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Abstract  

 

The elasmobranch fauna of Papua New Guinea (PNG) and its interaction with fisheries has 

been poorly studied in the past. Fisheries generally adversely impact elasmobranchs due to 

their low productivity life histories. Without fishery and region specific data on 

elasmobranchs the impact on their populations cannot be fully understood and subsequent 

development of appropriate fisheries management and conservation measures cannot be 

achieved. The objectives of this thesis were to address some of these data gaps for the Gulf of 

Papua Prawn Fishery (GoPPF) in PNG through the assessment of biological and ecological 

parameters of species caught as bycatch and the development of an ecological risk 

assessment for all elasmobranch species caught in the fishery.  

 

The ecological component of this work focused on the feeding relationships among the 

Australian blackspot shark Carcharhinus coatesi, the milk shark Rhizoprionodon acutus and 

the Australian sharpnose shark Rhizoprionodon taylori. Rhizoprionodon acutus had a more 

specific diet compared to the other species, feeding almost exclusively on teleosts while C. 

coatesi and R. taylori had more diverse diets that had greater overlap. The limited sampling 

in this study did not fully characterise the diets of the three species, however, it does provide 

the first empirical evidence of trophic relationships between these sympatric sharks and their 

prey for the Gulf of Papua. 

 

The biology of R. taylori and C. coatesi was investigated through determination of their age, 

growth and maturity. Ages were determined from vertebrae samples. Length at age data were 

fitted to several models in a multi-model information theoretic approach to determine which 

model provided the best fit. Maturity was analysed using logistic regression of maturity 

categories recorded from samples combined with size and age data. These studies provide an 

understanding of the growth rate and pattern of each species and the length and age which 

males and females of each species reach reproductive maturity.  

 

 To assess the biology of R. taylori, 186 samples were collected comprising 131 females (31-

66 cm TL) and 55 males (31-53 cm TL). The lack of small individuals close to the size at 
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birth made fitting of growth curves more difficult, two methods (fixed length at birth and 

additional zero aged individuals) accounting for this were trialled. The von Bertalanffy 

growth model provided the best fit to the data when used with a fixed length-at-birth (L0 = 26 

cm TL). Males (𝐿∞= 46 cm TL, k = 3.69 yr-1, L50 = 41.7 cm TL and A50 = 0.5 years) grew at a 

faster rate and matured at smaller sizes and younger ages than females (𝐿∞ = 58 cm TL, k = 

1.98 yr-1, L5o = 47.0 cm TL and A50 = 0.93 years). However, none of the methods to account 

for the lack of small individuals fully accounted for this phenomenon, and hence the results 

remain uncertain. Despite this, the results reaffirm the rapid growth of this species and 

suggest that the Gulf of Papua population may grow at a faster rate than Australian 

populations. Rhizoprionodon taylori is possibly well placed to withstand current fishing 

pressure despite being a common bycatch species in the GoPPF. However, further research 

needs to be undertaken to estimate other key life history parameters to fully assess the 

population status of this exploited shark species. 

 

 Carcharhinus coatesi is a similar small bodied coastal shark to R. taylori but some 

differences were observed in its growth and maturity parameters. The von Bertalanffy growth 

model also fit the data best for C. coatesi; parameters were L0 = 40.6 cm ± 0.8, L∞ = 74.8 cm 

± 2.1, k = 0.33 year1 ± 0.06. Length-at-maturity analysis indicated that males reach maturity 

at L50 = 66.3 cm (CI: 63.8, 71.4) and L95 = 71.6 (C1: 64.6, 74.2) cm while females matured at 

L50 = 71.4 cm (CI: 61.5, 72.01) and L95 = 72.5 cm (CI: 62.7, 74.0). Age-at-maturity estimates 

showed that both males (A50 = 5.1 years (CI: 4.6, 7.1), A95 = 6.4 years (CI: 5.1, 7.2) and 

females (A50 = 5.3 years (CI: 3.5, 8.7) and A95 = 7.4 (CI: 3.6, 8.8) years) reach maturity at 

about the same age, but in comparison to other small bodied carcharhinids, C coatesi has 

slower growth in early life stages and reaches maturity at a later age. This biological trait 

along with a small litter size indicates that the population of C. coatesi in the Gulf of Papua 

may be more susceptible to decline as a result of fishing.  

 

An Ecological Risk Assessment (ERA) was conducted to estimate the susceptibility of 

species caught in the fishery and the potential for a species to recover from population 

declines due to fishing if they occur. Of the 39 elasmobranch species encountered as bycatch 

in the fishery 10 were classified as being at low risk, 26 subjected to medium risk and 3 at 

high risk. The species at high risk were the Australian blackspot shark C. coatesi, the 
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eyebrow wedgefish Rhynchobatus palpebratus and the blackspotted whipray Maculabatis 

astra. This is the first ERA conducted for this fishery. The findings provide fishery managers 

with information to implement an ecosystem-based approach to managing the fishery to 

reduce bycatch and improve the sustainability of the GoPPF. 

 

This thesis has provided new information on the diet, age, growth, maturity and the potential 

risk of species suffering population declines from being caught in the GoPPF. These 

outcomes have implications for fisheries management and conservation of species in PNG 

and the surrounding regions. The areas of study begin to address current data gaps for this 

fishery and also set the foundation for future work to improve fisheries management and 

protect the survival of species through conservation measures in PNG. 
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Chapter 1 General Introduction  
 

Elasmobranchs (sharks and rays) are a subclass of Chondrichthyes (cartilaginous fishes) that 

have lived for more than 420 million years (Simpfendorfer and Dulvy, 2017). Elasmobranchs 

inhabit a variety of habitats but the majority of species are marine dwelling (Musick et al., 

2004). As predators, sharks and rays are functional members of food chains that impede the 

population growth of their prey through direct feeding and by inducing anti-predator 

behaviour (Heithaus et al., 2008). The effect on prey communities is dependent on size, 

where large sharks in particular with few natural predators function as apex feeders with a 

strong top down influence on prey populations (Stevens et al., 2000). Smaller sized sharks 

and rays are regarded as meso-predators that provide an intermediate link between top and 

lower trophic levels (Kinney et al., 2011, Heupel et al., 2014). 

 

In recent times, many elasmobranch populations have faced drastic population declines due 

to anthropogenic factors, in particular increasing global fisheries (Dulvy et al., 2014). The 

vulnerability of these fishes stems from the inability of their populations to regenerate within 

short time frames to compensate for the consistent loss of individuals harvested through 

fishing (Herndon et al., 2010). This is attributed to biological traits such as slow growth, late 

maturity and small litter sizes that are common among elasmobranch species (Stevens et al., 

2000, Smith et al., 1998). It is now estimated that up to a quarter of all known elasmobranch 

species face some level of threat to their survival (Dulvy et al., 2014). Therefore there is 

growing international concern focused on the protection of these species (Camhi et al., 2009) 
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and the possible ecological ramifications of the absence of strong predatory roles that 

elasmobranchs exert in aquatic food webs (Grubbs et al., 2016). 

 

Improving the sustainability of fisheries is an important step in addressing the steady decline 

in elasmobranch populations. This requires fishery specific data on catches of sharks and rays 

and information about their taxonomy, life history and ecology. In particular, life history 

information is crucial to fisheries management because it provides fundamental biological 

characteristics such as the growth rate, size and age at first maturity, periodicity of 

reproduction, the number of young produced, and maximum age (Gallucci et al., 2006). Such 

information then forms the basis for wider demographic analyses which can estimate the risks 

of extinction (Pardo et al., 2016b) and be used in ecological risk assessments where full scale 

stock assessments are lacking (Braccini et al., 2006). Noting that life history traits can differ 

among populations of the same species in different localities (Lombardi-Carlson et al., 2003, 

White, 2007a) it is imperative to determine population and region specific parameters to 

provide more accurate management advice. An understanding of the ecological traits of 

species on the other hand further enhances knowledge of ecosystem processes (Barría et al., 

2015) and is also a precursor for assessing the level of risk a fishery poses to vulnerable 

species. Ecological species information is vital for managing fisheries from an ecosystem 

perspective which is a management approach in line with modern practices of responsible 

fisheries (Astles et al., 2006). 

 

The acquisition of fishery-specific data varies worldwide but generally many fisheries remain 

data poor despite many years of operation especially pertaining to bycatch (Barker and 

Schluessel, 2005). Although there are fisheries based on commercially valuable sharks and 
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rays, a large portion of elasmobranch mortality is often caught incidentally and regarded as 

bycatch (Dulvy et al., 2008, James et al., 2016) . These are often ignored in standard data 

collection practices (Clarke et al., 2013), which means that in many instances fisheries 

managers do not know what species are caught and the rates at which they are exploited. 

Given the vulnerability of elasmobranch life histories it is possible that in regions of high 

fishing pressure many elasmobranch populations may have been overfished without 

detection. The lack of quantitative information on which to base fisheries management 

decisions is more severe in developing countries (Fuentes and de Leon Corral, 1997) and data 

collection in these regions will have potentially significant benefit for developing future 

management actions.  

 

Papua New Guinea (PNG) is a developing nation located in a region of high marine 

biodiversity (Allen, 2008), including elasmobranchs (White et al., 2017b). In PNG, 

elasmobranchs have cultural, food security and socio-economic value through fisheries.  

Sharks and rays support livelihoods through subsistence and semi-economic fishing in coastal 

communities across 14 maritime provinces. Coastal fishers actively target elasmobranchs for 

their fins to be sold to domestic buyers and eventually reach international markets (Sabetian 

and Foale, 2006) while the meat from some more palatable species is sold locally. Sharks 

were also targeted in a dedicated shark longline fishery that ceased operation in mid-2014 

(Usu et al., 2015, Smart et al., 2016a). In addition, a large proportion of elasmobranchs are 

harvested as bycatch in the industrial tuna longline, purse seine and trawl fisheries. Despite 

the varied uses of elasmobranch resources in PNG, there remains a paucity of research 

(White et al., 2015) to underpin improving and strengthening fishery management practices 

for the stocks that are impacted. In an effort to address this severe lack of information, recent 

research has been conducted on elasmobranch  life history (Smart et al., 2017a, D'Alberto et 
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al., 2016), demography (Smart et al., 2017b) and population connectivity (Green et al., 2019) 

for key species encountered mainly in the tuna and shark longline fisheries. However, there is 

a need for similar work to be done with respect to the coastal and trawl fisheries.   

 

The Gulf of Papua Prawn Fishery (GoPPF) is currently the only trawl fishery operating in 

PNG, supplying domestic and international markets with wild caught prawns. Trawling 

operations are concentrated in the inshore areas of the Gulf of Papua (GoP) and capture a 

variety of bycatch in the trawl nets, including elasmobranchs. Despite a 40 year history of the 

fishery, the species composition of elasmobranch bycatch has only recently been established 

(White et al., 2019). Trawl fisheries, particularly in regions of high bio-diversity such as 

PNG, impact a wide range of species due to the gear type and the method of fishing used 

(Oliver et al., 2015). This scenario, alongside poor data collection on bycatch, leaves scarce 

information to assess the sustainability of impacted populations. Therefore, this research was 

aimed at further advancing investigations into the biology and ecology of common bycatch 

species, and the sustainability of elasmobranch bycatch in the GoPPF. In order to achieve 

these aims, this thesis comprises a literature review and four main data chapters: Chapters 2 

and 3 focus on the ecological component of this thesis. Chapter 2 is a literature review on 

research that has contributed to the understanding of resource partitioning in elasmobranchs 

while Chapter 3 explores the dietary overlap of three sympatric shark species. Chapters 4 and 

5 examine life history of two of the three key shark species that are most commonly captured 

in the GoPPF and were featured in Chapter 3; and to investigate the effect of the fishery on 

the entire range of elasmobranch bycatch in the fishery, Chapter 6 is an ecological risk 

assessment to identify species that are most at risk from impact of commercial prawn 

trawling in the Gulf of Papua.  
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Chapter 2  Resource partitioning in elasmobranchs: a review 
 
2.1 Introduction  
 

The ecological niche of one organism overlaps with another when they use the same 

resources that are available to them in the environment. The interaction becomes competitive 

when shared resources are limited (Krebs, 2009) which can lead to the decline in population 

size and eventual extinction of a species (Schoener, 1974). A theory originally postulated by 

Gregory Gause implies that species cannot co-exist for long periods if they use very similar 

resources (Schoener, 1974). However, in nature great numbers of species are able to co-exist 

and seemingly share resources. Resource partitioning is recognised as a mechanism used to 

circumvent the harmful consequences of competition and enable co-existence, maintaining 

biodiversity in terrestrial and aquatic systems (Chesson, 2000). In general, the dimensions 

across which the use of resources can be divided are food, habitat, and time. An early review 

of resource partitioning studies on fish revealed that partitioning is most likely to occur by 

trophic differences, followed by space use and finally temporal separation (Ross, 1986).  

 

Earlier studies of resource partitioning conducted on fish species were based on teleost 

species and largely ignored elasmobranchs (sharks and rays) (Ross, 1986) though they play a 

key role in shaping the structure of marine ecosystems (Heithaus, 2004). Their ecological 

roles as top-level and meso-predators is understood on a general level but are still being 

defined in variable contexts (Heupel et al., 2014). Furthermore, the direct feeding interactions 

of elasmobranchs and the indirect consequences of their presence such as inducing 

behavioural changes in prey species is yet to be fully investigated (Heithaus et al., 2008). The 

decline of elasmobranch populations due to various anthropogenic effects can lead to 
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ecosystem shifts in the diversity and abundance of marine species which results in further 

changes in the food web. Over the past three decades there has been a gradual increase in the 

number of studies focused on the ecology of elasmobranchs which has also integrated 

assessments of resource partitioning. Ultimately these studies provide an understanding of the 

role of elasmobranchs in ecosystems (Simpfendorfer et al., 2011) and enable changes in 

communities as a result of declining elasmobranch populations to be predicted (Shipley et al., 

2018). 

 

Knowledge of elasmobranch resource use patterns aids in conservation planning and the 

management of fisheries from an ecosystem perspective (Munroe et al., 2014, Bethea et al., 

2004). Studies have focused on dietary, spatial and temporal partitioning using a range of 

methods to focus on a single species, sympatric elasmobranchs, or groups of co-occurring 

elasmobranch and non-elasmobranch species. The extent of resource use overlap in food 

consumption or space use indicates the level of competition for resources. While this body of 

work has contributed to a more in-depth understanding of elasmobranch interactions across 

the various resource use planes individually, it has also revealed that the ecology in this group 

of fishes is dynamic and resource partitioning across all scales are interrelated to maintain co-

existence of species. This chapter reviews the existing literature on resource partitioning in 

elasmobranchs with the following objectives: (1) describe resource partitioning identified 

among elasmobranchs (2) outline the methods used in studies (3) identify gaps and avenues 

for future research.  
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2.2 Article selection and outcome 
 

Key words were used to identify studies that directly examined the occurrence of resource 

partitioning or inferred resource partitioning from characterisation of diets or spatial use 

patterns. The key search terms included elasmobranch, shark, rays and partitioning. Criteria 

for including a paper in this review included work that examined the diets, habitat use and 

seasonal patterns of habitat use of elasmobranchs as well as studies that discussed the main 

methodology used in fish resource partitioning studies.  A total of 56 studies were identified 

(Table 2-1). The greatest proportion (38%) of studies were focused on sharks. Studies on rays 

made up only 24% of the included papers, and the remainder of studies focused on co-

occurring sharks and rays (23%) and elasmobranchs and other sympatric species (16%). The 

majority of studies focused on characterising trophic traits of species and dietary partitioning. 

Habitat information was dominated by the determination of nursery areas and space use 

within these sites. The occurrence of partitioning or potential for it was recorded in the 

majority of studies with a minimal number of investigations not finding any evidence. 
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Table 2-1: List of studies on elasmobranch resource partitioning 

Study Location Objective  Method Habitat Shark 
species 

Ray 
species 

Other 
species 

Outcome: 
Type of 
partitioning 
exhibited 

Heupel et al. 
(2019) 

North East Coast 
Australia 

Examine space use, movement and 
habitat use of sharks in a coastal 
bay to determine niche partitioning.  

Acoustic 
telemetry 

Tropical 
nearshore 
embayment 

6 
  

Spatial 
partitioning  

Shiffman et al. 
(2019) 

Florida Hypothesise that similar prey 
availability and overlap of study 
species ranges the relative isotopic 
niche area and core isotopic niche 
overlap and other trophic 
interactions would remain constant 
across different habitats. 

Stable isotope 
analysis 

Bay and reef 11 
  

Dietary 
partitioning 
between two 
species at one 
habitat but not 
observed at a 
neighbouring 
different 
habitat where 
both species 
were also 
present. 

Curnick et al. 
(2019) 

British Indian 
Ocean Territory 

Examine resource partitioning and 
seasonal variation in resource use. 

Stable isotope 
analysis 

Reef  2 
  

Temporal 
dietary 
partitioning.  

Shipley et al. 
(2018) 

Bahamas Hypothesise that resource 
partitioning of food enables co-
occurrence of species in relatively 
high abundance which will be 

Stable isotope 
analysis 

Benthic 1 2 
 

Possible 
dietary or food 
partitioning 
among rays. 
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Study Location Objective  Method Habitat Shark 
species 

Ray 
species 

Other 
species 

Outcome: 
Type of 
partitioning 
exhibited 

shown in a diverse range of trophic 
resource pools. 

Valls et al. (2017) 

 
 

Mediterranean Investigate the trophic relationship 
of elasmobranch and cephalopods 
to determine feeding strategies and 
resource partitioning.  

Stomach content 
and stable 
isotope analysis. 

Deep sea 5 18 cephalopod Food 
partitioning  

Gallagher et al. 
(2017) 

 
 

Southeastern 
USA 

Investigated inferred trophic 
position, isotopic niche overlap and 
patterns of resource use and 
compared this to abundance 
information from the study area. 

Stable isotope 
analysis, 
estimates of 
abundance and 
occurrence from 
empirical shark 
surveys 

Bay  3 
  

No resource 
partitioning in 
prey rich area 
but possible 
selective 
feeding 
overtime. 

Bangley and 
Rulifson (2017) 

North Carolina 
USA 

Investigate habitat use 
incorporating set time in a fishery -
independent sampling to also focus 
on transition from diurnal to 
nocturnal periods to account for 
potential temporal effects on habitat 
preferences and resource 
partitioning among elasmobranchs. 

Multi-gear 
fishery 
independent 
surveys. 

Estuarine  9 4 
 

Temporal 
partitioning 
among three 
species and 
spatial 
partitioning 
among two 
species. 

Gracan et al. 
(2017) 

continental shelf 
of the Adriatic 
Sea 

To determine the diet, feeding 
ecology and trophic position. 

Fishery 
dependent 
sampling, sharks 
collected from 

Continental 
shelf 

2 
  

Seasonal 
dietary 
partitioning 
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Study Location Objective  Method Habitat Shark 
species 

Ray 
species 

Other 
species 

Outcome: 
Type of 
partitioning 
exhibited 

commercial 
trawlers.  

Matich et al. 
(2017a) 

Florida 
Everglades 

Investigate if abundant large bodied 
species (aquatic reptiles, 
elasmobranchs, marine mammals 
and teleost fishes) partition 
resources and habitat in low 
productivity environment.  

Stable isotope 
analysis, 
acoustic 
telemetry, visual 
surveys, 
published diet 
and life history 
demographic 
information. 

Estuary  1  alligators, 2 
teleosts and 
bottlenose 
dolphins 

Potential 
dietary and 
seasonal 
habitat use. 

Matich et al. 
(2017b) 

French 
Polynesia 

Test the hypothesis that niche 
segregation occurs in response to 
potential completion for food 
resources between co-occurring 
shark species within their nursery 
habitats. 

Stable isotope 
analysis. 

Coral reef 
lagoon 

2   Dietary 
partitioning 
only when both 
species are 
present one 
area. 

Amariles et al. 
(2017) 

Colombian 
Pacific 

Examine feeding habits and trophic 
relationships between species and 
evaluate trophic overlap or 
partitioning. 

Stomach content 
analysis 

Coastal 
region 

2 
  

Dietary 
partitioning  

Estupinan-Montano 
et al. (2017) 

Malpelo Island, 
Colombia 

Describe trophic ecology. Stable isotope 
analysis 

Coastal 2 
  

Dietary and 
habitat 
partitioning.  
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Study Location Objective  Method Habitat Shark 
species 

Ray 
species 

Other 
species 

Outcome: 
Type of 
partitioning 
exhibited 

Shaw et al. (2016) South Carolina, 
USA 

Examine the trophic ecology of 
estuarine dependent predatory fish, 
analyse dietary niche overlap and 
infer potential prey.   

Stable isotope 
analysis 

Bay or 
estuary area 

6 1 3 teleost  Dietary 
partitioning  

Pardo et al. (2015) Moreton Bay, 
Australia  

Investigate dietary partitioning 
between species. 

Stomach content 
analysis 

Intertidal 
flat 

 
3 

 
Dietary 
partitioning  

Raoult et al. (2015) Tasmania, 
Australia 

Test the hypothesis that species will 
feed on different prey at different 
trophic levels to reduce overlap and 
competition despite similar 
morphology. 

Stable isotope 
analysis 

Coastal 2 
  

Dietary 
partitioning - 
species feed at 
different 
trophic levels. 

Varghese et al. 
(2014) 

India, Arabian 
Sea  

To understand prey species 
composition, trophic level, diet 
overlap and trophic organisation.  

Stomach content 
analysis  

Pelagic 2 1 9 other 
pelagic 
species 

Temporal 
partitioning 
though diurnal 
and nocturnal 
feeding to 
avoid 
competition 

Szczepanski and 
Bengtson (2014) 

Delaware Bay, 
USA  

Examine diet and analyse how 
feeding habits may change 
temporally and ontogenetically. 

Stomach content 
analysis and, 
fisheries 
independent 
trawl surveys.  

  
1 

 
Ontogenetic 
dietary 
partitioning 

Bornatowski et al. 
(2014b) 

Brazil Analyse and compare the diet of co-
occurring species. 

Stomach content 
analysis from 
fishery landings. 

Coastal bay 
 

4 
 

Dietary 
partitioning 
through 
differing diets. 
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Study Location Objective  Method Habitat Shark 
species 

Ray 
species 

Other 
species 

Outcome: 
Type of 
partitioning 
exhibited 

Kiszka et al. (2014) Southwestern 
Madagascar 

Assess the trophic relationships, 
isotopic niche breath and overlap as 
well as ontogenetic variation in 
trophic interactions. 

