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Abstract 
 
The extraordinary diversity of species-environment relationships that occur across space 

and time can engender a deep curiosity of their mechanistic underpinnings. Moreover, the 

rapid rate of ecosystem change associated with anthropogenic and climatic pressures 

makes information regarding species’ landscape and resource use ever more important. 

Without this information, we will be unable to effectively protect landscapes and their 

constituent species. The coastal ecosystem mosaic of northeast Australia, which is 

comprised of a high diversity of habitat types, provides a suitable region for investigating 

how species respond to heterogeneity in habitat and resource availability. The present 

thesis examined ecosystem functioning in heterogeneous coastal landscapes of northeast 

Australia for forest avifauna. An array of analytical approaches were employed to 

establish a comprehensive understanding: 1) spatial assessment to determine relationships 

between regional landscape connectivity and coastal forest bird assemblages, 2) isotopic 

assessment to evaluate the local foraging ecology of mangrove bird assemblages, and 3) 

nutrient assessment of cross-ecosystem connectivity provided by a migratory coastal 

forest bird species (i.e. the Pied Imperial-Pigeon (Ducula bicolor)).  

 

Within the coastal ecosystem mosaic, mangrove forests sit at the land-sea interface. 

Therefore, to effectively ‘set the scene’ I review how mangrove birds require and 

facilitate connectivity through their use of the broader coastal landscape. Next, to 

specifically assess regional landscape patterns and processes influencing northeast 

Australia’s coastal forest avifauna, I surveyed the composition of bird assemblages in 

four of the major coastal forest types occurring throughout the region (i.e. Eucalypt, 

Melaleuca, mangrove, and rainforest). Following this, spatial patterns of habitat 

configuration within the coastal landscape (i.e. structural connectivity) were quantified to 

understand broad relationships between coastal forest bird assemblage composition and 

landscape heterogeneity at multiple spatial scales. Most bird species in coastal northeast 

Australia occurred in multiple forest types. Spatial assessment suggested that Melaleuca 

woodlands are a keystone structure that supports use of the entire coastal landscape 
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mosaic by coastal forest generalist species. However, the species composition of 

mangrove bird assemblages was distinct relative to other coastal forest types. Therefore, 

to provide more detailed information regarding the response of coastal forest generalists 

and mangrove specialists to specific forest attributes, functionally connected forest 

networks were developed to assess the relative importance of forest area, availability, and 

connectivity to their compositional turnover. This revealed that mangrove specialists and 

coastal generalists differ in the forest attributes they require (i.e. area vs. availability) to 

maintain regional beta diversity.  

 

Understanding landscape pattern-process relationships that drive bird assemblage 

composition and turnover can inform the prioritization of regional-scale landscape 

features for protection. However, species’ responses to local-scale spatiotemporal 

variability in resource availability may also play a role in these relationships. I used 

isotopic analysis to better understand the foraging ecology of coastal forest birds in a 

highly dynamic mangrove forest environment. This demonstrated that flexible and 

opportunistic foraging strategies were prevalent among coastal forest generalist species. 

However, specialized foraging strategies were employed by some species, primarily for 

resources that were uniquely available in mangrove forests (i.e. estuarine fish and crabs).  

 

Mobile species not only respond to landscape patterns and processes, but can also 

facilitate connectivity processes through their movement (e.g. nutrient transfer, 

pollination, genetic linking, etc.). To determine the implications of avian mobility for 

ecosystem functioning in northeast Australia, I focused on a migratory coastal forest bird 

species, the Pied Imperial-Pigeon (Ducula bicolor). Nutrient measurements demonstrated 

that Pied Imperial-Pigeons provide mainland-derived nutrient subsidies to island forests, 

highlighting their important role as an avian mobile-link species. 

 

The integrated analytical approach used in this thesis has provided insight to the 

complexity of coastal landscapes and their use by forest avifauna. This has broadened our 

understanding of coastal ecosystem functioning to include a hierarchy of ecosystem 
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components that exist at local and regional scales. The ecosystem properties that emerge 

from interactions across coastal ecosystem components include: vegetative connectivity, 

compositional turnover, avian foraging strategy, and nutrient transfer. Results from this 

thesis can inform the holistic conservation and management strategies that are required to 

maintain coastal ecosystem functioning in regional northeast Australia.  
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1 General introduction 
 

1.1 Biocomplexity and ecosystem functioning 
 

Understanding how ecosystems function is a fundamental pursuit of ecology. The 

patterns and processes that underpin ecosystem functioning are often elaborate, and their 

intricate relationships can be referred to as ‘biocomplexity’ (Colwell 1998). Two 

philosophically opposed methodological approaches to understanding complex 

ecosystem functioning have evolved: reductionism and holism. Reductionism considers 

the collective properties of individual ecosystem components that are distinct, 

predictable, and can be summed across individual components (Salt 1979). In addition to 

collective properties, holism also considers emergent properties occurring within and 

among all ecosystem components that are interactive, unpredictable, and are greater than 

the sum of individual components (Odum and Barrett 2005, Feller et al. 2010). There is 

broad consensus that reductionist approaches are inadequate to fully represent 

biocomplexity, but holistic approaches are generally more difficult and less pragmatic to 

develop and use (Bergandi and Blandin 1998). To ease issues of pragmatism associated 

with a holistic approach, a framework has been established that considers three 

dimensions of biocomplexity explicitly: connectivity, heterogeneity, and historical 

contingency (Cadenasso et al. 2006).  

 

The biocomplexity framework can be used to investigate ecosystem properties, such as 

connectivity, that arise from interactions between pattern-process relationships in 

spatiotemporally heterogeneous environments. Connectivity is an emergent property of 

the biocomplexity framework that couples habitats, ecosystems, and food webs through 

the movement of materials and organisms (Breckling et al. 2005, Reuter et al. 2005, 

Cadenasso et al. 2006, Feller et al. 2010). For example, connectivity between mangrove 

forests and adjacent ecosystems emerges as a result of complex interactions between 

structural landscape features, geomorphology, hydrology, tidal regimes, and climatic 

variability, with consequences for ecosystem functioning (Feller et al. 2010). The 
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consequences are exemplified in marine protected areas, where connectivity to mangrove 

forests increases herbivore biomass and richness on coral reefs, enhancing protected reef 

functioning and resilience (Olds et al. 2012).   

 

Individual species can both require and facilitate connectivity processes. For example, 

energetic demands will dictate the minimum distance that long-distance shorebird 

migrants require between stop over sites (Skagen 2006). Alternatively, long-distance 

migrants can foster indirect dispersal and connectivity between invertebrate populations 

among their wetland foraging sites (Green and Figuerola 2005). Regardless of whether 

ecological connectivity is required or facilitated by species, its disruption can have 

negative consequences for their survival and for ecosystem functioning. For example, 

compromised ecosystem functioning has been documented when pollinator mobility is 

limited by habitat fragmentation, resulting in reduced plant reproductive success (Aguilar 

et al. 2006). 

 

Environmental heterogeneity is another key dimension of the biocomplexity framework 

(Cadenasso et al. 2006), and is broadly classified as diversity and variability in habitat 

and resource availability (Fahrig 1992). Interactions between heterogeneity and 

connectivity, which can occur across multiple spatial and temporal scales, result in highly 

complex ecosystems. For example, riverine floodplain channels are highly complex, 

spatially heterogeneous systems that vary by their depth, length, width and sinuosity; and 

their hydrological connectivity fluctuates across temporal scales ranging from inter-

annual, decadal, to centennial (Amoros and Bornette 2002). In highly complex and 

spatiotemporally heterogeneous systems like riverine floodplains, identifying and 

measuring the causes and consequences of connectivity processes will be necessary to 

fully understand ecosystem functioning. 

 

Historical contingency refers to how ecosystems and their component habitats change 

through time (Cadenasso et al. 2006). Although the historical contingency dimension of 

the biocomplexity framework is beyond the scope of this thesis’ investigation, the rapid 
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rate of change ecosystems are experiencing world-wide makes it an important 

consideration. In particular, species’ interactions within an ecosystem are determined in 

part by the timing of their arrival in the community, and therefore assembly history is 

necessary to fully understand species’ interactions (Fukami 2015) and ecosystem 

functioning (Fukami et al. 2010). Furthermore, beyond community assembly history, 

ecosystem restoration will only be successful if the history of ecosystem change is used 

to review and improve past restoration targets for better outcomes in the future (Jackson 

and Hobbs 2009).  

1.2 Variably mobile species assemblages 

 

Through the evolution of life-history traits, individual species are predominantly 

sedentary, nomadic, or migratory; and their mobility is an integral component of their 

landscape- and resource-use (Roshier and Reid 2003). However, mobility can be highly 

variable across ecological communities, species assemblages, or even a population within 

a species. For example, some species of pond-breeding amphibians exhibit partial 

migration, where only a select number of individuals within a population will migrate to 

terrestrial over-wintering areas (Grayson and Wilbur 2009). Alternatively, within a 

butterfly assemblage, the migration patterns of three specialist species using the same 

grassland habitat network vary by distances spanning hundreds of metres (Baguette et al. 

2000). In spatiotemporally heterogeneous systems, species’ mobility is likely to be 

variable if they are predisposed to track fluctuations in resource availability, making the 

development of effective management and protection strategies challenging. 

 

The difficulties in developing effective conservation strategies, such as the establishment 

of protected areas, have recently been highlighted for mobile species, particularly 

migrants and nomads (Woinarski et al. 1992, Newmark et al. 2008, Runge et al. 2014, 

Runge and Tulloch 2017). Movements of migratory species are predictable in nature; 

however the large scale at which migrants disperse makes identifying and protecting 

critical habitat challenging. Furthermore, migrators often traverse protected area 
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boundaries, placing high importance on ensuring that protected areas are properly 

connected for migration completion. If conservation actions are implemented at 

inappropriate spatial scales, or do not provide adequate connectivity, populations of 

highly mobile, migratory species can decline (Murray and Fuller 2015, Runge et al. 

2015b, Polak et al. 2016). For example, a critical bottleneck has been identified in the 

migratory route of the migratory Mongolian Saiga (Saiga tatarica mongolica) and, 

without an alternative route, loss of the bottleneck habitat would likely result in 

population collapse (Berger et al. 2008).  

 

Challenges concerning the appropriate spatial scale for effective conservation action are 

amplified when there is high uncertainty regarding species’ movement patterns, which is 

typical of nomadic species. Nomads track resources across landscapes that are highly 

heterogeneous in habitat and resource availability, resulting in unpredictable and erratic 

movements following resource booms and busts (Runge et al. 2014, 2015a, 2016). 

Identifying relationships between species’ movements and habitat and resource 

availability can provide critical information for conservation planning in areas with high 

spatiotemporal heterogeneity. For example, the copperbelly water snake (Nerodia 

erythrogaster neglecta) relies on spatiotemporally variable resources in ephemeral 

wetland pools and is highly mobile in comparison to the sympatric northern water snake 

(Nerodia sipedon sipedon) that forages primarily in stable and permanent wetland pools 

(Roe et al. 2004). Therefore, sympatric species can require very different conservation 

strategies depending on the mobility that their resource-use demands. 

 

For sedentary species, site-level and target-based approaches to protected area planning 

can achieve good outcomes (Thomas et al. 2012). Conservation efforts often focus on 

site-level pattern-process relationships associated with specialist species, because 

specialists are highly sensitive to threats such as land-use and climate change, reducing 

their resilience to disturbance (Devictor et al. 2008, Pardini et al. 2009, Poniatowski et al. 

2016, Reside et al. 2017 a). However, many nomadic species are also resource specialists, 

and a static protected area network will be inadequate if it does not protect key resources 
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across spatiotemporal scales (Runge et al. 2014, 2015b; Runge and Tulloch 2017, Webb 

et al. 2017). Furthermore, placing a primary conservation focus on sedentary specialists 

may provide limited benefit for biodiversity and ecosystem functioning as a whole. To 

maintain ecosystem functioning at adequate spatiotemporal scales for many species, there 

is an urgent need to understand broader scale pattern-process relationships that are 

associated with variably mobile species assemblages. However, addressing interactions 

between mobility, landscape- and resource- use is a complex and formidable task. 

1.3 Whole-landscape assessment of ecosystem functioning 

 

Essential for the maintenance of functioning ecosystems is an understanding of the 

habitat attributes that species require for their survival. Life-history traits, such as niche 

width (i.e. specialists or generalists) or dispersal ability, can play a role in shaping 

species’ habitat requirements. For example, the survival of specialist species that also 

have low dispersal ability should be dependent on both the size and connectedness of 

suitable habitat in a landscape (Harris and Pimm 2007, Ockinger et al. 2010). Conversely, 

the adaptability of generalist species with high dispersal ability should mean that they are 

less sensitive to habitat fragmentation and isolation (Ewers and Didham 2006). However, 

in reality, differences in species’ habitat requirement are much more complex and can be 

confounded by other factors, such as the ability of species to cross or use matrix habitat 

(Ewers and Didham 2006, Prugh et al. 2008).  

 

Habitat requirements for sedentary, nomadic, and migratory species will also differ 

across spatial and temporal scales. Therefore, static and target-based conservation 

approaches occurring at a site-level will not be adequate for variably mobile species 

responding to heterogeneous patterns and processes. The delivery of local-scale 

connectivity by mobile animals is often dependent on the regional-scale spatial 

distribution of resources, demonstrating the need for mobile species-connectivity 

relationships to be protected at the landscape-scale instead of at site or habitat-scales 

(Kremen et al. 2007). Landscape-scale conservation strategies that explicitly consider 
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connectivity processes are increasingly being called for as recognition of the importance 

of maintaining biodiversity across landscapes grows (Lindenmayer et al. 2006, 2008; 

Boyd et al. 2008; Thrush et al. 2010; McCauley et al. 2012; Mazaris et al. 2013; Watson 

et al. 2017).  

 

‘Whole-landscape’ conservation aims to protect multi-scale ecological pattern-process 

relationships and maintain ecosystem functioning for the persistence of all regional biota 

(Poiani 2000). Through the protection of regional biodiversity, whole-landscape 

conservation is likely to enhance the resilience of ecosystems to threatening processes, 

such as land-use change. Connectivity can provide a ‘spatial insurance’ against 

disturbance where, if there is adequate connectivity in the landscape, dispersal processes 

are able to maintain regional species diversity (Loreau et al. 2003). High species diversity 

alleviates the consequences of losing species during a disturbance, because functional 

redundancy within a diverse species assemblage can allow key ecosystem functions to be 

retained.  

 

Biodiversity itself is an important determinant of ecosystem functioning, and 

encompasses the collective properties of all biota from the gene to ecosystem level, 

making it a difficult and impractical quality to measure (Margules et al. 2002, Tilman et 

al. 2014). Depending on the question, data, and assessment tools available, studies of 

biodiversity largely rely on surrogates to represent the majority of species, patterns, and 

processes occurring in an area (Lewandowski et al. 2010, Grantham et al. 2010). Once a 

surrogate has been chosen, measures of surrogate species’ richness and distributions can 

be used to assess species-environment relationships and inform conservation planning. 

However, measurements of species’ diversity and distributions are often analyzed as 

static properties of regional biodiversity, and this can undermine the overall effectiveness 

of the conservation strategies they are informing (Poiani et al. 2000, Margules et al. 

2002). Modeling approaches have recently been used to incorporate species’ dynamic 

distributions into understanding their responses to changing environmental conditions, 

enabling better conservation prioritization (Reside et al. 2010, 2012; Runge et al. 2015a, 
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2016; Ikin et al. 2016; Webb et al. 2017). However, many approaches to understanding 

community-level responses still rely on relatively simple and static measures of 

biodiversity (i.e. species richness; Veach et al. 2017), which can fail to consider the 

spatiotemporal processes that underpin regional biodiversity, such as species’ assemblage 

composition and turnover. 

 

Beta diversity is the spatial variation in species composition, and can be measured as the 

rate at which species composition changes along an environmental gradient (i.e. 

compositional turnover; Anderson et al. 2011). Factors such as habitat area, habitat 

isolation, and species’ dispersal are known to influence turnover (Soininen 2010), and 

identification of these relationships are required to ensure maintenance of biodiversity 

and ecosystem functioning. For example, landscape context can determine local and 

regional species’ pools, and well-connected landscapes allow species’ dispersal following 

disturbance (Oliver et al. 2015). This has been demonstrated in coral reef systems where 

spatiotemporal variation in coral reef fish beta diversity allows communities to remain 

stable following extreme environmental disturbances through biomass replacement 

(Lamy et al. 2015). Furthermore, environmental heterogeneity can increase beta-

diversity, as is demonstrated by small-scale habitat heterogeneity provided by shell debris 

in soft-sediment coastline areas (Hewitt et al. 2005). 

 

Although regional-scale management of environment and beta-diversity pattern-process 

relationships is important, there is a probable trade-off between generalizing broad-scale 

community-level assessment information with detailed knowledge regarding population 

responses to finer-scale environmental heterogeneity. Therefore, when possible, regional 

assessment should integrate analytical approaches that will provide the best 

understanding of multiple species responses to environmental heterogeneity at different 

spatiotemporal scales. 

1.4 Case study: coastal forest avifauna of regional northeast Australia 
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Australia is a continent characterized by high inter-annual variability in climatic 

conditions and resource availability (Hobbs et al. 1988). Consequently, the movement 

patterns of many Australian bird species are highly variable and difficult to predict, 

ranging from local, regional, to intercontinental (Griffioen and Clarke 2002). Moreover, 

many sedentary Australian bird species are likely to be more mobile than expected 

(Maron et al. 2005), or exhibit partial migration (i.e. sedentary and migratory individuals 

or populations occur within a species; Chan 2001). The documented dynamism in 

Australian bird assemblages and their movements is likely associated with heterogeneous 

environmental conditions, such as spatiotemporally variable nectar and insect resources 

(Chan 2001).  

 

Australia’s northeast coast has suitable attributes for investigating interrelationships 

between environmental heterogeneity and connectivity, and for considering the 

consequences for biodiversity, ecosystem functioning and resilience. This region is 

comprised of a concentrated diversity of vegetation with fluctuating resource availability, 

and its coastal forest avifauna is an assemblage of variably mobile species (i.e. sedentary, 

nomadic, and migratory). Using coastal forest avifauna as a variably mobile biodiversity 

surrogate, I evaluate their responses and relationships to heterogeneity and connectivity, 

and consider the implications for ecosystem functioning. I approach this complex system 

with integrated analyses: spatial assessment of landscape-use, isotopic assessment of 

resource-use, and nutrient assessment of cross-ecosystem linkages (Figure 1-1). Using 

this assessment information, I consider the effectiveness of current protection measures 

for whole-landscape ecosystem functioning in coastal northeast Australia.  
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Figure 1-1 Conceptual diagram illustrating the integrated analytical approach used to 

inform protection of whole-landscape ecosystem functioning for coastal forest avifauna 

of regional northeast Australia: a) spatial assessment of landscape use, b) isotopic 

assessment of resource use, and c) nutrient assessment of cross-ecosystem linkages 

provided by a migratory species. Landscape colors represent vegetation types (NVIS 

2012), and arrows indicate local, regional, and cross-ecosystem bird movements.  

1.4.1 Overview of integrated approach to regional assessment of variably mobile 

avifauna 

 

Acquiring a whole-landscape understanding of highly complex and heterogeneous 

systems that host variably mobile species will require a set of integrated assessment 

approaches. Here, I outline the integrated approach used in this study. Mangrove forests 

sit at the coastal land-sea interface; making them an ideal habitat to review how bird 

species require and facilitate connectivity processes in heterogeneous coastal landscapes 

(Chapter 2). Next, to specifically assess regional landscape patterns and processes 
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influencing northeast Australia’s coastal forest avifauna, I surveyed the composition of 

bird assemblages in four of the major coastal forest types occurring throughout the region 

(i.e. Eucalypt, Melaleuca, mangrove, and rainforest). Subsequently, spatial patterns of 

habitat configuration within the coastal landscape (i.e. structural connectivity) were 

quantified to understand broad relationships between coastal forest bird assemblage 

composition and landscape heterogeneity at multiple spatial scales (Chapter 3, Figure 1-

1 a). To provide more detailed information regarding the response of coastal forest 

generalists and mangrove specialists to specific forest attributes, functionally connected 

forest networks were developed to assess the relative importance of forest area, 

availability, and connectivity to their compositional turnover (Chapter 4, Figure 1-1 a).  

 

Understanding landscape pattern-process relationships that drive bird assemblage 

composition and turnover can inform the prioritization of regional-scale landscape 

features for protection. However, species’ responses to local-scale spatiotemporal 

variability in resource availability may also be playing a role in these relationships. I used 

isotopic analysis to better understand the foraging ecology of coastal forest birds in a 

highly dynamic mangrove forest environment (Chapter 5, Figure 1-1 b).  

 

Finally, mobile species not only respond to landscape patterns and processes, but can also 

facilitate processes, such as connectivity, through their movement (e.g. nutrient transfer, 

pollination, genetic linking, etc.). To determine the implications of avian mobility for 

ecosystem functioning in northeast Australia, I focused on a migratory coastal forest bird 

species, the Pied Imperial-Pigeon (Ducula bicolor). Specifically, I used nutrient 

measurements to assess the consequences of Pied Imperial-Pigeon daily migrations for 

transferring nutrients from mainland to island ecosystems (Chapter 6, Figure 1-1 c).  

 

In the general discussion (Chapter 7), I place the results of the integrated analytical 

approach within a whole-landscape conservation context. I consider the effectiveness of 

the protected area network that is currently established in coastal northeast Australia, and 

provide recommendations for moving towards whole-landscape protection of variably 
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mobile species assemblages. This is the first comprehensive work to take a broad range 

of approaches to better understand the functioning of this complex landscape.
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2 A birds-eye view of biological connectivity in mangrove systems 
 

2.1 Abstract  
 
Considerable advances in understanding of biological connectivity have flowed from 

studies of fish-facilitated connectivity within the coastal ecosystem mosaic. However, 

there are limits to the information that fish can provide on connectivity. Mangrove bird 

communities have the potential to connect coastal habitats in different ways and at 

different scales than fish, so incorporation of these links into our models of coastal 

ecosystem mosaics affords the opportunity to greatly increase the breadth of our 

understanding. We review the habitat and foraging requirements of mangrove-bird 

functional groups to understand how bird use of mangroves facilitates biological 

connectivity in coastal ecosystem mosaics, and how that connectivity adds to the 

diversity and complexity of ecological processes in mangrove ecosystems.  

Avian biological connectivity is primarily characterized by foraging behaviour and 

habitat/resource requirements. Therefore, the consequence of bird links for coastal 

ecosystem functioning largely depends on patterns of habitat use and foraging, and 

potentially influences nutrient cycling, top-down control, and genetic information 

linkage. Habitats that experience concentrated bird guano deposition have high levels of 

nitrogen and phosphorus, placing particular importance on the consequences of avian 

nutrient translocation and subsidization for coastal ecosystem functioning.  

High mobility allows mangrove-bird communities to link mangrove forests to other 

mangrove, terrestrial and marine-pelagic systems. Therefore, the spatial scale of coastal 

connectivity facilitated by birds is substantially more extensive than fish-facilitated 

connectivity. In particular, migratory birds link habitats at regional, continental, and 

inter-continental scales as they travel among seasonally available feeding areas from 

breeding grounds to non-breeding grounds; scales at which there are few fish equivalents. 

Knowledge of the nature and patterns of fish connectivity have contributed to shifting the 

initial, historical perception of mangrove-ecosystem functioning from that of a simple 
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system based on nutrient and energy retention, to a view that includes fish-facilitated 

energy export. In a similar way, understanding the nature and implications of mangrove 

connectivity through bird movements and migrations affords new possibilities for 

revising our view of the extent of functional links between mangroves and other 

ecosystems.  

2.2 Introduction 

 

Many animals require multiple habitats to complete their life-histories, establishing 

biological connectivity as specific habitats are used at different life-history stages for 

different purposes. The movement of animals links habitats into an interconnected 

ecosystem mosaic (Sheaves 2009). The exact way different species use component 

habitats within ecosystem mosaics varies spatially and temporally in species-specific, 

daily, seasonal, ontogenetic or gender-related ways (Law and Dickman 1998, Sheaves 

2005). For example, some bat species switch between their roosting and foraging habitat 

on a daily basis, while other species demonstrate gender-driven patterns of habitat use 

because females require different resources than males during lactation (Law and 

Dickman 1998). The necessary movement of animals between habitats is a key facilitator 

of biological connectivity within ecosystems, and has consequences for nutrient transport 

and cycling (Sheaves and Molony 2000, Clark et al. 2009), patterns of top-down control 

(Sheaves et al. 2006) and the transfer of genetic information (Green and Figuerola 2005). 

Coastal ecosystem mosaics consist of inter-connected marine, estuarine, freshwater and 

terrestrial habitats (Sheaves 2009). At the center of the mosaic are a variety of shallow 

and intertidal habitats that occupy the interface between land and sea. Mangroves provide 

unique forest habitat that extend into the intertidal zone of tropical and sub-tropical 

latitudes, enabling terrestrial and marine organisms to interact across a broad land-sea 

ecotone (Sheaves 2009). Mangroves are prized for their high productivity relative to their 

low vegetative diversity, and for their ability to support highly diverse communities 

(Kathiresan and Bingham 2001, Nagelkerken et al. 2008, Alongi 2009b, Feller et al. 
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2010). Mangrove ecosystems have also been central to many of the developments in 

coastal connectivity understanding because of the key roles they play as nursery habitat 

for many marine fish species, often forming critical components of local-scale ecosystem 

mosaics (Nagelkerken et al. 2013).  

Associated with their intertidal position is the physically-dynamic nature of mangrove 

forests. The dynamic nature of mangrove forests will influence biological connectivity 

and nutrient flow, due to a number of eco-physiological factors and processes that can 

influence nutrient availability and mangrove metabolism (Alongi 2009a). Temperature, 

atmospheric carbon-dioxide levels, salinity and sea-level rise affect photosynthetic and 

growth rates of mangrove forests (Krauss et al. 2008, Alongi 2009a). Additional factors 

such as tidal inundation, redox status, soil type, zonation, latitude and sedimentation will 

also influence mangrove productivity through nutrient availability (Lovelock et al. 2007, 

Feller et al. 2009, Reef et al. 2010). The complexity of processes regulating nitrogen and 

phosphorus availability in mangrove forests (nitrogen and phosphorus are nutrients 

documented to limit mangrove productivity; Reef et al. 2010) means that nutrient 

limitation will vary at both narrow and broad eco-tonal gradients (Feller et al. 2002, 

Feller et al. 2009). Therefore, understanding biological connectivity and nutrient flow in 

mangrove forests will require investigation over a broad spatio-temporal range, and will 

need to consider a wide-range of eco-physiological factors.   

The realization that ecosystem mosaics, rather than single habitats, are important for 

species' survival is an emerging and important theme in coastal-ecology conservation. 

For example, understanding the importance of mangroves as nursery habitat for coral-reef 

fish has led to the development of algorithms that incorporate mangrove-coral 

connectivity into marine-reserve area planning (Mumby 2006). Although mangrove 

forests provide important habitat for many animals, they are facing destruction at an 

alarming rate with up to 50% already lost around the world (Feller et al. 2010), primarily 

due to anthropogenic factors (Kathiresan and Bingham 2001). Without carefully planned 

conservation much of the remaining forest area is likely to continue to suffer decreases in 

biodiversity, resilience to disturbance and connectivity (Beger et al. 2010). In addition to 
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rapid degradation, the role that mangroves play in supporting a wide range of fauna and a 

diversity of key processes underscores the urgent need to investigate the full spectrum of 

ways that mangrove forests enhance coastal ecosystem connectivity. 

2.2.1 Mangrove connectivity 

 

Up to the present, coastal connectivity studies have focused on the movement of fish 

between mangrove forests and nearby habitats for completion of their life history 

migrations; a perspective that has shaped the idea of mangroves as part of an 

interconnected habitat mosaic (Sheaves 2005, Feller et al. 2010). Inshore fish use 

mangroves as nursery habitat because mangrove forests provide abundant food and 

shelter from predation for early juvenile stages (Sheaves 2005, Unsworth et al. 2008, 

Alongi 2009b, Feller et al. 2010). Connectivity contributes to the nursery ground value of 

mangroves for juvenile fish by providing ecological services such as nursery habitat, 

access to resources and regulating physical conditions (Sheaves et al. 2014b). The 

configuration of habitats within the coastal ecosystem mosaic influences the species and 

age classes of fish using these habitats due to differences in predation risk, with fish 

undergoing sequential ontogenetic migrations (e.g. mangrove to seagrass to coral reef) as 

their stage-specific requirements change (Dorenbosch et al. 2007, Unsworth et al. 2008). 

Therefore connectivity between mangroves and adjacent habitats due to fish ontogenetic 

development plays an important role in shaping fish assemblages, in ecological 

functioning and in supporting near-shore fish stocks and fisheries. 

Fish-facilitated biological connectivity in coastal ecosystems has important food web 

implications. Mangrove food webs were formerly thought to be simple systems 

dominated by detritus and detritivores (Alongi 2009b), with detritivorous crabs retaining 

mangrove productivity within the forest (Feller et al. 2010). However, upon closer 

inspection, predatory fish feeding on these crabs during tidal inundation can export a 

considerable amount of mangrove productivity (Sheaves and Molony 2000). 

Consequently, the movement of fish modifies the flow of nutrients between habitats, 

resulting in considerable trophic coupling throughout the coastal ecosystem mosaic. 
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Thus, investigation of connectivity among mangroves and other components of the 

coastal ecosystem mosaic has brought a much fuller understanding of ecological 

functioning at a whole-ecosystem level.  

While the fish-centric focus of mangrove connectivity studies has provided new insights, 

a broader range of study will build on the types and extents of connectivity that can be 

conceptualized. It is time to explore this concept more extensively by considering groups, 

such as birds, that interact with mangroves and adjacent components of the ecosystem 

mosaic in different ways and at more expansive spatio-temporal scales. For example, fish 

connectivity between mangroves and coral reefs typically spans 10’s of kilometres 

(Mumby 2006), while migratory birds can link mangrove systems at scales reaching 

1000’s of kilometres (Barter and Hou 1990). The high mobility of birds makes them 

obvious candidates for extending mangrove connectivity research into a larger spatial 

context (Morales and Pacheco 1986), and their interaction with both terrestrial and 

marine environments provides possibilities for categories of interactions beyond those in 

which fish participate (Figure 2-1). 

Depending upon the location, mangrove bird communities can be species-rich relative to 

their low floristic diversity (Table 2-1; Noske 1996, Mohd-Azlan et al. 2012). This is 

contrary to the expectation that low floristic diversity results in decreased productivity 

and species richness (Recher et al. 1996). Despite their diversity and abundance in 

mangrove systems, birds have not been incorporated into current mangrove-connectivity 

theory. Depending on the foraging guild they belong to, birds will use mangrove habitat 

for roosting, breeding, and refuge (Noske 1996, Kutt 2007), but will occupy other coastal 

habitats for foraging purposes (e.g. rainforest, tidal mudflat and marine-pelagic 

environments; Nagelkerken et al. 2008). There appears to be very few mangrove-bird 

species that depend solely upon mangrove habitat for survival (Nagelkerken et al. 2008), 

suggesting the potential for substantial and widespread connectivity with other habitat 

types.  
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Figure 2-1 Comparison of the spatial degree of connectivity facilitated by inshore fish vs. 

mangrove avian functional groups (i.e. migratory birds, piscivores, frugivores, 

granivores, nectarivores, and insectivores). 
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Table 2-1 Species richness of mangrove avifaunal communities from survey locations 

around the world. These studies focused primarily on terrestrial birds and excluded 

migrants. 

Survey 

Location 

Species 

Richness 

Reference(s) 

Australia 47-70 Ford (1982), Noske (1996), Kutt 

(2007) Mohd-Azlan (2010) 

Malaysia 47 Noske (1995) 

Singapore 42 Sodhi (1997) 

Brazil  59 Mestre (2007) 

Puerto Rico 26 Acevedo and Aide (2008) 

India 32 Kumar and Kumara (2011) 

Panamaa 104 Lefebvre and Poulin (1997) 

aThe survey in Panama was conducted at two sites on opposite coastlines, and included 

waterbirds and migrants (10 species) in addition to terrestrial bird species.  

 
Their dependence on alternative foraging habitats implies that many mangrove birds are 

“link species” that perform ecological functions and services essential to ecosystem 

functioning (Lundberg and Moberg 2003). Examples of avian ecological functions 

include: frugivorous birds that facilitate seed dispersal to suitable nursery habitats, and 

piscivorous birds that translocate nutrients from aquatic ecosystems to terrestrial 

ecosystems (Sekercioglu 2006). Connectivity promoted by mobile link species increases 

the complexity of trophic structuring within ecosystem mosaics, although obligate 

connectivity can also increase the vulnerability of link species to habitat degradation 

because of their dependence on multiple habitats for survival (Sheaves 2005). In fact, 

there have been documented decreases in mangrove-dependent bird populations due to 

mangrove destruction and fragmentation (Alongi 2009b). 
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Incorporation of birds into concepts of coastal ecosystem connectivity provides the 

potential to expand understanding of this process in new and valuable directions. This 

expansion in scale and context needs to be built into coastal connectivity models and 

theories, as the concept of biological connectivity is primarily focused on achieving a 

more accurate and holistic view of ecosystem functioning. This review explores the role 

that avifauna play in connecting mangroves to other habitats within coastal ecosystem 

mosaics and the consequences for coastal ecosystem functioning.  

