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Abstract. Patients with chronic disability, or in a transient disability state post-
surgery may require a mobility device for their safety and convenience. Patients with 
a low to mid-level severe mobility impairment are mostly comfortable to leave 
hospital in a factory wheelchair without further modifications, however in particular 
chronically disabled wheelchair bound patients require wheelchair cushion 
modifications specifically designed for their condition. Such personalized cushions 
minimise pain from sitting, avoid pressure ulcers, and correct patient posture to 
prevent musculoskeletal and spinal damage. To identify physical properties of a 
complex seat cushion design with multiple layers, for the simulation of optimum 
seat cushions for mobility impaired users, long-term testing was undertaken with 
multiples of different layer combination samples. Physical indentation results for 
reorganised cushions were obtained and further evaluated. We present the first study 
where a complex, multi-layered foam cushion structure is cycle-tested using a 
custom-specific human-shape indenter, derived from 3-D body scanning of a 95th 
percentile stature subject. The test provides physical material properties of the 
complex foam structure under realistic human shape indentation for the selected 
anthropometry. The test results feed and validate a realistic material model, and 
confirm durability and stability over time of the complex foam.  
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1. Introduction 

In 2018, 4.4 million or 17.7% of Australians had a disability; 47.8% of the disabled in 
working age were employed, compared to 80.3% of people without disability. Only 

28.3% of the disabled working population worked full-time, showing how people with 

disability experienced employment restrictions [1]. Overall, 4.4% of disabled used a 

wheelchair in Australia in 2015-16, and 189,200 Australians were wheelchair bound. In 

2011, between 11,300 and 19,000 Australians lived with a spinal cord injury [2]. People 
with a physical disability or patients after spinal surgery may require a mobility device 

for their mobility, safety and convenience. According to the level of medical condition, 

health practitioners can suggest wheelchairs for early patient discharge post-surgery to 

return to normal lifestyle. This practice increases patient turnover and thus capacity at 

hospitals. Chronically disabled people are often fully dependent on a wheelchair for good. 

Wheelchairs come in different sizes and are mostly customizable to cover a larger range 
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of patient anthropometry. Patients with mid-level severity conditions are mostly 

comfortable with an off-the-shelf factory wheelchair without further modifications, but 

others with more severe conditions require modifications specifically designed for the 

patients’ condition to minimize pain from sitting, correct their posture to prevent spinal 

damage, and prevent pressure ulcers [3]. In 2015-16, 4,313 pressure injuries were 

reported by Australian public hospitals as hospital acquired, at a rate of 9.7 per 10,000 
hospitalisations, causing significant cost [4]. Pressure ulcers are a medically critical 

complications as they are likely to cause further infections, abscess, sepsis and cancer 

after onset. The focus in this study was to assess cushion performance for severely 

affected patients.  

PU foams are elastic materials that allow easy structural deformation however they 
eventually return to their initial shape [5]. The downside of repeated loading is loss of 

elasticity over time, which then causes a change in geometry and hardness.  

A large proportion of patients visiting the Queensland Health Rehabilitation 

Engineering Centre (REC) have difficulty controlling body functions or have lost 

sensation below their waist. While in a healthy body the brain naturally senses build-up 

of pressure about the buttocks and lower limb area, and relieves pressure by changing  
posture or through micromotion, a significant proportion of these patients cannot 

independently correct their posture or sense pain from hazardous seating conditions. One 

solution to mitigate this problem are pressure relieving cushions which optimize 

distribution of pressure across weight bearing body parts. 

To prevent such injuries and improve patients’ quality of life, a pressure relieving 

cushion was formerly designed based on experience, trial and error [6]. While this design 
had been successfully used over the past decade, durability remained a problem to solve. 

