 

limit this potential for resource specialists, but not as strongly for generalists. 

I hypothesized that there would be reductions in the availability and nutritive 

quality of preferred corals, so individuals could only persist in deeper water 

if they had flexible diets or feeding rates. Conversely, my results 

demonstrate that contrasting ‘specialist’ and ‘generalist’ feeding strategies, 

 Sp. Depth (m) No.  
obs 

No.  
bites Niche overlap Prey selectivity ratios and evidence for selection 

 Acro. p Mont. p Porit. p Echin. p 
   All 0-5 5-10 10-15 15-20 20-25         

                  

  All depths 159 3309 0.952      5.13 *** 0.55 *** 0.14 *** 0.78 * 

 

C
. 

b
a

ro
n

es
sa

 

0-5 48 946 - 1     2.77 *** 0.77 NS 0.70 *** 3.50 *** 
 5-10 10 314 - 0.933 1    6.27 *** 0.11 *** 0.02 *** 0.39 * 
 10-15 18 451 - 0.923 0.992 1   5.83 *** 0.81 NS 0.02 *** 0.74 NS 
 15-20 58 1101 - 0.925 0.996 0.991 1  6.60 *** 0.45 *** 0.01 *** 0.56 *** 
 20-25 11 368 - 0.925 0.996 0.988 0.998 1 8.48 *** 2.00 NS 0.34 *** 0.73 NS 
 25-30 14 129 - 0.860 0.928 0.940 0.925 0.947 43.3 *** 2.62 *** 0.06 *** 0.40 ** 

                   

 

C
. 

o
ct

o
fa

sc
ia

tu
s 

 

                  

All depths 79 2395 0.360      1.96 *** 2.97 *** 0.42 *** 1.08 NS  

0-5 3 63 - 1     0.00 *** 13.63 *** 1.95 NS 7.27 NS 
 5-10 11 151 - 0.726 1    0.29 *** 2.22 *** 0.17 *** 0.90 NS 
 10-15 13 272 - 0.804 0.841 1   1.02 NS 10.69 *** 0.31 *** 1.43 NS 
 15-20 18 768 - 0.229 0.278 0.568 1  4.43 *** 3.31 *** 0.27 *** 0.57 NS 

 20-25 13 417 - 0.376 0.332 0.567 0.893 1 5.46 *** 1.59 NS 0.62 ** 0.95 NS 
 25-30 21 724 - 0.468 0.438 0.597 0.728 0.895 11.5 ***  ** 1.15 NS 0.50 ** 

  Obs = observation, Acro. = Acropora, Mont. = Montipora, Porit. = Porites, Echin. = Echinopora. NS = Non-significant. 
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as well as compensatory energy acquisition by deep-reef corals and fish 

supported broad depth distributions of coral-obligate butterflyfish species. 

Here I show that both generalist and specialist dietary strategies can 

facilitate broad ranges within a single feeding guild of coral feeding 

butterflyfishes that is considered among the most reef-fish most vulnerable 

groups to extinction (Graham et al. 2011). Therefore, the costs of deep-reef 

residence may not be as high among this group as previously thought.  

The dietary strategies employed by C. octofasciatus and C. baronessa 

in shallow water largely translated along the depth gradient. The specialist 

remained specialized, while the generalist became more generalist with 

depth. Surprisingly the relative feeding effort (selectivity) targeted toward 

Acropora increased with depth for both species. For the specialist species, 

this is likely related to a continued reliance on the prey genus, yet for the 

generalist species, this may be related to competitor relief at deeper depths 

as the dominant specialist C. baronessa (Blowes et al. 2013) declines 

substantially in abundance along the depth gradient (Chapter 3). While such 

a study has not previously been undertaken for coral reef fishes, the 

generality of these results is supported by similar patterns along 

environmental and resource gradients demonstrated separately in other 

taxon groups. For example, the generalist strategy is apparent in the dietary 

niche of the Eurasian Otter, which increases with both increasing latitude 

(Clavero et al. 2003) and altitude (Remonti et al. 2009). Similarly, the 

increased magnitude of resource selectivity where availability of selected 

resources is low also occurs among Ferruginous Pygmy‐Owls along 

elevational gradients (Flesch and Steidl 2010).  

Our results here also suggest similar depth related patterns may occur 

among dietary and microhabitat resource use strategies among coral reef 

fishes. Microhabitat versatility and selectivity among strongly coral-

associated, but planktivorous, reef fishes also increase with depth more 

among species that are habitat generalists in shallow-water, than with 

specialists (MacDonald et al. 2018). Further, selectivity for spatially complex 

coral habitats increases with depth among both habitat generalist and 

specialist species (Jankowski et al. 2015, MacDonald et al. 2018).  



 

 

The lack of lipid decline in prey corals was surprising as experimental 

shading has previously resulted in between 30% and 90% reductions in lipid 

storage (Anthony and Fabricius 2000). However, in that study lipid declines 

were lowest for species demonstrating high rates of heterotrophic feeding 

under shaded conditions. Based on the enhanced signal of coral 

heterotrophy with depth here, I propose that compensatory coral 

heterotrophy with depth is the mechanism also offsetting lipid stores and, 

therefore, indirectly supplementing energy availability to deep coral 

consumers.  

Our study supports previous observations of increased heterotrophic 

feeding effort in photosynthetic corals at depth but represents the first 

evidence of increased metabolic uptake of heterotrophic energy sources at 

depth, that I am aware of. Previous investigations of coral stable isotopes 

along depth gradients found decreased bulk 13C values at depth, 

comparable with the shallow and deep 13C values in my study (Alamaru et 

al. 2009, Einbinder et al. 2009). However those studies either did not find a 

‘trophic enrichment’ signal in 15N (Alamaru et al. 2009), or did not measure 

15N at all (Einbinder et al. 2009). Controlled feeding experiments have 

demonstrated some increased feeding effort on plankton under greater 

depth conditions at higher than ambient plankton concentrations, though, 

responses varied between geographic locations and were not conclusive 

(Palardy et al. 2005, Palardy et al. 2008) 

I have previously demonstrated that neither body condition nor 

reproductive potential declines with depth in either of my focal study species 

(Chapter 4). Taken together with the results here, these surprising findings 

suggest increased coral heterotrophy and/or substitute feeding on plankton 

may buffer individual fish from depth related declines in the availability of 

preferred corals, and may constitute an argument for investigating 

significantly altered energy pathways on deep reefs (Bradley et al. 2015). I 

argue that the broad depth range of these species is explained by a 

combination of more intensified feeding on less available preferred corals 

(specialist strategy), diet flexibility (generalist strategy), and a potential 

ability to exploit non-coral sources of nutrition. On the other hand, depth-

related dietary versatility in prey corals, rather than in their consumers may 
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be key to extending deep limits of depth ranges for reef fish with specialist 

coral resource strategies. These interconnected mechanisms of dietary 

versatility along a depth gradient indicate depth may be a viable refuge for 

many coral-obligate reefs fishes provided anthropogenic disturbances 

attenuate significantly with depth. 

Overall, the increasing vulnerability of taxa to anthropogenic impacts 

at range cores and consequential range displacements, particularly among 

resource specialists, has increased the necessity to assess potential spatial 

refuges, many of which will occur at current range margins (Keppel et al. 

2012).  My data show variable and multi-trophic functional responses can 

act to buffer costs and bolster refuge potentials associated with dwelling at 

range peripheries (here, deep reef habitats), even among taxa with 

contrasting functional strategies. 

 



 

 

Chapter 6 - EVALUATION OF A DEPTH REFUGE FOR A 
CORAL REEF FISH: AN OBSERVATIONAL 
AND EXPERIMENTAL APPROACH 

 

Abstract 
 

Increasing coral losses on a global scale represent a great threat to 

highly specialized coral-obligate reef fishes. Deeper reef habitats have been 

hypothesized to be potential refuges from shallow disturbances.  However, 

the susceptibility of deep populations to coral losses and the capacity of 

individuals to migrate downslope to exploit less susceptible habitats has 

rarely been tested. Here, I used a shallow water outbreak of the coral-

feeding seastar Acanthaster planci and a deep water butterflyfish removal 

experiment to evaluate differential impacts on shallow and deep populations 

of the coral-obligate reef fish Chaetodon baronessa, and their ability to 

move to deeper locations. C. baronessa declined by an order of magnitude 

in shallow water (<10m) following a 75% decline in their preferred food 

corals (genus Acropora) between 2013 and 2015. However, neither 

Acropora corals nor C. baronessa declined at depths of 15-20m, or 25-30m 

over the same period and post-disturbance Acropora and fish densities 

were higher at these deeper depths than in shallow water. Further, a tagging 

and competitor removal experiment demonstrated that adult individuals can 

migrate to healthier coral habitats in deeper waters when shallow water 

resources decline. C. baronessa may be pre-disposed to this potential to 

‘migrate to refuge’ because of individual ontogenetic migrations; recruits 

and juveniles here preferentially occupied shallow-water habitats (<10m), 

but adults can occupy depths ≥ 40 m. Our data support that hypothesis that 

deeper-reef habitats can provide a local-scale spatial refuge for coral-

obligate reef fishes when coral losses are asymmetric along depth 

gradients.   
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Introduction 
 

Habitat degradation is a major contributor to global biodiversity loss 

(Brooks et al. 2002, Hoekstra et al. 2005), particularly among specialist 

species (Munday 2004, Devictor et al. 2008, Clavel et al. 2011).  Rapid 

environmental change and heightened habitat losses will therefore increase 

the importance of refugia and refuges in maintaining biodiversity (Ashcroft 

2010, Keppel et al. 2012). By definition, refugia maintain species over 

evolutionary timescales (e.g. Tzedakis et al. 2002), while refuges can 

increase resilience and act as important precursors to refugia by buffering 

populations or individuals from habitat losses over smaller spatial and 

temporal scales (Sedell et al. 1990, Lancaster and Belyea 1997, Ashcroft 

2010, Keppel et al. 2012). Refuges can operate in-situ, where spatially 

heterogenous habitat degradation leaves a portion of a population’s habitat 

unaffected, reducing population loss, or ex-situ, where individuals migrate 

away from degraded habitats and colonize empty or underutilised habitats, 

thus mediating species’ extinction risks (Brown and Kodric-Brown 1977, 

Hanski et al. 1997). 