2.3 Avian functional connectivity in mangrove ecosystems 

 

Bird movement is an important factor for the transfer of energy within and among coastal 

ecosystem mosaics, which is mainly driven by daily foraging behavior, breeding/roosting 

requirements, and seasonal migration patterns. Functional grouping of avian species 

based on diet provides a useful basis for assessment of their movement in coastal 

interconnected habitats, providing insight to the ecological function of each bird species 

(Sekercioglu 2006). Functional connectivity is an important tool used when studying 

rainforest bird habitat fragmentation, and has demonstrated that certain ecosystem 

characteristics (e.g. distance to or size of adjacent habitats) are of different importance to 

each functional group (Awade and Metzger 2008, Martensen et al. 2008). Consequently, 

an examination of mangrove-bird foraging behavior provides a fruitful avenue for 

illuminating the consequences of mangrove-bird habitat linkage (Figure 2-2).  
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Figure 2-2 Connectivity facilitated by avian functional groups in the coastal ecosystem 

mosaic. Some species of each avian functional group move between mangrove forest and 

adjacent habitat, while other species will stay within the mangrove forest depending upon 

resource availability and abundance. 

Avifaunal community surveys to date have revealed a diversity of avian functional 

groups in mangrove forests worldwide. At a rudimentary level of classification, 

mangrove avian functional groups include: frugivores, granivores, nectarivores, 

piscivores, insectivores and temporary migrants (insectivores are the most abundant 

group; Noske 1996, Lefebvre and Poulin 1997, Mestre et al. 2007, Acevedo and Aide 

2008, Mohd-Azlan et al. 2012). Patterns of functional group assemblage in mangrove 

forests are influenced by mangrove zonation, habitat type surrounding the mangrove 

forest and seasonality; all of which determine food availability (Lefebvre and Poulin 

1997, Kutt 2007, Mohd-Azlan and Lawes 2011). The following subsections illustrate the 

habitat requirements of each avian functional group and demonstrate how mangrove 

forests meet these requirements.  

2.3.1 Frugivores and Granivores  
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Frugivores and granivores require foraging habitat with abundant fruit and seed resources 

(Howe and Smallwood 1982). Mangrove forests do not fulfill these foraging 

requirements because fruits and grains are scarce in mangrove forests, and mangrove-

fruits tend not to be eaten by birds because they are not fleshy (Noske 1995, Lefebvre and 

Poulin 1997, Mohd-Azhlan et al. 2012). Consequently, granivores roost in mangroves 

with adjacent savanna or grassland habitat, while frugivores are more abundant in 

mangroves that have fruiting, terrestrial-forest habitat nearby (Noske 1996, Lefebvre and 

Poulin 1997, Trainor 2002, Kutt 2007, Mohd-Azlan et al. 2012).  

Daily foraging trips by frugivores and granivores to adjacent fruit/seed abundant habitats 

can facilitate a high degree of coastal connectivity. For example: pigeon species in both 

Australia and Florida prefer to nest in island mangrove forests and fly to mainland 

terrestrial forests on foraging trips up to 20 kilometers in length (King 1990, Bancroft et 

al. 2000). Thus the configuration and identity of adjacent habitats has a substantial 

influence on the types of birds using mangroves, and consequently on the nature and 

outcomes of connectivity. The pigeon example underlines the difference in scales of fish 

and bird connectivity, with pigeon ‘local-scale connectivity’ of 20 kilometers at least an 

order of magnitude greater than ‘local-scale’ fish movements (Nagelkerken et al. 2013). 

There is a lack of research exploring why frugivores and granivores choose to nest or 

roost in mangroves over terrestrial habitats where their food sources are abundant. 

Perhaps the closed-canopy of mangrove forests provides shelter, and the water 

surrounding the forest deters predators. However, artificial bird nests in mangrove and 

rainforest habitats often experience higher predation than nests in open canopy habitats 

(Noske et al. 2008); suggesting that protection from predation is not necessarily the 

reason. Alternatively, it may be that competition for space excludes some groups of 

frugivores and granivores from other habitats, forcing them to use mangrove forests as 

alternate roosts. 

2.3.2 Nectarivores 
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There are few nectar-producing plant species in mangrove forests, causing foraging, 

nectarivorous birds to regularly link mangroves to adjacent nectar-abundant habitats (e.g. 

savanna/dune habitat in Australia; Noske 1996, Kutt 2007, Mohd- Azlan et al. 2012). Of 

particular interest to coastal ecosystem connectivity are species of Australian honeyeaters 

that are primarily nectarivorous. The high mobility of Australian honeyeaters may afford 

them the unique ability to connect flowering habitats over long distances (i.e. hundreds of 

kilometers) as they follow patterns of asynchronous flowering phenology (Craig and 

MacMillan 1985, McGoldrick and MacNally 1998).  

In addition to the flowering phenology of adjacent habitats, the vegetative composition of 

the mangrove forest itself may also influence patterns of nectarivore foraging movement. 

Indo-malayan mangrove forests contain the nectar-producing mangrove genus Bruguiera, 

and some species have large, long flowers that enable birds to exploit their nectar 

resources (Noske 1993). The presence of bird-accommodating Bruguiera species will 

cause avian foraging patterns to differ from mangrove forests lacking these species. The 

consequences of vegetative composition is described in Venezuela, where nectarivores 

(specifically Coerebids) will move into flowering mangrove forests during the dry season 

when nectar resources are low in nearby habitats (Lefebvre et al. 1994). Therefore, 

mangrove forest community composition may play an important role in the nature and 

extent of avian connectivity in mangrove and coastal ecosystems.  

Omnivory by nectarivorous birds complicates the idea that they rely primarily upon either 

nectar-producing mangroves or nearby nectar-abundant terrestrial forests. Many 

nectarivorous birds are not completely dependent upon nectar for food and supplement 

their diet with fruits or invertebrates, allowing mangrove forests to partially fulfill their 

foraging requirements (Feinsinger and Colwell 1978, McGoldrick and MacNally 1998, 

Franklin and Noske 2000). Thus, nectar feeders are able to collect substantial nutrition in 

mangrove forests even if nectar-producing mangroves are absent. Mangroves may 

provide premium habitat for nectarivores looking to supplement their diet during times of 

low nectar availability, due to high insect abundance in mangroves (Burrows 2003, 

Cannicci et al. 2008). These factors imply that the degree of omnivory within a 
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nectarivorous species is likely to have a substantial effect on their facilitation of 

connectivity by foraging, and should be considered when investigating nectarivorous 

mangrove avifauna.  

2.3.3 Piscivores   

 

A variety of fish-eating birds use coastal habitats including: wading birds (e.g. herons, 

egrets, cranes), seabirds, and carnivorous forest birds (e.g. kingfishers, raptors). Three 

piscivorous birds have become dependent upon mangrove habitat in Australia: the 

Striated Heron, Collared Kingfisher, and Great-billed Heron (Table 2-2; Ford 1982, 

Noske 1996, Kutt 2007). Mangrove forests present unique foraging opportunities for 

these wading birds, providing both freshwater and marine foraging habitats (Ramo and 

Busto 1993, Acevedo and Aide 2008). Of particular value are freshwater mangrove 

swamps that retain their water continuously, providing year-round access to prey and 

drinking water (Ramo and Busto 1993, Woodin 1994). In addition to foraging, many 

wading birds use mangroves as breeding habitat, suggesting that they provide high-

quality nursery habitat with access to food and shelter (Ghasemi et al. 2012). The 

extensive use of mangroves for feeding, breeding and roosting (Stolen 2006, Ma et al. 

2010) means there is considerable potential for wading birds to contribute to connectivity 

among coastal ecosystems.  

In contrast to wading birds, there has been no substantial study of seabird use of 

mangrove habitats. However, there are reports of breeding and/or roosting seabirds (such 

as pelicans and frigate birds) in mangroves (Onuf et al. 1977, Powell et al. 1991, 

Ghasemi et al. 2012). Similar to the situation for other mangrove birds that forage in 

adjacent habitats, it is likely that seabirds breed/roost in mangroves that are nearby high-

quality, marine-pelagic foraging habitat (e.g. areas of upwelling; Butler et al. 2001, 

Vilchis et al. 2006). During their breeding season seabirds are confined to foraging in 

pelagic habitats near their colonies (Vilchis et al. 2006), making breeding sites near high-

quality foraging habitats critical for reproductive success. However, some seabirds travel 

up to 250 kilometers on daily foraging trips if local geography requires it (e.g. Marbled 
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Murrelets in SE Alaska; Whitworth et al. 2000), suggesting a potential role for seabirds in 

connecting marine-pelagic foraging habitat to mangroves at large distances. 

Table 2-2 Bird species dependent upon Australian mangroves (categorized by their 

functional group according to: Barker and Vestjens 1989, Barker and Vestjens 1990). 

Mangrove-dependence is defined broadly, ranging from mangrove as the species’ 

principal habitat to mangrove as one of multiple woodland/forest habitats used.  

Mangrove-dependent bird 

species 

 

Study reference and location 

 

 

 

 

Insectivores 

Ford 

(1982) 

 

Western 

Australia 

Noske  

(1996) 

 

Western 

Australia 

Kutt 

(2007) 

 

Eastern 

Australia 

Mohd-Azlan et 

al. (2010) 

Northern 

Territory 

Mangrove Fantail 
(Rhipidura phasiana) 

X X  X 

Mangrove Golden Whistler 

(Pachycephala melanura) 

X X  X 

Broad-billed Flycatcher 

(Myiagra ruificollis) 

X X  X 

Mangrove Robin 

(Peneoenanthe pulverulenta) 

X X X X 

Mangrove Gerygone 
(Gerygone levigaster) 

X X X X 

Yellow White-eye 

(Zosterops luteus) 

 X  X 

Dusky Gerygone 

(Gerygone tenebrosa) 

X    

Large-billed Gerygone 

(Gerygone magnirostris) 

X X   

Kimberly Flycatcher 
(Myiagra nana) 

X    

White-breasted Whistler 

(Pachycephala lanioides) 

X X   
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Little Shrike-thrush 

(Colluricincla megarhyncha) 

X    

Shining Flycatcher 

(Myiagra alecto) 

  X  

Little Bronze-cuckoo 
(Chysococcyx minutillus) 

  X  

Mangrove Honeyeater 

(Gavicalis fasciogularis) 

X    

Varied Honeyeater 

(Gavicalis versicolor) 

  X  

Graceful Honeyeater 

(Meliphaga gracilis) 

  X  

Nectarivores     

Red-headed Honeyeater 

(Myzomela erythrocephala) 

X X  X 

Brown Honeyeater 
(Lichmera indistincta) 

 X X  

Piscivores     

Striated Heron 

(Butorides striata) 

 X  X 

Great-billed Heron 

(Ardea sumatrana) 

X X   

Collared Kingfisher 

(Todiramphus chloris) 

 X X X 

Omnivore     

Black Butcherbird 

(Melloria quoyi) 

X X  X 

Chestnut Rail 
(Eulabeornis castaneoventris) 

   X 

Total 14 14 8 11 

 

2.3.4 Insectivores 
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Mangrove forests support large and diverse communities of insects (Burrows 2003, 

Cannicci et al. 2008). Consequently, mangrove bird communities are composed primarily 

of insectivores that do not need to leave the mangrove forest for foraging purposes 

(Noske 1996, Luther and Greenberg 2009). Mature mangrove forests that are separated 

from the direct flow of seawater retain large amounts of litter and deadwood, providing 

important foraging substrate for insectivorous birds such as the Mangrove Finch (Fessl et 

al. 2011). Additionally, wide ranges of foraging niches are available to forest birds within 

mangrove habitats (i.e. gleaning, poking, probing, scaling, hawking and hovering) due to 

the structural complexity of mangrove forests (Noske 1996, Sodhi et al. 1997).  

Contrary to what would be expected in such a niche-abundant habitat, inter-specific 

competition does not determine mangrove-bird species assemblage because there is a 

lack of bird community saturation in mangrove forests (Mohd-Azlan et al. 2012). Lack of 

community saturation is perhaps because many insectivorous birds are not mangrove-

dependent, and in fact occupy both mangrove and terrestrial forests in a transient manner 

(Mestre et al. 2007, Mohd-Azlan and Lawes 2011). The highest proportion of mangrove-

dependent birds (~15%; Nagelkerken et al. 2008) is considerably lower than proportions 

of terrestrial forest-dependent birds (~61%; Watson et al. 2004). Less mangrove-

dependency may foster a higher degree of biological connectivity in mangrove-bird 

communities compared to analogous, littoral-forest bird communities.  

Insectivore presence in mangroves is driven by insect abundance, which is influenced by 

the following habitat characteristics: mangrove area, mangrove-plant species 

composition, flowering, and amount of rainfall (Lefebvre and Poulin 1997, Sodhi et al. 

1997, Mohd-Azlan et al. 2014). Hydrographic characteristics, such as tidal cycles, may 

also provide additional foraging opportunities for generalist, mangrove insectivores that 

feed upon small crabs (e.g. the Mangrove Robin (Noske 1996) and the Shining 

Flycatcher (Sheaves, personal observation)). In comparison to terrestrial forests, small 

crabs are a resource uniquely available in mangroves during low tide, which may be 

particularly important during periods of low rainfall and reduced insect abundance. 

Dependence upon small crabs as a food resource would establish a daily foraging 
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migration by generalist insectivores into the mangrove forest at low tide, and facilitate 

regular connectivity between mangrove and adjacent, terrestrial forest habitats.  

2.3.5 Migratory Birds 

 

Migratory birds have the potential to link mangroves and other coastal habitats at the 

largest geographic scales. Many temperate shorebirds, wading birds and passerines fly to 

tropical areas during their non-breeding seasons (Butler et al. 1997) and spend six to 

eleven months in tropical wintering habitats (Norris et al. 2004, Studds and Marra 2005). 

High-quality wintering habitat is critical for migrant survival and reproductive success, 

and mangrove wetlands have been identified as important winter habitat for migrating 

waterbirds (Ghasemi et al. 2012) and passerines (Reitsma et al. 2002).  

Insectivorous, passerine migrants use mangroves as roosting and foraging habitat. 

Mangroves may be preferred foraging habitat due to high and consistent prey availability 

that is fostered by a lack of rainfall seasonality and high moisture levels (Lefebvre and 

Poulin 1996, Smith et al. 2010). High insect abundance in mangroves has been shown to 

increase the reproductive success of migratory American-redstarts that are able to 

overwinter in mangrove forests instead of adjacent, low-quality scrub habitat (Studds and 

Marra 2005). In addition to prey availability, flooding drives the daily foraging behavior 

of migrant insectivores that use mangrove pneumatophores as foraging substrate 

(Reitsma et al. 2002). Therefore, high mobility is a requirement for migrant passerines to 

successfully forage in physically-dynamic, mangrove habitat.   

In addition to providing foraging habitat, mangroves are also selected as favorable 

roosting sites by passerine migrants that forage in habitats up to 2 kilometers away 

(Smith et al. 2008). Thermoregulatory benefits associated with warm, moist, mangrove 

microclimates may explain mangrove-roost fidelity. Thermoregulation is important for 

weight gain in migratory passerines, however Smith et al. (2010) found nightly weight 

loss in mangrove-roosting passerines equivalent to the weight loss of passerines roosting 

in temperate areas. Further investigation of weight loss in migrant passerines that roost in 



 

28 
 

 
Chapter 2: A birds-eye view of biological connectivity in mangrove systems 

 

  

tropical areas is needed to establish whether mangrove roosts are preferred for the 

thermoregulatory benefits they provide.        

Access to suitable roosting sites is a key factor determining habitat selection by migratory 

wading birds and shorebirds (Li and Lee 1998, Zharikov and Milton 2009), and 

mangroves provide preferential roosting habitat if there are adjacent, tidal mudflats for 

foraging (Zou et al. 2006, Acevedo and Aide 2008). The importance of the tidal-

mudflat/mangrove link to migratory wading/shorebirds has been demonstrated in the 

Persian Gulf (Ghashemi et al. 2012), Neotropical Panama (Butler et al. 1997), China 

(Zou et al. 2008) and Australia (Zharikov and Milton 2009). Roosting migrants will make 

daily trips to foraging habitat up to 20 kilometers away (Green and Sanchez 2006), and a 

high degree of tidal-mudflat/mangrove landscape connectivity may allow birds to search 

for food over shorter distances and reduce the energetic cost of foraging (Farmer and 

Parent 1997). In addition to high landscape connectivity, suitable mangrove roosting sites 

also require shallow-water areas for access to fish prey and cooling habitat (Wong et al. 

1999, Zharikov and Milton 2009, Kumar and Kumara 2011).  

 

Wading birds and shorebirds may prefer mangrove roosting habitat due to mangrove 

subsidization of prey availability in adjacent, foraging habitats (but see Lee 2000; Butler 

et al. 1997). Alternatively, mangrove roosts may provide a refuge from predators (Zou et 

al. 2008) due to their structural complexity (Surman and Wooller 1995, Zharikov and 

Milton 2009). However, Kober and Barlein (2006) argue that mangrove forests 

experience a higher abundance of raptor predators, causing shorebirds to avoid foraging 

areas with mangroves nearby (and see Rogers et al. 2006). Discrepancies in 

wading/shorebird use of mangrove roosts may be remedied by survey technique, and a 

combination of terrestrial and aerial surveys should be employed to obtain the most 

accurate estimates (Rodrigues 2007).  

2.4 Consequences of avian connectivity for coastal ecosystem functioning 
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Schmitz et al. (2014) has proposed the idea of “animating the carbon cycle”, calling for 

more research to shed light on the role that animals play in the transfer and cycling of 

energy within ecosystems. In particular, top predators have been neglected when 

considering ecosystem energy flow, especially in comparison to the studies of microbes 

and plants which have traditionally been viewed as the main drivers of carbon cycling 

(Schmitz et al. 2010). Previous studies of energy flow have shown that secondary 

production in mangrove ecosystems is either: 1) not derived from mangrove plants, but 

instead from other nearby habitats such as seagrass or 2) mangrove carbon is of poor 

nutritional quality and therefore does not play a major role in supporting secondary 

production (but see Bui and Lee 2014; Bouillon et al. 2008, Heithaus et al. 2011, Sheaves 

et al. 2014a).  In Australian mangroves, Abrantes and Sheaves (2009) describe a complex 

food web comprising 4 trophic levels with several pathways transferring carbon to the top 

of the food chain, and only one pathway was of mangrove origin. Regardless of the origin 

of carbon in mangrove food webs, consumers play an important role in its cycling and 

transfer due to their abundance and consumption rate (Kristensen et al. 2008). 

Previous studies of predators in mangrove food webs have limited their scope to fish, and 

have disregarded birds as top predators. Birds may compete with fish as top predators and 

shorten the food chain by preying upon primary consumers such as detritivorous fish or 

crabs. Alternatively birds may prey upon top, piscivorous fish as well, thereby enhancing 

the rate of nutrient cycling within and out of the mangrove ecosystem. The following 

subsections look at the role that avian connectivity may play in coastal ecosystem 

functioning including: nutrient translocation, seasonal influences, top down control, and 

genetic information linking (Table 2-3). 

Table 2-3 Ecosystem functions associated with avian functional group connectivity in 

mangrove forests and areas for future research. 

Ecosystem 

Function 

Avian Functional 

Group 

Consequence Future Research Direction(s) 
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Nutrient 

Translocation 

Piscivorous 

Colonial 

Roosting/Breeding 

Birds 

Provide concentrated 

nutrient subsidy to 

roosting/breeding 

habitat 

Seabird use of mangrove 

habitat and the spatio-

temporal degree of 

connectivity they facilitate 

Top-down 

Control 

Forest Insectivores Increased mangrove 

productivity 

1.) Avian insectivore initiation 

of a trophic cascade that 

increases mangrove 

productivity 

2.) Daily foraging migrations 

by generalist insectivores to 

feed upon crabs at low tide  

Piscivorous 

Wading Birds 

Spread effects of 

predation and 

transfer nutrients 

throughout the 

ecosystem mosaic 

(vs. fish confined to 

one wetland pool) 

Effect of climatic conditions 

(i.e. drought) on wading bird 

foraging behaviour (may 

concentrate predation in small 

wetland pools) 

Genetic 

Information 

Linking 

Nectarivorous 

Honeyeaters 

Spread nutrients and 

facilitate pollination 

across a wide array 

of habitats  

Effect of omnivory on 

nectarivore-facilitated 

connectivity 

Migratory 

Waterbirds 

Long-distance and 

regional dispersal of 

aquatic plants and 

invertebrates 

Studies of wading bird 

movement and foraging 

behaviour in conjunction with 

propagule transport and 

survivorship 

Frugivores and 

Granivores 

Long-distance and 

local seed dispersal 

1.) Pigeon species’ potential 

to facilitate local connectivity 

at a large scale (20km +) 

2.) Mechanism of mistletoe 

infection into new mangrove 

host areas 
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2.4.1 Nutrient translocation  

 
Mangroves can either act as nutrient sources or sinks within the coastal ecosystem 

mosaic, depending on the net transport of nutrients into or out of the mangrove ecosystem 

(Twilley and Day 1999, Sheaves 2009). Nutrient translocation and subsidization are 

inevitable consequences of biological connectivity due to the movement of animals 

between habitats, so these processes are critical to understanding how coastal ecosystems 

function. The role that birds play in the movement of nutrients may be of particular 

importance because bird guano increases the nitrogen and phosphorous levels of the 

habitat it is deposited in, and nitrogen and phosphorus are limiting nutrients of primary 

production in mangrove forests (Onuf et al. 1977, Feller 1995, Twilley and Day 1999, 

Josens et al. 2009). For example, egret colonies have been shown to increase the nitrogen 

and phosphorous levels of water in their wetland nesting sites (i.e. phosphorus: 25 mg/L 

in nesting wetlands vs. 2 mg/L in non-nesting wetlands, and nitrogen: 2 mg/L in nesting 

wetlands vs. 0.3 mg/L in non-nesting wetlands; Baxter and Fairweather 1994). The 

consequences of nutrient deposition by birds for mangrove productivity will depend on 

bird behavior (i.e. nutrient concentration through colonial breeding/nesting/foraging vs. 

nutrient dispersal via resource-tracking throughout the coastal ecosystem mosaic) and 

their food source (i.e. plant vs. animal protein; Table 2-4). 

Bird movement between foraging and breeding/roosting grounds can result in 

considerable unidirectional translocation of nutrients (Morales and Pacheco 1986), which 

subsidizes mangrove productivity and affects adjacent, nutrient-recipient habitats. For 

example: colonial birds often roost in the same location for years (Pearse 2010) and 

accumulation of guano in mangrove roosts increases nutrient availability, resulting in 

increased growth of mangrove trees, nitrogen accumulation, and increased growth of 

macroalgae (Onuf et al. 1977, Lapointe et al. 1993, Feller 1995). Additionally, this 

mangrove nutrient enrichment can subsidize adjacent seagrass habitats. Florida-everglade 

mangroves support thousands of wading birds in breeding colonies, and seagrass 

meadows nearby support high densities of larval pink shrimp that are an important 

resource for fish and wading birds (Powell et al. 1991). Thus, bird-facilitated nutrient 
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donation from mangroves to seagrass meadows may result in a positive feedback between 

piscivorous birds, high-quality seagrass biomass and shrimp abundance within the coastal 

ecosystem. Connectivity is the key to this nutrient cycle.  
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Table 2-4 Quantification of the annual rates of nitrogen and phosphorous nutrient deposition (g/m2/yr) for avian nutrient transport 

categories (distinguished by functional group and roosting behavior). Nitrogen deposition by each avian nutrient transport category is 

expressed as a percentage of nitrogen needed for mangrove-forest primary production; demonstrating that nutrient transport by 

piscivorous birds (i.e. seabirds and wading birds) could lead to nutrient over-enrichment in mangrove forests. Examples of distances 

travelled by mangrove birds in each avian nutrient transport are given, and whether they are concentrating or dispersing nutrients in 

coastal ecosystems is indicated. 

Avian nutrient transport 

category 

Nitrogen 

(g/m2/yr) 

Phosphorus 

(g/m2/yr) 

% nitrogen 

required for 

mangrove forest 

primary 

production* 

Example 

mangrove birds 

Possible 

daily 

distances 

travelled by 

example 

mangrove 

birds 

Nutrient 

concentration (i.e. 

roosting) 

Nutrient 

dispersal 

(i.e. 

resource-

tracking) Reference(s) 

Roosting passerines 2.316 0.23 17% 

American-

redstart, White-
crowned 

Pigeon 2 - 20 X 

 

Fujita and Koike (2009), Smith 
et al. (2008), Bancroft et al. 

(2000) 

Non-roosting passerines 0.0387 0.00307 0.003% 

Brown 

Honeyeater 30 

 

X 

Franklin and Noske (1998), 

Fujita and Koike (2009) 

Seabirds 103 22 763% Lesser Noddy 250 X 

 

Allaway and Ashford (1984), 

Surman and Wooller (1995), 

Whitworth et al. (2000) 

Wading birds and 

seabirds (mixed flocks) 21.7 1.2 161% 

Cormorants, 

herons, egrets, 

ibis 1-15 X 

 

Powell et al. (1989), Wong et 

al. (1999) 

* based on average nitrogen requirement (13.5 g/m2/yr) of a mixed-species mangrove forest (Avicennia, Bruguiera, Ceriops and 
Rhizophora; Robertson et al. 1993). 
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The phenology and distribution of food resources dictates avian foraging behavior. This 

results in species-specific patterns of avian movement that can influence energy flows 

within the coastal ecosystem mosaic. Colonial, roosting/breeding birds tend to 

concentrate nutrients in one area, while more transient foragers (i.e. honeyeaters) can 

transport nutrients across a larger array of habitats within the coastal ecosystem mosaic. 

Nectarivorous birds are known to track nectar resources in intensely seasonal 

environments (Franklin and Noske 1999), and in Australia the Brown Honeyeater moves 

regionally at distances up to 33 kilometers (Franklin and Noske 1998). For other, less-

mobile species, smaller-scale patterns of movement are dictated by adjacent foraging 

habitat availability. When foraging habitat is not available nearby there is potential for an 

ecological bottleneck. Similar controlling mechanisms have been identified in fish-

mangrove connectivity, with the absence of suitable, adjacent habitat resulting in low 

abundances of certain fish species in mangroves (Sheaves 2005). 

Birds will use mangrove forests as a refuge when their usual habitat has been damaged or 

saturated by influxes of birds displaced from other areas, and this behaviour can influence 

ecosystem nutrient retention and translocation (Kutt 2007). For example, in Western 

Australia, some mangrove-facultative birds have become restricted to small patches of 

mangroves where structurally-similar, alternative habitat types have been lost (Philips et 

al. 2008). Thus, because of their phytomorphological similarity, mangroves can play a 

critical role in providing the last bastion of suitable habitats in human-disturbed 

environments. If a temporary refuge becomes a permanent habitat for a population of 

birds (e.g. where it replaces lost terrestrial habitat resources) the rate of nutrient retention 

or import in the mangrove forest may increase, resulting in a mangrove sink.  

Mangrove-bird nutrient translocation may also be influenced by the evolution of 

mangrove-dependent bird species. Mangrove forests in northwestern Australia harbor up 

to twenty mangrove-dependent bird species while, in stark contrast, mangrove forests in 

Africa and South America each accommodate only one mangrove-dependent bird species 

(Ford 1982, Noske 1996). To investigate the effects of avian mangrove-dependency on 

mangrove ecosystem functioning, the mangrove-bird communities of Australia provide a 
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pertinent case study (Table 2-2). Mangrove forests of eastern Australia harbor fewer 

mangrove-dependent birds (~nine species) than mangrove forests in western Australia 

(~twenty species; Ford 1982, Nagelkerken et al. 2008). Differences in historical 

landscape connections have been hypothesized to influence the evolution of distinct, 

mangrove-dependent bird groups in western vs. eastern Australia (Ford 1982). A 

sustained mangrove-rainforest habitat link in eastern Australia may have allowed 

mangrove-facultative birds to travel easily between these two habitats, without creating 

the need to specialize to one habitat type (Mohd-Azlan et al. 2014). Mangrove-bird 

communities with fewer mangrove-dependent species may foster a higher degree of 

biological connectivity within the coastal ecosystem mosaic, as birds are able to travel 

more freely among habitats. This suggests that, by influencing present mangrove-bird 

community assemblage, historical patterns of landscape connectivity may be a 

determinant of avian biological connectivity within the coastal ecosystem mosaic.  

2.4.2 Nutrient Translocation Influenced by Seasonality 

 
Seasonality may influence the rate of nutrient translocation and retention in mangroves 

by causing shifts in connectivity patterns. Seasonality determines omnivorous-bird 

foraging strategies, causing them to switch between specific food sources from season to 

season (O'Donnell and Dilks 1994). During non-flowering seasons, retention of 

mangrove-productivity may increase if nectarivores choose to stay within the mangrove 

forest and forage on abundant insect prey instead of nectar. Alternatively, the rate of 

nutrient translocation outside of the mangrove forest may increase if nectarivores choose 

to continue feeding upon nectar in flowering habitats adjacent to mangroves. 

Understanding seasonal, omnivorous-bird behaviour will determine whether there is a net 

transfer of energy in to or out of mangrove ecosystems and how this varies with location 

and time. 

The arrival of migrants changes bird-species composition on a seasonal basis (Acevedo 

and Aide 2008, Kumar and Kumara 2011). During winters in the Persian Gulf, the most 

abundant birds in mangrove habitat are migratory waders, while seabirds are most 
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abundant during non-migratory summer seasons (Ghasemi et al. 2012). It is likely that the 

addition of migrant, wading-bird species to resident mangrove-bird communities 

increases nutrient concentration in mangrove forests during the winter (Josens et al. 

2009). The degree of additional predation pressure and nutrient import will vary with 

details of the avifauna, the extent and type of resources provided by mangrove forests and 

connectivity strength (Webster et al. 2002). Full incorporation of migratory, wading birds 

into the current understanding of mangrove ecosystem functioning requires measurement 

of the nutritive quality (i.e. nitrogen/phosphorous levels) of migratory wader vs. resident 

seabird diets to determine their relative ecosystem effects. 

Quantification of carbon dynamics in migratory shorebird roosting/foraging habitats has 

found little contribution of mangrove carbon to the foraging habitat of shorebirds (Li and 

Lee 1998, Lee 2000). This is corroborated by the fact that the presence of adjacent 

mangroves is not enough to ensure shorebird abundance in a tidal-mudflat (Butler et al. 

1997), and suggests that other factors, such as up-welling, are contributing to a 

productive prey base in preferred tidal-mudflat foraging areas (Butler et al. 2001). It also 

suggests that migratory shorebirds at stopover sites are importing tidal-mudflat derived 

carbon into mangrove forests at a local and seasonal spatio-temporal scale.  

In addition to local connectivity between foraging and roosting sites, migratory wading 

birds and shorebirds have the capacity to transport nutrients between stopover sites and 

establish biological connectivity at distances ≥1000 kilometers. Large wading birds (i.e. 

Bar-tailed Godwits, Great Knots and Red Knots) will travel distances of 5500-8000 

kilometers between stopover sites in China and northwestern Australia (Barter and Hou 

1990). The large numbers of birds (~500000 individuals) moving between stopover sites 

in China and northwestern Australia has the potential to create a high degree of energy 

transfer between these ecosystems on a seasonal basis, especially considering that 

migratory birds are “refueling” at these sites with high-energy intake rates (Tulp and 

Goeij 1994).  
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2.4.3 Top-Down Control 

 

Insectivores are the most abundant avian functional group in mangrove forests (Noske 

1996, Lefebvre and Poulin 1997, Mohd-Azlan et al. 2012) and are top predators that feed 

upon herbivorous insects, granting them the ability to control herbivory in mangrove 

forests. Controlling herbivory may be of particular importance in mangrove forests where 

insect-abundance fluctuation and outbreak potential is lower in comparison to terrestrial 

habitats, allowing insectivorous birds to exert year-round control (Sekergioclu 2006). 

This creates the potential for a stable trophic-cascade that will increase plant biomass, as 

vertebrate insectivores have been documented to reduce plant damage by 40% and 

increase plant biomass by 14% through their predation on insect herbivores (Mooney et 

al. 2010).  

A trophic cascade in which insectivore control of herbivore abundance has a positive 

effect on plant productivity would complicate our current understanding of mangrove-

ecosystem functioning. Previous investigations have found that guano accumulation in 

mangroves by colonial, roosting birds increases leaf growth in mangrove forests, but that 

this positive effect is reduced by increased herbivore abundance (Onuf et al. 1977). If 

insectivorous bird predators are included in studies of this food web, herbivore abundance 

may be reduced by predatory-bird behavioural response, allowing increased growth of 

mangrove forests. This trophic cascade would add a new interaction to the current 

understanding of mangrove food-web dynamics. The insectivorous trophic role may 

already be complemented in some mangrove forests by the activities of insectivorous 

archerfish (Simon and Mazlan 2010). This would provide the potential for unique 

ecological interactions, such as competition or enhanced predatory effects between very 

different vertebrate predators occupying contrasting media (i.e. air vs. water).  

In addition to the top-down effects of insectivorous birds, piscivorous wading birds have 

the ability to regulate fish stocks in mangrove areas (Miranda and Collazo 1997). In a 

reciprocal way to insectivorous birds and archerfish, the presence of piscivorous birds in 

mangrove forests contributes to piscivorous-fish predation pressure on inshore fish 
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stocks, and in particular on juvenile fish using mangrove nurseries. However, in contrast 

to predatory fish that can only access habitats with aquatic connections, wading birds' 

high mobility allows them to move rapidly between spatially-separate habitat units and 

exhibit a relatively rapid numerical response to high prey densities (Sheaves et al. 2006). 

This spreads the impact of predatory control across spatially-separated habitats, and 

promotes a more balanced and spatially-homogeneous regulation of fish stocks and 

stability across different components of coastal ecosystems.  

Daily hydrographic conditions influence wading bird numerical response in a similar way 

to predatory fish, as tidal inundation is a requirement for access to prey. However, in 

addition to daily hydrographic conditions, longer time-scale climatic conditions need to 

be considered. For example, wading bird predation pressure in mangroves may increase if 

preferable wetland foraging habitat dries out during drought conditions (Halse et al. 

1998). Alternatively, fish may become trapped when wetlands dry out, creating a 

temporary foraging area with high-prey density for piscivorous, wading birds (Sheaves et 

al. 2006). In addition to trapping prey, drought conditions in Everglade wetlands create 

pulses of secondary productivity that concentrate prey biomass for wading birds 

(Frederick & Ogden 2001). Evidently, large-scale climatic conditions influence the 

foraging behaviour of wading birds with consequences for nutrient dynamics in coastal 

ecosystems. 

