
Received October 31, 2019, accepted November 24, 2019, date of publication December 2, 2019,
date of current version December 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2957055

Insider Threat Identification Using the
Simultaneous Neural Learning
of Multi-Source Logs
LIU LIU 1, CHAO CHEN 1, JUN ZHANG 1, OLIVIER DE VEL 2, AND YANG XIANG 1
1School of Software and Electrical Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
2Defence Science and Technology Group, Department of Defence, Edinburgh, SA 5111, Australia

Corresponding author: Liu Liu (liuliu@swin.edu.au)

This work was supported by the Australia Defence Science and Technology (DST) Group.

ABSTRACT Insider threat detection has drawn increasing attention in recent years. In order to capture a
malicious insider’s digital footprints that occur scatteredly across a wide range of audit data sources over a
long period of time, existing approaches often leverage a scoring mechanism to orchestrate alerts generated
from multiple sub-detectors, or require domain knowledge-based feature engineering to conduct a one-off
analysis across multiple types of data. These approaches result in a high deployment complexity and incur
additional costs for engaging security experts. In this paper, we present a novel approach that works with a
variety of security logs. The security logs are transformed into texts in the same format and then arranged
as a corpus. Using the model trained by Word2vec with the corpus, we are enabled to approximate the
posterior probabilities for insider behaviours. Accordingly, we label the transformed events as suspicious
if their behavioural probabilities are smaller than a given threshold, and a user is labelled as malicious if
he/she is associated with multiple suspicious events. The experiments are undertaken with the Carnegie
Mellon University (CMU) CERT Programs insider threat database v6.2, which not only demonstrate that
the proposed approach is effective and scalable in practical applications but also provide a guidance for
tuning the parameters and thresholds.

INDEX TERMS Cybersecurity, data analytics, insider threats, word embedding.

I. INTRODUCTION
Malicious insiders have been recognised as the most criti-
cal security threat to an organisation [1], [2]. As reported
in the Clearswift Insider Threat Index (CITI) annual report
2017 [3], 92% of the organisations suffered IT or data security
incidents in the past 12 months, where 74% of the inci-
dents resulted from insiders. Furthermore, as insiders are
privileged to access an organisation’s network and data, they
can easily evade ordinary detection mechanisms, leading to
greater damages and huge financial losses for victim organi-
sations [4]. Thus, it is imperative to develop new approaches
for detecting malicious insiders.

Insider threat detection has been difficult due to several
challenges [2]. Firstly, as an organisation’s security mecha-
nisms are not primarily aimed at people who reside inside the
network, this presents an opportunity for a motivated insider

The associate editor coordinating the review of this manuscript and

approving it for publication was Junaid Arshad .

with privileged access to take advantage of, undertakingmali-
cious actions without triggering alerts. Besides, such subtle
actions allow an insider to leave only a limited number of
extremely weak indicators of compromise (IoCs). Secondly,
most insider attacks are executed in multiple phases over a
long period of time. Therefore, effective insider threat detec-
tion has to be undertaken using long-term monitoring across
a wide range of audit data sources. Moreover, the increased
scale and complexity of amodern network introduce a consid-
erable amount of noisy information, significantly increasing
the cost of data collection, storage and analysis. In summary,
weak IoCs, complex audit data sources, and expensive cost in
handling big data are the main challenges for an effective and
efficient detection of malicious insiders.

Currently, most insider threat detection approaches are
data-driven [2], and generally can be classified into two cate-
gories. One category deploys multiple sub-detectors, where
each sub-detector focuses on a specific type of suspicious
activity such as users who access data they do not need to

183162 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-7959-6764
https://orcid.org/0000-0003-1355-3870
https://orcid.org/0000-0002-2189-7801
https://orcid.org/0000-0001-5179-3707
https://orcid.org/0000-0001-5252-0831
https://orcid.org/0000-0003-0424-9498

L. Liu et al.: Insider Threat Identification Using the Simultaneous Neural Learning of Multi-Source Logs

TABLE 1. Comparison with the existing approaches.

know [5]. Malicious insiders are then identified by orches-
trating alerts captured by these sub-detectors [6], [7]. The
other category applies machine learning algorithms to work
on the features extracted from all relevant audit data, then
flags those that significantly deviate from the rest as sus-
picious [8]. These approaches, however, suffer from one or
more following limitations: (1) Individual sub-detectors fail
to indicate the presence of an insider with both high confi-
dence and a low false positive rate (FPR). These sub-detectors
need to be combined using an orchestration engine to improve
the overall detection accuracy; otherwise, it requires heavy
workload of security experts in validating false positives.
(2) Due tomore complicated processes for data collection and
storage and orchestration, the engineering cost is higher when
multiple sub-detectors are deployed separately. (3) Feature
engineering relies on domain knowledge about how an insider
attack is characterised, resulting in additional research costs
and a limited visibility to unknown insider attacks. (4) Many
machine learning algorithm-based approaches have difficulty
in providing a straightforward interpretation and explana-
tion of the output results, and the relationship between each
result and the corresponding events. This has been an issue
for machine learning algorithm-based approaches, as they
need to transform raw data from a human-recognisable form,
into a structured machine-recognisable form, during which,
much of the raw data semantics is lost [9]. To overcome the
aforementioned limitations, we present a novel approach that
realises behavioural analysis based insider threat detection
using a corpus transformed from various security logs.

In this paper, we design and implement a Word2vec-based
approach [10] for insider threat detection. We obtain the
likelihood of a particular behaviour to be suspicious using
the similarities between words by querying the Word2vec
model trained with the corpus generated from multiple types
of security logs. Based on such likelihoods, we are able to
detect insiders who behave unusually. Particularly, the pro-
posed approach comprises three components. First, a log2text
component parses and transforms events that come from
different security logs into identically formatted texts. The
texts are then concatenated and sorted in line with their
timestamps to yield a corpus, which is undertaken by the
text2corpus component. Thirdly, the anomaly detection com-
ponent trains a Word2vec model with the corpus, and com-
putes an approximation of the posterior probability for the

behaviour represented by the transformed event, namely
p(behaviour|user). By comparing the probability against
a given threshold, the event associated with an unusual
behaviour is labelled as suspicious. The anomaly detection
component labels a person who has generated multiple sus-
picious events as a malicious insider.

This paper makes the following contributions:
• We propose a new approach to deal with insider threats,
which reconstructs semantic properties from multiple
types of security logs and detects insider threats from
a behaviour analysis’s perspective. This approach trans-
forms different security logs into the same format and
conduct an universal analysis, reducing costs in engi-
neering and orchestrating many sub-detectors in prac-
tical applications.

• The transformation that reconstructs semantic properties
does not rely on any domain knowledge. In other words,
the proposed approach works in a purely ‘‘let the data
talk’’ manner, offering much higher flexibility.

• As the analysis is conducted on the texts transformed
from the security logs, the proposed approach comes
with much stronger ability to explain the level of insider
suspiciousness.

The rest of this paper is organised as follows: Section II
presents the related works. The log2text and text2corpus com-
ponents are detailed in Section III. Section IV introduces how
to detect a malicious insider based on Word2vec. Numerical
experiments are presented in Section V, including a summary
of the experimental datasets, the experimental settings and
performance evaluation. Finally, Section VI concludes this
work.