Stable isotope 
analysis 

Coastal  3 1 
 

Possibly diet 
and habitat 
partitioning 
also by size 
and sex. 

Tillett et al. (2014) Northern 
Australia 

 Determine degree of dietary 
overlap, differences in type and 
proportion of prey among species, 
determine if prey type increases 
with maturity and correlates with 
adult feeding patterns and analyse if 
dietary partitioning occurs by sex. 

Stomach content 
analysis  

Gulf area 3 
  

Possible spatial 
and temporal 
partitioning 
among 
juveniles, and 
possible dietary 
differences. 

O'Shea et al. (2013) Western 
Australia 

Feeding biology and dietary 
preferences were examined in order 
to determine if sympatric species 
partition diets according to the 
degree of overlap in occupied 
habitats, so that species with 
differences in spatial and temporal 
scales will have the lowest diet 
overlap. 

Stomach content 
and sediment 
analysis. 

Coral reef 
lagoon 

 
5 

 
Diet 
partitioning for 
one species, the 
other four 
species may 
partition 
resource use by 
time and space 
(habitat). 

Taylor and Bennett 
(2013) 

Moreton Bay, 
Australia 

Identify species composition and 
sex ratio to determine size at birth 
and timing of parturition. To 
identify size related patterns of 
occurrence and determine extent to 
which shark assemblage varies 
among months and seasons. 

Commercial 
gillnet catches 
and fishery 
independent 
surveys. 

Bay 13 
  

Temporal 
partitioning 
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Study Location Objective  Method Habitat Shark 
species 

Ray 
species 

Other 
species 

Outcome: 
Type of 
partitioning 
exhibited 

Tilley et al. (2013) Belize Determine the ecological niche of a 
species and compare it to other 
sympatric elasmobranchs. 

Stable isotope 
analysis 

Reef atoll 2 1 
 

Dietary 
partitioning 
among two 
shark species. 

Heithaus et al. 
(2013) 

Shark Bay, 
Western 
Australia 

Investigate trophic positions and 
isotopic niches, overlap of isotopic 
niches among species, relationship 
between body size and relative 
trophic position and possibility for 
individual dietary specialisation. 

Stable isotope 
analysis 

Inshore bay  11 1 1 (dolphin) Trophic 
resource 
partitioning 
based on non-
overlapping 
stable isotope 
results. 

Navarro-Gonzalez 
et al. (2012) 

Mexico Describe and analyse feeding habits 
and dietary similarities.  

Stomach content 
analysis 

  
6 

  

Vaudo and 
Heithaus (2012) 

Western 
Australia 

Investigate residency patterns of 
species and diel-patterns of habitat 
use to test the hypothesis that 
individuals spend more time in 
near-shore microhabitats, left the 
sandflats during the night and spent 
less time on the sand flats during 
the cold seasons. 

Acoustic 
telemetry 

Shallow 
mud flat in 
bay. 

 
4 

 
No apparent 
temporal or 
spatial 
partitioning. 

Barbini and 
Lucifora (2012) 

Southwestern 
Atlantic 

Analyse inter-specific relationship 
in diets between two 
morphologically similar species. 

Stomach content 
analysis  

Coastal 
zone  

 
2 

 
Both species 
exhibited 
different 
dietary traits 
and therefore 
partitioned 
food resources. 
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Study Location Objective  Method Habitat Shark 
species 

Ray 
species 

Other 
species 

Outcome: 
Type of 
partitioning 
exhibited 

Rogers et al. (2012) South Australia Examine, quantify and compare 
diets of pelagic sharks in a 
continental shelf region and 
adjacent gulf regions. 

Stomach content 
analysis  

Pelagic 5 
  

Potential 
dietary 
partitioning. 
Specialised diet 
in one species. 

Jacobsen and 
Bennett (2012) 

Northeastern 
Australia 

Describe diets and examine intra 
and inter specific differences in diet 
compositions. 

Stomach content 
analysis 

Coastal 
temperate 
and tropical 
waters. 

 
3 

 
Possible 
dietary 
partitioning 
linked to 
differences in 
prey proportion 
among species, 
size and 
morphology. 

Yick et al. (2011) Australia Describe the diet and assess the 
level of dietary resource 
partitioning.  

Stomach content 
analysis 

Bay 
 

2 
 

Dietary 
partitioning 
through 
specialisation 
on different 
prey taxa 
despite feeding 
on similar prey. 

Dale et al. (2011) Kanehoe Bay, 
Hawaii 

Quantify the foraging ecology and 
habitat use and evaluate the extent 
of ecological interactions. 

Stomach content 
analysis and 
bulk amino acid 
stable isotope 
analysis. 

Marine bay 1 1 
 

Dietary 
partitioning  
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Study Location Objective  Method Habitat Shark 
species 

Ray 
species 

Other 
species 

Outcome: 
Type of 
partitioning 
exhibited 

Speed et al. (2011) Northwestern 
Australia  

Hypothesise that aggregations are 
due to reproductive purposes and 
use of site as nursery area, species 
and size classes partition by space 
use and time, species use site as a 
refuge through diel patterns of 
attendance and species show long 
term site fidelity.  

Acoustic 
telemetry and 
visual census.  

Inshore bay 4 
  

No evidence of 
partitioning.  

Vaudo and 
Heithaus (2011) 

Shark Bay, 
Western 
Australia  

Examine the trophic niches of a 
nearshore elasmobranch 
community. 

Stomach content 
and stable 
isotope analyses. 

Marine bay 2 11 
 

No clear 
evidence of 
differences in 
diets but 
attribute co-
existence and 
high diversity 
to individual 
specialisation. 

Sommerville et al. 
(2011) 

Southwestern 
Australia 

Examine similarities in diets of 
species and how this change with 
body size and season. 

Stomach content 
analysis 

Coastal 
region 

1 3 
 

Diets change 
seasonally and 
intra-and inter-
specific 
differences in 
diets facilitate 
co-existence 
through food 
partitioning. 

Kinney et al. 
(2011) 

Cleveland Bay, 
QLD, Australia  

Assess the extent of dietary 
partitioning within and established 
shark nursery. 

Stable isotope 
analysis  

Bay 7 
 

3 teleost 
species 

Dietary 
partitioning 
occurring 
among species 
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Study Location Objective  Method Habitat Shark 
species 

Ray 
species 

Other 
species 

Outcome: 
Type of 
partitioning 
exhibited 

in the 
communal 
nursery. 

Taylor et al. (2011) South-eastern 
Queensland, 
Australia 

Identify catch composition and 
seasonal differences at different 
beaches. 

Gillnets Coastal 
beaches 

17 8 
 

Spatial and 
seasonal 
partitioning. 

Abrantes and 
Barnett (2011) 

Southern 
Tasmania, 
Australia 

Determine differences in stable 
isotope composition between sites 
to assess connectivity between 
areas and to use SIA, SCA and 
tracking data to assess intra-
population differences in diet and 
movement patterns. 

Stomach content 
and stable 
isotope analyses 
and electronic 
tracking.  

Coastal and 
offshore 

1 
  

Possible diet 
and habitat 
partitioning. 

Bethea et al. (2011) Florida, USA Quantify diet and feeding ecology 
to understand resource partitioning.  

Stomach content 
and stable 
isotope analyses.  

Bays 2 
  

Dietary 
partitioning  

Powter et al. (2010) South-eastern 
Australia 

Determine if there is sex-based and 
or ontogenetic differences in diet, 
dentition and head morphology. 

Stomach content 
analysis 

Coastal 
temperate 
waters 

1   Dietary 
partitioning  

Vaudo and 
Heithaus (2009) 

Shark Bay, 
Western 
Australia  

Spatial and temporal variation in 
abundance and species composition 
and examine size distribution and 
macro-habitat preference among 
common species. 

Visual surveys 
and capture 
methods. 

Marine bay 1 10 
 

No clear 
evidence of 
resource 
partitioning. 
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Study Location Objective  Method Habitat Shark 
species 

Ray 
species 

Other 
species 

Outcome: 
Type of 
partitioning 
exhibited 

Whitty et al. (2009) Fitzroy River, 
Australia 

Test the hypothesis that juveniles 
are able to move through shallow 
runs to enable upstream migration 
and that morphological differences 
in size and age class will mean they 
will be ontogenetic differences in 
habitat use. 

Acoustic 
tracking 

River 
 

1 
 

Spatial 
partitioning  

Saidi et al. (2009) Tunisa Describe food composition in 
relation to predator size and season, 
determine prey diversity and 
compare with studies from different 
locations. 

Stomach content 
and stable 
isotope analysis. 

Gulf  1 
  

Ontogenetic 
food 
partitioning  

DeAngelis et al. 
(2008) 

US Virgin 
Islands 

Assess species diversity and 
relative abundance, determine if 
area is a nursery habitat and assess 
if habitat partitioning is occurring. 

Bottom longline 
and hand-gear 
sampling.  

 
5 1 

 
Habitat 
partitioning 
and temporal 
partitioning of 
space use. 

Marshall et al. 
(2008) 

South-eastern 
Queensland, 
Australia 

To determine if inter-specific 
dietary differences occurred 
through ontogeny and if dietary 
resources partitioning occurred 
between species. 

Stomach content 
analysis 

Demersal  
 

2 
 

Dietary 
partitioning but 
other factors 
could also play 
a role. 

Taylor and Bennett 
(2008) 

Moreton Bay, 
South-eastern 
Queensland, 
Australia 

Study trophic relationship between 
the Australian weasel shark and 
cephalopods. 

Stomach content 
analysis 

Bay  1  cephalopods Specialisation 
on cephalopods 
to reduce 
competition 
with other 
sharks. 
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Study Location Objective  Method Habitat Shark 
species 

Ray 
species 

Other 
species 

Outcome: 
Type of 
partitioning 
exhibited 

Treloar et al. 
(2007) 

South-eastern 
Australia 

Comparative feeding ecology and 
trophic levels. 

Stomach content 
analysis 

Continental 
shelf and 
slope 

 
6 

 
Dietary 
partitioning 
among both 
continental 
shelf and slope 
species. 

Wiley and 
Simpfendorfer 
(2007) 

Florida, USA Document co-occurring species of 
elasmobranchs, examine the 
environmental and habitat factors 
that influence occurrence and 
distribution as well as examine 
movement. 

Longline, rod 
and reel and 
gillnet.  

Gulf and 
estuaries 

4 
  

Habitat 
partitioning 
due to 
environmental 
characteristics. 

Navia et al. (2007) Colombia  Quantify and compare diet and 
trophic interactions. 

Stomach content 
analysis 

Coastal and 
oceanic  

1 4 
 

Possible 
temporal and 
habitat 
partitioning 
among rays.  

Papastamatiou et 
al. (2006) 

Hawaii Quantify and compare diets and 
geographical depth distributions to 
determine resource partitioning and 
or competition. 

Shark control 
program data 
and Stomach 
content analysis. 

Marine 4 
  

Spatial 
separation 
possibly based 
on competition.  

Pikitch et al. (2005) Belize Assessment of species diversity, use 
of reef system by early life stages, 
species and age specific patterns of 
abundance in reef macro habitats 
and demographic population 
structure of early life 
characteristics. 

Longline 
sampling, 
gillnet, seine, 
drumline and 
opportunistic 
market surveys. 

Reef and 
atoll 

10 3 
 

Habitat and 
depth 
partitioning. 
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Study Location Objective  Method Habitat Shark 
species 

Ray 
species 

Other 
species 

Outcome: 
Type of 
partitioning 
exhibited 

Simpfendorfer et 
al. (2005) 

Florida, USA Examine distribution and 
investigate habitat partitioning and 
the environmental parameters that 
may influence distribution. 

Longline 
surveys 

Estuaries  1 
  

Size based 
habitat 
partitioning 
influenced by 
salinity. 

White and Potter 
(2004) 

Western 
Australia 

Test hypotheses that the area is 
used as a nursery area, use of 
habitat is partitioned, species have 
more affinity to vegetated regions 
then non-vegetated areas and 
composition of species that use the 
area change over time. 

Gillnets Inshore bay 
area 

5 4 12 teleosts Spatial and 
dietary 
partitioning.  

White et al. (2004) 

 

 
 

Western 
Australia 

Test hypotheses that food 
partitioning is occurring, different 
feeding habits and morphology will 
facilitate differences in diets, 
species occurring mostly over 
seagrass will have different diet, 
diets changes with body size, main 
prey will be most abundant 
crustaceans and prey composition 
will change throughout the year. 

Stomach content 
analysis 

Inshore bay 
area 

3 1 
 

Dietary 
partitioning 
that could also 
be related to 
habitat.  

Bethea et al. (2004) Apalachichola 
Bay, Florida, 
USA 

Describe and quantify diet to 
calculate diet overlap, habitat 
overlap and investigate prey size- 
predator size relationship. 

Stomach content 
analysis and 
catch data. 

Inshore bay 
area 

4 
  

Spatial and 
temporal 
partitioning. 

Brickle et al. 
(2003) 

Falkland Islands Examine ontogenetic shifts in diet 
and dietary overlap among species. 

Stomach content 
analysis. 

Demersal  
 

3 
 

Dietary 
partitioning 
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Study Location Objective  Method Habitat Shark 
species 

Ray 
species 

Other 
species 

Outcome: 
Type of 
partitioning 
exhibited 

and depth 
partitioning 

Platell and Potter 
(2001) 

Western 
Australia 

Compare dietary compositions to 
analyse inter specific differences to 
assess potential resource 
petitioning, also to analyse dietary 
differences in relations to ontogeny, 
phylogeny, mouth morphology and 
feeding behaviour.  

Stomach content 
analysis 

Temperate 
coastal  

 
4 14 teleosts  Dietary and 

depth 
partitioning 
among species.  

Platell et al. (1998) Southwestern 
Australia 

Determine if species are partitioned 
by habitat, type of food and if there 
is interspecific competition. 

Stomach content 
analysis 

Temperate 
coastal  

 4 
 

Combination of 
diet and habitat 
partitioning. 



21 
 

2.3 Development of methodologies to study resource partitioning  
 
Ecology is as an empirical study (Krebs, 1989) and multivariate in nature, with many facets 

contributing to defining the ecological niche of a species (Munroe et al., 2014). To 

understand the resource use patterns of elasmobranchs across dietary, habitat, and temporal 

planes, a number of methods have been used either separately or in combination. 

 

Dietary partitioning has been the most widely studied form of resource partitioning among 

elasmobranchs. Earlier work that addressed the diets of co-occurring elasmobranchs used 

stomach content analysis (McEachran et al., 1976, Platell et al., 1998). This has since become 

a common feature of dietary resource partitioning studies. Stomachs are extracted and 

dissected to identify prey items to the lowest possible taxon and comparisons are made either 

within members’ of one species or among species to assess the level of diet overlap from 

which competition is inferred (Wetherbee et al., 2012). However, stomach content analysis  

does have its drawbacks, the method has been criticised for; providing only a narrow view of 

what is fed on at the point of sampling and not a broader view of diet over time (Hussey et 

al., 2012, MacNeil et al., 2005), the predominance of indigestible hard parts (for example 

from cephalopods beaks and crustacean exoskeletons) that may overestimate the prevalence 

of certain prey in the diet (Kim et al., 2012), occurrence of empty stomachs particularly in 

sharks resulting from regurgitation during capture (Cortés, 1997), as well as the need for 

large sample sizes to adequately characterise diet which means the mortality of large number 

of individuals. However, some studies that carried out stomach content analysis were able to 

access large sample sizes by obtaining samples from the bycatch of various fisheries (Rogers 

et al., 2012, Barbini and Lucifora, 2012, Bornatowski et al., 2014b), or used gastric lavage 

(Frisch et al., 2016). 
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More recently stable isotope analysis has been used in the study of elasmobranchs ecology 

and resource partitioning. The method has been hailed as a low cost and non-lethal option 

compared to the acquisition and examination of actual stomachs from dead animals 

(Shiffman et al., 2012). In addition, stable isotope analysis provides an indication about 

longer term trophic ecology compared to stomach content analysis. Essentially stable isotope 

analysis is based on the process of examining the levels of carbon and nitrogen isotopes in the 

tissues of consumers that can be related directly to the isotopes of their prey (Kinney et al., 

2011). One of the key strengths of stable isotope analysis is its capability to investigate both 

dietary and habitat use patterns (Hussey et al., 2012). Over the last 10 years the use of this 

method has steadily increased, however issues of caution that may affect stable isotope values 

and consequently the interpretation of results are also prevalent. For instance isotopic values 

may be influenced by the presence of urea and lipid in samples (Gallagher et al., 2017), 

changes or fluctuations in the isotopic signatures of base prey in space and over time may 

also cause variation in carbon and nitrogen isotopic values in consumers (Shiffman et al., 

2019). Though stable isotope analysis provides an indication of average resource use trends, 

the interpretation of stable isotopes values in isolation from other trophic data can lead to 

erroneous conclusions, and interpretations from stable isotope analysis should not be 

extrapolated to the wider ecosystem without complementary stomach content and movement 

data which provide empirical evidence that can validate or enhance findings (Gallagher et al., 

2017, Shiffman et al., 2019, Abrantes and Barnett, 2011).  

 

Capture methods are often used to study the use of resources in time and space. Fishery 

independent surveys have been used to capture species at various sites and depths, while 

some studies have used data from shark control programs (Papastamatiou et al., 2006, Taylor 
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et al., 2011). Tag recapture was also used as a means to investigate habitat use (Wiley and 

Simpfendorfer, 2007). The development of electronic devices (e.g. acoustic, data storage and 

satellite tags) to monitor the movement of individual animals has become widely used to 

study aquatic animals and provides more fine scale data on the habitat use of some 

elasmobranch (Donaldson et al., 2014). The majority of studies that use acoustic tracking 

have been done on sharks while the habitat use patterns of rays have been largely inferred 

from stable isotope analysis and catch information (Table 2-1). 

 

The need for an integrated approach to studying elasmobranch resource use has been 

recognised in earlier work (White et al., 2004). Various studies have used complementary 

data sets using a combination of methods such as both stable isotope and stomach content 

analysis to determine trophic ecology (Bethea et al., 2011, Vaudo and Heithaus, 2011) or the 

inclusion of catch data (Gallagher et al., 2017, Papastamatiou et al., 2006) and spatial data to 

determine both dietary and spatial partitioning (Abrantes and Barnett, 2011). Complementary 

published stomach content information has also been valuable to validate the results of stable 

isotope analysis (Matich et al., 2017a). The development of methodologies that can provide a 

broader assessment of resource use patterns and the improved ability to track the movement 

of species over time and space has provided researchers with a greater ability to understand 

and monitor the ecology of elasmobranchs which when coupled with life history and 

population information is valuable for conservation and management efforts. 
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2.4 Dietary partitioning  
 

Dietary partitioning is likely to occur among elasmobranchs where species co-exist in a given 

area (Wetherbee et al., 2012). The majority of studies on elasmobranch resource partitioning 

have focused on this aspect. Dietary partitioning has been detected among sharks (Bethea et 

al., 2004, Hussey et al., 2012, Rogers et al., 2012), skates (Treloar et al., 2007, Barbini and 

Lucifora, 2012), stingrays (Bornatowski et al., 2014b, Pardo et al., 2015, Platell et al., 1998, 

Platell and Potter, 2001) and species assemblages of sharks and rays (Dale et al., 2011, 

Kiszka et al., 2014, White et al., 2004, Sommerville et al., 2011, Heithaus et al., 2013) as well 

as in feeding interactions with other non-elasmobranch species (Kinney et al., 2011, Platell 

and Potter, 2001). 

 

Interspecific dietary differences occur at varying levels. The same range of prey may be 

consumed but relative proportions among species differs (Platell et al., 1998). White et al. 

(2004) found that three shark species fed predominantly on teleosts, however the species 

composition of prey was different for each shark species. In other instances there was more 

specialisation in diets where the prey item constituting the largest portion of each diet was 

different (Bornatowski et al., 2014b, Sommerville et al., 2011). For example dietary patterns 

of two sympatric rays were found to be markedly different feeding on benthic crustaceans 

and polychaetes, respectively (Yick et al., 2011). Furthermore similar co-existing species 

have diversified their diets to the point where they feed at different trophic levels (Amariles 

et al., 2017, Raoult et al., 2015). 

 

Ontogenetic food partitioning or the change in diets with growth and maturity among 

members of the same species has also been widely detected in elasmobranchs (Barbini and 
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Lucifora, 2012, Sommerville et al., 2011). Morphological traits such as dentition and gape 

size develop with growth and enable the capture of larger prey (Powter et al., 2010) and can 

facilitate adults and juveniles to feed at different trophic levels to partition food resources 

(Amariles et al., 2017). For instance, adults and juveniles of the Australian weasel shark 

Hemigaleus australiensis feed on different prey (Taylor and Bennett, 2008). Prey release by 

adult members of population when diet changes occur may ensure that there is food supply 

for young immature individuals and therefore increase the likelihood of survival (Ebert, 

2002). However, dietary partitioning between sexes of the same species is rare among 

elasmobranchs, as Kiszka et al. (2014) was the only study that detected potential intra-

specific niche partitioning among sexes. 

 

Prey abundance may be a major contributing factor to the presence of competition for food 

between co-occurring species (Bornatowski et al., 2014b). However, few studies have 

directly measured prey abundance and diversity (Pardo et al., 2015, Gutteridge et al., 2011). 

Competition is mainly inferred from dietary overlap where sharks and rays with more 

specialised diets that have little overlap are presumed to be partitioning resources based on 

the limitation of prey. Conversely, a high dietary overlap can mean that prey is not limited 

(Heithaus et al., 2013) or that there is direct competition for prey. The availability of prey 

may also vary temporally and spatially. Curnick et al. (2019) found dietary partitioning 

between two shark species was only seasonal due to the influx of prey at certain times of the 

year while differences in diurnal and nocturnal feeding patterns can partition food among co-

occurring species (Varghese et al., 2014). Further information on prey abundance, diversity 

and distribution will improve the current understanding of elasmobranch feeding ecology.    
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2.5 Spatial and temporal partitioning  
 

In studies where attempts to investigate dietary partitioning showed a lack of distinction in 

diets, inferences are made to spatial or temporal partitioning as the likely cause of co-

existence (O'Shea et al., 2013, Bethea et al., 2004, Tillett et al., 2014, Navia et al., 2007). 