Moreover, increasingly complex surgery required more intricate cushion solutions to 

prevent pressure injuries. The original design consisted of a simple cushion with three 

layers of foams with the hardness increasing from top to bottom so that the top layer 

provided high elasticity to deform and an even distribution of pressure over the contact 

area. With the aim to minimize pressure discomfort, a similar combination of foams with 
alternating hardness was then layered into cushions of high geometric complexity to 

provide both softness for comfort and hardness for durability [7], where the expectation 

from increased durability is to reduce instances of patients having to re-visit REC for a 

replacement. 

As a result of the evolved structural complexity of such new pressure optimized 
cushions (Figure 1), purely physical development and testing is now uncommon. New 

designs are developed in analytical dynamic models [8] which represent both the cushion 

and human subject for testing in CAE [9]. However, to determine mechanical properties 

of multi-layered foam materials under realistic human like indentation, and in order to 

validate analytical modelling, physical studies are still required. The physical testing 

described here is a novel approach and deviates from standardised material testing, which 
measures indentation force/load deflection (IFD/ILD) with an indenter foot according 

ASTM D3574 [10], ISO 2439 [11] or DIN 53579-1 [12]. The purpose of this study is to 

inform future FEM analytical models with relevant material parameters.     
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Figure 1. Complex multi-layered pressure optimizing cushion, see [6]. 

2. Methods 

This physical study required multiple repetitive tests being conducted on three differently 

configured cushion PU foam samples. Initially a controller was programmed for a 
previously developed indentation rig [13] to perform a cycled loading test on cushion 

samples. Fatigue loading response of the three foam samples was compared, and the 

effect of fluid on the mechanical properties of different types of cushion was investigated. 

2.1. Foam specification 

Three different foams were used, with their hardness indicated by colour from light green 

to pink. The numbering for each foam type is indicative of the foam density and hardness, 
where the first number after the letters represents density and the following value 

indicates hardness. Foams were sourced from Dunlop (Table 1). Green and pink foams 

(Figure 2) have similar density, while the hardness of the pink foam is about 5 times 

stiffer than green. Yellow foam has the highest density, while providing a mid-range 

hardness within the types of foams used. Hardness values are measurements determined 
by Dunlop using the industry standard ASTM D3574 indentation force deflection (IFD) 

method with a standard probe. This involves compression of a given thickness and size 

foam sample block to a deflection of X percent of its initial height, using an indenter of 

200 mm diameter [10]. IFD values differ depending on foam sample height, size, and the 

compression factor. Common sample heights are 50-100 mm [14]; common sample sizes 

are 380x380 mm and 500x500 mm; and common compression factors are X=25%, 
X=40% and X=65%. Lower hardness foam has a better capability to recover from 

deformation caused by a load. All foams used were premium quality, flame retarded and 

with antimicrobial protection, and came in four different thicknesses, 10 mm, 25 mm, 50 

mm, and 75 mm. This made it possible to test cushions of 150 mm total thickness 

composed of different foam layers. Length and width of each foam layer block was 600 

mm x 460 mm. 
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Table 1. Standard foam density and IFD hardness specification for each type of foam used. 

Foam type Colour Density [kg/m³] IFD hardness [N] Resilience Grade description 

EN36-90 Green (G) 36 -1/+1.5kg 90 -10/+30N 50% Soft cushioning  

foam 

EN40-230 Yellow (Y) 40 -1/+2kg 230 ± 20N 45% Firm cushioning 

foam 

MA35-600 Pink (P) 35.0 +2kg 600 ± 50N 30% Extra firm impact 

cushioning foam 

 

 

Figure 2. Three different foams piled in order of increasing hardness from top to bottom. 

2.2. Indenter rig 

The axial indenter rig had been previously developed [13]. It consists of a vertically 

mounted worm drive actuator, driven by a stepper motor that allows precise control of 

the rod movement along the vertical axis, allowing a precise specific load to be generated 

and held still at any given position. The rotation and torque created by the servo motor 
is fed to the worm drive supported by ball bearings. A strain gauge load cell (Honeywell, 

500lbsf/227kgf range; accuracy 0.05%) is mounted between indenter and actuator 

(Figure 3) for the precise measurement of the three-dimensional indentation force. 

