Influence of relative density of the granular base soil on filter performance

To, Peter, Agius, Daniel, and Cussen, Liam (2020) Influence of relative density of the granular base soil on filter performance. Acta Geotechnica, 15. pp. 3621-3627.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website:


Perpendicular contact erosion due to poorly designed filters is a frequent hazard for water-retaining structures serving as lifeblood to the community. This phenomenon occurs when the fine particles of a base soil at the contact interface with a coarser material are detached and transported through pores formed by the coarse particles. Therefore, most filter design criteria focus on the gradation of coarse particles or the gradation of pore constrictions. Meanwhile, the parameters of the base soil, such as relative density, are often overlooked. On the one hand, some experts neglect the impact of relative density because perpendicular contact erosion occurs at the interface, where fine particles expose themselves to larger pores. On the other hand, it is a general belief that the more compacted a base soil is, the less susceptible it will be to erosion as the seepage is reduced. This paper discusses this dilemma from a mutual perspective which assesses the influence of relative density from experimental, numerical, and analytical standpoints. The experimental study reveals that there is an optimal relative density which will release the least eroded mass. The influence is crucial as it can change the status of stability to unstable. The physical essence of the phenomenon is expressed by a numerical study at the micro-scale, which investigates the redistribution of flow lines and stress resulting from a particle detachment. The discovery at the micro-scale is confirmed by an analytical evaluation at the macro-scale, which assesses the redistribution of pore constrictions.

Item ID: 64447
Item Type: Article (Research - C1)
ISSN: 1861-1133
Keywords: Base soil, Constrictions, Contact erosion, Dam design, Filter, Non-cohesive, Relative density, Simulation
Copyright Information: © Springer-Verlag GmbH Germany, part of Springer Nature 2020
Funders: James Cook University (JCU)
Projects and Grants: JCU Research Infrastructure Block Grant, JCU Research Support Grant
Date Deposited: 23 Sep 2020 07:44
FoR Codes: 40 ENGINEERING > 4005 Civil engineering > 400502 Civil geotechnical engineering @ 100%
Downloads: Total: 3
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page