Though stomach content and stable isotope analysis have both provided indirect indication of 

potential spatial and temporal partitioning (Kiszka et al., 2014, Varghese et al., 2014).  

 

More empirical evidence of elasmobranch habitat use patterns from catch records and 

movement data suggest that substrate type, competition, abiotic factors, and asynchronous 

seasonal behaviour are factors that influence habitat partitioning. Elasmobranchs, particularly 

juveniles, have been observed to have an affinity to vegetated areas compared to unvegetated 

zones possibly due to the provision of nutrition and shelter from predators (White and Potter, 

2004, DeAngelis et al., 2008). Behavioural inter-specific avoidance of competition was 

exhibited in sharks (Papastamatiou et al., 2006, Bangley and Rulifson, 2017, Heupel et al., 

2019). Competition avoidance can also lead to asynchronous seasonal behaviour. For 

example one species of shark was found to remain in cooler waters when all other co-

occurring species had migrated to warmer regions (Taylor and Bennett, 2013). Physiological 

tolerance to salinity and temperature have also determined distribution of sharks in nursery 

areas (Simpfendorfer et al., 2005, Bangley and Rulifson, 2017). Additionally a study on 

juvenile sawfish found that habitat was partitioned by different aged cohorts with regard to 

temperature and light regimes due to lunar phases (Whitty et al., 2009).  

 

 



27 
 

2.6 Interrelationship between resource use axes 
 

Dietary and habitat partitioning may occur together to facilitate co-existence. For example 

four species of rays occurring across a 200 km area in Western Australia partitioned both 

food and space (Platell et al., 1998). White et al. (2004) also documented that both food and 

habitat was partitioned among an array of 14 species of elasmobranchs in Shark Bay, 

Australia. A study conducted on five species of sympatric stingrays found that only one 

species had a specialised diet implying food partition while the other four species were likely 

to employ habitat partitioning as a survival strategy that reduces competition (O'Shea et al., 

2013).  

 

The inter-relationship between habitat use and diet is complex and requires further 

investigation as studies are often focused on a single species or location (Shiffman et al., 

2019). Pardo et al. (2015) suggested that large-scale sampling may overlook microhabitat 

partitioning which could cause the dietary differences observed among species. A similar 

view was provided by Marshall et al. (2008) in explaining the reason behind the significant 

dietary differences of sympatric urolophid rays. Bornatowski et al. (2014b) found evidence of 

dietary partitioning but suggested that further study of spatial and temporal distribution 

should also be conducted. Conversely, the movement patterns of elasmobranchs may not 

always reflect resource use and wider data sets including dietary information is needed to 

verify observations (Heithaus et al., 2013). This emphasises the need for integrated studies 

across all resource axes (White et al., 2004). 
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Recent studies show more evidence of the dynamics of elasmobranch resource partitioning. 

For example the feeding habits of two juvenile shark species were compared in habitats 

where they both existed and where only one species was present; dietary partitioning only 

occurred where both species were present and competing for resources (Matich et al., 2017b). 

Furthermore, habitat type can play a significant role, an assemblage of elasmobranchs present 

in distinct habitats that were in close proximity to each other partitioned resources only in one 

habitat type (Shiffman et al., 2019). Therefore fine-scale assessment of resource use is 

important to identify variability and generalisations should be avoided (Shiffman et al., 

2019).  

 

2.7 Future work 
 

The segregation of resource use occurs according size, sex, morphology, and behaviour of a 

species or by social interactions such as competition, and also is influenced by abiotic 

environmental elements. The current body of work has been built upon characterisations of 

food or space use by elasmobranchs to document more complex and changing patterns in 

interactions between species. Despite these advancements there are knowledge gaps that 

remain in understanding elasmobranch ecology from the standpoint of resource partitioning. 

These include: (1) a lack of studies conducted in tropical areas that support a large diversity 

of elasmobranchs as well as other fish species and marine taxa, (2) literature on spatial and 

temporal use of resources is more limited than dietary information, though stable isotope  

analysis improves the understanding of habitat use, more empirical movement data is needed 

to accurately represent the space use of many species, particularly rays, (3) the extent to 

which abiotic factors influence species distribution needs more attention, particularly in light 

of other driving factors such as climate change and the impact of development in coastal 
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habitats, (4) the resource use patterns of elasmobranchs in coastal and nearshore areas is more 

common in literature, however further work in pelagic and deep-water species is needed to 

develop a better understanding of species ecology in these habitats. Finally, the high 

variability of ecosystem function, habitats, and species interactions requires more integrated 

assessments of species ecology utilising multiple complementary data sets to arrive at a more 

accurate representation of resource use patterns and the factors that play a critical role in 

influencing the outcomes. 
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Chapter 3  Dietary overlap of carcharhinid sharks in the Gulf of 
Papua 
 

 

3.1 Introduction 
 

Fisheries are a major contributor to the decline of shark populations (Dulvy et al., 2014) that 

function mainly as top and middle order predators in marine ecosystems (Heupel et al., 

2014). Concern for the survival of these populations has also highlighted that the flow on 

effects of low predator abundance on the ecosystem remain largely unknown, partly due to 

the paucity of ecological information for specific regions (Ferretti et al., 2010). Therefore, 

establishing an understanding of the ecology of species, and their contributions to ecosystem 

processes (Bornatowski et al., 2014a), is a crucial element in predicting the outcomes of 

population declines and potential species loss. Assessing the ecosystem impacts of fisheries 

in order to set appropriate management and conservation guidelines requires information 

from both target and non-target (bycatch) species (Pikitch et al., 2004). 

 

Characterising the dietary traits of sharks from stomach content analysis provides empirical 

evidence of the trophic linkages in the food chain (Cortes, 1999). This information can be 

incorporated into ecosystem models to aid fisheries management endeavours (Rogers et al., 

2012). Furthermore feeding patterns indicate diet specialisation, which helps understand the 

vulnerability of predators and the breadth of ecosystem impacts from their decline. 

Specialised feeders have a narrow range of prey and may be more vulnerable to perturbations 

that may directly impact food availability while generalist feeders may be more resilient to 

environmental changes (Munroe et al., 2014, Simpfendorfer et al., 2001). The level of diet 

overlap among similar sympatric species is an indirect measure of competition among species 
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when food resources are limited, and also provides an indication of potential resource 

partitioning among species (Wetherbee et al., 2012). Dietary studies have shown that 

potential competition for food can influence the differential distribution of similar shark 

species (Papastamatiou et al., 2006) while evidence of resource partitioning as a possible 

means to alleviate competition is common in sharks (Wetherbee et al., 2012). Dietary 

investigations thus provide a preliminary view of complex and dynamic ecological 

interactions that require integrated datasets (White et al., 2004), and monitoring diets over 

time can gain an understanding of the ecology of a species and its role in the overall function 

of the ecosystem. 

 

Small-bodied coastal sharks are generally considered to be meso-predators that connect the 

lower and top trophic levels of the food chain (Heupel et al., 2014) and are also common in 

fisheries bycatch (Stobutzki et al., 2002). The Australian blackspot shark Carcharhinus 

coatesi, the milk shark Rhizoprionodon acutus and the Australian sharpnose shark 

Rhizoprionodon taylori are small-bodied coastal sharks that are frequently caught as bycatch 

in the Gulf of Papua Prawn Fishery (GoPPF) in Papua New Guinea (White et al., 2019). The 

life histories of C. coatesi and R. taylori indicate that the populations of each species may be 

impacted differently by the fishery based on growth and biological productivity (Baje et al., 

2018, Baje et al., 2019). However, the ecology of these sympatric sharks has not been 

investigated in the Gulf of Papua, and their ecological roles are not well understood. Using 

samples caught in the fishery this study aimed to characterise the diets of C. coatesi, R. 

acutus and R. taylori and estimate the level of dietary overlap to assess if competition and 

partitioning of food resources occurs among these species in the Gulf of Papua. We 

hypothesise that the diets of these species will be different based on the occurrence of 

resource partitioning. 



32 
 

 

 

3.2 Methods 
 

3.2.1 Study site 
  

The Gulf of Papua, situated on the south coast of Papua New Guinea (Fig 3.1), is a region 

comprised of extensive mangrove and estuarine areas with high riverine input. Waterways from 

high altitude areas of PNG drain into the Gulf forming several major river systems, the largest 

of which is the Fly River in the West. North Eastward of the Fly River are the Kikori and Purari 

rivers along with several other systems. These areas provide major nursery grounds for penaeid 

prawn species which eventually recruit into the Gulf of Papua prawn trawl fishery (Evans et 

al., 1997). The region experiences two main seasons: the North-West monsoon from November 

to March each year and the South-East monsoon winds that occur from April to October 

(Moore and MacFarlane, 1984). 
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Figure 3-1: The Gulf of Papua situated in the south of Papua New Guinea. 

 

3.2.2 Sampling and sample preservation  
 

Fishery observers were deployed on seven prawn trawl fishing trips between June 2014 and 

August 2015 to collect shark bycatch samples. Samples were kept whole and frozen on board. 

In a laboratory, sharks were thawed, total length (TL) measured to the nearest ± 1 cm, sex 

recorded and stomachs excised. The level of fullness was estimated and graded as: an empty 

stomach = 0, 25% full =1, 50% full = 2, 75% full = 3 and 100% full = 4 was recorded for each 

sample, contents from each stomach were removed, fixed in 10% formalin and transferred to 

70% ethanol for preservation. Each set of stomach contents were weighed and examined to 

identify the number and type(s) of prey to the lowest possible taxa. The level of digestion was 

classified using a grading system from 1–5 based on the amount of body tissue of the prey 

remaining as follows: 100–80% was classified as stage 1, 80–61% was classified as stage 2, 
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60–41 % stage 3, 40–21% stage 4 and 20–1% stage 5 (Simpfendorfer 1993). In order to detect 

if the sample size was sufficient to adequately describe diets, a cumulative prey curve was 

produced using the specaccum function of the ‘vegan’ package (Oksanen et al., 2013) in R (R 

Core Team, 2015). 

 

3.2.3 Dietary indices 
 

To assess the importance of each prey item in the diet of the three shark species the percent 

frequency of occurrence (% FO) and the percent by number (%N) were calculated. The 

former is the number of times a prey category is present in one or more stomachs expressed 

as a percentage of the total number of stomachs containing food while the latter is the number 

of each prey category found in each stomach expressed as a proportion of the total number of 

prey for all stomachs of a particular species (Hyslop, 1980). The state of digestion and 

mastication in most of the samples meant that prey items could not be adequately identified 

and separated therefore volumetric and gravimetric methods were not carried out. 

 

3.2.4 Dietary overlap  
 

Dietary overlap, which is a measure of the level of similarity in the diets between shark 

species, was measured using the simplified Morisita index (Krebs, 1989): 

𝐶𝐻 =
2Σ𝑖

𝑛 𝑝𝑖𝑗 𝑝𝑖𝑘

Σ𝑖
𝑛𝑝𝑖𝑗

2 + Σ𝑖
𝑛 𝑝𝑖𝑘

2  

where CH = Simplified Morisita index of overlap between two species with values ranging 

from 0 (no overlap) to 1 (complete overlap).  

pij = the proportion prey in species i that is of the total prey categories used by species j 



35 
 

pik = Proportion prey i is of the total prey categories used by species k. 

n = total number of prey categories. 

 

3.2.5 Multivariate analysis  
 

Samples were initially randomised and pooled within each species to minimise the large 

number of zeros and improve the effectiveness of the analyses (Sommerville et al., 2011). 

The resulting new samples comprised stomach contents from 4 or 5 individuals of the same 

species randomly pooled together. The percentage by number (%N) was calculated for each 

prey item in each sample and entered into Primer-E (Plymouth Routines in Multivariate 

Ecological Research) version 7.0. 13 (Clarke and Gorley, 2015). Prior to further analysis the 

data were subject to square-root transformation followed by creation of a Bray Curtis 

resemblance matrix. To test for differences in dietary composition among sex, species and 

season Analysis of Similarities (ANOSIM) was conducted. Similarities of Percentages 

(SIMPER) was also used to identify the components that typified the diets of each shark 

species. Non-metric Multidimensional Scaling (nMDS) ordination was used to produce plots 

to visualise the dietary composition based on species, size and season. To test for the 

multivariate variability in the diet of each species Multivariate Dispersion (MVDISP) was 

conducted. To assess if the diets of the three shark species undergo changes with respect to 

growth, samples were grouped into 10 cm size classes and randomly pooled into groups of 4 

or 5 samples in the data preparation stage. Column graphs were constructed to demonstrate 

any change in the composition of diets with respect to increasing size and an nMDS 

ordination plot was also used to visualise the level of similarity in diets between different size 

classes. 
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3.3 Results  
 

3.3.1 Size ranges and sample size  
 

Total lengths recorded were similar among species and ranged from 31–76 cm TL for R. 

taylori; 31–84 cm TL for R. acutus; and 35–79 cm TL for C. coatesi (Fig 3-2). A total of 177 

stomachs were sampled of R. taylori, 83 of R. acutus, and 122 of C. coatesi. The cumulative 

prey curve for all three species did not appear to reach asymptote, indicating a larger sample 

size would be required to fully characterise the diets (Fig 3-3). The number of stomachs 

containing prey was high with few empty stomachs encountered for each species (Table 3-1).  
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Figure 3-2: Length frequency of Carcharhinus coatesi, Rhizopriondon acutus and 

Rhizoprionodon taylori caught in the Gulf of Papua prawn trawl fishery and used for stomach 

content analysis 
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Figure 3-3: Cumulative prey curves for Carcharhinus coatesi (blue) Rhizoprionodon acutus 

(green) and Rhizoprionodon taylori (red) from the Gulf of Papua. 

 

3.3.2 Main prey types and proportions in diet 
 

Teleosts, crustaceans and molluscs were observed as the main prey groups, with sixteen 

teleost families, three crustacean families and two families of molluscs identified. The 

proportion of individual %FO and %N of each teleost family was low, not exceeding 5% 

owing to mastication and the process of digestion that resulted in only a small number of 

individual fishes being identified. Of the 16 families of teleosts observed only 3 families: 

Haemulidae, Engraulidae and Trichiuridae appeared in the diet of all three shark species. 

Other families were only shared between two of the species, for example Leiognathidae was 
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only present in the stomach contents of R. acutus and C. coatesi. However, distinctively the 

families Pegasidae, Fistulariidae and the eel families Muraenesocidae and Ophichthidae, were 

only present in the diet of C. coatesi. The proportion of unidentified teleosts was high for all 

species (Table 3-1).  

 

The presence of crustaceans in the diet, %FO and %N of Penaeidae was high for all species, 

but particularly prevalent in the diet of C. coatesi (54.5 %FO). Stomatopoda were also more 

common in the diet of C. coatesi (23.14%FO and 7.51%N) compared to R. taylori 

(11.61%FO and 5.36 N) while being absent in the diet of R. acutus. Similarly, with respect to 

crabs there was a higher %FO and %N in the diet of C. coatesi (7.44% FO and 2.15 % N) 

compared to R. taylori (1.29 % FO and 0.59% N) and R. acutus (1.33% FO and 0.5% N). 

Molluscs played a lesser role in the diet of the all three species, R. acutus (2.67% FO and 

0.99% N) consumed fewer cephalopods than R. taylori (7.74 % FO and 5.06% N) and C. 

coatesi (5.78 % FO and 6.22 %N) while Gastropoda were only found in the stomach contents 

of R. taylori (Table 3-1).  
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Table 3-1: Percent frequency of occurrence (% FO) and percent by number (% N) of prey 

categories found in the stomachs of Rhizoprionodon taylori, Rhizoprionodon acutus and 

Carcharhinus coatesi in the Gulf of Papua 

Prey categories  R. taylori R. acutus C. coatesi 

 %FO %N %FO %N %FO %N 

Teleostei        

Sciaenidae  3.1 0.6 2.7 2.0 - - 

Labridae  1.6 0.3 - - - - 

Mullidae 1.6 0.3 - - - - 

Haemulidae 3.1 0.89 1.3 2.0 1.65 0.43 
 

            

Engraulidae  1.55 0.3 2.67 0.99 0.83 0.215 

Nemipteridae  1.29 0.6 - - - - 

Gobiidae 1.94 0.89 - - 0.83 0.22 
 

            

Synodontidae  1.29 0.6 1.33 0.5 - - 

Terapontidae  1.29 1.2 2.67 1.0 - - 

Trichiuridae  0.65 0.3 2.67 0.5 0.83 0.22 

Carangidae  0.65 0.3 - - - 0.22 

Leiognathidae  - - 4.00 1.99 4.13 1.07 
 

            

Pegasidae  - - - - 0.83 0.22 

Fistulariidae - - - - 0.83 0.22 
 

            

Muraenesocidae  - - - - 1.65 0.43 

Ophichthidae  - - - - 0.83 0.22 
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Unidentified eel  - - - - 0.83 0.24 

Unidentified teleost  56.77 45.24 77.33 77.11 54.5 44.42 

Crustacea        

Penaeidae 36.77 27.68 25.33 10.95 51.24 33.05 

Stomatopoda  11.61 5.36 - - 23.14 7.51 

Crab 1.29 0.59 1.33 0.5 7.44 2.15 

unidentified crustacean  6.45 3.57 1.33 0.5 - - 

Mollusca             

Cephalopoda 7.74 5.06 2.67 0.99 5.78 6.22 

Gastropoda 1.29 0.89 - - - - 

Other unidentified  20.15 4.17 1.33 0.5 7.44 2.15 

No. of stomachs analysed 

No. of stomachs with food 

No. of empty stomachs  

177 

155 
 

22 

83 

75 
 

   8 

128 

121 
 
   7 
 

 

 

3.3.3 Diet Overlap  
 

The Morisita Index of Similarity calculated for each pair of species showed high overlap for 

all species. The highest overlap was between R. taylori and C. coatesi (CH = 0.99) with less 

overlap between the diets of R. taylori and R. acutus (CH = 0.85) and R. acutus and C. coatesi 

(CH = 0.82).   
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3.3.4 Multivariate analyses 

 

3.3.4.1 Intraspecific dietary comparison 

 

Dietary data for males and females were pooled for subsequent analysis as there was no 

significant difference between sexes (P = 0.4, R= 0.039). A one-way ANOSIM indicated a 

significant difference among the diets of R. taylori, R. acutus and C. coatesi (P= 0.1, R= 

0.181). Similarities of percentages (SIMPER) showed that the main groups that typified the 

diets of R. taylori and C. coatesi were unidentified teleosts and penaeid prawns, while 

unidentified teleosts typified the diet of R. acutus. The pairwise tests between species showed 

a significant difference in dietary compositions of R. acutus and R. taylori (P = 0.2, R = 

0.243) and R. actus and C. coatesi (P = 0.1, R = 0.479). However, there was no significant 

difference in dietary compositions between R. taylori and C. coatesi (P > 0.05, R = 0.28). The 

multivariate dispersion (MVDISP) analysis showed that R. taylori had the highest dispersion 

of 1.17, followed by C. coatesi with 0.81 and R. actus with 0.53. The nMDS ordination plot 

of the dietary compositions of the three shark species showed that R. taylori has a broad diet 

that overlaps with C. coatesi and also with R. acutus. Samples of R. acutus appeared in the 

bottom left of the plot and did not overlap with C. coatesi (Fig 3-4).  
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Figure 3-4: non-Metric multidimensional scaling ordination of dietary composition by 

number (%N) of Rhizoprionodon taylori, Rhizoprionodon acutus and Carcharhinus coatesi 

in the Gulf of Papua. 
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3.3.4.2 Dietary comparison by season  
 

A one-way ANOSIM testing between North-West Monsoon and South East Monsoon periods 

did not detect a significant result (P >0.05, R = -0.002) indicating there was no difference in 

the diets of all three species between seasons. The nMDS ordination of diets sampled in 

different seasons showed that the majority of South East Monsoon samples overlapped with 

North West Monsoon indicating similarity (Fig 3-5). 

 

 

Figure 3-5: non-Metric multidimensional scaling ordination of dietary composition by 

number (%N) according to North-west monsoon and South-east monsoon periods that occur 

in the Gulf of Papua.  
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3.3.4.3 Dietary composition among size classes 
 

Comparison of diet composition among size classes for each species showed that R. taylori 

has a fairly consistent diet with respect to proportions of different dietary components. 

Cephalopods were not consumed by the smallest size class and there may be a reduction in 

the consumption of penaeid prawns in the largest sizes class with a possible increase in the 

consumption of teleosts. Rhizoprionodon acutus consumes large proportions of teleosts in all 

size classes and may consume less crustaceans and cephalopods with increasing size. 

Carcharhinus coatesi had a marked decrease in teleost consumption with increasing size 

accompanied by an increase in the consumption of crustaceans particularly penaeid prawns 

(Fig 3-6).   

  



46 
 

 

 

Figure 3-6: Composition of the diets of Carcharhinus coatesi, Rhizoprionodon acutus and 

Rhizoprionodon taylori according to different size classes. 

 

The nMDS ordination plot of size classes showed a more pronounced difference among 

species, with the vast majority of the samples of R. taylori and C. coatesi clustering on the 

left of the plot and well separated from the majority of R. actus samples on the right. Among 

R. taylori and C. coatesi cluster the 41–50 cm size class and the 51–60 cm size class were 

more dispersed, while distinctively the largest size class (71–80 cm) of C. coatesi appeared to 

the left of the plot and the largest size class (61–70 cm) of R. taylori was situated away from 

the main group of samples indicating less similarity. For R. acutus the 51–60 cm and 61–70 
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cm size classes were not available due to a lack of samples. However, there was some 

separation among the 41–50 cm, 71–80 cm and the 31–40 cm size classes (Fig 3-7).   

 

 

Figure 3-7: non-Metric multidimensional scaling ordination of dietary composition by 

number (%N) of size classes of Rhizoprionodon taylori (1), Rhizoprionodon acutus (2) and 

Carcharhinus coatesi (3) in the Gulf of Papua. 

