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Abstract 
Saltwater intrusion due to the over-exploitation of groundwater in coastal aquifers is a critical 

challenge facing groundwater-dependent coastal communities throughout the world. 

Sustainable management of coastal aquifers for maintaining abstracted groundwater quality 

within permissible salinity limits is regarded as an important groundwater management 

problem necessitating urgent reliable and optimal management methodologies. This study 

focuses on the development and evaluation of groundwater salinity prediction tools, coastal 

aquifer multi-objective management strategies, and adaptive management strategies using 

new prediction models, coupled simulation-optimization (S/O) models, and monitoring 

network design, respectively. 

Predicting the extent of saltwater intrusion into coastal aquifers in response to existing and 

changing pumping patterns is a prerequisite of any groundwater management framework. 

This study investigates the feasibility of using support vector machine regression (SVMR), 

an innovative artificial intelligence-based machine learning algorithm, to predict salinity at 

monitoring wells in an illustrative aquifer under variable groundwater pumping conditions.  

For evaluation purposes, the prediction results of SVMR are compared with well-established 

genetic programming (GP) based surrogate models. The prediction capabilities of the two 

learning machines are evaluated using several measures to ensure their practicality and 

generalisation ability. Also, a sensitivity analysis methodology is proposed for assessing the 

impact of pumping rates on salt concentrations at monitoring locations. The performance 

evaluations suggest that the predictive capability of SVMR is superior to that of GP models. 

The sensitivity analysis identifies a subset of the most influential pumping rates, which is 

used to construct new SVMR surrogate models with improved predictive capabilities. The 

improved predictive capability and generalisation ability of SVMR models, together with the 

ability to improve the accuracy of prediction by refining the dataset used for training, make 

the use of SVMR models more attractive.  

Coupled S/O models are efficient tools that are used for designing multi-objective coastal 

aquifer management strategies. This study applies a regional-scale coupled S/O methodology 

with a Pareto front clustering technique to prescribe optimal groundwater withdrawal patterns 

from the Bonriki aquifer in the Pacific Island of Kiribati. A numerical simulation model is 

developed, calibrated and validated using field data from the Bonriki aquifer. For 

computational feasibility, SVMR surrogate models are trained and tested utilizing input-

output datasets generated using the flow and transport numerical simulation model. The 

developed surrogate models were externally coupled with a multi-objective genetic algorithm 

optimization (MOGA) model, as a substitute for the numerical model. The study area 
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consisted of freshwater pumping wells for extracting groundwater. Pumping from barrier 

wells installed along the coastlines is also considered as a management option to 

hydraulically control saltwater intrusion. The objective of the multi-objective management 

model was to maximise pumping from production wells and minimize pumping from barrier 

wells (which provide a hydraulic barrier) to ensure that the water quality at different 

monitoring locations remains within pre-specified limits. The executed multi-objective 

coupled S/O model generated 700 Pareto-optimal solutions. Analysing a large set of Pareto-

optimal solution is a challenging task for the decision-makers. Hence, the k-means clustering 

technique was utilized to reduce the large Pareto-optimal solution set and help solve the large-

scale saltwater intrusion problem in the Bonriki aquifer.  

The S/O-based management models have delivered optimal saltwater intrusion management 

strategies. However, at times, uncertainties in the numerical simulation model due to 

uncertain aquifer parameters are not incorporated into the management models. The present 

study explicitly incorporates aquifer parameter uncertainty into a multi-objective 

management model for the optimal design of groundwater pumping strategies from the 

unconfined Bonriki aquifer. To achieve computational efficiency and feasibility of the 

management model, the calibrated numerical simulation model in the S/O model was is 

replaced with ensembles of SVMR surrogate models. Each SVMR standalone surrogate 

model in the ensemble is constructed using datasets from different numerical simulation 

models with different hydraulic conductivity and porosity values. These ensemble SVMR 

models were coupled to the MOGA model to solve the Bonriki aquifer management problem 

for ensuring sustainable withdrawal rates that maintain specified salinity limits. The executed 

optimization model presented a Pareto-front with 600 non-dominated optimal trade-off 

pumping solutions. The reliability of the management model, established after validation of 

the optimal solution results, suggests that the implemented constraints of the optimization 

problem were satisfied; i.e., the salinities at monitoring locations remained within the pre-

specified limits.  

The correct implementation of a prescribed optimal management strategy based on the 

coupled S/O model is always a concern for decision-makers. The management strategy 

actually implemented in the field sometimes deviates from the recommended optimal 

strategy, resulting in field-level deviations. Monitoring such field-level deviations during 

actual implementation of the recommended optimal management strategy and sequentially 

updating the strategy using feedback information is an important step towards adaptive 

management of coastal groundwater resources. In this study, a three-phase adaptive 

management framework for a coastal aquifer subjected to saltwater intrusion is applied and 

evaluated for a regional-scale coastal aquifer study area. The methodology adopted includes 
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three sequential components. First, an optimal management strategy (consisting of 

groundwater extraction from production and barrier wells) is derived and implemented for 

the optimal management of the aquifer. The implemented management strategy is obtained 

by solving a homogeneous ensemble-based coupled S/O model. Second, a regional-scale 

optimal monitoring network is designed for the aquifer system, which considers possible user 

noncompliance of a recommended management strategy and uncertainty in aquifer parameter 

estimates. A new monitoring network design is formulated to ensure that candidate 

monitoring wells are placed at high risk (highly contaminated) locations. In addition, a k-

means clustering methodology is utilized to select candidate monitoring wells in areas 

representative of the entire model domain. Finally, feedback information in the form of 

salinity measurements at monitoring wells is used to sequentially modify pumping strategies 

for future time periods in the management horizon. The developed adaptive management 

framework is evaluated by applying it to the Bonriki aquifer system. Overall, the results of 

this study suggest that the implemented adaptive management strategy has the potential to 

address practical implementation issues arising due to user noncompliance, as well as 

deviations between predicted and actual consequences of implementing a management 

strategy, and uncertainty in aquifer parameters.  

 

The use of ensemble prediction models is known to be more accurate standalone prediction 

models. The present study develops and utilises homogeneous and heterogeneous ensemble 

models based on several standalone evolutionary algorithms, including artificial neural 

networks (ANN), GP, SVMR and Gaussian process regression (GPR). These models are used 

to predict groundwater salinity in the Bonriki aquifer. Standalone and ensemble prediction 

models are trained and validated using identical pumping and salinity concentration datasets 

generated by solving numerical 3D transient density-dependent coastal aquifer flow and 

transport numerical simulation models. After validation, the ensemble models are used to 

predict salinity concentration at selected monitoring wells in the modelled aquifer under 

variable groundwater pumping conditions. The predictive capabilities of the developed 

ensemble models are quantified using standard statistical procedures. The performance 

evaluation results suggest that the predictive capabilities of the standalone prediction models 

(ANN, GP, SVMR and GPR) are comparable to those of the groundwater variable-density 

flow and salt transport numerical simulation model.  However, GPR standalone models had 

better predictive capabilities than the other standalone models. Also, SVMR and GPR 

standalone models were more efficient (in terms of computational training time) than other 

standalone models. In terms of ensemble models, the performance of the homogeneous GPR 
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ensemble model was found to be superior to that of the other homogeneous and 

heterogeneous ensemble models.  

Employing data-driven predictive models as replacements for complex groundwater flow and 

transport models enables the prediction of future scenarios and also helps save computational 

time, effort and requirements when developing optimal coastal aquifer management 

strategies based on coupled S/O models. In this study, a new data-driven model, namely 

Group method for data handling (GMDH) approach is developed and utilized to predict 

salinity concentration in a coastal aquifer and, simultaneously, determine the most influential 

input predictor variables (pumping rates) that had the most impact onto the outcomes (salinity 

at monitoring locations). To confirm the importance of variables, three tests are conducted, 

in which new GMDH models are constructed using subsets of the original datasets. In TEST 

1, new GMDH models are constructed using a set of most influential variables only. In TEST 

2, a subset of 20 variables (10 most and 10 least influential variables) are used to develop 

new GMDH models. In TEST 3, a subset of the least influential variables is used to develop 

GMDH models. A performance evaluation demonstrates that the GMDH models developed 

using the entire dataset have reasonable predictive accuracy and efficiency. A comparison of 

the performance evaluations of the three tests highlights the importance of appropriately 

selecting input pumping rates when developing predictive models. These results suggest that 

incorporating the least influential variables decreases model accuracy; thus, only considering 

the most influential variables in salinity prediction models is beneficial and appropriate.  

This study also investigated the efficiency and viability of using artificial freshwater recharge 

(AFR) to increase fresh groundwater pumping rates from production wells. First, the effect 

of AFR on the inland encroachment of saline water is quantified for existing scenarios. 

Specifically, groundwater head and salinity differences at monitoring locations before and 

after artificial recharge are presented. Second, a multi-objective management model 

incorporating groundwater pumping and AFR is implemented to control groundwater 

salinization in an illustrative coastal aquifer system. A coupled SVMR-MOGA model is 

developed for prescribing optimal management strategies that incorporate AFR and 

groundwater pumping wells. The Pareto-optimal front obtained from the SVMR-MOGA 

optimization model presents a set of optimal solutions for the sustainable management of the 

coastal aquifer. The pumping strategies obtained as Pareto-optimal solutions with and 

without freshwater recharge shows that saltwater intrusion is sensitive to AFR. Also, the 

hydraulic head lenses created by AFR can be used as one practical option to control saltwater 

intrusion. The developed 3D saltwater intrusion model, the predictive capabilities of the 

developed SVMR models, and the feasibility of using the proposed coupled multi-objective 
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SVMR-MOGA optimization model make the proposed methodology potentially suitable for 

solving large-scale regional saltwater intrusion management problems. 

Overall, the development and evaluation of various groundwater numerical simulation 

models, predictive models, multi-objective management strategies and adaptive 

methodologies will provide decision-makers with tools for the sustainable management of 

coastal aquifers. It is envisioned that the outcomes of this research will provide useful 

information to groundwater managers and stakeholders, and offer potential resolutions to 

policy-makers regarding the sustainable management of groundwater resources. The real-life 

case study of the Bonriki aquifer presented in this study provides the scientific community 

with a broader understanding of groundwater resource issues in coastal aquifers and 

establishes the practical utility of the developed management strategies.  
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Chapter 1: Introduction  
 

This chapter provides a theoretical background to the saltwater intrusion problem in coastal 

aquifers. Section 1.1 of this chapter outlines the various methodologies and approaches used 

in this thesis. Section 1.2 outlines the research significance and is followed by a description 

of the original contributions in Section 1.3. Section 1.4 presents the aims and objectives of 

this thesis. Lastly, Section 1.5 provides details on the thesis organisation and structure.  

1.1 Theoretical background and thesis outline 

Water is a basic necessity of life. Regions with frequent water stress conditions often use 

groundwater as an additional water source (Wada et al. 2010). It is estimated that more than 

two billion people are dependent on groundwater for their daily drinking water needs (Morris 

et al. 2003). Hence, groundwater is a natural freshwater resource that is treasured by many 

communities worldwide. Groundwater supplies almost half of the global demand for drinking 

water, 40% of the water demand of industry and 20% of the water used for irrigation (Foster 

and Chilton 2003). Lately, overall demands for groundwater have increased greatly due to 

rapid growths in population, agriculture and economies (Arnell 1999; Hanjra and Qureshi 

2010; Rijsberman 2006). Hiscock (2011) suggested that the global demand for groundwater 

has tripled over the last 50 years, while its supply has declined. Persistently increasing water 

demands have led to over-exploitation of groundwater resources, resulting in losses of 

freshwater reserves and degradation of aquifers. Over-exploitation of groundwater reserves 

has also affected aquifers in and near coastal zones, where a large proportion of the world’s 

population currently resides. Continuously increasing groundwater abstraction rates have had 

adverse and long-term impacts on coastal aquifers (Ferguson and Gleeson 2012; 

Vandenbohede et al. 2009), necessitating the implementation of sustainable management 

methodologies. Given the pressing status of groundwater scarcity and ongoing deterioration 

in its quality in coastal regions, the development and implementation of a holistic 

groundwater management framework is urgently needed. To achieve this, the present study 

aims to facilitate reliable and adaptive management of coastal aquifers subject to saltwater 

intrusion by the development and evaluation of 1) new salinity predictive models (standalone 

and ensemble), 2) multi-objective optimal management strategies and 3) monitoring network 

design methodologies.  