2.4.4 Genetic Information Linkers 

 

Pollination and seed/aquatic-plant/invertebrate dispersal is an ecological function 

facilitated by birds that transfers genetic information within and among the coastal 

ecosystem mosaic (Sekergioclu 2006). Nectarivores are probably the most locally-mobile 

mangrove-bird functional group because of the fluctuating nature of the nectar resources 

they rely on, traveling up to several-hundred kilometers per year (Woinarski et al. 2002). 

High gene flow among Australasian mangrove forest populations of Bruguiera 

gymnorrhiza may be due to connectivity facilitated by these avian pollinators (Ge et al. 

2005). Future studies could compare the genetic population structure of mangrove species 
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with differing flower sizes (i.e Bruguiera gymnorrhiza (large) vs. Bruguiera exaristata 

(small)) to investigate consequences of the foraging and movement behavior of their 

respective avian pollinators. Large flowers may promote higher genetic connectivity 

among mangrove forests because they will not exclude pollination services provided by 

larger honeyeaters. 

Invertebrate dispersal (internal and external) is another category of genetic information 

linkage performed by birds at large spatial scales. The role of migratory waterbirds in 

long-distance dispersal of aquatic invertebrates is generally understudied, but potentially 

facilitates genetic connectivity at distances up to 1000 kilometers (Green and Figuerola 

2005). At a regional scale, mangrove-arthropod communities along the eastern coast of 

Australia demonstrate similar compositions and this implies a high degree of connectivity 

(Meades et al. 2002). Wading bird dispersal of insect larvae via internal transport may be 

the mechanism allowing this high degree of connectivity, as the dispersal ability of 

mangrove arthropods via flight and wind is limited (Green and Sanchez 2006). 

Frugivores and granivores transfer genetic information through seed dispersal, which may 

have important consequences for plant regeneration and coastal-ecosystem functioning. 

For example, Australian Spiny-cheeked Honeyeaters are generalist frugivores that feed 

preferentially on mistletoe fruit, playing an important role in seed dispersal and 

establishment of mistletoe infections in new host areas (Rawsthorne et al. 2011). 

Mistletoe is an epiphyte associated with mangrove trees and has been identified as 

preferred nesting habitat for a wide range of bird species, encompassing functional 

groups from small insectivores to large wading birds (Noske 1996, Cooney et al. 2006). 

Initial infections of mistletoe in mangrove areas may require Spiny-cheeked Honeyeater 

dispersal of mistletoe to mangrove-adjacent woodlands, allowing less nomadic bird 

species (i.e. Mistletoebirds, Olive-backed Sunbirds) to transfer mistletoe seeds from 

woodlands to mangrove forests. Alternatively, in northern areas of Australia where the 

range of Spiny-cheeked Honeyeaters does not extend, long-distance dispersal of mistletoe 

seeds by generalist insectivores (via epizoochory) may be the dominant process 

facilitating mistletoe infection into mangrove forests (Watson 2013). Species-specific 
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home ranges and foraging behaviour are likely to influence avian facilitation of mistletoe 

genetic-information linkage.  

2.5 Bat functional connectivity in mangrove ecosystems 

 

As highly mobile flying animals, bats that have the potential to facilitate coastal 

ecosystem connectivity in a similar way to birds. During the Australian dry season, large 

numbers of nectarivorous/frugivorous flying foxes (3000-25000 individuals) will roost in 

mangrove trees and track flowering/fruiting Eucalyptus trees at a regional scale of ~50 

kilometers (Palmer and Woinarski 1999). The importance of flying foxes as mobile, 

genetic-information linkers in the coastal ecosystem mosaic (via pollination and seed 

dispersal) may be analogous to birds. Insectivorous bats are also known to use mangrove 

forests as both foraging and roosting habitat (McKenzie and Rolfe 1986, McConville et 

al. 2013). The spatiotemporal scale of bat-facilitated connectivity in coastal ecosystems 

requires further study; however radio-tracking has revealed that insectivorous bats 

roosting in mangroves will make nightly foraging trips of 1-10 kilometer distances 

(McConville et al. 2013). A thorough investigation into bat-facilitated coastal ecosystem 

connectivity is beyond the scope of this review, but should not be disregarded as a 

knowledge gap in coastal ecosystem functioning. 

2.6 Conclusion 

 

High mobility allows mangrove-bird communities to link spatially separate mangrove 

habitats, as well as link mangroves to other terrestrial and marine-pelagic habitats. 

Therefore, the spatial scale of coastal connectivity facilitated by birds is substantially 

more extensive than via fish-facilitated connectivity. In particular, connectivity facilitated 

by migratory birds links habitats at regional, continental and inter-continental scales as 

they travel among seasonally available feeding areas from breeding grounds to non-

breeding grounds. Understanding the nature and patterns of fish connectivity has shifted 

the historical perception of mangrove ecosystem functioning from that of a simple system 
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based on nutrient and energy retention, to a view that includes fish-facilitated energy 

export. In a similar way, understanding mangrove connectivity through bird movements 

and migrations opens a range of new possibilities for revising our view of functional links 

between mangroves and other ecosystems, even many that are spatially distant.  

Mangrove-bird connectivity is primarily limited by the interaction between bird 

behaviour, bird resource requirements and the types of habitats available in surrounding 

areas. This contrasts with fish where connectivity is governed by the interaction between 

fish behavior, life-cycle needs and hydrologic-landscape connectivity. The linkage of 

trophic processes between systems is concomitant with connectivity among habitats, and 

the role that birds play in linking trophic processes varies by bird functional group. 

Therefore, investigation of mangrove-bird behaviour and diet are of critical significance 

to coastal ecosystem connectivity and conservation. In particular, avian functional 

connectivity as a process in carbon cycling within the coastal ecosystem mosaic has been 

overlooked. 

Future research should investigate the consequences of mangrove-dependency in avian 

coastal ecosystem connectivity. Three patterns have been observed in mangrove 

ecosystems: 1) low numbers of mangrove-dependent bird species vs. terrestrial forest-

dependent bird species, 2) mangrove-dependent bird species tend to be dietary generalists 

and 3) numbers of mangrove-dependent bird species vary globally. These observations 

suggest that the dynamic nature of mangrove forests foster transient, generalist bird 

communities that facilitate a high degree of biological connectivity. However, this may 

not apply to all foraging groups or species. For example, mangroves offer an abundant 

and stable supply of insect prey items for relatively rich and abundant insectivorous bird 

assemblages that may be relatively sedentary. Comparisons of bird movement in 

rainforests with high numbers of dependent, specialist birds and mangrove forests with 

low numbers of dependent, generalist birds would test this hypothesis. Additionally, 

global comparisons of mangrove-dependent bird communities would test the hypothesis 

that mangrove ecosystems with more mangrove-dependent insectivorous birds (i.e. 
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Australasia) enhance nutrient retention in comparison to those with less mangrove-

dependent species (i.e. Neotropics and Africa).  

Our current understanding of mangrove-connectivity theory is not yet complete without 

considering mangrove avifauna. Until bird-facilitated connectivity is incorporated, 

important links and regulating processes in mangrove-ecosystem functionality will 

continue to be ignored. Understanding bird linkages will provide a more complete 

knowledge base to support the conservation of mangrove habitat and preserve 

connectivity throughout the entire coastal ecosystem mosaic. 
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3 Spatial dynamics of coastal forest bird assemblages: the influence of 

landscape context, forest type, and structural connectivity 
 

3.1 Abstract 
 

Complex structural connectivity patterns can influence the distribution of animals in 

coastal landscapes, particularly those with relatively large home ranges, such as birds. To 

understand the nuanced nature of coastal forest avifauna, where there may be 

considerable overlap in assemblages of adjacent forest types, the concerted influence of 

regional landscape context and vegetative structural connectivity at multiple spatial scales 

warrants investigation. This study determined whether species compositions of coastal 

forest bird assemblages differ with regional landscape context or with forest type, and if 

this is influenced by structural connectivity patterns measured at multiple spatial scales. 

Three replicate bird surveys were conducted in four coastal forest types at ten survey 

locations across two regional landscape contexts in northeast Australia. Structural 

connectivity patterns of 11 vegetation types were quantified at 3, 6, and 12 km spatial 

scales surrounding each survey location, and differences in bird species composition were 

evaluated using multivariate ordination analysis. Bird assemblages differed between 

regional landscape contexts and most coastal forest types, although Melaleuca woodland 

bird assemblages were similar to those of eucalypt woodlands and rainforests. Structural 

connectivity was primarily correlated with differences in bird species composition 

between regional landscape contexts, and correlation depended on vegetation type and 

spatial scale. Spatial scale, landscape context, and structural connectivity have a 

combined influence on bird species composition. This suggests that effective 

management of coastal landscapes requires a holistic strategy that considers the size, 

shape, and configuration of all vegetative components at multiple spatial scales.  

 

3.2 Introduction  
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Coastal ecosystems frequently consist of an interspersion of diverse vegetation types, 

resulting in a heterogeneous landscape mosaic that supports unique ecological 

communities (Sheaves 2009; Brittain et al. 2012). The individual habitats within this 

coastal ecosystem mosaic are linked in complex ways meaning that, rather than 

functioning as ‘islands’, they are influenced by processes occurring within and among 

adjacent habitats (Wiens 1995). Highly mobile species, such as birds, are likely to be 

particularly responsive to processes and patterns occurring among coastal habitats at 

scales of hundreds of meters to kilometers, tracking resource abundance throughout these 

heterogeneous landscapes. However, much of the research into processes influencing bird 

assemblages has focused on small-scale, within-habitat vegetation patterns (Grover and 

Slater 1994; Mohd-Azlan et al. 2014) rather than landscape-scale patterns and processes 

that are required to underpin a broader understanding (Martin et al. 2006; Radford et al. 

2005; Radford and Bennet 2007; Galitsky and Lawler 2015).  

 

Landscape-scale processes operate across local, regional, and inter-continental scales, 

making them inherently complex (Heffernan et al. 2014). As a result, the appropriate 

spatial scale for examining landscape processes will be unique to the study system being 

investigated, and will depend on a range of factors (Steffan-Dewenter et al. 2002; 

Brennan and Schnell 2005, 2007; Burgess and Maron 2016). However, the data needed to 

understand these factors is often limited. For instance, although understanding species’ 

dispersal abilities is critical to determining the appropriate scales to study (Wiens 1995; 

Franklin and Noske 1999; Saab 1999; Westphal et al. 2003; Brennan and Schnell 2007), 

there is rarely sufficient knowledge of dispersal ability to allow unambiguous definition 

of the appropriate spatial scale. Furthermore, the distances a species is able to disperse 

can be different from daily movements of individuals, and therefore multiple spatial 

scales need to be considered when studying landscape processes and patterns. This is 

especially important when investigating the response of bird assemblages, where there is 

likely to be variation in dispersal and daily movement ability among species. 

 

A structural connectivity view can improve understanding of the landscape-scale patterns 
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and processes occurring within the coastal ecosystem mosaic (Luque and Saura 2012). 

Structural connectivity measures the size, shape, and configuration of habitats within a 

landscape mosaic, and can influence bird species distributions (Radford and Bennett 

2007; Ziolkowska et al. 2014). Associated with structural connectivity is the concept of 

landscape context, which classifies the composition and structure of a study area’s 

surrounding landscape. However, the definition of landscape context depends on the 

spatial extent of classification. For example, local-scale landscape contexts, defined as 

the number and type of habitats adjacent to a focal habitat, influence the composition, 

structure, and species richness of their bird assemblages (Riffel et al. 2000; Martin et al. 

2006; Mohd-Azlan and Lawes 2011; Elliott et al. 2012; Galitsky and Lawler 2015). 

Additionally, landscape context is associated with bird species distribution when defined 

at smaller and larger spatial extents: within forests (interior vs. edge; Watson et al. 2004; 

Elliott et al. 2012) and at regional scales (vegetative patterns associated with rainfall or 

climate; Woinarski et al. 2000a; Shriver et al. 2004). 

 

In northern Australia, the mix of habitats found within the coastal landscape mosaic is an 

important factor influencing bird species richness, abundance, and composition within 

individual coastal habitats (Mohd-Azlan and Lawes 2011; Kutt 2007; Woinarski et al. 

2000a). Although there is some understanding of the individual importance of landscape 

context, spatial scale, and structural connectivity on coastal forest bird assemblages 

(Woinarski et al. 1988, Shriver et al. 2004, Watson et al. 2004, Kutt 2007, Mohd-Azlan 

and Lawes 2011, Mohd-Azlan et al. 2014), their interactive and synergistic effects have 

not been considered. Given the interconnected nature of forest and woodland habitats 

within coastal ecosystem mosaics, this study aimed to determine if: 1) the species 

composition of bird assemblages differ with regional scale landscape context or with 

forest type, 2) if bird species composition is influenced by structural connectivity patterns 

in the surrounding landscape, and 3) if spatial scale acts synergistically, i.e. if the 

influence of structural connectivity on bird assemblages depends on the spatial scale 

being considered.  
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3.3 Methods 

 

3.3.1 Study area and site selection 

 

The study area extended along approximately 630 km of north-eastern Australia’s 

coastline and was comprised of three biogeographic regions: the Wet Tropics, the 

Brigalow Belt North, and the Central Mackay Coast (Commonwealth of Australia 2012; 

Figure 3-1). The Wet Tropics experiences average annual rainfall of 2000-8000 mm, 

while both the Brigalow Belt North and Central Mackay Coast experience less at 590 and 

1200-2000 mm, respectively. Vegetation in the Wet Tropics is comprised primarily of 

rainforest, wet sclerophyll forests and woodlands, shrublands, mangroves, grasslands, and 

sedges. In contrast, eucalypt and acacia woodlands, drier rainforests and sclerophyll 

forests, and more abundant grasslands and saltmarshes/flats characterize the Brigalow 

Belt North. Rainforest vegetation in the Central Mackay Coast replaces the more 

abundant eucalypt and acacia woodland vegetation in the Brigalow Belt North. Due to 

differences in vegetation patterns associated with climate in these biogeographic regions, 

two regional-scale ‘landscape contexts’ have been identified: the ‘north-eastern tropics’ 

(the Wet Tropics) and the relatively drier ‘south-eastern tropics’ (the Brigalow Belt North 

and Central Mackay Coast).  
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Figure 3-1 Map of survey locations (black diamonds) along the north-east coast of 

Queensland, Australia. Boundaries of the three biogeographic regions are displayed. WT 

= Wet Tropics (north-east tropical landscape context), BBN = Brigalow Belt North and 

CMC = Central Mackay Coast (south-east tropical landscape context).  

Ten survey locations were placed sequentially along the study area coastline, 50 to 150 

km apart, with six locations in the ‘SE tropics’ and four locations in the ‘NE tropics’ 

(Figure 3-1). Mangrove forests were chosen as the center-point for survey locations due 

to their location in the coastal intertidal, and their shared edge with other coastal forest 

types that are not restricted to the coastline (e.g. rainforest, eucalypt and Melaleuca 

woodlands). The dominant coastal forest types within a 2 km radius surrounding each 

focal mangrove patch were identified in ArcGIS (v.10.2). Within the mangrove patch, 

and in each adjacent, dominant coastal forest type, three points were haphazardly chosen 

for replicate point count bird surveys. This resulted in the following survey hierarchy: 

survey location, forest type (mangrove, eucalypt woodland, Melaleuca woodland, and 

rainforest), and point count survey. 
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3.3.1 Bird assemblage data 

 

Point count bird surveys were conducted from dawn-10:00 hours and from 14:30 hours-

dusk to determine bird species presence-absence in coastal forests throughout the year 

(each replicate point count was surveyed twice during each of the following time periods: 

January/February, June, and October 2015). Replicate point counts were at least 200 m 

apart, and all bird species seen or heard within a 50 m radius during a 10 minute period 

were recorded. Birds flying over the point count area were not recorded, and all point 

count surveys were audio recorded with a Sony IC Recorder to confirm difficult-to-

distinguish bird calls. 

 

3.3.2 Structural connectivity patterns 

 

Structural connectivity patterns (referred to from this point as ‘connectivity’) were 

quantified at three nested spatial scales (3, 6, and 12 km) at each of the 10 survey 

locations using ArcGIS (v.10.2) with the Patch Analyst extension (Rempel et al. 2012). 

The range of spatial scales was chosen due to the sedentary/locally migratory nature of 

the majority of the coastal forest bird species considered in this study (for species list, see 

Appendix 1, Table A3.1). At each survey location, the center point for connectivity 

quantification was placed in a central position relative to point counts in all forest types 

and 1 km from the nearest coastline.  

 

Eleven vegetation types in the coastal ecosystem mosaic were identified for connectivity 

analysis: eucalypt woodland, freshwater, mangrove, Melaleuca woodland, rainforest, 

vegetation-devoid (‘SandRockMud’), shrubland, grassland, Casuarina/Allocasuarina 

forest, cleared urban/agricultural land, and Acacia forests and woodlands (see Table 3-1 

for description). Four standard FRAGSTATS landscape metrics were measured for each 

vegetation type present at each nested spatial scale (TLA: total landscape area of patches 

(ha); NumP: number of patches; TE: total edge of patches (m); and MNN: mean nearest 
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neighbour distance between patches (m); McGarigal et al. 2012). Together, these 

landscape metrics represent connectivity in the landscape that occurs at nested spatial 

scales surrounding each survey site. At the 3 km spatial scale only 1-2 sites had 

freshwater and Casuarina/Allocasuarina forest vegetation, and therefore these vegetation 

types were removed from further analysis at this spatial scale. Vegetation data used for 

quantifying connectivity were sourced from the National Vegetation Information System 

(NVIS 2012). 

3.3.3 Data analysis 

 
Coastal forest bird species composition  

 

A Jaccard distance matrix of bird species presence-absence data (pooled over all three 

sampling periods) was used in non-metric multidimensional scaling (nMDS) to create 

an ordination plot of bird species presence-absence data at each survey site. Centroid 

ellipses (95% confidence interval) were used to display site groupings by coastal forest 

type and landscape context. A two-factor permutational multivariate analysis of variance 

(PERMANOVA) and subsequent pairwise comparisons were used to determine 

differences in bird species composition associated with coastal forest type and landscape 

context (Anderson 2001).  

 

Connectivity variables and bird species composition 

 

Principal components analysis (PCA) was used to reduce the four landscape metrics 

measured (TLA, NumP, MNN, and TE) into one connectivity variable for each of the 11 

vegetation types, while simultaneously eliminating multi-collinearity. The landscape 

metrics were normalized prior to conducting the PCAs. The first principal component of 

each PCA became the connectivity variable for each vegetation type, explaining the 

majority of the variability in structural connectivity among the 10 survey locations, at 

each spatial scale (see Supplementary material Appendix 2, Table A2 for the proportion 

of variance in structural connectivity explained by the first principal component of each 
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PCA). Fitted vectors of the 11 connectivity variables for each spatial scale (3, 6, and 12 

km) were overlaid onto the ordination surface to determine if they were correlated with 

bird species composition (Oksanen et al. 2015). 

 

Table 3-1 A brief description of the 11 vegetation types identified for connectivity 

analysis (NVIS 2012). 

 

Connectivity variables and individual landscape metrics 

Habitat  Description 

Eucalypt woodland Open forests and woodlands comprised primarily of 

Eucalyptus trees, with grassy or shrubby understories. 

Freshwater Freshwater features, both natural and artificially constructed, 

that are generally devoid of vegetation. 

Mangrove Intertidal forests, ranging in height from shrublands to tall 

forests. 

Melaleuca woodland Open forests and woodlands comprised primarily of Melaleuca 

tree species, and found in coastal and sub-coastal areas near 

wetlands, rivers, or swamps. 

Rainforest Closed forests including: dry rainforest, tropical rainforest, 

vine thickets and warm temperate rainforest types. 

Vegetation-devoid 

(‘SandRockMud’)  
Areas naturally devoid of vegetation including: bare ground, 

sand dune, claypan and saltmarsh/flat. 

Shrubland  Includes a broad range of shrub species (e.g. Banksia, 

Bursaria, Grevillea, Nitraria, etc.), primarily less than 3 m in 

height. 

Grassland Dry and wet grasslands, including tussock grasslands, 

herblands and sedgelands. 

Casuarina/ 

Allocasuarina forest 
Open forests of Casuarina and Allocasuarina trees that are 

primarily associated with coastal foredunes in eastern 

Australia.   

Cleared 

urban/agricultural land 
Areas with all or most native vegetation removed including 

urban areas, cropland, grazing land, and areas dominated by 

introduced species. 

Acacia forests and 

woodlands 

Open and closed forests and woodlands composed primarily of 

Acacia tree species, with understory species comprised 

primarily of low shrubs and herbaceous plants.   
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Surface fitting was used to determine the strength of the relationship between bird species 

composition and individual landscape metrics (MNN, NumP, TE, and TLA) of the 

connectivity variables that were correlated with the ordination surface (p<0.05). The 

fitted smooth surfaces were calculated using generalized additive models (GAM) with 

thin-plate splines (Oksanen et al. 2015).  

 

Principal components analysis was used to provide a summary figure relating the R2 

values from the fitted smooth-surfaces of individual landscape metrics to the connectivity 

variables with which they were associated. This allowed visualization of the relationship 

between landscape metric importance (i.e. the R2 value) and the vegetation type and 

spatial scale of the connectivity variables that were correlated to the bird ordination.  

 

Connectivity variables and landscape context 

 

To understand how connectivity variables that were correlated to the bird ordination 

differed between landscape contexts, the average values of their individual landscape 

metrics (TLA, NumP, TE, and MNN) were calculated and their proportions were 

compared between north-east and south-east tropical landscape contexts. 

 

Statistical analyses were performed in R (v 3.1.2, R Core Team 2015) with the package 

‘vegan’ (Oksanen et al. 2015) and in PRIMER statistical software (v 6, Clarke and 

Gorley 2006). 

 

3.4 Results 

 

3.4.1 Coastal forest bird species composition  
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Ninety-three bird species were observed during the study; however species with less than 

two observations were considered unrepresentative of the bird assemblages as a whole 

and were not retained for analysis. The most common bird species observed were the 

yellow-spotted honeyeater (Meliphaga notata), mistletoebird (Dicaeum hirundinaceum), 

and olive-backed sunbird (Nectarinia jugularis). A two-dimensional nMDS ordination 

(stress=0.22) with 95% confidence interval ellipses around group centroids shows bird 

species composition by coastal forest type (Figure 3-2 a) and by landscape context 

(Figure 3-2 b). Bird species composition in mangrove forests differed from other coastal 

forest types (Figure 3-2 a) and between north-east and south-east tropical landscape 

contexts (Figure 3-2 b). The variations in bird species composition were confirmed with a 

two-factor PERMANOVA (Appendix 1, Table A3.4). There was no interactional effect 

between landscape context and coastal forest type on bird species composition (pseudo-

F3,20 = 1.05, p = 0.34). However, individually, both landscape context and coastal forest 

type influenced bird species composition (landscape context: pseudo-F1,20 = 2.06, p = 

0.002; habitat: pseudo-F3,20 = 2.09, p = 0.001; Figure 3-2).  

 

Pairwise comparisons further examined differences in bird species composition between 

coastal forest types, and corroborated the patterns that were visually identified with 95% 

confidence interval ellipses in the bird ordination (Figure 3-2 a). Pairwise comparisons 

indicated that mangrove bird assemblages were distinct from nearby rainforest (t = 1.65, 

p = 0.002), eucalypt woodland (t = 1.54, p = 0.002), and Melaleuca woodland bird 

assemblages (t = 1.54, p = 0.003; Figure 3-2 a). Eucalypt woodland and rainforest bird 

assemblages were also distinct from each other (t = 1.30, p = 0.031). In comparison, the 

species composition of Melaleuca woodland bird assemblages were similar to both 

rainforest and Eucalypt woodland bird assemblages (Melaleuca, rainforest: t = 1.21, p = 

0.121; Melaeluca, Eucalypt: t = 0.82, p = 0.782; Figure 3-2 a).  

 

3.4.2 Connectivity variables and bird species composition 
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Vector fitting at each spatial scale demonstrated that connectivity variables were 

primarily correlated to the second axis of the bird ordination, which differentiates coastal 

bird species composition by landscape context (i.e. NE tropics vs. SE tropics, Figure 3-3). 

The correlation of connectivity variables to the bird ordination depended on the spatial 

scale being considered (Figure 3-3). At the 3 and 6 km spatial scales, two connectivity 

variables (i.e. Melaleuca and SandRockMud (Figure 3-3 a), and Melaleuca and grassland 

(Figure 3-3 b); respectively) were correlated to the bird ordination. Alternatively, at the 

12 km spatial scale, four connectivity variables were correlated to the bird ordination (i.e. 

SandRockMud, Melaleuca, rainforest, and shrubland; Figure 3-3 c).  
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Figure 3-2 An nMDS ordination plot (stress = 0.22) of bird species presence-absence data 

at each survey site, pooled throughout the year, and grouped by a) coastal forest type 

(Melaleuca (square), Eucalypt (circle), Rainforest (plus-sign), Mangrove (triangle)) and 

b) landscape context (NE tropics (circle), SE tropics (triangle)). Centroid ellipses (95% 

confidence interval) distinguish the coastal forest and landscape context groupings. 

 

 

 

 

 

 

 

 

Figure 3-3 Fitted vectors of 11 connectivity variables were overlaid on an nMDS 

ordination plot of coastal forest bird species composition (stress = 0.22) at the: a) 3 km 

spatial scale, b) 6 km spatial scale, and c) 12 km spatial scale. Only connectivity variables 

that were correlated with the bird ordination (p<0.05) are displayed. Bird species 
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composition is grouped by landscape context (NE tropics, SE tropics). The vector 

arrows indicate the direction in which connectivity variable values are increasing, while 

the length of the vectors is proportional to the strength of the correlation between the bird 

ordination and the connectivity variable (Oksanen et al. 2015). 

3.4.3 Connectivity variables and individual landscape metrics 

 

Surface fitting revealed that most landscape metrics had a linear relationship to the bird 

ordination, and therefore the linear vector fitting procedure (Figure 3-3) was appropriate 

for overlaying their connectivity variables to the bird ordination. However, at the 12 km 

spatial scale, the relationship between the bird ordination and rainforest total landscape 

area (TLA; Figure 3-4 a) and SandRockMud total edge (TE; Figure 3-4 b) was not linear. 

Therefore, the surface fitting procedure was applied to these variables at the 12 km spatial 

scale, showing their association with bird species composition in different coastal forest 

types (Figure 3-4). The highest values of rainforest TLA were associated with bird 

species composition in mangrove, rainforest, and Melaleuca survey sites, whereas the 

lowest values of rainforest TLA were associated primarily with eucalypt woodland 

survey sites (Figure 3-4 a). Alternatively, the lowest values of SandRockMud TE were 

associated with bird species composition in rainforest survey sites (Figure 3-4 b).  

 

Principal components analysis (PCA) provided a summary figure of the importance of 

individual landscape metrics (i.e. their R2 values) to the connectivity variables that were 

correlated to the bird ordination (Figure 3-5; Appendix 1, Table A3.3). Principal 

components 1, 2, and 3 cumulatively explained 98.5% of the variation in landscape 

metric R2 values (Figure 3-5). For SandRockMud connectivity variables, R2 values of the 

MNN landscape metric (i.e. the distance between SandRockMud patches) differed 

depending on spatial scale (i.e. 3 km vs. 12 km; Figure 3-5). However, landscape metric 

R2 values were similar among all spatial scales for Melaleuca connectivity variables 

(Figure 3-5).  
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Figure 3-4 Surface fitting of individual landscape metrics at the 12 km spatial scale for a) 

rainforest total landscape area (TLA, R2=0.68) and b) SandRockMud total edge (TE, 

R2=0.42) to the bird ordination (stress = 0.22). The value of each metric is indicated by 

the thickness of the contour lines (   = highest TLA or TE,  = lowest TLA or TE), 

and the symbols in the plot indicate survey sites by coastal forest type (Melaleuca 

(square), Eucalypt (circle), Rainforest (plus-sign), Mangrove (triangle)). 
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Figure 3-5 Principal components analysis demonstrates how landscape metric R2 values 

(represented by vector arrows: TLA, NumP, TE, and MNN) are related to connectivity 

variables that were correlated to the bird ordination: (Melaleuca (3, 6, and 12 km; 

(triangle)), grassland (6 km; (circle)), SandRockMud (3 & 12 km; (plus-sign)), shrubland 

(12 km; (square with X)), and rainforest (12 km; black square)). Principal components 1 

and 2 explain 79.1 % of the variation in landscape metric R2 values (a), and principal 

components 2 and 3 explain 46.1% of the variation in landscape metric R2 values (b).   

3.4.4 Connectivity variables and landscape context 
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This subsection describes the proportional comparison of landscape metric measurements 

in the north-east vs. south-east tropical landscape contexts for connectivity variables that 

were correlated to the bird ordination (Appendix 1, Figure A3.5).  

 

Melaleuca connectivity variables were correlated to the bird ordination at all three spatial 

scales (3, 6, and 12 km; Figure 3-3). Number (NumP) and total edge (TE) of patches were 

the most important landscape metrics of Melaleuca connectivity in explaining bird 

species composition (Figure 3-5), and the proportion of their average values were higher 

in the NE tropics than in the SE tropics (Figure 3-6 a).  

 

SandRockMud connectivity variables were correlated to the bird ordination at the 3 and 

12 km spatial scales (Figure 3-3 a,c). At both spatial scales, total edge (TE), number 

(NumP), and distance between (MNN) patches were the most important landscape 

metrics of SandRockMud connectivity in explaining bird species composition (Figure 3-

5). The average values of TE and NumP were proportionally lower in the NE tropics vs. 

the SE tropics, while the average value of MNN was similar in both landscape contexts 

(Figure 3-6 b). 

 

Shrubland connectivity was correlated to the bird ordination at the 12 km spatial scale 

(Figure 3-3). Number (NumP), distance between (MNN), total landscape area (TLA), and 

total edge (TE) of patches were important landscape metrics of shrubland connectivity in 

explaining bird species composition (Figure 3-5). The average values of NumP, TLA, and 

TE were proportionally higher in the NE tropics vs. the SE tropics, while the average 

value of MNN was lower in the NE tropics (Figure 3-6 c). 

 

Rainforest connectivity was correlated to the bird ordination at the 12 km spatial scale 

(Figure 3-3). Total landscape area (TLA), number (NumP), and total edge (TE) of 

patches were the most important landscape metrics of rainforest connectivity in 

explaining bird species composition (Figure 3-5), and the proportions of their average 

values were higher in the NE tropics than in the SE tropics (Figure 3-6 d).  
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Grassland connectivity was correlated to the bird ordination at the 6 km spatial scale 

(Figure 3-3 b). Total landscape area (TLA) and number (NumP) of grassland patches 

were the most important landscape metrics of grassland connectivity to bird species 

composition (Figure 3-5), and their average values were proportionally lower in the NE 

tropics vs. the SE tropics (Figure 3-6 e).  
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Figure 3-6 Summary figure of connectivity variables that were correlated to the bird 

ordination, and how their landscape metric average values (TLA, NumP, TE, and MNN) 

differ proportionally between north-east tropical and south-east tropical landscape 

contexts. Only landscape metrics of each connectivity variable that had high surface-fit 

R2 values are represented as follows: circles inside boxes represent vegetation patches, 

and thick lines represent patches with higher total edge (TE), the dashed line represents 

distance between vegetation patches (MNN), the size of the circles represent the total 

landscape area (TLA) of vegetation patches, and a higher number of circles indicate a 

higher number of vegetation patches (NumP).  

 

3.5 Discussion 

 

To our knowledge, the present study is the first to identify a combined influence of 

landscape context and structural connectivity on coastal forest bird species composition. 

The structural connectivity patterns of specific vegetation types (i.e. shrubland, rainforest, 

Melaleuca, vegetation-devoid, and grassland) are associated with differences in bird 

species composition between regional landscape contexts. Previous studies have 

established landscape context as an important factor influencing bird species richness, 

abundance, and occurrence (Woinarski et al. 2000a; Riffel et al. 2003; Shriver et al. 2004; 

Watson et al. 2004; Martin et al. 2006). However, the present study also demonstrates the 

role of spatial scale, vegetation and landscape metric type in determining these 

associations, and highlights the nuanced nature of their interactions. Thus, a conservation 

strategy that considers regional landscape context and structural connectivity at broad 

spatial scales is essential for maintaining coastal bird species diversity.  

 

3.5.1 Landscape context, structural connectivity, and bird species composition 

 

Overall, the species composition of forest and woodland bird assemblages varied across 

different forest types within the coastal ecosystem mosaic of north-eastern Australia. In 
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particular, rainforest, eucalypt woodland, and mangrove forest types largely differed in 

their species composition.  In contrast, bird species composition in Melaleuca woodlands 

overlapped substantially with eucalypt woodlands and rainforests.  This corroborates 

previous research in northern Australia, where monsoonal rainforest and riparian bird 

assemblages were found to be distinct from those of adjacent eucalypt woodlands, 

whereas Melaleuca woodland bird assemblages were similar (Woinarski et al. 1988, 

2000a; Woinarski 1993; Kemp and Kutt 2005). Because Melaleuca woodlands hosted 

bird species found in both eucalypt woodlands and rainforests, they are likely to play an 

important role in the coastal ecosystem mosaic as connective or refuge habitat. 

 

The similarities in bird species composition of Melaleuca woodlands with rainforest and 

eucalypt woodlands demonstrates that many bird species do not rely solely on individual 

coastal forests but instead use the entire ecosystem mosaic. This likely indicates the 

presence of necessary temporal functional redundancy within the coastal ecosystem 

mosaic, allowing birds to track highly seasonal resources, particularly nectar. Further 

research should be extended to consider coastal island ecosystems, and broader categories 

of landscape context, such as western and eastern regions of northern Australia that differ 

markedly in landscape pattern.  