II. RELATED WORK
Most of the existing approaches identify malicious insiders
from an anomaly detection perspective [17]–[19]. More
specifically, these are approaches can be categorised as rule-
based, graph-based, statistical and machine/deep learning-
based [2]. As Table 1 shows, previous approaches tended to
be rule-based, such as [5], [11], and [12]. These approaches
all focused on detecting insiders who undertake data exfil-
tration activities, leveraging a series of rules to expose
unusual access to files and directories [11], access to data
without a ‘need-to-know’ requirement [5], or transfers of
large amounts of data to recipients who do not exist in the

VOLUME 7, 2019 183163

L. Liu et al.: Insider Threat Identification Using the Simultaneous Neural Learning of Multi-Source Logs

organisational white-listed name-space [12]. Unfortunately,
rule-based approaches rely heavily on domain knowledge and
are unable to deal with previously unseen insider attacks.
Furthermore, rule-based approaches can only respond to an
insider attack when a clear and distinctive IoC is identi-
fied. In order to tackle an insider attack as early as possi-
ble, more recent approaches have analysed audit data using
more complex graph models [13], statistical models [14] or
machine/deep learning algorithms [6]–[8], [15], [16], which
are more likely to defend against a variety of attacks with less
dependence on domain knowledge.

In particular, a graph-based approach [13] models system
calls which are related to a user’s logon/off activities and file
operations, such as exec, execve, time, login, logout, su, rsh,
rexecd, passwd, rexd and ftp. It then applies a graph-based
anomaly detection (GBAD) algorithm to test whether each
chunk of system calls (i.e., a contiguous set of system calls) is
consistent with the previously established normal behaviour
patterns. Similarly, Song’s approach analyses file system-
and process-related system calls [14], which labels any
unusual (e.g., frequency) or unauthorised access to specific
file system locations as suspicious, as well as inconsistent or
unauthorised child process forks. The PRODIGAL (PROac-
tive Detection of Insider threats with Graph Analysis and
Learning) [6], [7] is a representative machine learning based
approach. This approach extractsmore than 100 features from
a wide range of security logs such as email, web proxy and
Lightweight Directory Access Protocol (LDAP). A number
of sub-detectors are designed specifically for a subset of the
features, using various algorithms such as KDE, GMM, LR,
k-NN, HMM, STINGER and seed set expanse (SSE). Finally,
a scoring mechanism groups anomalies as a function of a
given domain entity (e.g., user or computer ID), enabling
most suspicious events to be displayed at the top of the
score list. The Beehive [8] approach takes advantage of some
domain knowledge, extracting 15 features from web proxy,
DHCP, VPN and LDAP logs related to host, traffic and policy.
Detection is implemented by means of PCA and k-means
clustering algorithms. More recently, deep learning-based
approaches have shown great potential in handling a large
number of features, allowing raw features to be used directly
without explicit feature engineering, thereby reducing the
dependency on domain knowledge. For example, Tuor’s
approach [16] uses 408 continuous features and six categor-
ical features in total from email, web proxy and file access
logs, for training a deep recurrent neural network (RNN) to
perform detection in real-time. Liu et al. also propose a deep
learning based approach to detect malicious insiders [15],
where four deep autoencoders are trained with the features
extracted from web proxy, authentication, file access and
operating system logs. The feature extraction leverages only
common sense to transform the hourly occurrences of each
behaviour into features, and the autoencoder reconstruction
error is employed as the means of performing detection.

The graph-based and statistical approaches have resulted
in some improvements compared with the rule-based

approaches [13], [14]. Even though these approaches adopt
a single type of audit data, they do not need any domain
knowledge to establish rules for identifying anomalies. How-
ever, there is still a limitation that they are unable to prevent
malicious insiders during the early stage of the attack due to
the lack of total visibility of insider behaviour. In contrast,
themachine/deep learning based approaches analysemultiple
types of audit data and can provide a much deeper insight
into insider behaviour. These approaches can either orches-
trate multiple sub-detectors, each of which tackles a specific
insider behaviour [6], [7], [15], or employ just one algorithm
to handle features extracted from various audit data [8], [16].
The former category generally suffers from a high design
and deployment complexity, and has limited extendability.
Working with a large number of features does offer greater
flexibility. However, the computational cost can be extremely
high, especially when dealing with large datasets [16]. Alter-
natively, domain knowledge can be used to reduce the number
of features to some extent [8], but it increases the reliance on
human analysts. In this paper, we propose a novel approach
that addresses the aforementioned problems.

III. TRANSFORMING SECURITY LOGS TO CORPUS
As introduced in section II, most existing approaches analyse
security logs to detect insiders, which are the most com-
mon audit data available to an organisation. In this section,
we introduce how to transform security logs into textual
form for all events, and then produce the Word2vec trainable
corpus with the transformed texts. In the meantime, a brief
introduction to the CMU CERT Programs insider threat
database [20], [21] is given. All the experiments throughout
the rest of this paper are conducted with datasets extracted
from this database, which comprises various security logs
collected from a medium-sized organisation over 18 months,
with a range of insider attacks appeared and labelled.

A. SECURITY LOGS AND THE CMU’S INSIDER
THREAT DATABASE V6.2
Traditionally, a log is defined as a record of the event occur-
ring within an organisation’s computer systems and net-
works [22]. A log that contains security-related information
is referred to as a security log, for example:
• Logs generated from security software,
• Operating system and application logs that are related to
security.

Typical security logs can be collected from a variety
of sources, such as antivirus software, intrusion detec-
tion/prevention systems, remote access software, web prox-
ies, authentication servers, routers, firewalls, system events,
audit records and various other applications [22]–[26]. They
can be broadly categorised as network, host and contextual
data, and currently constitute the primary source of secu-
rity audit data for detecting malicious insiders [2]. There
also exists other data sources that are potentially effec-
tive in tackling malicious insiders, such as social commu-
nication patterns, psychological assessment profiles [27],

183164 VOLUME 7, 2019

L. Liu et al.: Insider Threat Identification Using the Simultaneous Neural Learning of Multi-Source Logs

keystroke dynamics [28], mouse movements [29] and eye
movements [30]. However, these data sources are not always
available to an organisation due to high collection costs, or
issues raised from privacy concerns. Hence, we focus primar-
ily on security logs.

Oliner et al. presented how to leverage security logs to
detect security breaches or misbehaviour [31]. However,
in the context of malicious insider detection, the scenario is
often more complicated, as an insider often takes a series of
actions to achieve the final target. For example, a possible
scenario could be: during after-hours a user logs into a com-
puter that he/she does not regularly use, browses websites
and downloads files which may contain sensitive/protected
information, and uses a removable drive more frequently
compared to his/her usual activity to exfiltrate data [1]. In
this scenario, the insider can only be confidently labelled
as malicious until most of the suspicious actions have been
captured, since every single action is likely to be a weak
IoC, and not sufficient for making a decision. Such an insider
attack can be addressed by analysing authentication, web
proxy, file access and system logs separately and correlating
the suspicious events according to a specific primary key such
as user or IP address. In particular, analysis of authentication
logs helps to decide how likely a computer is being used
by a specific user and what the standard working hours are;
web proxy and file access logs can reflect the sensitivity
of the information being accessed, and system logs contain
detailed usage activities relating to removable drives. The
above example has demonstrated how we can detect a mali-
cious insider with various security logs.

