
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is the Accepted Version of a paper published in the 

International Journal of Climatology: 

 

Everingham, Y.L., Clarke, A.J., and Van Gorder, S. (2008) 

Long lead rainfall forecasts for the Australian sugar 

industry. International Journal of Climatology, 28 (1). pp. 

111-117.  

 

http://dx.doi.org/10.1002/joc.1513   

ResearchOnline@JCU 

http://dx.doi.org/10.1002/joc.1513


Everingham, Clarke & Van Gorder, Long Lead Rainfall Forecasts for the Australian Sugar Industry  Page 1/25 

Long Lead Rainfall Forecasts for the Australian Sugar Industry 1 

 2 

Y.L. Everingham
a,

, A.J.  Clarke
b
, S. Van Gorder

b
 3 

a
School of Mathematical and Physical Sciences, James Cook University, Townsville, 4 

Queensland, 4814, Australia. 5 

b
Department of Oceanography, The Florida State University, Tallahassee, Florida, USA 6 

 7 

ABSTRACT 8 

Rainfall variability is a crucial element that impinges on the success of sugarcane growing 9 

regions around the world. As the scientific community and industry personnel gain more 10 

experience at working participatively, the ability of long range rainfall forecasts to reduce the 11 

risk and uncertainty associated with decisions impacted by rainfall variability has become 12 

increasingly recognized. Some important decisions, however, require knowing the chance of 13 

rain at early lead-times that span the austral autumn period. These types of decisions remain 14 

largely unassisted by climate forecasting technologies owing to the boreal spring (austral 15 

autumn) persistence barrier. Taking the Australian sugar industry as a case study example, 16 

this paper explores the capability of a long-lead statistical ENSO prediction model to reduce 17 

the risk associated with decisions that must be made before autumn and are effected by 18 

rainfall anomalies post-autumn. Results across all regions considered in this study indicated a 19 

higher risk of obtaining an above-median rainfall index when the statistical model predicted 20 

La Niña type conditions to emerge post spring. For selected regions this risk was reduced 21 
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when the model predicted El Niño type conditions for the same period. In addition, the model 1 

would have provided an earlier indication of the likelihood of disruption due to wet harvest 2 

conditions in a year that devastated the Australian sugar industry. This benchmark study has 3 

highlighted the potential of an ENSO prediction model to aid industry decisions that have 4 

previously been made in isolation of probabilistic knowledge about future rainfall conditions. 5 

 6 

KEY WORDS: ENSO, agriculture, boreal spring, austral autumn, barrier, rainfall 7 

 8 

1.  INTRODUCTION 9 

 10 

Rainfall variability impacts agricultural industries in both developed and developing 11 

countries across the globe. The generation of probabilistic knowledge about the future state of 12 

the climate and the integration of this information into a decision making framework provides 13 

opportunities for industries to prepare for climate variability. The El Niño Southern 14 

Oscillation phenomenon (ENSO) is a major contributor to the climate variability that is 15 

experienced around the world (Trenberth and Caron, 2000). Consequently, substantial 16 

research efforts have focused on accurately predicting ENSO type indicators. 17 

 18 

A major difficulty in predicting ENSO variability is its lack of persistence across autumn (the 19 

autumn barrier).  Consider, for example, the often used El Niño monthly index NINO3.4, 20 

defined as the departure of the sea surface temperature (SST) from the seasonal cycle for the 21 

central-east equatorial Pacific from 5S-5N, 170W-120W.  Like other major ENSO 22 

indices, NINO3.4 is highly persistent across the austral spring , but is not persistent across the 23 

autumn period.  For example, the correlation of the July time series with the following 24 
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January time series is 0.85 but the correlation of the January time series with the following 1 