 

Mangrove bird assemblages were strikingly distinct in their species composition from all 

other coastal forest types. This may be resultant of relatively scarce nectar and fruit 

resources in mangrove forests (Noske 1996; Kutt 2007). Also, the unique structure, 

resources, and micro-climate of mangrove forests may lead to a higher richness of bird 

species that are confined and adapted to mangrove forests (e.g. specialist bird species that 

forage on crabs and mudskippers; Noske 1996). Indeed, Australian mangrove forests 

have the highest number of bird species restricted to mangrove forests worldwide (Ford 

1982).  

 

Mangrove survey sites with distinct bird species composition were found in coastal 

landscapes with substantial amounts of rainforest in the surrounding area. In the Northern 
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Territory of Australia, the within-forest and local-scale landscape patterns that influence 

mangrove bird assemblages are mangrove flowering phenology, within-patch habitat 

heterogeneity, and the number and type of adjacent habitats (Mohd-Azlan and Lawes 

2011; Mohd-Azlan et al. 2012, 2014). However, in the Wet Tropics biogeographic region 

(within the present study area), the type of adjacent habitats was more important than 

within-patch habitat heterogeneity to mangrove bird assemblage (Kutt 2007), and 

rainforest is considered a ‘keystone’ habitat that increases bird species richness in nearby 

mangroves (Mohd-Azlan and Lawes 2011; Mohd-Azlan et al. 2014). Together, these 

findings suggest that local-scale landscape context, in particular the presence of rainforest 

vegetation, is an important factor determining which bird species will occupy mangrove 

forests.  

 

Interestingly, mangrove structural connectivity was not correlated with bird species 

composition at any of the spatial scales considered. In the coastal Northern Territory of 

Australia, small mangrove forest patches had higher bird species diversity than larger, 

more continuous mangrove patches (Mohd-Azlan and Lawes 2011). Therefore, patch size 

may also be an important factor in determining bird species composition in mangroves of 

north-eastern Australia, but was not able to be detected in this study. 

 

Shrubland structural connectivity demonstrated the strongest correlation to coastal forest 

bird species composition at the 12 km spatial scale. Shrubland vegetation may be 

particularly important for birds due to the flowering shrub species it contains (e.g. 

Banksia spp., Grevillia spp., etc.). Banksia shrub species in particular provide more 

abundant, dense, and reliable nectar resources than eucalypt forests, causing 

nectarivorous birds to aggregate in these flowering habitats (Franklin and Noske 1998; 

Woinarski et al. 2000b). This aligns with conclusions from previous research in northern 

Australia indicating that a diversity of nectar-producing habitats is critical to supporting 

avifauna in landscape mosaics, particularly due to seasonal changes in resource 

abundance (Franklin and Noske 1998, 2000; Woinarksi and Tideman 1991; Woinarski et 

al. 2000b, Kutt 2007).  
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Melaleuca woodland structural connectivity was correlated with coastal forest bird 

species composition at all spatial scales considered. In particular, the number and total 

edge of Melaleuca patches are important components of coastal ecosystem structural 

connectivity for avifauna.  The importance of Melaleuca woodlands for coastal avifauna 

corroborates research in south-east Queensland that identified Melaleuca remnants as 

highly important for avian conservation (Grover and Slater 1994). Additionally, 

Melaleuca woodlands have been identified as a ‘keystone resource’ for nectarivorous 

birds in the Northern Territory of Australia because of their highly abundant nectar 

resources, and their wet season flowering phenology that opposes that of eucalypt 

woodlands typically flowering in the dry season (Woinarski et al. 2000b; Woinarski 

2004; Kemp and Kutt 2005). The high importance of Melaleuca woodland structural 

connectivity to bird species composition at all spatial scales considered in this study 

suggests that these woodlands are a ‘keystone structure’ in the coastal ecosystem mosaic 

(i.e. a spatial structure that provides functions essential for the maintenance of 

biodiversity within a system (Tews et al. 2004)).  

 

3.5.2 Spatial scale and structural connectivity 

 

Spatial scale and vegetation type influenced the association between structural 

connectivity and bird species composition, suggesting the need to consider their 

combined effects. At the largest spatial scale examined (12 km), the structural 

connectivity of rainforest, Melaleuca woodland, vegetation-devoid, and shrubland 

vegetation patches were associated with differences in coastal bird species composition 

between landscape contexts. Melaleuca woodland and vegetation-devoid connectivity 

patterns were also correlated at the 3 km spatial scale, whereas grassland structural 

connectivity was only correlated at the 6 km spatial scale. The dependence of 

connectivity variable correlation on spatial scale may be related to how the measurement 

of individual landscape metrics changes with spatial extent. It is known that as the spatial 
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extent of measurement increases or decreases, the value of landscape metrics can change 

either unpredictably or proportionally (Wu 2004). In the present study, as the spatial 

extent at which vegetation-devoid landscape metrics were measured increased, the 

importance of distance between vegetation-devoid patches (i.e. the MNN landscape 

metric) decreased. However, in contrast, the spatial extent of measurement did not change 

the importance of individual landscape metrics for Melaleuca woodland structural 

connectivity, which was correlated at all three spatial scales. The inability of the present 

study to find a consistent pattern in how spatial extent influences landscape metric 

importance reinforces the need for spatial investigations to be conducted at multiple 

scales.  

 

It is likely that the importance of individual landscape metrics, such as the distance 

between vegetation patches, is related to the movement of individual bird species. 

Complex modelling approaches allow the dispersal and daily movement ability of birds 

(i.e. functional connectivity) to be incorporated when predicting bird response to 

landscape connectivity (Drielsma et al. 2007 a, b). Although this is certainly an area for 

further research, the present study provides a first step that lays the foundation for more 

detailed exploration using complex modelling.  

 

3.5.3 Implications for conservation 

 

This study clearly shows the importance of conserving shrubland and Melaleuca 

structural connectivity to maintain functional landscapes for coastal avifauna. Due to high 

rates of clearing, Melaleuca vegetation falls within regional ecosystem groups that have 

been identified as ‘endangered’ or ‘of concern’ in all three biogeographic regions 

investigated, whereas some shrubland species, such as Grevillea spp., are ‘endangered’ in 

the Brigalow Belt North region (Sattler and Williams 1999). Pre-clearing investigations 

of the coastal lowlands in the Wet Tropics biogeographic region have also found that 

native vegetation has been reduced by two-thirds, of which Melaleuca woodlands and 
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forests are a major component (up to ~65% loss in some areas; Johnson et al. 2000; 

Kemp et al. 2007). The present study supports the growing body of evidence indicating 

that Melaleuca woodland remnants are highly important to the health of ecosystem 

mosaics in tropical and sub-tropical Australia, and efforts for their preservation should be 

prioritized (Grover and Slater 2004; Woinarski 2004).  

 

3.5.4 Conclusions 

 

This research highlights the need to consider multiple aspects of structural connectivity 

when planning for conservation, such as how the spatial dynamics of vegetation patterns 

and connectivity relate to species use of coastal ecosystem mosaics. Research regarding 

landscape processes tends to focus on patterns that occur within, or directly adjacent to, 

focal habitat patches (Radford et al 2005), perhaps due to logistical and funding 

constraints. However, a holistic perspective that considers interactions among 

components of the coastal ecosystem mosaic is necessary for effective avian 

conservation.  The present study provides a broad overview of the importance of 

landscape structural connectivity for mangrove bird assemblages. Further research is 

needed to examine the specific responses of foraging groups and individual species. 
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4 Ecological networks reveal divergent requirements for beta diversity 

conservation of generalists and specialists 
 

4.1 Abstract 
 
Networks of forests and woodlands commonly typify coastal landscapes, however 

species’ use of these networks can differ depending on their niche specificity (e.g. habitat 

generalist or habitat specialist). Furthermore, whether a forest network is functionally 

connected depends on the distances that species are able to travel. We developed spatial 

models of coastal forest networks for bird assemblages of coastal northeast Australia, 

defined by the following attributes: forest area, forest availability, and forest connectivity. 

Bird species with similar daily home ranges were surveyed at ten locations along the 

northeast coast, and categorized as habitat generalists or specialists. Spatial models of 

coastal forest network attributes were then used as predictors of bird assemblage 

compositional turnover. Forest availability was the most important network attribute for 

generalists, while forest area was of greater importance to specialists. Network attributes 

were used to predict the compositional similarity of bird assemblages across coastal 

northeast Australia, finding that patterns of compositional similarity differ for specialists 

and generalists. Finally, current protected area coverage of important network attributes 

was evaluated, showing different levels of coverage in the northern and southern halves 

of the study region. In summary, generalist and specialist bird assemblages require 

different coastal forest network attributes to maintiain beta-diversity in regional northeast 

Australia. When divergent requirements cannot be dually protected, maintaining high 

amounts of forest area will benefit both groups. 

 

4.2 Introduction 

 

Improving understanding of the ways in which biodiversity promotes ecosystem 

resilience is increasingly important, especially considering the high rate of ecosystem 

change occurring worldwide (Tilman et al. 2014, Oliver et al. 2015, Lefcheck et al. 
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2015). Species are continually threatened by factors such as habitat loss, pollution, 

invasive species, and climate change; and protected areas can be ineffective at providing 

refuge if they are not well designed (Chape et al. 2005). Challenges to effective protected 

area planning are partly due to the complexity of processes occurring within and among 

ecosystems that contribute to spatial variation in species composition (i.e. beta diversity; 

Anderson et al. 2011). Determining how landscape attributes influence biodiversity will 

allow better-targeted management strategies, resulting in more effective conservation of 

resilient ecosystems (Oliver et al. 2015). For example, measures of 

landscape heterogeneity are positively correlated with species diversity in the mountain 

ranges of Nepal, demonstrating the need for adequate protection across the elevation 

gradient when designing an effective reserve network in this region (Paudel and Heinen 

2017). 

 

Since the 1970’s there has been debate over which landscape attributes should be 

prioritised for effective conservation. This has been underpinned by island biogeography 

theory, examining whether reserve networks are best designed as single large or several, 

small protected areas (i.e. SLOSS; Diamond 1975, Higgs 1981, Margules et al. 1982).  

More recently, there has been debate over the importance of incorporating landscape 

connectivity vs. habitat area into protected area networks (Hodgson et al. 2009, Doerr et 

al. 2011, Hodgson et al. 2011). Connectivity patterns and processes are highly complex 

and variable, particularly in comparison to the relatively simpler and well-established 

species-area relationship. Therefore, decision-making may be more effective if habitat 

area requirements are prioritized over the inclusion of more complicated connectivity 

patterns and processes (Hodgson et al. 2009, Hodgson et al. 2011). However, the 

relationships underpinning habitat area, habitat quality, and connectivity requirements are 

likely to interact, and their relative importance will vary among species. Therefore, 

understanding the interactions between habitat area, quality, and connectivity is necessary 

(Doerr et al. 2011, Hodgson et al. 2011).  
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Conserving multiple species is further complicated by variation in landscape use 

associated with individual species’ life history traits. One approach for accounting for this 

variability is to group species by their niche specificity, i.e. as habitat generalists or 

specialists. Generalists are able to use many resources across multiple habitats, while 

specialists are highly efficient at exploiting a specific resource in one habitat (Futuyama 

and Moreno 1988). Specialists are typically considered of greater conservation concern 

than generalists due to their higher sensitivity to habitat loss, causing high rates of 

population decline (Clavel et al. 2011, Buchi and Vuilleumier 2014, Poniatowski 2016). 

Furthermore, an abundance of generalist species is often viewed negatively for regional 

biodiversity because it indicates increased functional homogenization and redundancy 

(Clavel et al. 2011). Regardless of their perceived conservation importance, quantifying 

relationships between landscape features and generalist/specialist beta diversity will 

elucidate interactions between multi-species habitat requirements and landscape use. 

 

Of the analytical approaches available for measuring landscape features, graph theory is a 

useful tool that represents landscapes as ecological networks comprised of habitat patches 

and linkages (Rayfield et al. 2011). Graph theory also allows information regarding 

species’ movement abilities and habitat suitability requirements to be incorporated into 

the development of functionally connected ecological networks. Ecological network 

models based on graph theory have primarily been used to investigate the response of 

either single species or static measures of species diversity (e.g. species richness) to 

various landscape attributes. However, investigating single species’ responses can be of 

limited value if the primary goal of conservation efforts is to protect the collective 

biodiversity of a region. Moreover, measures of species richness often over-simplify 

species’ responses to environmental patterns and processes, resulting in inadequate 

information regarding species’ habitat requirements (Veach et al. 2017). One solution lies 

in the use of generalized dissimilarity modelling, which determines the influence of 

environmental variables, such as ecological networks, to the compositional turnover of 

multiple species within a region (Ferrier et al. 2007). Compositional turnover is a 

measurement of beta diversity that determines how species’ identities change in relation 
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to spatial, temporal, or environmental gradients, and can be expressed as a rate (Anderson 

et al. 2011). 

 

We developed functionally connected coastal forest networks to investigate how forest 

area, availability, and connectivity are related to the beta diversity of coastal forest 

avifauna. Specifically, we measured the compositional turnover of two coastal forest bird 

assemblages (coastal generalists and mangrove specialists) in response to forest area, 

availability, connectivity, and geographic separation. We also predicted the 

compositional similarity of coastal generalist and mangrove specialist bird assemblages 

across the study area, and evaluated the current protection of forests for avifauna.  

 

4.3 Methods 

 

4.3.1 Study area and bird assemblage data 

 

The study area encompassed approximately 630 km of northeast Australia’s coastline, 

comprising three biogeographic regions: the Wet Tropics, Brigalow Belt North, and 

Central Mackay Coast (Commonwealth of Australia 2012). Four major coastal forest 

types occur throughout these biogeographic regions: mangrove, rainforest, Eucalypt, and 

Melaleuca woodlands (see Figure 4-1 a for their distribution). In 2015, ten survey 

locations were placed sequentially along the coastline at 50-150 km distances (Figure 4-1 

c). At survey locations, three replicate bird surveys were conducted in each coastal forest 

type (replicate surveys were at least 200 m apart, and surveyed twice in 

January/February, June, and October of 2015). Bird surveys were performed as 10-

minute point counts from dawn-10:00 h and 14:30 h-dusk. All bird species seen or heard 

within a 50 m radius during the 10-minute period were recorded, while birds flying over 

the point count area at any distance were not recorded. Additionally, all point count 

surveys were audio recorded with a Sony IC Recorder to confirm difficult-to-distinguish 

bird calls. (Note: the same bird assemblage data were used in Chapter 3.)  
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The average daily movement ability of each bird species was identified using the 

Handbook of Australian, New Zealand and Antarctic birds (Marchant and Higgins 1990, 

1993; Higgins and Davies 1996; Higgins 1999; Higgins et al. 2001, 2006; Higgins and 

Peter 2002) and the Australian Bird and Bat Banding Scheme database (ABBBS 2016). A 

distance of ~1000 m was representative of the average daily movement ability for the 

majority of bird species identified, and these species were selected from the presence-

absence dataset for analysis. Thereafter, bird species were classified as either: mangrove 

forest specialists (> 90% of occurrences were in mangrove forest only (total = 4 species)), 

or coastal forest generalists (< 90% of occurrences were in only one forest type (total = 

32 species)). A table displaying percentages of each bird species’ occurrence among 

forest types, and their classification as a coastal generalist or mangrove specialist, is 

provided in the Appendix 2, Table A4.1. 

 

4.3.3 Functionally connected coastal forest networks: forest area, availability, and 

connectivity importance 

 

Graph theory was used to develop functionally connected forest networks for coastal 

generalist and mangrove specialist bird assemblages. Graph theory estimates landscape 

connectivity by determining links between habitat patches (i.e. nodes) with direct 

Euclidian distance or, if habitat suitability data is available, with least-cost paths through 

a resistance landscape surface (Rayfield et al. 2011). Habitat suitability data was not 

available for all bird species in the present study, and therefore a binary landscape surface 

(i.e. forest vs. non-forest) and Euclidian link distance were used.  

 

A vegetation raster (resolution = 100 m X 100 m) was obtained from the National 

Vegetation Information System for development of the coastal forest networks (NVIS 

2012). The NVIS raster was clipped along the length of the coastline that was surveyed, 

and at least 50 km inland from each survey location to avoid truncated modelling (Figure 
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4-1 a). The vegetation raster was reclassified as a binary landscape surface (i.e. forest vs. 

non-forest) separately for each forest network type (i.e. coastal generalist or mangrove 

specialist). For coastal generalist bird assemblages, links and nodes were based on all 

four forest types (i.e. mangrove, rainforest, Eucalypt, and Melaleuca). Alternatively, for 

mangrove specialist bird assemblages, only mangrove forests formed the basis for links 

and nodes in the forest network. Forest area and the links between forest patches in the 

binary landscape surfaces for coastal generalists and mangrove specialists were 

determined by construction of a minimum planar graph (MPG; inset of Figure 4-1 a). An 

MPG is an approximation of a complete graph, where only one link is shown between 

adjacent pairs of forest patches, and links do not cross each other (i.e. the graph is planar; 

Fall et al. 2007). The MPG method of link determination was chosen for its 

computational efficiency because of the relatively large raster used in the present study. 

 

Following development of the functionally connected coastal forest networks, the area, 

availability, and connectivity importance of forest patches were quantified. Forest area 

was calculated by voronoi tessellation of the MPGs with 100 m X 100 m resolutions, 

meaning that forest area represented the total area of forest patches within ≤ 100 m 

distances from each other. The importance of forest patches to coastal forest networks 

was evaluated using several indices: integral index of connectivity (IIC), number of links 

(NL), and number of components (NC; see Table 4-1 for full description of each index 

and how they were calculated using Conefor 2.6 software (Saura and Torne 2009)). 

Importantly, indices were calculated when the Euclidian distance of links in the MPG 

were ≤ 1000 m, and therefore functionally linked for bird species with average daily 

movement abilities of 1000 m. The importance of individual forest patches for each index 

(I) were calculated by the Conefor 2.6 software as: 

Importance(I) = I - Iafter 

where I is the overall value of the index when all forest patches are present in the 

landscape, and Iafter is the overall value of the index after the removal of that forest patch 

from the landscape (Pascual-Hortal and Saura 2006, Saura and Pascual-Hortal 2007). 

Forest patches in the vegetation rasters were reclassified with values calculated by each 
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index, creating spatial models of forest area (A), availability (IIC), and connectivity 

importance (NL and NC) for coastal generalists (Figure 4-1 b1) and mangrove specialists 

(Figure 4-1 b2).  
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Figure 4-1 Diagram of modelling approach, where (a) shows the distribution of four 

coastal forest types in northeast Australia (mangrove, Melaleuca, Eucalypt, and 

rainforest). The inset plot shows a network of coastal forest patches connected at a 

Euclidian distance threshold of ≤1000 m (links are displayed in red), forming a 

functionally connected forest network for bird species surveyed in the present study. 

Functionally connected coastal forest networks were developed for: (1) coastal generalist 

bird assemblages (all forest types were nodes) and (2) mangrove specialist bird 

assemblages (only mangrove forest patches were nodes). From these networks, forest 

area, availability, and connectivity were evaluated to develop predictors of compositional 

turnover for coastal generalists (b1) and mangrove specialists (b2)  (See Table 4-1 for a 

description of each predictor (i.e. area (A), integral index of connectivity (IIC), number of 

components (NC), and number of links (NL)).) Finally, generalized dissimilarity models 

were used to evaluate the relationship between predictors and the compositional turnover 

of bird assemblages in coastal forests at ten survey locations (c) along the northeast coast 

of Australia (survey locations = grey dots). 

 

4.3.4 Generalized dissimilarity models: relationships to compositional turnover 

 

Generalized dissimilarity models (GDMs) were used to determine relationships between 

the compositional turnover of bird assemblages and predictors of forest area (A), 

availability (IIC), and connectivity importance (NL and NC; Figure 4-1 b(1,2), c)). In 

addition to these four predictor variables, GDMs offer the option to include Euclidean 

distance between survey sites (i.e. Geographic distance) as a predictor of compositional 

turnover (Table 4-1). GDMs perform nonlinear matrix regression using maximum 

likelihood estimation and flexible I-spline functions to accommodate variation in the rate 

of compositional turnover along a predictor gradient (Ferrier et al. 2007). GDMs also use 

a link function to accommodate the curvilinear relationship between composition 
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dissimilarity (constrained between 0 and 1) and the increasing environmental/geographic 

distance between survey sites (Ferrier et al. 2007).  

 

Table 4-1 Description of the forest network attributes that were used as predictors of bird 

assemblage compositional turnover in generalized dissimilarity models (GDMs). 

Minimum planar graphs (MPGs) were the basis for the calculation of A, IIC, NL, and NC 

(Pascual-Hortal and Saura 2006, Saura and Pascual-Hortal 2007, Galpern and Doctolero 

2016), and geographic distance was evaluated during the GDM procedure (Ferrier et al. 

2007). 

Predictor Description 

Forest area (A) 
Total forest patch area (ha), defined by voronoi tessellation of the 

minimum planar graph (resolution = 100 m X 100 m). 

Integral index of 

connectivity (IIC) 

IIC is a measure of the forest patch availability that evaluates forest area 

and the number of links to a forest patch. High IIC value indicates that a 

forest patch has high importance to the availability of forest patches 

within a coastal forest network. 

IIC for a focal forest patch is calculated by: 

𝐼𝐼𝐶 =  

∑  ∑   
𝑎𝑖𝑎𝑗

1 + 𝑛𝑙𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1

𝐴𝐿
2  

where ai is the area of each forest patch and nlij is the number of links in 

the shortest path between patches i and j, and AL is the total landscape 

area. 

Number of links (NL) 

The numbers of links connecting a forest patch to the network, at a 

Euclidian distance threshold ≤ 1000 metres. Forest patches with high 

NL values indicate high connectivity importance in the coastal forest 

network. 

Number of 

components (NC) 

A component is either an isolated forest patch, or multiple forest patches 

that are linked by ≤ 1000 metres. When a coastal forest network is more 

connected there will be less components. Therefore, low NC values 

indicate high connectivity importance in the coastal forest network. 

Geographic distance The Euclidian distance (m) between survey sites in the present study. 
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All five predictor variables (A, IIC, NL, NC, and Geographic distance) were included in 

construction of GDMs (using Jaccard dissimilarity matrices) for coastal generalist and 

mangrove specialist bird assemblages, separately. To determine the maximum deviance 

explained by each model, the number of I-spline basis functions per predictor was 

increased by an increment of one (from the default of three) until the increase in deviance 

explained was < 0.05%. Model significance was determined by matrix permutation (n = 

500), and the relative importance of each predictor variable to the compositional turnover 

of bird assemblages was determined by summing their I-spline coefficients (Ferrier et al. 

2007, Fitzpatrick et al. 2013). 

 

Individual predictor relationships to compositional turnover were further investigated 

using partial regression fits where the effects of all other variables were held constant (i.e. 

the I-spline function for each individual predictor). The height of the I-spline function 

represents the total amount of compositional turnover associated with the predictor 

variable of interest, while the slope represents the rate of compositional turnover (Ferrier 

et al. 2007, Fitzpatrick et al. 2013). 

 

I-spline functions of predictors that contributed to the overall deviance explained by 

GDMs were used to transform the original raster surfaces of each predictor. The 

transformed rasters were used to predict patterns of compositional dissimilarity for 

coastal generalists and mangrove specialists across their forest networks. Hierarchical 

cluster analysis of the predicted dissimilarities allowed grouping of areas that were 

compositionally similar (clustering method = Wards). Subsequently, the compositional 

dissimilarity between groups identified from hierarchical cluster analysis was calculated, 

creating a group dissimilarity matrix. Metric multidimensional scaling (MDS, k=3) of the 

group dissimilarity matrix was used to assign red, green, and blue (RGB) colour gradients 

to the 1st, 2nd, and 3rd dimension of each group, respectively (Ferrier et al. 2007). The 

colour of each group was defined by the combination of their three colour axes, allowing 

the predicted compositional dissimilarity of bird assemblages to be visualised by the 
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RGB colour scale. Colours that are close to each other on the scale are compositionally 

more similar.  

 

Finally, the protection of coastal forest network attributes was assessed. Data providing 

the extent of areas protected by the Queensland government and other managers within 

the study area were obtained from the Collaborative Australian Protected Area Database 

(Commonwealth of Australia 2014). Using the extent of each protected area, the average 

value of forest network attributes (i.e. area, availability, or connectivity importance) that 

were found to be important to bird compositional turnover was calculated for each 

protected area. 

 

Analyses were performed in R version 3.3.2 (R Core Team 2016) and in Conefor 2.6 

software (Saura and Torne 2009). The following R packages were used during analyses: 

‘raster’ for raster processing (Hijmans 2016), ‘grainscape’ for development of minimum 

planar graphs (Galpern and Doctolero 2016), ‘gdm’ for generalized dissimilarity 

modelling (Manion et al. 2016), and predictor indices were calculated with the Conefor 

2.6 software (Saura and Torne 2009). 

 

4.4 Results 

4.4.1 Compositional turnover 

 

We measured the compositional turnover of bird assemblages in response to several 

forest network attributes (i.e. forest area (A), availability (IIC), number of links (NL), and 

number of components (NC)). The observed compositional dissimilarity of bird 

assemblages against the linear predictor of the regression equation obtained by GDMs 

was plotted (i.e. predicted ecological distance; Figure 4-2). This shows the change in 

assemblage composition associated with the predicted distance between site pairs given 

their environmental dissimilarity and geographic distance, demonstrating that mangrove 

specialist bird assemblages had greater compositional turnover than coastal generalists in 
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relation to the predictor variables investigated (Figure 4-2). The total deviance in the 

observed compositional dissimilarity of bird assemblages explained by predictors used in 

the GDMs was 13.2% for coastal generalists (p = 0.002) and 32% for mangrove 

specialists (p = 0.02).  

 

 

Figure 4-2 Relationship between the predicted ecological distance of site pairs and their 

observed compositional dissimilarity for (a) coastal generalist bird assemblages and (b) 

mangrove specialist bird assemblages. ‘Predicted ecological distance’ is the linear 

predictor of the regression equation from the GDM procedure (i.e. the predicted distance 

between site pairs given their environmental dissimilarity and geographic distance). 

4.4.2 Relative importance of landscape attributes to compositional turnover 

 

The relative importance of predictor variables to the compositional turnover of mangrove 

specialist and coastal generalist bird assemblages was determined by summing their I-

Spline coefficients showing that, for both bird assemblages, forest area (A) and 

Geographic distance were related to compositional turnover, while the number of forest 

components (NC) and links (NL) were not (Table 4-2). The integral index of connectivity 

(IIC) was related only to compositional turnover of coastal generalists, while Geographic 

distance was the most important variable influencing compositional turnover of 

mangrove specialists (Table 4-2). 
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Table 4-2 Relative importance of predictor variables to the compositional turnover of 

coastal generalist and mangrove specialist bird assemblages, determined by summing 

their I-spline coefficients. The relative importance of the variable with the highest 

summed coefficients is highlighted in bold, while variables that were not related to 

compositional turnover are indicated by a dash. 

Bird 

assemblage 

type 

Model 

significance 

(p-value) 

Variable importance 

Forest area 

(A) 

Integral 

index of 

connectivity 

(IIC) 

Number of 

components 

(NC) 

Number of 

links (NL) 

Geographic 

distance 

Coastal 

generalists 
0.002 0.055 0.387 - - 0.068 

Mangrove 

specialists 
0.02 0.878 - - - 1.171 

 

4.4.3 Individual relationships between landscape attributes and compositional turnover 

 

Partial regression fits were used to investigate the relationship between compositional 

turnover and each individual predictor variable, showing both the maximum 

compositional turnover (height of the fitted function) and the changing rate of turnover 

(slope of the fitted function) along each predictor variable gradient (Figure 4-3, 4-4). For 

predictor variables that influenced compositional turnover (i.e. A, IIC, and Geographic 

distance), the compositional turnover of bird assemblages increased as the predictor 

variable gradient increased (although relationships were not linear, Figure 4-3, 4-4). More 

specifically, the rate of mangrove specialist compositional turnover was highest when 

forest area was between 500 and 1000 ha, and lower when forest area >1000 ha (Figure 

4-3 a). Mangrove specialist compositional turnover also increased continuously as 

Geographic distance increased (Figure 4-3 e).  
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The rate of coastal generalist compositional turnover was relatively inconsistent along 

each predictor variable’s gradient (Figure 4-4 a,b,e). When forest area was greater than ~ 

5000 ha the rate of coastal generalist compositional turnover increased (Figure 4-4 a). In 

response to Geographic distance, coastal generalist compositional turnover showed 

‘stepped’ increases, with a maximum rate of turnover at distances > ~ 400 km (Figure 4-4 

e). However, the most important predictor of coastal generalist compositional turnover 

was the integral index of connectivity (IIC), which showed a high rate of turnover that 

declined temporarily and then continued to increase gradually (Figure 4-4 b). 
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Figure 4-3 I-spline functions (i.e. partial regression fits) of each predictor variable in 

relation to the compositional turnover of mangrove specialist bird assemblages, while 

holding all other variables constant. See Table 4-1 for a full description of each predictor 

variable. The height of each I-spline represents the total amount of compositional 

turnover associated with each predictor variable, while the slope shows the changing rate 

of compositional turnover along the predictor’s gradient.  

 

Figure 4-4 I-spline functions (i.e. partial regression fits) of each predictor variable in 

relation to the compositional turnover of coastal generalist bird assemblages, while 

holding all other variables constant. See Table 4-1 for a full description of each predictor 
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variable. The height of each I-spline represents the total amount of compositional 

turnover associated with each predictor variable, while the slope shows the changing rate 

of compositional turnover along the predictor’s gradient.  

 

4.4.4 Predicted compositional similarity across northeast Australia 

 

The predicted compositional similarity of coastal generalist and mangrove specialist bird 

assemblages across northeast Australia differed for mangrove specialists and coastal 

generalists (Figure 4-5). For coastal generalists, areas in the northern half of the study 

area had greater compositional similarity in comparison to the south (i.e. the northern half 

had dark and light blue colors that are adjacent to each other on the color scale, while the 

southern half had pink and yellow colors that are not directly adjacent to each other on 

the color scale; Figure 4-5 a). The Whitsunday region was predicted to have the most 

compositionally distinct coastal generalist bird assemblage relative to the rest of the study 

area (i.e. yellow colors; Figure 4-5 a). Alternatively, mangrove specialists showed a 

gradual change in composition from north to south along the coastline (i.e. green to blue 

to red to yellow, Figure 4-5 b). 
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Figure 4-5 Predicted compositional similarity of: (a) coastal generalist bird assemblages 

and (b) mangrove specialist bird assemblages across northeast Australia. Colours that are 

farther apart on the red, blue, and green colour scale indicate less compositional similarity 

between areas. Borders designate the three biogeographic regions of the study area (WT 

= Wet Tropics, BBN = Brigalow Belt North, CMC = Central Mackay Coast; 

Commonwealth of Australia 2012). A dashed box shows the location of the Whitsunday 

region and, for reference, the dashed line splits the study area in to north vs. south. 

4.4.5 Average values of important landscape attributes in protected areas 

 

Given their importance for the beta diversity of coastal forest avifauna, the average value 

of forest area (A) and integral index of connectivity (IIC) in protected areas within the 

study area was evaluated (Figure 4-6). Overall, protected forests in the north were of 

intermediate size (pink colors in Figure 4-6 a) and well connected (yellow colors in 

Figure 4-6 b) compared to larger (yellow colors in Figure 4-6 a) but more disconnected 

forests in the south (purple colors in Figure 4-6 b). However, an exception to this overall 
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pattern was the Whitsunday region, where protected areas contained forests that were on 

average small and disconnected (purple colors in Figure 4-6 a, b). 

 

 

 

Figure 4-6 Protected areas within the study area are displayed as polygons. The colour 

gradient represents the average value of forest area (a) and importance to the integral 

index of connectivity (b) within each protected area. A dashed box shows the location of 

the Whitsunday region and, for reference, the dashed line splits the study area into north 

vs. south. 

 

4.5 Discussion 

 

Combining ecological network analysis with a multi-species modelling approach revealed 

that the importantance of forest network attributes differs depending on whether 
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assemblages are comprised of habitat generalists or specialists, suggesting that the niche 

requirements of species assemblages are an important characteristic to consider when 

investigating compositional turnover. Furthermore, this approach demonstrates that 

habitat area, availability, and connectivity requirements can be considered simultaneously 

in regional biodiversity conservation planning. 

 

4.5.1 Beta diversity of coastal generalists and mangrove specialists 

 

Compositional turnover across northeast Australia was greatest for mangrove specialists. 

Specialists tend to exploit fewer resources and require very specific habitat requirements. 

Therefore, the high rate of specialist compositional turnover in the present study could be 

associated with spatial variability in either habitat quality or resources within the 

mangrove forest network. The lower overall rate of compositional turnover for coastal 

generalist bird assemblages is likely related to their propensity for using multiple forest 

types. Indeed, high variability in nectar and insect availability is characteristic of the 

Australian landscape and is known to encourage generalist and nomadic foraging 

strategies in birds (Chan 2001). 

 

There were positive relationships between mangrove specialist beta diversity and both 

mangrove forest area and geographic separation. As the area or geographic separation of 

mangroves increased, the rate of mangrove specialist compositional turnover also 

increased. This suggests that spatial variability in either habitat quality or resource 

availability associated with mangrove extent and geographic distance contributed to the 

high rate of specialist compositional turnover. For example, larger mangrove forests may 

offer resources that small forests do not, allowing them to support a different mix of 

species. Prior analysis of the entire coastal forest bird assemblage (i.e. specialists and 

generalists) contrasts this, finding that the spatial extent and configuration of mangrove 

vegetation was not associated with variation in bird species composition among the four 

coastal forest types considered (i.e. mangrove, Eucalypt, Melaleuca, and rainforest; 
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Buelow et al. 2017). However, the present study provides a more specific definiton of the 

relationships between the compositional turnover of specialist and generalist bird 

assemblages and forest area. 