  



48 
 

3.4 Discussion  
 

 

Many shark species are considered to be generalist feeders (Munroe et al., 2014) and have 

been observed to feed in a density-dependent manner (Salini et al., 1992). The small-bodied 

carcharhinids studied here feed at similar trophic levels (Cortes, 1999), therefore where they 

co-occur competition for food resources can arise if prey are limited. This study shows that 

teleosts, crustaceans and molluscs make up the majority of prey in the diets of C. coatesi, R. 

acutus and R. taylori. There are noticeable differences in the diet of these species that may 

facilitate co-occurrence. Teleosts and greater proportions of crustaceans were found in the 

diet of R. taylori and C. coatesi while the diet of R. actus consisted predominantly of teleost 

with other prey categories being much less important. Stevens and McLoughlin (1991) found 

similar predominant prey types for all three species in northern Australia, however the 

relative amounts of prey differed from this study. Furthermore the findings of this study align 

with the classification  of R. taylori as dietary generalist due to its broad diet breath (Munroe 

et al., 2015b) and additionally a predominance of teleosts in the diet of R. acutus (Ba et al., 

2013). 

 

Resource partitioning in elasmobranchs is a common occurrence (Wetherbee et al., 2012) and 

can occur in different ways. Co-occurring similar species that have high spatial overlap may 

partition resources by consuming different proportions of prey available to them (Platell et 

al., 1998, White et al., 2004). Significant dietary differences and low level of similarity 

indicate that R. acutus partitions food resources with C. coatesi by feeding predominantly on 

teleosts and reducing consumption of crustaceans, molluscs and other groups. The greater 

reliance of R. acutus on teleosts has been noted in previous studies in Australia and Africa 
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(White et al., 2004, Stevens and McLoughlin, 1991, Ba et al., 2013). Rhizoprionodon acutus 

also occupies a broader depth range (White et al 2017) which may provide a larger foraging 

area. There was high dietary overlap and no clear partitioning between C. coatesi and R. 

taylori  however, noticeably C. coatesi consumed a few prey groups that were not observed 

in the R. taylori diet, further sampling would be needed to investigate these differences as the 

cumulative prey curves for all species indicated that the sample size was not sufficient to 

fully describe diets.  

 

Apart from interacting with a wide range of bycatch species, including elasmobranchs, trawl 

fisheries also contribute to the disturbance of the benthic environment and provide or expose 

unnatural sources of food (Dayton et al., 1995) for opportunistic feeders, which can impact 

community structure (Kaiser and Spencer, 1994). Sharks have been observed to scavenge on 

discarded trawl catch (Hill and Wassenberg, 1990). The typical diet of inshore sharks is 

mainly made up of teleosts, crustaceans and molluscs (White et al., 2017b) captured in trawl 

grounds (Stobutzki et al., 2002). The comparison of diets from fishery independent sampling 

may be an option for future work to explore the impact of trawling on the diets of common 

bycatch species which may investigate possible changes to the benthic community structure. 

 

Volumetric and gravimetric (bulk) descriptions of diets have been consistently included with 

other measures to produce compound indices and have been the preferred measure on which 

to conduct multivariate analysis. However, practically assessing stomach contents to achieve 

bulk measures of diets is associated with the difficulty of sorting through masticated and 

partially digested prey items that are separated into many pieces or loose tissue which makes 

it impossible to know which prey item they belong to or if they are part of a separate prey 
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item altogether. Thus, the inclusion of bulk dietary measures introduces inherent errors linked 

to the difficulty in identifying and quantifying prey items (Baker et al., 2014). The absence of 

a bulk measure of the diet meant that a compound index (e.g. percent index of relative 

importance) was not calculated for this study. Compound indices have been recommended as 

a standard practice (Cortés, 1997, Brown et al., 2012, Hyslop, 1980), however, they have 

been found to have little significance, as opposed to considering separate dietary measures 

individually (Baker et al., 2014), particularly for demersal species (Macdonald and Green, 

1983).   

 

The patterns of predation in tropical inshore areas are driven by habitat type and abiotic 

factors which influence the species composition of predator and prey species (Salini et al., 

1998). The Gulf of Papua presents a unique system within PNG that historically hosts a wide 

array of marine resources (Pernetta and Hill, 1981). The biodiversity and ecological dynamics 

of this region remain to be fully explored. The stomach content analyses used in this study 

provided a preliminary understanding of the diet of small-bodied carcharhinids though a 

larger sample size will be needed to fully characterise the diets of these species because of the 

high prey diversity and high proportion of unidentifiable stomach contents. This study is also 

limited in its use of current methodology that could provide a more in-depth assessment of 

diets through a finer level of prey identification. Recent approaches for dietary analysis have 

included the use of a combination of different methods alongside stomach content analysis 

such as stable isotope analysis and molecular techniques to identify prey (Matley et al., 

2018). Future work in the region should consider employing such methods as well as 

understanding the spatial resource use patterns to draw a clearer picture of the food web and 

ecosystem use. 
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Chapter 4  Age, growth and maturity of the Australian sharpnose 
shark Rhizoprionodon taylori from the Gulf of Papua 
 

4.1 Introduction 

 

A general view on the life history characteristics of sharks assumes slow growth, late 

maturity, and a low number of offspring resulting in populations that have low intrinsic rates 

of population growth and are highly vulnerable to overfishing (Stevens et al., 2000, Smith et 

al., 1998). However, not all shark species share these characteristics. In particular, small-

bodied carcharhinids such as the milk shark Rhizoprionodon acutus and the sliteye shark 

Loxodon macrorhinus are characterised by relatively rapid growth and early maturity 

resulting in higher population turnover rates (Gutteridge et al., 2013, Harry et al., 2010). Fast 

population turnover rates for these species make them potentially more resilient to fishing 

(Goldman et al., 2012), although sustainable shark catch is mostly associated with the 

development of science-based fisheries management (Simpfendorfer and Dulvy, 2017). 

 

The Australian sharpnose shark Rhizoprionodon taylori is a small carcharhinid species 

known to have one of the fastest growth rates of all shark species (Cortés, 2004, 

Simpfendorfer, 1993). Initial studies suggested it grows rapidly in the first year of life, on 

average increasing to 140% of its length-at-birth, and attains a maximum length of only 67 

and 97 cm TL respectively in different locations in Australia (Simpfendorfer, 1993, Taylor et 

al., 2016). Maturity is reached after only one year with a litter of 1–10 pups produced every 

year following maturity (Simpfendorfer, 1992, Simpfendorfer, 1993). Rhizoprionodon taylori 

is also one of the few elasmobranch species that can halt embryonic development (diapause), 

possibly to facilitate increased litter sizes (Waltrick et al., 2012, Simpfendorfer, 1992). 
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Occurring only in southern New Guinea and tropical and sub-tropical nearshore waters of 

Australia from Carnarvon in Western Australia to Moreton Bay in southern Queensland, it is 

a locally abundant species often incidentally caught in trawl and gillnet fisheries (Harry et al., 

2011b, Last and Stevens, 2009). 

 

All known biological information about R. taylori has been established from populations in 

Australia (Simpfendorfer, 1992, Simpfendorfer, 1993, Simpfendorfer, 1999, Stevens and 

McLoughlin, 1991, Simpfendorfer, 1998, Taylor et al., 2016). Recent trawl fisheries data 

from Papua New Guinea (PNG) confirm that R. taylori is also frequently caught as bycatch in 

the Gulf of Papua (GoP) (NFA unpublished data). Prawn trawling has occurred in the area 

since the late 1960’s and bycatch levels can comprise up to 85% of the total catch (Matsuoka 

and Kan, 1991). However, the effect of trawling on the sustainability of bycatch populations 

cannot be properly assessed without determining species compositions and locally relevant 

biological parameters. 

 

Life history traits can differ for populations in separate localities (Lombardi-Carlson et al., 

2003, White, 2007b). The GoP is in close proximity to the northern coast of Australia. 

However, R. taylori has been observed to maintain residency in embayments and nearshore 

habitats, travelling short distances and rarely moving greater than 100 km within 6 months to 

one year (Munroe et al., 2015a). These limited movements mean that there may be 

differences in the life history of this species between the GoP and other regions. These 

differences need to be investigated since variations in size at birth and length-at-maturity 

could affect fisheries risk assessments and have already been documented between different 
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locations in Australia (Stevens and McLoughlin, 1991, Simpfendorfer, 1992, Taylor et al., 

2016). 

 

Age and growth studies provide essential information for wider population analyses such as 

stock assessments (Cortés et al., 2012). Growth parameters for R. taylori were determined by 

Simpfendorfer (1993) prior to the development and use of multiple growth models within an 

information theoretic framework, which is now the recommended approach for age and 

growth studies (Smart et al., 2016b, Goldman et al., 2012). This study used the more 

contemporary multi-model approach to determine growth and maturity parameters for R. 

taylori in the GoP. The specific aims were: (1) to determine the age, growth and maturity of 

R. taylori; (2) compare life history parameters to previous work to determine if the use of the 

multiple model approach substantially changed the outcomes; and (3) examine spatial 

variation in life history of this species. This study also contributes new knowledge from a 

data poor region that can be used to inform fisheries management and conservation in PNG.  

 

4.2 Materials and methods 

 

4.2.1 Sample collection 

 

This work is a collaboration with the National Fisheries Authority (NFA), the government 

agency responsible for managing commercial fisheries and implementing fisheries research in 

PNG.  Fishery observers were stationed on board prawn trawlers and collected sharks that 

were caught as bycatch and discarded.  The sharks collected for this study had already 
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suffered mortality in the process of fishing and no sharks were intentionally sacrificed for the 

study. All sampling procedures were allowed by the NFA and in line with James Cook 

University, Animal Ethics approval A2310 obtained prior to the commencement of the study. 

Sampling did not involve endangered or protected species. No further permits were required 

by relevant authorities.  

 

Commercial trawling in the GoP occurs between Parama Island in the West, just south of the 

mouth of the Fly River, and the border of the Central and Gulf Provinces in the East (Fig 4-

1). Trawl fishing is permitted all year round throughout the GoP except in a section of the 

Gulf between Iokea and Cape Blackwood which is closed to fishing between the 1st of 

December and the 31st of March, a measure put in place to protect the growth and survival of 

prawn recruits (Evans et al., 1997). Samples of R. taylori were collected on commercial 

vessels from June 2014 to August 2015. Whole samples were kept frozen and brought ashore 

at the end of each trip for confirmation of identification and processing. In a laboratory 

samples were defrosted, total length (TL) measured, and sex recorded. For each individual, 

maturity was also determined using an index modified from (2005a). Reproductive organs 

were examined and categorised according to the developmental stage of the ovaries and uteri 

in females, and claspers in males. Females were categorised into one of five stages and males 

into one of three stages (Table 4-1). A section of the vertebral column from beneath the first 

dorsal fin was retained and stored frozen for subsequent age determination (Cailliet and 

Goldman, 2004, Goldman et al., 2012).  
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Figure 4-1: The Gulf of Papua is situated along the southern coast of Papua New Guinea. The 

insert shows the distribution of Rhizoprionodon taylori in Australia. 
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Table 4-1: The maturity of male and female samples were determined by the state of the uteri 

and ovaries in females, and claspers in males. Maturity stages were assigned a binary 

category for statistical analysis. 

Female stage Description Binary category 

1 Immature  Uteri very thin, ovaries small 
and without yolked eggs. 

 0 
 

2 Maturing  Uteri slightly becoming 
enlarged at one end, ovaries 
becoming larger and small 
yolked eggs developing.  

0 

3 Mature  Uteri large along entire 
length, ovaries containing 
some large yolked eggs. 

1 

4 Pregnant Uteri containing embryos or 
large eggs. 

1 

5 Post-partum  Uteri very large but without 
embryos.  

1 

Male stage Description Binary category 

NC Not Calcified Clasper very short not 
extending past the pelvic fin 
tip. 

0 

PC Partially 
Calcified  

Claspers longer, extending 
past the pelvic fin tip, not 
entirely hard, still flexible. 

0 

FC Fully Calcified  Claspers long, hard along 
almost the entire length. 

1 
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4.2.1 Vertebrae preparation  
 

Vertebrae processing and ageing followed protocols described by Cailliet et al. (2006). 

Frozen vertebrae were thawed and any excess tissue was removed using a scalpel. Vertebrae 

were separated into individual centra and immersed in 4% sodium hypochlorite solution for 3 

– 5 minutes to clean remaining soft tissue from the small sized vertebrae. The centra were 

then rinsed using water and dried in an oven at 60 °C for 24 hours.  A single centrum was 

selected from each individual and mounted on a microscope slide using Crystal bond 

adhesive (SPI supplies, Pennsylvania, USA). To achieve the desired thickness of < 400 µm 

the vertebrae was sanded towards the centre of the centrum using 400-1200 grit wet and dry 

abrasive paper. After one side was complete the centrum was remounted and sanded again on 

the other side until the desired thickness was achieved (Simpfendorfer, 1993).  

 
4.2.2 Age determination 

 

To estimate the age of each individual, mounted sections of vertebrae were observed using a 

dissecting microscope. Growth increments appeared as a pair of alternating wide opaque 

band and a narrow translucent band, referred to as a band pair (2006, Goldman et al., 2012). 

The birthmark was identified where there was an obvious change in angle along the corpus 

calcareum. Subsequent band pairs that spanned from one side of the corpus calcareum to the 

other side were interpreted to represent annual growth (Cailliet and Goldman, 2004, Goldman 

et al., 2012). The age of each individual was estimated as the number of band pairs present 

after the birthmark. The annual deposition of bands for this species has been validated using 

marginal increment analysis and size frequency data by (1993). 
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Precision and bias 

Visual estimation of age from vertebrae is an approach which may include some level of bias 

(Cailliet and Goldman, 2004). To minimise bias two readers estimated ages separately. The 

first reader conducted an initial read of all vertebrae followed by a second experienced 

reader. Both readers had no prior knowledge of the sex or size of individuals. Final ages were 

the result of a consensus process between the readers – where counts were different readers 

examined the section and agreed on a final age. Where differences could not be resolved, 

those centra were removed from the analyses. To assess the precision of counts the average 

percent error (APE) (Beamish and Fournier, 1981), Chang’s coefficient of variation (CV) 

(Chang, 1982) and percent agreement (PA ± 1 year) (Cailliet and Goldman, 2004) were used. 

Bowker’s test of symmetry was used to estimate bias between readers (Bowker, 1948). 

Analyses were carried out using ‘FSA’ package version 0.8.11 in the R program environment 

version 3.2.2 (R Core Team, 2015). 

 

4.2.3 Partial ages 
 

For a species that reproduces seasonally, and the period of parturition is known, it is possible 

to assign partial ages and therefore improve age estimation (Smart et al., 2013). The pupping 

season for R. taylori was observed in January in Queensland (Simpfendorfer, 1993). In this 

study the largest embryo (22 cm TL) was caught in the month of December, confirming a 

similar timing in the GoP. Partial ages were calculated by choosing a birth date of 15th of 

January and determining the total number of days between this date and the date of capture 

which was then divided by the number of days in a year. This value was added to the number 
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of full annual band pairs for each individual to give the final age. For example, samples aged 

at 1 year caught on the 17th of June and 30th of August, respectively, were given partial ages 

of 1.39 and 1.62 years.  

 
4.2.4 Growth model fitting 
 
The growth of R. taylori was modelled using a multi-model approach. This method 

incorporated the Akaike Information Criterion (AIC) (Akaike, 1973) which selected the best 

model fit based on the lowest AIC value (Smart et al., 2016a). Preference for the use of 

multiple growth models over an a priori approach, using only the von Bertalanffy growth 

model (VBGM) is standard methodology in elasmobranch growth literature (Smart et al., 

2016b). The multi-model approach is considered to provide better growth estimates as it 

avoids model mis-specification and biases compared to the use of a single model (Cailliet et 

al., 2006, Thorson and Simpfendorfer, 2009, Smart et al., 2016b). The lack of small juveniles 

in the sample, and their likely very rapid growth required a variety of approaches to 

determine the most suitable growth parameters. Three candidate models were used: VBGM, 

logistic model, and Gompertz model (Table 4-2). However, because of the limited data from 

very young individuals three approaches to fitting the models was used: (1) standard three-

parameter growth models, (2) versions of the growth models with a fixed length-at-birth 

(which ensured that models accounted for the rapid early growth; two-parameter version) 

(Harry et al., 2011a), and (3) three-parameter models with four  hypothetical aged zero 

individuals (L0 = 26 cm TL) added to the sample in order to provide a reference point for the 

model given that aged zero individuals were absent from the sample (Smart et al., 2013). 

Separate growth models were constructed for males, females, and combined sexes.  
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Table 4-2: Equations of the three growth functions used in the multi model approach 

Model Growth function 

 
von Bertalanffy  

 

𝐿(𝑡) = 𝐿0 + (𝐿∞  − 𝐿0)(1 − 𝑒(−𝑘𝑡)) 
 

 
Logistic 

𝐿(𝑡) =  
𝐿∞𝐿0(𝑔(log )𝑡)

𝐿∞ + (𝐿0 𝑒(𝑔(log )𝑡−1))
 

 
Gompertz 

 

𝐿(𝑡) =  𝐿∞ 𝑒(−𝐿0 𝑒
(−𝑔(𝑔𝑜𝑚)𝑡)

)  

 
 

The three-parameter models estimated length-at-birth (L0), asymptotic length (L∞) and the 

different growth coefficients for each respective model; k indicates the relative growth rate of 

the VBGM model while g(log) and g(gom) represent alternative sigmoidal growth of the 

Gompertz and logistic models (Katsanevakis and Maravelias, 2008). The two-parameter 

models incorporated a fixed known value for length-at-birth and thus the models only 

estimated the asymptotic length and the growth coefficients. Umbilical scars were not 

recorded in this study which meant that a length-at-birth for R. taylori in the GoP was not 

identified but could be estimated using other data available from the sample as well as 

published information. In this study the smallest free swimming individuals were 31 cm (TL) 

and largest embryos were 22 cm (TL) observed in December (a month prior to pupping). The 

literature estimates of length-at-birth are 25–30 cm (Stevens and McLoughlin, 1991) from 

northern Australia and 22–26 cm in north eastern Australia (Simpfendorfer, 1993). A possible 

estimate for the length-at-birth would therefore be 22–30 cm, however in the GoP R. taylori 

are still embryos at 22 cm and are possibly born at a larger size. The midpoint between 22 

and 30 cm (26 cm) was chosen because this value was within the length-at-birth range 
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suggested by both previous studies and was biologically plausible given embryo sizes in the 

GoP. Growth models were fit using the ‘nls’ function, multi-model analysis was conducted 

using the ‘MuMIn’ package version 1.15.6 (Barton, 2016) and bootstrapped confidence 

intervals were produced using the ‘nlstools’ package version 1.0-2 (Baty et al., 2015) in the R 

program environment version 3.2.2 (R Core Team, 2015).  

 

As the sample size was less than 200, the AICC, a size adjusted bias correction, was used 

(Zhu et al., 2009) : 

𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 

where 𝐴𝐼𝐶 = 𝑛𝑙𝑜𝑔(𝜎2) + 2𝑘, k is the total number of parameters + 1 for variance σ2 and 𝑛 is 

the sample size. The model that has the lowest  𝐴𝐼𝐶𝐶 value (𝐴𝐼𝐶min ) was chosen as the best 

fit for the data. The AIC difference (∆) was calculated for each model (i = 1-3) and used to 

rank the remaining models as follows: 

∆𝑖= 𝐴𝐼𝐶𝐶𝑖 − 𝐴𝐼𝐶𝑚𝑖𝑛 

Models were ranked according to the value of ∆. Values from 0-2 were considered to have 

the strongest support, less support was given to values between 2-10 and the least support for 

∆ values > 10 (Anderson and Burnham, 2002). The AIC weights were calculated by the 

expression:  

 

𝑤𝑖 =
𝑒 (−

∆𝑖
2  ) 

(∑ 𝑒( 
∆𝑖
2 ))3

𝑗=1
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To test if there were differences in the growth curves for males and females, a likelihood ratio 

test was carried out (Kimura, 1980). This was conducted on the model with the best fit based 

on the AICC results for the sexes combined. The method used to carry out the likelihood ratio 

test was described by (Haddon, 2001) and incorporated into the R program environment 

version 3.2.2 (R Core Team, 2015) for this analysis. 
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4.2.5 Maturity  
 

The maturity stage data was converted to a binary maturity category (immature = 0 or mature 

=1) for statistical analyses (Table 4-1). The length-at-maturity was estimated for both males 

and females using logistic regression (Walker, 2005a) : 

𝑃(𝑙) = 𝑃𝑚𝑎𝑥 (1 +  ℯ
− ln(19)(

𝑙−𝑙50
𝑙95− 𝑙50

)
)

−1

 

where P (l) is the proportion mature at TL, l and Pmax is the maximum proportion of mature 

individuals. The lengths of which 50 and 95% of the population are mature (l50 and l95) were 

estimated using a generalised linear model (GLM) with a binomial error structure and a logit-

link function using the ‘psyphy’ package version 0.1-9 (Knoblauch, 2014) and the  ‘FSA’ 

package version 0.0.11 (Ogle, 2016) in the R program environment version 3.2.2 (R Core 

Team, 2015). Age-at-maturity was determined by substituting length with age. A50 and A95 

were the ages at which 50 and 95% of the population reached maturity. 

 

4.3 Results 

 

4.3.1 Age determination  

 

In total 186 individuals were collected: 131 females and 55 males. Males ranged in size from 

31–53 cm (TL) and females from 31–66 cm (TL). The majority of sharks were aged between 

0 and 1 years (i.e. birthmark was present but not fully formed 1st band pair) (Fig 4-2). Final 

partial ages ranged from 0.2 to 4.6 years. The oldest female was 64 cm (TL) and aged at 4.6 

years. The oldest male was 51 cm (TL) and aged at 3.6 years.  
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The measures of variability around the determination of ages were high compared to other 

elasmobranch ageing studies (Campana, 2001, Natanson et al., 2007, Gutteridge et al., 2013).  

The Average Percent Error (APE), Chang’s CV and PA ± 1 year were 29.1%, 41.1% and 

62.4%, respectively. Higher variability will be experienced when ageing short lived species 

as small differences in band pair counts can produce inflated error estimates in comparison to 

longer lived species (Simpfendorfer, 1993).  Bowker’s test for symmetry (df = 8, x2 = 16.4, P 

= 0.037) indicated some systematic bias between readers. The age bias plot (Fig 4-3) showed 

that this bias was associated with reader 1 estimating younger counts of band pairs at 3 and 4 

years relative to reader 2. The use of consensus counts to produce final ages overcame this 

ageing bias.  
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Figure 4-2: Frequency histogram of samples for each age class. 
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Figure 4-3: Age bias plot showing agreement between two independent readers. The PA ± 1 

year was 62.4%, APE was 29.1 and Chang’s coefficient of variation (CV) was 41.1%. 