 

Local-scale spatial refuge effects may be likely where disturbances 

operate on individual habitat units or within habitat patches, or where 

disturbances attenuate rapidly along steep environmental gradients. (Chase 

and Leibold 2003). In these cases, if species responses to asymmetric 

habitat losses are not assessed over their entire range, the severity of 

impacts may be unintentionally misrepresented. In addition, where species 

losses and subsequent recovery are recorded in part of a range (Halford et 

al. 2004, Gilmour et al. 2013), individual migration or dispersal in and out of 

patches of localized disturbance may be a key mechanism supporting 

recovery and longer-term persistence (sensu Hanski et al. 1997, Hanski 

1998), particularly in highly connected systems (Thomas and Kunin 1999). 

For species with broadcasting reproductive strategies (e.g. trees with aerial 

seeds or aquatic organisms with pelagic larval phases), resilience against 

spatially restricted habitat degradation may be further enhanced if 



 

 

establishment of propagules and recruits is distributed across ranges 

incorporating both disturbed and undisturbed habitats (Hanski 1998, Nathan 

and Muller-Landau 2000, Jones et al. 2007, Grober-Dunsmore et al. 2009, 

Teller et al. 2015). In contrast resilience may be limited if propagules and 

recruits only arrive on frequently disturbed habitats. Moreover, successful 

settlement of undisturbed habitat patches following migration or dispersal 

may also be mediated by competition and prior occupancy effects (Almany 

2004).  

 

Coral reefs are increasingly degraded by anthropogenic climate 

change, tropical storm events and predation by the coral feeding sea-star, 

Acanthaster planci (Bellwood et al. 2004, McClanahan et al. 2004, De'ath 

et al. 2012, De’ath et al. 2012, Hughes et al. 2018). Up to 75% of coral-reef 

fish species rely on live coral habitats for food, shelter or settlement (Jones 

et al. 2004) and in shallow waters coral-obligate species suffer large 

abundance declines following coral habitat losses (Munday 2004, Jones et 

al. 2004, Pratchett 2006, Wilson et al. 2006). However, highly divergent 

responses often occur at smaller spatial scales (e.g. (Nyström and Folke 

2001, Graham et al. 2015, Roche et al. 2018)) and in some cases localised 

reef-fish declines may be related to individuals moving to unaffected habitat 

patches (Walsh 1983, Letourneur et al. 1993, Coker et al. 2012).  

 

Where disturbance events such as warm-water coral bleaching result 

in broad-scale habitat degradation, horizontal post-settlement movement of 

individual reef fishes may be confined within disturbance boundaries 

(Berkelmans et al. 2004, Pratchett et al. 2008, Hughes et al. 2017). 

However, depth-related attenuation of major coral-habitat degradation 

drivers (within tens of meters of water depth in many cases) (Walsh 1983, 

Hughes et al. 2010, Bridge et al. 2013, Muir et al. 2017, Baird et al. 2018) 

may allow: 1) some deeper-reef fish populations to avoid habitat 

degradation, or 2) some individuals normally resident in shallow-waters to 

migrate downward away from degraded habitats. For example, large storm-

swell events and related habitat degradation can cause individual fishes and 



 

  115 
 

whole assemblages to shift into deeper waters on both temporary and 

longer-term bases (Walsh 1983, Letournier et al. 1993, Aspillaga et al. 

2016). However, the potential for deeper reefs to provide a spatial refuge 

for coral-obligate reef fish populations and the capacity of individual fishes 

to shift downslope in response ongoing habitat degradation have rarely 

been tested.  

 

In this chapter I utilize natural habitat degradation in shallow water and 

a competitor removal experiment on deep reefs to examine whether: 1) 

differential impacts and outcomes occur among shallow and deep 

populations of the highly specialized coral-obligate reef fish Chaetodon 

baronessa, following a localized outbreak of the coral consuming crown-of- 

thorns sea-star Acanthaster planci (COTS), 2) individuals occupying 

degrading shallow-water habitats can migrate downslope to re-establish on 

unaffected habitat patches at deeper depths, and 3) whether this capacity 

is influenced by the presence of conspecifics. I further use observations of 

natural settlement patterns to assess whether 4) C. baronessa’s capacity to 

utilize potential depth refuges is enhanced by a broad depth distribution of 

recently settled juveniles and recruits.  

 

Methods 

Study site and study organism 
The study took place in Kimbe Bay, Papua New Guinea, using the 

coral-obligate fish species Chaetodon baronessa. C. baronessa 

preferentially feeds on Acropora corals, which account for ~75% of their diet 

(Chapter 5). In Kimbe Bay adult C. baronessa distributions are strongly 

skewed toward shallow water (Chapter 3) but deeper-water residents do not 

demonstrate sublethal costs (Chapter 4). In shallow-waters, C. baronessa 

abundances commonly decline in response habitat degradation attributed 

to COTS predation (Emslie et al. 2011), coral bleaching (Pratchett et al. 

2006) and a combination of stressors (Emslie et al. 2011). Up to 80% of 

abundance has been lost in some studies (Pratchett et al. 2006), with 



 

 

extirpation recorded in the shallow waters of one reef (Emslie et al. 2011). 

C. baronessa distributions typically correlate with cover of live coral their 

preferred Acropora prey corals (Pratchett & Berumen 2008). In Kimbe Bay, 

C. baronessa densities broadly correlate with the cover of complex coral 

habitats (Chapter 2).  

Pre- and Post- disturbance depth distributions  
The densities of C. baronessa  were recorded from replicate transects 

at 4 depths between 0 – 10m on Kimbe Island, at 6 depths between 0 – 30 

m in 2013 and again at 8 depths between 0 – 30 m in 2015 (see Table 1 for 

sampling design). The percent cover of Acropora coral colonies was 

recorded at the same depths at all time periods. In shallow water (≤ 10 m), 

cover was recorded from point intercept transects as part of a long-term 

monitoring program, with 50 points recorded per transect. Below 10m, cover 

was recorded from 9 random points from each of 40 replicate photo-

quadrats (~ 1 m2) per depth (10 per transect) using Coral Point Count with 

excel extensions (CPCe) (Kohler and Gill 2006). COTS were also counted 

at 6 depths between 0 – 30 m in 2013 and again at 8 depths between 0 – 

30 m in 2015, as per the sampling for C. baronessa.  

 

 

Table 6.1: Sampling design for depth distributions of COTS, Acropora, and 
Chaetodon baronessa on Kimbe Island. 

 

Depth 
(m) 

  2013 2015 

n 
L*W 
(m) 

n 
L*W 
(m) 

n 
L*W 
(m) 

n 
L*W 
(m) 

0 4 50x4 4 50x4 4 50x4 4 50x4 
2 4 50x4 4 50x4 4 50x4 4 50x4 
6 4 50x4 4 50x4 4 50x4 4 50x4 

10 4 50x4 4 50x4 4 50x4 4 50x4 
15 - - - - - - 4 50x4 
20 - - - - 4 30x4* 4 50x4 
25 - - - - - - 4 50x4 
30 - - - - 3 30x4* 4 50x4 

  *video transect 
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Vertical migration experiment 
The possibility of downward migration of C. baronessa away from 

degrading habitat was tested using a fish tagging and conspecific 

competitor removal experiment on Christine’s reef in Kimbe Bay. As on 

Kimbe Island, high numbers of COTS were predating on the shallow water 

corals of Christine’s reef during the experimental period. The experiment 

consisted of two treatment plots (P1 & P2), and one control plot (C1). All 

plots extended spatially from the edge of the reef flat (< 3 m back from the 

crest and < 1 m water depth) down the reef slope to 30 m depth. Plots were 

~ 50 m wide and were separated horizontally by buffer zones of ~ 15 m – 

30 m. The control plot was separated from the treatment plots by a natural 

sand slope of ~ 15 m width that housed very few corals and no butterflyfish. 

In January 2016, 11 - 12 adult C. baronessa resident in < 5 m water depth 

were tagged within each of the treatment and control plots. The fish were 

tagged with a combination of external T-bar tags (Sensu (Berumen and 

Almany 2009)), and sub-cutaneous elastomer injections. All untagged C. 

baronessa were removed from between 0m and 30m depths in treatment 

plots, as well as in buffer zones between plots. The control plot had no fish 

removed from within the plot and no fish were removed from the inner reef 

flat adjacent to any plot or buffer zone. Plots were re-surveyed at 1 week 

(T1) and 9 months (T2) after initial removal and tagging (i.e. January and 

October 2016). Two divers swam an ascending zig-zag pattern from 30 m 

to 0 m twice at each time period within the experimental plots and buffer 

zones and the depths of all located tagged fish were recorded. The 

proportional cover of total hard corals and Acropora corals were recorded 

in the experimental and control plots at T1 and T2. The benthic component 

under each of 9 random points was counted from within 50 replicate photo-

quadrats (~ 1 m2) per plot in both shallow (< 1 - 5 m) and deep water (15 - 

20 m) in each plot, using CPCe. Benthic data from below 10m in the control 

plot were not retained. However, Acropora cover was as dense, if not 

denser, in this plot compared to the deeper-water areas of the experimental 

plots (Pers. Obs.). The mean depth-range for C. baronessa was determined 

before the removal experiment by recording the minimum and maximum 

depth of 39 territories within the study area, as per methods in Chapter 4. 



 

 

 

Settlement Depth of Recruits and Juveniles 
The settlement depth and settlement habitat of C. baronessa recruits 

(< 3 cm length) and juveniles (3-5 cm length) were surveyed using a zigzag 

search pattern covering all depths from 30 m to 0 m on four reefs. 