Weight plates are used to prevent cushion movement. The indenter mechanism was 

designed to apply high loads with low internal friction, permitting high precision and 
stabilised movements, and reducing power requirements to allow loads of over 80 kg. 

2.3. Indenter probe 

The indenter probe form was derived from 3D scans of a 95th percentile stature (2011), 

median corpulence healthy Australian young man [9] (Figure 4). This same indenter 

form had been previously used in investigating automotive seat pressure comfort, both 

in physical and virtual environments as a model in ANSYS [15]. In this study, a  
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simplified physical model was used with identical geometry, however as rigid form with 

hard surface (Figure 5). 

 

 

Figure 3. Setup of the axial indenter rig, consisting of actuator, load cell, moulded indenter and cushion sample. 

 

 

 

Figure 4. Indenter shell. This picture shows a shell version with a surface layer of soft neoprene, however 
using the same geometry as the indenter shell in the experiment. 
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Figure 5. Hard surface indenter shell, from [6]. 

2.4. Software 

The software to control the indenter rig was programmed using C# on Visual Studio. 

Two test features were implemented, normal and fatigue test. For a normal test, the cycle 

time is selected in minutes and the total run time in hours. For fatigue testing, instead of 
selecting a total run time, the number of cycles is chosen, and delays between each cycle 

if a resting period is required. The software provides a live graph feature to observe real-

time results. At the end of each test all recorded data (time, force and indenter position) 

are saved in an Excel file. 

2.5. Procedure 

Multiple layered foam cushions have mechanical properties which deviate from the 

material data sheets. In addition to testing hardness change over normal use, a wet 

cushion test was implemented to further understand effects of incontinence on cushion 

durability for each foam type. 

A creep compression test (one cycle loading of 60 kg load for one hour; 1.5 m/min), 

which was also used to calculate stiffness ilo IFD and durability test (0.2 Hz; 15,000 
cycles; 80 kg maximum load) were conducted on each foam type. Durability testing was 

also performed on wet cushions to determine the impact. The creep test was run for the 

cushions to obtain their intended property, as foam requires conditioning before it 

reaches its nominal strength. Durability testing for wet cushions was run for 8 hours, and 

5 days for normal cushions. Standardised wet set testing has shown good correlation with 

fatigue and is thus predictive of durability [16]. Hysteresis was not tested. All tests were 
performed according to the aims of the study: 

 

Experiment 1: Creep test and stiffness calculation of multilayered foams with 
different ratios of each foam type. 

Experiment 2: Durability test on normal cushion. 

Experiment 3: Durability test on wet cushion. 
 

Each foam combination was tested so that the cushion front edge was placed at 300 mm 

distance from the centre of gravity (Figure 6). The ratio of foam types in each sample 

varied, with a total cushion thickness of 150 mm. The samples tested in this experiment 

were according to Table 2. 

G. Paul et al. / Modelling of Multilayered Foams for Universal Seat Design242



Table 2. Foam combinations used as study samples. Numbers next to the colour indicate the ratio of foam 
types used in each sample, for example: pink2:yellow1:green3 indicates the use of 50 mm pink, 25 mm yellow 
and 75 mm green foam. 

Number Foam combination and ratio

1 green

2 green1:pink5 

3 green2:pink4 

4 green2:pink4 

5 green3:pink3 

6 green4:pink2 

7 green: yellow 

8 yellow 

9 yellow1:pink5 

10 yellow2:pink4 

11 yellow3:pink3 

12 yellow4:pink2 

13 pink

14 pink2:yellow1:green3 

15 pink2:yellow2:green2 

16 pink2:yellow3:green1 

17 pink3:yellow1:green2 

18 pink3:yellow2:green1 

 
 

 

Figure 6. Indenter placement. 