 

Coastal aquifers are hydraulically connected to the sea. Groundwater abstraction from such 

aquifers disturbs the natural, conventional equilibrium between seawater and freshwater, 

instigating saltwater intrusion (Godinez and Darnault 2008; Koussis et al. 2003). A basic 

illustration of the saltwater intrusion phenomenon is presented in Fig. 1.1. Saltwater intrusion 
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refers to the mass transport of saltwater into areas previously occupied by freshwater (Bear 

et al. 1999; Freeze and Cherry 1979). Overexploitation of groundwater resources has become 

a common issue in coastal regions around the world, many of which are now experiencing 

extensive saltwater intrusion and subsequent groundwater contamination. It is estimated that 

20% of the world's aquifers are over-exploited, resulting in serious consequences such as 

saltwater intrusion (Connor 2015). The European Environment Agency (EEA) has also 

reported that saltwater intrusion due to excessive groundwater abstraction is one of the major 

threats to groundwater reserves in coastal aquifers (Antonellini et al. 2008). These facts 

suggest that the future of coastal aquifers does not look optimistic unless comprehensive 

sustainable management methodologies are developed and implemented. Hence, in this 

study, the focus is on developing and evaluating multi-objective management strategies for 

coastal aquifers using numerical simulation models, new prediction models, coupled 

simulation-optimization models and adaptive management frameworks. Most importantly, 

for evaluation purposes, the developed multi-objective management strategies and adaptive 

management strategies are applied to the Bonriki aquifer, a real regional-scale coastal aquifer 

system situated in the small Pacific island nation of Kiribati.  

 

 

Figure 1.1: An illustration of the pumping-induced saltwater intrusion phenomenon. a) 
Saltwater and freshwater in an equilibrium condition (separated by a transition zone), b) 
saltwater encroaches inwards into the freshwater due to negative hydraulic pressure created 
by groundwater pumping, c) after a period of time, the freshwater becomes contaminated 
with saltwater and d) the pumping well is eventually closed due to saltwater contamination.  
 

Saltwater 
Freshwater 

Well 
a) b) 

c) d) 
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To achieve its overall aims, this thesis is divided into several components. First, support 

vector machine regression (SVMR) models, which are a relatively new type of predictive 

modelling tool, are used to approximate the responses of a complex variable-density-based 

saltwater intrusion model developed for an illustrative aquifer system. Second, after 

validating their predictive capabilities, the SVMR models are linked to a multi-objective 

genetic algorithm (MOGA) model to develop a multi-objective management strategy for the 

Bonriki aquifer system. The multi-objective management model incorporates conflicting 

objectives: maximisation of total pumping from production wells (wells for pumping 

freshwater) and minimisation of total pumping from barrier wells (wells for pumping saline 

water installed near the coastline). Limiting salinity concentrations at monitoring locations 

in the aquifer to a pre-specified limit is set as constraints. Third, uncertainties in the numerical 

simulation model (due to uncertainties in hydraulic conductivity and porosity) are 

incorporated into the development of a multi-objective management strategy using an 

ensemble SVMR prediction model based simulation-optimization (S/O) framework. Fourth, 

an adaptive management framework is developed for the Bonriki aquifer system in which 

feedback information from a designed monitoring network is used to sequentially modify the 

future year’s optimal pumping rates. This adaptive management framework accounts for both 

user non-compliance with the recommended management strategy and uncertainties in 

aquifer parameters. In the later parts of this thesis, a first-ever comparison study concerning 

homogeneous and heterogeneous ensemble models is made to establish a better-performing 

ensemble predictive model. In addition, this thesis also introduces group method of data 

handling (GMDH) models to the field of saltwater intrusion modelling. Specifically, GMDH 

models are trained and tested to predict groundwater salinities in a coastal aquifer and to 

determine the most influential pumping rates influencing the groundwater salinity levels. 

Lastly, this thesis focuses on using artificial planned recharge (AFR) to control saltwater 

intrusion in coastal aquifer systems. The numerical simulation results and a multi-objective 

management model incorporating AFR as one of its management options establishes AFR as 

an efficient and practical solution to the saltwater intrusion crisis currently affecting people 

residing in coastal areas.  

 

Overall, this thesis is an amalgamation of various models, methodologies and approaches 

developed and evaluated for the purposes of predicting, controlling and managing pumping-

induced saltwater intrusion problems in coastal aquifers. All the groundwater simulation 

models presented in this study are developed using the FEMWATER computer code, which 

is a variable-density-based groundwater flow and transport model capable of simulating the 

multifaceted behaviours of coastal aquifer processes. One of the major features of this study 

is its application of the developed methodologies to a regional-scale study area: the Bonriki 
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aquifer. Much of the previous research concerning saltwater intrusion modelling and 

management has focused on illustrative aquifer systems. To fill this research gap, the 

developed multi-objective management model, the multi-objective management model 

incorporating aquifer parameter uncertainty, the adaptive management framework, and the 

heterogeneous and homogeneous ensemble models (comparative study) are evaluated using 

the Bonriki aquifer system as a case study. It is envisioned that this case study will aid in 

developing regional-scale coastal aquifer management strategies and, correspondingly, 

demonstrate the practicality, validity and reliability of the developed methodologies.  

1.2 Research Significance  

Demands on groundwater reserves in coastal aquifers are at an all-time high and will only 

continue to intensify in the near future. Saltwater intrusion due to over-exploitation of coastal 

aquifers is emerging as a critical challenge for coastal communities throughout the world. 

Fresh groundwater reserves in coastal aquifers will quickly reach their limits (if they have 

not already), which will adversely affect groundwater-dependent coastal communities. 

According to Shah et al. (2000), the most serious groundwater challenge facing the world 

today is not in the development of the resource but in its sustainable management. Sustainable 

management of coastal aquifers for maintaining abstracted groundwater quality within 

permissible salinity limits is regarded as an important groundwater management problem 

(Sreekanth and Datta 2012). Henceforth, this research aims to develop, apply and validate 

the application of new predictive models, ensemble models, linked S/O models and a 

monitoring network design, which will aid the development of optimal adaptive management 

strategies for coastal aquifers.   

 

It is surprising to note that while threats to groundwater reserves are well known, little 

research has been conducted on the conception and implementation of groundwater 

management frameworks. This study fills this gap by providing improved techniques for 

regulating groundwater withdrawals without compromising groundwater reserves in coastal 

aquifers. Additionally, groundwater withdrawal patterns and the effects of the exploitation of 

groundwater reserves in coastal aquifers are poorly understood. This study highlights the 

serious impacts of groundwater abstraction and the subsequent impacts of saltwater intrusion 

into coastal aquifers. 

 

Furthermore, there is a persistent need for new solutions to coastal aquifer management 

problems that incorporate new knowledge and data. In this study, new prediction tools such, 

as SVMR and GMDH, are used to predict saltwater intrusion into coastal aquifers. Also, new 

standalone and ensemble predictive models are used as approximate simulators and 
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combined with optimization models in a linked S/O framework to determine optimal 

management solutions for coastal aquifers. In terms of saltwater intrusion modelling, there 

are several numerical techniques available that are capable of simulating coupled flow and 

transport processes in coastal aquifers. However, accurate modelling of saltwater intrusion 

processes in regional-scale aquifer systems is always a complex issue and requires huge sets 

of field data for calibration and validation. Specific aquifer parameters are needed as inputs 

and, therefore, are a prerequisite to the development of accurate saltwater intrusion numerical 

simulation models. Also, the formulation of coastal aquifer management methodologies that 

consider uncertainties in aquifer parameters merits particular consideration. There is an 

urgent need to combine these numerical simulation models with optimization techniques to 

develop optimal yet sustainable saltwater intrusion management methodologies. This study 

provides these solutions. In addition, this study focuses on saltwater intrusion problems in 

the coastal aquifers of small developing island developing states. Small island countries are 

highly susceptible to saltwater intrusion due to their geographic locations and small land 

areas. However, only a limited number of studies have modelled saltwater intrusion processes 

and developed management solutions for aquifers in island localities. Improving research in 

this area is a key feature of this study.  

 

Overall, the development and evaluation of various groundwater numerical simulation 

models, predictive models, multi-objective management strategies and adaptive 

methodologies will provide decision-makers with strategies for the optimal, sustainable and 

long-term use of coastal aquifers. It is envisioned that the outcomes of this research will 

provide information to groundwater managers and stakeholders and provide policy-makers 

with potential strategies for the sustainable management of groundwater resources. The 

Bonriki aquifer case study will provide the scientific community with a broader 

understanding of coastal aquifer groundwater management strategies and their practical 

utility. Moreover, this research explores coastal aquifer management efforts, builds research 

aptitude and provides results that will be of substantial benefit towards maintaining coastal 

groundwater sustainability. This research also fills a major gap in current coastal aquifer 

management capabilities by delivering more reliable, robust and practical management 

solutions. Lastly, the coastal aquifer management methodology that is developed will help 

solve current saltwater intrusion problems and avoid future unforeseen problems as well. The 

outcomes of this work will facilitate the long-term regional-scale management, planning and 

governance of groundwater resources in coastal aquifers. Although much research has 

already been conducted, much more is needed to ensure the optimal management of 

groundwater resources in coastal aquifers.  
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1.3 Original contributions 

This thesis makes the following original contributions: 

1. It makes the first-ever application of SVMR models to the prediction of groundwater 

pumping-induced saltwater intrusion in coastal aquifers. Also, a new sensitivity 

analysis methodology a set of the most influential pumping rates (inputs) that has the 

most impact on the output salinity concentration. The most influential pumping rates 

are used to develop new SVMR prediction models with improved predictive 

capabilities. 

2. The first-ever application of SVMR prediction models to accurately approximate the 

complex groundwater numerical simulation model in the coupled S/O model for 

developing optimal coastal aquifer management strategies.  

3. A new method of analysing huge sets of optimal solutions from a Pareto-front is 

presented. Specifically, the k-means clustering method is applied to provide decision-

makers with a reduced set of optimal solutions that can be easily compared and 

evaluated. 

4. A new objective function for designing a monitoring network for the adaptive 

management of coastal aquifers is presented. Specifically, this study uses 

maximization of the average logarithmic salinity concentration at candidate 

monitoring wells as an objective function to ensure candidate monitoring wells are 

placed in high-risk areas. Also, the first-ever application of k-means clustering 

methodology for determining candidate monitoring locations that are representative 

of the entire study area model domain.  

5. A first-ever application of artificial neural network (ANN), genetic programming 

(GP), Gaussian process regression (GPR) and SVMR algorithms is made to develop 

homogeneous and heterogeneous ensemble models using identical datasets from a 

coastal aquifer system. The prediction performance of two types of ensemble model 

are compared to establish a better-performing predictive ensemble model.  

6. A GMDH algorithm is used for modelling of saltwater intrusion processes in coastal 

aquifers and to evaluate the importance of input variables (pumping rates). 

7. The benefits of using AFR to control saltwater intrusion into coastal aquifers are 

quantified. Also, AFR is incorporated as a management strategy in a multi-objective 

management model of coastal aquifers.  
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1.4 Aims and Objectives 

The main aim of this thesis was to develop and evaluate the performance of new 

computational tools, such as groundwater numerical simulation models, prediction models 

and multi-objective regional-scale management models, to approximate and control saltwater 

intrusion in coastal aquifers.  The specific objectives of this study are as follows. 

Objective 1: Develop and utilize new prediction models to predict salinity concentrations in 

an aquifer system by approximating the responses of a complex variable-density saltwater 

intrusion numerical simulation model.  

Objective 2: Develop and implement a regional-scale, computationally-feasible, surrogate 

model-based coupled simulation-optimization framework for the optimal and sustainable 

utilisation of groundwater from coastal aquifers. 

Objective 3: Incorporate aquifer parameter uncertainty in the linked simulation-optimization 

model based coastal aquifer management model by using ensemble surrogate models.  

Objective 4: Develop an adaptive management framework for coastal aquifers utilizing 

feedback information from the designed monitoring network.  

Objective 5: Develop homogeneous and heterogeneous ensemble models for groundwater 

salinity prediction and compare their performance.  

Objective 6:  Develop and implement group method of data handling-based predictive 

models with variable importance analysis to accurately model saltwater intrusion processes 

in coastal aquifers.  

Objective 7: Develop a multi-objective management model to control saltwater intrusion in 

coastal aquifers that uses planned artificial freshwater recharge as a management strategy. 

1.5 Thesis organisation and structure 

This thesis is comprised of ten chapters. The main contents of Chapters 3, 4, 5 and 6 have 

been published in peer-reviewed journals, while the contents of Chapters 8 and 9 are currently 

under review. References to published and under-review articles are given at the beginning 

of each of these chapters. A summary of the major contents of each chapter is made below. 