 

Analysis 
All models were fit in R and checked for adherence to model 

assumptions, goodness of fit and dispersion rules. Where multiple model 

fits were possible, best-fit models were selected using AICc selection 

criteria. The availability of Acropora colonies and C. baronessa abundance 

were pooled into three depth bins (≤10m, 15-20m, 25-30m). Between-depth 

differences in each group were analyzed within the pre- (2010-2013) and 

post- (2015) disturbance periods. Differences between pre- and post- 

disturbance periods were also analyzed within each depth bin. Changes in 

C. baronessa abundance was analyzed using a Generalized linear model 

with a poisson error family in ‘lme4’ and percent Acropora cover was 

analyzed with a beta-binomial model using ‘glmmADMB’. In order to test 

pairwise between-year differences in C. baronessa abundance and 

Acropora cover I used the ‘glht’ function in the CAR package, with tukey’s 

post hoc adjustments. I tested for reductions in the availability of shallow 

water coral resources between T1 and T2 within each treatment and control 

plot using general linear models on proportional cover data with a 

quasibinomial error family within ‘lme4’ (model: proportional resource cover 

~ time). Differences in coral resource availability between shallow and deep 

water at T2 were tested using the same protocol (model: proportional 

resource cover ~ depth).  
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Results 

Pre- and Post- disturbance depth distributions 
 

COTS density 
Mean COTS densities reached 4 (± 1.14 SE) per 200m-2 (n = 16) in 

the shallow waters (<10m) of the focal reef (Kimbe Island) in 2013 and 

declined to 1.38 (± 0.56) per 200m-2 in 2015 (n = 16), as coral cover 

declined. Only one COT was observed at depths below 10m during the 

study period.  

Acropora cover 
Acropora cover in shallow water (<10m) declined from 5.81% (±1.13% 

SE) in 2013 to 1.38% (±0.51%) in 2015, (p < 0.001). However, there were 

no Acropora declines in deeper waters, at 15-20m (p = 0.60), or at 25-30m 

(p = 0.63). Moreover, Acropora cover in 2015 was higher at depths ≥15 m 

than at ≤10 m (0-10m ~15-20m, p < 0.001; 0-10m ~25-30m, p = 0.044) (Fig. 

6.1a). 

Fish abundance 
The mean abundance of C. baronessa in shallow water (≤10m) on 

Kimbe Island did not vary significantly between 2010 and 2013 (Table 6.2, 

2010 = 0.75 indv.200-2m ± 0.28 SE, 2011= 1.0 ± 0.29, 2013 = 1.25 ± 

0.35), but then decreased by an order of magnitude between 2013, and 

post-disturbance in 2015 (0.125 ± 0.09) (p = 0.003) (Table 6.6.2, Fig. 

6.1b). However, there was no significant change in abundance between 

pre and post disturbance (2013 vs 2015) at either 15-20 m (pre = 1.25 ± 

1.24, post =1.68 ± 0.46) or 25-30 m depths (pre = 0.42, post = 0.875 ± 

0.04, Table 6.2). Post-disturbance abundance of C. baronessa was also 

significantly lower in water ≤10m (0.125 ± 0.09), than at 15-20m (1.675 

indv.200-2 m ± 0.46, p = 0.001) and at 25-30m (0.875 indv.200-2 m ± 0.35, 

p = 0.015), whereas pre-disturbance abundance did not differ significantly 

between depths in the year previous to the disturbance (2013; 0-10m ~ 

15-20m, p = 0. 996; 0-10m ~ 25-30m, p = 0.437).  



 

 

 

Figure 6.1: (a) The Shallow water declines and deeper resilience in (a) the cover 
of Acropora corals and (b) the abundance of Chaetodon baronessa between 
2010 and 2015. Kimbe island, Papua New Guinea. 

 
 
 

Table 6.2: Summary table for between-year comparisons of C. baronessa 
abundances and Acropora cover at Kimbe Island, Papua New Guinea. Bold 
values denote significance, confirmed with non-overlapping 95% CI. 

 

Depth Bin Organism 
Year 

comparison 
Z value Pr(>|z|) 

0-10 m 

C
. b

ar
o

n
es

sa
 2010 - 2011 0.753 0.868 

2010 - 2013 1.399 0.482 

2010 - 2015 -2.346 0.080 

2011 - 2013 0.665 0.904 

2011 - 2015 -2.773 0.026 

2013 - 2015 -3.105 0.009 

A
cr

o
p

o
ra

 

2010 - 2011 1.53 0.368 

2010 - 2013 1.76 0.253 

2010 - 2015 -4.88 <0.001 

2011 - 2013 0.18 0.997 

2011 - 2015 -4.35 <0.001 

2013 - 2015 -4.33 <0.001 

15-20 m 
C. baronessa 2013 - 2015 0.39 0.696 

Acropora 2013 - 2015 -0.58 0.560 

25-30 m 
C. baronessa 2013 - 2015 0.52 0.598 

Acropora 2013 - 2015 0.51 0.610 
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Vertical Migration Experiment 
 

Natural depth range of C. baronessa 
The depth-range of C. baronessa territories varied from 0.3 m to 15 m, 

with a mean of 5.78 (± 0.61 SE) m. The distribution of territory depth-ranges 

was non-normal, however, with the depth-range of many territories being 

less than 5m in breadth (Shapiro-Wilks test: w = 0.91, p = 0.003). Depth 

range of < 5m were almost ubiquitous among shallow water individuals.  

Coral cover 
The cover of all hard corals and of Acropora specifically decreased in 

the shallow waters (> 5m) of all three experimental plots between T1 and 

T2 (Fig. 6.2). Mean total coral cover decreased from 42.04 (± 8.45 95% CI) 

%, to 34.41 (± 5.93) % in P1 (t = 0.146, p = 0.146) (Fig. 6.2a), from 54.69 (± 

7.42) % to 40.35 (± 6.14) % in P2 (t = 2.835, p = 0.006) (Fig 6.2b), and 63.02 

(± 8.38) % to 37.57 (± 7.28) % in C1 (t = 4.256, p <0.001) (Fig. 6.2c). During 

the experimental period the shallow water cover of Acropora corals declined 

by more than half. In P1, Acropora cover declined from 17.60 (± 6.33) % to 

7.95 (± 4. 03) % (t = 2.50, p = 0.014) (Fig. 6.2a), in P2 cover declined from 

24.79 % (± 8.90) to 6.37 (± 3.97) % (t = 3.45, p <0.001) (Fig 6.2b) and in CP 

it also declined from 20.32 (± 8.01) % to 7.28 (± 4.80) % (t = 2.62, p = 0.010) 

(Fig 6.2c). 

 
 

Figure 6.2: Concurrent declines in the mean cover of all hard corals and 
preferred Acropora corals in shallow water between the commencement (T1) and 
conclusion (T2) of the experimental period in experimental plots (a) P1, (b) P2, 
and a control plot (c) C1. Error bars are 95% confidence intervals. 

 



 

 

At the conclusion of the experiment both total coral cover and Acropora 

cover were higher in deeper water (15 – 20 m), than in shallow water (0 – 5 

m) (Fig. 6.3). In deeper water, total coral cover in P1 (67. 10 % ± 6.77) was 

~ 50% greater than in shallow water (t = -6.61, p < 0.001) (Fig. 6.3b) and in 

P2 (62.27 % ± 9.15) was approximately a third higher than in shallow water 

(t = -5.57, p <0.001) (Fig. 6.3b). Final mean Acropora cover in deeper water 

was more than 50 % greater in deeper water than shallow water in both P1 

(t = -3.856, p < 0.001), and P2 (t = -2.00, p = 0.049) (Fig. 6.3).  Mean deeper 

water Acropora cover was 24.21 (± 6.73) % in P1 (Fig. 6.3a) and 14.82 (± 

5.94) % in P2 (Fig. 6.3b). 

 

 
 

Figure 6.3: Increased mean cover of coral types in deep (15-20 m) water 
compared to shallow water (0=5m) at the conclusion of a nine-month 
experimental period in the experimental plots (a) P1, (b) P2. Error bars are 95% 
confidence intervals. 

 
 

Fish Migration 
One week after commencement of the experiment (T1) all tagged fish 

were present in the three experimental plots and one pair from P1 had 

moved from <1 m depth to a large tabular Acropora colony at 18 m (Fig. 

6.4). At T2, the migratory pair in P1 was still present at ~18m and one pair 

from P2 had migrated to a depth of 17-21 m, again to a large tabular 

Acropora colony. No fish from C1 were located below the initial tagging 

depth limit of 5m in any surveys. Retention of tagged fish through untill T2 

was higher in the removal plots (10 fish located in each of P1 and P2) than 

in the control plot (6 fish located).  
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Figure 6.4: Schematic of experimental set-up and results showing evidence of 
downward vertical migration by Chaetodon baronessa in a natural habitat 
degradation and competitor removal experiment. The two replicate treatment 
plots (Plot 1 & Plot 2) had all conspecifics removed from between 5 m and 30m, 
and the one control plot had no competitors removed. Fish with yellow highlights 
indicate tagged fish; 12-13 in each plot. Outlines with ‘?’ indicate tagged fish that 
were not relocated 9 months after the start of the experiment. Cut-outs indicate 
fish that migrated downward to deeper habitats. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Settlement Depth 
 

All C. baronessa recruits (0-3cm) were located on either Acropora 

colonies at depths shallower than 11m (mean = 4.59 ± 0.50 m, n = 23). All 

juveniles (3-5cm) were associated with the same coral habitats and were 

located only in depths shallower than 10m (mean = 4.44 ± 0.62 m, n = 19).  

 
 

 
Figure 6.5: Settlement depth of Chaetodon baronessa recruits and juveniles. 

 

 

Discussion 
 

The cover of Acropora corals and the abundances of C. baronessa 

were stable in the shallow waters around Kimbe island between 2010 and 

2013. In response to the COTs outbreak on Kimbe Island in 2014, high 

losses of shallow water Acropora coral habitats resulted in corresponding 

abundance declines of the obligate corallivore C. baronessa. However, 

neither Acropora nor C. baronessa declined in deeper water between the 

years immediately before (2013) and following (2015) the disturbance. 