The wet test experiment followed the same procedure as outlined for the fatigue test. 
Each cushion sample was treated with 800 ml of room temperature tap water. An average 

person urinates between 800 ml to 2 l per day, however foams will not absorb more than 

1 l of water without expelling. The foams had hydrophobic surface characteristic due to 

their antimicrobial protectant treatment, therefore 1/3 cup of water was added during the 

experiment every 10 cycles for 10 times. This test ran with reduced cycles for 8 hours on 

a single day. 
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3. Results 

3.1. Creep test 

Creep for various foam and layered cushion configurations is shown in Figure 7. Green 

and pink foam cushions settled and reached equilibrium in hardness within 20 minutes 

of creep testing, whereas the yellow cushion showed an ongoing and continuous change 

in hardness. Creep for the green foam was over 100 mm, while yellow foam creep was 
about 40 mm and pink foam creep was less than 20 mm. It can be seen that while the 

P2:Y3:G1 or P3:Y1:G2 configurations achieved a creep reduction to about 55 mm, 

P3:Y2:G1 yielded a significantly better creep of about 45 mm, similar to the two layer 

configuration P2:Y4. The two latter ones appear as a reasonable compromise between 

hardness and creep behaviour.  
 

 

Figure 7. Creep under 60 kg load over 1 hour. 150 mm total height of cushion layered with different hardness, 

indicated by P (pink), Y (yellow) and G (green). Numbers represent the thickness ratio of each foam used. 

3.2. Stiffness 

Stiffness as a comparison value to indentation hardness (IFD) of different cushion 

configurations was calculated from creep test measurements with new foams; results are 
shown in Figure 8.  

The common configuration used for average patients at REC is P2:Y2:G2. This 

configuration has a good low overall stiffness of about 10 N/mm, similar to P3:Y1:G2 

and P2:Y3:G1. It is however inferior to P3:Y2:G1 which provided a similar stiffness, 

yet yielded significantly better creep. The two-layer configuration P2:Y4 is slightly 
harder, however performs better in creep and appears to be a good low-cost alternative 

to the three-layer configurations.  
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Figure 8. Stiffness as calculated from creep test measurements with a human form indenter probe at 60 kg 

load. 150 mm total height of cushion layered with different hardness, indicated by P (pink), Y (yellow) and G 

(green). Numbers represent the thickness ratio of each foam used. 

3.3. Durability test 

Foam cushion combinations were tested as green on pink (G:P), yellow on pink (Y:P), 

and pink (P) (all 1:1 ratio). While G:P and P achieved a settled state on the first day after 

start of the experiment, Y:P settled after 5 days (Figure 9). No fatigue was recorded after 

15,000 cycles.    
 

 

Figure 9. Foam cushion durability test over 5 days and 15,000 cycles on three different samples. Blue line: 

G:P; Orange line: Y:P; Grey line: P. Measured with human indenter form under 80 kg cycled. 

cycles 

G. Paul et al. / Modelling of Multilayered Foams for Universal Seat Design 245



3.4. Wet compression test 

The tests showed a continuous increase in compression rate for all three water treated 

samples P, Y and G, while P and G dry/unconditioned samples had reached a settled 

state, and dry Y increased at a much smaller rate. Exemplary results are shown for Y 

(Figure 10). Wet Y reached 40 mm compression after 2:45 hrs, which was not reached 

after 5 days in a dry condition; at the same time, dry Y reached 33 mm compression.   
 

 

Figure 10. Foam cushion ageing/fatigue test over 1 day on wet (blue line) and dry (orange line) Y samples. 

Measured with human indenter form under 80 kg cycled. 

4. Discussion 

While cushion indentation hardness can be optimized to prevent pressure ulcers, pressure 

comfort may require more firmness which contributes to a feeling of support. Evaluating 

the perfect balance between firmness and softness was not an aim of this study and could 

not be determined in the evaluation. The use of pressure mapping is suggested for further 
analysis to find the cushion configuration that most evenly distributes pressure around 

areas of medical concern, such as the rectum. 