The CMU’s insider threat database is to date the best
benchmark dataset, which is created by simulating a
medium-sized organisational intranet [20], [21]. The full
database (version 6.2) is approximately 200 GB and contains
4000 users with their daily activities being logged between
January/2010 and June/2011. Totally, there are 5 users who
have taken malicious actions and affected other 23 users,
each of which represents a typical scenario of insider attack.
The database is primarily comprised of various security
logs, including authentication, system (removable drive usage
activities), web proxy, email, file access and LDAP. At the
same time, the database also comes with psychometric and
decoy data which are supposed to provide some contex-
tual information. With a potential pre-processing procedure,
the security logs are transformed and correlated, resulting in
some clean and tidy datasets (CSV files) namely http, file,
device, logon and email. The http.csv is transformed from
web proxy logs, which suggests that how the user access
Internet (‘visit’, ’download’ or ‘upload’), and provides the
summarised text for the web page accessed. The file.csv
corresponds to the system and file access logs, reflecting how
a user accesses a removable drive and what files are copied,
opened or deleted. The device.csv should be transformed
from the system logs, which are only about a removable
drive’s connect/disconnect and the file tree. The logon.csv
is a transformed result from the authentication logs, which

specifically details a user’s logon/logoff and its timestamp.
The email.csv provides information about a user’s daily email
communication, such as send/receive, email size, attachment
count and content. Since, according to the ground truth,
an email’s connection with an insider attack can only be
exposed by text mining (e.g., topic model), it is inconsistent
with the ways of processing http.csv, file.csv, device.csv and
logon.csv (as detailed later). Thus, in this paper, we don’t use
email.csv.

B. LOG2TEXT
In this paper, we apply Word2vec to analyse different types
of security logs simultaneously, which not only reduces the
complexity of deploying multiple sub-detectors, but also sim-
plifies the decision-making process. The remainder of this
section presents how to consolidate various security logs into
aWord2vec-trainable corpus, and Figure 1 illustrates how the
components log2text and text2corpus work together.
Training a Word2vec model requires a large-sized corpus

of text, organised as documents, paragraphs or sentences [10].
We may think of a security log as natural language text; for
example as follows:

Feb-1 00:00:02 bridge kernel: INBOUND TCP:
IN=br0 PHYSIN=eth0 OUT=br0 PHYSOUT=eth1
SRC=192.150.249.87 DST=11.11.11.84 LEN=40
TOS=0x00 PREC=0x00 TTL=110 ID=12973
PROTO=TCP SPT=220 DPT=6129 WINDOW=16384
RES=0x00 SYN URGP=0
Feb-1 00:00:02 bridge kernel: INBOUND TCP:
IN=br0 PHYSIN=eth0 OUT=br0 PHYSOUT=eth1
SRC=24.17.237.70 DST=11.11.11.95 LEN=40
TOS=0x00 PREC=0x00 TTL=113 ID=27095
PROTO=TCP SPT=220 DPT=6129 WINDOW=16384
RES=0x00 SYN URGP=0.

By concatenating the words occurring in the above events,
a corpus can be produced. However, in contrast to natu-
ral language text, such a simple concatenation fails to take
into account the semantic and syntactic relations among
‘words’. Furthermore, noisy event information and the exis-
tence of duplicated entries significantly impact the linguis-
tic properties of the produced corpus. This may result in
a large but useless Word2vec model. To overcome this,
we design two specific transformation components, log2text
and text2corpus, for dealing with security logs.

The log2text component applies a 4W (‘who’, ‘when’,
‘where’, ‘what’) sentence template to transform each event
into text. This enables us to reconstruct the ‘linguistic seman-
tic’ properties from orderless words that a security log
presents. The ‘who’, in this context, often indicates the entity
that an event is associated with, e.g., user, IP address, email
address, hostname and so forth. The ‘when’ represents the
information extracted from the timestamps, which may vary
according to the given time granularity. For example, the anal-
ysis conducted daily may need date and hour to be explic-
itly extracted. Moreover, if seasonality is essential in the
analysis, the day-of-the-month and day-of-the-weekmay also

VOLUME 7, 2019 183165

L. Liu et al.: Insider Threat Identification Using the Simultaneous Neural Learning of Multi-Source Logs

FIGURE 1. How security logs are transformed into a corpus.

be required. In some cases, the ‘where’ is interchangeable
with the ‘who’, conveying auxiliary information about the
entity location. For example, if user is the entity, the ‘where’
can be expressed by IP address or hostname, namely a user
undertaking an activity from a certain IP address or computer.
Of course, geographical locations such as city and coun-
try are also valid information for the ‘where’. Lastly, what
actions the entity has taken are summarised by the ‘what’.
This largely varies according to the type of security log. For
example, in a web proxy log the ‘what’ can be abstracted
from the URL accessed and its category, the bytes transferred
between client and server, the HTTP method and HTTP sta-
tus, and in an email log the to/from, subject meta-data and
attachment.

By using the 4W sentence template, this paper implements
a relatively straightforward and compact instance of log2text
for consolidating web proxy, authentication, file access and
removable drive usage logs which, in the CMU’s insider
threat database, are equivalent to http, logon, file and device
respectively. It is worth mentioning again that the insider
threat database does not present data in their original forms.
In other words, they have been pre-processed. Consequently,
in practice, security logs require to be pre-processed similarly
before applying the components log2text and text2corpus.

TABLE 2. The 4W sentence template.

As listed in Table 2, the log2text abstracts each event as
six separate words (strings) regardless of its type, where user,
date, hour and pc can be easily obtained from an event, but the
words activity and content are parsed differently. In particular,
a http event yields only ‘visit’, ‘upload’ or ‘download’ for
the activity, and we extract the domain and file extension
from its full URL as the content. From a logon event, ‘logon’
or ‘logoff’ are extracted as the activity and a null string is
inserted as a placeholder for the content. A file eventmay con-
tain activities including ‘open’, ‘copy’, ‘delete’ and ‘write’.
We concatenate these strings with ‘to_usb’, ‘from_usb’ or
‘local’ to generate the activity for each event, while the file
extension is extracted as the content. A device event indicates
the ‘connect’ or ‘disconnect’ of a removable drive which is
parsed to produce the activity, and the file paths accessed are

183166 VOLUME 7, 2019

L. Liu et al.: Insider Threat Identification Using the Simultaneous Neural Learning of Multi-Source Logs

TABLE 3. Examples of transformed events by the log2text component.

combined into one string as the content. Similarly, different
security logs can be transformed into an identical format.
Table 3 shows the examples drawn from the experimental
dataset for each type of security log. At this time, the text
can be generated by concatenating the six words for each
event. The entire process is implemented via the log2text
component.

C. TEXT2CORPUS
Once the texts are produced by the log2text component,
the text2corpus component is able to generate the corpus
subject to the given rules. Since we detect malicious insiders
depending on their daily behaviours in this paper, the texts
are grouped by user and date, and then each group is sorted
by timestamp. For example:

abd3426 2010-08-16 8 pc-8657 logon
abd3426 2010-08-16 8 pc-8657 visit fedex .jsp
abd3426 2010-08-16 8 pc-8657 connect _abd3426
abd3426 2010-08-16 8 pc-8657 open_local .doc
abd3426 2010-08-16 17 pc-8657 logoff

The resulting corpus can be regarded as a diary of user
activities, with linguistic properties reconstructed from raw
orderless words within the events. In addition, the log2text
and text2corpus components depend solely on some general
knowledge of behaviour analysis rather than any specific
security-related domain knowledge.

IV. MALICIOUS INSIDER DETECTION
VIA WORD EMBEDDING
In the proposed approach, the detection is realised by follow-
ing the general concept of anomaly detection [17]. We train a
Word2vec model with data collected for a particular period
of time as, for example, one week. Thus, the conditional
probability of a behaviour represented by any two words
can be obtained by computing the word similarities. Then,
a behaviour will be labelled as an anomaly if its probability
is smaller than a given threshold. If a number of anomalies
are attributed to the same user, this user will be identified as
a malicious insider. The following two subsections introduce
the basic concept of Word2vec and how we apply it to insider
threat detection.