 

4.3.2 Growth model fitting  
 

Without data from small new born animals three-parameter models were unsuitable as the 

projected length-at-birth values were too high and biologically unreasonable for R. taylori 

(37– 38 cm) (Table 4-3).The three-parameter models with the four added size at birth 

individuals had similar AIC weights for combined and individual sexes (Table 4-4).  All three 

candidate models had similar weights in the three-parameter models. Neither of the three-

parameter approaches accurately represented the early growth of R. taylori, over-estimating 
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the size at birth. Amongst the two-parameter models the VBGM performed best as neither 

logistic and Gompertz models had ∆ values < 2, although there was some weak support for 

the Gompertz model for males (w = 0.24) (Table 4-5). The two-parameter models projected 

much higher growth completion rates (k, g(log), g(gom)) than three-parameter models however, 

the fixed length-at-birth value were more realistic. Thus, it is likely that none of the fitting 

approaches produced accurate estimates of all three parameters. However, the two-parameter 

VBGM is recommended to describe the growth of R. taylori in the GoP (Fig 4-4), with a 

growth estimate (k) of 1.27 for both sexes combined (Table 4-5). A likelihood ratio test 

showed significant difference (df = 3, x2 = 23.3, P = 3.5) in the VBGM fit between males and 

females which demonstrated that sexes should be modelled separately. The error estimates 

for the male VBGM parameters were much higher than for females, indicating much greater 

level of uncertainty, probably because of the smaller sample size. 
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Table 4-3: Summary of results from the multi model approach incorporating Akaike’s information Criterion (AIC) using three-parameter 

versions of models. 

 

 

 

 

 

 

 

 

 

n is the sample size, AICC is the small-sample bias adjusted from the Akaike’s Information Criteria, ∆ is the difference in AICC values between 

models, w (%) are the AICC weights, L0 and L∞  are the length-at-birth and asymptotic length in cm respectively, k is the growth completion rate 

Sex Model n  AICC ∆ W 
(%) 

L0(±SE) L∞(±SE) k(±SE) g(log)(±SE) g(gom)(±SE) RSE 

Combined  VB3 186 1129.06 0.53 0.29 37.89±1.27 74.34±12.98 0.25±0.14   4.96 

Logistic 186 1128.53 0 0.38 38.17±1.11 66.92±6.0  0.50±0.14  4.96 

Gompertz 186 1128.78 0.25 0.33 38.03±1.18 69.65±8.21   0.38±0.14 4.96 

Male VB3 55 306.3 0.17 0.32 38.48±1.50 58.89±15.72 0.31±0.37   3.72 

Logistic 55 306.13 0 0.35 38.51±0.76 55.71±8.90  0.51±0.20  3.71 

Gompertz 55 306.22 0.09 0.33 38.50±1.44 57.00±11.41   0.41±0.37 3.72 

Female VB3 131 801.08 0.29 0.31 38.03±1.90 71.08±10.55 0.31±0.17   5.04 

Logistic 131 800.8 0 0.36 38.53±1.35 66.30±5.79  0.55±0.15  5.04 

Gompertz 131 800.93 0.13 0.33 38.30±1.74 68.17±7.46   0.43±0.17 5.04 
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in (year-1) for the VB3, g(log) and g(gom) are the growth parameters for Logistic and Gompertz functions respectively, SE is the standard error of 

each growth parameter and RSE is the residual standard error for the models.     

 

Table 4-4: Summary of results from the multi model approach incorporating Akaike’s information Criterion (AIC) using three-parameter 

versions of models with four hypothetical aged zero individuals. 

 

 

 

 

 

 

 

 

 

Sex Model n  AICC ∆ W 
(%) 

L0(±SE) L∞(±SE) k(±SE) g(log)(±SE) g(gom)(±SE) RSE 

Combined  VB3 190 1166.85 0 0.45 35.12±1.32 63.88±4.03 0.48±0.14   5.15 

Logistic 190 1168.21 1.96 0.23 35.98±1.14 61.75±2.87  0.73±0.15  5.16 

Gompertz 190 1167.59 0.73 0.32 35.59±1.22 62.65±3.33   0.60±0.14 5.16 

Male VB3 57 330.66 0 0.39 34.55±1.87 50.42±2.57 1.01±0.43   4.19 

Logistic 57 331.28 0.62 0.28 35.28±0.92 50.41±2.47  1.17±0.25  4.21 

Gompertz 57 331.01 0.35 0.33 34.96±1.76 50.44±2.53   1.08±0.44 4.2 

Female VB3 133 819.85 0 0.44 34.91±1.96 63.77±3.92 0.53±0.17   5.17 

Logistic 133 821.06 1.21 0.24 36.22±1.38 62.27±3.04  0.77±0.15  5.20 

Gompertz 133 820.51 0.66 0.32 35.64±1.8 62.92±3.41   0.65±0.18 5.19 
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n is the sample size, AICC is the small-sample bias adjusted from the Akaike’s Information Criteria, ∆ is the difference in AICC values between 

models, w (%) are the AICC weights, L0 and L∞  are the length-at-birth and asymptotic length in cm respectively, k is the growth completion rate 

in (year-1) for the VB3, g(log) and g(gom) are the growth parameters for Logistic and Gompertz functions respectively, SE is the standard error of 

each growth parameter and RSE is the residual standard error for the models.     
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Table 4-5: Summary of results from the multi model approach incorporating Akaike’s information Criterion (AIC) using two parameter versions 

of growth models with a fixed length-at-birth for Rhizoprionodon taylori from the Gulf of Papua.  

 

 

 

 

 

 

 

 

 

n is the sample size, AICC is the small-sample bias adjusted from the Akaike’s Information Criteria, ∆ is the difference in AICC values between 

models, w (%) are the AICC weights, L∞ is the asymptotic length in cm, k is the growth completion rate in (year-1) for the VB2, g(log) and g(gom) 

Sex Model n  AICC ∆ W 
(%) 

L∞(±SE) k(±SE) g(log)(±SE) g(gom)(±SE) RSE 

Combined  VB2 186 1193.71 0 0.99 55.95±0.95 1.27±0.11   5.54 

Logistic 186 1213.08 19.38 0 54.41±0.75  2.12±0.14  5.83 

Gompertz 186 1203.61 9.9 0.01 55.07±0.82   1.67±0.13 5.68 

Male VB2 55 336.13 0 0.64 46.11±0.9 3.69±0.68   4.44 

Logistic 55 339.47 3.34 0.12 45.08±0.77  6.73±1.23  4.57 

Gompertz 55 338.1 1.97 0.24 45.52±0.82   5.04±0.92 4.52 

Female VB2 131 830.37 0 0.96 57.78±1.12 1.17±0.12   5.40 

Logistic 131 842.88 12.52 0.00 56.08±0.84  1.98±0.15  5.66 

Gompertz 131 836.6 6.23 0.04 56.8±0.94   1.55±0.13 5.53 
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are the growth parameters for logistic and Gompertz functions respectively, SE is the standard error of each growth parameter and RSE is the 

residual standard error for the models.     
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Figure 4-4: Two (VB2) and three parameter (VB3) length-at-age curves for female and male 

Rhizoprionodon taylori from the Gulf of Papua fitted with 95% bootstrapped confidence 

intervals.  

 

4.3.3 Maturity 
 

Maturity estimates for male and female R. taylori differed slightly. Females grew larger than 

males, and males matured earlier in terms of both length and age (Fig 4-5). The smallest 

mature female was 42 cm (TL) and lengths at maturity L50 and L95 were 47.0 cm (TL) ± 0.68 

S.E. and 53.5 cm TL ± 1.2 S.E. The A50 and A95 were 0.93 years ± 0.1 S.E. and 2.95 years ± 
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0.4 S.E., respectively for females. The smallest mature male was 39 cm (TL). The L50 and L95 

for males were 41.7 cm (TL) ± 0.8 S.E. and 47.2 cm (TL) ± 1.5 S.E while the ages at maturity 

A50 and A95 were 0.5 years ± 0.2 S.E. and 2.2 years ± 0.6 S.E. 

 

 

Figure 4-5: Age and length-at-maturity ogives for female and male Rhizoprionodon taylori 

from the Gulf of Papua. The large points on the curve represent the length and age at which 

50% of population reaches maturity. 95% bootstrapped confidence intervals are indicated with 

shaded areas. 

 

4.4 Discussion 
 

The results of this study reaffirm the very rapid growth and maturity of R. taylori in 

comparison to the majority of chondrichthyan species. For sharks, von Bertalanffy growth 
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completion rates (k) >1, as seen in R. taylori are rare and indicate very rapid growth 

compared to other species, most of which reach much larger maximum sizes. For example 

Isurus oxyrinchus (k = 0.052 year-1) and Carcharhinus plumbeus (k = 0.040 year-1) (Bishop et 

al., 2006, McAuley et al., 2006) both have much lower growth completion rates and as a 

result take many years before they reach maturity. Small bodied coastal shark species such as 

Rhizoprionodon terraenovae (k = 0.5 year-1) and Rhizoprionodon acutus (k = 0.63 year-1 for 

females, k = 0.94 year-1 for males) (Loefer and Sedberry, 2003, Harry et al., 2010) generally 

exhibit more rapid growth.  Rhizoprionodon taylori has the fastest known growth completion 

rate for a shark species gaining more than 100% of its body size in the first year of life 

(Simpfendorfer, 1993).  

 

The growth completion rate of female R. taylori from the two-parameter model fitting (k = 

1.165 year-1) in the GoP is similar to that previously found in Australia (k =1.013) 

(Simpfendorfer, 1993). The elevated growth completion rate (k=3.69 y-1) for males predicted 

by the model had a high level of error and so remains to be resolved by further research. The 

two-parameter VBGM produced reduced L∞ estimates for both males and females. While the 

three parameter VBGMs estimated reasonable values for L∞ for both sexes, the L0 projected 

by the model was well beyond the size at birth previously reported for this species and 

outside the ranges expected from the GoP data. The addition of hypothetical zero aged 

animals provided little improvement in the value of L0 for R .taylori despite its utility in other 

species (Smart et al., 2013). Given the linkage between the parameters in growth models the 

true values of growth completion parameters lie between those estimated by the two and three 

parameter models. Based on the biological implausibility of size at birth projected by the 

three-parameter VBGM it cannot be considered to model the growth of R. taylori in the GoP. 

Similarly the two-parameter VBGM has its drawbacks however does provide growth 
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estimates that are within reason particularly for females, but further investigation is warranted 

given the large confidence intervals around k for males and the large differences between 

males and females. Factors that may have influenced this outcome are; methodological 

differences between this study and Simpfendorfer (1993) who fitted growth curves by eye, 

the relatively small number of males in the sample and the model being constrained by fixing 

the length-at-birth. Fixing models by selecting a single length-at-birth value has been 

discouraged because of variations in the actual birth size (Pardo et al., 2013).  

 

Two-parameter models are recommended under stringent conditions where: there is limited 

data for smaller juveniles, low sample sizes, and where the length-at-birth cannot be 

estimated from the study population but can be deduced from a representative population in 

the same geographic region (Thorson and Simpfendorfer, 2009). The lack of data from 

younger R. taylori close to the length-at-birth posed a problem that is usually solved by back 

calculation (Smart et al., 2013). However, this could not be done because much of the growth 

of R. taylori occurs prior to the first year of life and there are no growth bands deposited 

during this period that can be used to track their growth. In addition, although the AIC values 

indicated that the three-parameter models provided a better fit the projected length-at-birth 

values were not biologically realistic. For these reasons, the use of two-parameter models in 

this study was considered to provide the best way to ensure that biologically plausible 

parameters were produced.  

 

The rapid growth of juvenile R. taylori is relatively unique and alternative methods to 

improve model fitting could be explored beyond the scope of this study. The information 

theoretic approach has a limited capacity to include variations in individual growth since only 
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a single value of L0 was used. Bayesian modelling on the other hand is less sensitive to 

missing data and can account for variation in individual growth (Siegfried and Sanso, 2006, 

Baum et al., 2003). Bayesian frameworks have been used to set informative priors of L0 

rather than fixing a specific value (Siegfried and Sanso, 2006, Pardo et al., 2016a). 

Alternatively, since early growth of R. taylori is somewhat linear but levels off after maturity 

a biphasic Lester model could be suitable as a surrogate approach to approximate growth 

parameters in the different stages of growth  (Wilson et al., 2018).  

 

The maturity estimates for R. taylori in the GoP showed that males matured within 6 months 

of birth while females reached maturity as they approached 12 months of age. The only other 

age-at-maturity estimates for R. taylori were observed by Simpfendorfer (1993) and although 

the female age-at-maturity observed in the GoP corresponds to this study, the males in the 

GoP appear to reach maturity within half the time noted in Queensland. Length-at-maturity 

estimates for the GoP showed that males also matured at smaller sizes then females. The 

length at which both 50% of males and females in the GoP reached maturity resembled data 

from north and western Australia recorded by Stevens and McLoughlin (1991) which were 

smaller than that observed by Simpfendorfer (1993) and Taylor et al. (2016). These findings 

highlight latitudinal variation for this species suggesting length-at-maturity increases with 

higher latitudes. The underlying reasons for latitudinal variation in life history traits have 

been attributed to differences in water temperature (Yamaguchi et al., 2000, Lombardi-

Carlson et al., 2003).   

 

It is important to correctly determine age in sharks as errors can lead to inaccurate projections 

of parameters such as age-at-maturity which can have a sizable impact on population models 
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(Loefer and Sedberry, 2003), and stock assessments. Achieving accuracy and precision in 

vertebral ageing relies on the clarity of growth markings and the ability of the readers to 

identify and differentiate growth bands. Several studies focused on small shark species have 

noted difficulties in detecting the correct number of growth bands particularly on the edge of 

the vertebrae, where bands are deposited very close to each other and as a consequence 

maximum age may be underestimated (Gutteridge et al., 2013, Loefer and Sedberry, 2003). 

Furthermore as temperate seasonality may influence the deposition of growth bands 

(Goldman et al., 2012), they appear more pronounced in temperate sharks as opposed to 

tropical sharks where seasonality is limited. For instance the appearance of check marks in 

the GoP vertebrae were not as pronounced as that observed by Simpfendorfer (1993).  

 

Assumptions on annual growth band deposition for R. taylori were made in this study 

because validation was not possible due to logistic constraints. The annual periodicity of band 

formation for R. taylori in northern Queensland was verified by Simpfendorfer (1993) based 

on marginal increment analysis and length frequency data. This assumption has strong 

support given the geographic proximity of this study, and annual band formation being the 

typical pattern observed in carcharhinid sharks (Harry et al., 2013, Simpfendorfer et al., 

2002).  

 

Partial ages were calculated to improve the estimation of age and overall growth model 

projections. This method is suited to sharks with seasonal patterns of reproduction where 

mating and parturition occur at specific times of the year, rather than asynchronous species.  

Rhizoprionodon taylori undergoes a seven month period of diapause where embryonic 

development at the blastodermic disc stage is suspended (Simpfendorfer, 1992). Regardless 
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of this, the reproductive cycle of R. taylori appears to be seasonal as mating occurs only once 

a year from late January to early February (Simpfendorfer, 1992). The fertilised eggs then 

enter a state of diapause until September, after which active growth of the embryos 

recommences until parturition in January (Simpfendorfer, 1992, Waltrick et al., 2012).  

 

The rapid growth and early onset of maturity in small-bodied sharks has been hypothesised to 

be a survival strategy to counter high levels of predation experienced by a  species 

(Branstetter, 1990). Small bodied sharks are an important intermediate link in the food chain 

as they are often preyed upon by larger predators (Heupel et al., 2014). A study on R. acutus 

by Harry et al. (2010) also noted that high natural mortality experienced by a species may be 

balanced by early maturity. Certainly in the GoP R. taylori may experience high natural 

mortality as their small size and slower swimming capacity would render them a common 

prey for larger predators (Branstetter, 1990). Furthermore,  the high level of bycatch from the 

Gulf of Papua trawl fishery (Matsuoka and Kan, 1991) places some level of fishing mortality 

on the R. taylori population. High levels of natural and fishing mortality may account for 

their very young age-at-maturity.  

 

Commercial trawling has taken place in the GoP for over forty years. At the onset of this 

fishery, as many as 30 vessels were licensed. The total number of vessels and fishing effort 

has fluctuated over the years peaking at 95 000 trawl hours in 1989 before decreasing when 

effort control measures were introduced (Evans et al., 1995). Currently only six vessels are 

actively trawling in the GoP. Rapid growth and early maturity are biological characteristics 

associated with the ability of a species  to withstand fishing pressure (Smith et al., 1998), 
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therefore it is probable that R. taylori in the GoP are better placed to withstand current fishing 

levels than other shark species.  

 

The foundations of managing fish stocks and attaining sustainable fisheries rely upon 

accurate biological data of fish populations (Cailliet and Goldman, 2004, Heupel and 

Simpfendorfer, 2010). Until recently, information for sharks in PNG has been scarce (White 

et al., 2015, D'Alberto et al., 2016, Smart et al., 2016a, Smart et al., 2017a). This study is one 

of the first attempts to determine biological parameters of a small-bodied, commonly caught 

carcharhinid species in PNG. However, further work is needed to provide critical biological 

data for population assessments as well as to understand the ecological functions of shark 

species in order to fine tune management and conservation measures to suit the PNG context. 

Advancement in elasmobranch research in PNG will also address important data gaps for the 

Indo-Australasian region which supports the highest diversity of sharks globally (White and 

Kyne, 2010). 
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Chapter 5  Age, growth and maturity of the Australian blackspot 
shark Carcharhinus coatesi in the Gulf of Papua. 
 

5.1 Introduction 

 

In recent years many species of chondrichthyans have faced large declines in population size 

leading to concerns about their conservation status (Dulvy et al., 2014). The main causes of 

declines are the effects of harvesting through various fishing practices, as well as habitat 

degradation, pollution and other factors (Dulvy et al., 2017, Stevens et al., 2000). The need to 

make fishing more sustainable and less ecologically damaging is urgent given the widespread 

declines, but these efforts are hampered by the lack of taxonomic and fundamental life 

history information for many species in vast regions of the world (Frisk et al., 2001). Without 

an understanding of basic biological parameters such as reproductive and growth 

characteristics of a species it is difficult to carry out stock assessments and understand 

population dynamics, which are needed to improve management for threatened and exploited 

shark stocks (Simpfendorfer et al., 2011). 

 

Small bodied sharks that typically grow to a maximum length of less than one meter are 

commonly caught in coastal areas by a range of fishing gears, including gillnets and trawls 

that target other species (Cortés, 2002, Stobutzki et al., 2002, Harry et al., 2011a). This group 

of sharks have relatively fast growth, and thus are thought to be more resilient to fishing 

pressure than larger, slower growing shark species (Smith et al., 1998). Despite this general 

understanding it is also known that the biology of a single shark species can differ between 

localities within its range (Taylor et al., 2016, White, 2007b). Region or population specific 
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information is therefore required to produce more accurate stock assessments (Smart et al., 

2015) and improve fisheries management.  

 

The Australian blackspot shark (Carcharhinus coatesi) is a common small-bodied 

carcharhinid shark found throughout northern Australia and Papua New Guinea (Amariles et 

al., 2017). Taxonomic uncertainty led to earlier mis-identification of this species in Australia 

as Carcharhinus dussumieri (white cheek shark) (Stevens and McLoughlin, 1991, Stobutzki 

et al., 2002, Last and Stevens, 2009). However, recent taxonomic work combined with 

molecular techniques distinguished C. coatesi as a separate species (White, 2012). Stevens 

and McLoughlin (1991) established biological information for this species in Australia and 

preliminary age and growth assessments of C. coatesi were conducted by Smart et al. (2013) 

from the Great Barrier Reef region, Australia. However, there have been no studies of C. 

coatesi in Papua New Guinea despite it being a common bycatch in commercial trawl fishing. 

 

The Gulf of Papua prawn trawl fishery (GoPPF) has been in existence for over four decades 

and total levels of bycatch of all species (including sharks) varies between 60–85% by weight 

of the overall catch (Matsuoka and Kan, 1991, Evans et al., 1995). Despite the large 

composition of bycatch there has been little research to identify, quantify and determine the 

biology and life history of bycatch species in order to understand the broader ecological 

impact of the trawl fishery in the Gulf of Papua (GoP). In an effort to address these data gaps, 

and subsequently provide fishery managers with local information, this study aimed to: (1) 

present new information about the age, growth and maturity of C. coatesi in the Gulf of 

Papua, and (2) compare this information with previous work in north-eastern Australia to 

investigate any regional variation in life history. 
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5.2 Materials and methods 

 

The Gulf of Papua is a semi enclosed body of water on the southern side of PNG covering an 

area of over 50,000 km2 (Wolanski et al., 1995). Several major rivers flowing from the 

interior of PNG converge on the gulf. The larger Fly River is located in the north-west and 

several other rivers occur eastward (Fig 3-1). Extensive mangrove swamps and estuarine 

areas line the coastline providing important habitat and nursery areas which support a diverse 

array of aquatic life (Pernetta and Hill, 1981). Several commercially valuable crustacean 

species (mostly penaeid prawns) occur in the region and are harvested via the GoPPF 

(Gwyther, 1982).  

 

Fishery observers were deployed on seven prawn trawl fishing trips between June 2014 and 

August 2015 to collect shark bycatch samples and data. Sharks that had suffered fishing 

mortality were kept whole, frozen on board and brought back to shore. In the laboratory 

sharks were thawed, total length (TL) measured, and sex and maturity recorded. Maturity 

stages were assessed by inspecting the appearance and development of the ovaries and uteri 

in females and the claspers in males based on Walker (2005a) that categorizes five 

reproductive stages ranging from immature to post parturition in females and three stages in 

males. A binary category was assigned to maturity for estimating the size at maturity reached 

(Table 1). A section of the vertebrae beneath the first dorsal fin was extracted and kept frozen 

for further preparation to determine the age of the sharks. 
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Table 5-1: The maturity of male and female samples were determined by the state of the uteri 

and ovaries in females, and claspers in males. Maturity stages were assigned a binary 

category for statistical analysis. 