Chapter 1 presents the theoretical background to the field of research. It also highlights the 

key components of this thesis, such as its research significance, objectives and organisation. 

Chapter 2 contains a detailed description of saltwater intrusion phenomena and provides a 

comprehensive review of the various methodologies and approaches used in this study.   

Chapter 3 describes the development and implementation of SVMR-based surrogate models 

for predicting saltwater intrusion in coastal aquifers. It also highlights the use sensitivity 

analysis to determine the input pumping rates that have the greatest impact on output salinity 
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concentrations. This sensitivity analysis provides a set of the most influential pumping rates, 

which are used to develop SVMR models with improved prediction accuracy.  

In Chapter 4, a multi-objective management model incorporating a SVMR surrogate-based 

linked S/O model is developed and implemented for the Bonriki aquifer system.  

Chapter 5 details the development and implementation of a multi-objective management 

model for the Bonriki aquifer system that incorporates uncertainty in aquifer parameters. 

Parameter uncertainty is included by using the SVMR ensemble surrogate model-based 

linked S/O model.  

Chapter 6 describes the application of the linked S/O model and the design of a monitoring 

network for the adaptive management of the Bonriki aquifer system.  

Chapter 7 presents a comparative study of the homogeneous and heterogeneous ensemble 

models.  

Chapter 8 introduces the GMDH modelling algorithm to the field of saltwater intrusion 

prediction. GMDH models are developed to predict groundwater salinity levels. Also, a 

variable importance assessment feature of the GMDH algorithm is used to obtain the set of 

most influential pumping rates that has the most impact on the output salinity concentrations. 

Chapter 9 develops and evaluates a multi-objective management strategy for an aquifer 

system using AFR as one of its management options.  

Finally, Chapter 10 presents a summary of the major findings of this thesis and its 

conclusions. 
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Chapter 2: Literature review 

This chapter provides a detailed description of the saltwater intrusion phenomenon and a 

comprehensive review of some of the key concepts and methodologies used in this thesis.  

2.1 Coastal aquifers 

Coastal aquifers are the nexus between the world’s oceanic and hydrologic ecosystems and 

provide a source of freshwater for more than one billion people living in coastal regions 

(Ferguson and Gleeson 2012). Coastal aquifers are hydraulically connected to the sea and, 

therefore, susceptible to saltwater intrusion (SWI). Understanding the theoretical 

background of SWI processes is key to developing efficient SWI preventative measures and 

dependable coastal aquifer management methodologies. In coastal regions, SWI poses a 

major threat to aquifers as it causes the depletion and deterioration of fresh groundwater 

reserves. SWI refers to the mass transport of saline water into zones previously occupied by 

freshwater (Bear et al. 1999; Freeze and Cherry 1979). Due to density differences, saltwater 

(which is denser than freshwater) intrudes beneath the freshwater system, creating a saltwater 

‘wedge’ at the coastline (Mohsen et al. 1990). The resulting saltwater-freshwater interface 

(sometimes called the zone of dispersion) is not a firm boundary but is a transition zone with 

gradual change in salinity. Under equilibrium conditions, this freshwater-saltwater interface 

remains stationary. However, coastal aquifers are hydraulically connected to the sea and 

changes in these equilibrium conditions result in changes to the fresh-seawater interface. 

Such changes in the fresh-seawater interface, and subsequent movement of saltwater into 

freshwater is known as SWI. The SWI process is exceptionally complex as it is affected by 

many factors, such as the geological structure of the aquifer, tidal effects, sea-level changes 

and weather patterns. It is also greatly affected by anthropological activities. Of all these 

factors, excessive and/or unplanned groundwater withdrawal (Narayan et al. 2003) is 

considered to be one of the major causes of SWI. 

2.1.1 Excessive and/or unplanned groundwater withdrawals 

Among all anthropological activities, groundwater pumping has been identified as the main 

cause of SWI in coastal areas. As stated in Section 2.1, under natural conditions, the pressures 

between freshwater-saltwater interfaces remain in equilibrium. However, due to groundwater 

abstraction, the pressure balance turns in favour of the saltwater. This leads to the penetration 

of saltwater into freshwater, resulting in SWI (Essaid 1990). Specifically, groundwater 

pumping gives rise to an up-coning effect, which is one of the major causes of SWI (Werner 

et al. 2009). The extent of saltwater intrusion due to pumping is subject to factors such as the 

magnitudes of freshwater flow rates from the aquifer to the sea, the total rate of groundwater 

withdrawal relative to total freshwater recharge to the aquifer, the distance of pumping wells 
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from the sea side boundary, rainfall intensities and frequencies, rates of evapotranspiration, 

the physical characteristics of aquifer materials, the presence of confining units and tidal 

effects. The effect of groundwater pumping on SWI rates has been exhaustively debated and 

reported in many studies (Alley et al. 1999; Cheng et al. 2004; Reilly and Goodman 1987; 

Sherif and Singh 2002; Zektser et al. 2005). All of these studies have critically examined and 

demonstrated the negative impacts of groundwater withdrawal on coastal aquifers. Therefore, 

there is an immediate need to regulate groundwater pumping patterns (Shah et al. 2003) and 

implement mitigation techniques that control SWI problems in coastal aquifers (Abd-

Elhamid and Javadi 2011).   

2.1.2 Saltwater up-coning 

Saltwater up-coning is a problem of great concern in many coastal aquifers around the world 

(Cai et al. 2014). Saltwater up-coning refers to a vertical rise in the freshwater-saltwater 

interface beneath abstraction wells where fresh groundwater is underlain by saline water 

(Jakovovic et al. 2016; Kura et al. 2014; Werner et al. 2009). Zhou et al. (2005) documented 

a detailed description of saltwater up-coning phenomena, which are not repeated here. Under 

pumping conditions, the freshwater-saltwater interface moves upwards towards the well, 

giving rise to a cone-shaped transition zone. The transition zone moves towards the well, 

resulting in increased salinity levels in the groundwater being pumped. As the pumping rate 

increases, the salinity level in the well increases.  Hence, pumping needs to be regulated 

and/or controlled so that abstraction wells continue to withdraw freshwater as required.     

The consequence of SWI due to up-coning can persist even after groundwater pumping has 

stopped (Rey et al. 2013). It takes a prolonged period for an aquifer to recuperate to its initial 

state. This can lead to extensive changes in the saltwater-freshwater interface, resulting in 

aquifer distortion and groundwater depletion. For this reason, increased salinization of 

coastal aquifers is regarded as the ultimate hydrogeological threat to coastal communities. 

Depletion of fresh groundwater source due to increased salinity levels has been extensively 

documented in the literature (Dagan and Bear 1968; Saeed et al. 2002).  Considering the 

adverse consequences of up-coning, several techniques have been developed and 

implemented to control its effects. Werner et al. (2009) listed some of these saltwater up-

coning controlling measures, which include the rate and/or duration of groundwater 

abstraction, aquifer hydraulic properties, fluid density differences, groundwater recharge 

rates and well locations. In addition, to understand the occurrence of saltwater up-coning, 

many studies have conducted laboratory-based experiments (Koh et al. 2016), theoretical 

analyses (Rubin and Pinder 1977) and numerical modelling (Jakovovic et al. 2011). However, 

more studies on the impacts of saltwater up-coning on fresh groundwater resources in 



Chapter 2: Literature review         
 

11 
 

regional-scale pumping fields are needed, as better information is crucial to the development 

of effective groundwater management strategies.   

2.2 Saltwater intrusion: Groundwater crises in coastal areas  

Groundwater depletion due to SWI is a longstanding issue and numerous studies have 

reported it to be of great concern. Large-scale SWI problems have been reported in all seven 

continents of the world, including Australia (Tularam and Krishna 2009; Werner 2010),  

Europe (Custodio 2010; Scheidleger et al. 2004), South America (Pousa et al. 2007), North 

America (Andrews 1981; Barlow and Reichard 2010; Newport 1977), Asia (Cheng and Chen 

2001; Don et al. 2005; Sherif et al. 2012), Africa (Van Camp et al. 2014) and Antarctica 

(Hillstrom and Hillstrom 2003).  

As highlighted earlier, SWI is a major environmental problem that adversely impacts diverse 

regions around the world. While developed countries are working rigorously to combat the 

issue of SWI, little emphasis has been placed on small Pacific Island Developing States 

(PIDS). The PIDS situated in the Pacific Ocean is one of the regions that are highly vulnerable 

to SWI (Burns 2002; Van Der Velde et al. 2007; White and Falkland 2010). PIDS are very 

small in land area and are surrounded by the ocean. In addition to their geological setting, 

excessive withdrawal of groundwater for local consumption makes SWI relatively rapid. 

Cases of rampant SWI due to unplanned groundwater withdrawals in the PIDS have been 

reported in the Cook Islands (Carruthers 2009), Fiji (Dawe 2001), the Federated State of 

Micronesia (Fletcher and Richmond 2010), Guam (Bendixson et al. 2014), Kiribati (Mourits 

1996), the Marshall Islands (Presley 2005), Nauru (Ghassemi et al. 1996), Niue (Mosley and 

Carpenter 2005), Palau (Füssel 2012), the Solomon Islands (Rasmussen et al. 2009), Samoa 

(Berthe et al. 2014), Tonga (Hay and Kaluwln 1993), Vanuatu (Singh et al. 2001) and Tuvalu 

(Webb 2007).  

The above-mentioned cases imply the widespread problem of SWI in PIDS. More work in 

the area of coastal groundwater management is needed in the PIDS. Improved, reliable, 

robust and practical management solutions are could be instrumental in solving current SWI 

problems and, potentially, avoiding or exploring future unknown problems as well. There is 

a need for better long-term regional-scale management, planning and governance solutions 

for fragile groundwater resources in PIDS. 

2.3 Saltwater intrusion prevention techniques 

The key to controlling SWI is to maintain a proper balance between the water withdrawn 

from, and recharged to, aquifers (Barlow 2003). Over the years, numerous methods have been 

developed and implemented to control SWI into coastal aquifers. Some of these methods may 
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not provide economically-feasible solutions because they are considered long-term solutions 

and may take many years before any effect is seen. Some of the key methods currently utilised 

for SWI control into coastal aquifers are summarised in Table 2.1.
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Table 2.1: Common saltwater intrusion preventive measures 

Method Brief description References 

Relocation of 
pumping wells 

A more inland location of the pumping well is favourable when compared to a seaward location. When a pumping well is located inland, the 
thickness of the freshwater lens increases and the danger of saltwater up-coning decreases. A comprehensive description is presented in (Bear et 
al. 1999) and is not repeated here. 
Advantage: Helps to decrease the occurrence of saltwater up-coning. 
Disadvantage: May be costly and difficult to implement. Most commonly, aquifer size and building locations do not allow such positioning. 

Abd-Elhamid and 
Javadi (2011) 
Javadi et al. (2015) 
Sherif and Hamza 
(2001) 

Reduction in 
pumping rates 

A reduction in pumping rates ensures lower groundwater withdrawal. This is possible only if water demands are reduced, such as via public 
awareness and water recycling campaigns. 
Advantage: Ensures increased freshwater volume in the aquifer, which impedes saltwater intrusion. 
Disadvantage: Can lead to water shortages that have serious effects on people. May be expensive as water recycling can incur the additional costs 
of transportation and desalinisation. 

Abarca et al. (2006) 
(Mantoglou 2003) 

Increase in 
natural recharge 
of the aquifer 

This method aims to feed aquifers with additional surface water. The retained water infiltrates into the soil and increases the volume of 
groundwater storage. This can be achieved through proper land use (natural vegetation and land tillage practices such as contour ploughing). 
Advantage: Prevents runoff to flow directly into the sea and increases groundwater storage. 
Disadvantage: Requires highly-permeable soil and can be time-consuming. 

Calvache and Pulido-
Bosch (1997) 
Lee and Cheng (1974) 
 

Artificial 
recharge of the 
aquifer 

Excess surface water is directed into the ground through recharge wells or by altering natural conditions to increase infiltration. Injecting water 
through recharge wells produces a hydraulic barrier by raising the piezo-metric head of the aquifer and prevents saltwater from encroaching 
inland (Luyun et al. 2011).  Surface water (from rivers and lakes), treated water and desalinated water are potential sources of water for artificial 
recharge. 
Advantage: Helps to increase groundwater storage and prevent SWI. 
Disadvantage: Necessitates other sources of water and cannot be applied in water-scarce regions. It can also be uneconomical as water treatment 
is costly. 