July is only 0.03. If forecasting capability across the autumn barrier could reach a level 2 

acceptable to industry, and be integrated with key decision making activities, then 3 

opportunities exist for agricultural industries to enhance long term forward planning activities 4 

previously impeded by the autumn barrier.  5 

 6 

The success of an Australian sugarcane cropping season depends on rainfall and the ability to 7 

forecast it. In Australia most sugarcane is grown in a narrow strip along the east coast 8 

between the latitudes of 15
o
S to 30

o
S. Here seasonal rainfall patterns are dominated by 9 

ENSO. Everingham et al. (2001, 2002a, 2002b, 2003) have investigated the capability of the 10 

five phase southern oscillation index climate forecasting system (Stone et al., 1996) to 11 

improve forward planning across the farming, harvesting, milling and marketing sectors of 12 

the industry value chain. ENSO also effects sugarcane growing regions in other countries as 13 

well. In South Africa, Singels and Bezuidenhout (1999) found that smaller sugarcane crops 14 

were more likely when the SOI phase (Stone et al., 1996) in November was consistently 15 

negative owing to the reduced chance of rain over the growing season.  Warm ENSO events 16 

are associated with reduced rainy seasons in Trinidad during the development of the event, 17 

and increased rainfall in May to July following the event peak (Pulwarty and Eischeid, 2001). 18 

The latter increase in rainfall has been linked to a reduction in crop size the following 19 

harvest. Hansen et al. (1997) also found a link between ENSO of the year preceding the 20 

harvest and sugarcane yields in Florida. Higher yields were more likely to follow La Niña 21 

events.  Collectively, there exists several examples of how seasonal rainfall forecasts can 22 

reduce the risk associated with irrigation, weed control, planting, harvesting and marketing 23 

decisions.  However, it has been more difficult to reduce the risk of decisions which depend 24 
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on knowing how rainfall anomalies change across autumn because of the autumn persistence 1 

barrier. 2 

 3 

There are several crucial decisions that must be finalised by March and are severely effected 4 

by climate conditions during September to November. Harvesting sugarcane in Australia is a 5 

major operation that traditionally commences around June in each year and under ideal 6 

circumstances is completed before the onset of the December-March rainy season. The first 7 

half of the harvest season (June - August) tends to be relatively dry for most regions with 8 

precipitation levels increasing during the second half of the harvest season (September - 9 

November). Having knowledge about the risk of rain later in the harvest season (eg 10 

September - November) early in the year (eg January - March) would offer enormous scope 11 

for enhancing forward planning activities for several key industry sectors. Marketers who 12 

forward sell Australia's sugar early in the year to customers around the world might heed a 13 

more conservative forward selling strategy and make more flexible shipping arrangements if 14 

disruptions to harvest scheduling due to wet weather were more likely in a particular season. 15 

Similarly, millers could supply marketers with improved initial projections of weekly mill 16 

production if they knew that the harvest season ahead were likely to be wetter or drier. Mills 17 

that crush the harvested cane need to have maintenance completed well before the start of the 18 

harvest season. An indication of wetter than average conditions during September - 19 

November would urge mill managers together with harvest operators to consider starting the 20 

harvest season earlier than traditional start dates. This would reduce the risk of the harvest 21 

extending into the monsoon season and would be especially worthwhile to consider when a 22 

large crop is expected. Thus, an early indication of the chance of rain in September - 23 

November would provide sufficient lead-time for mill managers to arrange labour schedules 24 
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to ensure completion of necessary mill maintenance and allow harvest operators to plan for 1 

an earlier start to the harvest. In addition, a wet end of harvest forecast would suggest that 2 

flood prone paddocks be harvested earlier in the season and this scheduling could be planned 3 

with longer lead times as discussed in Everingham et al., (2001). Knowledge of a drier 4 

harvest season would also be helpful to industry. Less rainfall interruptions would call for 5 

stringent ship scheduling and given that sugar content often increases later in the harvest 6 

season, consideration could be given to delaying the start of the harvest season. To reduce the 7 

impacts of low soil moisture levels, drier paddocks could be targeted for harvesting earlier. 8 

Clearly, there are many advantages to industry if long lead rainfall forecasts that span the 9 

austral autumn barrier could be utilised. 10 

 11 

Owing to ENSO, rainfall conditions during the second half of the Australian sugarcane 12 

harvest season can be linked to the NINO3.4 index defined earlier. Higher than average SSTs 13 

in the NINO3.4 region during the harvest season favours drier periods along the sugar strip in 14 

eastern Australia (El Niño). Conversely, lower NINO3.4 indices would increase the risk of 15 

rain disruptions (La Niña). Although the strength of the relationship between the NINO3.4 16 

index and rainfall varies with region and time of year, an advanced indication of the NINO3.4 17 

index would offer increased utility in forward planning activities for the industry. 18 