A. WORD EMBEDDING WITH WORD2VEC
Word2vec was created by Mikolov et al. for learning word
embedding in natural language text [10], [32]. Word embed-
ding are dense representations of words in the form of
numeric vectors. There are two commonly used models,

namely the continuous Bag-of-Words (CBOW) model and
the Skip-gram model. The models can be optimised using
either hierarchical softmax or negative sampling in order to
produce the distributed representations. Taking a large corpus
of text as an input toWord2vec, the output is a vector space in
which each unique word is coded as a high-dimensional vec-
tor. This vector space arranges words that come from a similar
context in the corpus, proximal to each other. As suggested
by [10], optimising a Skip-gram model using a hierarchical
softmax is slightly slower, but better for uncommon words,
while the CBOW model with negative sampling is better
at handling frequent words with low dimensional vectors.
In this work, since the corpus is produced by the log2text
and text2corpus components without noisy information and
duplicates, we choose the Skip-grammodel and a hierarchical
softmax in the experiments.

Next, we briefly present how the Skip-gram model works
with hierarchical softmax. Given a sequence of trainingwords
w1,w2, · · · ,wN , the objective function of a Skip-grammodel
is formulated as

1
N

N∑
i=1

∑
−l≤j≤l,j 6=0

log p(wi+j|wi) (1)

where l is the fixed size of a sliding window. In theory,
p(wi+j|wi) can be resolved with a multi-classifier such as
softmax, i.e.

p(wi+j|wi) =
exp(v

′T
wi+jvwi)∑

w∈W exp(v′Tw vwi)
(2)

where vw and v′w are the ‘‘input’’ and ‘‘output’’ vector rep-
resentations of w, and W is the dictionary containing all
of the unique words extracted from the corpus. However,
softmax is computationally infeasible in practice since W is
often huge. Alternatively, the hierarchical softmax [33] can be
applied to approximate the softmax by constructing the out-
put layer as a binary treewhich assigns short codes to frequent
words and evaluates only approximately log2(|W |) nodes
rather than |W | nodes. The hierarchical softmax defines the
approximation as:

p(w|wi) =
L(w)−1∏
j=1

σ (〈n(w, j+ 1) = ch(n(w, j))〉v
′T
n vwi) (3)

where n(w, j) is the jth node on the path from the root to w,
the angled brackets represent a Boolean check for returning
1 if the case is true and -1 otherwise, L(w) is the depth of the

VOLUME 7, 2019 183167

L. Liu et al.: Insider Threat Identification Using the Simultaneous Neural Learning of Multi-Source Logs

tree and ch(n) the child of node n and, finally

σ (x) =
1

1+ exp(−x)
.

B. MALICIOUS INSIDER DETECTION USING
BEHAVIOURAL PROBABILITIES
With the log2text and text2corpus components, the raw
security logs are transformed into texts that reflect insider
behaviours and, a trained Word2vec model retains the infor-
mation that describes correlations among words. Conse-
quently, it is possible to undertake insider threat detection by
querying the model about a user’s behaviour. For example,
the following text

abd3426 2010-08-16 16 pc-8657 copy_from_usb .pdf

describe the user ‘abd3426’s behaviours, from which we are
interested to know how likely they are to be undertaken: the
user ‘abd3426’ was active at 4:00 PM, copying some items
(here a PDF file) from a removable drive and etc. More
formally, we name the words, which are listed in the columns
date, hour, pc, activity and content of the transformed events,
aside from the user word, as behaviour-related words. The
following behavioural probabilities for each pair of the
behaviour-related words are computed for deciding whether
this event is suspicious or not: p(date|user), p(hour|user),
p(pc|user), p(activity|user) and p(content|user), where each
behavioural probability is actually a posterior probability that
indicates the likelihood of the behaviour. If the number of
suspicious events generated by one user exceeds a given
threshold, the user would be labelled as malicious/suspicious.

However, the Word2vec model does not provide a shortcut
for computing p(Y|X). As introduced in IV-A, when each
word is coded as a fixed-length vector, the cosine similarity
between any two vectors is the metric that indicates how close
the two words are from a semantic perspective. The cosine
similarity can be expressed as

similarity(x, y) = cos(θ) =
vx · vy
‖vx‖‖vy‖

(4)

where x and y are two words, vx and vy their vectors in the
model, and θ the angle between the two vectors. According
to Bayes’ theorem, p(Y|X) can be rewritten as

p(Y = y|X = x) =
p(X = x,Y = y)∑
y∈Y p(X = x,Y = y)

(5)

Although p(Y,X) is also not immediately achievable, we can
use the cosine similarities of two words to approximate the
posterior probability [34], namely

p̂(Y = y|X = x) =
similarity(x, y)∑
y∈Y similarity(x, y)

. (6)

It should be noted that similarity(x, y) is not a valid approx-
imation for p(X = x,Y = y) but p̂(Y|X) is. This is
because similarity(x, y) represents the distance between x
and y for ∀y, y ∈ Y in line with the occurrences of y in
x’s neighbouring window, which is a result from equation 1.

Thus, similarity(x, y) dividing by its sum over Y for a spe-
cific x yields p̂(Y|X). In the context of malicious insider
detection, we explore the posterior probabilities for all
p̂(Y = behaviour|X = user), i.e.,

[p̂(date|user) p̂(hour|user) · · · p̂(content|user)]

to determine how suspicious the user’s behaviour is.

Algorithm 1 The Complete Train-Detect Cycle
Data: http, file, logon, device logs
Result: Report suspicious user , date for further

investigation
while week do

transform the logs into texts using log2text;
combine the texts into a corpus using text2corpus;
train a Word2vec model using the corpus;
foreach event in the corpus do

if p̂ ≤ τ then
Label event as suspicious;

end
end
foreach user, date in the corpus do

if suspicious events ≥ κ then
Label user as suspicious on date;

end
end

end

The complete train-detect cycle is summarised by
Algorithm 1 and presented as follows. Since an insider attack
often persists with a series of unusual actions, there is a
better chance to detect the insider if the behaviours are
monitored over a relatively broad period of time. In this
paper, we choose the detection to be performed for each
user daily, which is a typical time granularity for observing
the behaviours [15], [16]. This usually requires multiple days
of data for training, in order to supply sufficient temporal
and spatial references from an anomaly detection’s per-
spective. In the proposed approach, the Word2vec model
is trained weekly. In other words, we collect every week’s
security logs, produce a corpus, train a Word2vec model
and compute the likelihood of being malicious for each user
daily during the given week. When the above-mentioned
behavioural probabilities are computed for all transformed
events, the τ -th percentile of a behaviour word is specified as
the threshold. For example, given τ = 1 and the behaviour
word activity, an event containing the top 1 percent smallest
p̂(activity|user) is labelled as an unusual behaviour for the
activity. If an event includes multiple unusual behaviours
(i.e. more than one), it is labelled as a suspicious event. At this
time, the other threshold κ is employed to label a suspicious
user on that day. Figure 2 briefly illustrates how the detection
is performed.

It does not have to train the Word2vec model every week
and perform detection on the days of the week. Alternatively,

183168 VOLUME 7, 2019

L. Liu et al.: Insider Threat Identification Using the Simultaneous Neural Learning of Multi-Source Logs

FIGURE 2. An illustration of insider threat detection through insider behaviours probability approximation.

we can also train a daily model to detect a user’s hourly
behaviour. The choice depends on the application scenar-
ios. The current setting is aligned with the assumption that
the IoCs are weak and only appear in possibly a couple
of non-contiguous time intervals (hours in this case) in a
day and a malicious insider takes actions only during one
or two days a week. Secondly, threshold selection usually
determines the performance of anomaly detection and can
often be subjective [17]. The proposed approach is thus
designed to work with two thresholds, τ and κ , which can
be empirically selected in practical applications. We found
that the undertaking of numerical trial-and-error experiments
is the best approach for selecting appropriate thresholds. For
validation, we also assume that security experts are available
for post-processing to investigate the detected incidents in
order to eliminate false positives and reveal the details of the
insider attack vectors.