Shammas (2008) 
Abarca et al. (2006) 
Bouwer (2002) 

Abstraction of 
saline 
groundwater 

Saline groundwater can be abstracted for cooling and desalting purposes. This will cause the volume of freshwater to increase and subsequently 
reduce saltwater intrusion rate.  
Advantage: This method decreases the volume of saline water in the aquifer and protects pumping wells from up-coning. 
Disadvantage: Disposal of abstracted saltwater can be an issue. Can cause deadly pollution if saltwater is disposed of in the sea. 

Soldal et al. (1994) 
Barrett et al. (2002) 
 

Use of sub-
surface barriers 

A sub-surface barrier is an underground semi-impervious or impervious structure constructed in a coastal aquifer to impede the inland 
encroachment of saltwater (Allow 2012). These barriers impede the infiltration of seawater inland while also increasing the groundwater storage 
capacity. 
Advantage: Helps to reduce the intrusion of saline water. 
Disadvantage: Construction, operation and maintenance of the barriers can be costly. 

Luyun et al. (2011) 
Abd-Elhamid and 
Javadi (2008) 
Essawy (2013) 
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Though the above-mentioned SWI-control methodologies cannot entirely prevent SWI, they 

have proven worthwhile in keeping aquifer salinity levels within acceptable limits. A single 

method, if implemented correctly, can combat SWI, while a combination of two or more 

methods can largely halt saline water encroachment into the aquifer. While such 

methodologies are widely applied, more research is needed in the context of designing 

inexpensive and reliable techniques for SWI prevention and control. Recent technological 

advancements provide a good platform on which engineers and stakeholders can collaborate 

on to control and manage SWI problem, safeguarding already-depleted groundwater reserves 

in coastal environments. 

2.4 Saltwater intrusion modelling approaches 

Various modelling approaches have facilitated the understanding of processes relevant to 

SWI in coastal aquifers. Over the years, a significant amount of research has focused on 

developing and employing analytical and numerical models for predicting the extent of SWI 

into coastal aquifers. These have helped confront the challenges facing vulnerable 

groundwater reserves. The different modelling approaches available for understanding SWI 

mechanisms are based on two concepts, namely, the sharp interface approach and the 

diffusive interface approach (sometimes termed the dispersive approach). A brief description 

of these two concepts is presented below.   

Sharp-interface models have been extensively used in solving SWI problems. This approach 

assumes that saltwater and freshwater are immiscible and, therefore, are separated by an 

abrupt interface (Bear and Verruijt 2012). The first attempts to model seawater intrusion were 

made by Ghyben (1889) and Herzberg (1901) and, subsequently, their approaches were 

combined as the Ghyben-Herzberg approach (Bobba 1993). Specifically, this approach treats 

the interface between saltwater and freshwater as a sharp and well-defined interface. This 

approach also established that the saltwater occurs at a depth below sea level that is about 40 

times the height of the freshwater above sea level (Essaid 1986). This distribution was 

attributed to the hydrostatic equilibrium that exists between the two fluids of different 

densities. Huyakorn et al. (1987) argued that, although it does not give information about the 

nature of the interface zone, the sharp interface method considers flow dynamics and predicts 

the responses of the saltwater-freshwater interface to applied stresses. Extensive reviews of 

the sharp interface approach are given by Reilly and Goodman (1985) and Diersch and 

Kolditz (2002), and are not repeated herein.  

The sharp interface approach has been frequently used in SWI modelling studies because of 

its simplicity and low computational burden (Kacimov and Obnosov 2001; Kacimov and 

Sherif 2006; Person et al. 1998; Sakr 1999). However, it is alleged that the sharp interface 
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approach is less accurate and only valid for situations where the saltwater-freshwater mixing 

zone is very narrow (Zhou et al. 2005). The sharp interface approach also fails to consider 

the flow of freshwater into the sea. In reality, the saltwater-freshwater interface is not abrupt, 

as the saltwater merges gradually with the freshwater by the process of mechanical dispersion 

(Xue et al. 1995). Padilla and Cruz‐Sanjulián (1997) argued that modelling SWI using the 

sharp interface approach is far from rigorous and susceptible to errors. Llopis‐Albert and 

Pulido‐Velazquez (2014) similarly clarified that analytical modelling using the sharp 

interface approach neglects the mixing of saltwater and freshwater and indirectly assumes 

that seawater remains static. As a result, the authors suggested that resulting analyses may be 

inaccurate and, in some cases, unacceptable for real-life complex aquifer systems. In 

addition, Choquet et al. (2016) stated that sharp interface models do not define the behaviour 

of the actual transition zone but only provide evidence regarding the movement of the 

saltwater front. These limitations in the sharp interface approach have led to increased use of 

the diffusive interface approach, which is described next.  

The diffusive interface approach considers saltwater and fresh groundwater as miscible 

liquids separated by a transition zone (Voss and Souza 1987). The transition zone has a finite 

thickness and the density of the water varies continuously. The diffusive interface approach 

considers the density dependence of the flow and transport. As a result, solving flow and 

transport equations simultaneously is essential. Mixing of the two fluids forming the interface 

at the transition zone occurs due to hydrodynamic dispersion and diffusion. Modelling SWI 

processes using the diffusive interface approach has provided more realistic results for both 

homogeneous and heterogeneous aquifer systems (Nguyen 2016). Werner et al. (2013)  also 

stated that only the variable density model can provide an SWI estimate that can be compared 

to actual field measurements. The characteristics of the transition zone depend on the extent 

of SWI and aquifer properties. Todd (1974) explained that the thickness of transition zones 

can vary among different aquifers depending on aquifer properties such as its structure, the 

rate of groundwater extraction, and variability in recharge, tides and climate. The first attempt 

to model density-dependent flow in SWI problems was carried out by Henry in 1964 (Dokou 

and Karatzas 2012). Later, various other studies successfully employed numerical models to 

simulate SWI problems using the diffusive interface approach. Some of these studies include 

(Abarca et al. 2007; Putti and Paniconi 1995; Rastogi et al. 2004; Servan-Camas and Tsai 

2009).  

A wide range of analytical and numerical models have been developed for comprehending 

and analysing SWI processes in coastal aquifers. As stated earlier, numerical models of 

density-dependent flow and transport provide more accurate solutions to SWI problems. 

These numerical techniques include finite difference, finite element, boundary element and 
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finite volume. Common computer codes available for SWI investigation in coastal aquifers 

includes SUTRA (Voss 1984), FEMWATER (Lin et al. 1997), SEAWAT (Guo and Langevin 

2002),   HST3D (Kipp 1987),  FEFLOW (Trefry and Muffels 2007), 2D/3DFEMFAT (Sorek 

and Pinder 1999), HYDROGEOSHPERE (Brunner and Simmons 2012), SWIFT (Ward et 

al. 1984) and SHEMAT (Clauser 2012). Likewise, Werner et al. (2013) and Essink (2003) 

presented some common simulation codes together with basic features and corresponding 

practical SWI applications. Selection of the best possible modelling code is user-dependent 

because of their associated benefits and limitations. Cautious preliminary assessments, 

relevant input parameters and accurate initial conditions are necessary for precise SWI 

modelling. 

2.5 Simulation-optimisation framework for coastal aquifer management 

The simulation-optimisation (S/O) approach is one of the most widely used operative 

methods for coastal aquifer management purposes. Accurate numerical models simulating 

non-linear complex flow and transport processes in an aquifer system can generate realistic 

results if relevant input parameter values are available. Also, numerical simulation models 

can evaluate the effects of different management strategies on aquifer systems. However, 

simulation models are descriptive and cannot find optimal solutions instantaneously. Hence, 

an optimisation algorithm can be coupled with a numerical simulation model in an S/O 

framework to determine optimal management strategies for coastal aquifers (Roy et al. 2016). 

The optimisation algorithm is an important part of the S/O framework as it executes an 

organised search for new and better management strategies. During this search process, the 

simulation model is assessed numerous times to measure the influence of the proposed 

management strategy on the saltwater front. Selecting the best possible numerical simulation 

model and optimisation algorithms from a wide range of options is not an easy task, as both 

are based on the characteristics of the investigated problem (Hong et al. 2004). In addition, 

the S/O approach is usually time-consuming as it requires a relatively large number of 

iterations to identify improved optimal solutions. Comprehensive overviews of the S/O 

approach to coastal aquifer management are presented in  Park and Shi (2015) and Sreekanth 

and Datta (2015). Some recent S/O-based coastal aquifer management studies are 

summarised in Table 2.2. 
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Table 2.2: A summary of recent S/O frameworks designed for coastal aquifer management 

aMT (modelling type). SIM: sharp interface model; DDM: density-dependent model. bOT (objective type). M: multi-objective; S: single objective. cSM (surrogate model). ANFIS: adaptive 
neuro-fuzzy inference system; MNN: modular neural network; ANN: artificial neural network; GP: genetic programming; RBFN: radial basis function network. dOM (optimisation method). 
CEMGA: controlled elitist multi-objective genetic algorithm; NSGA II: non-dominated sorting genetic algorithm; GA: genetic algorithm; ECACO: elitist continuous ant colony optimization; 
DE: differential evolution; MOGA: multi-objective genetic programming; SA: simulated annealing.

MTa OTb Objective functions Simulation Model SMc OMd Study Area Reference 

DDM M 
Maximize total pumping from production wells and 

minimize total pumping from production wells 
FEMWATER ANFIS CEMGA Illustrative Roy and Datta (2017) 

DDM M 
Minimize both the total cost of the management process and 

the total salinity in the aquifer 
SUTRA - NSGA II 

Benchmark aquifer 

(Henry’s Problem) 
Javadi et al. (2015) 

 

DDM M 
Minimize economic and environmental costs while 

satisfying water demand 
SEAWAT MNN NSGA II Santorini Island, Greece 

Kourakos and Mantoglou 
(2013) 

 

DDM M 
Minimize total net recharge and  minimization of seawater 

intrusion in the island’s freshwater lens 
SUTRA ANN GA Kish Island,  Persian Gulf 

Ataie-Ashtiani et al. 
(2013) 

 

DDM M Minimization of economic and environmental costs SEAWAT - NSGA II Santorini island, Greece 
Kourakos and Mantoglou 

(2011) 
 

SIM S Maximize total groundwater pumping rate 
Ghyben-Herzberg 

relation 
- ECACO Illustrative 

Ataie-Ashtiani and 
Ketabchi (2011) 

 

DDM M 
Maximize total pumping from production wells and 

minimize total pumping from production wells 
FEMWATER 

ANN and 

GP 
NSGA II Illustrative 

Sreekanth and Datta 
(2010) 

 

SIM S Maximize groundwater withdrawals from wells 
Ghyben-Herzberg 

relationship 
RBFN DE City of Heraklion, Crete Papadopoulou et al. (2010) 

DDM M 
Maximize total pumping from production wells and 

minimize total pumping from production wells 
FEMWATER ANN MOGA Illustrative Dhar and Datta (2009) 

 

SIM M Minimize operational costs, maximize groundwater reserves SHARP ANN SA Illustrative Rao et al. (2004) 
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2.5.1 Optimisation techniques in saltwater intrusion management studies 

Various optimisation techniques have been used in groundwater management studies but only 

a few have been utilised in S/O-based coastal aquifer management studies. An optimisation 

model is well-defined in terms of an objective function and a set of constraints. Different 

objective functions (either single- or multi-objective) and sets of constraints have been used 

in various studies depending on the problems encountered. Single-objective optimisation 

problems have a distinctive optimal solution while multi-objective problems have a set of 

compromised solutions for coastal aquifer management (Singh 2014).  

Some of the key optimisation algorithms used in developing groundwater management 

strategies for coastal areas include linear programming (Nishikawa 1998), non-linear 

programming (Gorelick et al. 1984), genetic programming (Sreekanth and Datta 2010), ant 

colony optimisation (Ataie-Ashtiani and Ketabchi 2011), harmony search (Huang and Mayer 

1997), simulated annealing (Bhattacharjya and Datta 2005), particle swarm optimisation 

(Karatzas and Dokou 2015) and structured messy genetic algorithms (Cheng et al. 2004). 

Other key optimisation algorithms are presented in Table 2.2.  Werner et al. (2013), Sreekanth 

and Datta (2015) and Nouiri et al. (2015) also reviewed some of the common optimisation 

algorithms used in S/O-based groundwater management studies. In addition, Ketabchi and 

Ataie-Ashtiani (2015) compared and contrasted traditional optimisation algorithms (linear 

and non-linear programming techniques) with more recent ones (genetic algorithms, ant 

colony optimisation, particle swarm optimisation and others) that have been used in the 

development of optimal management studies concerning coastal aquifers. Similarly, Singh 

(2014) presented a thorough evaluation of the various optimisation techniques used in 

coupled S/O-based coastal aquifer management studies.  