 

Interestingly, the compositional turnover of mangrove specialists was not related to forest 

patch availability. This contrasts theory and empirical evidence that specialists are highly 

sensitive to habitat fragmentation due to their inability or unwillingness to use matrix 

habitat (Henle 2004). Therefore, including habitat suitability into the development of 

forest networks may help to more adequately address this unexpected result. Forest patch 

quality can be included ecological network development by the use of resistance (cost) 

landscape surfaces, instead of binary landscape surfaces. Resistance surfaces assign 

values to forest patches according to their quality and suitability for species, allowing 

these attributes to be accounted for in the measurement of forest patch availability and 

connectivity (Rayfield et al. 2011). 

 

In contrast to mangrove specialists, the compositional turnover of coastal forest 

generalists was associated primarily with forest patch availability, and less so with forest 

area or geographic separation. Forest availability (measured by the integral index of 

connectivity; IIC) is the importance of a forest patch to the network given its area and 

connectivity, following the logic that connectivity occurs both within and between 

patches (Pascual-Hortal and Saura 2006). For this reason, and because it is highly robust 

to changes in spatial scale, IIC is considered among the best binary network connectivity 

measures (Saura and Pascual-Hortal 2007). The present study corroborates the superiority 

of forest availability for representing connectivity, as indices that did not explicitly 

account for forest area (i.e. number of components (NC) and number of links (NL)) were 

not related to beta diversity for either specialists or generalists. This suggests that, for 

coastal generalists, it is the combined influence of area and connectivity, culminating in 

forest availability that influences coastal generalist beta diversity.  
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There are likely to be factors influencing the response of generalist and specialist species’ 

assemblages that were not captured in the present study. For example, previous research 

has also discovered that species’ responses to area and connectivity depends on their 

foraging requirements, sensitivity to forest disturbance (Uezu et al. 2005, Martensen et al. 

2012), and the latitude at which they occur (Bregman et al. 2014). Furthermore, response 

variable choice (i.e. compositional turnover, richness, or abundance) is likely to yield 

differences in the relative importance of patch size and connectivity for bird species 

assemblages. For example, the effect of connectivity was greater for species richness 

relative to the abundance of bird assemblages, and abundance was influenced by a 

combination of both patch area and connectivity (Shanahan et al. 2011). A 

complementary multi-species approach, using measures of both species richness and 

compositional turnover, could provide better information for regional conservation 

planning (Arponen et al. 2008).  

 

4.5.2 Predicted compositional similarity and protection of important forest network 

attributes 

 

The compositional similarity of coastal generalist and mangrove specialist bird 

assemblages differed across the study region. Generally, coastal generalist composition 

was more similar in the northern half of the study region compared to the southern half, 

while mangrove specialists showed a gradual transition in composition from north to 

south. For coastal generalists, the north-south distinction may be associated with climatic 

differences that result in higher average annual rainfall in the north (2000-8000 mm/year) 

relative to the south (590-2000 mm/year), driving differences in resource availability for 

birds between the two areas. Furthermore, structural differences in vegetative 

connectivity associated with landscape context in the present study region are known to 

influence the composition of coastal forest bird assemblages (Buelow et al. 2017).  

 



 

 
 

 
Chapter 4: Ecological networks reveal divergent requirements for beta diversity 

 

  

88 

The number and extent of protected areas (PAs) in the present study was also divided 

along the north-south boundary, with more PAs in the north relative to the south. Average 

forest availability (IIC) in northern PAs was relatively high, while in southern PAs forest 

availability was low and area was high (except for the Whitsunday region). This suggests 

that the existing network of protected areas may be more effective for both generalists 

and specialists in the north than in the south. Furthermore, the relative isolation of 

individual PAs in the south may reduce their effectiveness given that geographic distance 

was an important predictor of turnover for both bird assemblages. Given the 

compositional dissimilarity of assemblages in the south relative to the north, the 

development of more southern PAs may be warranted to ensure that these unique 

assemblages are able to persist (but, for discussion regarding the Whitsunday region, see 

below). However these are merely hypotheses, and measuring how well PAs represent 

the species composition of generalist and specialist bird assemblages would provide a 

more direct evaluation of their effectiveness.  

 

The Whitsunday region was predicted to have the most compositionally distinct coastal 

generalist bird assemblage relative to the surrounding forest network. In contrast, the 

mangrove specialist bird assemblage of this region was not particularly unique in its 

composition. The Whitsunday region experiences higher than average rainfall compared 

to adjacent areas, and therefore hosts relatively more abundant rainforest vegetation that 

is disconnected from rainforest further north. Also, the PAs of the Whitsunday region 

consist of relatively small and disconnected forest patches. Therefore, it is likely that 

vegetative composition, area, and availability are all features of the Whitsunday region’s 

coastal forest network that are contributing to the unique composition of its generalist 

bird assemblage. This illustrates the value of predictive modelling for PA management. 

Without considering the predicted effects of landscape features on compositional 

similarity, priority may be placed on protecting patches that are large in size and readily 

available within the forest network. However, this strategy would place the Whitsunday 

region as a low conservation priority, potentially leading to the loss of its unique avian 

assemblage.  
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4.5.3 Conclusions 

 

The compositional turnover of coastal forest bird assemblages across northeast Australia 

differed for generalists and specialists, and this is likely associated with their differential 

landscape use. Generalists depend more heavily on forest availability to allow tracking of 

resources, while the forest area is more important to specialists. It is likely that the quality 

of mangrove patches influences specialist beta diversity as well (Mohd-Azlan et al. 

2015), however this was not quantified in the present study. Forest patch quality, along 

with area and availability, are cornerstones of connectivity conservation, and should 

therefore be considered in future research of coastal avian beta diversity (Doerr et al. 

2011).  

 

Our results show that, with predictive modelling, PAs can be used to target specific areas 

with important forest network features for either generalist or specialist beta diversity. 

The current paradigm is to prioritize highly vulnerable specialist species, but this may 

occur at the expense of generalists. The relative importance of generalists vs. specialists 

for ecosystem functioning requires more research to determine what the appropriate 

allocation of protection will be. Theory suggests that communities with high specialist 

species richness enhance ecosystem functioning (Clavel et al. 2011), however the 

contribution of generalists should not be over-looked. Competition models have shown 

that, under specific conditions, generalist communities can provide greater contributions 

to ecosystem function than those rich with specialist species (Richmond et al. 2005). 

Furthermore, although generalist species tend to have large ranges and flexible 

landscape- and resource- use, there may be a limit to their adaptability. When possible, 

generalists should be included in conservation decisions. Given the importance of forest 

area to both generalists and specialists it seems sensible that, when area and availability 

cannot be dually protected, forest area requirements should take priority.  
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5 Stable isotopes reveal opportunistic foraging in a spatiotemporally 

heterogeneous environment 
 

5.1 Abstract 
 

Environmental heterogeneity can foster opportunistic foraging by mobile species, 

resulting in generalized resource and habitat use. Determining species’ food web roles is 

important to fully understand how ecosystems function, and stable isotopes can provide 

insight into the foraging ecology of bird assemblages. We investigated spatiotemporal 

opportunism in mangrove bird assemblages by determining whether their species’ carbon 

and nitrogen isotopic signatures corresponded to foraging group classification described 

in the literature. Subsequently, we evaluated the isotopic niche size and overlap of 

isotope-based foraging groups, and determined the probable proportions of coastal 

resources that contribute to their collective diets. Mangrove bird assemblages consist of 

foraging groups that are more opportunistic than expected by previous diet studies. 

Importantly, relationships between the dietary diversity of species within a foraging 

group and isotopic niche size are spatially inconsistent, making inferences regarding 

foraging strategies difficult. However, determining the probable relative contributions of 

coastal resources to the collective diet of isotope-based foraging groups can help to 

differentiate between specialised and generalised foraging strategies. We show that 

flexibility in their foraging strategies can occur in response to environmental 

heterogeneity. This is important because of the role that birds play in ecosystem 

functioning through processes such as nutrient transfer. A complementary approach that 

combines isotopic analysis with other dietary information (acquired by visual observation 

or gut content analyses) has provided useful insight to how highly mobile species 

assemblages partition resources in spatiotemporally heterogeneous environments.  

 

5.2 Introduction 
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Where resource availability is patchy and unpredictable in space and time, species can 

survive by opportunistically consuming resources as they become abundant. This has 

been observed across avian taxa, including insectivorous and nectarivourous passerines 

(Rotenberry 1980, Brooker et al. 1990, Sherry et al. 2016), piscivorous waterbirds 

(Trayler et al. 1989), raptors (Stevens et al. 1990), and seabirds (Montevecchi et al. 

2009). Shorebirds also forage opprotunistically when fluctuating water levels at wetland 

stopover sites cause high variability in prey abundance (Davis and Smith 2001, Andrei et 

al. 2009), and when tides or floodwaters inundate their preferred foraging areas (Skagen 

and Knopf 1994, Long and Ralph 2001). Therefore, in environments characterized by 

heterogeneous resource availability, opportunism can occur across multiple features of a 

species’ ecological niche, resulting in generalized resource and habitat choice. Given the 

importance of species’ food web roles for ecosystem functioning, there is a need to 

understand relationships between environmental heterogeneity and the niches that species 

are able to occupy. 

 

Heterogeneity can manifest from the abiotic or biotic characteristics of an environment.  

For example, coastal mangrove forests are located at the land-sea interface, and their 

functioning is influenced by abiotic factors, such as tides, and biotic factors, such as the 

extent and configuration of adjacent vegetation. For forest birds, tidal inundation means 

that the availability of many mangrove resources fluctuates daily. Mangroves also offer 

estuarine prey items (e.g. mudskippers and crabs) that are not found in terrestrial forest 

types. Furthermore, mangroves are often situated in a complex mosaic of adjacent 

vegetation types such as grasslands, saltmarshes, and woodlands, and this could mean 

that flexibility in foraging strategy and choice of foraging habitat may be advantageous 

for highly mobile forest avifauna. 

 

Relative to other forest types, mangroves support few bird species that are obligate 

habitat (mangrove) specialists and instead host many species with generalized foraging 

niches (Noske 1995, Mohd-Azlan et al. 2014, Buelow and Sheaves 2015). However, 

foraging niches have traditionally been examined through visual observation or gut 
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content analyses and, unless individuals can be tracked or recaptured, these methods are 

inappropriate for determining the consistency of an individual’s foraging strategy. For 

example, visual observation can indicate what resources are consumed by a species in a 

specific area, but will not provide information on whether individuals move to forage in 

different habitats, or if individuals consume different resources over time.  

 

Stable isotope analysis provides complementary information to traditional measurements 

of foraging ecology. The carbon (13C/12C) and nitrogen (15N/14N) stable isotope ratios of 

resources vary depending on the photosynthetic pathway of primary producers and with 

trophic level, respectively, and are integrated into the tissues of consumers (Layman et al. 

2012). Therefore, isotopic signatures can be used as ‘tracers’ of resources that are 

consumed, allowing consumer food webs and ‘isotopic niches’ to be constructed if there 

is sufficient variability in the isotopic signatures of basal resources (Newsome et al. 2007, 

Jackson et al. 2011, Layman et al. 2012, Phillips et al. 2014, Swanson et al. 2015).  

 

An isotopic niche represents only a subset of a species’ entire ecological niche (Bearhop 

et al. 2004, Newsome et al. 2007, Swanson et al. 2015). Bird carbon isotopic signatures 

represent foraging habitat choice (e.g. saltmarsh vs. forest), and nitrogen isotopic 

signatures represent resource choice by proxy of trophic level (e.g. insects vs. fruit). Also, 

bird blood and claw tissues differ in how quickly their isotopic signatures are integrated 

(i.e. isotopic turnover rate), providing a temporal comparison of individual foraging 

choice (Bearhop et al. 2002, Lourenco et al. 2015). Therefore, stable isotopes offer a 

unique way to quantify species’ niches and food-web positions in spatiotemporally 

heterogeneous environments.  

 

We investigated spatiotemporal opportunism in mangrove birds using carbon and 

nitrogen stable isotopes to provide insight into their foraging behavior and flexibility. 

Categorizing species into foraging groups is a useful way to understand how bird 

assemblages partition resources (Simberloff and Dayan 1991). However, species 

employing opportunistic foraging strategies may not necessarily fit within literature-



 

 
 

 
Chapter 5: Stable isotopes reveal opportunistic foraging 

 

  

93 

prescribed foraging groups. Therefore, we investigated whether the isotopic signatures of 

bird species occupying mangrove forests corresponded to their foraging groups described 

in the literature. Given the inherent heterogeneity of mangrove forests, we anticipated 

discordance between literature-based and isotopic bird foraging groups.  

 

Following identification of isotopic foraging groups, we measured their isotopic niche 

size and overlap (Jackson et al. 2011, Swanson et al. 2015) expecting patterns indicative 

of generalized foraging strategies (although see Appendix 3 Figure A5.1 for an 

illustration of some challenges in interpreting isotopic niche size). We also used tissues 

with different isotopic turnover rates to examine seasonal variability in resource 

selection, expecting that temporally opportunistic birds will have dissimilar isotopic 

signatures between blood and claws (Bearhop et al. 2002, Lourenco et al. 2015). Finally, 

we constructed the isotopic food web of mangrove bird foraging groups to determine the 

probable proportions of resources that contribute to their diet. Together, these findings 

provide insight into the complex foraging behavior of these species and thus the 

functioning of this system.  

 

5.3 Methods 

 

5.3.1 Study area 

 

This study was conducted at two mangrove forest sites in the Brigalow Belt North 

bioregion of northeast Australia (Commonwealth of Australia 2012, Figure 5-1). This 

region has a dry tropical climate, with rainfall occurring primarily in the wet season 

(November to April, ~590mm/year). In addition to mangrove forest, coastal vegetation of 

this region includes: saltmarsh, rainforest, grassland, agricultural land, and Eucalypt, 

Acacia, and Melaleuca woodlands and forests.  
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Figure 5-1 Map displaying two mangrove forest sampling sites in northeast Queensland, 

Australia: (a) Healy creek (circle) and (b) Cocoa creek (diamond). 

 

5.3.2 Bird capture and foraging group classification 

 

Bird capture and sampling occurred during the months of March-April, 2015 (wet season) 

and July-August, 2015 (dry season) at Cocoa creek (Figure 5-1 b), and only during the 

wet season months at Healy creek (Figure 5-1 a). Eight to ten nylon mist-nets 

(dimensions = 12 × 2.5 m, mesh-size = 16 mm) were used to catch birds on each day of 

sampling. Locations for mist-nets were chosen haphazardly at each site, and shifted 

approximately every two days. Nets were opened before dawn and closed by 12:00. 

Captured birds were identified to species using Pizzey and Knight (2012), and aged and 

sexed using ‘The Australian Bird Bander’s Manual’ (Lowe 1989) and ‘The Bander’s Aid’ 

(Rogers et al. 1986). Each bird was fitted with a band issued by the ABBBS (Australian 

Bird and Bat Banding Authority) and standard morphological measurements were taken. 
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Birds were classified into one of four foraging groups based on previous diet studies 

(Barker and Vestjens 1989, 1990): carnivores, insectivores, nectarivore-insectivores, and 

omnivores. Foraging groups had the following dietary compositions: carnivores = 

arthropods and vertebrates; insectivores = arthropods; nectarivore-insectivores = 

arthropods and nectar; and omnivores = seeds, nectar, fruit, arthropods, and vertebrates. 

Foraging group classification for each bird species caught is provided in the 

Supplementary Materials (Appendix 3, Table A5.2). 

 

5.3.3 Collection and preservation of samples for isotopic analysis 

 

Blood was sampled (20 -100 μl) from the antebrachial vein of each bird using a needle 

(23-27 gauge, depending on bird body size) and a heparinized capillary tube. Blood 

samples were transferred from the heparinized capillary tube to a glass slide, allowed to 

dry, and sealed with another glass slide for preservation until preparation for stable 

isotope analysis. Stainless steel scissors were used to cut 1-2 mm from the tips of four 

claws of each bird. Claw samples were placed in plastic Eppendorf tubes for preservation 

until preparation for stable isotope analysis. Birds were released following blood and 

claw tissue sampling and were not re-sampled if caught again during the same sampling 

trip.   

 

Potential resource and prey items (basal food sources) for birds were collected during 

bird sampling periods at each mist-netting site. Plant, arthropod, and vertebrate food 

sources were collected in the mangrove forests where birds were sampled, and in adjacent 

woodlands (Eucalyptus and Melaleuca spp.) and saltmarshes (see Appendix 3 Table A5.3 

for a full description of the basal food sources collected and their isotopic signatures). It 

should be noted that, while many birds caught may feed on nectar or fruit, these sources 

were not sampled directly. Instead, given their status as primary producers, leaf samples 

were collected with the assumption that they should have similar isotopic signatures to 

nectar and fruit. Comparison of isotopic signatures among different anatomical plant 
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parts has shown that variation is generally small (between 2 and 3% for δ15N; Evans 

2001). Furthermore, Codron et al. 2005 did not find substantial differences in the δ15N 

and δ13C signatures of leaves, flowers, and fruit in South African savannah trees. 

However, because anatomical differences in isotopic signatures have not been explicitly 

tested for in the present study, the assumption that leaves have similar isotopic signatures 

to nectar and fruit will be taken into consideration when interpreting results.  

 

Plant matter and crabs were collected by hand, insects by beating and direct searching 

(Sutherland 1996), and fish by cast-net. Once collected, all basal food sources were 

immediately placed on ice, and subsequently stored frozen until preparation for stable 

isotope analysis.  

 

5.3.4 Sample preparation and isotopic analysis 

 

Five leaf samples were pooled for each species of plant in preparation for isotopic 

analysis. White muscle tissue was excised from chelae and legs of crabs, and from below 

the dorsal fin in fish. Multiple individuals from each Order or Family of insects were 

pooled and left whole for isotopic analysis. Subsequently, all samples were washed in 

distilled water, oven-dried at 60°C, and homogenized using a bead mill. Claw samples 

were washed in a 2:1 chloroform:methanol mixture for fifteen minutes with a magnetic 

stirrer, allowed to air dry for 48 hours under a fume hood, and left un-homogenized for 

isotopic analysis. Dried blood samples were powdered and homogenized using a metal 

scraper on the glass slide where samples had been smeared during collection.   

 

Samples of blood, claws, and basal food sources were weighed into tin capsules, and 

carbon and nitrogen stable isotope ratios were determined using a PDZ Europa ANCA-

GSL elemental analyzer connected to a PDZ Europa 20-20 isotope ratio mass 

spectrometer at the University of California Davis Stable Isotope Facility, USA. All 

stable isotope ratios were expressed in per mill (‰) using the δ notation:   
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δ𝑋 = (
𝑅(sample)

𝑅(standard)
− 1) ×  1,000 

 

where X refers to the element of interest (i.e. C or N) and R is the ratio of the heavier 

isotope to the lighter isotope of element X (i.e. 13C/12C or 15N/14N). The δ values are 

presented relative to the international standards VPDB (Vienna PeeDee Belemnite) for 

δ13C, and Air for δ15N. 

 

5.3.5 Data analysis 

 

Foraging group identification 

 

There are many clustering techniques (e.g. hierarchical, partitioning, etc.) available for 

determining statistical groups that occur within multivariate data. When prior biological 

knowledge is available to inform statistical clustering of data, two indexes have been 

developed to validate cluster algorithm choice and the number of clusters in the data: 1) 

the biological homogeneity index (BHI) and 2) the biological stability index (BSI) (Datta 

and Datta 2006). Biological validation using BHI and BSI quantify the ability of 

unsupervised clustering algorithms to provide biologically meaningful clusters (Datta and 

Datta 2006).  

 

Given the average isotopic signature of blood tissues for each bird species, and prior 

knowledge of their placement in foraging groups identified from previous diet studies, the 

R package clValid was used to choose the best clustering algorithm (‘hierarchical’, ‘k-

means clustering’, or ‘partitioning around medoids’) and to identify the number of 

clusters in the data (ranging from 2 to 8; Brock et al. 2008). The biological validation 

procedure found the ‘partitioning around medoids’ (PAM) clustering algorithm and three 

clusters to provide the most biologically meaningful grouping of bird blood isotopic 
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signatures at both sites. Subsequently, the PAM clustering algorithm with the Manhattan 

distance metric was used to group species’ average blood δ13C and δ15N signatures into 

three clusters at both Cocoa creek and Healy creek, separately (Kaufman and Rousseeuw 

1990, Maechler et al. 2017). The R package factoextra was used to visualise cluster 

analysis results at both sites (Kassambara and Mundt 2017). 

 

Isotopic turnover rate and application of stable isotope discrimination factors 

 

Isotopic turnover rates measure the time required for animal tissues integrate resource 

isotopic signatures, and tissue discrimination factors measure the difference between 

resource and tissue discrimination factors that arise due to physiological processes (i.e. 

excretion and assimilation). Avian blood and claw tissues differ in their isotopic turnover 

rates and discrimination factors (Bearhop et al. 2002, Lourenco et al. 2015). Due to 

differences in turnover rate, whole blood integrates food source isotopic ratios from the 

previous 2-3 weeks (Herrera et al. 2009) and claw tissue (specifically the distal 1-2mm 

‘tip’ of the claw) integrates isotopic ratios from the previous 2-3 months (Hahn et al. 

2014). Therefore, isotopic signatures in consumer blood and claw tissues can provide a 

temporal comparison of individual niche size and overlap.  

 

The majority of birds caught in the study were of the Order Passeriformes. 

Discrimination factors (Δ13C and Δ15N) for passerine blood and feather tissue have been 

measured in multiple studies (Hobson and Bairlein et al. 2003, Pearson et al. 2003, 

Carleton and Martinez del Rio 2005, Herrera et al. 2007), but there are few studies 

quantifying passerine claw discrimination factors. Given that claws and feathers are both 

primarily composed of keratin, and that previous studies have found high correlation 

between their δ13C and δ15N signatures, passerine feather discrimination factors were 

used for claw tissue in the present study (Ferger et al. 2013). 

 

As well as varying among tissue types, discrimination factors are likely to differ between 

species and foraging groups with different dietary compositions (Pearson et al. 2003, 
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Herrera et al. 2009). However, when investigating a bird assemblage comprised of 31 

species, it is not feasible to use species-specific discrimination factors. Instead, we have 

chosen to use discrimination factors that have been determined for multiple foraging 

groups within the Order Passeriformes. We have followed the approach of Ferger et al. 

(2013) and taken an average of discrimination factors, separately for blood and feathers, 

across multiple passerine foraging groups (omnivores, insectivores, frugivores, and 

granivores). Using average discrimination factors can provide misleading results if they 

deviate significantly from species-specific consumer-prey discrimination factors (Caut et 

al. 2008, Martinez del Rio et al. 2009). However, the main objective of the present study 

was to compare the relative isotopic niche size, overlap, and source contribution among 

foraging groups occurring within sites. Therefore, average discrimination factors may not 

be entirely accurate for individual bird species, but comparisons among foraging groups 

should be robust. 

 

Following averaging across passerine foraging groups, discrimination factors were 

calculated as Δ13C = 1.81 ± 1.45 and Δ15N = 2.23 ± 0.39 for blood tissue, and Δ13C = 3.04 

± 0.9 and Δ15N = 3.42 ± 0.36 for claw tissue (re-calculated from raw data provided in the 

Supplementary Materials of Ferger et al. 2013). To directly compare isotopic niche size 

and overlap in blood and claw tissues, bird isotopic signatures were reconstituted by 

subtracting the Δ13C and Δ15N value specific to each tissue from raw δ13C and δ15N 

signatures.  Discrimination factors for blood tissue were also used in stable isotope 

mixing models to allow bird δ13C and δ15N signatures to be related to basal food source 

isotopic signatures, and the standard deviation associated with each discrimination factor 

was used to incorporate natural variability into estimates of dietary composition (see 

‘Relative contribution of sources to foraging group diet’ subsection below for further 

explanation). 

 

Isotopic niche size and overlap 
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Boxplots of foraging group blood and claw δ13C and δ15N signatures at each sampling 

site were inspected, and extreme outliers outside of the expected range were removed. It 

is possible that these outliers represented individual specialists, however they were not 

considered representative of the entire foraging group, and their removal was necessary to 

meet assumptions of multivariate normality. Multivariate normality in δ13C and δ15N 

signatures is an assumption of Bayesian isotopic niche size and overlap calculations 

(Jackson et al. 2011, Swanson et al. 2015), and was assessed for using the function 

‘mshapiro.test’ in the R package RVAideMemoire (Herve 2016). Additionally, differences 

in bird blood and claw δ13C and δ15N signatures across seasons and sites were assessed 

using Welch’s two-sample t-tests (Appendix 3, Table A5.4.1 and A5.4.3).  

 

Bird reconstituted δ13C and δ15N signatures were used to determine the isotopic niche size 

and overlap of bird foraging groups identified from cluster analysis. Isotopic niche size 

was calculated using standard Bayesian ellipse areas (hereafter referred to as ‘ellipse 

areas’ or ‘SEAB’) in the R package SIBER, which provides an estimate of each foraging 

group’s dietary variability and indicates their degree of generalism or specialism (Jackson 

et al. 2011). Subsequently, pairwise comparisons of tissue and foraging group SEAB’s 

determined the probability that one group’s posterior distribution was smaller or larger 

than another (Jackson et al. 2011). Finally, the probability of isotopic niche overlap 

among foraging groups was calculated in the R package nicheROVER (Lysy et al. 2014).  

 

Due to variability in baseline resource isotopic signatures between sites, it is often 

necessary to standardize measures of isotopic niche size and overlap when making direct 

site comparisons (Matthews and Mazumder 2004, Newsome et al. 2007, Warry et al. 

2016). However, we were primarily interested in within-site comparisons of isotopic 

niche size and overlap among foraging groups, rather than in making direct site 

comparisons. Additionally, due to the capture of different species at each site, direct 

comparison of foraging group niche sizes between sites was not prudent. Therefore, we 

chose to forego site standardization, and readers should be cautious about making any 

between-site comparison of isotopic niche size and overlap in this study. 
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Relative contribution of sources to foraging group diet 

 

For foraging group food web construction, Bayesian stable isotope mixing models were 

used to determine the probable relative contribution of basal food sources to the diet of 

mangrove bird isotope-based foraging groups at each sampling site. Mixing models 

require differentiation in source isotopic signatures to reach a solution, and their 

discriminatory power decreases as the number of sources increases (Phillips et al. 2014). 

Therefore, sources that are not significantly distinct in their isotopic signatures can be 

grouped together prior to running mixing models (Phillips et al. 2014). Biological 

interpretability should also be considered when grouping sources a priori (Phillips et al. 

2005, Phillips et al. 2014). Therefore, in the present study, sources that had over-lapping 

error bars (± sd) and were biologically similar were grouped as follows: mangrove 

primary (M), woodland primary (W), mangrove fish (F), mangrove crab (C), forest insect 

(I), and saltmarsh crab and insect (S) (see Table 5-1 for description).  

 

Table 5-1 A description of the basal resources grouped into sources for use in stable 

isotope mixing models. Detailed identification of all basal food resources collected and 

their isotopic signatures can be found in the Supplementary Materials (Appendix 3, Table 

A5.3). 

Source Description of source isotopic signatures 

Mangrove primary 

(M) 

Primary production (leaves) to represent nectar and fruit resources 

from mangroves 

Woodland primary 

(W) 

Primary production (leaves) to represent nectar and fruit resources 

from terrestrial woodlands and forests (Eucalyptus and Melaleuca 

spp.)  

Saltmarsh crab and 

insect (S) Insect and crab prey from saltmarsh* 

Forest Insect (I) Insect prey from all forest types (mangrove and terrestrial) 

Mangrove crab (C) Crab prey from mangroves 

Mangrove fish (F) 

Fish prey from mangroves (includes estuarine fish species and 

mudskippers) 
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*Note: Saltmarsh leaves were also collected, but were not included as a source in the stable 

isotope mixing models because birds are not likely to be feeding on saltmarsh primary 

resources. 

 

Mixing models were run separately for each foraging group at each sampling site, and 

only basal food sources that are known to be consumed by birds in each foraging group 

were used (through consultation of previous dietary studies). Also, because basal food 

sources were collected when birds were sampled, only bird blood δ13C and δ15N isotopic 

signatures were used in the mixing models because blood tissue most closely reflects diet 

integration at that time. 

 

Prior to running the mixing models, mixing biplots were used to satisfy the assumption 

that all consumers lie within source polygons (Smith et al. 2013). Three individual 

consumers lay outside of the 95% mixing region (Appendix 3, Figure A5.5), and were 

removed prior to running the mixing models in the R package simmr (Parnell 2016). 

Bayesian stable isotope mixing models allow variability in discrimination factors across 

all passerine foraging groups to be incorporated (i.e. standard deviation from 

discrimination factor estimates), and provide a measure of how uncertain estimates of 

relative source contributions are in the form of posterior probability distributions (Phillips 

et al. 2014). To meet the assumption of complete mixing, model convergence was 

confirmed using Gelman convergence diagnostics (Parnell et al. 2013). Although we 

grouped sources a priori to obtain a manageable number of sources, some source pairs 

were still unable to be distinguished by mixing models due to similarity in their isotopic 

signatures. Therefore, following protocol outlined in Phillips et al. (2014), an a posteriori 

approach was used to further combine sources that had high negative correlation.  

 

All statistical analyses were performed in R version 3.3.2 (R Core Team 2016). 

 

5.4 Results 
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A total of 31 bird species comprising five literature-based foraging groups were caught 

during wet and dry seasons at both mangrove sampling sites (Appendix 3 Figure A5.6). 

Only two individuals of one granivorous bird species (Geopelia striata) were caught, and 

therefore the granivore foraging group was removed from subsequent analyses. There 

was no difference in blood or claw isotopic signatures across wet and dry season 

sampling periods at Cocoa creek, except for δ15N signatures in claw tissue (Appendix 3 

Table A5.4.1). Although the difference in claw δ15N signatures was found to be 

significant at the p<0.05 level, the effect size was not large enough to warrant biological 

relevance (mean wet season δ15N = 5.8 vs. mean dry season δ15N = 6.3). Therefore, 

isotopic signatures were pooled across seasons at Cocoa creek, separately for blood and 

claw tissues, in all subsequent analyses. As noted above, birds were only sampled from 

Healy creek during the wet season. 

 

5.4.1 Foraging group identification 

 

Cluster analysis demonstrated that blood δ13C and δ15N signatures of mangrove bird 

species did not fully correspond to their foraging group classification by previous diet 

studies (i.e. carnivores, insectivores, nectarivore-insectivores, and omnivores; Figure 5-

2). Additionally, grouping of bird species by their isotopic signatures was not the same at 

both mangrove sites. At Cocoa creek, two isotope groups were comprised of a mix of 

omnivorous, carnivorous, nectarivorous-insectivorous, and insectivorous bird species 

(C_1, C_2; Figure 5-2 a). However, the third isotope group (C_3) had less dietary 

diversity among its bird species, consisting mainly of insectivorous bird species and one 

omnivore (Figure 5-2 a). At Healy creek, carnivorous Sacred Kingfishers (Todiramphus 

sanctus) and Little Kingfishers (Ceyx pusillus) were grouped separately from all other 

bird species (H_1, Figure 5-2 b). The second isotope group at Healy creek was comprised 

of insectivorous and nectarivorous-insectivorous bird species (H_2, Figure 5-2 b), while 

the third isotope group was comprised of omnivorous and insectivorous bird species 

(H_3, Figure 5-2 b).  



 

 
 

 
Chapter 5: Stable isotopes reveal opportunistic foraging 

 

  

104 

 

 

Figure 5-2 Cluster analysis showing bird species grouped by their blood δ13C and δ15N 

signatures at mangrove forest sites (a) Cocoa creek and (b) Healy creek. Symbols indicate 
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each species’ foraging group as defined by the literature: omnivore (diamond), 

nectarivore-insectivore (square), carnivore (+), and insectivore (open circle). Convex 

hulls delineate the three isotope-based foraging groups identified by cluster analysis at 

Cocoa creek (C_1, C_2, C_3) and Healy creek (H_1, H_2, H_3).  The axes show 

standardized values of bird blood δ13C and δ15N signatures (mean = 0, standard deviation 

= 1). 

 

Isotope-based foraging groups identified from cluster analysis were used in all 

subsequent analyses of mangrove bird foraging group isotopic niche size, overlap, and 

source contribution at Cocoa creek and Healy creek. 

 

5.4.2 Isotopic niche size and overlap 

 

Isotopic niche measures dietary trophic diversity, and can therefore provide an indication 

of how generalised or specialised the collective diet of individual foraging groups are 

(Bearhop et al. 2004, Layman et al. 2012). The overlap of foraging group isotopic niches 

determines dietary similarity among groups, and therefore the degree to which 

individuals might be competing for resources (Swanson et al. 2015). Isotopic niches were 

measured by calculation of standard Bayesian ellipse areas (SEAB) using reconstituted 

blood and claw isotopic signatures for isotope-based foraging groups (Figure 5-3). 

Reconstituted claw δ15N signatures were generally of lower value than reconstituted 

blood δ15N signatures, with an average difference across foraging groups of 1.45 ‰ ± 

0.09 standard deviations and 1.64 ‰ ± 0.84 standard deviations at Cocoa creek and Healy 

creek, respectively (Figure 5-3). The consistently low values of reconstituted claw δ15N 

signatures across foraging groups and sites suggest that this pattern is likely an artefact of 

the trophic discrimination factors used. Furthermore, this consistency indicates that 

discrimination did not differ among forging groups, and that our use of average 

discrimination factors to make comparisons of relative isotopic niche size, overlap, and 

source contributions among foraging groups should be robust.  
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The ranges of δ15N isotopic signatures in blood and claw tissues were larger at Healy 

creek than at Cocoa creek, which corresponds to a larger range in baseline source δ15N 

isotopic signatures at Healy creek (all δ15N range differences between sites in blood, 

claw, and baseline isotopic source signatures were significant at p<0.05, Appendix 3 

Table A5.4.3, Table A5.4.4). However, due to lack of site-standardization, ellipse areas 

cannot be directly compared between sites. Therefore, the following subsections make 

only within-site comparisons of isotopic niche size and probability of niche overlap. For 

all probabilistic pairwise comparisons of isotopic niche size (described below), see 

Appendix 3 Tables A5.7.1, A5.7.2.  