V. EXPERIMENTS AND RESULTS
The numerical experiments are undertaken with the Carnegie
Mellon University (CMU) CERT Programs insider threat
database v6.2 [20] and implemented using Gensim [35]. The
following subsections detail how we create the experimen-
tal dataset, tune the parameters for training the Word2vec
models, select the thresholds and evaluate the experimen-
tal results. We then present a comparison study with other
approaches.

A. THE DATASET
The processing of the entire original 200 GB dataset would
need rather large computing resources, which are unavailable
for this study. Intuitively, we should undertake a random
sampling from the raw dataset, which is supposed to involve
all the insider attack scenarios to be tested without loss
of generality. In particular, the sampling is realised from
two aspects. Firstly, we randomly choose 500 out of the
4000 users as the representatives, where the known malicious

TABLE 4. Ground truth data for the three insider attacks (one user per
insider attack). N.B.: Date format is year-month-day.

insiders ‘PLJ1771’, ‘ACM2278’ and ‘CDE1846’ must be
involved. Secondly, as the detector works on a weekly basis,
we split the http, file, device and logon logs into a num-
ber of weekly ones and only choose those containing the
events affected by the insider attacks. Thus, only 9 dis-
continuous weeks of security logs are kept in the reduced
experimental dataset, instead of the raw dataset which spans
over 18 months. On average, the size of the weekly secu-
rity logs for 500 users is about 200 MB. As mentioned in
Section III, the weekly security logs are transformed using
the log2text and text2corpus components to produce the
Word2vec trainable corpus which, in general, is comprised
of around 200,000 events and 30 - 40 MB. As stated later,
the training time for such a scale of corpus varies between
30 and 400 seconds with a high-specification laptop, enabling
us to conduct a extensive set of experiments to test the
proposed detector comprehensively. Table 4 summarises the
ground truth for the three malicious insiders and the dates
that they undertake the insider attacks. Therefore, some pre-
liminary sub-selection is undertaken. We randomly chose a
subset of users (500 users) and their logs to conduct the
experiments. As mentioned in section III, we transformed the
security logs using the log2text and text2corpus components
to produce the corpus. We expect that the 500 randomly
chosen users should include some of the malicious insiders.

VOLUME 7, 2019 183169

L. Liu et al.: Insider Threat Identification Using the Simultaneous Neural Learning of Multi-Source Logs

We also intentionally remove some of the scenarios that do
not involve the above-mentioned types of security logs.More-
over, as the training-detect cycle occurs weekly, only those
weeks containing the relevant events are kept in the reduced
experimental dataset. There are a total of three insider attacks
(associated with three users) appearing over a period of nine
weeks.

B. EXPERIMENTAL SETTING
For training a Word2vec model, the parameters vector_size,
window, epoch andmin_count are important. vector_size and
epoch have a significant impact on the training time, namely
a larger vector_size and epoch, results in longer training
times. Empirically, the value of vector_size should be in the
range of 100 to 1000 [32]. In the following experiments,
we evaluated vector_size in the range of 100 to 500 with
a step size of 100. The model’s effectiveness is also very
sensitive to the value of window. A window value that is
too small takes into account only the correlation of words
with a tight neighbourhood, which may result in a over-fitted
model. Conversely, awindow value that is too largemay result
in a model which is under-fitted, amplifying the impact of
distant words. Since the log2text and text2corpus components
have transformed each event into 5 or 6 words and arranged
events according to their timestamps, intuitively, the value of
window should be at least large enough to reflect correlations
among words occurring in neighbouring events. Two values
were tested for window namely, 5 and 10. The value of epoch
specifies the number of iterations over the corpus. Increasing
the value of epoch theoretically leads to more accurate word
embedding, however, at the expense of a dramatic increase in
training times.We used values equal to 5, 10 and 20 for epoch.
The value of min_count is set to remove words which do not
frequently appear while at the same time contributing little to
the contexts. However, less frequent words have already been
filtered during the transformation stage, therefore,min_count
is set equal to 1 in all of the experiments.

The effectiveness of the detection depends on two thresh-
olds: τ and κ , where τ is employed to label an event
that includes multiple unusual behaviours and κ determines
whether the user on that day is suspicious. As mentioned in
subsection IV-B, the value of τ represents the τ -th percentile
of the behavioural probabilities p̂(behaviour word |user)
computed for all events in the corpus, and κ defines the
threshold for labelling a user as suspicious if he/she generates
more than κ suspicious events on a given day. It should be
noted that there are multiple words in content for events
generated from http log and, in this case, p̂(content|user) is
defined as

1
|content|

∑
word∈content

p̂(word |user).

In theory, a smaller value of τ indicates a tighter metric
to label an unusual behaviour, which may simultaneously
decrease the true positive rate (TPR) and FPR. On the other
hand, a larger value of κ yields a higher threshold to label a

user as suspicious. We experimentally determine the appro-
priate ranges in selecting τ and κ . In total, we tested five
values for τ ranging from 0.1 to 0.9 with a step size of 0.2 and
κ ranging from 1 to 10 with a step size of 1. The receiver
operating characteristic (ROC) curve for different values of
κ’s was then generated to illustrate the performance results.

C. PERFORMANCE RESULTS
TPR and FPR are the two most important metrics to evaluate
the results, reflecting the performance of the detection. Fur-
thermore, we are also interested in observing how different
parameters impact on the results. We want to determine the
sensitivity of the thresholds and also compare training times
for different settings.

We first demonstrate how the performance is dependent
on vector_size. Since τ varies between 0.1 and 0.9 and we
have previously observed that the values 0.3 and 0.5 yield
acceptable performances, Figure 3 shows the results for
τ = 0.5 where the legends indicate the other parameters.
Overall, the best performance is achieved when vector_size
= 200, although in theory a larger value of vector_size
yields more accurate word embedding. Moreover, it can
be observed that small values of vector_size work better
with small values of window and epoch, and vice versa; for
example, the best performance occurs when ‘‘window = 5,
epoch = 5, vector_size = 100’’, ‘‘window = 5, epoch =
10, vector_size = 200’’ and ‘‘window = 10, epoch = 20,
and vector_size = 300’’. The performances stabilise in the
range up to vector_size = 300 and then start declining from
vector_size = 500. The above observation suggests that an
effective vector_size is strongly dependent on the corpus.
In our experimental dataset, the corpus is almost comprised
of 200,000 sentences (rows) and 12,000 unique words.

Figure 4 illustrates the performance comparison between
window = 5 and window = 10 for vector_size equal to
200 and 300, respectively. It shows that, in most cases,
window = 10 outperforms window = 5 and, especially for
large values of epoch. It achieves a 100% TPR at an FPR of
around 8%.

With a fixed window = 10, Figure 5 presents how per-
formance varies according to epoch. Therefore, we could
perceive that performance improves when epoch increases.
However, comparable performance can be achieved for small
values of epoch when the other parameters are judiciously
chosen; for example, a TPR of 92% can be achieved for
epoch = 5 at an FPR of 8% as shown in Figure 5a. This
observation suggests that, in practice, we can choose a small
value of epoch to achieve a suboptimal performance and
avoid the higher computational cost when using a large value
of epoch.