Further, post-disturbance densities were higher in deeper waters than in 

shallow water. These results support the hypothesis that vertically 

asymmetric pressures on coral habitats can, in certain situations, result in 

differential outcomes for coral-reef fishes resident at shallow and deep 

depths. In response to a shallow-disturbance and adult-removal experiment 

at Christine’s Reef, a small number of tagged fish migrated from declining 
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coral resources at <5m depth to a greater abundance of Acropora corals at 

~20m. However, this only occurred in experimental plots where deep 

habitats were ecologically released via conspecific removal. Moreover, a 

greater proportion of the tagged shallow-water fish were missing at the 

conclusion of the experiment in the control plot, where deep habitats were 

not released via the removal of conspecifics. Whilst this was only a small-

scale experiment, the results support the potential for individual reef fishes 

inhabiting degraded shallow-water habitats to emigrate downward to 

establish on deeper-reef habitats. It also suggests prior occupancy and 

competition effects may limit this potential for many individuals. Finally, all 

observed sub-adult C. baronessa were located on Acropora colonies in 

depths shallower than 10m. Therefore, the capacity to benefit from potential 

depth refuges may be restricted in some species if the availability of shallow 

settlement habitats are severely reduced and settlement depths are 

inflexible. 

 

Acropora corals are frequently the preferred shelters (Bonin et al. 

2009, Messmer et al. 2011, Boström-Einarsson et al. 2013) and food 

sources (Pratchett 2013, Chapter 5) of strongly coral-associated fishes but 

are also among the most vulnerable to degradation from a range of 

disturbances (Marshall and Baird 2000).  Correspondingly, near collapses 

of coral-obligate populations are not uncommon responses to Acropora 

declines in shallow waters (e.g. Pratchett et al. 2006, Emslie et al. 2011). In 

chapters 2 and 3 I demonstrated that many coral-obligate and coral-

associated species utilize extensive depth-ranges that incorporate deeper 

coral habitats. Here, I show both corals and coral-obligate reef fish can, in 

some circumstances, benefit from a refuge effect on deeper reefs. A number 

of recent studies have demonstrated that coral losses due to coral bleaching 

can also attenuate significantly with depth in multiple regions and across 

multiple taxa (Muir et al. 2017, Baird et al. 2018, Frade et al. 2018). These 

results suggest that assessments of species responses to habitat losses 

may misrepresent total impacts on metapopulations if they do not cover the 

full depth ranges of coral habitats and their fish associates. Though 



 

 

significant spatial variability occurs among reef-habitat degradation events 

and this may not always hold true and further, more comprehensive, 

assessments will be required to confirm the validity of these results across 

different disturbance events, reef systems and reef-fish species.  

Even severe degradation of shallow-water coral-reef habitats has, in 

some cases, given way to impressive recovery trajectories at some time 

after disturbance events (Halford et al. 2004, Gilmour et al. 2013, Graham 

et al. 2015), though not always (Norström et al. 2009). Recolonization and 

depth effects have been implicated as drivers in some recovery trajectories 

(Walsh 1983, Gilmour et al. 2013, Graham et al. 2015), though the 

mechanisms through which depth has a positive influence has not yet been 

fully clarified (Graham et al. 2015). Here, I demonstrate that motile coral-

obligate reef fishes do have the potential to migrate away from degrading 

habitats and that this capacity may be affected by conspecific densities. In 

broader ecological systems, migration in and out of degraded habitats is 

expected to enhance overall metapopulation stability by distributing 

abundance more evenly among patches, according to their varying carrying 

capacities (Sæther et al. 1999, Kindvall and Petersson 2000). Therefore, 

individual migration between habitat patches with declining and recovering 

resource availability along depth gradients may play a role in longer term 

resilience of reefs, via both resistance to, and recovery from, shallow-water 

habitat degradation (sensu Kuussaari et al. 1996, Hanski et al. 2002, 

Schneider et al. 2003). This has been demonstrated in at least one other 

example of coral-reef fish utilizing depth-migration as a temporary refuge 

from shallow-water habitat degradation (Walsh 1983). In that instance, 

almost the entire initial shallow-water assemblage migrated to deeper 

habitat (within 13m of depth, but up to 50 linear meters) after a large storm-

swell event and much of the assemblage returned to shallow habitats within 

6 months after the disturbance. 

 

The propensity for individuals to undertake among-patch migrations 

may be enhanced by prior migration propensities among individuals or 

within populations (sensu Ronce et al. 2001, Massot et al. 2002). The 
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disconnect between limited shallow-water sub-adult distributions and 

broader depth distributions of many adults (up to 40m depth, Chapters 2 

and 3) in Kimbe Bay suggests that C. baronessa may be pre-disposed to 

take advantage of downslope ‘migrations to refuge’. The actual ability to 

migrate downslope may, however, be limited by competition and prior 

occupancy effects (Almany 2003). Here individuals migrated to deep-water 

corals only where habitats were ‘ecologically released’ (sensu Wilson 1959, 

Allaby 1998) via competitor removal and not where superior resources were 

protected within the territories of established occupants. The probable lack 

of competitive ability among shallow-water residents to occupy better quality 

resources at depth in this control situation may be exasperated by declines 

in physiological condition among individuals subjected to protracted 

declines in key coral resources (Pratchett et al. 2004). Migration-limiting 

effects of prior residency and competition in deeper-reefs will be important 

in controlling refuge access for shallow-water individuals. However, the 

refuge potential of deeper-habitats for metapopulations may not be affected 

unless lower prior-resident densities on deeper-reef habitats (sensu 

Chapter 4) maintain deeper subpopulations below actual carrying 

capacities. Additionally, predation pressure, in the form of predator density, 

often increases with depth on coral reefs and this may partially account for 

low densities on deeper reefs.  

 

The shallow distribution of sub-adults in Kimbe Bay corresponds to 

peak densities of both their preferred Acropora prey and adult conspecifics 

along the depth gradient (Chapter 3 & 5). Coral feeding reef-fish species, 

including C. baronessa, often display highly concordant distributions among 

adults and juveniles (Pratchett et al. 2008, Clark and Russ 2012), and strong 

coral reliance appears to constrain settlement to essential prey resources 

and on microhabitats occupied by adult conspecifics (Pratchett et al. 2008). 

If these are the primary dynamics influencing settlement preferences, then 

future sub-adult settlement may shift to deeper depths to follow densities of 

resources and established conspecifics. This flexibility in depth-use would 

enhance the refuge potential. However, larval reef fish can also 



 

 

demonstrate strong pre-settlement depth stratification e.g. (Leis 1991, 

Srinivasan 2003, Huebert et al. 2011). If the shallow-water pre-adult depth 

preferences observed here are pre-determined by pre-settlement larval 

behaviour, disproportionate losses of shallow-water habitats are likely to 

result in juveniles settling to areas of lower food resources and higher rates 

of predation (Srinivasan et al. 2003), leading to lower survival rates into 

adulthood, therefore lower total fecundity and reduced future resilience.   

 

The limited depth distribution of C. baronessa sub-adults may also 

have been partially related to the depth distribution of their predators and 

relative ‘predation release’ in shallow water. Whilst not recorded here, the 

distribution of meso-predators are more abundant at deeper depths on red-

sea reefs (Brokovich et al. 2008)_and their abundances peak at depths of 

20-30m both on submerged reefs of the Great Barrier Reef (Cooper et al. in 

review) and on reefs of the Florida Keys (Goldstein et al. 2017). Goldstein 

et al. (2017) further found that body condition and ‘risky’ behaviours both 

covaried with depth (inversely to meso-predator abundances). It should be 

noted that depth-related differences were confounded by geographic 

position in that study, with shallow and deep sites separated by a major 

oceanographic feature. In contrast, in chapter 4 here, there were no depth-

related changes in multiple behaviour metrics related to predator vigilance 

or in body condition metrics of adult coralivores. However, densities of early 

post-settlement juveniles and new recruits of C. baronessa were strongly 

concentrated in shallow waters. This suggests that if predation is a factor 

controlling butterflyfish depth distributions it is likely to be strongest during 

the settlement or early post-settlement phases. Finally, it should be noted, 

that other obligate-coralivore species within the same genus (C. 

octofasciatus and C. lunulatus) have broad early-settlement depth 

distributions that are centered in, or include, the lower portion of the 0-30 m 

depth gradient (C. MacDonald, unpublished data). 
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Conclusion 

Rapidly changing environments, increased habitat losses, and species 

displacements threaten extinction in a growing number of species globally. 

Coral reef ecosystems are a highly diverse and charismatic example where 

the loss of keystone taxa threatens to cascade into broad-scale losses 

across multiple taxa and trophic levels, especially among coral obligate 

species. A number of recent investigations have determined that depth can 

in some cases mediate negative environmental impacts, reduce coral 

losses and therefore provide spatial refuge for a broad range of taxa (Bridge 

et al. 2013, Smith et al. 2014, Muir et al. 2107, Baird et al. 2018, Frade et 

al. 2018), and a similar refuge effect has been hypothesized for reef fishes. 

However, the susceptibility of fish populations to coral losses on deeper 

reefs and the capacity of individuals to migrate downslope to exploit these 

potential refuge habitats has only been tested once, over three decades ago 

(Walsh 1983).  My investigation here, whilst limited in its scope, provides 

some perfunctory support for the hypothesis that vertically asymmetric 

pressures on coral habitats can result in differential outcomes for coral-reef 

fishes resident at shallow and deep depths. My results further suggest that 

coral-obligate individuals inhabiting degraded shallow-water habitats may 

have the propensity to emigrate downward where suitable deeper-reef 

habitats are available. A disconnect between shallow-water preferences in 

sub-adult distributions and broader depth distributions in adults suggest C. 

baronessa may be pre-disposed to downward-migrations due to a 

propensity to undertake ontogenetic or density dependent migrations. 

Previous investigations have demonstrated that deeper residence does not 

confer substantial ecological or physiological costs to my focal species C. 

baronessa (Chapters 4-6). Therefore, whilst deeper water will not be a 

panacea to rapidly increasing environmental stressors, I provide direct 

evidence that some coral-obligate reef fishes vulnerable to habitat loss in 

shallow water can plausibly benefit from depth refuges.  