 

 

Figure 5-3 Standard Bayesian ellipse areas (SEAB) representing the isotopic niches of 

mangrove bird isotope-based foraging groups at two mangrove sampling sites: Cocoa 

creek (a) and Healy creek (b). Line colour and type differentiates between isotope-based 

foraging groups, and line thickness indicates tissue type (thicker-lined ellipses show 

blood isotopic niches, and thinner-lined ellipses show claw isotopic niches for each 

group). Individual consumer isotopic signatures are also displayed (circles = blood, 
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triangles = claw). Note: between sites the isotope-based foraging groups are comprised of 

different species and therefore should not be directly compared. 

 

5.4.3 Tissue comparisons (i.e. short-term vs. long-term isotopic integration) 

 

Given that blood and claw integrate isotopic signatures of resources consumed over 

different time frames (short-term vs. long-term), comparison of their isotopic signatures 

can indicate whether resources consumed by each foraging group is seasonally consistent. 

Within each site, ellipse areas differed between blood and claw tissues of some foraging 

groups, suggesting temporal changes in their foraging strategies (Figure 5-4). At Cocoa 

creek, all isotope groups had larger claw ellipse areas in comparison to blood (probability 

claw > blood ranged between 95-98% for C_1, C_2, and C_3; Figure 5-4 a). Probability 

of isotopic niche overlap (Pr(INO)) between isotope groups C_1 and C_2 was similar in 

claw and blood tissues, while C_3 had lower Pr(INO) in blood tissue compared to claw 

tissue (Figure 5-4 a). At Healy creek, ellipse areas of blood and claw tissues were similar 

in most isotope groups except for H_2, which had larger blood ellipse areas in 

comparison to claw ellipse areas (probability blood > claw = 100%, Figure 5-4 b). Also, 

Pr(INO) did not differ between blood and claw tissues for any of the isotope foraging 

groups at Healy creek (Figure 5-4 b).  
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Figure 5-4 Standard Bayesian ellipse areas (SEAB) for blood and claw tissues of 

mangrove bird isotope-based foraging groups at Cocoa creek (a) and Healy creek (b). 

Black circles are the mode SEAB, and boxes show the 50%, 75%, and 95% credible 

intervals. Inset plots show the probability of isotopic niche overlap (mean ± 95% credible 

intervals) among the foraging groups. In the inset plots, colour indicates tissue type 
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(‘black’ = blood, ‘grey’ = claw), and symbols represent the foraging groups as follows: 

(circle) = C_1 or H_1; (triangle) = C_2 or H_2; (square) = C_3 or H_3. 

5.4.4 Foraging group comparisons 

 

At Cocoa creek, C_1 had the largest ellipse areas in comparison to other isotope foraging 

groups (probability C_1 > C_2 or C_3 = 100%) and had low to intermediate Pr(INO) 

with other foraging groups (Figure 5-4 a). Isotope group C_2 had a larger blood ellipse 

areas than isotope group C_3 (probability C_2 > C_3 = 87%), and these two foraging 

groups had low to intermediate Pr(INO) with each other (Figure 5-4 a). At Healy creek, 

H_1 had the largest blood ellipse areas (probability H_1 > H_2 or H_3 = 99% and 91%, 

respectively) and low Pr(INO) with other isotope foraging groups (Figure 5-4 b). Isotope 

groups H_2 and H_3 had similar ellipse areas except for H_2’s claw ellipse area, which 

was smaller than all other isotope groups (probability H_2 < H_1 or H_3 = 93% and 

100%, respectively; Figure 5-4 b). Also, isotope groups H_2 and H_3 had intermediate to 

high Pr(INO) with each other (Figure 5-4 b).  

 

5.4.5 Relative contribution of sources to foraging group diet 

 

Bayesian stable isotope mixing models were used to determine the probable relative 

contribution of coastal basal resources to the diet of mangrove bird isotope-based 

foraging groups (Figure 5-5). However, given that mixing models for all foraging groups 

were underdetermined (i.e. too many sources and not enough isotopic tracers), it was not 

prudent to evaluate mean relative contribution values because unique solutions were not 

possible (Fry 2013 a,b). Therefore, the relative likelihoods of source contributions for 

each foraging group were reported as 95% credible interval ranges (Figure 5-5), and 

caution was exercised in their interpretation so that all feasible solutions were considered.  

 

Prior to running mixing model analyses, simulated mixing regions for consumer-source 

biplots validated mixing models for all isotope foraging groups at both sites. Following a 
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posteriori combination of sources that could not be distinguished by mixing model 

analyses (Phillips et al. 2014), mixing models demonstrated that the relative contribution 

of sources to isotope foraging groups differed between sites, and was dependent on their 

species composition (Figure 5-5). At Cocoa creek, isotope group C_1 was comprised of a 

mix of carnivorous, insectivorous, omnivorous, and nectarivorous-insectivorous species, 

and their collective diet appeared to be primarily supported by crab, fish, insect, and 

mangrove primary sources (Figure 5-5 a). Alternatively, isotope group H_1 at Healy 

creek was comprised of only carnivorous bird species, and their collective diet appeared 

to be primarily supported by crab, saltmarsh, and fish sources (Figure 5-5 b).  

 

At Cocoa creek, isotope group C_2 was composed of insectivorous, omnivorous, and 

nectarivorous-insectivorous species that likely foraged mainly on insect and mangrove 

primary sources, and secondarily on crab and saltmarsh sources (Figure 5-5 c). Similarly, 

isotope group H_2 at Healy creek was composed of nectarivorous-insectivorous and 

insectivorous species whose diet appeared to be supported mainly by insect and 

mangrove primary sources, and relatively less crab and saltmarsh sources (Figure 5-5 d).  

 

At Cocoa creek, isotope group C_3 consisted of primarily insectivorous bird species and 

one omnivorous species, and their collective diet appeared to consist primarily of insect, 

mangrove primary, crab, and saltmarsh sources (Figure 5-5 e). Likewise, at Healy creek, 

isotope group H_3 consisted of insectivorous and omnivorous species whose diet 

appeared to be supported primarily by insect, mangrove primary, crab, and saltmarsh 

sources (Figure 5-5 f).  
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Figure 5-5 δ13C and δ15N signatures of sources (mean ± sd) and mangrove bird 

consumers at Cocoa creek and Healy creek for each isotope-based foraging group. 

Sources that were unable to be distinguished by mixing models were combined. Inset 

plots show the probable relative contribution of sources (95% credible interval ranges), as 

estimated by mixing models, to the diet of each foraging group.  
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5.5 Discussion 

 

Environmental heterogeneity in resource availability can cause opportunistic and 

generalised foraging by resident species (Rotenberry 1980, Yang et al. 2008, Blanchette 

et al. 2014). The present study has provided insight into the foraging strategies and food 

webs of birds inhabiting a complex and dynamic coastal mangrove environment. The 

isotopic signatures of mangrove bird assemblages suggest that bird foraging strategies are 

more opportunistic and generalised than expected by previous diet studies.  

 

5.5.1 Isotopic insights to mangrove bird foraging ecology 

 

Two sites were used in the present study to determine if bird foraging patterns were 

spatially consistent. The baseline δ13C ranges were similar at both mangrove sites, 

however Healy creek had depleted δ15N source signatures resulting in a larger baseline 

δ15N range. Despite differences in δ15N range, carnivorous, nectarivorous-insectivorous, 

and insectivorous bird species occupied similar positions relative to sources in isotope 

spaces at Cocoa creek and Healy creek. However, between sites, there were differences in 

the organization of bird species into isotopic foraging groups and their respective 

foraging strategies.  

 

5.5.2 Correspondence between literature- and isotope-based foraging groups 

 

The organization of mangrove forest bird species into isotope-based foraging groups 

implied opportunistic resource use, as isotopic foraging clusters did not strictly 

correspond to bird species’ foraging group classification by previous diet studies (i.e. 

their observed diet). The only isotope group that did correspond to literature-based 

classification was a Healy creek cluster that was comprised of two carnivorous bird 

species (i.e. H_1), and they had higher isotopic separation from each other relative to 
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species within other clusters. The overall prevalence of opportunism in mangrove forest 

birds corroborates previous research of their foraging ecology, which has been well 

studied in the Northern Territory of Australia using visual observation to describe a bird 

assemblage that is dominated by opportunistic insect foragers (Noske 1996, Mohd-Azlan 

et al. 2014). However, until now, similar research has been limited for mangrove bird 

assemblages of northeastern Australia, which contain a higher abundance of facultative 

bird species that are known to forage in adjacent coastal woodlands and wetlands 

seasonally (Kutt 2007). Furthermore, the utility of an isotopic approach in this system has 

not been previously investigated. 

 

5.2.3 Isotopic niche size and overlap as an indicator of dietary diversity 

 

At Cocoa creek, the dietary diversity of birds within isotope groups was associated with 

isotopic niche size and overlap, meaning that isotope groups with greater observed 

dietary diversity among their species (i.e. carnivorous, omnivorous, insectivorous, or 

nectarivorous-insectivorous) had larger isotopic niche sizes. Isotope group C_1 was 

comprised of bird species with all four observed diets, and had the largest isotopic niche 

size relative to other foraging groups at Cocoa creek. Notably, carnivores were grouped 

with other insectivorous and omnivorous bird species in C_1 (e.g. the Shining Flycatcher 

(Myiagra alecto) and Olive-backed Oriole (Oriolus sagittatus)), revealing that these 

species may opportunistically forage on crab and fish sources as well (corroborated by 

visual observation of Shining Flycatcher crab foraging; C.A. Buelow 2015, pers. comm., 

June). Alternatively, insects may also support carnivore diets at Cocoa creek. In contrast 

to the observed dietary diversity of C_1, isotope group C_3 was comprised primarily of 

insectivorous species (with one omnivore) and had the smallest isotopic niche size, which 

is likely congruent with a smaller resource base.  

 

Isotope groups at Cocoa creek had primarily low to intermediate probability of isotopic 

niche overlap, which suggests that, as a whole, isotope groups at this site are foraging on 

different resources from one another. Supporting this suggestion, mixing models show 
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that all three isotope groups forage to some extent on forest insect and mangrove primary 

sources, and differ by probable relative contribution of crab, fish, and saltmarsh sources 

to their collective diets. Not surprisingly, mangrove primary and forest insect sources had 

the highest probable contribution to isotope group C_2 (~ 70-76%), which had a high 

abundance of nectarivorous and insectivorous bird species.  

 

In comparison to Cocoa creek, isotope groups at Healy creek did not show similarly high 

observed dietary diversity among their constituent species. Also, further in contrast to 

Cocoa creek, higher observed dietary diversity was not consistently associated with larger 

isotopic niche size; rather, the opposite was true. Isotope groups H_2 and H_3, each 

comprised of species with two different diets, had smaller isotopic niche sizes than H_1, 

which was comprised of carnivorous species only. Isotope groups H_2 and H_3 also had 

intermediate to high probability of niche overlap with each other, suggesting that species 

within these groups forage on similar resources (i.e. insect and mangrove sources, as 

indicated by mixing models).  

 

The lack of a clear observed dietary diversity-isotopic niche size relationship at Healy 

creek may indicate that two different specialist foraging strategies occur within isotope 

groups at this site. For example, isotope group H_1 may be comprised of individual 

specialists with different preferences for fish, crab, or saltmarsh resources. This is 

corroborated by the relatively similar contribution of fish, crab, and saltmarsh resources 

to the collective diet of carnivores in isotope group H_1. Alternatively, isotope groups 

H_2 and H_3 may be comprised of individuals employing specialized foraging strategies 

with similar resource preferences, as mixing models confirm that these groups appear to 

be supported primarily by forest insect and mangrove primary sources. However, 

generalist and specialist foraging strategies can be challenging to interpret using isotope 

data; see Appendix 3 Figure A5.1 for additional scenarios possible. 

 

There are several ecological mechanisms that could underpin the divergent dietary 

diversity-isotopic niche size relationships observed between sites. Landscape 
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heterogeneity, resource availability, habitat fragmentation, species interactions (e.g. 

competition), and individual specialisation are factors that may influence these 

relationships (Darimont et al. 2009, Araujo et al. 2011). Quantifying these factors at each 

site would further our understanding of the processes shaping the observed patterns, and 

requires more attention in the future.   

 

5.2.4. Temporal changes in foraging strategies: tissue comparisons 

 

The claw isotopic niches of all isotope groups at Cocoa creek were consistently larger 

relative to their blood isotopic niches, suggesting either temporal opportunism in their 

foraging strategies, or dietary-switching as resource availability and abundance changes 

seasonally. For example, seasonally shifting foraging strategies may reflect an increase in 

insect availability during the wet season in mangrove forests. However, at Healy creek, 

blood and claw isotopic niche sizes were similar (except for H_2, which had a relatively 

larger blood isotopic niche size). Because seasonal diet shifting was not consistent 

between sites, further research is needed to make concrete conclusions regarding seasonal 

and spatial differences in resource availability for mangrove forest birds in these areas. 

 

5.5.2 Limitations and recommendations 

 

It should be noted that using isotopic niche size to evaluate generalist vs. specialist 

foraging strategies could in part be driven by the degree of isotopic distinction between 

sources. For example, insect resource partitioning by birds may occur at a finer scale than 

can be examined by stable isotopes. In fact, observational studies have found that 

mangrove insectivores will select insects by size (Mohd-Azlan et al. 2014), 

demonstrating the importance of using a combination of methods (i.e. observational and 

gut content analyses) when investigating foraging ecology. Future studies should also 

consider using sulphur stable isotopes to improve isotopic discrimination in coastal 

environments (Mancinelli and Vizzini 2015), and have more mangrove sites for 
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comparison. Finally, larger sample sizes of each bird species would allow the evaluation 

and comparison of species-specific isotopic niche sizes, and better determine the degree 

to which individual species exhibit specialized vs. generalized foraging strategies.  

 

It is important to consider that any solution within a range of possible solutions (i.e. 95% 

credible interval ranges) is potentially the real solution (Fry 2013 a,b). To obtain the most 

well constrained mixing model contribution estimates, we used prior information to 

include only sources that are known to be consumed by bird species in each foraging 

group (Semmens et al. 2013), and our interpretations reflect a combination of the prior 

information and mixing model outputs. Despite this, our models remained 

underdetermined and so other solutions in the source-consumer mixing model spaces 

should not be disregarded. For example, the solution for C_2 (Figure 5-5 c) suggests that 

Woodland primary sources are unimportant, yet it is possible they could contribute more 

substantially to C_2’s collective diet than is suggested by the mixing model outputs (Fry 

2013 a, b). Greater confidence in relative source contribution estimates could be garnered 

by inclusion of more consumer data and the use of additional prior information 

(Semmens et al. 2013). However, for the objectives of our study, the mixing model 

outputs combine with other information to better understand the foraging ecology of 

mangrove bird assemblages.  

 

5.5.3 Conclusions 

 

Due to the unpredictably of Australian climate systems and their inter-annual variability, 

Australian bird species often survive by tracking resources (Reside et al. 2010). Most of 

the bird species in the present study are mangrove-facultative (except the Little 

Kingfisher (Ceyx pusillus)), and are likely to also use adjacent forests and woodlands 

(Kutt 2007). Additionally, many species have broad distributions, either along the length 

of the east coast or across the tropical north of Australia. With large flexibility and range 

in habitat choice, we would expect diets of these bird species to differ spatially, and 



 

 
 

 
Chapter 5: Stable isotopes reveal opportunistic foraging 

 

  

117 

foraging groups to shift accordingly. A comparative approach using both isotopic and 

traditional diet studies has provided insight to the foraging ecology and food webs of 

coastal forest bird assemblages, however more research is required to understand the 

limits to their foraging flexibility to ensure their persistence in Northern Australia. 
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6 Nutrient subsidy indicators predict the presence of an avian mobile-link 

species 
 

6.1 Abstract 
 

Island ecosystems can be inordinately dependent on avian nutrient subsidies because of 

their isolation from external nutrient pools. We investigated relationships between several 

nutrient subsidy indicators and the presence of Pied Imperial-Pigeon (Ducula bicolor) 

breeding colonies in island forests of northeast Australia. The following nutrient subsidy 

indicators were measured in island forest soil and leaf samples: nutrient origin (δN15 and 

δC13); total carbon (C), nitrogen (N), and phosphorus (P) levels; and nutrient quality 

(C:N:P ratios). Random forest models were used to determine the relative importance of 

nutrient subsidy indicators for classifying island forests as ‘PIP colony present’ or ‘PIP 

colony absent’. Total P was the most important soil nutrient subsidy indicator, while δN15 

was the most important leaf nutrient subsidy indicator. Furthermore, in both soil and 

leaves, δN15 enrichment and N and P levels increased as the probability of PIP colony 

presence increased. Measures of nutrient quality also implied plant growth rates were 

higher in island forests with increased likelihood of PIP colony presence. Pied Imperial-

Pigeons should be classified as an avian mobile-link species that have an important role 

in island ecosystem functioning, encouraging further investigation of the direct and 

indirect effects associated with PIP nutrient subsidies. This research highlights the 

importance of understanding the local-scale connectivity processes that underpin the 

longer distance movements of highly mobile species for effective ecosystem 

management. 

 

6.2 Introduction 

 

Ecosystem resilience is defined as the ability to withstand perturbation and is dependent 

on myriad factors, such as nutrient availability (Holling 1973, Gunderson 2000). Nutrient 

availability directly influences ecosystem productivity, and in situ nutrient production is 
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often supplemented by subsidies from other ecosystems through transport by wind, water, 

or mobile organisms (Polis et al. 1997). Island ecosystems are relatively isolated from 

other landmasses, meaning that external nutrient subsidies provided by mobile organisms 

may play a critical role in their functioning and resilience. Information regarding the 

origin, quantity, and quality of island nutrient subsidies is needed to evaluate the 

importance of mobile link species for island ecosystem functioning. 

 

Due to their high mobility and colonial roosting or nesting behaviour, seabirds are key 

vectors in the transportation of marine-derived nutrients to island ecosystems (Lundberg 

and Moberg 2003, Ellis 2005, Sekercioglu 2006). Concentrated marine nutrient subsidies 

delivered by seabirds can influence island plant growth and species composition, food 

web structure, and ecosystem productivity (Polis and Hurd 1996, Sanchez-Pinero and 

Polis 2000, Croll et al. 2005, Vizzini et al. 2016). When nutrient subsidies are inhibited or 

interrupted, the consequences for ecosystem functioning can be far-reaching. For 

example, when changes in habitat availability or predation prevent nesting birds from 

providing marine nutrient subsidies, recipient terrestrial ecosystems become nutrient 

depleted and experience shifts in their ecosystem states (Maron et al. 2006, Fukami et al. 

2006, Jones 2010, Young et al. 2010). The extreme consequences of precluding nutrient 

subsidies has been demonstrated on islands of the Aleutian Archipelago, where fox 

predation of seabirds has caused these ecosystems to shift entirely from grassland to 

tundra (Croll et al. 2005). 

 

While there is a substantial understanding of the role of seabirds in ocean-island nutrient 

flows, there has been considerably less investigation of nutrient subsidies from mainland 

ecosystems to islands. To our knowledge, the only mainland-island nutrient flow that has 

been quantified is nutrient transfer to an island mangrove forest by fruit bats that forage 

in mainland terrestrial forests (Reef et al. 2014). However, also in northeast Australia, 

Pied Imperial-Pigeons (Ducula bicolor) make daily fruit-foraging migrations to mainland 

rainforests from islands where they breed colonially, providing an opportunity to further 

explore mainland-island nutrient subsidies.  
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The northeast Australian Pied Imperial-Pigeon (PIP) population undertakes annual 

migrations from southern Papua New Guinea to breed on islands along the northeast 

coast of Australia (Winter et al. 2016). During the breeding season, PIPs make daily 

forging migrations between island nesting habitat and mainland rainforest foraging 

habitat. The high degree of localized connectivity facilitated by the daily movements of 

PIPs is potentially an important process whereby large amounts of nutrients are exported 

from mainland coastal rainforests to nesting islands. The large size and range of the 

northeast Australian PIP population (1000 to > 10,000 breeding pairs in medium or large 

breeding colonies on islands along ~1300 km of coastline; King 1990, Brothers and Bone 

2012) also means that the localized connectivity they provide may extend to a regional 

scale. Although the northeast Australia PIP population has rebounded following declines 

linked to hunting, clearing of mainland rainforest foraging habitat, and cyclones; the 

carrying capacity of the region may be permanently reduced since ~60% of lowland 

coastal rainforest was cleared prior to the 1980s (Winter et al. 1987, Thorsborne et al. 

1988, King 1990, Winter et al. 2016). As coastal development continues, there is a need 

to understand the role of PIPs in connecting mainland coastal and island ecosystems.  

 

Maintenance of ecosystem function and resilience is dependent on understanding the 

ecosystem linkages that are facilitated by mobile animals, particularly when defining 

spatial boundaries for effective ecosystem-based management (Toonen et al. 2011). For 

example, connectivity processes occurring outside of protected areas (PAs) can influence 

ecosystem functioning within PA boundaries, and therefore disregarding linkages can 

undermine effective PA management (Pringle 2001). Many islands along the northeast 

coast of Australia are protected as National Parks (Queensland Government 2017), and 

quantifying the daily, cross-ecosystem nutrient flow facilitated by Pied Imperial-Pigeons 

is a first step towards understanding their role in the functioning of island ecosystems. 

Nitrogen and carbon isotopic signatures (δN15 and δC13), and nitrogen (N) and 

phosphorus (P) levels, measure the origin and quantity, respectively, of avian nutrient 

subsidies in recipient ecosystems (Vizzini et al. 2016). While the quantity of nutrient 
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subsidies can influence nutrient limitation and plant growth, nutrient quality is often over-

looked and can have equally important effects on ecosystem processes (Sitters et al. 

2015). The quality of nutrient subsidies is determined through ecological stoichiometry 

(ES) by measurement of carbon, nitrogen, and phosphorus ratios in either detrital matter 

or in organisms (C:N:P; Sterner and Elser 2002, Sitters et al. 2015). 

 

This study aimed to assess the relationships between Pied Imperial-Pigeon breeding 

colony presence and indicators of nutrient subsidy quantity and quality. Specifically, this 

research quantified several key indicators of nutrient subsidization in forest soil and leaf 

samples from islands with and without PIP colonies: 1) nutrient origin, as indicated by 

δN15 and δC13, 2) nutrient quantity, as indicated by total carbon (C), nitrogen (N), and 

phosphorus (P) levels, and 3) nutrient quality and limitation, as indicated by C:N:P ratios.  

 

6.3 Methods 

 

6.3.1 Island forest study areas 

 

Forest areas of eight northeast Australian islands were selected and categorised as 

following: ‘PIP colony absent’ (three island forests) or ‘PIP colony present’ (five island 

forests; Figure 6-1). Nest searches were conducted to confirm PIP colony presence or 

absence in forest sampling areas during the breeding season. In addition to PIP colony 

presence/absence, island forests also differed by their geomorphology (continental or cay 

island type; Figure 6-1). Sedimentary differences between these two island types could 

confound assessment of nutrient origin, quantity, and quality in soil and leaf samples. 

Therefore, island type has been included as an additional variable when analysing the 

results of the present study (see Data Analysis subsection below). 
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Figure 6-1 Map of the eight study islands located along the northeast coast of Australia. 

Diamonds show island position relative to the mainland, and each island is enlarged to 

show individual size and shape. Asterisks indicate PIP colony presence (***) or absence 

(*) in island forest sampling areas. Islands also differed by their geomorphology: Cay vs. 

Continental (Cont.). 

 

6.3.2 Soil and leaf collection 

 

All island forests were sampled at the end of the TIP breeding season (post-breeding 

season, February-March 2016). Four locations were randomly selected from within each 

island forest sampling area, and the closest suitable trees (Mystrica muelleri) and soil 

areas to each location were sampled. Soil samples were collected with a soil core 

(diameter = 3 cm, depth = 5 cm; total = 4 samples/island forest) and five leaves from each 

tree were collected (total = 4 trees/island forest). Mystrica muelleri was chosen for leaf 

sampling due to its common presence in rainforests of northeast Queensland, Australia. 

Following collection, all soil and leaf samples were stored frozen until further analysis.  
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6.3.3 δN15, δC13, carbon, nitrogen, and phosphorus measurement 

 

Soil samples were oven-dried at 60°C for 24 hours. Samples from five leaves of each tree 

were pooled together, washed in distilled water, and then oven-dried at 60°C for 24 

hours. Dried soil and leaf samples were homogenized with a bead mill and weighed into 

tin capsules. Subsequently, δN15, δC13, total carbon (C mg/g), and total nitrogen (N mg/g) 

were measured in parallel using a PDZ Europa ANCA-GSL elemental analyzer 

connected to a PDZ Europa 20-20 isotope ratio mass spectrometer at the University of 

California Davis Stable Isotope Facility, USA. All nitrogen and carbon stable isotope 

ratios were expressed in per mill (‰) using the δ notation: 

 

δ𝑋 = (
𝑅(sample)

𝑅(standard)
− 1) ×  1,000 

 

where X refers to the element of interest (i.e. C or N) and R is the ratio of the heavier 

isotope to the lighter isotope of element X (i.e. 13C/12C or 15N/14N). The δ values are 

presented relative to the international standard VPDB (Vienna PeeDee Belemnite) for 

δ13C, and Air for δ15N. 

 

For total phosphorus levels (P mg/kg), dried soil and leaf samples were analysed for total 

acid extractable P at the Environmental Analysis Laboratory (Southern Cross University, 

Australia). Samples were digested on a hotblock digestor using an Aqua Regia solution 

(1:3) Nitric acid/Hydrochloric acid, and then read on an ICP-MS (EPA3050B and APHA 

3125 ICPMS). 

 

6.3.4 Data analysis 

 

Forest categorisation 
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Principal components analysis (PCA) on a correlation matrix was used to visualise the 

relationships among variables measured in soil and leaf samples (i.e. δN15, δC13, and total 

N, P, and C) from island forests categorized as ‘PIP colony present’ or ‘PIP colony 

absent’ on the basis of nest searches.  

 

Importance of nutrient subsidies 

 

Random Forest is a non-parametric technique that is derived from classification and 

regression trees (CARTs), but uses an ensemble learning algorithm to build a ‘forest’ of 

un-pruned trees for improved predictive accuracy (Breiman 2001, Cutler et al. 2007). 

Trees are grown using bootstrap samples of the original data, where a third is left out for 

validation (i.e out-of-bag (OOB)) (Breiman 2001, Cutler et al. 2007). The Gini index 

splitting rule (Breiman et al. 1984) finds the most homogeneous subgroups of the data 

given a randomised subset of the predictor variables, and the misclassification rate for 

OOB observations is aggregated across all trees in the ‘forest’ (Breiman 2001, Cutler et 

al. 2007). The relative importance of each predictor variable to the predictive accuracy of 

the Random Forest is determined by randomly permuting OOB values, and then 

calculating the difference between OOB error estimates for actual vs. randomly permuted 

values and dividing by the standard error (Cutler et al. 2007). Finally, variable 

dependence plots can be used to visualise variable relationships by plotting the predicted 

response as a function of a predictor variable of interest (Friedman 2000). 

 

Random forest models were used to determine the relative importance and relationship of 

individual variables measured in soil and leaf samples to the classification of island 

forests as ‘PIP colony present’ or ‘PIP colony absent’. In addition to nutrient subsidy 

indicators, island type (i.e. continental or cay) was included as a variable to determine its 

importance in forest classification. Random forests of 1000 trees in size were grown 

using the Gini index splitting rule, and out-of-bag (OOB) error estimates were calculated 

to obtain a measure of model fit for each random forest.  
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The importance of each variable to the predictive accuracy of soil and leaf random forest 

models was calculated. Variable importance is determined by randomly permuting the 

variable’s values, and then calculating the difference between OOB error estimates for 

actual vs. randomly permuted values. High variable importance values indicate that the 

variable of interest increases the predictive accuracy of the random forest model, while 

values ≤ 0 indicate that the variable of interest either does not contribute, or detracts, 

from the predictive accuracy. 

 

The relationship between individual nutrient subsidy variables and the probability of 

island forest classification as ‘PIP colony present’ was further investigated with variable 

dependence plots. Variable dependence plots show the probability of classifying island 

forests as ‘PIP colony present’ as a function of each variable measurement. Loess 

smoothers with 95% confidence intervals were overlaid on the variable dependence plots 

to aid in visualization of the relationship between nutrient subsidy variables and the 

probability of PIP colony presence.  

 

All statistical analyses were performed in R version 3.3.2 (R Core Team 2016). PCA 

plots were created with the package ‘ggbiplot’ (Vu 2011), and random forest models 

were analysed and displayed with the packages ‘randomForestSRC’ and 

ggRandomForests’, respectively (Ishwarhan and Kogalur et al. 2017, Ehrlinger 2016). 

Raw variable measurements (± standard error) are displayed in the supplementary 

materials (Appendix 4). 

 

6.4 Results 

 

6.4.1 Forest categorisation 
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PCA showed that, for soil samples, principal components one (PC1) and two (PC2) 

explained 78.2% of the variability in δN15, δC13, total C (mg/g), total N (mg/g), and total 

P (mg/g) among island forest areas sampled in the present study (Figure 6-2 a). Soil total 

N and C, and δC13 variables were primarily correlated with PC1, with highest values in 

forest areas where PIP colonies were present (Figure 6-2 a). Soil total P and δN15 

variables were not primarily correlated with either principal component, and their highest 

values were also in forest areas with PIP colonies present (Figure 6-2 a). 

 

For leaf samples, principal components one (PC1) and two (PC2) explained 70.2% of the 

variability in δN15, δC13, total C (mg/g), total N (mg/g), and total P (mg/g) among island 

forest areas sampled in the present study (Figure 6-2 b). Leaf total C, N, and P variables 

were primarily correlated with PC1, with highest values in forest areas with PIP colonies 

present (Figure 6-2 b). Conversely, δN15 and δC13 were oppositely correlated along PC2, 

with the highest values of δN15 in forest areas with PIP colonies present (Figure 6-2 b). 
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Figure 6-2 Principal components analysis showing the relationship between island forests 

categorized as ‘PIP colony present’ (grey triangles) or ‘PIP colony absent’ (black circles) 

and the following soil (a) and leaf (b) nutrient subsidy indicators: δN15 (d15N), δC13 

(d13C), total nitrogen (N mg/g), total phosphorus (P mg/g), and total carbon (C mg/g). 

 

6.4.2 Importance of nutrient subsidies 

 

Model fit 

 

The soil random forest model had high predictive accuracy with an overall OOB error 

rate of 9.68%, while the leaf random forest model had relatively lower predictive 

accuracy overall OOB error rate of 17.24%.  
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Variable importance 

 

When soil nutrient subsidy measurements were used to classify island forests as ‘PIP 

colony present’ or ‘PIP colony absent’, all variables except for island type contributed to 

the predictive accuracy of the random forest model (Figure 6-3 a). Total phosphorus, N:P, 

and δC13 were the three most important soil nutrient subsidy indicators in island forest 

classification (Figure 6-3 a). Alternatively, when leaf nutrient subsidy measurements 

were used to classify island forests as ‘PIP colony present’ or ‘PIP colony absent’, δN15 

was the only substantially important variable (Figure 6-3 b). ‘Island type’ also had low 

variable importance in the leaf random forest model (Figure 6-3 b), and therefore ‘island 

type’ was not included in further analysis of variable dependence (see subsections 

below).  

  

 

Figure 6-3 Importance of variables measured in (a) soil and (b) leaf samples for 

classifying island forests as ‘PIP colony present’ or ‘PIP colony absent’. Variables with 

high importance values contribute to the predictive accuracy of the random forest model 



 

 
 

 
Chapter 6: Nutrient subsidy indicators 

 

  

129 

used for classification, while a value of zero indicates that the variable does not 

contribute to the predictive accuracy. (Note: dN15 = δN15 and dC13 = δC13.) 

 

Variable dependence: nutrient origin (δN15 and δC13) 

 

Variable dependence plots show how individual variable measurements are related to the 

probability of island forests being classified as ‘PIP colony present’. Soil δC13 values 

increased as the probability of PIP colony presence increased (Figure 6-4 a). In contrast, 

there was no clear relationship between leaf δC13 values and the probability of PIP colony 

presence (Figure 6-4 b). For δN15, values in soil and leaves increased as the probability of 

classification as ‘PIP colony present’ increased (Figure 6-4 c, d).  

 

 

Figure 6-4 Variable dependence plots for carbon (δC13) and nitrogen (δN15) stable isotope 

signatures in soil (a & c) and leaf (b & d) samples. A loess smoother (with a 95% 
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confidence interval) shows the relationship between the isotopic signature (δC13 or δN15) 

and probability of classification as ‘PIP colony present’ by the random forest model. 

Symbols represent the category to which individual measurements belong (‘PIP colony 

absent’ = white triangles, and ‘PIP colony present’ = black circles).  The grey-dashed line 

indicates 50% probability of classification as ‘PIP colony present’. 