Table 5 details the best pair of TPR and FPR amongst
different values of κ for each of the above experiments,
where the ‘best’ is defined as the pair that produces the
minimal value of TPR

FPR . Equivalently, this metric can be
regarded as the minimal number of false positives being
investigated (the cost) to find out a true positive. We also list

183170 VOLUME 7, 2019

L. Liu et al.: Insider Threat Identification Using the Simultaneous Neural Learning of Multi-Source Logs

FIGURE 3. Impact on performance for different values of vector_size with τ = 0.5.

the average training times for each experiment in the same
table.

A few conclusions about parameter selection can be drawn
so far.Vector_size is a parameter closely related to the corpus’
size and, as a rule of thumb, challenging to choose. However,
for dealingwith security logs, wemay be able to reuse the rule
obtained from the experiments: i.e., a value of Vector_size
between 200 and 300 should work well for a corpus that
contains around 10,000 unique words. Furthermore, Table 5
has shown that the training time is linearly growing along
with the values of vector_size. Thus, in practice, a relatively
small vector_size is preferred as long as the performance is
satisfactory. A larger value of window tends to produce better

results with only a slightly higher computational cost. At the
very least, the value of window should allow each word to
have visibility in the context of the event where it resides,
namely selecting a value larger than half of the words number
in an event. We have observed that it is safe to select a larger
value for window to ensure that each word is appropriately
contextualised. As demonstrated in Figure 5 and Table 5,
the performance can be improved in general for large values
of epoch, but with an exponentially growing computational
cost. Also, as mentioned above, continuously increasing the
value of epoch can only improve performance by a small
amount. Therefore, an arbitrarily large value of epoch is not
necessary.

VOLUME 7, 2019 183171

L. Liu et al.: Insider Threat Identification Using the Simultaneous Neural Learning of Multi-Source Logs

FIGURE 4. Impact on performance for different values of window with τ = 0.5.

FIGURE 5. Impact on performance for different values of epoch with τ = 0.5.

We also undertook experiments to determine how the
thresholds impact on the performance. Figure 6 shows the
ROC curves for κ values between 1 and 10 with a step size
of 1, and illustrates the performance relating to τ . Since
200 is the most commonly valid value, vector_size is fixed
to 200, and each of the five sub-figures represents a specific
set of parameters. According to the above figures and the
details provided in Table 5, varying κ from 4 to 6 produces
a valid result and, usually, when κ = 4 the TPRs can exceed
0.6 while the FPRs are below 0.1. This is also consistent
with the ground-truth in which most of the malicious insiders

take more than 4 different suspicious actions in a given day.
In terms of the area under the ROC curve (AUC), τ = 0.5
and τ = 0.7 are the best settings in most cases. However,
it fails to perform the detection effectively when τ = 0.1.
When τ < 0.5, the FPRs can generally be reduced to as low as
0.03 for amoderate value of κ; however, such a tight threshold
results in many suspicious events undetected.

Finally, we discuss the effectiveness and scalability of the
proposed approach in practical applications. Considering the
highest TPRs as the metric for ‘best’, a few sets of parameters
can achieve a 100% TPR at a FPR smaller than 10%, such as

183172 VOLUME 7, 2019

L. Liu et al.: Insider Threat Identification Using the Simultaneous Neural Learning of Multi-Source Logs

FIGURE 6. Impact on performance for different values of τ .

‘‘window = 10, epoch = 5, vector_size = 200, τ = 0.7’’
and ‘‘window = 10, epoch = 20, vector_size = 300, τ =
0.5’’. These results indicate that all malicious insiders can be
detected when security experts investigate up to 50 suspicious
insider behaviour on average every day, which should be a
reasonable workload for most organisations. Moreover, since
the corpus has compiled users daily behaviours together in
the formatted texts, each of the events could be labelled with
the number of unusual behaviours. It saves security experts’
much effort in searching evidenced contexts. The 500 users
weekly corpus is usually 30-40 MB (i.e., 220,000 events
and 12,000 words), resulting in a training time ranging
from 40 seconds to 8 minutes on an Intel Core i7/16GB

RAM laptop. In addition to the training time, the time of
generating the corpus and performing the detection takes
around 5-10 minutes. Given an enterprise-level computing
capability, it is easy to scale the approach up to deal with a set-
ting of 5,000-10,000 users. Accordingly, it can be concluded
that the proposed approach is effective and scalable.

D. COMPARATIVE STUDY
In this section, we compare the proposed approach with the
other existing approaches. Firstly, we summarise the features
of the proposed approach. Subsequently, two comparative
experiments are conducted to prove how the performance is

VOLUME 7, 2019 183173

L. Liu et al.: Insider Threat Identification Using the Simultaneous Neural Learning of Multi-Source Logs

TABLE 5. Best performance for different combinations of parameters and
the resulting averaged training times.

improved while working with multiple types of security logs
simultaneously and why the proposed approach outperforms
another state-of-the-art deep learning based approach.

In terms of the literature, existing approaches can be
roughly classified as rule/signature-based and anomaly-
based. The first category creates rules/signatures to detect
specific insider attacks [5], [11], [12]. This category nor-
mally is accurate in detecting the known attacks; however,
it highly relies on domain knowledge, and be not able
to handle previously unseen attacks. The anomaly-based
approaches often train a model to fit the extracted features
to label the ones which significantly deviate from the model
as anomalous. Many statistical/machine learning algorithms
such as GMM [14], k-means clustering [8], decision tree,
SVM [6], [7] and GBAD [13] can be employed. In this case,
the detector often comes with the ability to tackle new attacks
but still requires some domain knowledge for feature extrac-
tion. More recently, some anomaly-based approaches that are
realised using deep learning algorithms came [15], [16], [36].
These approaches almost remove the dependence on domain
knowledge by taking advantage of deep learning algorithms’
strong capability in representing features. However, due to
the features being abstracted at a higher level, it is difficult
for security analysts to track the attack through the audit
date, which may result in alarm fatigue. Compared with
existing approaches, the proposed approach is advanced with
almost zero dependence on domain knowledge, and strong
interpretability due to the nature of a corpus.

In addition to the above mentioned issues, many exist-
ing approaches are not able to work on multiple types of
audit data straight away. Instead, they either provide only
a detector that aims at a specific type insider attacks by

FIGURE 7. Performance comparison between multiple types of logs and
single type of log.

analysing a single type of audit data, or need an orchestration
to make a final decision with multiple sub-detectors. As a
result, we leverage the first set of comparative experiments
to demonstrate how the proposed approach performs when
using single or multiple types of security logs. In particular,
the detection is realised with http, file, device and logon logs
respectively and all together. Figure 7 shows the best perfor-
mances obtained for different cases. Apparently, in general,
the case of using multiple types of security logs can produce
the best result, namely the largest AUC, which can detect all
the affected events with a low FPR equal to 8%. The second
best one is the result from http log, which also detects all the
affected events but the FPR rises up to 13%. But, the single
logon, file or device log is unable to produce an acceptable
performance.