 19 

Many models (eg Goddard et al., 2001; McGuffie et al., 2001; Mason and Mimmack, 2002) 20 

predict NINO3.4 and related indices. These models vary in complexity, accuracy and the 21 

degree to which they are affected by the autumn barrier. A simple statistical model derived by 22 

Clarke and Van Gorder (2003), reported cross-validated correlations that exceeded 0.70 for 23 

the September, October and November mean NINO3.4 index when predictions were made 24 
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given model input data (see equation 1) at the end of January, February and March, 1 

respectively. Owing to the simplicity of this model and its ability to forecast across the 2 

autumn barrier, it will be used to determine if the risk of wetter or drier conditions during the 3 

later half of the harvest season (September-November) can be assessed between January and 4 

the end of March. 5 

 6 

A recent study by Ruiz et al. (2006) found that the statistical ENSO prediction method of 7 

Ruiz et al. (2005) produced encouraging skill scores (Potts et al., 1996) for seasonal rainfall 8 

patterns in eight large-scale climate regions of Australia for selected lead-times ranging from 9 

three to eighteen months depending on the region and season.  This is encouraging because 10 

for the period relevant to this investigation, the cross-validated correlations produced by the 11 

Clarke and Van Gorder (2003) model, which we will use, compared favourably with the 12 

correlative measures produced by the Ruiz et al. (2005) model. On the other hand, the Ruiz et 13 

al. (2006) results are for regions of very large scale, and it is not immediately clear how well 14 

an ENSO rainfall prediction scheme will perform in the much smaller sugarcane growing 15 

regions of the Australian sugar industry. Our calculations will test the performance of  16 

rainfall predictions in the small individual sugarcane growing regions. This will allow 17 

industry managers from different regions to understand the capability of the long lead 18 

forecasting technology specific to their region and thus facilitate the integration of the 19 

technology into their respective decision framework. 20 

 21 

The specific objective of the paper is to determine if the risk of wetter or drier conditions 22 

during the later half of the harvest season can be predicted early in the year using the method 23 

of Clarke and Van Gorder (2003). Following a description of the rainfall data, we will 24 
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summarize the statistical ENSO prediction model (Clarke and Van Gorder, 2003) and show 1 

how this model was used to predict the probability of rain events during September to 2 

November early in the year. The Monte-Carlo procedure used to evaluate the computed 3 

probabilities is then described and this is followed by a discussion of the results and some 4 

concluding remarks.  5 

 6 

2. DATA AND METHODS 7 

 8 

2.1   Rainfall Indices 9 

 10 

To avoid doing multiple tests for nearby highly correlated rainfall weather station locations, a 11 

regional rainfall index for each of the seven major sugar sugarcane growing areas spanning 12 

2100 km of Australian coastline was computed.  The regions from north to south are referred 13 

to as Cairns (CNS), Mourilyan (MLN), Lucinda (LUC), Townsville (TVL), Mackay (MCK), 14 

Bundaberg (BUN) and north eastern New South Wales (NSW). Rainfall data for each region 15 

were obtained from the nearest high quality official weather station to each of several mills  16 

in each region (see Figure 1).  A September to November (SON) rainfall index for each 17 

region was computed based on the yearly records of total SON rainfall for each weather 18 

station in the region.   As described in Jones and Everingham (2005), a principal component 19 

analysis (Johnson and Wichern, 2002) yielded a leading principal component which was used 20 

as the regional rainfall index. The leading principal component is a weighted linear  21 

combination of the anomalised SON rainfall totals from each mill rainfall station, where the 22 

weights are chosen to maximise the variability of the new linear transformed variable. The 23 

range of the new index is dependent on the range of the SON rainfall anomalies. A large 24 

amount of variability was explained by the first principal component from each region - CNS, 25 
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87.3%; MLN, 91.1%, LUC 97.3%; TVL 93.2%, MCK 92.9%; BUN 94.0%; NSW, 88.8%. As 1 

displayed in Figure 2, positive correlations exist between neighboring rainfall indices 2 