It is evident from the literature that a wide range of optimisation techniques are available for 

coastal aquifer management problems. However, choosing an appropriate optimization 

model necessitates careful analysis of the problem, since many of these techniques are user- 

and/or problem-dependent. In particular, before choosing an optimization model for any 

designated coastal aquifer management task, factors such as the optimization model’s 

capabilities, applicability and computational requirements need to be evaluated. Recently, 

shuffled complex evolution, continuous ant colony optimisation, multi-objective genetic 

algorithms and particle swarm optimisation have yielded improved, efficient and robust 

optimisation results when utilised in S/O-based coastal aquifer management studies 

(Ketabchi and Ataie-Ashtiani 2015). Hence, researchers should focus on these optimization 

models for developing groundwater remedial solutions concerning coastal aquifers. In 

addition, more work in the areas of robust optimisation and uncertainty issues in S/O 

frameworks for coastal aquifer management are desirable. Very few studies have focused on 
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developing robust methodologies (Sreekanth and Datta 2014) or using parameter 

uncertainties (Benhachmi et al. 2001) to solve complex real-world problems. There is great 

scope for further research in this context that can facilitate the development of more realistic 

and applicable methodologies for coastal aquifer management problems. 

2.5.2 Surrogate model-based S/O framework 

The use of S/O frameworks for coastal aquifer management problems has yielded several key 

benefits. Ataie-Ashtiani et al. (2013) listed several benefits of S/O frameworks: (1) 

identification of optimum solutions for coastal aquifer management purposes, (2) accounting 

for the complexity of coastal aquifer groundwater systems and (3) enabling efficient policy-

making before SWI into coastal aquifers begins. However, employing a complex numerical 

simulation model in an S/O framework is likely to make the process computationally 

infeasible. This is mainly due to two reasons. Firstly, numerical models are computationally 

expensive as they require high amounts of data storage and computer memory and, secondly, 

optimization algorithms require the numerical model to be run several times, making it a 

time-consuming process (Roy et al. 2016). These two drawbacks are significantly reduced by 

using a surrogate modelling approach (Emch and Yeh 1998; Johnson and Rogers 2000; 

Kourakos and Mantoglou 2009). Surrogate models are used as approximate simulators to 

increase computational efficiency. 

A comprehensive description of the surrogate modelling approach in terms of its basic theory, 

architecture and various applications in engineering problems is given in Forrester et al. 

(2008). A surrogate model (also referred as a meta-model) is defined as an approximation of 

a detailed numerical model used primarily to lessen computational effort with little 

compromise to the results (Roy et al. 2016). Surrogate models provide comparable but faster 

models capable of emulating the specified output of a complex numerical model. Before its 

use, a surrogate model is trained and validated from input-output datasets acquired from the 

original numerical simulation model. Surrogate models have been established to be useful in 

various engineering applications and have also gained much consideration from scientific 

communities dealing with coastal aquifer management problems. Roy et al. (2016) and 

Sreekanth and Datta (2015) presented summaries of surrogate model-based, S/O framework-

based, coastal aquifer management studies. In addition, Luo and Lu (2014) developed and 

compared various surrogate models employed in groundwater remedial processes. Some of 

the surrogate models used widely in coastal aquifer management S/O studies are presented 

in the following sections. 

2.5.2.1 Artificial neural networks (ANNs)  

One of the most widely-used surrogate models in S/O-based coastal aquifer management 
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studies is ANN. These are biologically-inspired mathematical models that emulate the 

function of the human brain and obtain knowledge through a learning process 

(Bhattacharjya et al. 2007). ANNs act as approximate simulators after they are trained using 

the input and output from a complex numerical simulation model. Once an ANN is trained, 

the input-output relationship is encoded into a network which is later used to forecast 

outcomes based on the information fed (input) to the network. Ataie-Ashtiani et al. (2013) 

presented a thorough explanation of ANN models, including their architecture, generation 

patterns, training procedures and applicability as surrogate models for SWI simulation. 

Various saltwater-intruded coastal aquifer management studies have indicated that ANN 

surrogate model results are highly comparable to those of an original numerical simulation 

model (Das and Datta 1999; Kourakos and Mantoglou 2009) yet require less computational 

effort and time (Singh 2014). 

 

The advantages of artificial intelligence-based techniques and their wide acceptance in 

groundwater management studies have motivated many researchers to use ANNs as 

potential surrogates to replace computationally-expensive numerical groundwater flow and 

transport simulation models. Ataie-Ashtiani et al. (2013) presented a list of S/O-based SWI 

management studies that replaced complex numerical models with ANN models. Also, 

Bhattacharjya et al. (2007) replaced a three-dimensional flow and transport model 

(FEMWATER) with an ANN surrogate model to approximate a transient salinity intrusion 

process in an illustrative study area. The predicted SWI results were highly comparable to 

those of the original FEMWATER solutions. In a similar study, Bhattacharjya and Datta 

(2005) established a linked S/O model for the optimal management of salinity intrusion into 

a coastal aquifer. A simulation model was replaced by an ANN surrogate model, while a 

genetic algorithm (GA) model was used for optimization. The study revealed that the ANN 

successfully predicted salinity concentrations, while the linked GA-ANN model presented 

optimal solutions for managing coastal aquifers subject to SWI. Likewise, Nikolos et al. 

(2008) developed and utilized ANN surrogate models to simulate groundwater heads and 

used them in conjunction with an optimization framework to determine optimal pumping 

rates. 

 

Apart from illustrative study areas, applications of ANN surrogate models to salinity 

prediction in real-world aquifer systems have also yielded reliable results. For example, 

Banerjee et al. (2011) replaced a complex mathematical simulation model with an ANN 

model to predict salinity intrusion into Kavaratti Island aquifer, India. The study confirmed 

the suitability of ANN models as dependable replacements for numerical models and also 



Chapter 2: Literature review         
 

21 
 

suggested that ANNs are simpler and easier to execute. Rao and Manju (2007) replaced a 

three-dimensional variable density model (SEAWAT) with an ANN surrogate model and 

linked it with an optimization framework to develop SWI management strategies for 

aquifers along the banks of the River Yamuna, Delhi (India). Lastly, the use of ANN 

modelling strategies in S/O-based coastal aquifer management frameworks has been 

reported in several other studies (Bhattacharjya and Datta 2009; Das and Datta 1999; 

Grundmann et al. 2012; Grundmann et al. 2012; Johnson and Rogers 2000; Sreekanth and 

Datta 2011).  

A major shortcoming of ANNs, which are data-driven surrogate models, is that as the 

amounts of input and output increase, the number of patterns required to train them also 

increases. This increases time consumption which, ultimately, defeats the purpose of using 

a surrogate modelling approach. The adaptive training of surrogate models (Razavi et al. 

2012; Wang et al. 2014) and the development of individual modules for each surrogate 

model, termed a modular neural network; (Kourakos and Mantoglou 2013) is considered an 

effective way to solve this problem in S/O-based studies. These two methods are thoroughly 

described in Sreekanth and Datta (2015) and Ketabchi and Ataie-Ashtiani (2015) and are 

not repeated here.  

 

2.5.2.2 Genetic programming (GP)  

The limitations of ANNs have motivated researchers to try other efficient surrogate 

modelling alternatives. Genetic programming (GP) is one such innovative method that has 

recently gained huge popularity in the surrogate modelling field. GP is an evolutionary 

computational method that has been widely employed in the fields of program induction 

and machine learning (Aler et al. 2002). GP is classed as a powerful learning engine based 

on the concepts of biology and natural evolution, having the capability to automatically 

engender working computer models to solve a problem (Carbajal 2007; Kattan and Ong 

2015). GP-based surrogate models have been reported to be effective and reliable in 

achieving computational efficiency in S/O-based coastal aquifer management studies. GP 

operates by finding a function that approximates the input-output relationship of a complex 

numerical model. Similar to ANNs, GP-based surrogate models also require training and 

testing with datasets gathered from the original numerical model. Trained GP models have 

been used to accurately approximate aquifer simulation processes. Also, the trained GP 

models are linked to an optimization model to prescribe coastal aquifer management 

solutions.   

 

The GP-based surrogate modelling method has proven successful in various engineering 
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applications (Esfahani and Datta 2015; Koza et al. 2000; Lew et al. 2006; Muttil and Lee 

2005; Sheta and Mahmoud 2001). However, only a few studies have used GP surrogate 

models as substitutes for numerical simulation models in linked S/O frameworks for coastal 

aquifer management. Sreekanth and Datta (2010) compared SWI predictive performances 

of GP and modular neural network (MNN) models and reported GP models to be superior. 

In addition, Sreekanth and Datta (2011) highlighted the superiority of GP over ANN models 

in SWI prediction. Moreover, Datta et al. (2014) claimed that appropriately-trained GP 

models can be employed to decrease computational burdens when compared to numerical 

simulation model and, at the same time, provide sufficiently accurate prediction results. The 

authors successfully applied GP surrogate models to two different groundwater modelling 

applications: 1) for the development of monitoring network designs for optimal 

identification of indefinite contamination sources and 2) for the development of 

computationally feasible salinity invasion management strategies for coastal aquifer system.  

 

2.5.2.3 Other surrogate modelling methods 

More recently, Hussain et al. (2015) applied evolutionary polynomial regression (EPR) to 

replicate the behaviour of a non-linear complex aquifer system subject to SWI. The EPR 

approach was found to have accurate SWI prediction capabilities and was later used in a 

linked S/O model to develop optimal aquifer management solutions. Additionally, Roy et 

al. (2016) replaced the computationally-expensive numerical model OpenGeoSys with 

Gaussian process regression (GPR) surrogate models. The authors compared the GPR 

models’ results with those of ANN models and concluded that both surrogate models 

efficiently approximated the OpenGeoSys model. However, the study also concluded that 

the ANN model was faster than the GPR model in approximating non-linear relationships 

between the input and output datasets. Later, both of these trained surrogate models were 

used to develop long-term management strategies for a coastal aquifer in Oman. In addition, 

Papadopoulou et al. (2010) combined radial basis function network (RBFN) surrogates 

within an optimization algorithm to develop optimal strategies to meet everyday water 

demands in the coastal region of Heraklion, Crete, without compromising water quality in 

the area. The MNN algorithm is another popular approach used to develop surrogate models 

for SWI prediction and its application in the linked S/O framework. MNN has been used in 

single-objective (Kourakos and Mantoglou 2009) and multi-objective optimization 

problems (Kourakos and Mantoglou 2013; Sreekanth and Datta 2010) that have helped in 

the development and implementation of feasible optimal aquifer management 

methodologies.  

 



Chapter 2: Literature review         
 

23 
 

2.5.2.4 Ensembles of surrogates 

Ensemble methods employ multiple learners (surrogates) to solve problems rather than using 

a single surrogate model. They are one of the most attractive surrogate modelling approaches 

as their generalisation ability is significantly better than those of single surrogate models (Wu 

et al. 2008). A complete explanation of ensemble methods is presented in  Zhou (2012). Zhou 

et al. (2013) presented some of the advantages of using ensemble surrogates over single 

surrogates (robustness and accuracy) and some common methods for constructing ensembles 

(weight coefficient selection based on prediction variance, combining surrogates by 

minimizing cross-validation errors, and combining surrogates by minimizing prediction 

mean square errors). Ensemble surrogate models have been successfully implemented in 

various fields (Goel et al. 2007; Sanchez et al. 2008; Wichard and Ogorzalek 2004; Zhou et 

al. 2011). Likewise, ensemble surrogate models have generated reliable results when used as 

substitutes for numerical models in S/O frameworks (Jin et al. 2004; Yin et al. 2014). Despite 

the successful application of ensemble surrogate models in S/O frameworks, they have rarely 

been used in S/O frameworks for developing coastal aquifer management procedures. Only 

recently, Sreekanth and Datta (2011) employed an ensemble of GP surrogate models in a 

multiple-realisation optimisation framework to derive optimal pumping strategies to limit 

SWI into a coastal aquifer. The study demonstrated that the ensemble surrogate model 

approach produced dependable results for coastal aquifer management purposes. The 

predictive uncertainty of these surrogate models was quantified and an ensemble surrogate 

model was used in the multiple-realization optimization model to determine optimal 

extraction strategies.   

It is apparent from the reviewed literature that a wide range of surrogate modelling tools is 

available for modelling complex non-linear groundwater flow and transport processes. 

However, there are a few limitations to such applications. Firstly, the development of an 

accurate surrogate model requires sufficient input-output data for training and validation 

purposes, which are sometimes not easily obtainable. Such input data patterns are obtained 

by executing original numerical models several times. This becomes an issue when the 

original numerical model takes a long time to converge, making the process time-consuming. 