 

 

Chapter 7 - GENERAL DISCUSSION 

In this thesis I undertook a comprehensive ecological assessment of 

the drivers, costs, and benefits of broad depth distributions and deep-

residence in coral reef fishes, across a wide depth range from the surface 

to upper mesophotic depths (< 40 m) in Kimbe Bay, PNG. I assessed five 

major ecological requirements that deep-reef habitats and coral reef fishes 

will need to meet if deep-reefs have a chance to provide refuges from 

increasing habitat losses in shallow water.  

In chapter 2, I quantified the depth distributions of reef fishes and 

determined whether many species have ‘broad or deep depth distributions’ 

that might render them resilient to shallow water disturbances. I found a 

quarter of the 123 focal fish species were distributed across 0-30 m, and 

12% were distributed from 0-40 m. I also found that coral habitat was 

broadly available throughout the depth gradient and that 85% fish species 

strongly associated with complex coral habitats occurred at 20m or deeper. 

Clear-water, offshore reefs supported deeper distributions than on near-

shore reefs. In general, I found that the major fish assemblage split occurred 

between 5 m and 10 m depths, and up to 25% of fish species were limited 

to the shallowest 5m, where disturbance of coral habitats has historically 
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been the greatest. Hence, a significant component of the fish fauna likely 

has no refuge in depth. 

In chapter 3, I investigated whether ‘ecologically vulnerable species 

are limited to shallow waters’. I found that butterflyfish species with low local 

abundance also had the narrowest depth ranges, but that these were also 

among the least coral-specialised species in the family. Counter to 

expectations from the literature, I also found that highly specialized coral 

feeders were the most abundant species and had the broadest depth 

distributions. Therefore, no coral specialist fish experienced a depth-related 

double or triple jeopardy (based on any combination of resource 

specialization, abundance and depth-distribution). Few species had limited 

shallow depth distributions and these were non-coral benthic feeders or 

planktivores with lower risks associated to coral losses. I did find, however, 

that despite having the broadest depth distributions, the most specialized 

corallivores had great proportions of their populations utilizing shallow-reef 

habitats. This suggested costs may be higher for individuals utilizing deep 

periphery reef habitats. 

In chapter 4, I examined for two coral-obligate focal species (a 

specialist, Chaetodon baronessa, and a generalist, Chaetodon 

octofasciatus) whether ‘deep-reef residents can efficiently secure resources 

without suffering sub-lethal costs’. As predicted, I found that the density of 

preferred resources declined with depth and that territories of the more-

specialised coral feeder increased with depth in response. However, the 

density of preferred resources did not decline with depth within territories, 

suggesting that deep resident individuals were selecting occupying high 

quality resource patches. This resulted in deep resident individuals having 

greater total secured resources compared to their shallow-reef 

counterparts, which was an unexpected result. I further found that 

competitor densities and competitor interactions decreased with depth, 

whereas foraging distances, and time spent pairing did not. In addition, all 

four commonly used body-condition metrics, including the gonad-somatic 

index - a proxy for reproductive output, were stable along the depth gradient 

for both the specialist and generalist corallivore species. Therefore, small 



 

 

populations of even highly specialized coral-feeding fishes can utilize deep-

reef habitats with little to know ecological or physiological costs. 

In chapter 5, I investigated potential compensatory mechanisms that 

support the low-cost deep-reef residence demonstrated in chapters 2 – 4. I 

tested whether ‘depth related resource changes are met by dietary plasticity 

or other compensatory mechanisms’ among a dietary specialist corallivore 

species (C. baronessa) with a numeric preference for shallow-reef habitats 

and more deeply distributed dietary generalist corallivore (C. octofasciatus). 

I found that neither overall resource availability nor feeding effort declined 

along the depth gradient. As expected, feeding plasticity at a coral genus 

level was high for the dietary generalist, but not for the dietary specialist, 

which feed on its preferred resource over 40 times more than expected 

given is availability at deeper depths. Surprisingly, the energy content of 

coral tissues did not decline with depth and both bulk and compound 

specific SIA supported an argument for increased coral heterotrophy at 

deeper depths. A similar increase in plankton-sourced carbon was recorded 

in deep resident ‘corallivores’. These results suggest that multiple 

mechanisms of energy compensation may buffer declining energy and 

changed resource compositions on deep reefs. Such mechanisms appear 

operate among varying functional strategies, as well as across multiple 

trophic levels. 

Finally, in chapter 6, I used natural and removal experiments to test 

whether ‘deeper reef assemblages are more resilient to coral loss, and 

individuals from degrading shallow water environments can benefit from 

healthy deep-reef habitats’. I found that at least some combinations of 

disturbance can result in differential impacts and outcomes for obligate 

coral-associated reef fishes in shallow and deep reefs. Some individuals 

also show the propensity to migrate to deeper-water, which ultimately 

provided spatial refuge to deep-reef residents, sheltering them from a 

collapse of their key resource.  

In Box 7.1, I have compiled the evidence for and against the potential 

role of deep reefs as a refuge for coral reef fishes. Of these 24 points, 17 

positively support a potential for deep refuges, and 7 demonstrate some 
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potential cost or limiting factor for successful utilization of deep-peripheral 

habitats for at least some section of the assessed reef fish community. 

Among these 7 potential costs, two identify groups of species that appear 

currently to have distributions limited to shallow water. Approximately 25% 

of all assessed species and 15% of assessed species with strong coral 

habitat associations were limited to shallow water. These species will not 

benefit from any potential deep refuge effect unless they undertake future 

downward range shifts. This is clearly feasible, as demonstrated for an 

obligate corallivore species in chapter 6. A tendency for rare species to also 

have narrow depth distributions puts some species at risk where their 

distributions are limited to shallow waters. Species with this combination of 

traits do potentially suffer a depth-related double jeopardy. This risk may be 

offset in part by having broad or non-specialist diets that make them less 

susceptible to coral losses, at least as adults (Jones et al. 2004, Wilson et 

al. 2006). The densities of highly coral-specialized species did, however, 

tend to be concentrated in shallow waters, both in trait group and species 

levels of assessment. This is likely due to depth-related changes in habitat 

composition that reduce the availability of preferred resources at greater 

depths. Largely inflexible dietary specialization along the depth gradient 

among specialists is another potentially limiting factor, as was the increase 

in space use by specialists resident at greater depths. However, in this study 

actual costs were not borne out for either of these potential limiting factors. 

Dietary inflexibility in the focal specialist coral consumer was offset by depth 

related flexibility in their coral prey, and lower competition at depth meant 

larger territories did not result in usual increases in maintenance costs. 

Certain limitations of the work in this thesis must also be recognised. 

Firstly, the geographic location is limited to a clear-water, low latitude reef 

system that likely has low human populations and limited local-scale 

stressors compared to many of the most threatened reef locations globally. 

Papua New Guinea is also situated in the species-rich Coral Triangle and a 

much larger pool of coral and fish species compete for space than in less 

specious regions such as the Caribbean. Long-term competition for space 

is likely to increase adaptation to marginal environments, such as low light 



 

 

at deeper depths. This, in combination with the steep local bathymetry and 

clear warm waters, mean complex, habitat forming corals extend deeper in 

Kimbe Bay than the shelf-bottoms of many reef systems globally. Therefore, 

whilst I conclude that deep reefs may provide a strong refuge potential for 

regional scale recovery, the transferability of these results to some systems 

may be limited. By nature, refuges do not have to operate ubiquitously on a 

global scale. However, further ecologically comprehensive cost-benefit 

investigations of the depth-refuge potential for reef fishes do need to be 

carried out to identify areas with refuge potential in other regions. For 

example, in the GBR, the depth-refuge potential has been scarcely 

investigated, and in other regions studies have focussed on depth-

distributions only or have primarily had a strong emphasis on corals (but 

see the good work of Goldstein et al. (2016a, 2016b, 2017)). In addition, 

chapter two of this thesis introduces the importance of the interaction of 

multiple gradients in mediating refuge potential, the interactions between 

light penetration and ocean temperature latitude mean future studies would 

preferably extend the type of ecological assessments carried out here 

across multiple locations along latitudinal and cross-shelf gradients. 

The tractability of the studies here also necessitated limitations in 

some of the study design. Future studies will ideally begin to incorporate 

time series data to: 1) better assess longer-term shifts in depth distributions 

within whole assemblages, in response to habitat degradation events such 

as warm-water coral bleaching. 2) asses the longer-term stability of primary 

the ecological patterns and processes identified here.  In addition, (3) 

because of low replication and the limited spatial extent of the studies in 

chapter six, these results should be treated as tests of plausibility, rather 

than comprehensive assessments of depth migration among individuals.   

A final limitation that warrants highlighting is the role of predation 

pressure on natural distributions of adult and larval fish and the potential for 

predation pressure to covary with depth. Whilst no predation attempts were 

recorded during the many months of observations conducted here, 

witnessing predation events in person is rare on coral reefs. In addition, 

predators are considered more abundant at greater depths (Brokovich et al. 

2008). For example, meso-predators are more abundant at deeper depths 
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on red-sea reefs (Brokovich et al. 2008)_and their abundances peak at 

depths of 20-30m both on submerged reefs of the Great Barrier Reef 

(Cooper et al. in review) and on reefs of the Florida Keys (Goldstein et al. 

2017). Goldstein et al. (2017) further found that body condition and ‘risky’ 

behaviours both covaried with depth (inversely to mesopredator 

abundances). In contrast, in chapter 4 here, there were no depth-related 

changes in multiple behaviour metrics related to predator vigilance or in 

body condition metrics of adult coralivores. However, densities of early post-

settlement juveniles and new recruits were strongly concentrated in shallow 

waters. This suggests that id predation is a factor controlling butterflyfish 

depth distributions it is likely to be during the settlement or early post-

settlement phases.  