 

Variable dependence: total nutrient levels (C, N, P) and ratios (C:N:P) 

 

Total C, N, and P levels increased as the probability of classification as ‘PIP colony 

present’ increased, for both soil and leaf samples (Figure 6-5). In contrast, soil N:P and 

C:P nutrient ratios increased with decreasing probability of classification as ‘PIP colony 

present’ (Figure 6-6 a, e), and there was no clear relationship with soil C:N nutrient ratios 

(Figure 6-6 c). For leaves, there was also no clear relationship between N:P and 

probability of classification as ‘PIP colony present’ (Figure 6-6 b), while leaf C:N and 

C:P ratios decreased as the probability of classification as ‘PIP colony present’ increased 

(Figure 6-6 d, f).  
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Figure 6-5 Variable dependence plots for total nitrogen (mg/g), phosphorus (mg/g), and 

carbon (mg/g) in soil (a, c, e) and leaf (b, d, f) samples. A loess smoother (with a 95% 

confidence interval) shows the relationship between the variable measurement and 

probability of classification as ‘PIP colony present’ by the random forest model. Symbols 

represent the category to which individual measurements belong (‘PIP colony absent’ = 

white triangles, and ‘PIP colony present’ = black circles). The grey-dashed line indicates 

50% probability of classification as ‘PIP colony present’.  
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Figure 6-6 Variable dependence plots for N:P, C:N, and C:P in soil (a, c, e) and leaf (b, d, 

f) samples. A loess smoother (with a 95% confidence interval) shows the relationship 

between the variable measurement and probability of classification as ‘PIP colony 

present’ by the random forest model. Symbols represent the category to which individual 

measurements belong (‘PIP colony absent’ = white triangles, and ‘PIP colony present’ = 

black circles). The grey-dashed line indicates 50% probability of classification as ‘PIP 

colony present’. 

 



 

 
 

 
Chapter 6: Nutrient subsidy indicators 

 

  

133 

6.5 Discussion 

 

The results from this study suggest that Pied Imperial-Pigeons (Ducula bicolor) provide a 

nutrient subsidy to island forests of northeast Australia where they breed colonially. The 

foraging behaviour of Australia’s northeast PIP population has been well studied, so 

much so that the standard method for estimating colony size is counting individuals as 

they return to their island nesting sites from foraging in mainland rainforests (Atherton 

and Greeves 1985, Thorsborne et al. 1988, King 1999, Brothers and Bone 2012, Winter et 

al. 2016). This suggests that a high proportion of the nutrients they deliver to islands will 

be rainforest-derived, supporting the growing body of literature acknowledging the 

importance of cross-ecosystem nutrient flows (Sitters et al. 2015) and building a case for 

classifying PIPs as a mobile-link species in facilitating these processes. However, in 

addition to foraging in mainland rainforests, it is possible that individuals may also forage 

in island forests with fruiting tree species. Tracking studies would provide a better 

understanding of the localized foraging movements of PIPs and determine what 

proportion of the nutrients that they deliver to their island nesting grounds are derived 

from mainland rainforests. Further research is also warranted to determine the spatial 

extent to which the PIP colonies deliver nutrient subsidies within individual islands (i.e. 

measure nutrient levels within nesting forests and outside of nesting forests) and the 

influence of PIP colony size on nutrient loads.  

6.5.1 Breeding colonies enrich δN15and elevate nutrient levels 

 

Nutrient subsidies by Pied Imperial-Pigeons are clear from soil and plant enrichment of 

δN15 and elevated soil and plant nitrogen and phosphorus levels in island forests where 

PIP colonies are likely to be breeding. This is consistent with guano’s value as an 

ecosystem service that has been mined for its high concentrations of phosphorus and 

nitrogen (for use in fertilizer, explosives, etc.), causing wars over claims to seabird 

islands in the 1800’s (Whelan et al. 2008, 2015). In the present study, total phosphorus 

was the most important soil nutrient subsidy indicator of PIP colony presence, while δN15 
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was the most important leaf nutrient subsidy indicator. Pied Imperial-Pigeons feed 

primarily on fruit, meaning their guano is likely not as highly enriched in δN15 in 

comparison to piscivorous seabirds. Therefore, levels of δN15 enrichment by PIP colonies 

would not be expected to be as high as those found in areas near seabird colonies (e.g. 

δN15 values of ~22 have been found in terrestrial plants near seabird colonies; Wainright 

et al. 1998). However species analogous to PIPs, such as herbivorous geese and 

frugivorous bats, also transfer nutrients from terrestrial foraging areas that enrich δN15 

and elevate nutrient levels in their roosting areas (Kitchell et al. 1999, Olson et al. 2005, 

Reef et al. 2014).  

 

The presence of PIP breeding colonies was also related to island forest δC13 enrichment, 

however the effect differed for soil and leaf samples. In soil samples both δC13 values and 

total carbon levels increased in island forests with high likelihood of PIP colony 

presence. High total carbon levels in soil samples were expected in response to PIP 

colony presence (Garcia et al. 2002, Ellis 2005), and soil δC13 enrichment could be 

related to higher biomass of δC13-enriched leaf litter below PIP colonies. However, there 

was no relationship between leaf δC13 values and the probability of PIP colony presence. 

This contrasts other studies that have found leaf δC13 enrichment in areas near bird 

colonies, likely due to higher leaf nitrogen levels and plant growth rates (Wainright et al. 

1998, Cordell et al. 1999, Adame et al. 2015). It is possible that variat ion in leaf δC13 

enrichment could be related to differential light availability for individual plants that were 

sampled in the present study (Buchmann et al. 1997), something worth controlling for in 

future studies.  

 

Due to seasonality in the timing of breeding, nutrient deposition by colonial birds can be 

temporally variable and may result in a seasonal nutrient pulse to recipient ecosystems 

(Hahn et al. 2008, Adame et al. 2015). Pied Imperial-Pigeons breed on islands of 

Australia’s northeast coast only during the summer months, however slight intra-annual 

variability in total nutrient levels may not be of great consequence for the overall 

functioning of these island forest ecosystems. Instead, the annual return of PIP colonies 
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may counter-balance the short-term loss of nutrient subsidies during the non-breeding 

season (~ 6 months).  

 

6.5.2 Nutrient limitation and enhanced nutrient quality in response to PIP nutrient 

subsidies 

 

Nitrogen and phosphorus are often limiting nutrients in terrestrial ecosystems (Tessier 

and Raynal 2003, Gusewell 2004, Vitousek et al. 2010). Nutrient limitation can be 

inferred from increased leaf nutrient uptake in response to increased availability in soil, 

and also by leaf N:P ratios (Vitousek et al. 2010). Soil nitrogen and phosphorus levels 

were elevated in island forests with high probability of PIP colony presence and, if plants 

were limited by either of these nutrients, leaf nutrient levels should show similar 

relationships (Tessier and Raynal 2003). Indeed, leaf nitrogen and phosphorus levels 

increased as the probability of PIP colony presence increased, suggesting that island 

forests in the present study may be co-limited by both nitrogen and phosphorus. 

 

Leaf N:P ratios provide additional support for nutrient co-limitation in island forests of 

the present study. Generally, low leaf N:P ratios mean that plants are nitrogen limited 

while high leaf N:P ratios demonstrate phosphorus limitation (Tessier and Raynal 2003). 

However, leaf N:P ratios did not show a clear increase or decrease with probability of PIP 

colony presence, suggesting either a lack of limitation or, alternatively, co-limitation by 

both nutrients. When nitrogen or phosphorus are not limiting other factors can influence 

leaf N:P ratios, such as: light, soil water, and temperature (Aerts and Chapin 2000, 

Tessier and Raynal 2003). Future research that includes measurement of potential 

confounding variables and larger sample size would improve our understanding of leaf 

N:P ratios and nutrient limitation. Although soil N:P ratios are not indicative of plant 

nutrient limitation, soil N:P decreased with increasing probability of PIP colony presence. 

This relationship is similar to low soil N:P ratios that were measured on islands 

subsidized by cormorant breeding colonies (Kolb et al. 2013). 
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Nutrient subsidization by PIP breeding colonies appears to enhance island forest nutrient 

quality and plant growth. Nutrient quality is directly related to plant growth rate, and can 

be inferred from C:nutrient ratios. The growth rate hypothesis states that low leaf C:N 

and C:P ratios are diagnostic of high plant nutrient quality and growth rate (Agren 2004, 

2008; Rong et al. 2015). Additionally, low soil C:N and C:P ratios have been measured in 

areas that receive nutrient subsidization by seabirds (Maron et al. 2006, Jones 2010, Kolb 

et al. 2013). In the present study, soil C:P ratios decreased as probability of PIP colony 

presence increased; however, soil C:N ratios did not show a definitive trend. 

Additionally, leaf C:N and C:P ratios decreased as the probability of PIP colony presence 

increased. Overall, these relationships suggest that nutrient quality and plant growth rates 

increase in island forests where PIP breeding colonies are likely to occur.  

 

Although enhanced plant growth in response to Pied Imperial-Pigeon breeding colony 

presence is likely, plant growth rate should be measured directly in future studies. 

Furthermore, this was not a comprehensive study of all effects of PIP nutrient transfer for 

island ecosystem functioning. For example, further research is needed to better 

understand why enriched soil δC13 values were associated with PIP colony presence. 

Moreover, the consequences of island nutrient subsides can extend beyond those 

examined here. For example, seabird nutrient subsidies can increase the abundance of 

island invertebrates, such as soil nematodes (Towns et al. 2009). Additionally, 

concentrated bird nutrient subsidies can leach from islands to adjacent marine 

ecosystems, elevating nitrogen and phosphorus levels in algae, or increasing seagrass 

biomass (Powell et al. 1991, Kolb et al. 2010, 2013). This merely hints at the great 

multitude of possibilities for further investigation of PIP nutrient flows, such as 

primary/secondary production and species composition in recipient island forests, and 

nutrient leaching to adjacent marine areas. 
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6.5.3 Implications 

 

The cross-ecosystem nutrient subsidies provided by Pied Imperial-Pigeons argues for 

their classification as an avian mobile-link species that is necessary for the maintenance 

of island ecosystem functioning and resilience. Therefore, effective conservation of PIP’s 

mainland foraging habitat and island forest nesting habitat is needed to maintain the 

nutrient flows that they provide.  

 

The availability and connectivity of mainland and island habitats is likely to be necessary 

not only for the breeding success of the northeast Australian PIP population, but also for 

sustaining its annual migration from southern Papua New Guinea. The migratory 

breeding behaviour of the northeast Australian PIP population is unique in comparison to 

other PIP populations of northern Australia, such as in north-western Australia where PIP 

populations are resident (King 1990). The abundance of fruit in coastal lowland 

rainforests of northeast Australia, and the availability of nearby islands that may offer 

protection from nest-predation, likely create ideal conditions for PIPs to form dense 

breeding colonies and make daily foraging migrations (King 1990). Some of the breeding 

island forests sampled in the present study are protected as National Parks (e.g. North 

Brook Island and Green Island; Queensland Government 2017), and the present study 

illustrates that these island protected areas do not function as ‘closed ecosystems’. This 

supports the need for an ecosystem-based perspective that considers connectivity 

processes when making management decisions in coastal areas, where interactions and 

linkages between different ecosystems are common (Stoms et al. 2005).  

 

These insights underscore the need to consider both the habitat requirements and the 

processes facilitated by long-distance migrants at multiple spatial scales: local, regional, 

and inter-continental. Similar arguments have been made when investigating the 

importance of stopover sites for shorebirds during their long-distance migrations. 

Connectivity between roosting and foraging areas within stopover sites is needed for 
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shorebirds to acquire enough energy for the broader success of their long-distance 

migration (Farmer and Parent 1997, Dias et al. 2006, Oberneufemann 2013). Therefore, 

although long-distance movements are perhaps more obvious, there is a need to 

understand the localized movements of migrants, and the drivers and consequences of the 

connectivity they may require or facilitate.  

 

The preservation of Pied Imperial-Pigeon nutrient flows is not solely dependent on the 

availability of suitable habitat in northeast Australia. It has been acknowledged that a 

cooperative effort by Australia and Papua New Guinea is necessary to ensure effective 

conservation of migratory PIPs (King 1990, Winter et al. 2016). A cautionary example 

demonstrating the need for conservation initiatives to provide global scale habitat 

protection for migratory species is demonstrated by shorebird declines in the East Asian-

Australian Flyway (EAAF). Although there are international treaties to protect migratory 

shorebirds in the EAAF, rapid loss of critically important tidal mudflat stopover sites has 

likely contributed substantially to their overall population declines (Murray and Fuller 

2015). Therefore, a bilateral conservation strategy may be appropriate for Pied Imperial-

Pigeon breeding and non-breeding areas. Moreover, if a bilateral agreement between 

Papua New Guinea and Australia were extended to include all migratory species, it would 

further protect 56% of Australia’s migratory species that are not currently listed in 

Australia’s Environment Protection and Biodiversity Act (Runge et al. 2017).  
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7 General discussion 
 

Investigating biocomplexity in coastal northeast Australia, with an explicit focus on 

environmental heterogeneity and connectivity, identified several ecosystem properties 

that arise from species-environment interactions in this region. Given the variable 

mobility of the coastal forest avifauna, a comprehensive understanding of these 

ecosystem properties required that interactions occurring across a hierarchy of coastal 

mainland-island ecosystem components be explored (Figure 7-1 a). An integrated 

analytical approach provided insight to the landscape attributes and resources that coastal 

forest bird assemblages require, and likewise how they are involved in ecosystem 

functioning and resilience.  

 

Figure 7-1 Ecosystem properties emerging from within the coastal landscape hierarchy of 

regional northeast Australia, and from interactions with variably mobile coastal forest 
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bird assemblages. The coastal landscape hierarchy (a), landscape emergent properties (b), 

and collective and emergent properties arising from species interactions (c) are displayed. 

Emergent properties are indicated by dashed boxes and dashed arrows (i.e. landscape 

emergent properties, nutrient transfer, foraging strategy, and compositional turnover). 

Patterned boxes indicate matrix vegetation within the coastal landscape mosaic. 

 

7.1 Emergent properties: avian landscape- and resource-use in spatiotemporally 

heterogeneous environments 

 

7.1.1 Spatial assessment: regional landscape heterogeneity and coastal forest avifauna 

 

Structural relationships 

 

While species diversity is a collective ecosystem property, there are also ecosystem 

properties emerging from pattern-process relationships that occur across a hierarchy of 

ecosystem components (i.e. emergent properties; Breckling et al. 2005, Feller et al. 

2010). Emergent properties are prevalent in complex systems. For example, while 

zonation is an emergent property of mangrove forests (Feller et al. 2010), the spatial 

configuration of vegetation in the surrounding coastal landscape mosaic is a property that 

emerges at a broader spatial scale (i.e. a landscape emergent property, Bennett et al. 

2006) (Figure 7-1 b). The present thesis determined the species composition of coastal 

forest bird assemblages as a collective property of the regional ecosystem (Figure 7-1 c), 

showing that many species use more than one forest type (i.e. are coastal forest 

generalists). Habitat generalists are known to rely on matrix habitats (Matthews et al. 

2014), and the species composition of northeast Australia’s coastal forest avifauna was 

associated with the emergent structural connectivity of both forest and matrix vegetation 

(Figure 7-1 b, c).  
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Functional relationships 

 

In addition to the structural connectivity of forest and matrix vegetation, specific 

attributes of functionally connected forest networks (i.e. area, availability, connectivity, 

and distance) were also an emergent property of the coastal landscape mosaic (Figure 7-1 

b). Coastal forest generalist and mangrove specialist bird assemblages differed in the 

network attributes they require to maintain high rates of compositional turnover, which 

emerges from interactions between species composition and network attributes (Figure 7-

1 c). Forest availability (which evaluates forest area and connectivity) was the most 

important network attribute for generalist compositional turnover, while geographic 

distance and forest area were the most important network features for specialist 

compositional turnover (Figure 7-1 c). This is consistent with the paradigm that 

generalists’ use of and movement among multiple habitats requires habitats to be 

adequately connected (Dennis et al. 2013). In contrast, specialists are primarily dependent 

on resources within a habitat that they have high fidelity to, making habitat area 

important for their ability to access resources (Matthews et al. 2014).  

 

Structural and functional approaches to the assessment of relationships between 

landscape heterogeneity and bird assemblage composition in coastal northeast Australia 

provided complementary information for regional, whole-landscape conservation 

planning. Notably, a structural approach highlighted the importance of the landscape 

matrix and the spatial scale at which relevant landscape patterns occur. While it is also 

possible for a functional approach to include landscape matrix information and multi-

scale assessment in the development of ecological networks, this requires specific data 

concerning species’ dispersal ranges and matrix habitat preferences to be available. If 

these data are available, a functional approach is likely to provide a more realistic 

interpretation landscape-use. However, the present case study demonstrates that when 

limited data are available, a combined structural and functional spatial assessment 

approach can provide corresponding information regarding spatial configuration of the 

landscape matrix and specific forest attributes. 
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Spatial assessment would be further improved by direct measurement of habitat quality 

and resource availability for coastal avifauna of northeast Australia, and by incorporating 

future predictions of environmental change. Habitat quality is a critical component of 

landscapes that may be more important to species’ persistence than habitat configuration 

(Hodgson et al. 2011). This has been demonstrated for vertebrates, where the quality of 

riparian forest corridors is critical for their ability to host complete species’ assemblages 

(Lees and Perez 2008). Additionally, to provide information for long-term conservation 

planning, land-use and climate change predictions should be incorporated into assessment 

procedures to ensure adequate protection of coastal forest avifauna into the future. There 

is great promise in using graph theory for this purpose; allowing assessment of protected 

area network performance under projected land-use and climate scenarios to demonstrate 

how connectivity within the network is likely to change (Mazaris et al. 2013).  

 

7.1.2 Isotopic assessment: local resource use in a spatiotemporally heterogeneous coastal 

environment 

 

Foraging strategy is a property that emerges from species’ interactions with their local 

environment (Figure 7-1 c). Isotopic analysis demonstrated that coastal forest avifauna 

using mangrove forests exhibit opportunistic foraging, likely in response to variable 

resource availability. Many of the birds caught for isotopic analysis were coastal forest 

habitat generalists, and their flexible foraging strategies likely contribute to their ability to 

use the entire coastal landscape mosaic. This is further supported by the finding that 

forest availability was the most important driver of coastal generalist turnover (Figure 7-1 

c). 

 

Coastal forest bird species with flexible foraging strategies will require a range of habitats 

and resources to be available within a region in order to adapt to increasing landscape 

change associated with anthropogenic and climate pressures. Whole-landscape 
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management strategies that preserve spatiotemporal environmental heterogeneity, and 

therefore a breadth of foraging opportunity, will be able to provide spatial insurance for 

mobile, flexible foragers like coastal forest avifauna. Coupling information from spatial 

assessment of coastal forest avifauna’s habitat and connectivity requirements with local 

resource use may be used to militate against the effects of habitat and connectivity loss. 

 

In addition to using isotopic analysis to determine local-scale patterns of resource-use, 

this approach can provide a greater breadth of information if applied to nomadic and 

migratory species whose landscape- and resource- use can occur at regional and inter-

continental spatial scales. For example, estimating avian migratory connectivity with 

hydrogen stable isotopes from feathers has enabled optimal conservation planning to 

protect migrators across their entire range (Martin et al. 2007). Similarly, isotopes have 

been used in marine systems to determine the connectivity that large mobile predators 

facilitate, highlighting implications for whole-ecosystem management (McCauley et al. 

2012). In systems with variably mobile species and high environmental heterogeneity, 

isotopes can illuminate multi-scale pattern-process relationships. 

 

7.1.3 Nutrient assessment: cross-ecosystem connectivity by a migratory species 

  

Nutrient assessment revealed that daily migrations by a coastal forest bird species 

provided a nutrient subsidy to island ecosystems (an emergent property of the regional 

coastal ecosystem, Figure 7-1 c). Although the direct and indirect effects associated with 

Pied Imperial-Pigeon nutrient subsidies require further investigation, it is likely that these 

nutrients play an important role in island ecosystem functioning. For Pied Imperial-

Pigeons to continue facilitating this connectivity process, their island breeding and 

mainland rainforest foraging habitat will need to be protected. Therefore, in coastal 

northeast Australia, whole-landscape conservation action may need to expand to protect 

habitats across ecosystems as well (see discussion below). Conservation planners will 
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need to consider the spatial arrangement of island breeding and mainland foraging habitat 

to ensure their adequate connectivity. 

 

The results from this thesis can help inform the development of whole-landscape 

management strategies for maintaining coastal ecosystem functioning in northeast 

Australia.  Given that the Queensland Government is in the process of expanding its 

protected area network (Queensland Government 2016), the following discussion outlines 

how results from this thesis could be incorporated into plans for PA expansion. However, 

it should be noted that these are suggestions and that decision making should also rely on 

systematic conservation planning analyses to determine the most cost-effective strategies.  

7.2 Protected area network in coastal northeast Australia: moving toward whole-

landscape protection 

 

Spatiotemporally heterogeneous environments operate under multi-scale pattern-process 

relationships, and coastal northeast Australia is no exception. An integrated analytical 

approach to assessing regional landscape- and resource- use by coastal forest avifauna 

has provided reciprocal information showing that interactions between variable mobility, 

landscape- and resource- use can result in divergent protection priorities. Ultimately, a 

whole-landscape conservation strategy is needed in coastal northeast Australia. Planning 

will require additional assessment of future threats (i.e. climate and land-use change) and 

social, economic, and political factors within the region. Action at multiple levels of 

government and collaboration with other stakeholders could lead to successful 

implementation of whole-landscape protection at multiple spatiotemporal scales. 

However, conservation action will not occur without evaluation of the current 

conservation and management strategies in place to develop a plan for implementing 

improvements that are informed by integrated assessment. Therefore, a challenge resides 

in determining how best to incorporate assessment information into effective protected 

area management.  

 



 

 
 

 
Chapter 7: General discussion 

 

  

145 

7.2.1 Current protected area network evaluation and suggestions for improvement 

 

Protected area (PA) boundaries are used to separate biota from threatening processes, and 

individual PAs can form networks to ensure the persistence of regional biodiversity over 

the long-term (Margules and Pressey 2000, Margules and Sarkar 2007, Gaston et al. 

2008). The establishment of individual PAs are often planned through a target-based 

approach that focuses on site-level pattern-process relationships, ignoring relationships 

operating at larger spatial scales (Di Minin and Moilanen 2012). In regions where PAs 

are already established, the network should be evaluated so that expansions can be 

designed and implemented to further protect biodiversity (Kukkula and Moilanen 2013). 

Queensland currently has the lowest percentage of PA coverage relative to other states in 

Australia (Reside et al. 2017b), and the Queensland Government has been working to 

expand current coverage from 7.92% to the IUCN target of 17% (Queensland 

Government 2016). Data are required to inform these expansions, and results from this 

thesis suggest that taking a network perspective to PA planning is needed to protect 

patterns and processes occurring at larger spatial scales. 

 

In taking a protected area network perspective for whole-landscape protection, the notion 

of ensuring ‘spatial insurance’ within the network is intuitive. Providing spatial insurance 

maintains the appropriate composition and configuration of habitats within a landscape to 

allow species to disperse and respond to disturbance (Loreau 1993), and this is consistent 

with the concept of complementarity in PA network design. Complementarity considers 

that, within a network, individual PAs or areas outside of PAs can together maintain 

pattern-process relationships for biodiversity persistence (Ferrier and Drielsma 2010, 

Williams et al. 2012, Drielsma et al. 2014). Adequate connectivity underpins the success 

of complementarity for biodiversity by allowing species to disperse within the PA 

network (Ferrier and Drielsma 2010, Williams et al. 2012). However, adequate 

connectivity and complementarity within a PA network will differ for species, and will be 

dependent on the spatiotemporal scale being considered (Mazaris et al. 2013, 
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Maciejewski and Cumming 2016). The Great Barrier Reef (GBR) marine reserve 

network provides an example of effective large-scale network design that has benefited 

marine ecosystem health and resilience by providing adequate protection for relatively 

sedentary species, but has been less effective for highly mobile species, such as sharks 

and turtles (McCook et al. 2010).  

 

Due to seasonal shifts in resource availability and species’ ranges, designing protected 

area networks for nomadic and migratory avifauna is difficult (Woinarski et al. 1992; 

Runge et al. 2014, 2015a, 2016; Runge and Tulloch 2017). However, many forests and 

woodlands in Queensland are already degraded through land use, and deforestation is still 

a major threat (McAlpine et al. 2002, Bradshaw 2012, Evans 2016, Reside et al. 2017b). 

Therefore, it is imperative that an effective PA network exists to protect important forest 

attributes and connectivity for coastal forest avifauna in regional northeast Australia. 

Incorporating knowledge of coastal forest bird assemblage landscape- and resource- use 

into PA network design may help to maintain regional ecosystem functioning. Spatial 

assessment suggests that Melaleuca woodlands will offer high complementarity to other 

coastal forest types, regardless of spatial scale, and should therefore be prioritized in 

network design (Chapter 3). Furthermore, coastal generalists show flexible foraging 

strategies that allow them to utilize the coastal landscape when forest patches are 

relatively large and well-connected (i.e. have high availability; Chapter 4, 5). Mangrove 

specialist bird assemblages will also benefit from the protection of large forest patches 

(Chapter 4). Areas where protected areas could be developed/expanded for better 

representation of these forest network attributes have been nominated, demonstrating that 

the greatest opportunity for expansion occurs in the southern half of the study region 

(Figure 7-2). 

 

It is important to consider that processes occurring outside of the PA network will 

influence functioning within the network. The degradation or loss of habitat outside of 

the PA network may reduce the ability of species to disperse and result in PA isolation, 

which is associated with biodiversity losses (Newmark et al. 2008). Given the importance 
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of the landscape matrix for coastal forest avifauna, delineation of a protected area-

centered ecosystem (PACE) (also called a ‘greater ecosystem’, or ecosystem-based 

management) may be appropriate to allow for landscape surrounding protected areas to 

be included in conservation assessment and planning (Hansen and DeFries 2007, Hansen 

et al. 2011). This may be of particular importance in the southern half of the coastal 

region considered in the present case study, where there is already considerable isolation 

of individual PAs (Figure 7-2). Furthermore, connectivity processes provided by Pied 

Imperial-Pigeons in coastal northeast Australia occur across protected area boundaries 

(Chapter 6), exemplifying the fact that PAs should not be considered as stand-alone, 

static conservation units. Instead, delineation of PACE boundaries could include island 

ecosystems within the PA network of coastal northeast Australia, allowing managers to 

account for processes such as mainland-island nutrient transfer.  

 

 

Figure 7-2 Current protected areas in the study region of northeast Australia (protected 

areas are black polygons), and areas where protected area expansion could occur (red 
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rectangles). Landscape colors represent vegetation types (NVIS 2012), and a black 

dashed line splits the region into northern and southern halves for reference. 

 

Although this discussion focuses primarily on the use of protected area networks, other 

strategies for improving whole-landscape management should also be considered. This 

may be of particular importance in Australia because a relatively low population density 

means that the resource-base for managing protected areas is also low. A logical 

alternative is to link local-scale land management with regional natural resource 

management (NRM) groups. For example, good management outcomes have been 

achieved in Australia through regional Catchment Management Committees, which 

provide the institutional mechanism required to organize and support local Landcare 

groups (Curtis and Lockwood 2000). Private management by landholders may be another 

feasible alternative in very remote areas. For example, the fragmented nature of small 

mammal refuges in dryland Australia makes targeted protected area strategies difficult, 

and voluntary cat and fox control by landholders may be a socially and financially viable 

solution (Addison and Pavey 2017). Individual landholder and local community 

participation in regional landscape management is likely to be a necessary supplement to 

protected area management in coastal northeast Australia. 

 

7.2.2 Implementation of adaptation 

 

Implementing expansions to the current PA network in coastal northeast Australia, which 

could include the development of PACE boundaries, will require further assessment for 

determining economic, social, and political constraints (Knight and Cowling 2007, 

Cumming et al. 2015). At the broad spatial scale required for establishment of PACE 

boundaries, social and economic constraints will play highly important roles in the 

likelihood of success, perhaps even more than political factors (Cumming et al. 2015). To 

address socio-economic issues, costing of various action scenarios will need to occur. 

Optimistically, although landscape conservation strategies are difficult to implement, they 
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are likely to result in both ecological and economic benefits that can foster the alignment 

of funding sources (Chabot et al. 2016).  

 

Following completion of cost-effective and whole-landscape scenario assessment, 

implementation will require action. Unfortunately, as is the case here, there is often a 

high focus on conservation assessment, but little on implementation (dubbed an 

‘implementation crisis’, Knight 2006a, 2006b, 2008; Arlettaz et al. 2010). Overcoming 

the planning-implementation hurdle will involve innovative actions such as market-based 

incentives (Williams et al. 2012), good-governance (Lockwood 2010), and time to 

establish collaboration with land-users and multiple stakeholders. Finally, following 

successful implementation, adequate monitoring will be required to ensure that whole-

landscape protection continues to provide adequate biodiversity protection through 

adaptation.  

 

7.3 Concluding remarks 

 

Coastal landscapes have experienced high rates of habitat loss and degradation world-

wide (Vitousek et al. 1997, Lotze et al. 2006), and yet human populations rely on the 

functioning of these coastal ecosystems for the services they provide (Barbier et al. 

2011). Global estimates of coastal habitat loss are particularly high: wetland losses 

estimated at 62-63% (Davidson 2014), saltmarsh losses estimated at 25-50% (Deegan et 

al. 2012), and mangrove losses estimated at 50% (Feller et al. 2010). With the continued 

loss and degradation of coastal habitats, holistic conservation and management strategies 

are essential to ensure that coastal ecosystems remain functional. The integrated 

analytical approach presented in this thesis can be applied to other coastal ecosystems or 

faunal groups to better understand the complex relationships that underpin their 

ecosystem functioning.  
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In particular, this assessment may assist in monitoring the consequences of rapid 

ecosystem change occurring along Australia’s Gulf of Carpentaria coastline where an 

unprecedented rate and extent of mangrove forest dieback occurred in 2015-2016 (6% of 

Queensland’s mangrove vegetation; Duke et al. 2017). The consequences of these 

extreme events have yet to be fully understood, but it is likely that this will reduce the 

resilience of these coastal ecosystems for coastal forest avifauna and other taxa. Given 

that many locations along Australia’s northern coastline have been identified as key 

biodiversity areas (BirdLife Australia 2017), integrated assessment is urgent to ensure 

adequate protection of ecosystem function. 
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Appendices 
 

Appendix 1: Supplementary material for Chapter 3 
 

Table A3.1 Bird species presence (+) and absence (-) in coastal forest types and 

landscape contexts at survey locations along the north-east coast of Queensland, 

Australia. 

 

Bird species Coastal forest type 

Landscape 

context  

Common name Scientific name Mangrove 

Melaleuca 

woodland 

Rain 

forest 
Eucalypt 

woodland 

NE 

Tropics 

SE 

Tropics 

Australian Figbird  Sphecotheres vieilloti - + + + + + 

Australian White Ibis  Threskiornis molucca + - - - - + 

Brown-backed 

Honeyeater  Ramsayornis modestus + + + + + + 

Black-faced Cuckoo-

shrike 

 Coracina 

novaehollandiae + + + + + + 

Blue-faced Honeyeater  Entomyzon cyanotis - + - + + + 

Black-faced Monarch  Monarcha melanopsis + + + + + + 

Black Butcherbird  Cracticus quoyi + + + + + + 

Brown Cuckoo-dove 

 Macropygia 

amboinensis - - - + - + 

Brush Cuckoo  Cacomantis variolosus - + + + + + 

Brown Gerygone  Gerygone mouki - - + + - + 

Brown Honeyeater  Lichmera indistincta + + + + + + 

Australian Brush-

turkey  Alectura lathami + - - + - + 

Bar-shouldered Dove  Geopelia humeralis + + + + + + 

Blue-winged 

Kookaburra  Dacelo leachii - - - + - + 

Cicadabird  Coracina tenuirostris + + - + + + 
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Collared Kingfisher  Todiramphus chloris + - - - + - 

Dusky Honeyeater  Myzomela obscura + + + + + + 

Eastern Koel  Eudynamys orientalis - - + + + + 

Emerald Dove  Chalcophaps indica - - + - + - 

Eastern-yellow Robin  Eopsaltria australis - + + + + + 

Fan-tailed Cuckoo 

 Cacomantis 

flabelliformis + - + + + + 

Fairy Gerygone  Gerygone palpebrosa + + + + + + 

Forest Kingfisher 
 Todiramphus 
macleayii + + + + + + 

Golden Whistler 

 Pachycephala 

pectoralis - + + + + + 

Great Bowerbird  Chlamydera nuchalis + - + + + + 

Grey Fantail  Rhipidura albiscapa + + + + + + 

Grey Shrike-thrush 
 Colluricincla 
harmonica + - + - - + 

Grey Whistler  Pachycephala simplex - + - + + - 

Horn-billed Friarbird  Philemon yorki + + + + + + 

Laughing Kookaburra  Dacelo novaeguineae + - - + - + 

Little-bronze Cuckoo 

 Chrysococcyx 

minutillus + - + + + + 

Large-billed Gerygone 

 Gerygone 

magnirostris + - - - + + 

Leaden Flycatcher  Myiagra rubecula + + + + + + 

Lewin's Honeyeater  Meliphaga lewinii + + + + + + 

Little Friarbird  Philemon citreogularis - + + - - + 

Little Kingfisher  Ceyx pusillus + - - - + + 

Little Shrike-thrush 
 Colluricincla 
megarhyncha + + + + + - 

Lovely Fairy-wren  Malurus amabilis + - + + + - 

Mangrove Gerygone  Gerygone levigaster + - - - + + 

Mangrove Honeyeater 

 Gavicalis 

fasciogularis + - - - - + 



 

 
 

 
Appendices 

 

  

192 

Australian Magpie  Cracticus tibicen - - + + + + 

Mangrove Robin 
 Peneoenanthe 
pulverulenta + - - - + - 

Mistletoebird 

 Dicaeum 

hirundinaceum + + + + + + 

Northern Fantail  Rhipidura rufiventris + + - - + - 

Noisy Friarbird  Philemon corniculatus + + - - + + 

Orange-footed Scrub-
fowl  Megapodius reinwardt - - + - + - 

Olive-backed Oriole  Oriolus sagittatus + + + + + + 

Olive-backed Sunbird  Nectarinia jugularis + + + + + + 

Pale-headed Rosella  Platycercus adscitus - - - + - + 

Peaceful Dove  Geopelia striata + + + + + + 

Pheasant Coucal  Centropus phasianinus + + + + + + 

Pied Butcherbird  Cracticus nigrogularis - - + + - + 

Pied Currawong  Strepera graculina - + + + - + 

Pied Imperial-pigeon  Ducula bicolor + + + - + + 

Rainbow Bee-eater  Merops ornatus + + - + + + 

Red-backed Fairy-wren 

 Malurus 

melanocephalus + + + + + + 

Rufous Fantail  Rhipidura rufifrons + + + + + + 

Rufous Whistler 

 Pachycephala 

rufiventris + + + + + + 

Red-winged Parrot 

 Aprosmictus 

erythropterus + - + - + + 

Sacred Kingfisher  Todiramphus sanctus + - + + + + 

Scarlet Honeyeater 

 Myzomela 

sanguinolenta - + + + + + 

Shining Flycatcher  Myiagra alecto + - + + + + 

Silvereye  Zosterops lateralis + - - - + - 

Spangled Drongo  Dicrurus bracteatus + + + + + + 
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Spectacled Monarch 

 Symposiarchus 

trivirgatus + + + + + + 

Striated Pardalote  Pardalotus striatus - - - + - + 

Superb Fruit-dove  Ptilinopus superbus - + + - + + 

Varied Honeyeater  Gavicalis versicolor + - - - + - 

Varied Triller  Lalage leucomela + + + + + + 

White-bellied Cuckoo-

shrike  Coracinapapapuensis + + + + + + 

White-browed Robin 

 Poecilodryas 

superciliosa - - + + + + 

White-browed 

Scrubwren  Sericornis frontalis - - + - - + 

White-eared Monarch  Carterornis leucotis + - + + - + 

Whimbrel  Numenius phaeopus + - - - + + 

Willie Wagtail  Rhipidura leucophrys + - - + + + 

White-throated 
Honeyeater 

 Melithreptus 
albogularis + + + + + + 

Yellow Honeyeater  Lichenostomus flavus + + + + + + 

Yellow Oriole  Icterus nigrogularis + + + + + - 

Yellow-faced 
Honeyeater 

 Lichenostomus 
chrysops + - - + + - 

Yellow-spotted 

Honeyeater  Meliphaga notata + + + + + + 

Yellow-throated 

Scrubwren 

 Sericornis 

citreogularis - + - - + - 
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Table A3.2 Connectivity variables derived from principal components analysis (PCA) of 

four landscape metrics (TLA, NumP, TE, and MNN) measured for 11 vegetation types at 

each survey location and at three spatial scales (3, 6, and 12 km). The first principal 

component (PC1) of each PCA became the connectivity variable for each vegetation type, 

and the proportion of variance in connectivity explained by each PC1 is provided.  