Next, the proposed approach is compared with the
other representative state-of-the-art deep learning based
approaches [15], [16], [36]–[43] from a performance per-
spective. Technically, as mentioned earlier, the deep learning
based approaches learn feature representations from a com-
plex dataset, with do not require too much domain knowledge
for feature engineering. These approaches tend to encode
insider behaviours into a series of frequency vectors along
the timeline, which are then employed as the features to be
trained with a (deep) neural network. Following the similar
idea, using the above-mentioned four types of security logs,
we count the hourly frequencies of the activities (e.g., down-
load, upload, copy, delete and etc.) for each user and each day,
yielding a 264 dimensional feature vector space. The features
are trained using a deep auto encoder and, for each feature
vector, it will be labelled as suspicious if the reconstruction
error is beyond a given threshold [15]. The results are shown
in Figure 8. The autoencoder based approach can also obtain a
TPR of 100% with a FPR slightly lower than 10%. However,
on average, it takes around 1 hour for training, which is
much longer than the training time required by the Word2bec
based approach (normally 100 seconds as shown in Table 5).
Moreover, once we engineer the features as numeric vectors,
we have lost interpretability to some extent. Even if a fea-
ture vector that corresponds to a malicious insider’s daily

183174 VOLUME 7, 2019

L. Liu et al.: Insider Threat Identification Using the Simultaneous Neural Learning of Multi-Source Logs

FIGURE 8. Performance comparison between the Word2vec based
approach and the autoencoder based approach.

FIGURE 9. Workload comparison between the Word2vec based approach
and the autoencoder based approach.

behaviours is properly labelled as suspicious by the autoen-
coder based approach, it is difficult for a security analyst to
track what really happens along the attack vector. But, using
the Word2vec based approach, firstly, we don’t transform
the texts into numeric vectors. Alternatively, the transformed
events are still human-readable (i.e., the 4W sentence tem-
plate). Secondly, the approach labels suspicious transformed
events, which might further save security analysts time to
locate what behaviours have been affected by an insider
attack. Radically, the two approaches result in different
workloads for security analysts to investigate. As shown
in Figure 9, it clearly shows a comparison between the two
approaches about the workload, where we use the number of
the events potentially needed to be inspected as the metric
of workload.

VI. CONCLUSION
In this paper, we propose a new approach to detect malicious
insiders by assessing word similarities across multiple types
of security logs. Events from any type of security log are
transformed into an identical format using the log2text com-
ponent based on a 4W sentence template, and the text2corpus

component produces a Word2vec trainable corpus by arrang-
ing the transformed events by users and dates. After a
Word2vec model is trained, the detection is performed on
each user’s daily behaviour by examining the model to deter-
mine which behaviours are unusual, where the likelihood
of users’ abnormal behaviours resembles the word similar-
ities. Extensive numerical experiments provide best practice
inputs for tuning the parameters and thresholds. They also
demonstrate that the proposed technique is effective and
scalable. The comparative study shows that our approach
reduces the analysts’ input in order to inspect suspicious
insiders. In future, we intend to improve the approach as
follows. Firstly, there is a potential to inject more information
from the raw security logs into the transformed events. For
example, in terms of web proxy logs, the HTTP user agent
and category can be added into the ‘what’ word of the 4W
sentence template. Secondly, the examination of the model to
determine the likelihood of each insider behaviour is clumsy.
Instead, we propose to design a phrase/sentence based exam-
ination mechanism to determine whether a transformed event
is anomalous or not. Finally, in our current system we only
train a Word2vec model using the security log corpus. How-
ever, by rearranging the corpus differently we should be able
to take advantage of correlations among the ‘paragraphs’ in
the corpus by using a Doc2vecmodel [44], resulting in amore
efficient approach.

REFERENCES
[1] M. Collins, ‘‘Common sense guide to mitigating insider threats,’’ Carnegie

Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU/SEI-2016-TR-015,
2016.

[2] L. Liu, O. de Vel, Q.-L. Han, J. Zhang, and Y. Xiang, ‘‘Detecting and
preventing cyber insider threats: A survey,’’ IEEE Commun. Surveys Tuts.,
vol. 20, no. 2, pp. 1397–1417, 2nd Quart., 2018.

[3] Clearswift. (2017). Clearswift Insider Threat Index (CITI).
Accessed: Jun. 9, 2018. [Online]. Available: https://www.clearswift.
com/about-us/pr/press-releases/insider-threat-74-security-incidents-
come-extended-enterprise-not-hacking-groups

[4] A. Azaria, A. Richardson, S. Kraus, and V. S. Subrahmanian, ‘‘Behavioral
analysis of insider threat: A survey and bootstrapped prediction in imbal-
anced data,’’ IEEE Trans. Comput. Social Syst., vol. 1, no. 2, pp. 135–155,
Jun. 2014.

[5] M. A. Maloof and G. D. Stephens, ‘‘Elicit: A system for detect-
ing insiders who violate need-to-know,’’ in Proc. Int. Workshop
Recent Adv. Intrusion Detection. Berlin, Germany: Springer, 2007,
pp. 146–166.

[6] E. Ted, H. G. Goldberg, A. Memory, W. T. Young, B. Rees, R. Pierce,
D. Huang, M. Reardon, D. A. Bader, and E. Chow, ‘‘Detecting insider
threats in a real corporate database of computer usage activity,’’ in Proc.
19th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2013,
pp. 1393–1401.

[7] W. T. Young, H. G. Goldberg, A. Memory, J. F. Sartain, and T. E. Senator,
‘‘Use of domain knowledge to detect insider threats in computer activities,’’
in Proc. IEEE Secur. Privacy Workshops (SPW), May 2013, pp. 60–67.

[8] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels,
and E. Kirda, ‘‘Beehive: Large-scale log analysis for detecting suspicious
activity in enterprise networks,’’ in Proc. 29th Annu. Comput. Secur. Appl.
Conf., 2013, pp. 199–208.

[9] F. Doshi-Velez and B. Kim, ‘‘Towards a rigorous science of inter-
pretable machine learning,’’ 2017, arXiv:1702.08608. [Online]. Available:
https://arxiv.org/pdf/1702.08608.pdf

[10] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111–3119.

VOLUME 7, 2019 183175

L. Liu et al.: Insider Threat Identification Using the Simultaneous Neural Learning of Multi-Source Logs

[11] N. Nguyen, P. Reiher, and G. H. Kuenning, ‘‘Detecting insider threats
by monitoring system call activity,’’ in Proc. IEEE Syst., Man Soc. Inf.
Assurance Workshop, Jun. 2003, pp. 45–52.

[12] M. Hanley and J. Montelibano, ‘‘Insider threat control: Using centralized
logging to detect data exfiltration near insider termination,’’ Softw. Eng.
Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU/SEI-
2011-TN-024, 2011.

[13] P. Parveen, J. Evans, B. Thuraisingham, K. W. Hamlen, and L. Khan,
‘‘Insider threat detection using stream mining and graph mining,’’ in Proc.
IEEE 3rd Int. Conf. Privacy, Secur., Risk Trust, IEEE 3rd Int. Conf. Social
Comput., Oct. 2011, pp. 1102–1110.

[14] Y. Song, M. B. Salem, S. Hershkop, and S. J. Stolfo, ‘‘System level user
behavior biometrics using Fisher features and Gaussian mixture models,’’
in IEEE Security Privacy Workshops, May 2013, pp. 52–59.

[15] L. Liu, O. De Vel, C. Chen, J. Zhang, and Y. Xiang, ‘‘Anomaly-based
insider threat detection using deep autoencoders,’’ in Proc. IEEE Int. Conf.
Data Mining Workshops (ICDMW), Nov. 2018, pp. 39–48.

[16] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson, ‘‘Deep
learning for unsupervised insider threat detection in structured cybersecu-
rity data streams,’’ in Proc. Workshops 31st AAAI Conf. Artif. Intell., 2017,
pp. 224–231.

[17] V. Chandola, A. Banerjee, and V. Kumar, ‘‘Anomaly detection: A survey,’’
ACM Comput. Surv., vol. 41, no. 3, p. 15, 2009.