Overall, the broad implication of the research presented in this thesis 

is that while areas of deep coral habitat (e.g. Kimbe Bay) are not likely to be 

a panacea, they do show many characteristics that suggest they could be 

potentially important refuges for regional persistence of reef fish species 

vulnerable to coral losses. However, this refuge potential will only be 

realised if some regions of deep-reef habitats remain stable. Recent data 

have shown that deep reefs may not be as stable as previously thought 

(Colin 2018, Frade et al. 2018, Rocha et al. 2018), though many 

assessments do demonstrate significant attenuation of degradation with 

depth (Muir  et al. 2017, Frade et al. 2018, Baird et al. 2018). There is no 

doubt that human impacts on coral reefs will gradually extend to deeper 

reefs unless comprehensive action is taken.  Coral reefs are clearly heading 

for an uncertain future and this thesis offers hope that the demise of many 

species is not inevitable.  

 

 

 

 

 

 



 

 

Box 7.1: Evidence supporting refuge potential for reef fishes at deep peripheral coral reef habitats. 

 

 
 

Contributing factor Rationale Support for 
refuge potential? 

Thesis 
chapter 

 

1 Overall coral resource base is stable over 
broad depth gradient 

Reef fish have strong associations and positive density correlations with live coral habitats, 
therefore availability of deep habitat is crucial 

Positive Chapter 2  

2 A quarter of assessed species limited to 
shallow waters 

Species naturally limited to shallow waters are unlikely to benefit from a depth refuge unless 
capable of range shifting 

Negative Chapter 2  

3 High proportion of species have deep or 
broad distributions 

Species with naturally broad or deep distributions are likely to be buffered from some effects 
of differential coral loss among depths 

Positive Chapter 2  

4 Coral associated species generally have 
broad depth distributions 

Coral associated species are more likely to decline following loss of coral habitats in shallow 
water 

Positive Chapter 2  

5 Approximately 15 % of coral associated 
species are limited to shallow water 

Coral associated species limited to shallow waters likely to be the most vulnerable to loss of 
coral habitats in shallow water 

Negative Chapter 2  

6 Species with low abundance have narrow 
depth ranges 

Species showing combinations of risk factors (i.e. Low abundance and narrow depth ranges) 
have naturally higher extinction risks 

Negative Chapter 3  

7 Species with high coral-specialisation have 
high local abundance 

Species showing combinations of risk factors (i.e. High coral reliance and low abundance) 
have naturally higher extinction risks 

Positive Chapter 3  

8 Species with high coral-specialisation have 
broad depth ranges 

Species showing combinations of risk factors (i.e. High coral reliance and narrow distributions) 
have naturally higher extinction risks 

Positive Chapter 3  

9 High abundance and/or low coral 
specialisation offset shallow depth range 

risks 

Species showing combinations of multiple risk factors have naturally higher extinction risks Positive Chapter 3  

10 Increased specialisation increases population 
skew toward shallow-water 

Highly coral specialised species with shallow distributions are likely to have greater declines 
following shallow water coral loss 

Negative Chapter 3  

11 Preferred dietary coral resources decline in 
density with greater depth 

Resource limitation at range margins may negatively affect individual and population level 
viability 

Negative Chapter 4  

12 Preferred resource density within territories 
does not decline with depth 

Individuals at range margins may inhabit resource patches that have similar quality to those in 
the range core 

Positive Chapter 4  
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Box 7.1 Cont’d: Evidence supporting refuge potential for reef fishes at deep peripheral coral reef habitats. 

 
 Contributing factor Rationale Support for 

refuge 
potential? 

Thesis chapter 

13 Territory size increases with depth Individuals at range margins may have to increase space use to access similar resource 
densities as at their species' range core 

Negative Chapter 4 

14 Total resources secured within 
territories of deep residents increases 

with depth 

Individuals at range margins may inhabit resource patches that have similar quality to 
those in the range core 

Positive Chapter 4 

15 Competitor density and competitive 
interactions decrease with depth 

Competitor release allows greater access to sparse resources and reduced interactions 
decreases energy demands and possible injury 

Positive Chapter 4 

16 Foraging distances do not increase with 
depth 

Lower resource availability at range peripheries can increase energetic costs of accessing 
sufficient resources for energy maximising species 

Positive Chapter 4 

17 Body condition does not decline with 
depth 

Reduced body condition is a key indicator of stressed individuals in suboptimal 
environments 

Positive Chapter 4 

18 Reproductive output does not decline 
with depth 

Long term population maintenance will be limited if individuals at range peripheries 
have low reproductive output 

Positive Chapter 4 

19 Feeding rates do not decrease with depth Lower resource availability at range peripheries can increase energetic costs of accessing 
sufficient resources for energy maximising species 

Positive Chapter 5 

20 Nutritional quality of preferred 
resources does not decline with depth 

Abiotic resource gradients can limit biotic resource quality at range peripheries even 
where resources are available in patches 

Positive Chapter 5 

21 Trophic and dietary shifts offset potential 
resource limitations at deep depths 

Functional changes along environmental gradients may work to offset resource declines Positive Chapter 5 

22 Higher dietary specialisation is related to 
decreased plasticity along depth 

gradients 

Inability for functional plasticity along resource gradients increases risk of exposure to 
costs related to resource declines 

Negative Chapter 5 

23 Differential depth impacts and outcomes 
from disturbance 

The real test or refuges is if peripheral habitats and populations are actually more stable 
over periods of disturbance/coral loss 

Positive Chapter 6 

24 Downward vertical migration is possible Refuges ideally operate at a population level. One way this can play out is individuals 
migrating to take up high quality resource patches on range peripheries when they 

become available 

Positive Chapter 6 
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SUPPLEMENTAL MATERIAL: CHAPTER 2  
 

 

Figure S2.1: Study location (Kimbe Bay, Papua New Guinea), and the ten study 
sites organized by three bay positions. Yellow circles indicate inshore reefs, 
orange circles indicate mid-bay reefs and green circles indicate offshore reefs.  

 

 

Table S2.1: Total number of transects at each combination of depth and bay 
position. 

 

 

 

 

 

 

 

 

 

Depth Bay Position 
Inner Mid Outer 

<1m 17 22 15 
6m 18 24 15 

10m 15 21 14 
20m 16 21 15 
30m 16 21 15 
40m - - 7 
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Table S2.2: Summary table of Tukey’s post-hoc comparisons supporting 
similarity of reef fish densities between shallow inshore and deep offshore sites. 

 
 
 

 Mid 20m Outer 20m 
 t p value t p value 

Inner 1m 3.311 0.1103 2.168 0.6832 
Inner 5m 0.82 0.9999 -0.125 1 
Inner 10m 2.774 0.2986 1.756 0.9025 



 

162   
 

SUPPLEMENTAL MATERIAL: CHAPTER 3 
 

Table S3.1: Dietary specialisation indices used for regression models. 

 

Specialisation indices from Pratchett 2007. 

 

Table S3.2: Sampling occurrences and frequencies for the trait groups and 
species used in HOF models, and the dietary specialisation index used to rank 
the four focal species in order with increasingly generalist diets.  

 

*Index used to rank dietary specialisation among the four focal butterflyfish species, 

based on dietary coral genera, from a global review. Higher numbers represent 

greater breadth in dietary coral sources. Reference: (Pratchett 2013). 

 

Species/ Trait group Transects Occurrences Frequency 

H’ dietary  

diversity 

index * 

 

Obligate coral feeders 253 167 0.66   - 

Facultative Coral feeders 253 90 0.36   - 

Non-coral invertebrate feeders 253 97 0.38   - 

Chaetodon baronessa 253 69 0.27 0.32 

Chaetodon lunulatus 253 80 0.32 0.43 

Chaetodon ornatissimus 253 39 0.15 0.50 

Chaetodon octofasciatus 253 32 0.13 0.80 
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Supplemental Methods note: 

The hierarchical logistic regression models fit in ‘eHOF’ are also 

known as Huisman, Olff, Fresco (HOF) models, which are based on realized 

niches and use statistical information criteria to test responses to 

environmental gradients (i.e. Depth) against seven predetermined 

ecologically-meaningful distribution shapes (model types I-VII). This 

facilitates easier identification of spatial preferences along environmental 

gradients, because; (1) distribution patterns along gradients are not always 

monotonic (Rahbek 1995, 1997); but (2) unconstrained model fits (i.e. 

General Additive Models) can be difficult to interpret in ecologically 

meaningful ways (Huisman et al. 1993). The seven model types are outlined 

in Supplemental Box 3.1. 

 

Supplemental Box 3.1:  The seven ecologically driven model response types for 
Huisman, Olff, Fresco (HOF) models. 

(I) No response (intercept-only model);  

(II) A monotonic increase or decrease along the gradient;  

(III) A sigmoidal response, the species or group is suppressed up until a threshold in 

the gradient at which point it increases rapidly, and/or the species increases along 

the gradient but reaches a plateau at a particular threshold;  

(IV) A symmetrical hump response, the species or group has an optimum position in 

the center of the gradient;  

(V) A skewed hump response, the optimal condition occurs at an asymmetrical 

position along the gradient;  

(VI) A bimodal symmetric response;  

(VII) A bimodal skewed response. 
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Figure S3.1: Caterpillar plot of effects and confidence intervals (CI) from pairwise 
comparisons of diet group abundance at each depth. The dotted line represents 
no difference between diet groups (i.e. No difference = a factor of 1), and obligate 
coral feeders are significantly more abundant in comparisons where the CI does 
not cross the line. Error bars in all plots are 95% confidence intervals. OBL = 
obligate coral feeders, FAC = facultative coral feeders, NON = non-coral benthic 
invertebrate feeders. 

 

Figure S3.2: Decline in effect size of abundance – specialisation relationships with 

increasing depth among Chaetodontidae species in Kimbe Bay, PNG. 40m is greyed out, 

as only one species with specialisation data available was present at 40m. The dotted line 

corresponds for the effect size of the relationship with data pooled across all depths. 
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SUPPLEMENTAL MATERIAL: CHAPTER 4 
 
 

Supplemental methods: 
Territories were photographed in swathes, from above, with one-meter 

scale, horizontal (x) and vertical (y), and perimeter (p) markers in place. 