Female stage 

 

Description Binary category 

1 Immature  Uteri very thin, ovaries small 
and without yolked eggs. 

 0 

 

2 Maturing  Uteri slightly becoming 
enlarged at one end, ovaries 
becoming larger and small 
yolked eggs developing.  

0 

3 Mature  Uteri large along entire 
length, ovaries containing 
some large yolked eggs. 

1 

4 Pregnant Uteri containing embryos or 
large eggs. 

1 

5 Post-partum  Uteri very large but without 
embryos.  

1 

Male stage Description Binary category 

NC Not Calcified Clasper very short not 
extending past the pelvic fin 
tip. 

0 

PC Partially 
Calcified  

Claspers longer, extending 
past the pelvic fin tip, not 
entirely hard, still flexible. 

0 

FC Fully Calcified  Claspers long, hard along 
almost the entire length. 

1 
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5.2.1 Vertebrae preparation  
 

Protocols described by Cailliet et al. (2006) were used to prepare vertebrae for ageing. Frozen 

vertebrae were thawed, excess tissue was removed using a scalpel, and the sample separated 

into individual centra. All centra from an individual shark were placed in separate vials and 

immersed in 4% sodium hypochlorite solution to remove any remaining soft tissue. Vertebrae 

were immersed for up to five minutes depending on size. The centra were then rinsed with 

water and dried in an oven at 60°C for 24 hours. Vertebrae large enough to be sectioned were 

mounted onto a low speed circular saw (Beuhler, Illinois USA) and a section approximately 

400 µm was cut using two diamond tip blades. Each section was attached onto a microscope 

slide using Crystal Bond adhesive (SPI supplies, Pennsylvania, USA). Centra that were too 

small to be adequately held by the chuck of the circular saw were mounted on a microscope 

slide using the same adhesive and were sanded towards the centre on either side using 400-

1200 grit wet and dry abrasive paper. After one side was complete each centrum was 

remounted and sanded again on the other side to achieve the desired thickness 

(Simpfendorfer, 1993). 

 

5.2.2 Age determination 
   

Mounted sections of vertebrae were examined using a dissecting microscope. Growth 

increments appeared as wide and narrow bands. The wide band was usually opaque while the 

narrow band was translucent and together were referred to as a band pair as recommended by 

Cailliet et al. (2006). The birthmark was identified as an obvious change in angle along the 

inner margin of the corpus calcareum. Complete band pairs that could be seen from one side 

of the corpus calcareum to the other side were assumed to represent annual growth (Cailliet 



86 
 

and Goldman, 2004) (Fig. 5-1). The age of each shark was indicated by the number of band 

pairs present after the birth mark. Carcharhinus coatesi has no distinct breeding season 

(Stevens and McLoughlin, 1991) so to account for aseasonal parturition of 0.5 years was 

added to each individual age following Harry et al. (2010). Annual growth band deposition 

could not be verified using marginal increment analysis because sampling was not carried out 

consistently in each month of the year due to logistical issues. However, it was assumed that 

C. coatesi deposited bands annually based on evidence in literature that supports annual 

growth band deposition for sharks belonging to the family Carcharhinidae (McAuley et al., 

2006, Chin et al., 2013, Harry et al., 2013, Barreto et al., 2011).   

 

Figure 5-1: Cross-section of a Carcharhinus coatesi vertebral centrum viewed under a 

microscope. Birthmark and annual band pairs indicate, 8 years of age. 
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5.2.3 Precision and bias 
 

The appearance of growth band pairs differs between species and may be affected by the light 

source and method of preparation (Cailliet and Goldman, 2004). In addition, readers may also 

interpret growth bands differently from each other. To reduce variability and bias, 

independent age readings were carried out by two separate readers without knowledge of the 

size and sex of individual sharks. Readers then compared their results and a consensus read 

was conducted in any instance where counts differed. Samples were excluded from further 

analysis where an agreed age could not be reached. The precision of the counts was analysed 

using average percentage error (APE) (Beamish and Fournier, 1981), Chang’s coefficient of 

variation (CV) (Chang, 1982) and percentage agreement (PA ± 1 year) (Cailliet and 

Goldman, 2004). Bias between readers was calculated using Bowker’s test of symmetry 

(Bowker, 1948). Analyses were carried out using ‘FSA’ package (Ogle, 2016) in the R 

program environment (R Core Team, 2015). 

 

5.2.4 Growth model fitting 
 

A multi-model approach was used to determine the growth of C. coatesi by assessing the 

level of fit between several candidate models as opposed to only the von Bertalanffy growth 

model (VBGM). The traditional a priori use of the VBGM to fit length-at-age data is now 

being replaced by the multi-model approach which has been recommended as best practice in 

recent elasmobranch growth studies (Smart et al., 2016b). The multi-model approach uses the 

Akaike Information Criterion (AIC) (Akaike, 1973) to rank performance of each candidate 

model thereby indicating the model with the best fit to the length at age data. When all 

models perform similarly a Multi Model Inference approach calculates model averaged 
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parameters based on Akaike weights from each respective model (Katsanevakis and 

Maravelias, 2008). The use of the multi-model approach minimises the risk of model-

misrepresentation and associated biases (Cailliet et al., 2006, Thorson and Simpfendorfer, 

2009, Smart et al., 2016b).  

 

Three candidate models were used: the VBGM, logistic model, and Gompertz model (Table 

5-2). The models estimated length at birth (L0), the asymptotic length (𝐿∞ ) and growth 

coefficient (k). Growth models were fit using the ‘nls’ function, multi-model analysis was 

conducted using the ‘MuMIn package’(Barton, 2016) and bootstrapped confidence intervals 

were produced from 1000 bootstraps using the ‘nlstools package’ (Baty et al., 2015) in the R 

program environment (R Core Team, 2015).  

 

As the sample size was less than 200, the AICC, a size adjusted bias correction, was used 

(Zhu et al., 2009) : 

𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 

where 𝐴𝐼𝐶 = 𝑛𝑙𝑜𝑔(𝜎2) + 2𝑘, k is the total number of parameters + 1 for variance (𝜎2) and 𝑛 

is the sample size. The model that has the lowest 𝐴𝐼𝐶𝐶 value (𝐴𝐼𝐶min ) was chosen as the best 

fit for the data. The AIC difference (∆) was calculated for each model (i = 1-3) and used to 

rank the remaining models as follows: 

∆𝑖= 𝐴𝐼𝐶𝐶𝐼 − 𝐴𝐼𝐶𝑚𝑖𝑛 

Models were ranked according to the value of ∆. Values from 0-2 were considered to have 

the strongest support, less support was given to values between 2-10 and the least support for 
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∆ values > 10 (Anderson and Burnham, 2002). The AIC weights were calculated by the 

expression:  

𝑤𝑖 =
(𝑒𝑥𝑝 (−

∆𝑖

2 ))

(∑ 𝑒𝑥𝑝3
𝑗=1  (

∆𝑖

2 ))
 

To test if there were differences in the growth curves for males and females, a likelihood ratio 

test was carried out (Kimura, 1980). This was conducted for all candidate models included in 

the analysis. The method used to carry out the likelihood ratio test was described by Haddon 

(2001) and incorporated into the R program environment for this analysis.      

 

Table 5-2: Equations of the three growth functions used in the multi model approach 

Model Growth function 

von Bertalanffy  L (t) = L0 + (L∞ - L0) (1-exp (-kt)) 

Logistic L (t) = 𝐿∞𝐿0(𝑔𝑙𝑜𝑔𝑡)

𝐿∞+𝐿0(𝑒𝑥𝑝(𝑔𝑙𝑜𝑔𝑡)−1)
 

Gompertz L(t)=L∞ exp (-L0 exp (-ggom t)) 

 

5.2.5 Maturity  
 

The maturity stage data was converted to a binary maturity category (immature = 0, or mature 

=1) for statistical analyses. The length-at-maturity was estimated for both males and females 

using logistic regression (Walker, 2005b): 

𝑃(𝑙) = 𝑃𝑚𝑎𝑥 (1 +  ℯ
− ln(19)(

𝑙−𝐿50
𝐿95− 𝐿50

)
)

−1
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where 𝑃(𝑙) is the proportion mature at TL, 𝑙 and 𝑃𝑚𝑎𝑥 is the maximum proportion of mature 

individuals. The lengths of which 50 and 95% of the population are mature (𝐿50 and 𝐿95) 

were estimated using a generalised linear model (GLM) with a quasi-binomial error structure 

and a logit-link function based on 4 cm length bins in the ‘R’ program environment (R Core 

Team, 2015). Age-at-maturity was calculated using the same process as length-at-maturity by 

substituting length with age. The age at which 50 and 95% of the population were mature 

were designated as A50 and A95 respectively. 

 

5.3 Results 
 

A total of 115 C. coatesi were used in this study, 81 males and 34 females. Males ranged in 

size from 33–79 cm TL, and females from 35–75 cm TL. The majority of samples were 

smaller sized juveniles. Only three pregnant females were observed each having two 

embryos. The maximum embryo size was 12 cm, but they were not full term.  

 

5.3.1 Age determination  
 

The average per cent error was 9.93% and Chang’s coefficient of variation was 14.05%, 

which were relatively low in comparison to other studies on small bodied carcharhinids 

(Smart et al., 2013, Harry et al., 2010, Gutteridge et al., 2013). Percent Agreement ± 1 year 

between readers was 58.7% reflected some level of disagreement between readers. The age 

bias plot (Fig. 5.2) showed that bias was associated more so with ages greater than six years. 

However, the Bowker’s test of symmetry (df = 23, x = 30.13, P = 0.14) indicated that bias 

was not significant between readers. The maximum ages were the same for both sexes at 10.5 

years. The oldest male measured 76 cm TL while the oldest female was 73 cm TL. 
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Figure 5-2: Age bias plot showing agreement between two independent readers. The 

percentage agreement_1 year was 58.7%, Average Percentage Error was 9.93% and Chang’s 

coefficient of variation was 14.05%. 

 

5.3.2 Growth model fitting 
 

The AICc values were similar for all candidate models. All models (Table 3) had a ∆ of < 2 

and w < 0.9. The length-at-birth (L0) were 40.61 ± 0.81 SE, 40.86 ± 0.08 SE, 40.74 ± 0.81 SE 

for the VBGM, logistic and Gompertz models respectively. The asymptotic length were also 

very similar (VBGM = 74.84 ± 2.05 SE; logistic = 73.70 ± 1.56 SE and Gompertz = 74.17 ± 

1.75 SE) and the growth completion rates k, g(log) and g(gom) were 0.33 ± 0.06 yr-1, 0.48 ± 0.07 

yr-1, 0.40 ± 0.06 yr -1. Given that all models produced almost identical growth estimates it 
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was therefore not necessary to perform model averaging (Table 3). The VBGM (Fig.5-3) 

model was however chosen to describe the growth of C. coatesi given its wide use in 

literature.  Sexes were combined because the likelihood ratio test showed no significant 

difference between sexes for all three models (VBGM df = 3, χ2 = 3.78, P = 0.29; logistic df 

= 3, χ2 = 4.05, P = 0.26; Gompertz df = 3, χ2 = 3.90, P = 0.27). 
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Figure 5-3: Length-at-age curve for Carcharhinus coatesi from the Gulf of Papua with both 

sexes combined fitted with a three-parameter von Bertalanffy growth model (solid line) and 

95% bootstrapped confidence intervals (dotted lines). 
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Table 5-3: Summary of results from the multi model inference framework (MMI) 

incorporating Akaike’s Information Criterion (AIC). n is the sample size, AICC is the small-

sample bias adjusted Akaike’s Information Criteria, ∆ is the difference in AICC values 

between models, w (%) are the AICC weights, L0 and L∞  are the length-at-birth and 

asymptotic length in cm respectively, k is the growth completion rate in (year-1) for the 

VBGM, g(log) and g(gom) are the growth parameters for Logistic and Gompertz functions 

respectively, SE is the standard error of each growth parameter and RSE is the residual 

standard error for the model. 

 

 

5.3.3 Maturity 
 

The size at which 50 and 95% of individuals became sexually mature showed that males 

attained maturity at L50 = 66.3 cm (CI: 63.8, 71.4) and L95 = 71.6 cm (C1: 64.6, 74.2). 

Females reached maturity at L50 = 71.4 cm (CI: 61.5, 72.0) and L95 = 72.5 cm (CI: 62.7, 74.0) 

(Fig. 5-4). Age-at-maturity estimates indicate that males (A50 = 5.1 years (CI: 4.6, 7.1), A95 = 

6.4 years (CI: 5.1, 7.2)) and females (A50 = 5.3 years (CI: 3.5, 8.7) and A95 = 7.4 (CI: 3.6, 

8.8) years reach maturity at about five years of age (Fig. 5-5). A large proportion of 

individuals in the sample were in the first year of life or had not reached maturity (Fig. 5-6). 

Model n  AICC ∆ W 
(%) 

L0(±SE) L∞(±SE) k(±SE) g(log)(±SE) g(gom)(±SE) RSE 

VBGM 115 729.84 0 0.42 40.61±0.81 74.84±2.05 0.33±0.06   5.65 

Logistic 115 730.8 0.97 0.26 40.86±0.08 73.70±1.56  0.48±0.07  5.67 

Gompertz 115 730.31 0.47 0.33 40.74±0.81 74.17±1.75   0.40±0.06 5.66 
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Figure 5-4: Length-at-maturity ogives for (a) male and (b) female Carcharhinus coatesi from 

the Gulf of Papua. The shaded points represent the length at which 50% of the population 

reaches maturity. The 95% confidence intervals are indicated with dashed lines. 
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Figure 5-5: Age-at-maturity ogives for (a) male and (b) female Carcharhinus coatesi from 

the Gulf of Papua. The shaded points represent the ages at which 50% of the population reach 

maturity. The 95% confidence intervals are indicated with dashed lines. 

 

Figure 5-6: Age frequency of individual Carcharhinus coatesi sampled. The dotted lines 

indicated age-at-maturity for (a) males and (b) females. 
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Figure 5-7: von Bertalanffy growth curves of small-bodied carcharhinids. Data sources: 

Rhizoprionodon terraenovae (Loefer and Sedberry 2003), Rhizoprionodon acutus (Harry et 

al. 2010), Carcharhinus coatesi (Aus) (Smart et al. 2013), Loxodon macrorhinus (Gutteridge 

et al. 2013), Rhizoprionodon taylori (Simpfendorfer 1993), Scoliodon laticaudus (Nair 1976). 
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5.4 Discussion 
 

The Australian blackspot shark is a small but relatively fast growing species of shark. Studies 

in Australia show that on the Great Barrier Reef coast it has a growth completion rate of 0.83 

yr-1 and reaches a maximum age of 6.5 years (Smart et al., 2013), while the maximum length 

is 88 cm in the Northern Territory (Stevens and McLoughlin, 1991). The results of this study 

demonstrate that the life history of C. coatesi in the waters of southern Papua New Guinea 

was somewhat dissimilar. The von Bertalanffy growth completion rate was lower (0.33 yr-1), 

maximum age higher (10.5 years) and maximum length smaller (79 cm). These differences 

occurred despite the size at birth and maximum size being similar between these areas. Such 

intra-specific variation in life history traits is often reported in sharks (Lombardi-Carlson et 

al., 2003, Taylor et al., 2016, Gutteridge et al., 2013) and can be the result of a range of 

factors, including local selection pressures, differences in methodology, differential effects of 

fishing or latitudinal variation in environmental conditions.  

 

The Carcharhinidae is the most diverse family of sharks with over 50 species (White and 

Sommerville, 2010), and show a variety of growth patterns. The largest species of this group 

is the tiger shark Galeocerdo cuvier which can grow to over five meters in length, reaching 

maturity after 12 years of age (Holmes et al., 2015) and has a von Bertalanffy growth  

completion rate of k = 0.08 yr-1. Another species the silky shark Carcharhinus falciformis, 

attains a total length over two meters, takes over 10 years to reach maturity and grows at a 

rate of k = 0.066 yr-1 (Hall et al., 2012). The blue shark Prionace glauca has a maximum 

length of about three meters, and fully matures after six years growing at a rate of  k = 0.12 

yr-1(Jolly et al., 2013). Meanwhile, small bodied carcharhinids that reach less than one meter 

have much higher growth rates ranging from k = 0.18 yr-1 for Loxodon macrorhinus 
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(Gutteridge et al., 2013) to k = 1.33 yr-1  (Simpfendorfer, 1993). Small bodied coastal 

carcharhinids usually grow rapidly after birth (Fig. 5-7) and reach maturity within one to two 

years (Smart et al., 2013, Loefer and Sedberry, 2003, Harry et al., 2010, Gutteridge et al., 

2013, Nair, 1976). The variability in the life history of the carcharhinid sharks demonstrates 

that they have evolved highly diverse life histories, despite their common ancestry, to become 

one of the most important groups of predators in the ocean.    

 

Validating ages particularly in older age classes has proven to be problematic in age and 

growth literature and consequently the underestimation of ages is prevalent (Harry, 2017). 

Vertebral ageing indicated that C. coatesi grows to more than 10 years in the GoP.  Reader 

precision was relatively high with no significant bias detected, however difficulty in 

determining ages on older individuals was evident. Bands deposited towards the edge of the 

vertebrae can be difficult to distinguish because of close proximity to each other reflecting 

slower growth later in life. Therefore, it is possible that ages may be underestimated for older 

individuals that have reached their maximum size but are still depositing growth band pairs. 

This has been observed in other studies on small bodied sharks (Gutteridge et al., 2013, 

Loefer and Sedberry, 2003, Huveneers et al., 2013). Growth band pairs are associated with 

seasonality in temperate waters (Cailliet and Goldman, 2004). Therefore, a lack of 

seasonality in the tropics may affect the clarity and readability of band pairs (Fig. 5-1) and 

thus the overall estimation of age. Though, there is some uncertainty surrounding the 

correlation of band pair deposition as a reference for age, the formation of band pairs is more 

consistent in smaller sharks (Natanson et al., 2018) and therefore likely to predict age more 

accurately. Future work should focus on age validation of this species incorporating other 

datasets where possible such as tag-recapture or length data (Harry, 2017). 



100 
 

 

The slower growth completion rate of C. coatesi compared to other small carcharhinids may 

be a trade-off with the larger size at birth. The size at birth is relatively large, at about half the 

maximum observed size, and for individuals often >50% of the mothers length. This 

relatively large size at birth is uncommon in sharks, with most less than 30% of maximum 

size (Cortés, 2000). By increasing the size at birth survival rates of newborns will be higher 

(Heupel et al., 2007) and so the very rapid growth seen in species with very small sizes at 

birth is not required (Fig. 5-7). These very rapid growth rates in other species are believed to 

reduce the time that young sharks are subject to high levels of predation. A consequence of 

this trade-off is that litter sizes (such as those observed in C. coatesi; normally only 2 per 

litter) are much smaller than these other species with smaller sizes at birth e.g. R. taylori: 

litters 1-10, size at birth 25 cm (Simpfendorfer, 1993); R. terraenovae: litters 1-8, size at birth 

28 cm (Loefer and Sedberry, 2003) and Scoliodon laticaudus: litters 6-18, size at birth 14 cm 

(Devadoss, 1979). The consequences of these trade-offs amongst small carcharhinids should 

be further investigated using demographic models to understand how these strategies may be 

affected by fishing and how they contribute to sustainability.  

 

This study provides the first age-at-maturity estimates for C. coatesi. Whereas other small 

bodied carcharhinids (≤ 1 m) take 1–2 years to mature (Harry et al., 2010, Gutteridge et al., 

2013, Simpfendorfer, 1993, Carlson and Baremore, 2003), both male and female C. coatesi 

attain sexual maturity at about five years of age. Delayed age-at-maturity combined with a 

small litter size (Stevens and McLoughlin, 1991) suggests that this species may be less 

productive and less able to sustain fishing pressure than other small carcharhinids, but 

demographic models should be investigated to confirm this hypothesis. Length-at-maturity 

analysis indicated that males attain maturity at sizes smaller than females, unlike northern 
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Australia where both sexes reach maturity at the same length (Stevens and McLoughlin, 

1991). This is consistent with shark life history patterns that show males tend to grow faster 

though reach maximum sizes that are smaller than females (Cortés, 2000). Given that the 

number of females in the sample was low the confidence intervals reported for female size 

and age-at-maturity were wide, estimates should be treated as preliminary and be further 

investigated with additional sampling. 

 

Fishing on coastal shark populations has led to several population declines (Dulvy et al., 

2014). This could potentially cause changes in life history parameters in heavily fished 

populations. Carlson and Baremore (2003) recorded a higher growth rate and reduced age-at-

maturity in R. terraenovae after more than a decade of intense fishing, noting increased 

fishing pressure and a reduction in stock size over this time as potential drivers for changing 

growth patterns. The extent to which biological traits of C. coatesi may have changed due to 

the effects of fishing in the GoP over four decades remains unknown due to the lack of data 

on previous abundance and bycatch data over time and previous life history information. 

Historical records over a 19 year period (1974 -1993) of the GoPPF indicate that fishing 

effort had varied over time, being at its lowest in 1975 (17,000 trawl hours) and peaked in 

1989 (95,000 trawl hours) (Evans et al., 1997). In 2011 eight vessels were actively fishing 

with an overall effort of 14,000 trawl hours (Suuronen et al., 2013) currently only six vessels 

are in  operation. The total amount of bycatch taken in the fishery is expected to have 

fluctuated in proportion with fishing effort, and in recent years total bycatch may be at lower 

levels given that effort appears to have decreased. The current growth and maturity 

information for C. coatesi gathered in this study implies that although it is a reasonably fast 

growing species, it may be more vulnerable to fishing pressure than other small carcharhinids 

(Baje et al., 2018) due to its older age-at-maturity and lower litter size. As such, increases in 
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exploitation may differentially have greater effects on the population compared to other small 

carcharhinid species.  