especially for the more northern regions such as Cairns, Mourilyan and Lucinda. The 3 

correlations do however weaken for southern regions and regions that are more spatially 4 

disconnected.  5 

 6 

2.2   Statistical ENSO Prediction Model  7 

 8 

The Clarke and Van Gorder (2003) model uses the predictor 9 

S(t)  aNINO3.4(t) b(t) ch(t)                                                                                         (1) 10 

to predict NINO3.4(t+Δt) for various lead times Δt. In (1), (t) is an Indo-Pacific equatorial 11 

zonal wind anomaly index and h (t)  describes the anomalous depth of the 20C isotherm 12 

averaged across the equatorial Pacific (5S-5N).  Each of these indices, by itself, can 13 

foreshadow NINO3.4 across the autumn barrier.  For example, January or February or March 14 

values of each of these indices are correlated with NINO3.4 in either September, October or 15 

November later that year with a correlation of at least 0.6.  Since also NINO3.4 is strongly 16 

persistent from the southern hemisphere spring, we expect that the linear combination in (1) 17 

should be an excellent El Niño predictor throughout the year.  Note that the coefficients a, b 18 

and c depend on calendar month because of the phase-locking of ENSO to the calendar year.  19 

The coefficients a, b and c are determined by a least squares fit for each calendar month and 20 

each lead time t. Since these coefficients pertain to calendar months, NINO3.4(t), (t)  and 21 

h (t)  are timeseries of monthly means. Cross-validated calculations by Clarke and Van 22 

Gorder indicated that S(t) is an excellent ENSO predictor. At the suggestion of a referee, we 23 
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have included Figure 3, which suggests that the Clarke and Van Gorder model performs as 1 

well or better than other prediction models. 2 

 3 

In our case predictions of the September to November NINO3.4 index were made using data 4 

from the preceding January, February and March.  Owing to the time the model was 5 

originally constructed, predictions were made for the years 1981-2001 in cross-validated 6 

mode and operationally from 2002-2004. Predicting NINO3.4 indices alone, however, is not 7 

useful.  These indices must be related to variables that directly impact the sugar industry.  In 8 

this paper the predicted NINO3.4 index will be used to compute the probability of an above-9 

median rainfall index. 10 

 11 

2.3  Computing the Probability of Above-Median Rainfall Index 12 

 13 

The phase of predicted SON NINO3.4 was defined to be cool if the predicted SON NINO3.4 14 

was less than –0.5C, neutral if the predicted SON NINO3.4 was between –0.5C and +0.5C 15 

(inclusively), and warm if the predicted SON NINO3.4 was greater than +0.5C. Predictions 16 

were made from data up till the end of January (j = 1 in Table I), February (j = 2 in Table I) 17 

and March (j = 3 in Table I).   For a given prediction month (January, February or March) 18 

and a given region, years of the same predicted NINO3.4 phase were pooled.  The number 19 

years within this pool that had a rainfall index above the median was divided by the pool 20 

sample size to calculate a probability of obtaining an above-median rainfall index.  For 21 

example, Figure 4 shows there were six years (1983, 1984, 1988, 1998, 1999, 2000) when the 22 

February predicted SON NINO3.4 phase was cool. In five of these years (all except 1984) the 23 
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observed rainfall index values for Mourilyan (see Table I) exceeded the median rainfall 1 

index. Thus, the MLN, j=2, cool entry in Table II is 5/6.  2 

 3 

2.4  Measuring the Significance of the Probability of Above-Median Rainfall Index 4 

 5 

A Monte Carlo procedure (Good, 1997) was used to compute the approximate significance 6 

level of the probability of obtaining an above-median rainfall index. This procedure closely 7 

follows that described in Everingham et al. (2003), the only difference being Everingham et 8 

al. (2003) describe the procedure for a five phase climate forecasting system, whereas the 9 

example here has three phases. Briefly, the Monte Carlo procedure involves randomly 10 

permuting the NINO3.4 phases one thousand times whilst holding the rainfall index constant. 11 

This has the effect of simulating 1000 random forecasts. The probability of exceeding the 12 

median of the rainfall index is computed for each permutation. The proportion of 13 

probabilities generated from the randomised data that are, as extreme or more extreme than 14 

the observed (actual) probability represents the significance level. 15 

 16 

More specifically, consider computing a significance level for the example shown in Figure 17 