Effort was made to maintain, as best as possible, equal distances from, and 

perpendicular angles to the substratum. Conglomerate images of territories 

were constructed by stitching individual photos together using overlapping 

common visual reference points (i.e. coral heads, and linear markers). Initial 

stiches were then adjusted slightly where necessary so that the x, y, and p 

lengths matched in-situ measurements. Areas were estimated using spatial 

analysis tools in Photoshop CS. Area measurements were untenable in very 

shallow water (i.e. reef flats) due to lack of distance from substrate for ‘aerial’ 

photography, and also with very large territories at deep depths because of 

poor resolution of visual reference points. Due to these limiting factors, and 

because perimeters are ecologically relevant spatial measures for 

butterflyfish territories (butterflyfish utilize the perimeters the majority of the 

time and rarely use internal areas (Righton et al. 1996, personal 

observation), I used perimeter length as the sole metric for territory size in 

our analyses. I also confirmed that perimeter and area were related among 

30 C. baronessa (R2 = 0.82, F1,28 = 123.6, p < 0.001) (Supplemental Figure 

S2a) and 11 C. octofasciatus (R2 = 0.60, F1,9 = 13.02, p = 0.006) 

(Supplemental Figure S2b) territories for which I had confidence in both size 

metrics. The number of contiguous neighbouring conspecific territories was 

also recorded for each territory measured. 
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Figure S4.1: Density of total-coral and Acropora coral resources within the focal 
reef (dark grey), and bay wide (light grey), within Kimbe bay, PNG. 

 
 
 

 
 

Figure S4.2: Relationships between territorial perimeter and area for two species 
of obligate corallivore Chaetodontidae species, Kimbe bay, PNG. a) Chaetodon 
baronessa. b) Chaetodon octofasciatus. 
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SUPPLEMENTAL MATERIAL: CHAPTER 5 

 

 

Figure S5.1: Caterpillar plots of effect sizes and 95% confidence intervals (CIs) 
for Tukey’s adjusted pairwise comparisons between the proportion of bites 
taken from commonly preferred Acropora corals and from all other coral genera 
fed on by two obligate coral feeding butterflyfish species, Chaetodon baronessa 
(a) and C. octofasciatus (b), along a depth gradient. Pairwise comparisons where 
CIs do not cross 0 indicate significantly different proportions of bites were taken 
from each of the paired coral genera (αadjusted = 0.05). Negative effect sizes 
indicate that the Acropora genus was fed on more frequently. Open circles 
indicate comparisons made across bites from all depths; other symbols indicate 
comparisons made between bites observed within 5 m depth bins along a 
gradient from 0 – 30 m. Note: Not all genera were fed on at each depth, nor by 
each fish species.  
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Figure S5.2: A strong relationship between lipid content and carbon content in 
randomly selected paired Acropora subsamples reinforces the robustness of lipid 
measures. 

 
 
 

Table S5.1: Normalized 13C values (mean ‰  SD) of source end-members 
(mean of five essential amino acid 13C values subtracted from individual 
essential amino acid 13C values for each sample) used as the molecular-isotopic 
training data set in the mixing model of relative contribution of primary producers 
to fish carbon (superscript reference: a) McMahon et al. 2016); b) this study. N = 
24 for plankton, macroalgae, and detritus, N = 6 for coral. 

 

 
 

 

 

 

 

End Member Threonine Isoleucine Valine Leucine Phenylalanine 

Planktona 10.0 ± 1.2 2.8 ± 0.8 -2.3 ± 1.0 -5.8 ± 0.6 -4.7 ± 0.6 

Macroalgaea 7.5 ± 1.0 0.9 ± 0.8 -0.7 ± 0.5 -4.2 ± 0.8 -3.5 ± 0.8 

Coral_Shallowb 11.7 ± 0.8 5.4 ± 0.5 -5.1 ± 0.5 -6.4 ± 0.7 -5.5 ± 0.6 

Coral_Deepb 12.5 ± 0.9 4.7 ± 0.7 -5.1 ± 0.4 -6.6 ± 0.6 -5.6 ± 0.6 

Detritusa 10.4 ± 1.2 -0.6 ± 0.7 -1.6 ± 0.7 -3.2 ± 0.9 -5.1 ± 0.8 
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R2 = 0.89, p < 0.001
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Table S5.2: Differences in raw δ13C values of essential amino acids between 
shallow and deep samples.  

 

 

Table S5.3: The proportion of bites on different coral taxa by two obligate coral-
feeding butterflyfish species within depth bins along a gradient from 0 – 30 m.  

 
 
 

 

 

 

Amino acid 
 

Acropora   

Shallow Deep Proportional δ 

13C shift 

 Shallow Deep Proportional δ 

13C shift 
δ13C (‰) ± SE δ13C (‰) ± SE  δ13C (‰) ± SE δ13C (‰) ± SE 

Threonine -0.899 0.406 -2.544 0.491 0.647  0.066 0.528 -4.694 0.237 1.014 
Isoleucine -7.172 0.273 -10.405 0.370 0.311  -6.014 0.217 -11.716 0.281 0.487 
Valine -17.695 0.276 -20.172 0.191 0.123  -16.153 0.142 -20.222 0.218 0.201 
Leucine -18.928 0.187 -21.683 0.250 0.127  -19.156 0.223 -22.666 0.210 0.155 
Phenylalanine -18.063 0.336 -20.665 0.240 0.126  -18.081 0.251 -21.306 0.349 0.151 

 

 

Coral taxa 

Chaetodon baronessa Chaetodon octofasciatus 

Depth bin (m) Depth bin (m) 
All 

depths 0-5 5-10 10-15 15-20 20-25 25-30 All 
Depths 0-5 5-10 10-15 15-20 20-25 25-30 

Acropora 0.75 0.57 0.94 0.91 0.83 0.62 0.72 0.31 - 0.04 0.18 0.55 0.31 0.19 
Galaxia 0.06 0.06 0.01 0.03 0.06 0.08 0.02 0.02 - - <0.01 0.01 0.03 0.03 
Fungia 0.06 0.08 0.02 0.02 0.05 0.09 0.09 0.01 0.03 - 0.03 0.01 0.01 0.01 
Seriatapora 0.02 0 0 0.01 0.03 0.07 0.03 0.03 - - 0.01 <0.01 0.01 0.09 
Montipora 0.03 0.02 0.01 0.02 0.02 0.04 0.09 0.15 0.4 0.42 0.4 0.12 0.06 0.06 
Pocliopora 0.02 0.06 0.02 - <0.01 0.01 0.01 - - - - - - - 
Diploastrea 0.01 0.04 - - - 0.02 - - - - - - - - 
Stylophora 0.01 0.01 0.01 - - 0.01 0.02 <0.01 - - - <0.01 0.01 <0.01 
Porites 0.03 0.08 <0.01 0.01 <0.01 0.04 0.01 0.10 0.29 0.03 0.11 0.06 0.12 0.13 
Maerulina 0.01 0.01 - - - 0.01 - 0.01 - - 0.01 <0.01 <0.01 0.02 
Platygyra 0.01 0.02 - 0.01 - <0.01 - 0.01 - - <0.01 0.01 0.01 0.01 
Echinata <0.01 - - - - <0.01 0.03 - - - - - - - 
Goniastrea 0.01 0.04 - - <0.01 - - 0.05 0.05 - <0.01 0.03 0.1 0.06 
Pavona  <0.01 <0.01 - - - - - 0.02 - - 0.01 0.04 0.02 0.01 
Favities - - - - - - - 0.02 0.1 - - <0.01 0.04 0.03 
Anacropora <0.01 - - <0.01 - - - 0 - - - - 0 <0.01 
Echinopora - - - - - - - 0.09 0.08 0.26 0.12 0.01 0.08 0.12 
Turbinaria - - - - - - - 0 - - - - - 0.01 
Mycedium - - - - - - - 0.02 - - - 0.01 - 0.06 
Pachyseris - - - - - - - 0.05 - 0.05 - 0.04 0.07 0.06 
Asteopora - - - - - - - 0.01 - - - 0.01 0.03 <0.01 
Oxyopora - - - - - - - 0.02 - - 0.11 0.01 <0.01 0.01 
Leptoseris - - - - - - - 0.03 - 0.01 - 0.01 0.05 0.06 
Physogyra - - - - - - - <0.01 - - - - 0.01 - 
Hydnophora <0.01 <0.01 - - - - - <0.01 - - - 0.01 - - 
Montastrea - - - - - - - 0.01 0.06 0.03 - <0.01 <0.01 0.01 
Psammocora - - - - - - - <0.01 - - <0.01 - <0.01 - 
Trathyphilia - - - - - - - 0.01 - - - 0.01 - - 
Acanthastria - - - - - - - 0.01 - - - 0.02 - - 
Coscinaraea - - - - - - - <0.01 - - - - 0.02 - 
Pectinia - - - - - - - 0.02 - 0.15 0.01 0.02 - 0.01 
Gardenerosis <0.01 <0.01 - - <0.01 - - <0.01 - - - - 0.01 - 
Milipora - - - - - - - <0.01 - 0.02 - - - - 

Halomitra - - - - - - - <0.01 <0.0
1 - - - - - 

Lobophylia - - - - - - - <0.01 <0.0
1 - - - - - 

Herpolitha - - - - - - - 0.003 0.02 - - - - - 
Other 
encrusting 

- - - - - - - <0.01 - - - 0.01 <0.01 0.01 

Other 
branching - - - - - - - <0.01 - - - - - - 

Other 
massive - - - - - - - - - - - - - - 

Other 
laminar <0.01 <0.01 - - - - - - - - - - - - 

Dead coral - - - - - - - <0.01 - - - 0.01 - - 
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Table X. Mean (‰  SD) essential amino acid 13C values of three source end-
members (n = 24 individuals for each source end-member) characteristic of 
potential carbon sources fuelling coral and butterflyfish (Literature data from 
McMahon et al. 2016). Each essential amino acid 13C value was normalized to 
the mean of all essential amino acid 13C values within each individual to facilitate 
comparisons of amino cid “fingerprints” across systems and environmental 
conditions (sensu Larsen et al. 2015). Thr = Threonine, Iso = Isoleucine, Val = 
Valine, Leu = Leucine, Phe = Phenylalanine. 