 

Sustainable fisheries management relies on an understanding of the biology of both targeted 

fish stocks for commercial markets and those that are taken as bycatch. In order to carry out 

wider demographic and stock assessment analysis, as well as ecological risk assessments, 

determining local life history parameters is fundamental. Research on bycatch species have 

been overlooked, especially in the Indo Pacific (Molina and Cooke, 2012), but are 

increasingly needed for a more holistic approach to managing fisheries in view of wider 

sustainability concerns (Pikitch et al., 2004). This study highlights the case of Carcharhinus 

coatesi that is potentially more vulnerable to population decline in the event of increased 

fishing pressure in the GoP due to its life history characteristics. The information provided 

here can be used to assess the ecological consequences of trawl fishing in the GoP and 

evaluate the conservation status of C. coatesi. Further research should be encouraged in 

regions of high biodiversity where fishing regularly occurs as population declines and the 

threat of extinction may easily go unnoticed in the absence of quantitative data (Edgar et al., 

2005). 
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Chapter 6  Ecological Risk Assessment of elasmobranchs caught 
in the Gulf of Papua prawn fishery  
 

6.1 Introduction  

 

Managing fisheries in data poor circumstances is a problem faced by fisheries managers 

worldwide (Pilling et al., 2009). This creates high levels of uncertainty around management 

decisions and thus the sustainability of fish stocks (Jabado et al., 2018). The recent advent of 

Ecosystem-based Fisheries Management (EBFM) further intensifies the need for additional 

information to assess the broader impact of a fishery. One area of EBFM focus is the impact 

on bycatch species (Pikitch et al., 2004). In many fisheries, fisheries monitoring and 

assessment are often only focused on key commercial species while bycatch are ignored 

because they are often discarded due to low economic value (Stevens et al., 2000). Therefore, 

information on bycatch is still lacking for many fisheries worldwide (Lewison et al., 2011). 

Without an understanding of the taxonomy, life history, ecology, and exploitation rates of 

bycatch species, the potential ecological impact of a fishery cannot be fully ascertained.  

 

One method that has been developed to assist fisheries management processes in addressing 

bycatch issues is Ecological Risk Assessment (ERA). An ERA can have different forms, but 

all predict the relative vulnerabilities of fish stocks to fisheries harvest (Gallagher et al., 

2012) or other potential threats (Chin et al., 2010). Depending on the availability of data, an 

ERA can be quantitative, semi-quantitative or qualitative, or a combination of these 

(Stobutzki et al., 2001, Hobday et al., 2011, Braccini et al., 2006). An advantage of 

qualitative and semi-quantitative ERAs is that they can be used when there is limited species-

specific data (Hordyk and Carruthers, 2018). Ultimately conducting an ERA allows fisheries 
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managers to prioritise monitoring, research, and management on the most vulnerable species 

at risk of over-exploitation (Zhou and Griffiths, 2008).  

 

World-wide declines in elasmobranch populations has propagated international concern for 

this group of fishes (Dulvy et al., 2017). Approximately a quarter of all sharks and rays are 

listed as threatened with extinction by the International Union of Conservation of Nature 

(IUCN) (Dulvy et al., 2014). While there are some fisheries that target shark populations that 

can be sustainably harvested (Simpfendorfer and Dulvy, 2017) a large proportion of 

elasmobranch mortality due to fishing globally is attributed to being captured as bycatch from 

various fisheries (Oliver et al., 2015). Typically, information on elasmobranchs caught as 

bycatch is lacking, therefore ERAs are a key method to assess their vulnerability to 

exploitation. ERAs featuring elasmobranchs have steadily increased over the last 20 years 

(Gallagher et al., 2012). However despite the emergence of this work and the ongoing call for 

the implementation of EBFM, such assessments are still lacking for the majority of fisheries 

worldwide, especially in developing countries (Pitcher et al., 2009). 

 

Trawl fisheries employing the use of non-selective gears are responsible for large quantities 

of bycatch (Stobutzki et al., 2001, Oliver et al., 2015). In regions of high biodiversity the 

potential impact of such a fishery can be extensive (Stevens et al., 2000). The island of New 

Guinea is one of the world’s most species-rich zones that also supports a high diversity of 

elasmobranchs, and consequently the highest proportion of threatened elasmobranch species 

in the Indo-Australasian region (White and Kyne, 2010). Papua New Guinea (PNG) occupies 

the eastern half of New Guinea. A commercial prawn trawl fishery operates in the south of 

PNG within the Gulf of Papua. The fishery historically takes high levels of bycatch, making 
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up 65-85% of the total catch by weight (Evans et al., 1995). The fishery is managed under the 

Gulf of Papua Prawn Fishery Management Plan in accordance with the Fisheries 

Management Act of PNG (www.fisheries.gov.pg). The management plan also emphasises the 

importance of research on bycatch species, and does not allow the finning of sharks and rays 

(National Fisheries Authority, 2008), however a full assessment of the species composition 

and quantity of bycatch has not been conducted since the inception of the fishery in the late 

1960s. Recent work in PNG has identified an array of elasmobranch species that are caught in 

the Gulf of Papua prawn fishery (GoPPF) (White et al., 2017b). The aim of this study was to 

conduct an ERA of these species to inform fisheries management and conservation for these 

species in PNG and the region more broadly.  

 

6.2 Methods  
 

6.2.1 Sample collection 
 

Between June 2014 and August 2015, National Fisheries Authority (NFA) observers were 

deployed on seven trips on-board one of five commercial trawl vessels in the Gulf of Papua. 

To ensure proper taxonomic identification, whole specimens of sharks and rays were 

collected. In instances where the specimen was too large to be kept, digital photographs and 

genetic samples were taken. In a laboratory the identification was verified, and disc width 

(DW) or total length (TL) ± 1 cm, weight, sex, and maturity were recorded. Based on the 

information collected over the five trips, the total number, weight, size range and catch per 

unit effort (elasmobranchs caught per hour) of each species was calculated (White et al., 

2019).  
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6.2.2 Ecological Risk Assessment 
 

To assess the sustainability of each species, the method devised by Stobutzki et al. (2001) and 

subsequently used by Stobutzki et al. (2002) specifically on elasmobranch bycatch was used. 

This semi-quantitative method subjects fishery data and relevant species-specific information 

from published literature to a specific set of criteria and is suited for data poor fisheries such 

as the GoPPF (Hordyk and Carruthers, 2018). The criteria assess: (1) susceptibility, which is 

the likelihood that a species will be caught by the fishery, and (2) its potential to recover from 

population decline (Table 6-1).  

 

6.2.2.1 Susceptibility of being caught by the fishery 
 
 

For the GoPPF both susceptibility and recovery potential were assessed by 5 separate criteria: 

water column position, survival or post capture mortality, distribution, diet, and depth range. 

Information about the ecology of species was obtained from White et al. (2017b). Each 

criterion was assessed as follows; 

Water column position: The position a species usually occupies in the water column can 

make it more susceptible to capture by otter trawl, especially if this overlaps with the areas 

where fishing occurs. Vessels in the GoPPF fish relatively close to shore and target bottom-

dwelling crustaceans. Species that were more demersal in nature were considered to be more 

likely to interact with trawl gear then those that primarily occur in mid-water or at the 

surface.  

Post-capture mortality or survival: Information regarding the survival of bycatch after 

capture in the GoPPF is limited, there are reports of most bycatch being dead when the catch 

is landed on the vessels and finning of larger elasmobranchs. However, further monitoring of 
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bycatch fate is needed. Nevertheless, until such data are available, post-release survival is 

considered here based on animal size with previous studies and risk assessments suggesting 

that larger individuals have a greater chance of survival (Stobutzki et al., 2002). Therefore for 

this criterion, the total mean length at capture for each species was used as an indicator of 

survivability. The range of the total overall mean length of species measured using TL or DW 

was calculated separately and divided into thirds. We assumed that smaller species were more 

susceptible to suffer mortality than larger species and ranked each species accordingly. 

Distribution: For this criterion the distribution of each species within the Gulf of Papua was 

considered. The likelihood of a species having a restricted or more widespread distribution 

was determined from their habitat preferences in literature. Species with a more widespread 

distribution may be less susceptible to the fishery. 

Diet: Species that have the tendency to feed on crustaceans were more likely to be caught in 

the fishery compared to species that did not. 

Depth range: Vessels in the GoPPF fish at depths of 6-37 m, based on this, elasmobranchs 

that occupied depths and habitats outside of this depth range were considered to be less 

susceptible to capture.  

 

6.2.2.2 Recovery potential  
 

The probability of breeding, maximum size, removal rate, annual fecundity and mortality 

index were the criteria used to measure the recovery potential for each species. Biological 

information was extracted from White et al. (2017b). Each criterion was assessed as follows; 

Probability of breeding: The reproductive potential of a species varies based on life history 

characteristics. The danger posed to a population will vary if a fishery captures its most 

successful spawners which may differ based on age class for each species (Gallucci et al., 
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2006). The proportion of individuals caught as adults and juveniles and the size at maturity 

were compared based on White et al. (2019).  

Maximum size: Species that attain large sizes are generally slower growing and potentially 

have slower rates of recovery (Frisk et al., 2001). The range of total maximum sizes for 

elasmobranchs measured using total length (TL) or disc width (DW) respectively was 

calculated and divided into thirds.  

Annual fecundity: Species that produced more pups annually may have a greater potential to 

recover from the effects of fishing. The average number of pups that a female produces each 

year was multiplied by the number of times breeding occurs in a year. Where there was no 

information it was assumed that breeding occurred once a year. The gestation period where 

available was also used as an indicator of the frequency of breeding. The range of annual 

fecundities was divided into thirds to assign ranks.  

Removal rate: Species with a higher proportion of biomass removed may have slower 

recovery rates. The percentage of weight of a species as a proportion of the total catch 

composition by weight for all elasmobranchs caught was calculated for each species. The 

range of the proportion of catch composition by weight for all species was calculated and 

divided into thirds to assign ranks.  

Mortality index: Species with a high mortality index will be slow to recover from the effects 

of fishing. In the absence of biological parameters that are often used to calculate mortality it 

is derived by the following formula (Stobutzki et al., 2002); 

Mortality index = (Lmax –Lave) / (Lave-Lmin) 

Where Lmax = the maximum length  

Lave = the mean length at capture in the fishery and  

Lmin = the smallest length caught  
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6.2.3 Analysis of criteria  
 

A rank was allocated for each criteria (Table 6-1). A rank of 3 reflected the greatest risk 

while a rank of 1 represented the lowest level of risk. Each criteria was assigned a weight 

based on Stobutzki et al. (2002) as the GoPPF is a similar fishery. A weighted average was 

calculated across all criteria to provide overall scores for susceptibility and recovery 

potential, respectively. These were then graphically represented, the recovery potential on the 

x-axis and susceptibility on the y-axis. Consequently the point of lowest risk is when 

susceptibility = 1 (lowest susceptibility) and recovery potential = 1 (highly productive). 

Following Tobin et al. (2010) the Euclidian distance was calculated between where each 

species was situated on the plot to the point of lowest risk (1,1). The range of Euclidean 

distances from the point of lowest risk was categorised into different levels of risk form low 

to very high (Table 6-2). A partial correlation was also conducted to assess the independence 

of each criterion.  
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Table 6-1: The criteria used to assess and assign ranks for each criteria considered under 

susceptibility and the potential to recover from the effects of fishing. 

Criteria Weight  Species-specific 
information (%) 

Rank 

1 2 3 
Susceptibility 

     

Water column 
position  

3 100 Benthopelagic or 
pelagic   

not applicable Benthic 

Survival (post 
capture 
mortality)  

3 100 The total mean 
length at capture is 
> 200 cm (TL) 

Total mean length at 
capture greater than 
100 cm but less than 
200 cm (TL) 

The total mean 
length at capture 
is less than  100 
cm (TL)   

Survival (post 
capture 
mortality) 

3 100 Total mean length 
at capture is greater 
than 137.33 cm 
(DW) 

Total mean length at 
capture is greater 
than 68.67 but less 
than or equal to 
137.33 cm (DW) 

Total mean 
length of 
capture is less 
than 68.67 cm  
(DW) 

Distribution  3 
 

Have a greater 
habitat preference 
and distribution 
beyond trawl zones 

Distribution may 
overlap with trawled 
areas  

Highly Likely to 
inhabit trawl 
zones   

Diet 2 100 Feed on pelagic 
organisms and does 
not feed on 
crustaceans or 
demersal prey. 

Have the tendency to 
feed on crustaceans 
but not exclusively 
because the species 
feeds on a broad range 
of prey. 

Known to feed 
exclusively on 
crustaceans and 
demersal prey. 

Depth Range 1 100  Existing within 
trawl depth of 6 -38 
m 

not applicable  Existing beyond 
trawl depth 
range 

Recovery 
     

Probability of 
breeding 

3 100 Higher proportion 
caught after 
reaching maturity.   

Similar proportions 
caught as adults and 
juveniles. 

Higher 
proportion 
caught before 
reaching 
maturity 

Maximum size 3 100 Maximum disc 
width < 203.33 cm 

203.33 <Maximum 
disc width< 376.66 

Maximum disc 
width > 376.66 
cm  

Maximum size 3 100 Maximum total 
length < 271.3 cm 

Maximum total 
length is greater than 
271.3 but less than 
474.66 cm 

Maximum total 
length > 474.66 
cm  
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Table 6-2: Range of Euclidean distances and corresponding level of risk. 

Euclidean distance  Level of Risk 

0.00 – 0.99 Low 

1.00 -1.99 Medium 

2.00 – 2.99 High  

> 3.00 Very High 

 

  

Removal rate 3 100 3.08 ≤ removal rate 3.08 > removal rate 
≤ 6.15 

Removal rate is 
> 6.15 

Annual 
fecundity  

1 46 Annual fecundity is 
greater than 17 per 
year 

Annual fecundity is 
greater than 9 per 
year but less than or 
equal to 17 per year 

Annual 
fecundity ≤ 9 
per year  

Mortality index 1 100 Mortality index ≤ 
20.59 

Mortality index is 
greater than 20.59 
but less than  42.12 

Mortality index 
> 42.12   
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6.3 Results  

 

6.3.1 Elasmobranch species encountered in the fishery 

 

From the 7 trips a total of 2030 individuals were recorded from 39 elasmobranch species 

(White et al., 2019). Sixteen shark species from 5 families and 23 ray species across 9 

families were observed from the catch (Table 6-3). The Carcharhinidae (12 species) and 

Dasyatidae (11 species) were the most diverse families of shark and ray, respectively. All 

other families had between one and three species. The most commonly caught species, were 

the coastal sharks Rhizoprionodon taylori, Carcharhinus coatesi, Rhizoprionodon acutus, 

Sphyrna lewini (juveniles) and Hemigaleus australiensis; and rays Gymnura australis and 

Maculabatis astra. (Table 6-4).  

 

Partial correlation of productivity and susceptibility criteria showed that all criteria were 

below r = 0.7 which meant that the effect of other criteria influencing the correlation between 

a pair of criteria was minimal (Table 6-5). The global IUCN Red List status of each species 

range from Least Concern (n = 11) to Critically Endangered (n = 1), with 13 threatened (i.e. 

Vulnerable, Endangered Critically Endangered). Three were Data Deficient and two were 

Not Evaluated. In terms of risk, 10 of 39 species were assessed to be at low risk. These were 

mostly mid-water species including the bull shark which has a very extensive habitat 

preference and therefore having lower susceptibility to the fishery. The majority of species 

(26 species) are at medium risk (Table 6-6). These are species with a higher susceptibility but 

relatively high to low recovery potential. Only three species are considered to be facing high 

risk under present fishery conditions, these are the Australian blackspot shark (Carcharhinus 
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coatesi), the eyebrow wedgefish (Rhynchobatus palpebratus) and the blackspotted whipray 

(M. astra), all of which had relatively high catch rates and the lowest recovery potential 

compared to all other species (Fig 6-1).    

 

Table 6-3: Elasmobranch species taken as bycatch in the Gulf of Papua prawn trawl fishery.  

Family Species  Common name 

Hemiscylliidae Chiloscyllium punctatum  Brownbanded bambooshark 

Stegostomatidae Stegostoma fasciatum Zebra shark  

Hemigaleidae Hemigaleus australiensis Australian weasel shark 

Carcharhinidae Carcharhinus amblyrhynchoides Graceful shark  

 Carcharhinus amboinensis Pigeye shark 

 Carcharhinus brevipinna Spinner shark  

 Carcharhinus coatesi Australian blackspot shark 

 Carcharhinus fitzroyensis Creek whaler shark 

 Carcharhinus leucas Bull shark 

 Carcharhinus limbatus Common blacktip shark 

 Carcharhinus macloti Hardnose shark 

 Carcharhinus sorrah Spottail shark 

 Carcharhinus tilstoni Australian blacktip shark 

 Rhizoprionodon acutus Milk shark 

 Rhizoprionodon taylori Australian sharpnose shark 

Sphyrnidae  Eusphyra blochii Winghead shark 

 Sphyrna lewini Scalloped hammerhead shark 

 Sphyrna mokarran Great hammerhead shark 

Pristidae Anoxypristis cuspidata Narrow sawfish 
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 Pristis pristis Largetooth sawfish 

Rhinidae Rhina ancylostoma Shark ray 
 

Rhynchobatus palpebratus Eyebrow wedgefish 

Glaucostegidae Glaucostegus typus Giant guitarfish 

Gymnuridae Gymnura australis Australian butterfly ray 

Dasyatidae Hemitrygon longicauda Merauke stingray 

 Himantura australis Australian whipray 

 Himantura leoparda Leopard whipray 

 Maculabatis astra Blackspotted whipray 

 Megatrygon microps Smalleye stingray 

 Neotrygon annotata Plain maskray 

 Neotrygon picta Speckled maskray 

 Pastinachus ater Broad cowtail ray 

 Pateobatis fai Pink whipray 

 Pateobatis hortlei Hortle's whipray 

 Urogymnus acanthobothrium Mumburarr whipray 

Myliobatidae Aetomylaeus caeruleofasciatus  Bluebanded eagle ray 

Aetobatidae Aetobatus ocellatus  Spotted eagle ray 

Rhinopteridae Rhinoptera neglecta Australian cownose ray 

Mobulidae Mobula alfredi  Reef manta ray 
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 Table 6-4: The abundance, percentage of total elasmobranch catch, size range and maximum known size of species caught in the GoPPF from 

all sampling trips. 

 

Family Species  No. Percent by 
number 

Weight 
(kg) 

Weight (%) Size range (cm) Size at 
maturity  

(cm) 

 maximum  

size (cm) 

       
 

 

Hemiscylliidae 
      

 
 

 
Chiloscyllium punctatum 74 3.65 34.35 0.79 18–88  TL 65 

 

132 TL 

Stegostomatidae 
     

 
 

 
Stegostoma fasciatum 10 0.49 21.00 0.48 39–186 TL 147 

 

235 TL 

Hemigaleidae 
      

 
 

 
Hemigaleus australiensis 118 5.81 40.00 0.92 21–90  TL 60 

 

110 TL 

Carcharhinidae 
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Carcharhinus 
amblyrhynchoides 

1 <0.1 4.50 0.10 87 TL 
110 

178 TL 

 
Carcharhinus amboinensis 3 0.15 15.20 0.35 89–95 TL 195 280 TL 

 
Carcharhinus brevipinna 20 0.99 88.80 2.03 79–158 TL 190 300 TL 

 
Carcharhinus coatesi 192 9.46 201.94 4.62 33–88 TL 70 88 TL 

 
Carcharhinus fitzroyensis 18 0.89 94.50 2.16 66–123 TL 80 135 TL 

 
Carcharhinus leucas 3 0.15 66.05 1.51 85–192 TL 220 340 TL 

 
Carcharhinus limbatus 11 0.54 20.10 0.46 55–91 TL 165 250 TL 

 
Carcharhinus macloti 19 0.94 35.20 0.81 38–90 TL 69 110 TL 

 
Carcharhinus sorrah 3 0.15 15.60 0.36 96–100 TL 90 160 TL 

 
Carcharhinus tilstoni 8 0.39 33.80 0.77 54–139 TL 105 200 TL 

 
Rhizoprionodon acutus 148 7.29 117.27 2.69 31–86 TL 68 100 TL 

 
Rhizoprionodon taylori 597 29.41 356.55 8.16 30–68 TL 40 68 TL 

Sphyrnidae 
   

  
 

 
 

 
Eusphyra blochii 86 4.24 164.67 3.77 37–159 TL 138 186 TL 

 
Sphyrna lewini 133 6.55 162.60 3.72 40–171 TL 155 350 TL 

 
Sphyrna mokarran 2 0.10 20.30 0.46 119–150 TL 210 600 TL 

Pristidae 
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Anoxypristis cuspidata 11 0.54 190.30 4.36 02–215 TL 200 350 TL 

 
Pristis pristis 1 <0.1 126.40 2.89 349 TL 260 656 TL 

Rhinidae 
   

  
 

 
 

 
Rhina ancylostoma 2 0.10 52.80 1.21 120–165 TL 150 270 TL 

 
Rhynchobatus palpebratus 60 2.96 401.87 9.20 43–234 TL 103 262 TL 

Glaucostegidae 
   

  
 

 
 

 
Glaucostegus typus 5 0.25 96.52 2.21 39–240 TL 150 

 

284 TL 

Gymnuridae 
      

 
 

 
Gymnura australis 154 7.59 149.81 3.43 26–77 DW 35 

 

94 DW 

Dasyatidae 
      

 
 

 
Hemitrygon longicauda 25 1.23 9.41 0.22 12–31 DW Unknown  31 DW 

 
Himantura australis 13 0.64 402.68 9.22 52–140 DW 112 183 DW 

 
Himantura leoparda 19 0.94 180.93 4.14 38–104 DW 70 140 DW 

 
Maculabatis astra 134 6.60 293.73 6.73 22–76 DW 44 92 DW 

 
Megatrygon microps 1 <0.1 80.00 1.83 ~180 DW Unknown 222 DW 

 
Neotrygon annotata 35 1.72 15.29 0.35 12–30 DW 22 30 DW 
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Neotrygon picta 1 <0.1 0.11 <0.1 14 DW 17 32 DW 

 
Pastinachus ater 3 0.15 50.57 1.16 80–100 DW 96 200 DW 

 
Pateobatis fai 3 0.10 140.00 3.21 67–170 DW 112 170 DW 

 
Pateobatis hortlei 32 1.58 79.57 1.82 16–112 DW 100 112 DW 

 
Urogymnus acanthobothrium 3 0.15 84.00 1.92 100–114 DW 110 161 DW 

Myliobatidae 
   

  
 

 
 

 
Aetomylaeus caeruleofasciatus 46 2.27 25.08 0.57 20–52 DW 43 

 

59 DW 

Aetobatidae 
  

   
 

 
 

 
Aetobatus ocellatus 5 0.25 45.10 1.03 66–107 DW 100 

 

300 DW 

Rhinopteridae 
      

 
 

 
Rhinoptera neglecta 29 1.43 

293.2 6.7 

37–140 DW 115 

 

140 DW 

Mobulidae 
      

 
 

 
Mobula alfredi 1 <0.1 145.8 3.3 220 DW 300 550 DW 
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Table 6-5: Partial correlation of criteria used in the study. 