4. A random forecast was obtained by randomly assigning six years from the 24 possible 18 

years (1981-2004) to be cool predictions of SON NINO3.4 from the end of February.  Six 19 

random years were chosen so that the pool size was the same as that for the model 20 

predictions.  The number of years in the random pool that exceeded the median rainfall index 21 

was then divided by the pool size (6) to obtain a random chance of exceeding the median 22 

rainfall index.  We repeated this process to obtain 1000 random predictions and found that 23 

only 60 times out of 1000 did the random probability equal or exceed 5/6, i.e., the 24 
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significance level of the probability of an above median rainfall index is 60/1000=0.06.  The 1 

smaller the significance level, the less likely the model probability of 5/6 could have been 2 

obtained by chance. Smaller significance levels (e.g. less than 0.10) suggest that industry may 3 

like to reconsider their traditional approach to planning for the coming season as the 4 

probability of obtaining an above-median rainfall index will either be significantly higher or 5 

lower than normal.  6 

 The above calculation of a significance level can be repeated for all months when 7 

predictions were made, for all phases predicted and for all regions (see Table II).  8 

Significance levels are only approximate, since the estimation process used a finite number 9 

(1000) of random samples in each case.   10 

 11 

3. RESULTS AND DISCUSSION 12 

 13 

Table I shows in January, February and March of 1998 the model predicted that the then 14 

current El Niño would switch to La Niña in SON.  The associated unanticipated heavy rains 15 

in SON of 1998 in Australia’s sugar growing regions devastated the Australian sugar industry 16 

(Antony et al., 2002).  An accurate model prediction at that time would have been extremely 17 

helpful, especially if industry were advised and took appropriate action. Whilst 1998 is an 18 

iconic example for the Australian sugar industry, model credibility derived from a range of 19 

years needs to be considered. Table II, derived from all model predictions, shows the 20 

probability of an above-median regional rainfall index following each predicted phase from 21 

the end of January, February and March, and the corresponding significance level.  Table II 22 

suggests that when a cool phase is predicted at the end of February there is a higher risk of 23 

rain during the later half of the harvest season. This trend is reflected across all regions. 24 
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When Equation 1 predicts a warm phase in January then Mourilyan, Lucinda, Townsville and 1 

Bundaberg experience a reduced chance of a wetter than average end of harvest season. With 2 

the exception of Mourilyan, this effect is less evident for other prediction dates and regions. 3 

 4 

4. CONCLUDING REMARKS 5 

 6 

This paper has explored the potential of a statistical ENSO prediction model that can 7 

overcome the autumn persistence barrier to improve decision making capability for the 8 

Australian sugar industry. The main challenge was to provide a useful forecast before the end 9 

of March for rainfall in various sugarcane growing regions from September to November. 10 

The forecast is needed by the end of March because many industry decisions need to be made 11 

by that time. Because of the model's ability to predict El Niño across the autumn period, and 12 

the strong association of SON rainfall with El Niño in Australia's sugar producing regions, 13 

useful long-range rainfall forecasts can be made. When the model predicted a cool SON 14 

NINO3.4 index, the chance of above median rainfall was higher than normal across all 15 

sugarcane growing regions. For predictions of warm SON NINO3.4 index, the SON rainfall 16 

signal is less distinct. The prediction of a warm SON NINO3.4 index from January favoured 17 

below median rainfall for Mourilyan, Lucinda, Townsville and Bundaberg. These findings 18 

offer sugar industry decision makers an additional piece of information that previously has 19 

not been available to assist industry minimize the risk of climate impacts at the end of 20 

harvest. Whilst future research efforts should seek to identify if the size as well as the sign of 21 

the rainfall anomaly index can be predicted, this research has provided a starting point for 22 

researchers and industry to explore the potential benefits of the long-lead modeling approach. 23 

Similar investigations, both in Australia and in other parts of the world can be done for 24 
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industries that would benefit from long-lead forecasting ability across the southern 1 

hemisphere autumn.  2 
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List of Figure Captions 1 