Also, evaluation of the predictive capabilities of surrogate models is required before using 

them as approximate simulators. Statistical methodologies are used to evaluate the reliability 

and applicability of surrogate models prior to its application in the S/O framework. Secondly, 

employing surrogate models increases uncertainty in the predicted parameters, which may 

lead to errors in the optimisation process (Ketabchi and Ataie-Ashtiani 2015). Hence, the 

intrinsic uncertainties in surrogate models and their application to real-world coastal aquifer 

management problems need to be discussed.  
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Regardless of the aforementioned limitations, continuous effort is needed to discover and 

establish new surrogate modelling methods that produce better results. Further research in 

the area of surrogate robustness (Lim et al. 2007) and adaptive training of surrogate models 

(Eason and Cremaschi 2014) for improved performance can lead to more reliable results, 

which is essential for the development of realistic coastal aquifer management methods. 

Other renowned regression techniques, such as support vector machine regression (Smola 

and Vapnik 1997), kriging (Martin and Simpson 2005), multivariate adaptive regression 

splines (Friedman 1991) and regression tree (Razi and Athappilly 2005), have shown 

sufficiently good results when used for meta-modelling purposes. These new techniques can 

be used to approximate non-linear SWI processes and can be linked to S/O frameworks to 

develop robust solutions to coastal aquifer management problems.  

2.6 Monitoring network design for coastal aquifer management 

Monitoring is a fundamental part of integrated coastal aquifer management. Monitoring 

coastal aquifers subject to SWI can be done using geophysical methods for in-situ 

measurements and water sampling, which can be expensive. All-encompassing reviews of 

SWI monitoring in coastal aquifers are presented in Cheng and Ouazar (2016) and Custodio 

(1997). Optimal design of groundwater monitoring networks is seen as a cost-effective 

technique for monitoring SWI and resulting groundwater contamination. Groundwater 

monitoring network design (GMND) is principally implemented for one of the following four 

reasons: (1) detection monitoring, (2) ambient monitoring, (3) research monitoring, and (4) 

compliance monitoring (Loaiciga et al. 1992). GMNDs differ from case to case, since they 

are dependent on the monitoring objectives and statistical methods used. Rosen (2009) 

explains that preeminent network design is attained only when (1) the goal of the monitoring 

program is well defined, (2) the economic constraints are taken into account and (3) the 

hydrogeology of the investigated area is appropriately understood and assimilated into the 

design. A complete review of GMND is presented by Loaiciga et al. (1992), which describes 

various design monitoring network objectives and summarises the main approaches used in 

GMND construction. 

GMND is widely documented in the literature (Baalousha 2010; Bartram and Ballance 1996; 

Meyer et al. 1994; Sanders 1983; Strobl et al. 2006). However, GMND for compliance 

monitoring purposes is very rare. Compliance monitoring enables decision-makers to weigh-

up the outcomes of implemented management strategies. Development and implementation 

of an S/O framework, as described in Section 5, can provide solutions for coastal aquifer 

management. However, it is highly likely that the field responses to such management 

strategies could perhaps deviate or differ from what was predicted. Such nonconformity may 
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be due to uncertainties in the characterization of the groundwater system (uncertainties in 

system parameters) and field-level deviations during the implementation of management 

strategies (Dhar and Datta 2009; Sreekanth and Datta 2013). These deviations can have 

unfavourable impacts, rendering management strategies unfeasible and/or dysfunctional. 

Henceforth, monitoring an aquifer’s responses to the impacts of implemented management 

strategies should be considered crucial. The solution is compliance monitoring (Sreekanth 

and Datta 2015), which is a stochastically-designed optimal GMND developed to relay 

information on the real impacts of the implemented management strategy. This is an as an 

integral part of long-term aquifer management. The information gathered from GMND helps 

to plan and evaluate strategies to alleviate SWI in coastal aquifers and to append and/or 

update existing management strategies. Also, the information forms the basis for further 

hydrological studies and supports the assembly of long-term, dependable, groundwater 

management policies (Yangxiao 1994).   

The main approaches to GMND have three categories: stochastic simulation approaches, 

variance-based approaches and optimisation-based approaches (Zhang et al. 2005). All of 

these categories utilise a different framework and all have shown prodigious groundwater 

monitoring potential. However, optimisation-based approaches have successfully aided the 

development of optimal, cost-effective, dependable, long-term groundwater management 

frameworks (Dhar and Datta 2007; Wu et al. 2005; Yeh et al. 2006). A range of optimisation 

objective functions have been used in GMND, including minimisation of monitoring costs 

(Mogheir et al. 2009; Mogheir and Singh 2002; Reed et al. 2001), optimal placement of wells 

(Bashi-Azghadi and Kerachian 2010; Meyer and Brill 1988; Storck et al. 1997), 

contamination detection (Asefa et al. 2005; Datta et al. 2009; Hudak and Loaiciga 1993; Jha 

and Datta 2014), and minimisation of variance in estimates (Ben-Jemaa et al. 1994; Carrera 

et al. 1984; Prakash and Singh 2000). Optimisation techniques also play a vital role in the 

development of optimal GMNDs. GMND optimisation is considered a non-linear problem 

and, consequently, is well-suited to heuristic optimisation techniques. A comparison of 

modern heuristic techniques, conventional heuristic techniques, polytope algorithms and 

naïve control optimisation techniques used in monitoring network designs is presented in Lee 

and Ellis (1996). Genetic algorithms (Kollat and Reed 2006; Mugunthan and Shoemaker 

2004; Reed and Minsker 2004), simulated annealing (Chadalavada and Datta 2008; Nunes et 

al. 2004) and ant colony optimisation (Li and Hilton 2005; Li and Hilton 2007) are 

commonly-used GMND optimisation techniques.  

It is evident from the literature that monitoring networks are largely implemented for 

groundwater quality monitoring and contamination detection. Recently, Bashi-Azghadi and 

Kerachian (2010) presented a methodology for selecting optimal groundwater monitoring 
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well sites for contamination identification. The authors utilised trained probabilistic support 

vector machines linked with multi-objective optimisation models for the detection of 

unknown groundwater contamination sources. The applicability of the developed 

methodology was validated by using it for GMND implementation in a real case study. Also, 

Reed and Minsker (2004) applied kriging and non-dominated sorting genetic algorithms 

(NSGA II) to optimise four objectives (i.e. minimising sampling expenses, minimising 

estimation uncertainty, maximising precision in contamination maps, and maximizing the 

precision of contaminant mass approximations) for long-term, cost-effective, groundwater 

quality monitoring. The study established the application of optimal GMND as a promising 

tool for groundwater resource management. Other monitoring networks for groundwater 

quality monitoring and contamination detection have been reported in Preziosi et al. (2013), 

Baalousha (2010) and Dawoud (2004), among others.  

While outcomes and/or information from GMND has benefited many global communities, 

monitoring network designs for coastal aquifers subjected to SWI are lacking. GMNDs can 

be implemented for increasing salinity level monitoring and compliance monitoring 

purposes. A few groundwater quality monitoring networks in saltwater-intruded coastal 

regions have been reported in Polemio et al. (2009), Hsu (1998) and Lee and Song (2007). In 

addition, Dhar and Datta (2009) presented a robust multi-objective coastal aquifer 

management model for SWI control that incorporated an optimal monitoring network design 

for compliance monitoring purposes. The monitoring network design addressed the impacts 

of uncertainty in the implemented management strategy for an illustrative aquifer. It was 

intended that compliance monitoring would provide feedback information that could be used 

to modify already-implemented management tactics while also developing an altogether new 

and/or improved strategy for long-term coastal aquifer management. More recently, 

Sreekanth and Datta (2013) proposed a monitoring network design for compliance 

monitoring and used it for adaptive management of coastal aquifers subject to SWI. The study 

employed an S/O framework to develop optimal pumping strategies and simultaneously 

designed a monitoring network to evaluate the impacts of the implemented optimal strategy 

on a stressed aquifer. The study demonstrated the benefits of an integrated feedback system, 

where information from a monitoring network is used to improve the benefits gained from 

an S/O method.  

The several successful implementations of GMNDs imply that they can serve as crucial tools 

needed for the management of coastal groundwater resources. They can also be integrated 

into S/O frameworks and used to obtain feedback information for updating long-term 

management strategies. Furthermore, it is perceived that GMND for compliance monitoring 

purposes can provide unbiased, useful and reliable results and, hence, facilitate more robust 
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management strategies. There is scope for further research in this area to fully comprehend 

the advantages of GMND in terms of coastal groundwater quality and compliance 

monitoring. More studies focusing on GMND in complex aquifer systems are necessary to 

explore its potential for groundwater monitoring and management. 

2.7 Saltwater intrusion in Pacific Island Developing States 

Water security is a paramount issue in many small PIDS. Groundwater in these small PIDS 

offers a secure, sufficient and cost-effective source of fresh water. Groundwater in PIDS is 

extracted through pumping wells, boreholes and domestic wells. The extracted groundwater 

is supplied to local communities primarily for domestic work (washing and cooking 

purposes). In some cases, groundwater is also used for industrial activities and irrigation 

(Table 2.3).  

 

Table 2.3: Groundwater use in PIDS [Source: Sinclair (2011)] 

Country Groundwater use 
Domestic Irrigation Industrial  Drinking/cooking Washing 

Cook Islands 30 % 70 % NA NA 
FSM 30 % 70 % NA NA 
Fiji 35 % 50 % 10 % 5 % 

Kiribati 40 % 50-55 % 5 % 1-2 % 
Marshall Islands 35-40 % 50-55 % 5-10 % 5 % 

Nauru 5 % 90 % 5 % 0 % 
Niue 25 % 70 % 0 % 5 % 
Palau 30 % 70 % NA NA 
PNG NA NA NA NA 

Samoa 30 % 70 % NA NA 
Solomon Islands 30 % 70 % NA NA 

Tonga 20 % 60 % 10 % NA 
Tuvalu 10-15 % 80-85 % 5 % 0 % 

Vanuatu 30 % 70 % NA NA 
NA: data not available 

 

2.7.1 Reported cases of saltwater intrusion in small developing Pacific Island countries  

Groundwater in PIDS is limited and highly vulnerable to human activities and/or natural 

events. The increasing demand for water has put immense pressure on groundwater resources 

in PIDS. Groundwater availability in the PIDS is threatened by extraction and depletion, rates 

of which have increased tremendously over the last decade. Increasing salinity levels in 

aquifers are the most common threat to water security in small PIDS. Specifically, SWI into 

aquifers caused by excessive, unplanned and/or continuous withdrawal of groundwater is the 

main cause of escalating salinity in these aquifers. Sea-level rise, storm surges and flooding 

are other common causes of SWI into coastal aquifers in PIDS. Some reported SWI cases 

from small PIDS are presented in Table 2.4. 
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The problem of groundwater salinization in PIDS increased tremendously between 2000 and 

2010 (Allen et al. 2014). Such problems are likely to increase as more groundwater is 

exhausted each day to cater to growing demands. White and Falkland (2012) stated that by 

the year 2030, freshwater groundwater salinization due to excessive groundwater withdrawal 

will be the most significant risk to water security in small PIDS. Hence, the sustainability of 

groundwater resources is crucial for sustaining lives in PIDS. Some of the key 

recommendations for ensuring sustainability and addressing groundwater management issues 

in PIDS are described in the next section.  

 

The future of fresh groundwater resources in PIDS does not look promising. It is clear that 

the problem of water scarcity is real and immense in PIDS. However, every problem has a 

solution, and so it is for the problem of groundwater contamination in PIDS.  The pressure 

on groundwater resources is increasing and leading to groundwater contamination and 

deterioration. There is no single solution to the growing groundwater contamination problem 

in PIDS. However, an integrated approach involving actions at all levels is required (from 

isolated local communities to law-makers). Understanding and recognising the water crisis 

in PIDS is essential and should be prioritised. Once the extent of the problem is identified, 

planning, developing and implementing mitigation actions and groundwater management 

strategies will take precedence. Lastly, sharing information and developing adaptive 

solutions and management alternatives is crucial. This can be achieved via collaboration 

between local communities, stakeholders, government agencies, research organisations and 

international donor partners.  
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Table 2.4: Reported cases of saltwater intrusion in small PIDS 

Country Reported cases of saltwater intrusion 

Cook Islands Saltwater has encroached into the Manihiki and Tongareva water catchments, resulting in groundwater contamination (Carruthers 2009). 

Fiji SWI is reported to be responsible for groundwater contamination in Yasawa Island (Ellison and Fiu 2010). Aquifers in Rotuma are also reported to be affected by SWI 

due to over-extraction (Dawe 2001). 