 

  
Water Column 

Position 

Post 
Capture 

Mortality Distribution Diet Depth Range 

Water Column 
Position 1     
Post Capture 
Mortality -0.149 1    
Distribution 0.540 0.287 1   
Diet 0.649 -0.175 0.618 1  
Depth Range -0.374 -0.108 -0.087 0.111 1 

  
Probability of 
breeding 

Maximum 
size 

Removal 
Rate 

Annual 
Fecundity  

Mortality 
Index  

Probability of 
breeding 1     
Maximum size 0.084 1    
Removal Rate -0.410 -0.032 1   
Annual Fecundity  -0.116 -0.445 -0.008 1  
Mortality Index  -0.101 0.487 -0.212 -0.143 1 
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6.3.2 Assessment of risk  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1: Ecological Risk Assessment of elasmobranch species caught in the GoPPF based 

on the susceptibility of each species to the fishery and their estimated potential to recover 

from the effects of fishing. 
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Table 6-6: The Euclidean distance from the point of lowest risk to each species, the 

associated level of risk and the IUCN status of elasmobranch bycatch caught in the GoPPF. 

Species  Common name  Euclidean 
Distance  

Risk level  IUCN 
Status  

Aetobatus ocellatus  Spotted eagle ray 0.62 low VU 

Aetomylaeus 
caeruleofasciatus  

Bluebanded eagle ray 0.68 low LC 

Carcharhinus tilstoni Australian blacktip shark 0.69 low LC 

Carcharhinus leucas Bull shark 0.74 low NT 

Rhinoptera neglecta Australian cownose ray 0.77 low DD 

Carcharhinus brevipinna Spinner shark  0.84 low NT 

Carcharhinus limbatus Common blacktip shark 0.85 low NT 

Carcharhinus macloti Hardnose shark 0.95 low NT 

Mobula alfredi  Reef manta ray 1.01 medium VU 

Megatrygon microps Smalleye stingray 1.10 medium DD 

Pastinachus ater Broad cowtail ray 1.26 medium LC 

Urogymnus 
acanthobothrium 

Mumburarr whipray 1.26 medium NE 

Pristis pristis Largetooth sawfish 1.29 medium CR 

Pateobatis fai Pink whipray 1.33 medium VU 

Carcharhinus 
amblyrhynchoides 

Graceful shark  1.38 medium NT 

Carcharhinus fitzroyensis Creek whaler shark 1.41 medium LC 

Carchahinus amboinenesis Pigeye shark 1.44 medium DD 

Sphyrna lewini Scalloped hammerhead 
shark 

1.49 medium EN 

Neotrygon picta Speckled maskray 1.54 medium LC 

Glaucostegus typus Giant guitarfish 1.65 medium VU 
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Hemitrygon longicauda Merauke stingray 1.65 medium NE 

Neotrygon annotata Plain maskray 1.65 medium NT 

Pateobatis hortlei Hortle's whipray 1.65 medium VU 

Haemigaleus australensis Australian weasel shark 1.69 medium LC 

Sphyrna mokarran Great hammerhead shark 1.71 medium EN 

Rhina ancylostoma Shark ray 1.76 medium VU 

Eusphyra blochii Winghead shark 1.78 medium EN 

Himantura leoparda Leopard whipray 1.80 medium VU 

Stegostoma fasciatum Zebra shark  1.81 medium EN 

Carcharhinus sorrah Spottail shark 1.85 medium NT 

Chiloscyllium punctatum  Bamboo Shark 1.89 medium NT 

Rhizoprionodon acutus Milk shark 1.89 medium LC 

Gymnura australis Australian butterfly ray 1.94 medium LC 

Himantura australis Australian whipray 1.97 medium NE 

Anoxypristis cuspidata Narrow sawfish 1.97 medium EN 

Rhizoprionodon taylori Australian sharpnose 
shark 

1.97 medium LC 

Rhynchobatus palpebratus Eyebrow wedgefish 2.03 high NE 

Carcharhinus coatesi Australian blackspot shark 2.09 high NE 

Maculabatis astra Blackspotted whipray 2.23 high LC 
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6.4 Discussion  
 

ERAs of prawn trawls have detected high numbers of elasmobranchs that are subjected to 

bycatch in tropical regions, with demersal batoids most often being the most at risk to this 

form of fishing (Stobutzki et al., 2002) as well as some coastal sharks (Clarke et al., 2018). 

Particularly low productivity species that are most susceptible to interact with fishing gear are 

most vulnerable to over-exploitation (Hobday et al., 2011). This study found that of the 39 

elasmobranchs caught in the fishery only 3 species were at high risk, two demersal batoids 

and one coastal shark species. The majority of elasmobranchs were ranked as having medium 

risk. However, the results are based on irregular sampling and further monitoring of bycatch 

rates over time may show that the risk level for some of these species may change. In 

addition, future increases in fishing effort could elevate some species to a higher risk 

category, such as the hammerhead sharks Sphrna lewini and Eusphyra blochii. Of particular 

concern also is the narrow sawfish Anoxypristis cuspidata which is considered to be 

Endangered on the IUCN Red List. The Gulf of Papua was assessed to still have higher 

numbers of sawfish compared to depleted populations in other regions of the world (White et 

al., 2017a) which could mean that encounters with the fishery could be more prevalent than 

reported here.  

 

The inshore shark species R. taylori and C. coatesi were the most commonly caught species 

in the GoPPF with the total number of R. taylori far exceeding all other species caught. 

Rhizoprionodon taylori is a prolific breeder and possibly better placed to withstand current 

fishing effort (Baje et al., 2018, Simpfendorfer, 2003). In contrast, this thesis (Chapter 5) has 

shown that C. coatesi has a slower growth rate and matures later than other small-bodied 

carcharhinid sharks and overall has a lower biological productivity. Thus, the population of 
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C. coatesi may be more negatively impacted by the fishery. The assessment conducted in this 

study are semi-quantitative but also highlight the importance of population-specific biological 

data which greatly aids the interpretation of risk, and the development of more quantitative 

risk assessments based on species-specific life history data and estimates of population 

productivity (Cortés et al., 2010). 

 

Turtle Excluder Devices (TEDs) and bycatch reduction devices (BRDs) are extensions and 

modifications of trawl gear used to prevent unintentional catch (Eayrs, 2007). The use of 

these devices can be configured to suit a specific fishery (Duarte et al., 2019). For example, a 

combination of both TED and BRD use has proven to be effective in minimising the catch of 

skates in Suriname, South America (Willems et al., 2016). TEDs were trialled in the GoPPF 

in 1988 and 1989 to limit the capture of finfish and showed that the catch specific species and 

larger size ranges  could be considerably reduced (Matsuoka and Kan, 1991, Kan, 1991), but 

TEDs have not yet been adopted in this fishery. Studies in Australia have shown that though 

the capture of smaller individuals remains high (Stobutzki et al., 2002), TEDs are successful 

at preventing the capture of large elasmobranchs (Brewer et al., 2006) and have reduced the 

mortality of species when introduced (Griffiths et al., 2006). The sustainability of the 

following species improved after the introduction of TEDs in the Griffiths et al. (2006) study 

of the Northern Prawn Fishery in Australia: R. acutus, Chiloscyllium punctatum, 

Carcharhinus coatesi, Carcharhinus sorrah and Anoxypristis cuspidata. A similar result 

would be expected for the GoPPF along with a reduction in the capture of larger sharks and 

rays if TEDs and BRDs are eventually introduced. 
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The protection of threatened populations requires a management approach that takes into 

account the combined impact of different fisheries on a population. Additional fishing 

pressure independent of the GoPPF may also increase the total risk from fisheries on some 

populations. Coastal fishing by local communities is common in the Gulf of Papua for 

subsistence and semi-economic activities, this has the potential to increase with emerging 

fisheries activities. However, at present it is considered to be low given the low human 

population density in the area (White et al., 2017a). Vessels in the PNG tuna longline fishery 

also fish in the Gulf and capture adult hammerhead sharks and other pelagic species that are 

not common in the GoPPF (White et al., in press). Therefore, pelagic species that may have a 

low risk level in the GoPPF may be more susceptible to other fisheries.  

 

The ERA provides a broad method to determine the sustainability of bycatch species. Where 

fishery specific data is limited, assumptions are often made in a precautionary manner or 

based on information from other similar fisheries such as the case here. Other data that 

improve risk assessments are based around the fate of species when caught, post capture 

handling, release and mortality. Understanding the fate of a species or specific size classes 

that are able to survive capture can lead to safe handling procedures and the eventual release 

of individuals with some chance of survival (Ellis et al., 2017). Implementation of these 

approaches reduce the overall risk rating of species to which they are applied. 

 

This study is a first attempt at assessing the ecological risk to elasmobranch bycatch in the 

GoPPF. Approximately 30% of all shark and ray species that have been recorded in PNG 

(White et al., 2017b), are caught in the fishery, of the 39 species encountered, 16 are endemic 

to the Gulf of Papua and northern Australia. The high diversity and endemism as well as the 



126 
 

regular capture of immature size classes indicate that the Gulf of Papua is an important 

breeding and potentially a nursery area, and therefore is an important area for conservation of 

threatened elasmobranchs in PNG. ERAs require a wide suite of data including life history, 

ecology of species, catch and operational information of the fishery and potential survival 

post capture. Part of this information has recently been established for elasmobranchs in the 

Gulf of Papua (White et al., 2017b), however further monitoring of bycatch rates is needed to 

improve assessments in future. The reduction of bycatch through the introduction of TEDs 

and BRDs in the GoPPF is also needed to reduce fishing pressure on a number of threatened 

species. 
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Chapter 7  General Discussion 
 

The Gulf of Papua Prawn Fishery (GoPPF) licenses vessels to fish for a number of 

commercially valuable crustaceans in Papua New Guinea. Fishing grounds extend across the 

Gulf all year round except for a demarcated area closed to fishing for a three month period 

between December and March each year (National Fisheries Authority, 2008). The fishery 

has undergone a decrease in size from accommodating a foreign fleet of up to 30 vessels to 

presently being reserved for partnerships with national operators, with only 15 licences  

issued (Evans et al., 1995) however only 6 to 7 vessels are actually actively fishing. The 

stocks exploited by the fishery (mostly penaeid prawns) were considered to be under-

developed (Kompas and Kuk, 2008) and past research has focused mostly on the potential 

yield and factors affecting that (Gwyther, 1982, Evans et al., 1997); but little attention has 

been given to the large proportion of bycatch generated by the fishery (White et al., 2019, 

Evans et al., 1995, Matsuoka and Kan, 1991).  

 

This thesis covered aspects of the biology and ecology of elasmobranch bycatch in the 

GoPPF and developed an Ecological Risk Assessment (ERA) to evaluate the potential effects 

on the species caught. The ecological component of this study included an analysis of the diet 

of the three most abundant shark species taken in the fishery (White et al., 2019): the 

Australian sharpnose shark (Rhizoriopodon taylori), the Australian blackspot shark 

(Carcharhinus coatesi) and the milk shark (Rhyzoprionodon acutus). Chapter 3 considered 

competition and resource partitioning among these sympatric species. In Chapters 4 and 5 

biological attributes of R. taylori and C. coatesi were investigated. The age, growth and 

maturity studies provided an assessment on the likely ability of two of the most common 

elasmobranch bycatch species to sustain fishing pressure. The ERA in Chapter 6 utilised both 
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biological and ecological data along with fishery information to provide an assessment of all 

other of elasmobranchs caught in the GoPPF. This final output of this work is highly relevant 

to the role and functions of the National Fisheries Authority (NFA) as a fisheries 

management body and the Conservation and Environment Protection Authority (CEPA) of 

Papua New Guinea dealing with matters of environment and conservation. Both organisations 

require this information to aid in decision making processes. Furthermore, in broader terms 

the results of this work are also significant for regional and global assessments of sharks and 

rays as it provides some of the first information on the effects of prawn trawl bycatch in 

poorly studied areas of the equatorial Pacific.  

 

The diet research in Chapter 3 includes the first empirical data of trophic ecology of the three 

shark species studied (C. coatesi, R. acutus and R.taylori). In a region where the impact of 

mining and proposed coastal developments have been discussed for many years (Hettler et 

al., 1997, Campbell, 2011), such ecological data may be considered as baseline information 

relevant to environmental or ecological impact assessments in the future, especially with 

regard to projects that impact the inshore coastal zones. Moreover, gaining an understanding 

of the ecological attributes of species serve an important role in examining the potential 

impacts of fisheries through mapping of ecosystem processes (Link et al., 2002). 

 

A general model of the life history of small-bodied shark species consists of rapid growth in 

early life stages reaching maturity at in just 1-3 years (Smart et al., 2013, Gutteridge et al., 

2013). However, the age, growth and maturity parameters for R. taylori and C. coatesi from 

the GoP (Chapters 4 and 5) show that such biological traits are not common among all small 

bodied coastal carcharhinids, highlighting the variability of life history traits among whaler 
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sharks (Cortés, 2000). The life history of C. coatesi in the GoP deviates from most other 

small-bodied coastal carcharhinids including R. taylori, having a slower growth rate, reaching 

maturity at a later age with relatively low fecundity. This therefore increases its risk of over 

exploitation as observed in the ecological risk assessment conducted in Chapter 6. 

Differences in life history characteristics can be attributed to evolutionary trade-offs to ensure 

greater survivability (Reynolds et al., 2001) and latitudinal variation (Lombardi-Carlson et 

al., 2003, Parsons, 1993, Taylor et al., 2016). Another possible contributing factor could be 

density dependent population changes induced by fishing pressure, differences in asymptotic 

length, growth and maturity have been observed in populations exposed to fishing over time 

(Carlson and Baremore, 2003, Sosebee, 2005, Coutré et al., 2013). There is, therefore, a need 

for monitoring of population-specific life history parameters so that wider demographic 

analyses are accurate because of the important gear management implications that they can 

have (Fujiwara, 2012, Heino et al., 2013). 

 

The risk assessment conducted in Chapter 6 is a significant development as it is the first ERA 

conducted for a small local fishery in PNG. Using available data, a preliminary assessment of 

risk was established for each elasmobranch bycatch species encountered in the GoPPF. This 

study is a concerted effort to apply an ecosystem based fisheries management approach 

(EBFM) to the GoPPF that has been managed to date largely from a target species 

perspective with little effort to enforce the reduction of bycatch (Kan, 1991, Matsuoka and 

Kan, 1991). Importantly the study identifies potential areas of data collection that will allow 

future ERAs to be more quantitative (Zhou and Griffiths, 2008, Cortés et al., 2010) in nature 

and therefore more robust.   
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This longstanding issue of bycatch is prevalent in many fisheries (Oliver et al., 2015) and 

contributes to the wastage of a wide range of taxa including fish, mammals and birds (Davies 

et al., 2009, Read et al., 2006, Wallace et al., 2010, Lewison et al., 2014). Approaches to 

dealing with the problem of bycatch have been proposed (Lewison et al., 2011, Crowder and 

Murawski, 1998) and standards (Kirby and Ward, 2014) have been developed for some 

regions, and work is ongoing as more fisheries management organisations take on an EBFM 

approach (Caddy and Mahon, 1995). However the vast majority of fisheries worldwide 

remain deficient in bycatch data relating to fishery operations, catch rates and specific 

biology and ecology of species (Soykan et al., 2008). This is a major limiting factor to the 

implementation of EBFM which aims to improve the sustainability of fisheries and minimise 

impacts to the wider environment (Dayton et al., 1995, Pikitch et al., 2004). The need to 

address this data gaps remain critical (Molina and Cooke, 2012) in light of the current global 

threat to many marine species, including a large number of sharks and rays (Davidson et al., 

2016, Dulvy et al., 2014). Therefore, the studies conducted here cumulatively provide the 

foundations for further development of the EBFM approach for the GoPPF alongside 

increasing the knowledge of how marine species are exploited in the region for better 

decisions to be made in terms of safe guarding the survival of species.   

 

Papua New Guinea’s strategic plan “Vision 2050” (Ambang, 2012) states the intent to 

develop the county’s resources including marine resources for further economic gain. 

Consequently, one of the four pillars of PNG’s constitution declares that development should 

be achieved in a sustainable manner while fostering the protection of the natural environment 

(Constitution of the Independent State of Papua New Guinea). To practically achieve these 

overarching goals requires focused research, while the need for building and strengthening 

PNG’s research capacity has been recently recognised at a policy level (Forsyth, 2015) there 
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is still a functional disconnect between PNG research institutions to address the data needs of 

specific government sectors including fisheries, as such the pressing need for evidence-based 

decision making remains. The work presented in this thesis begins to address requirements 

under the Fisheries Management Act of PNG and the Gulf of Papua Prawn trawl fishery 

management plan that recognise the importance of information on bycatch and to operate the 

fishery with minimal impacts to the wider marine environment. 

 

International concern for the drastic decline of elasmobranch stocks has led to a number of  

organisations taking steps to prevent further loss of species (Cavanagh et al., 2008, Clarke et 

al., 2014). In 1999 member countries of the United Nations (UN) agreed that a National Plan 

of Action for Sharks (NPOA) will be drafted by members as a voluntary obligation. A 

number of countries have progressed this which outlines the steps that will be taken at a 

national level from improving data collection and research, management, education and 

consultation with stakeholders (Davis and Worm, 2013). To date Papua New Guinea has not 

developed an NPOA for sharks, but management and conservation of their shark and ray 

fauna would likely benefit from the development of such a plan. Papua New Guinea is now in 

a much stronger position to start to formulate its national plan through the NFA as leading 

national body as a result of this research and other recent elasmobranch studies as part of an 

ACIAR funded research collaboration between NFA, CSIRO, JCU and UPNG (D'Alberto et 

al., 2016, Smart et al., 2016a, Smart et al., 2017a, White et al., 2017a, Grant et al., 2018).   

 

The International Union for the Conservation of Nature (IUCN) conducts assessments to 

characterise the level of threat to a species and hence its risk of extinction. These assessments 

require a broad range of information including the biology, ecology and utilisation of species 



132 
 

(https://www.iucnredlist.org/). Country specific information is important for species with 

wide geographic distributions as depending on the likely status of stocks and level of 

exploitation a specific risk category can be assigned for the same species in different regions 

which then indicates specific management and conservation strategies. The assessments are 

also equally important for the conservation of endemic species and potentially shared stocks, 

especially between the GoP and northern and north-eastern Australia where there is a high 

degree of faunal similarity. The extent to which these stocks are shared will likely require 

joint management efforts but requires more study to fully understand. 

 

The Convention on Illegal Trade of Endangered Species of Wild Flora and Fauna (CITES) 

regulates the trade of endangered species as a complementary measure for management and 

conservation (Vincent et al., 2014). Countries that are signatory to the Convention have to 

ensure that the import and export of species listed under CITES must follow a licensing 

system to regulate the international trade of specimen (https://www.cites.org). Several species 

caught in the GoPPF are listed under CITES, all three hammerhead species (Sphyrnidae), 

devilrays (Mobulidae) and all species of the families Rhinidae and Glaucostegidae are listed 

in Appendix II while sawfishes (Pristidae) are listed in Appendix I. The possibility that fins 

from some of these species enter the shark fin trade out of PNG in an unregulated manner is 

highly likely and a matter of concern given the endangered status of these species (White et 

al., 2017a, Vieira et al., 2016). This presents further tasks of monitoring and enforcement to 

be put in place by the NFA to aid in conservation efforts. The development of non-

detrimental findings (NDF) is also a procedural CITES requirement for member nations if 

there is to be legal export of Appendix II listed species. This documentation serves as proof 

that any specimen transported has been collected in a manner that poses no risk to the 

survival of a species. However for PNG and the wider Oceania region the progress of such 
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procedures is limited by the paucity of data surrounding the utilisation of species 

(Simpfendorfer, 2014). The information contained in this thesis will also contribute directly 

to this data need. 

 

With a unique geography PNG is situated in a region of high biodiversity including a wide 

range of elasmobranch species composition especially in the GoP. In its present state the 

GoPPF is a relatively small however without addressing issues surrounding bycatch, any 

future increases in fishing effort will be detrimental to species already facing high levels of 

risk. Modern approaches to fisheries management incorporate reference points based on 

population parameters to develop a harvest strategy. The underlying basis for this is data on 

the life history and ecology of impacted species (Caddy and Mahon, 1995). The potential for 

PNG to develop management of its fisheries to better standards can be realised through 

focused research to address data gaps. It is hoped that the work presented in this thesis begins 

to situate the importance of ongoing PNG specific fisheries science as a fundamental basis for 

management and conservation decisions and strategies for the country moving forward. 
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7.1 Future research 
 

The studies presented here are a baseline for future work to be carried out on the bycatch of 

the GoPPF and the elasmobranch fauna of southern PNG more generally. Aspects of biology 

and ecology of only three species (C. coatesi, R. acutus and R. taylori) were investigated, 

along with a risk assessment suited to data poor conditions for the range of elasmobranch 

bycatch. To address the uncertainties that still exist there is scope for further work which 

could include the following; (1)  studies to determine both biological (life history) and 

ecological aspects (diet and trophic ecology) of species caught in the fishery, particularly 

those that are caught in considerably high numbers such as the bamboo shark (Chiloscyllium 

punctatum), Australian weasel shark (Hemigaleus australiensis), eyebrow wedgefish 

(Rhynchobatus palpebratus), Australian butterfly ray (Gymnura australis) and the 

blackspotted whipray (Maculabatis astra), (2) studies focused on spatial ecology (movement, 

migration and habitat use) to provide a better understanding of  susceptibility to the fishery, 

(3) monitoring of bycatch catch rates and fishery operations to improve understanding of 

temporal changes in bycatch composition, (4) investigate the fate of bycatch species to 

determine where survivability can be improved either through gear changes or handling 

practices, (5) develop gear modifications for the introduction of TEDs and BRDs to reduce 

the overall bycatch in the fishery, (6) assess the degree to which shark and ray stocks are 

shared between PNG and Australia to develop joint management and conservation efforts if 

necessary and (7) determine the taxonomy of cryptic and unknown species to account for 

biodiversity. These potential areas of research can be supported by continued sampling and 

monitoring by fishery observers and independent research where possible. In general, the 

research format used here and specific methodologies have a direct application to other 

fisheries in PNG and can be used to assess the sustainability of other impacted stocks. 
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