Due to inaccuracies of the mechanical and servo motor control assembly, load 

accuracy at full load was 5% or ± 2 kg as each step of movement triggered by the motor 

created 4kg change in load. Due to its non-linear and time-dependent compression 

behaviour, indentation force changes at a set point over time. Therefore, the control 
program was set to step up the indenter rod when the load had eased to 2 kg below the 

intended load. For example, for a target of 80 kg, the motor was set to increase 

indentation when the load measured by the load cell decreased to 78 kg, to obtain 82 kg, 

therefore applying a load of between 78 kg to 82 kg. While this issue did not affect 

smaller indentation, load control became less accurate for higher loads. This could be 

improved by reducing the amount of worm drive rotation in each step; however, this will 
require a different drive gear or position control to be implemented on the worm drive. 

While quasi-linearized stiffness measurements of single foam type cushions 

compare with standardised IFD indentation hardness values, more complex multilayer 

foam cushions show significant deviation from an averaged stiffness prediction in a 

linear model. For example, P5:Y1 was measured at 25.5 N/mm while P had a stiffness 
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of 37.3 N/mm and Y had a stiffness of 12.7 N/mm. When predicting averaged stiffness 

of P (IFD 40% 600 N) and Y (IFD 40% 230 N) in a linear model however, combined 

averaged stiffness would be 33.2 N/mm, and combined averaged IFD would yield 538 

N. The addition of a thin layer of softer foam to a layered cushion thus had a significantly 

over-proportional effect on overall stiffness. Similarly, in IFD hardness the 25 mm softer 

foam layer will contribute over-proportionally to a 40% compression of 60 mm. This 
was confirmed when comparing P4:Y2 to P5:G1. While measured stiffness of both 

samples was equally 20 N/mm, predicted stiffness (hardness) is 29.1 N/mm (IFD 40% 

477 N) for P4:Y2, and 31.9 N/mm (IFD 515N) for P5:G1.  

The ratios of stiffness, i.e. P:Y=2.937, P:G=7.612, Y:G=2.592, were found 

consistently larger (P:Y=+12.6%; P:G=+14.2%; Y:G=+1.4%) than the ratios of IFD 
hardness (P:Y=2.608; P:G=6.666; Y:G=2.555), indicating an increasing influence of 

foam IFD hardness on foam stiffness as measured with a human indenter form under 

quasi-static/quasi-linear conditions. Because harder foams cannot be avoided in cushions 

for a variety of reasons shown before, a key finding of this study is therefore the 

deduction that cushions must use a combination of at least one softer and one harder PU 

foam for comfort reasons. Findings are summarized in Table 3. Results from this study 
will be used to inform a finite element model, which will be used in combination with 

indenters modelled from patient specific 3D scans. The results are essential to provide 

realistic parameters for the wheelchair cushion FE model; these are currently unavailable, 

as neither dry nor wet stiffness of such wheelchair cushion foams have ever been 

established, and tabulated standardised data has been shown to be misleading. While 

durability was confirmed to be no issue in dry foams, it was shown that fatigue behaviour 
of the wet foams requires further study [17] to formulate time-dependent elasticity in the 

FE model.    

Table 3. Summary of foam stiffness measurements using human form indenter vs IFD hardness specification 

for each type of foam used.  

Foam type Density 

[kg/m³] 

IFD hardness [N] Stiffness 

[N/mm] 

Hardness ratio Stiffness ratio 

EN36-90 

(G) 36 -1/+1.5kg 90 -10/+30N 
 

4.9 

EN40-230 

(Y) 40 -1/+2kg 230 ± 20N 
 

12.7 

MA35-600 

(P) 35.0 +2kg 600 ± 50N 37.3 

The results show that medical device cushion foams are likely to lose their expected 

indentation hardness and durability under wet condition, and appropriate treatments are 

suggested to prevent contact with moisture. Climate chamber tests will be required to 
investigate this behaviour further.  

Through experimental variation of geometric parameters in such a correctly 

parametrized wheelchair cushion FE model, we expect to optimize seat pressure of 

occupants, with a particular focus on medically relevant areas.  
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6
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6
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