 2 

Figure 1. Seven groups of raw sugar mills in Australia. Seven rainfall indices for each group 3 

were forecast for September to November during January to March. The triangles denote the 4 

location of the sugar mills. 5 

 6 

Figure 2. Scatterplots demonstrating the relationship between the seven regional rainfall 7 

indices. For example the first row shows the CNS regional rainfall anomaly index (mm) on 8 

each y-axis plotted against the regional rainfall indices (mm) for MLN, LUC, TVL, MCK, 9 

BUN and NSW, along the respective x-axes. 10 

 11 

Figure 3.  Correlation performance as a function of forecast lead for predicting the El Niño 12 

index NINO3.4; open circles, dashed line, the Canonical Correlation Analysis model of 13 

Barnston and Ropelewski (1992) for the period 1957-1990; open circles, dotted line, the 14 

Linear Inverse Model of Penland and Magorian (1993) and Penland and Sardeshmukh (1995) 15 

for the period 1970-1993; open circles, solid line the Constructed Analogue (CA) model of 16 

van den Dool (1994a, 1994b) for the period 1981-2001; open triangles, solid line the CA 17 

model for the period 1955-2001; open circles dash-dotted line the Markov model of Xue et al. 18 

(2000) for the period 1980-1995; closed circles, dashed line the climatology and persistence 19 

(CLIPER) model of Knaff and Landsea (1997) for the period January 1993 to November 20 

2006; closed circles, solid line the Clarke and Van Gorder model using Equation (1) for the 21 

period 1981-2001. All correlation results are cross-verified hindcasts except for the Knaff and 22 

Landsea (1997) CLIPER model for which the correlation results are from operational 23 

forecasts.   24 
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Figure 4. Graphical display demonstrating how the Mourilyan (MLN) regional rainfall index 1 

varied across years and between cool, neutral and warm phases predicted in February. The 2 

median rainfall index is approximately zero. 3 

 4 

5 
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Figure 1. Seven groups of raw sugar mills in Australia. Seven rainfall indices for each group 5 

were forecast for September to November during January to March. The triangles denote the 6 

location of the sugar mills. 7 
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Figure 2. Scatterplots demonstrating the relationship between the seven regional rainfall 3 

indices. For example the first row shows the CNS regional rainfall anomaly index (mm) on 4 

each y-axis plotted against the regional rainfall indices (mm) for MLN, LUC, TVL, MCK, 5 

BUN and NSW, along the respective x-axes. 6 

 7 

 8 
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 1 

Figure 3.  Correlation performance as a function of forecast lead for predicting the El Niño 2 

index NINO3.4; open circles, dashed line, the Canonical Correlation Analysis model of 3 

Barnston and Ropelewski (1992) for the period 1957-1990; open circles, dotted line, the 4 

Linear Inverse Model of Penland and Magorian (1993) and Penland and Sardeshmukh (1995) 5 

for the period 1970-1993; open circles, solid line the Constructed Analogue (CA) model of 6 

van den Dool (1994a, 1994b) for the period 1981-2001; open triangles, solid line the CA 7 

model for the period 1955-2001; open circles dash-dotted line the Markov model of Xue et al. 8 

(2000) for the period 1980-1995; closed circles, dashed line the climatology and persistence 9 

(CLIPER) model of Knaff and Landsea (1997) for the period January 1993 to November 10 

2006; closed circles, solid line the Clarke and Van Gorder model using Equation (1) for the 11 

period 1981-2001. All correlation results are cross-verified hindcasts except for the Knaff and 12 

Landsea (1997) CLIPER model for which the correlation results are from operational 13 

forecasts.   14 

15 
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Fig. 4. Graphical display demonstrating how the Mourilyan (MLN) regional rainfall index 4 

varied across years and between cool, neutral and warm phases predicted in February. The 5 

median rainfall index is approximately zero. 6 
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Table I. The predicted NINO 3.4 phase made in January, February and March using Equation 1 

1 and the Mourilyan rainfall index. 2 

 3 

  ENSO phase Rainfall Index (mm) 