Connectivity variable Spatial scale 
Proportion of variance 

explained by PC1 (%) 

Eucalypt woodland 3km 59% 

 
6km 61% 

 
12km 60% 

Freshwater 6km 67% 

 
12km 70% 

Mangrove 3km 48% 

 
6km 54% 

 
12km 68% 

Melaleuca woodland 3km 68% 

 
6km 70% 

 
12km 70% 

Rainforest 3km 73% 

 
6km 71% 

 
12km 76% 

SandRockMud 3km 75% 

 
6km 63% 

 
12km 70% 

Shrubland 3km 66% 

 
6km 45% 

 
12km 64% 

Casuarina/Allocasuarina forest 6km 65% 

 
12km 72% 

Cleared urban/agricultural land 3km 51% 

 
6km 57% 

 
12km 65% 

Acacia forests and woodlands 3 km 96% 

 6 km 76% 

 
12 km 70% 

Grassland 3 km 85% 

 
6 km 95% 

 
12 km 79% 
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Table A3.3 Summary of vector and surface fitting procedures for connectivity variables 

that were correlated to the bird ordination (individual landscape metrics with p<0.05 are 

highlighted in bold; MNN = mean nearest neighbour distance between vegetation 

patches, NumP = number of vegetation patches, TE = total edge of vegetation, and TLA 

= total landscape area of vegetation). 

 
 
 
 
 
 

Structural 
connectivity 

variable 

Spatial 

scale 

Vector-
fit p-

value 

Vector-
fit R2 

value 

Landscape 

metric 

Surface-
fit P-

value 

Surface-
fit R2 

value 

Deviance 
explained 

(%) 

Melaleuca 3km 0.004 0.39 

TLA 0.07 0.16 23% 

NumP <0.001 0.39 43% 

TE 0.002 0.31 37% 

MNN 0.248 0.03 5% 

Vegetation-

devoid (labelled: 

‘SandRockMud’) 

3km 0.001 0.45 

TLA 0.056 0.23 31% 

NumP <0.001 0.53 62% 

TE 0.004 0.43 53% 

MNN <0.001 0.82 87% 

Grassland 6km 0.032 0.25 

TLA 0.001 0.39 45% 

NumP 0.026 0.20 26% 

TE 0.168 0.08 12% 

MNN 0.053 0.15 19% 

Melaleuca 6km 0.004 0.40 

TLA 0.071 0.13 17% 

NumP <0.001 0.47 50% 

TE 0.002 0.34 38% 

MNN 0.265 0.03 5% 

Melaleuca 12km 0.008 0.33 

TLA 0.394 0.00 0.2% 

NumP <0.001 0.47 51% 

TE 0.004 0.31 35% 

MNN 0.234 0.04 6% 

Rainforest 12km 0.027 0.26 

TLA <0.001 0.68 76% 

NumP <0.001 0.58 67% 

TE <0.001 0.61 69% 

MNN 0.292 0.02 4% 

Shrubland 12km 0.001 0.54 

TLA 0.020 0.31 41% 

NumP <0.001 0.46 50% 

TE <0.001 0.52 61% 

MNN 0.004 0.44 54% 

Vegetation-
devoid (labelled: 

‘SandRockMud’) 

12km 0.021 0.27 

TLA 0.058 0.21 30% 

NumP 0.001 0.47 57% 

TE 0.003 0.42 51% 

MNN 0.004 0.43 54% 
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Table A3.4 Results of a two-factor multivariate PERMANOVA based on a Jaccard 

dissimilarity matrix of bird species presence-absence data in relation to main and 

interactive effects of landscape context and coastal forest type. Subsequent pairwise 

comparisons of individual coastal forest types are also listed. Factors influencing bird 

species assemblage at p<0.05 are highlighted in bold. 

Factor DF SS MS Psuedo-F P(perm) 

Landscape context  1 4074.4 

 

4074.4 2.062 0.002 

Coastal forest type 3 12417 4139 2.095 0.001 

Landscape context X 

coastal forest type 

3 6236.9 2079 1.052 0.338 

Pairwise habitat 

comparisons 

   t P(perm) 

Eucalyptus X Mangrove  1.540 0.002 

Eucalyptus X Melaleuca 0.822 0.782 

Eucalyptus X Rainforest 1.301 0.031 

Mangrove X Melaleuca 1.535 0.003 

Mangrove X Rainforest 1.645 0.002 

Melaleuca X Rainforest 1.211 0.121 
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Figure A3.5 The proportions of landscape metric measurements in the  SE tropics and 

 NE tropics, for connectivity variables that were correlated to the bird ordination, and 

displayed by spatial scale (3, 6, and 12 km). The significantly correlated connectivity 

variables include: a) Melaleuca, b) vegetation-devoid, c) shrubland, d) rainforest, e) 

grassland; and landscape metrics include: MNN (mean nearest neighbour distance 

between vegetation patches), NumP (number of vegetation patches), TE (total edge of 

vegetation), and TLA (total landscape area of vegetation).  

 



 

 
 

 
Appendices 

 

  

198 

Appendix 2: Supplementary material for Chapter 4 
 

 

Table A4.1 Percentage of bird species’ occurrence in four coastal forest types (i.e. 

Eucalypt, mangrove, Melaleuca, and rainforest). The highest occurrence percentages for 

each species are highlighted in bold. Species with highest % occurrence less than 90% in 

any forest type were classified as ‘coastal generalists’, while species with highest % 

occurrence greater than 90% in mangrove forests only were classified as ‘mangrove 

specialists’ .  

Species 
% Occurrence 

Common name Scientific name 

Coastal generalists Eucalypt Mangrove Melaleuca Rainforest 

Brown-backed Honeyeater  Ramsayornis modestus 23.4% 14.9% 55.3% 6.4% 

Black-faced Cuckoo-shrike  Coracina novaehollandiae 57.1% 14.3% 14.3% 14.3% 

Black-faced Monarch  Monarcha melanopsis 37.5% 37.5% 12.5% 12.5% 

Black Butcherbird  Cracticus quoyi 2.7% 70.3% 10.8% 16.2% 

Brush Cuckoo  Cacomantis variolosus 27.8% 5.6% 33.3% 33.3% 

Brown Honeyeater  Lichmera indistincta 21.0% 58.0% 16.0% 5.0% 

Bar-shouldered Dove  Geopelia humeralis 33.3% 37.5% 18.8% 10.4% 

Cicadabird  Coracina tenuirostris 40.0% 40.0% 20.0% 0.0% 

Dusky Honeyeater  Myzomela obscura 20.6% 44.1% 11.8% 23.5% 

Fan-tailed Cuckoo  Cacomantis flabelliformis 50.0% 37.5% 0.0% 12.5% 

Fairy Gerygone  Gerygone palpebrosa 8.7% 21.7% 13.0% 56.5% 

Forest Kingfisher  Todiramphus macleayii 33.3% 5.6% 50.0% 11.1% 

Great Bowerbird  Chlamydera nuchalis 54.5% 18.2% 0.0% 27.3% 

Grey Fantail  Rhipidura albiscapa 30.2% 32.6% 25.6% 11.6% 

Little-bronze Cuckoo  Chrysococcyx minutillus 35.7% 50.0% 0.0% 14.3% 

Leaden Flycatcher  Myiagra rubecula 47.5% 22.0% 23.7% 6.8% 

Little Shrike-thrush  Colluricincla megarhyncha 38.2% 26.5% 8.8% 26.5% 

Mistletoebird  Dicaeum hirundinaceum 26.6% 31.2% 25.7% 16.5% 

Olive-backed Oriole  Oriolus sagittatus 33.3% 22.2% 33.3% 11.1% 

Olive-backed Sunbird  Nectarinia jugularis 21.3% 60.2% 8.3% 10.2% 

Peaceful Dove  Geopelia striata 65.0% 15.0% 15.0% 5.0% 

Red-backed Fairy-wren  Malurus melanocephalus 45.0% 25.0% 25.0% 5.0% 

Rufous Fantail  Rhipidura rufifrons 12.5% 25.0% 12.5% 50.0% 

Rufous Whistler  Pachycephala rufiventris 44.4% 5.6% 44.4% 5.6% 

Spangled Drongo  Dicrurus bracteatus 37.7% 34.8% 15.9% 11.6% 

Spectacled Monarch  Symposiarchus trivirgatus 16.7% 33.3% 8.3% 41.7% 

Varied Triller  Lalage leucomela 23.5% 20.6% 23.5% 32.4% 
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White-eared Monarch  Carterornis leucotis 41.7% 50.0% 0.0% 8.3% 

White-throated Honeyeater  Melithreptus albogularis 62.7% 7.2% 22.9% 7.2% 

Yellow Honeyeater  Lichenostomus flavus 50.0% 27.8% 7.4% 14.8% 

Yellow Oriole  Icterus nigrogularis 14.3% 19.0% 28.6% 38.1% 

Yellow-spotted Honeyeater  Meliphaga notata 12.8% 23.1% 28.2% 35.9% 

Mangrove specialists Eucalypt Mangrove Melaleuca Rainforest 

Collared Kingfisher  Todiramphus chloris 0.0% 100.0% 0.0% 0.0% 

Mangrove Gerygone  Gerygone levigaster 0.0% 100.0% 0.0% 0.0% 

Mangrove Robin  Peneoenanthe pulverulenta 0.0% 100.0% 0.0% 0.0% 

Shining Flycatcher  Myiagra alecto 3.0% 90.9% 0.0% 6.1% 
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Appendix 3: Supplementary material for Chapter 5 
 

 
Figure A5.1 Interpreting isotopic niche size as an indicator of consumer populations 

having generalised or specialised foraging strategies. Plots (a) and (b) show hypothetical 

δ13C and δ15N isotope space with individuals in generalist consumer populations 

represented by black dots, and individuals in specialist consumer populations represented 

by white dots. Four different resources are available to consumers (represented by 

diamond, triangle, square, and pentagon symbols; with vertical and horizontal lines to 

indicate variability, and arrows to indicate the relative contributions of each source to 

generalist populations). Dashed circles or ellipses around consumer populations represent 

their isotopic niche size. In (a), consumers from a generalist population forage 

consistently on all four resources, and isotopic averaging results in an isotopic niche that 

is of similar size to a specialist population foraging on only one resource (square). In (b), 

some consumers from a generalist population forage more heavily on one resource 

(diamond), resulting in a larger isotopic niche compared to generalists in (a). Finally, in 

(b), individual consumers of a specialist population feed separately on two different 

resources, resulting in a larger isotopic niche relative to specialists in (a). This is not a 

complete illustration of all isotopic niche size scenarios that are possible, and only 

provides an indication of the challenges associated with interpretation. 
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Table A5.2 δ13C and δ15N signatures (mean ± sd) and sample size (n) of blood and claw 

tissues for bird species caught at each sampling site. Bird species are organised by their 

literature-based foraging group membership: carnivores, insectivores, nectarivore-

insectivores, and omnivores. 

Bird species Stable isotope signatures 

Common 

name Scientific name Site Season Tissue n δ13C (‰) ± sd δ15N (‰) ± sd 

Carnivores 

Black 

Butcherbird 

Cracticus 

quoyi 
Cocoa creek Dry 

Blood 1 -22.84 7.11 

Claw 1 -20.47 6.67 

Little 

Kingfisher 
Ceyx pusillus 

Cocoa creek 

Wet 
Blood 1 -20.96 7.32 

Claw 1 -22.40 6.72 

Dry 
Blood 1 -21.39 8.02 

Claw 1 -20.82 9.03 

Healy creek Dry 
Blood 2 -19.99 ± 0.98 9.28 ± 2.35  

Claw 2 -21.24 ± 3.44 14.95 ± 12.76 

Sacred 

Kingfisher 

Todiramphus 

sanctus 

Cocoa creek 

Wet 
Blood 10 -20.81 ± 1.99 6.83 ± 0.91 

Claw 8 -19.38 ± 1.87 5.87 ± 0.95 

Dry 
Blood 7 -18.45 ± 2.45 5.14 ± 2.06 

Claw 6 -18.35 ± 1.83 5.56 ± 1.25 

Healy creek Dry 
Blood 4 -18.45 ± 1.39 7.26 ± 2.76 

Claw 3 -17.09 ± 1.00 6.68 ± 2.62 

Insectivores 

Fairy 

Gerygone 

Gerygone 

palpebrosa 

Cocoa creek 

Wet 
Blood 5 -22.57 ± 0.28 5.76 ± 0.52 

Claw 4 -20.77 ± 0.47 4.42 ± 1.17 

Dry 
Blood 1 -23.19 5.46 

Claw 4 -20.9 ± 0.56 5.06 ± 0.46 

Healy creek Dry 
Blood 1 -22.59 1.93 

Claw 2 -21.08 ± 0.11 1.39 ± 0.45 

Forest 

Kingfisher 

 Todiramphus 

macleayii 
Cocoa creek Wet 

Blood 3 -22.61 ± 0.47 5.55 ± 0.32 

Claw 2 -20.85 ± 0.24 5.41 ± 0.41 

Grey Fantail 
Rhipidura 

albiscapa 
Cocoa creek Dry 

Blood 1 -22.84 5.81 

Claw 2 -21.005 ± 0.90 6.81 ± 0.80 

Large-billed 

Gerygone 

 Gerygone 

magnirostris 

Cocoa creek Dry 
Blood 1 -22.95 7.71 

Claw 1 -20.85 7.55 

Healy creek Dry Claw 3 -21.61 ± 0.40 2.01 ± 1.49 

Little-bronze 

Cuckoo 

Chrysococcyx 

minutillus 
Cocoa creek Wet 

Blood 1 -25.30 5.31 

Claw 1 -22.68 4.60 

Leaden 

Flycatcher 

 Myiagra 

rubecula 
Cocoa creek Dry 

Blood 3 -22.66 ± 0.72 4.61 ± 0.45 

Claw 3 -20.99 ± 0.50 5.51 ± 0.20 
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Healy creek Dry 
Blood 8 -22.07 ± 0.38 4.57 ± 1.86 

Claw 8 -20.70 ± 0.49 3.50 ± 2.31 

Rufous 

Fantail 

Rhipidura 

rufifrons 

Cocoa creek 
Wet 

Blood 1 -22.41 6.18 

Claw 1 -21.74 5.25 

Dry Claw 1 -20.41 6.70 

Healy creek Dry 
Blood 1 -22.32 6.33 

Claw 1 -20.32 6.07 

Rufous 

Whistler 

 Pachycephala 

rufiventris 

Cocoa creek 

Wet 
Blood 3 -22.66 ± 1.01 6.06 ± 1.30 

Claw 2 -18.93 ± 2.17 5.69 ± 1.63 

Dry 
Blood 1 -22.33 6.53 

Claw 1 -20.60 6.55 

Healy creek Dry 
Blood 1 -22.70 6.61 

Claw 1 -20.85 6.18 

Shining 

Flycatcher 

 Myiagra 

alecto 

Cocoa creek 

Wet 
Blood 3 -21.45 ± 0.54 7.40 ± 0.32 

Claw 2 -19.75 ± 0.03 6.38 ± 0.69 

Dry 
Blood 3 -21.48 ± 1.00 6.60 ± 1.38 

Claw 3 -19.92 ± 0.93 6.61 ± 1.25 

Healy creek Dry 
Blood 3 -20.68 ± 0.72 3.79 ± 1.42 

Claw 3 -19.36 ± 0.46 3.86 ± 1.46 

Spectacled 

Monarch 

Symposiarchus 

trivirgatus 

Cocoa creek 

Wet 
Blood 3 -23.86 ± 0.99 5.55 ± 0.94 

Claw 3 -22.06 ± 1.03 4.97 ± 0.46 

Dry 
Blood 4 -23.68 ± 0.51 5.5 ± 0.18 

Claw 3 -21.61 ± 0.40 5.91 ± 0.17 

Healy creek Dry 
Blood 1 -25.07 6.56 

Claw 1 -23.68 6.83 

Nectarivore-Insectivores 

Brown-
backed 

Honeyeater 

Ramsayornis 
modestus 

Cocoa creek 

Wet 
Blood 2 -23.83 ± 0.42 5.87 ± 0.15 

Claw 2 -22.4 ± 0.07 6.37 ± 0.44 

Dry 
Blood 3 -24.12 ± 0.27 5.28 ± 0.34 

Claw 3 -22.27 ± 0.38 5.93 ± 0.24 

Healy creek Dry 
Blood 10 -23.58 ± 0.74 4.05 ± 3.91 

Claw 8 -22.26 ± 0.83 3.58 ± 2.06 

Brown 

Honeyeater 

 Lichmera 

indistincta 

Cocoa creek 
Wet 

Claw 1 -20.34 6.74 

Blood 2 -23.30 ± 0.29 6.74 ± 0.33 

Dry Claw 2 -21.75 ± 0.23 6.75 ± 0.74 

Healy creek Dry 
Blood 24 -23.21 ± 0.51 4.99 ± 2.09 

Claw 20 -21.73 ± 0.51 5.34 ± 2.91 

Dusky 

Honeyeater 

 Myzomela 

obscura 
Cocoa creek Wet 

Blood 17 -24.35 ± 1.00 6.74 ± 0.32 

Claw 13 -22.22 ± 0.99 6.16 ± 0.32 
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Dry 
Blood 12 -24.54 ± 0.59 6.27 ± 0.66 

Claw 15 -22.85 ± 0.43 5.85 ± 0.95 

Healy creek Dry 
Blood 22 -24.49 ± 0.28 5.485 ± 5.64 

Claw 18 -22.56 ± 0.35 5.47 ± 6.37 

Horn-billed 

Friarbird 

 Philemon 

yorki 

Cocoa creek 
Wet 

Blood 3 -24.20 ± 0.47 7 ± 0.41 

Claw 3 -21.29 ± 0.12 5.91 ± 0.73 

Dry Claw 1 -21.49 7.15 

Healy creek Dry 
Blood 4 -23.75 ± 0.36 5.45 ± 1.31 

Claw 5 -21.49 ± 0.43 5.39 ± 1.23 

Olive-backed 

Sunbird 

 Nectarinia 

jugularis 

Cocoa creek 

Wet 
Blood 3 -22.77 ± 0.73 7.49 ± 0.17 

Claw 4 -21.57 ± 0.66 7.84 ± 0.18 

Dry 
Blood 10 -22.75 ± 0.67 7.31 ± 0.51 

Claw 10 -21.51 ± 0.66 7.76 ± 0.61 

Healy creek Dry 
Blood 17 -23.13 ± 0.99 6.72 ± 3.31 

Claw 16 -21.42 ± 1.03 7.77 ± 3.54 

White-

throated 

Honeyeater 

 Melithreptus 

albogularis 

Cocoa creek Wet 
Blood 3 -23.72 ± 0.13 6.26 ± 0.11 

Claw 4 -21.91 ± 0.13 5.94 ± 0.15 

Healy creek Dry 
Blood 7 -23.61 ± 0.67 6.09 ± 0.22 

Claw 7 -21.89 ± 0.65 6.23 ± 0.41 

Yellow 

Honeyeater 

 Lichenostomus 

flavus 
Cocoa creek Wet 

Blood 1 -24.51 6.90 

Claw 1 -21.93 6.07 

Yellow-

spotted 

Honeyeater 

Meliphaga 

notata 

Cocoa creek 

Wet 
Blood 9 -24.47 ± 0.33 6.29 ± 0.60 

Claw 7 -21.85 ± 0.51 5.95 ± 0.38 

Dry 
Blood 9 -24.64 ± 0.50 6 ± 0.77 

Claw 9 -22.62 ± 0.34 6.32 ± 0.76 

Healy creek Dry 
Blood 3 -23.59 ± 1.36 5.57 ± 1.34 

Claw 2 -22.10 ± 0.44 5.73 ± 1.56 

Omnivores 

Great 

Bowerbird 

 Chlamydera 

nuchalis 
Cocoa creek Wet 

Blood 1 -24.71 5.46 

Claw 1 -22.29 4.50 

Mistletoebird 
 Dicaeum 

hirundinaceum 
Healy creek Dry 

Blood 5 -24.94 ± 0.67 2.19 ± 1.56 

Claw 5 -23.61 ± 0.71 2.6 ± 2.51 

Olive-backed 

Oriole 

 Oriolus 

sagittatus 
Cocoa creek Wet 

Blood 1 -22.05 7.07 

Claw 1 -20.94 6.47 

Brush Cuckoo 
 Cacomantis 

variolosus 
Cocoa creek Wet 

Blood 1 -23.10 5.22 

Claw 1 -14.43 5.19 

Cicadabird 
Coracina 

tenuirostris 
Cocoa creek Wet 

Blood 2 -24.37 ± 0.03 5.37 ± 0.09 

Claw 1 -21.70 5.39 

Little Shrike-  Colluricincla Cocoa creek Wet Blood 3 -23.56 ± 0.61 5.77 ± 0.65 
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thrush megarhyncha Claw 3 -21.33 ± 0.77 5.57 ± 0.43 

Healy creek Dry 
Blood 1 -22.48 2.89 

Claw 1 -20.48 3.62 

Spangled 

Drongo 

Dicrurus 

bracteatus 
Cocoa creek Wet 

Blood 1 -23.43 6.10 

Claw 1 -20.98 5.65 

Varied Triller 
Lalage 

leucomela 

Cocoa creek 

Wet 
Blood 4 -23.03 ± 0.58 6.79 ± 0.68 

Claw 4 -21.34 ± 0.64 5.88 ± 0.86 

Dry 
Blood 2 -22.93 ± 0.37 6.7 ± 0.17 

Claw 2 -21.09 ± 1.19 5.96 ± 1.06 

Healy creek Dry 
Blood 5 -23.28 ± 0.76 3.28 ± 2.77 

Claw 6 -21.19 ± 0.51 3.66 ± 2.38 

White-bellied 

Cuckoo-

shrike 

 Coracina 

papapuensis 
Cocoa creek Wet 

Blood 1 -24.19 6.17 

Claw 1 -21.70 5.44 

Granivores 

Peaceful 

Dove 

 Geopelia 

striata 
Cocoa creek Wet 

Blood 2 -18.07 ± 1.81 4.89 ± 0.47 

Claw 1 -16.38 5.04 
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Table A5.3 δ13C and δ15N signatures (mean ± sd) and sample size (n) of basal food 

sources at each sampling site during wet and dry seasons. Sources are grouped by their 

vegetation type: mangrove, woodland, or saltmarsh. 

Site  Source Season n δ13C (‰) ± sd 

δ15N (‰) ± 

sd 

 Mangrove 

 
Crabs (Sesarma spp.) 

Wet 4 -21.54 ± 2.04 4.80 ± 0.61 

 Dry 5 21.33 ± 3.71 5.1 ± 1.33 

Cocoa 

creek 

Fish (Family Mugilidae, Lutjanidae, 

Leiognathidae, Sparidae, Gobiidae) 
Wet 6 -20.51 ± 2.1 7.26 ± 0.99 
Dry 5 -18.52 ± 0.62 6.7 ± 1.78 

Insects (Order Coleoptera, Lepidoptera, 

Phasmatodea, Blattodea; and Family Salticidae, 
Flatidae, Deinopidae, Thomisidae, Formicidae) 

Wet 4 -25.35 ± 2.36 2.94 ± 2.18 

Dry 5 25.04 ± 0.74 2.02 ± 2.19 

Leaves (Rhizophora spp.) 
Wet 4 -28.99 ± 0.23 2.57 ± 0.09 
Dry 5 -29.45 ± 0.31 2.53 ± 0.37 

Healy 
creek 

Crab (Sesarma spp.) 

Dry 
 

4 -19.9 ± 1.32 -0.58 ± 2.72 

Fish (Family Gobiidae) 4 -23.48 ± 2.00 9.2 ± 0.79 

Insects (Order Coleoptera, Lepidoptera, 

Phasmatodea, Blattodea; and Family Salticidae, 
Flatidae, Deinopidae, Thomisidae, Formicidae) 

5 -24.55 ± 1.13 1.37 ± 5.68 

Leaves (Rhizophora spp.) 5 -28.90 ± 0.08 3.69 ± 1.29 

 Woodland 

Cocoa 

creek 

Insects (Order Coleoptera, Lepidoptera, 

Phasmatodea, Blattodea; and Family Salticidae, 
Flatidae, Deinopidae, Thomisidae, Formicidae) 

Wet 9 -24.1 ± 1.9 3.86 ± 1.57 

Dry 10 25.08 ± 2.95 3.3 ± 2.13 

Leaves (Eucalyptus spp., Melaleuca spp.) 
Wet 4 -29.8 ± 1.66 -0.08 ± 1.56 
Dry 10 -30.8 ± 1.49 -0.77 ± 0.37 

Healy 

creek 

Insects (Order Coleoptera, Lepidoptera, 

Phasmatodea, Blattodea; and Family Salticidae, 
Flatidae, Deinopidae, Thomisidae, Formicidae) Dry 

5 -25.50 ± 0.99 -3.1 ± 2.91 

Leaves (Eucalyptus spp., Melaleuca spp.) 10 -30.96 ± 0.35 -9.84 ± 4.19 

 Saltmarsh 

Cocoa 
creek 

Insects (Family Formicidae) and crabs (Uca 

spp.) 
Wet 4 -15.97 ± 0.76 7.44 ± 0.56 
Dry 10 -15.64 ± 0.85 7.45 ± 0.88 

Healy 

creek 
Insects (Family Formicidae) and crabs (Uca 

spp.) 
Dry 10 -12.4 ± 1.21 -2.84 ± 1.89 
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Table A5.4.1 Results of Welch’s two-sample t-tests determining differences in bird blood 

and claw δ13C and δ15N signatures between seasons at Cocoa creek. P-values less than, or 

equal to, 0.05 are highlighted in bold. 

Comparison 
t-test 

statistic 

degrees of 

freedom p-value 

Consumer tissues 

Tissue 

    
Blood 

Wet season δ13C vs. Dry season δ13C 0.07 129.9 0.95 

 Wet season δ15N vs. Dry season δ15N  0.47 108.14 0.64 

Claw 
Wet season δ13C vs. Dry season δ13C 0.56 130.2 0.58 

Wet season δ15N vs. Dry season δ15N  -3.25 111.95 0.002 

 

Table A5.4.2 Results of Welch’s two-sample t-tests determining differences in source 

δ13C and δ15N signatures between seasons at Cocoa creek. P-values less than, or equal to, 

0.05 are highlighted in bold. 

Comparison 
t-test 

statistic 

degrees of 

freedom 

p-

value 

Source signatures   

Wet season δ13C vs. Dry season δ13C -0.45 96.93 0.66 

Wet season δ15N vs. Dry season δ15N  1.99 89.3 0.05 

 

Table A5.4.3 Results of Welch’s two-sample t-tests determining differences in bird blood 

and claw δ13C and δ15N signatures between sites. P-values less than, or equal to, 0.05 are 

highlighted in bold. 

Comparison 
t-test 

statistic 

degrees of 

freedom p-value 

Consumer tissues 

Tissue   
   

Blood 
Cocoa creek δ13C vs. Healy creek δ13C -1.35 224.97 0.18 

Cocoa creek δ15N vs. Healy creek δ15N 6.67 141.94 <0.001 

Claw 
Cocoa creek δ13C vs. Healy creek δ13C 0.59 231.55 0.56 

Cocoa creek δ15N vs. Healy creek δ15N 6.34 135.08 <0.001 

 

Table A5.4.4 Results of Welch’s two-sample t-tests determining differences in source 

δ13C and δ15N signatures between sites. P-values less than, or equal to, 0.05 are 

highlighted in bold. 

Comparison 
t-test 

statistic 

degrees of 

freedom 

p-

value 

Source signatures   
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Cocoa creek δ13C vs. Healy creek δ13C -0.74 74.92 0.46 

Cocoa creek δ15N vs. Healy creek δ15N 6.49 54.57 <0.001 
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Figure A5.5 Simulated mixing regions for source-consumer biplots, categorized by 

isotope-based foraging group and sampling site. Sources are marked by an ‘x’ and 

consumers are displayed as black dots. The outer-most contour delineates where 5% of 

the simulated polygons have a solution (i.e. satisfy point-in-polygon) for each consumer 

(Smith et al. 2013). Consumers outside of the 95% mixing polygons were removed prior 

to mixing model analysis (i.e. three consumers in Healy creek isotope group 2 (H_2; d).  
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Figure A5.6 Plots showing (a) abundance of mangrove bird individuals caught by 

species, (b) abundance of mangrove bird individuals caught in each literature-based 

foraging group, and (c) richness of mangrove bird species caught in each literature-based 

foraging group. Species’ allocation into literature-based foraging groups is shown in 

Table A5.2.  
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Table A5.7.1 Pairwise comparisons of standard Bayesian ellipse areas (SEAB) in blood 

vs. claw tissues of mangrove bird isotope-based foraging groups at Cocoa creek and 

Healy creek. Probabilities that the SEAB of foraging group claw tissue in rows are smaller 

than foraging group blood tissue in columns are provided. Highlighted in bold are 

probabilities that are greater than 0.85 or less than 0.15. 

Site Tissue Pairwise comparisons 

      Blood 

    p(row<column) H_1 H_2 H_3 

Healy 

creek 
Claws 

H_1 0.81 

  H_2 
 

1.00 

 H_3     0.55 

    p(row<column) C_1 C_2 C_3 

Cocoa 

creek 
Claws 

C_1 0.05 
 

 C_2 

 
0.03 

 C_3     0.02 

 
 
Table A5.7.2 Pairwise comparisons of standard Bayesian ellipse areas (SEAB) of 

mangrove bird isotope-based foraging groups at Cocoa creek and Healy creek in either 

blood or claw tissues. Probabilities that the SEAB of foraging groups in rows are smaller 

than foraging groups in columns are provided. Highlighted in bold are probabilities that 

are greater than 0.85 or less than 0.15. 

Site Tissue Pairwise comparisons 

    p(row<column) H_1 H_2 H_3 

Healy 

creek 

Blood 

H_1 - 0.01 0.09 

H_2 
 

- 0.84 

H_3     - 

Claws 

H_1 - 0.07 0.54 

H_2 
 

- 1.00 

H_3     - 

    p(row<column) C_1 C_2 C_3 

Cocoa 

creek 

Blood 

C_1 - 0.00 0.00 

C_2 
 

- 0.13 

C_3     - 

Claws 

C_1 - 0.00 0.00 

C_2 
 

- 0.53 

C_3     - 
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Appendix 4: Supplementary material for Chapter 6 
 

 
Figure A6.1 Carbon (δC13) and nitrogen (δN15) stable isotope biplots for soil (a & b) and leaves 

(c & d) from island forests grouped by PIP colony category: ‘Absent’ (open square) or ‘Present’ 

(closed square), and by island type: continental (triangle) or cay (circle). The data are presented 

as mean ± standard error. 
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Figure A6.2 Total nitrogen (N mg/g), total phosphorus (P mg/kg), and total carbon (C 

mg/g) levels in soil and leaves sampled in island forests with PIP colonies either absent or 

present. Island forests with PIP colonies absent were all continental islands, while island 

forests with PIP colonies present were either continental (triangle) or cay islands (circle). 

The data are presented as mean ± standard error. 



 

 
 

 
Appendices 

 

  

213 

 
Figure A6.3 N:P, C:N, and C:P ratios in leaf and soil samples in island forests with PIP colonies 

either absent or present. Island forests with PIP colonies absent were all continental islands, 

while island forests with PIP colonies present were either continental (triangle) or cay islands 

(circle). The data are presented as mean ± standard error. 
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