[18] B. Liu, Y. Xiao, P. S. Yu, Z. Hao, and L. Cao, ‘‘An efficient approach for
outlier detection with imperfect data labels,’’ IEEE Trans. Knowl. Data
Eng., vol. 26, no. 7, pp. 1602–1616, Jul. 2014.

[19] B. Liu, Y. Xiao, L. Cao, Z. Hao, and F. Deng, ‘‘SVDD-based outlier
detection on uncertain data,’’ Knowl. Inf. Syst., vol. 34, no. 3, pp. 597–618,
2013.

[20] J. Glasser and B. Lindauer, ‘‘Bridging the gap: A pragmatic approach to
generating insider threat data,’’ in Proc. IEEE Secur. Privacy Workshops,
May 2013, pp. 98–104.

[21] B. Lindauer, J. Glasser, M. Rosen, K. C. Wallnau, and L. ExactData,
‘‘Generating test data for insider threat detectors,’’ JoWUA, vol. 5, no. 2,
pp. 80–94, 2014.

[22] K. Kent andM. Souppaya, ‘‘Guide to computer security log management,’’
NIST, Gaithersburg, MD, USA, Tech. Rep. Special Publication 800-92,
2006, vol. 92.

[23] N. Sun, J. Zhang, P. Rimba, S. Gao, Y. Xiang, and L. Y. Zhang, ‘‘Data-
driven cybersecurity incident prediction: A survey,’’ IEEE Commun. Sur-
veys Tuts., vol. 21, no. 2, pp. 1744–1772, 2nd Quart., 2018.

[24] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan, ‘‘Network
traffic classification using correlation information,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 1, pp. 104–117, Jan. 2013.

[25] R. Coulter, Q.-L. Han, L. Pan, J. Zhang, and Y. Xiang, ‘‘Data-driven
cyber security in perspective–intelligent traffic analysis,’’ in IEEE Trans.
Cybern., to be published, doi: 10.1109/TCYB.2019.2940940.

[26] M. Xie, S. Han, B. Tian, and S. Parvin, ‘‘Anomaly detection in wireless
sensor networks: A survey,’’ J. Netw. Comput. Appl., vol. 34, no. 4,
pp. 1302–1325, 2011.

[27] O. Brdiczka, J. Liu, B. Price, J. Shen, A. Patil, R. Chow, E. Bart, and
N. Ducheneaut, ‘‘Proactive insider threat detection through graph learning
and psychological context,’’ in Proc. IEEE Symp. Secur. Privacy Work-
shops, May 2012, pp. 142–149.

[28] A. A. E. Ahmed, ‘‘Employee surveillance based on free text detection of
keystroke dynamics,’’ in Handbook of Research on Social and Organiza-
tional Liabilities in Information Security. Hershey, PA, USA: IGI Global,
2009, pp. 47–63.

[29] J. S. Valacich, J. L. Jenkins, J. F. Nunamaker, Jr., S. Hariri, and J. Howie,
‘‘Identifying insider threats through monitoring mouse movements in con-
cealed information tests,’’ in Proc. Hawaii Int. Conf. Syst. Sci. Deception
Detection Symp., 2013.

[30] S. Eberz, K. B. Rasmussen, V. Lenders, and I. Martinovic, ‘‘Looks like eve:
Exposing insider threats using eye movement biometrics,’’ ACM Trans.
Privacy Secur., vol. 19, no. 1, p. 1, 2016.

[31] A. Oliner, A. Ganapathi, and W. Xu, ‘‘Advances and challenges in log
analysis,’’ Commun. ACM, vol. 55, no. 2, pp. 55–61, Feb. 2012.

[32] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ 2013, arXiv:1301.3781. [Online].
Available: https://arxiv.org/pdf/1301.3781.pdf

[33] F. Morin and Y. Bengio, ‘‘Hierarchical probabilistic neural network lan-
guage model,’’ in Proc. Int. workshop Artif. Intell. Statist., vol. 5, 2005,
pp. 246–252.

[34] C. Liu, ‘‘The Bayes decision rule induced similarity measures,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1086–1090, Jun. 2007.

[35] R. Řehůřek and P. Sojka, ‘‘Software Framework for Topic Modelling
with Large Corpora,’’ in Proc. LREC Workshop New Challenges NLP
Frameworks. Valletta, Malta: ELRA, May 2010, pp. 45–50.

[36] P. Chattopadhyay, L. Wang, and Y.-P. Tan, ‘‘Scenario-based insider threat
detection from cyber activities,’’ IEEE Trans. Comput. Social Syst., vol. 5,
no. 3, pp. 660–675, Sep. 2018.

[37] F. Yuan, Y. Cao, Y. Shang, Y. Liu, J. Tan, and B. Fang, ‘‘Insider threat
detection with deep neural network,’’ in Proc. Int. Conf. Comput. Sci.
Cham, Switzerland: Springer, 2018, pp. 43–54.

[38] S.Wen,M. S. Haghighi, C. Chen, Y. Xiang,W. Zhou, andW. Jia, ‘‘A sword
with two edges: Propagation studies on both positive and negative infor-
mation in online social networks,’’ IEEE Trans. Comput., vol. 64, no. 3,
pp. 640–653, Mar. 2015.

[39] X. Chen, C. Li, D.Wang, S.Wen, J. Zhang, S. Nepal, Y. Xiang, and K. Ren,
‘‘Android HIV: A study of repackaging malware for evading machine-
learning detection,’’ IEEE Trans. Inf. Forensics Security, vol. 15, no. 1,
pp. 987–1001, Jul. 2019.

[40] T. Wu, S. Wen, Y. Xiang, and W. Zhou, ‘‘Twitter spam detection: Sur-
vey of new approaches and comparative study,’’ Comput. Secur., vol. 76,
pp. 265–284, Jul. 2018.

[41] J. Jiang, S. Wen, S. Yu, Y. Xiang, and W. Zhou, ‘‘Identifying propaga-
tion sources in networks: State-of-the-art and comparative studies,’’ IEEE
Commun. Surveys Tuts., vol. 19, no. 1, pp. 465–481, 1st Quart., 2017.

[42] M. Xie, J. Hu, S. Han, and H.-H. Chen, ‘‘Scalable hypergrid k-NN-
based online anomaly detection in wireless sensor networks,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 24, no. 8, pp. 1661–1670, Aug. 2013.

[43] I. Homoliak, F. Toffalini, J. Guarnizo, Y. Elovici, and M. Ochoa, ‘‘Insight
into insiders and it: A survey of insider threat taxonomies, analysis, mod-
eling, and countermeasures,’’ ACM Comput. Surv., vol. 52, no. 2, p. 30,
2019.

[44] Q. Le and T. Mikolov, ‘‘Distributed representations of sentences and
documents,’’ in Proc. Int. Conf. Mach. Learn., 2014, pp. 1188–1196.

183176 VOLUME 7, 2019

http://dx.doi.org/10.1109/TCYB.2019.2940940

	INTRODUCTION
	RELATED WORK
	TRANSFORMING SECURITY LOGS TO CORPUS
	SECURITY LOGS AND THE CMU'S INSIDER THREAT DATABASE V6.2
	LOG2TEXT
	TEXT2CORPUS

	MALICIOUS INSIDER DETECTION VIA WORD EMBEDDING
	WORD EMBEDDING WITH WORD2VEC
	MALICIOUS INSIDER DETECTION USING BEHAVIOURAL PROBABILITIES

	EXPERIMENTS AND RESULTS
	THE DATASET
	EXPERIMENTAL SETTING
	PERFORMANCE RESULTS
	COMPARATIVE STUDY

	CONCLUSION
	REFERENCES