Federated States of 

Micronesia 

Fresh groundwater reserves in Yap State have deteriorated due to salinity intrusion and are no longer suitable for drinking (Fletcher and Richmond 2010).  

Guam High chloride content in water withdrawn from wells is reported in the areas of Finegayan and Agana sub-basin, indicating salinity intrusion (Bendixson et al. 2014).  

Kiribati 

 

Bonoriki freshwater lense, which is a source of freshwater for the people of South Tarawa, is contaminated due to salinity intrusion (Terry et al. 2013) 

Excessive pumping at Kiebu village has also led to salinity intrusion, which has contaminated groundwater reserves (Mourits 1996).  

Salinity intrusion by pumping from infiltration galleries on Bonriki and Buota has deteriorated freshwater supply and resulted in decreased coconut production in the area 

(Kelman and West 2009). 

Marshal Islands The Laura Area of Majuro Atoll is reported to be severely affected by SWI (Presley 2005). 

Nauru Excessive pumping of groundwater in the districts of Aiwo, Anabar, Baitsi, Boe and Nibok has led to SWI into freshwater lenses (Ghassemi et al. 1996). 

Niue Groundwater with high salinity is found towards the coast and near the more heavily-abstracted aquifer areas around Alofi (Mosley and Carpenter 2005) 

Palau 

 

Salinity intrusion has affected the low-lying islands of Kayangel, Peleliu and Angaur, and the Southwest Islands of Sonsorol, Hatohobei, Merir, Fanna and Pulo Anna. 

This is mainly due to excessive groundwater extraction for public water supply and septic tanks  (Füssel 2012).  

Solomon Islands Groundwater reserves on the main islands and atolls such as Ontong Java have been affected by salinity intrusion (Rasmussen et al. 2009).  

Samoa In Saoluafata, a village located east of the capital Apia, coastal springs have become saline and unsafe for consumption (Berthe et al. 2014).  

Tonga Pumping of groundwater on the islands of the Ha'apai group has resulted in salinity intrusion (Hay and Kaluwln 1993).  

Vanuatu Groundwater reserves in the areas of Mataso Island in the Shepherds group, east Santo, and Aniwa in the South are affected by salinity intrusion (Singh et al. 2001).  

Tuvalu 

 

Over-abstraction of groundwater due to increased population and sea-level rise has resulted in salinity intrusion, which has degraded the fresh groundwater supply in the 

urban centre of Funafuti.  Other areas, such as Niutoa, Vaitupu and Nukulaelae, have also experienced SWI (Webb 2007).  
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The next chapter describes the development of a predictive model based on a relatively new 

algorithm—the support vector machine regression algorithm. This is used to predict salinity 

concentrations in an aquifer system by approximating the responses of a variable density 

flow and transport numerical simulation model.  
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Chapter 3: Development and Implementation of Support 
Vector Machine Regression Surrogate Models for 
Predicting Groundwater Pumping-induced Saltwater 
Intrusion into Coastal Aquifers 
  

The main contents of this chapter have been published and copyrighted, as outlined below: 

Lal, A., and Datta, B. (2018). "Development and Implementation of Support Vector Machine 

Regression Surrogate Models for Predicting Groundwater Pumping-Induced Saltwater 

Intrusion into Coastal Aquifers." Water Resources Management, 1-15.  

3.1 Summary 

Predicting the extent of saltwater intrusion (SWI) into coastal aquifers in response to 

changing pumping patterns is a prerequisite of any groundwater management framework. 

This study investigates the feasibility of using support vector machine regression (SVMR), 

an innovative artificial intelligence-based machine learning algorithm, for predicting salinity 

concentrations at selected monitoring wells in an illustrative aquifer under variable 

groundwater pumping conditions. For evaluation purposes, the SVMR predictions are 

compared with well-established genetic programming (GP)-based surrogate models. SVMR 

and GP models are trained and validated using identical sets of input (pumping) and output 

(salinity concentration) datasets. The trained and validated models are then used to predict 

salinity concentrations at specified monitoring wells in response to new pumping datasets. 

The predictive capabilities of the two learning machines are evaluated using different 

proficiency measures to ensure their practicality and generalisation ability. The performance 

evaluations suggest that the prediction capability of SVMR is superior to that of GP models. 

Also, a sensitivity analysis methodology is proposed to assess the impact of pumping rates 

on salt concentrations at monitoring locations. This sensitivity analysis provides a subset of 

the most influential pumping rates, which is used to construct new SVMR surrogate models 

with improved predictive capabilities. The improved prediction capability and the 

generalisation ability of the SVMR models, together with the ability to improve prediction 

accuracy by refining the input set used for training, makes the use of the proposed SVMR 

models more attractive. Predictive models with high accuracy are potentially very useful for 

designing large-scale coastal aquifer management strategies. 
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3.2 Background 

The surrogate modelling approach significantly reduces computational load by substituting 

complex simulation models with cheaper to run surrogate models (Wang et al. 2014). 

Commonly-used surrogate models for approximating groundwater transport and flow 

processes in aquifer include radial basis functions (Christelis and Mantoglou 2016), artificial 

neural networks (Bhattacharjya and Datta 2009), modular neural networks (Kourakos and 

Mantoglou 2009), the fuzzy inferences system (Roy and Datta 2016), multivariate adaptive 

regression splines (Roy and Datta 2017) and genetic programming (Sreekanth and Datta 

2011). To propose a more efficient and reliable surrogate model, GP and SVMR models are 

developed and implemented in a simulated illustrative aquifer to predict SWI processes.  

 

Surrogate models based on GP have recently gained popularity in the context of SWI 

prediction and have proven to possess accurate predictive capabilities.  Sreekanth and Datta 

(2010) applied and compared GP and MNN models for SWI predictions in a coastal aquifer 

system. The study reported that GP models are superior to MNN models in terms of 

predictive accuracy. Also, Sreekanth and Datta (2011) highlighted the superiority of GP over 

ANN models in predicting aquifer SWI processes. On the other hand, the support vector 

machine (SVM) is a powerful tool for solving classification and regression problems and has 

recently gained worldwide popularity in the machine learning field (Gretton et al. 2001; Yang 

et al. 2002). Farag and Mohamed (2004) reiterated that SVM has become popular due to its 

attractive features and accurate performance. SVM is a new technique built on structural risk 

minimisation (SRM) instead of empirical risk minimisation (like ANN); hence, SVMs are 

robust and accurate (Yoon et al. 2011). Support vector machine regression (SVMR) is a 

version of SVM used for regression analysis. One of the leading advantages of the SVMR 

algorithm is that it theoretically minimises the anticipated error in a learning process and 

lessens the problem of overfitting (Yu et al. 2006). Numerous studies have established that 

the predictive performance of SVMR models is superior to those of other learning techniques 

(Chevalier et al. 2011; He et al. 2014; Wen et al. 2009; Wu et al. 2004; Yoon et al. 2011).  

 

A key feature of this study includes investigating the influence of groundwater pumping rates 

on salinity levels at monitoring wells. Establishing the relative importance of pumping rates 

at each well is crucial for the development of an efficient surrogate model. Variable (variable 

in this study refers to groundwater pumping rates) ranking is an important tool in surrogate 

modelling approaches. It allows the elimination of irrelevant (less impactful) variables, 

condenses data dimensionality, escalates learning efficiency and improves predictive 

performance (Liu et al. 2011). In the present study, a sensitivity analysis approach is utilised 
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to estimate the relative importance of input variables. The obtained set of most-influential 

variables is used to construct new surrogate models with greater prediction capability.    

 

This chapter aims to make two important contributions. First, a comparatively new technique, 

the SVMR methodology, is used for approximating the responses of a complex saltwater 

flow and transport numerical model. SVMR models have not yet been utilized for saltwater 

intrusion process simulation. The second major contribution is in the improvement of 

predictive accuracy by selecting the most significant input variables based on sensitivity 

analysis. Performance evaluation of the proposed method is conducted to demonstrate its 

potential advantages. 

 

3.3 Methodology 

3.3.1 FEMWATER: A coastal aquifer simulation modelling tool 

The FEMWATER (Lin et al. 1997), a Finite Element Model of Water Flow Through 

Saturated-Unsaturated Media based computer code licenced from Groundwater Modelling 

System (GMS; AquaVeo 2011) was used to develop a finite element-based three-

dimensional numerical model for simulating saltwater intrusion processes in the Bonriki 

aquifer. Datta et al. (2009), Roy and Datta (2016) and Sreekanth and Datta (2010) have 

effectively used FEMWATER code to simulate saltwater intrusion processes in various 

coastal aquifer systems. The flow and transport equations are coupled by the density coupling 

coefficient and by Darcy velocities, which makes the saltwater intrusion problem highly non-

linear. Therefore, a finite element-based simulation model is utilized to solve these two 

governing equations concurrently as coupled equations. Equations (3.1) and (3.3) represent 

the flow and transport processes, respectively.  

 The governing flow equation is in the form of a modified Richards equation (Lin et al., 

1997):  

𝜌

𝜌°
𝐹

𝜕ℎ

𝜕𝑡
= ∇ ∙ [𝐾 (∇ℎ +

𝜌

𝜌°
∇𝑧)] +

𝜌

𝜌∗
𝑞                           (3.1) 

Where, 𝜌 is the water density at chemical concentration 𝑐, 𝜌° is the water density at 𝑐 = 0, 𝐹 

is the storage coefficient, ℎ is pressure head, 𝑡 represents time, ∇ is a del operator, 𝐾 is 

hydraulic conductivity, 𝑧 is the potential head, 𝜌∗ is the density of injected or withdrawn 

water and 𝑞 is the volumetric flow rate per unit volume of the source (recharge) and/or sink 

(pumping).  
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In saltwater intrusion problems, the constitutive relationship between fluid density and 

concentration takes the form:  

                                               
𝜌

 𝜌°
= 1 + ɛ

𝑐

𝑐𝑚𝑎𝑥
                                           (3.2) 

Where ɛ is a dimensionless density reference ratio, 𝑐 is the material concentration in the 

aqueous phase and 𝑐𝑚𝑎𝑥 refers to the maximum material concentration.  

The governing equations for transport describe material (dissolved salt) transport through a 

groundwater system. Some key transport processes that are considered in this study are 

advection, dispersion/diffusion, and injection/withdrawal. The transport equation (Lin et al., 

1997) is given by:  

𝜃
𝜕𝑐

𝜕𝑡
+ 𝑉 ∙ ∇𝑐 − ∇ ∙ (𝜃𝐷 ∇𝑐)                                             

= − (𝛼′𝜃𝑐
𝜕ℎ

𝜕𝑡
) + 𝑞𝑐𝑖𝑛  −

𝜌∗

𝜌
𝑞𝑐

+ (𝐹
𝜕ℎ

𝜕𝑡
+

𝜌°

𝜌
𝑉 ∙ ∇ (

𝜌

𝜌°
) −

𝜕𝜃

𝜕𝑡
) 𝑐                                    (3.3)    

Where 𝜃 refers to moisture concentration, 𝑉 is discharge, 𝐷 is a dispersion tensor, 𝛼′ is the 

compressibility of the medium and 𝑐𝑖𝑛 is the material concentration in the source.  

3.3.2 Coastal aquifer simulation model  

A 3D numerical model of the study area, containing a portion of a multi-layered coastal 

aquifer similar to that in Sreekanth and Datta (2010), was constructed. The length of the 

coastline was 2.13 km, while the other two boundaries were 2.04 km (side A) and 2.79 km 

(side B) in length, respectively. The aquifer (depth = 60 m) was divided equally into three 

layers. The aquifer was considered vertically heterogeneous based on the different hydraulic 

conductivity values of the aquifer layers. The study area of 2.53 km2 incorporated five barrier 

wells (Bw), eight production wells (Pw) and three monitoring wells (Mw). A 3D view of the 

study area with specific well locations is given in Fig. 3.1. The Pw were installed for 

withdrawing fresh groundwater for domestic utilisation, whereas barrier wells were installed 

near the coastline for SWI prevention. Pumping from Bw enabled SWI prevention by 

inducing a steeper hydraulic gradient towards the sea, thus averting inward seawater 

encroachment into the aquifer (Dhar and Datta 2009). Mw was installed for salinity 

monitoring purposes. The sea-side boundary had a constant head and constant concentration 

boundary with a concentration of 35 kg/m3. The other two boundaries of the study area were 

taken as no-flow boundaries. The modelled aquifer was discretised into finite triangular 

elements with an average element size of 150 m. The element size near the wells was set to 
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75 m. Constant groundwater recharge of 0.00054 m/d was specified over the entire study 

area. The screening interval of all wells was taken from the second and third layers of the 

aquifer. The compressibility and dynamic velocity of water were taken as 6.7 x 10-20 md2/kg 

and 131.328 kg.md, respectively. The other key parameters used in the aquifer simulation 

are listed in Table 3.1. 

