Development of a two-stage limb ischemia model to better simulate human peripheral artery disease

Krishna, Smriti M., Mohamed Omer, Safraz, Li, Jiaze, Morton, Susan K., Jose, Roby J., and Golledge, Jonathan (2020) Development of a two-stage limb ischemia model to better simulate human peripheral artery disease. Scientific Reports, 10. 3499.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (9MB) | Preview
View at Publisher Website: https://doi.org/10.1038/s41598-020-60352...
 
5
7


Abstract

Peripheral arterial disease (PAD) develops due to the narrowing or blockage of arteries supplying blood to the lower limbs. Surgical and endovascular interventions are the main treatments for advanced PAD but alternative and adjunctive medical therapies are needed. Currently the main preclinical experimental model employed in PAD research is based on induction of acute hind limb ischemia (HLI) by a 1-stage procedure. Since there are concerns regarding the ability to translate findings from this animal model to patients, we aimed to develop a novel clinically relevant animal model of PAD. HLI was induced in male Apolipoprotein E (ApoE(-/-)) deficient mice by a 2-stage procedure of initial gradual femoral artery occlusion by ameroid constrictors for 14 days and subsequent excision of the femoral artery. This 2-stage HLI model was compared to the classical 1-stage HLI model and sham controls. Ischemia severity was assessed using Laser Doppler Perfusion Imaging (LDPI). Ambulatory ability was assessed using an open field test, a treadmill test and using established scoring scales. Molecular markers of angiogenesis and shear stress were assessed within gastrocnemius muscle tissue samples using quantitative polymerase chain reaction. HLI was more severe in mice receiving the 2-stage compared to the 1-stage ischemia induction procedure as assessed by LDPI (p = 0.014), and reflected in a higher ischemic score (p = 0.004) and lower average distance travelled on a treadmill test (p = 0.045). Mice undergoing the 2-stage HLI also had lower expression of angiogenesis markers (vascular endothelial growth factor, p = 0.004; vascular endothelial growth factor-receptor 2, p = 0.008) and shear stress response mechano-transducer transient receptor potential vanilloid 4 (p = 0.041) within gastrocnemius muscle samples, compared to animals having the 1-stage HLI procedure. Mice subjected to the 2-stage HLI receiving an exercise program showed significantly greater improvement in their ambulatory ability on a treadmill test than a sedentary control group. This study describes a novel model of HLI which leads to more severe and sustained ischemia than the conventionally used model. Exercise therapy, which has established efficacy in PAD patients, was also effective in this new model. This new model maybe useful in the evaluation of potential novel PAD therapies.

Item ID: 64374
Item Type: Article (Research - C1)
ISSN: 2045-2322
Keywords: experimental models of disease; translational research; peripheral arterial disease; PAD; limb ischemia; two-stage limb ischemia
Copyright Information: Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not per-mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0.
Funders: James Cook University (JCU), Queensland Government, National Health and Medical Research Council of Australia (NHMRC)
Projects and Grants: NHMRC 1117061
Date Deposited: 16 Sep 2020 07:44
FoR Codes: 32 BIOMEDICAL AND CLINICAL SCIENCES > 3201 Cardiovascular medicine and haematology > 320199 Cardiovascular medicine and haematology not elsewhere classified @ 100%
SEO Codes: 20 HEALTH > 2001 Clinical health > 200105 Treatment of human diseases and conditions @ 100%
Downloads: Total: 7
Last 12 Months: 7
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page