 

End-member Thr Iso Val Leu Phe 

Plankton 10.0  1.2 2.8  0.8 -2.3  1.0 -5.8  0.6 -4.7  0.6 
Coral 11.7  1.0 5.7  1.2 -6.4  0.6 -7.1  1.1 -3.9  1.3 

Detritus 10.4  1.2 -0.6  0.7 -1.6  0.7 -3.2  0.9 -5.1  0.8 
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Table Y. Essential amino acid 13C values (‰) of individual Acropora spp. 
colonies (n = 6 colonies per depth) and individual Chaetodon baronessa (n = 5 
individuals per depth) form 5m and 40m water depth in Kimbe Bay, Papua New 
Guinea. Each essential amino acid 13C value was normalized to the mean of all 
essential amino acid 13C values within each individual to facilitate comparisons 
of amino acid “fingerprints” across systems and environmental conditions (sensu 
Larsen et al. 2015). Thr = Threonine, Iso = Isoleucine, Val = Valine, Leu = 
Leucine, Phe = Phenylalanine. 

 
Consumer Thr Iso Val Leu Phe 

  AS1 11.3 6.1 -5.3 -7.1 -5.0 

A
cr

o
p

o
ra

 Sh
al

lo
w

 AS2 10.8 5.4 -4.7 -6.0 -5.5 
AS3 12.5 4.4 -5.4 -6.1 -5.4 
AS4 12.6 5.5 -6.0 -5.8 -6.3 
AS5 11.1 5.5 -4.7 -5.8 -6.0 
AS6 11.6 5.3 -4.7 -7.4 -4.8 

D
ee

p
 

AD1 12.0 5.5 -4.7 -6.6 -6.3 
AD2 11.9 5.0 -5.3 -5.9 -5.6 
AD3 11.5 4.3 -4.6 -6.4 -4.8 
AD4 13.0 5.0 -5.2 -6.6 -6.2 
AD5 13.1 3.5 -4.8 -6.4 -5.4 
AD6 13.9 4.7 -5.8 -7.7 -5.2 

C
h

ae
to

d
o

n
 b

ar
o

n
es

sa
 

S
h

al
lo

w
 CbS1 11.7 6.0 -4.4 -7.1 -6.3 

CbS2 12.4 6.0 -4.6 -7.5 -6.3 
CbS3 12.6 5.5 -4.2 -7.6 -6.4 
CbS4 10.7 6.1 -3.5 -7.1 -6.1 
CbS5 12.2 5.6 -4.7 -7.1 -6.0 

D
ee

p
 

CbD1 11.5 3.5 -4.4 -6.5 -4.1 
CbD2 11.0 4.9 -4.4 -6.2 -5.3 
CbD3 11.4 4.5 -4.2 -6.4 -5.3 
CbD4 11.1 4.8 -4.1 -6.8 -5.0 
CbD5 12.2 4.3 -3.4 -6.8 -6.3 

 

 

 
 
 
 
 
 
 
 
 
 



 

172   
 

End-Member Justification: 
To examine the relative contribution of carbon source end-members 

to corals and coral-feeding butterflyfishes, we used an amino acid carbon 

isotope fingerprinting approach (McMahon et al. 2015, 2016) within a fully 

Bayesian stable isotope mixing model (sensu Ward et al. 2010) using the 

SIAR package (Parnell et al. 2010; R development core team 2013, ver. 

3.0.2). We used three data files to parameterize our mixing model: 1) 

consumer data consisting of 13C values for five essential amino acids 

(threonine, isoleucine, valine, leucine, phenylalanine) for individual coral or 

butterflyfish (separate models), 2) source end-member essential amino acid 

13C fingerprints (see description below), and 3) Trophic discrimination 

factors for the five essential amino acids (0.1  0.1; McMahon et al. 2010). 

In SIAR, we ran 500,000 iterations with an initial discard of the first 50,000 

iterations as burn-in. By using 13CEAA values within the Bayesian isotope 

mixing model, we avoid the major issue that plagues poorly resolved dual 

isotope approaches in multi-end-member systems (Fry 2013; Brett 2014): 

underdetermined mixing, and complications of variable and poorly 

characterized trophic fractionation (Bond and Diamond 2011).  

We characterized unique amino acids isotope fingerprints (multi-

variate patterns in relative 13C among essential amino acids) for three 

potentially important source end-members to Acropora and Chaetodon 

baronessa:  autotrophic coral carbon (zooxanthellae-proxy), herbivorous 

zooplankton carbon (water column phytoplankton proxy), and detritivorous 

sea cucumber carbon (microbially-reprocessed detritus proxy). The source 

end-member data (Table X) pulled from a relevant subset of molecular-

isotopic training data sets from McMahon et al. (2016) (see justification for 

using literature data below). McMahon et al. (2016) collected staghorn coral, 

Acropora pharaonis, that is targeted by coral-eating butterflyfish (e.g., 

Berumen and Pratchett 2008) to represent carbon fixed by autotrophic 

zooxanthellae. The essential amino acid 13C fingerprints of these corals 

aligned with the essential amino acid 13C fingerprints of pure cultures of 

Symbiodinium sp. from Woods Hole Oceanographic Institution, indicating 

that these corals rely almost exclusively on autotrophically fixed carbon with 
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little to no heterotrophic feeding. As such, we used these corals as proxies 

for autotrophic coral end-members in our mixing model.  McMahon et al. 

(2016) collected pelagic calanoid copepods that feed on water column 

phytoplankton as proxies for water column phytoplankton carbon. They did 

not use phytoplankton directly because the fast turnover rate of 

phytoplankton means that their isotope signatures are just a snapshot of the 

water column baseline signature. Instead, they analyzed zooplankton, 

which integrate dietary carbon signals over longer time scales more relevant 

to the turnover rates of butterflyfish. Furthermore, given that essential amino 

acids show virtually no isotope discrimination between diet and consumer 

(McMahon et al. 2010), the essential amino acid 13C values of pelagic 

copepods provided a faithful proxy for pelagic phytoplankton. As expected, 

the essential amino acid 13C fingerprints of these coral reef plankton 

aligned with the fingerprints of water column phytoplankton from the Larsen 

et al. (2013) dataset. Given the challenges in isolating the detrital end-

member, McMahon et al. (2016) selected the detritivorous black sea 

cucumber, Holothuria atra, as a proxy for microbially reprocessed detritus 

(Moriarty 1982; Uthicke 1999). These detritus-proxy fingerprints aligned 

with heterotrophic bacteria from the Larsen et al. (2013) dataset. Together, 

these source end-member essential amino acid 13C fingerprints provide a 

robust data set to reconstruct the relative contribution of source end-

members to coral and butterflyfish production.  

We focused our analyses on only essential amino acids (threonine, 

isoleucine, valine, leucine, and phenylalanine) for two reasons: 1) The 

essential amino acid 13C fingerprints represent the sum of the isotopic 

fractionations associated with individual biosynthetic pathways and 

associated branch points for each essential amino acid (Hayes 2001; Scott 

et al. 2006), generating phylogenetically diagnostic amino acid fingerprints 

of different source end-members (Larsen et al. 2009, 2013). Because 

essential amino acids have very long and complex biosynthetic pathways 

(typically >10 independent enzymatic steps), they provide the best potential 

for lineage-specific isotope effects (Lehninger 1975; Stephanopoulos et al. 

1998). 2) Essential amino acid 13C patterns of source end-members are 

preserved, essentially unchanged, across trophic transfers (14, McMahon 
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et al. 2010). This is because, while plants, algae, and bacteria can 

synthesize essential amino acids de novo, metazoans have lost the 

necessary enzymatic capabilities and must acquire essential amino acids 

directly from their diet with minimal fractionation (Reeds 2000).  

In order to compare the essential amino acid fingerprints of our three 

source end-member groups collected from literature data to the corals and 

butterflyfish in this study, we examined essential amino acid 13C values 

that were normalized to the mean of all five essential AAs for each sample. 

As expected, there is strong experimental and field-based evidence that 

primary producer essential amino acid 13C fingerprints are faithful and 

robust across large environmental gradients in growing conditions and 

carbon sources that can affect bulk 13C values (Larsen et al. 2009, 2013, 

2015). This is because the underlying biochemical mechanisms generating 

unique internally normalized essential amino acid 13C fingerprints are 

driven by major evolutionary diversity in the central synthesis and 

metabolism of amino acids. For example, Larsen et al. (2013) examined the 

extent to which normalized essential amino acid 13C fingerprints were 

affected by environmental conditions by looking at seagrass (Posidonia 

oceanica) and giant kelp communities (Macrocystis pyrifera) across a 

variety of oceanographic and growth conditions (see Larsen et al. 2013 

Table S1 for details). For both species, the range in bulk 13C values was 

five- to ten-times greater (2.6‰ and 5.2‰, respectively) than it was for 

normalized essential amino acids 13C (0.4‰ to 0.6‰, respectively). By 

normalizing the individual 13CEAA values to the mean, Larsen et al. (2013) 

showed that natural variability in 13C values of individual amino acids is 

effectively removed, creating diagnostic fingerprints that were independent 

of environmental conditions. Larsen et al. (2015) further confirmed this 

concept with the first directly controlled physiological studies of fidelity in 

normalized essential amino acid 13C fingerprints. This study grew the 

laboratory-cultured marine diatom, Thalassiosira weissflogii, under a wide 

range of conditions: light, salinity, temperature, and pH. This study showed 

that normalized essential amino acid 13C values remained unmodified 

despite very large changes in bulk and raw amino acid 13C values (>10‰), 
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molar percent abundances of individual amino acids, and total cellular 

carbon to nitrogen ratios. Together, Larsen et al. (2013, 2015) provide 

strong evidence that normalized essential amino acid 13C fingerprints are 

diagnostic of the primary producer source rather than the myriad factors 

affecting bulk 13C values, such as carbon availability, growth conditions, 

and oceanographic conditions. As such, we are confident that the 

normalized essential amino acid 13C fingerprints of literature source end-

members are robust, faithful proxies of the identity of major carbon sources 

relevant in this study, regardless of the exact location and growing 

conditions of the end-members. 
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