Year Jan (j=1) Feb (j=2) Mar (j=3) MLN 

1981 neutral warm warm 883.6 

1982 warm warm warm -112.4 

1983 cool cool cool 60.5 

1984 cool cool cool -103.4 

1985 neutral neutral neutral 437.7 

1986 neutral warm neutral -236.4 

1987 warm warm warm 36.1 

1988 cool cool neutral 440.0 

1989 neutral neutral neutral 742.8 

1990 warm warm warm -224.1 

1991 warm warm warm -370.1 

1992 warm warm neutral -471.0 

1993 neutral neutral warm -97.2 

1994 neutral neutral neutral -202.4 

1995 cool neutral neutral 57.1 

1996 neutral neutral neutral 17.2 

1997 warm warm warm -267.0 

1998 cool cool cool 1061.3 

1999 cool cool cool 633.4 

2000 cool cool cool 842.8 

2001 neutral neutral neutral 144.8 

2002 warm warm warm -426.6 

2003 neutral neutral neutral -420.7 

2004 neutral neutral neutral -10.6 
 4 

 5 

 6 

 7 

 8 

 9 

 10 
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 2 

 3 

Table II. The probability of exceeding the median September-November rainfall index for a 4 

given September-November NINO3.4 phase predicted at the end of January (j=1), February 5 

(j=2) and March (j=3), for different regions. Taking Cairns (CNS) as an example, given data 6 

till the end of January (j = 1), there were 7 years when a ‘cool’ SON NINO3.4 phase was 7 

predicted and in 5 of those years the observed SON rainfall exceeded the median.  This leads 8 

to an entry 5/7 and a probability of 0.71 in the probability part of the table.  The 9 

corresponding significant levels for probabilities of exceedence have also been tabulated. 10 

Significant levels less than 0.10 are in bold type. 11 

 12 

Region

Prediction 

Month

j cool neutral warm cool neutral warm cool neutral warm

CNS 1 5 / 7 5 / 10 2 / 7 0.71 0.50 0.29 0.17 0.68 0.20

2 5 / 6 4 / 9 3 / 9 0.83 0.44 0.33 0.08 0.82 0.21

3 4 / 5 5 / 11 3 / 8 0.80 0.45 0.38 0.15 0.79 0.31

MLN 1 6 / 7 5 / 10 1 / 7 0.86 0.50 0.14 0.04 0.66 0.03

2 5 / 6 5 / 9 2 / 9 0.83 0.56 0.22 0.06 0.50 0.03

3 4 / 5 6 / 11 2 / 8 0.80 0.55 0.25 0.16 0.48 0.09

LUC 1 6 / 7 5 / 10 1 / 7 0.86 0.50 0.14 0.03 0.67 0.04

2 6 / 6 3 / 9 3 / 9 1.00 0.33 0.33 0.01 0.96 0.20

3 5 / 5 5 / 11 2 / 8 1.00 0.45 0.25 0.02 0.80 0.10

TVL 1 6 / 7 5 / 10 1 / 7 0.86 0.50 0.14 0.03 0.66 0.04

2 5 / 6 4 / 9 3 / 9 0.83 0.44 0.33 0.08 0.79 0.21

3 5 / 5 4 / 11 3 / 8 1.00 0.36 0.38 0.02 0.95 0.33

MCK 1 5 / 7 5 / 10 2 / 7 0.71 0.50 0.29 0.17 0.68 0.20

2 5 / 6 4 / 9 3 / 9 0.83 0.44 0.33 0.08 0.80 0.22

3 4 / 5 4 / 11 4 / 8 0.80 0.36 0.50 0.16 0.95 0.67

BUN 1 6 / 7 5 / 10 1 / 7 0.86 0.50 0.14 0.03 0.68 0.04

2 5 / 6 4 / 9 3 / 9 0.83 0.44 0.33 0.07 0.82 0.21

3 5 / 5 4 / 11 3 / 8 1.00 0.36 0.38 0.02 0.95 0.31

NSW 1 6 / 7 4 / 10 2 / 7 0.86 0.40 0.29 0.04 0.90 0.20

2 5 / 6 4 / 9 3 / 9 0.83 0.44 0.33 0.07 0.80 0.20

3 4 / 5 5 / 11 3 / 8 0.80 0.45 0.38 0.15 0.80 0.34

Probability of above median rainfall index

Fraction of years exceeding the median 

rainfall index Significance level 
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