 
           Table 3.1: Key parameter values for model development 

 

 

 

 

 

 

 

A 3D transient simulation was commenced from an initially steady-state condition of the 

aquifer, achieved by constant pumping of 300 m3/day from only three of the production wells 

for a period of 20 years. After 20 years, it was noted that the observed heads at different 

nodes in the model domain became constant. These resultant heads and concentrations were 

used as initial conditions (initial head and concentration) for aquifer simulation for the 

specified period of four years (4th-time step), where pumping from all production and barrier 

wells was instigated.  

 

 

 

 

 

 

 

 

Figure 3.1: Salt concentration contour at the end of 1460 days (4th time step) in response to 
one set of pumping from all production and barrier wells. 

Property Value 

Hydraulic 
conductivity 

x direction 15 m/d 
y direction 7.5 m/d 
z direction 1.5 m/d 

Bulk density 1600 kg/m3 

Longitudinal dispersivity 50 m 
Lateral dispersivity 25 m 

Molecular dispersion coefficient 0.69 m2/d 
Density reference ratio 0.025 

Soil porosity 0.46 
Compressibility 8.5 x 10-15 md2/kg 

B1 

B2 

B3 

B4 

B5 

M1 

M2 

M3 

P1 

P2 

P3 

P6 

P5 

P4 

P8 

P7 
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3.3.3 Algorithms for surrogate model construction 

3.3.3.1 Genetic programming 

The present study built a genetic programming (GP) model that caters for multiple inputs and 

a single output. The model was trained using inputs (pumping values generated using Latin 

hypercube sampling) in terms of  𝑥1(𝑘), 𝑥2(𝑘), … … , 𝑥𝑛(𝑘), and used 𝐶(𝑘) as the output 

(resulting salt concentration attained from the complex numerical simulation model) with 
(𝑘) denoting the time step. The relationship between these inputs and the output can be 

expressed as: 

                                                   𝐶(𝑘) = 𝑓(𝑥1(𝑘), 𝑥2(𝑘), … … , 𝑥𝑛(𝑘))  (3.4) 

The goal was to find the values of model output 𝐶(𝑘) as a function of past outputs. Models 

produced by GP were employed to estimate the relationship function 𝑓.  

Discipulus GP software (Foster 2001) was used to develop regression models of salt 

concentrations prediction at monitoring locations. The GP model learned from the supplied 

input-output datasets and encoded input-output relationship into the programs. The resultant 

best-fit model (best program) was chosen for the modelling of salinity intrusion into coastal 

aquifers. A more detailed description of the GP models is given in Sreekanth and Datta 

(2011).  

3.3.3.2 Support vector machine regression 

A brief description of the SVMR modelling algorithm, similar to that of Parveen et al. (2016), 

is presented here. The regression analysis comprises training dataset 𝑃 =

{(𝑎1, 𝑏1), (𝑎2, 𝑏2), … , (𝑎𝑁 , 𝑏𝑁)}, so that 𝑎𝑖 is a vector of real independent variables and 𝑏𝑖 is 

the matching scalar of real dependent variables. The regression equation in the feature space 

can be estimated by:  

            𝑧(𝑎, 𝑤) = (𝑤 ∙ ∅(𝑎) + 𝑐)        (3.5) 

Where 𝑤 is the weight vector, 𝑐 is a constant, ∅(𝑎) represents the feature function and 𝑤 ∙

∅(𝑎) is the dot product. Support vector works by minimizing the following equations: 

𝑄(𝑓) = 𝐶
1

𝑁
𝐿𝜀(𝑏, 𝑧(𝑎, 𝑤)) +

1

2
‖𝑊2‖           (3.6) 

and  

𝐿𝜀(𝑏, 𝑧(𝑎, 𝑤)) = {
0                      𝑖𝑓 |𝑏 − 𝑧(𝑎, 𝑤)| ≤ 𝜀
|𝑏 − 𝑧(𝑎, 𝑤)| − 𝜀         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (3.7) 

The left-hand side of Eq. (3.6) characterizes the empirical error and the term 𝐶 provides a 

measure of the optimisation between the empirical error and the model complexity given by 
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the second term of the said equation. Equation (3.7) describes the loss function, called the 𝜀-

insensitive loss function (Vapnik et al. 1997). The optimization problem is transformed into 

a dual problem by incorporating Langrangian multipliers 𝛽 and 𝛽∗. Only the non-zero 

coefficients, alongside their input vectors 𝑎𝑖, are termed the support vectors. The final form 

is as follows: 

    𝑧(𝑎, 𝛽𝑖 , 𝛽𝑖
∗) = ∑ (𝛽𝑖

𝑁𝑠𝑣
𝑖=1 − 𝛽𝑖

∗) (∅(𝑎𝑖) ∙ ∅(𝑎𝑗)) + 𝑐                   (3.8) 

With the assistance of the kernel function 𝐾(𝑥𝑖 , 𝑥𝑗), the support vector regression function 

can be written as: 

         𝑧(𝑎, 𝛽𝑖 , 𝛽𝑖
∗) = ∑ (𝛽𝑖

𝑁𝑠𝑣
𝑖=1 − 𝛽𝑖

∗)𝐾(𝑎, 𝑎𝑖) + 𝑐            (3.9) 

The term 𝑐 is calculated utilizing Karush-Kuhn-Tucker conditions. The most important 

parameters that control SVMR problems are the cost function 𝐶, the radius of the insensitive 

tube ɛ and the kernel parameter. MATLAB R2016a software was used to construct the 

SVMR models. For the present study, a Gaussian kernel was used, with ɛ, 𝐶 and ɣ (Gaussian 

kernel parameters) having values of 0.60, 10 and 0.001, respectively. These values were 

obtained by carrying out several trial experiments.  

3.3.4 Development of surrogate models 

3.3.4.1 Generation of input-output patterns  

The numerical simulation model was used to generate input-output patterns for training and 

validating of the surrogate models. Transient pumping (inputs) were obtained from a uniform 

sampling distribution using Latin hypercube sampling (LHS) (Loh 1996) with an upper 

bound of 1300 m3/d and lower bound of 0 m3/d. The resulting salt concentrations at each 

monitoring well were obtained from the numerical model after each set of pumping rates 

from the production and barrier wells were fed to the model. Each numerical model took 

approximately 4–5 minutes to converge. Seven hundred sets of pumping rates and resulting 

outputs (concentrations) were assembled by running the simulation model 700 times. These 

input-output patterns were later used for surrogate model training, validation and prediction.  

3.3.4.2 Training, validation and prediction procedure  

For cross-validation purposes, generated datasets were partitioned randomly into training, 

validation and prediction datasets without replacement, similar to the procedure described in 

Roy and Datta (2016). The training and validation sets were used for surrogate model 

development, while the prediction set was used to test model performance (Westerhuis et al. 

2008). Out of the 700 datasets, 400 were used for training, 100 were used for validation, and 

200 were used for prediction. The output (concentration) was only fed into the model during 
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the training and validation stages. No output was fed into the model at the prediction stage. 

Three different surrogate models were constructed utilising GP and SVMR algorithms for 

predicting salinity concentrations at the three corresponding monitoring wells.  

3.3.4.3 Surrogate model performance evaluation  

Root mean square error (RMSE), mean square error (MSE), relative error (RE), correlation 

coefficient (r), and Nash-Sutcliffe efficiency (NSE) were used to appraise the performance 

of the developed models at the three stages. Mathematical expressions of these error 

estimates are presented as Eqs. (3.10) to (3.14).  

                                              𝑅𝑀𝑆𝐸 = √
1

𝐾
∑(𝐶𝑘

𝑜 − 𝐶𝑘
𝑝)2

𝐾

𝑘=1

                                (3.10) 

                                                 𝑀𝑆𝐸 =
1

𝐾
∑(𝐶𝑘

𝑜 − 𝐶𝑘
𝑝)2                                     (3.11)

𝐾

𝑘=1

 

                                                       𝑅𝐸 =
1

𝐾
∑ |

𝐶𝑘
𝑜 − 𝐶𝑘

𝑝

𝐶𝑘
𝑜 |

𝐾

𝑘=1

                                   (3.12) 

                                            𝑟 =
∑ (𝐶𝑘

𝑜−𝑐𝑜)(𝐶𝑘
𝑝

−𝑐𝑝)𝐾
𝑘=1

√∑ (𝐶𝑘
𝑜−𝑐𝑜)2𝐾

𝑘=1  √∑ (𝐶
𝑘
𝑝

−𝑐𝑝)2𝐾
𝑘=1    

                       (3.13) 

                                             𝑁𝑆𝐸 = 1 −
∑ (𝐶𝑘

𝑜 − 𝐶𝑘
𝑝)

2𝐾
𝑘=1

∑ (𝐶𝑘
𝑜 − 𝑐𝑜)2𝐾

𝑘=1

                                   (3.14) 

where 𝐶𝑘
𝑜 and 𝐶𝑘

𝑝 are observed (numerically simulated) and predicted saltwater 

concentrations, respectively, 𝑐𝑜  and 𝑐𝑝 are observed and predicted mean saltwater 

concentrations, respectively, and 𝐾 represents the number of data points.  

The generalisation abilities (Ga) of the developed models at the validation stage (Gav) and the 

prediction stage (Gap) were determined using Eqs. (3.15) and (3.16), respectively. 

                                           𝐺𝑎𝑣 =
𝑅𝑀𝑆𝐸 𝑖𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑔𝑒

𝑅𝑀𝑆𝐸 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒
                         (3.15) 

                                            𝐺𝑎𝑝 =
𝑅𝑀𝑆𝐸 𝑖𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑔𝑒

𝑅𝑀𝑆𝐸 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒
                        (3.16) 

 

3.3.5 Methodology for variable sensitivity analysis  

The relative influence of pumping from each well on the salinity level at the respective 

monitoring wells was achieved via sensitivity analysis, as proposed by Liong et al. (2000) 
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and Kordjazi et al. (2015). Only better-performing SVMR models were used in the sensitivity 

analysis experiment. The core of this method lies in the fact that the change in concentration 

at monitoring wells are measured by altering pumping from each pumping well at a constant 

rate at a time. The sensitivity of the input variable (pumping rate) on the output (concentration 

at monitoring well) in the developed SVMR surrogate model was calculated using Eq. (3.17).  

                                          𝑆(%) =
100

𝑑
∑ (

% ∆ 𝑖𝑛 𝑜𝑢𝑝𝑢𝑡

% ∆ 𝑖𝑛 𝑖𝑛𝑝𝑢𝑡

𝑑

𝑘=1
)                         (3.17) 

Where d denotes the number of sets of samples used for prediction. To compute the influence 

of pumping rate on the concentration at a specified monitoring location, the pumping rate 

was changed by 20% for a given time period with the pumping rates at the other locations 

held constant. A change in concentration at a monitoring location represents a change in 

output. The percentage change is computed as a fraction of the change to the input pumping 

in the corresponding sample set in the input. For output, the percentage change was computed 

according to the predicted concentration in the sample set of pumping. The investigated 

aquifer had 13 pumping wells and a constant pumping rate from each well within the four-

year management timeframe was set. This gave a total variable of 52 (13 wells × 4 years). 

Determining the effect of pumping from each well on the salinity concentrations at the 

monitoring wells was essential in quantifying the influence of pumping stressors on the 

aquifer. 

3.3.6 Dimensionality reduction and performance of SVMR models 

For demonstration purposes, new SVMR surrogate models were developed using only the 

variables indicated by the sensitivity analysis to be the most sensitive. The dimensions of the 

training, validation and prediction datasets were reduced by eliminating a combination of 

three less-influential variables. A total of seven new surrogate models were constructed using 

various combinations (cases A to G) of excluded less-sensitive variables. The SVMR models 

were trained and validated with only a subset of the most influential variables before being 

used for prediction. The performance of the new surrogate models was analysed and 

compared with that of models utilising all variables. 

3.4 Results and discussion 

3.4.1 Performance evaluation of the GP and SVMR models 

The results of the performance evaluations of the SVMR and GP models at the training, 

validation and prediction stages are given in Table 3.2. The RMSE was used to measure the 

average magnitude of error between the target (simulated) values and model output 

(predicted) values. Similarly, MSE is the mean of the squares of the differences between the 

target and model output values. The RE expresses the closeness between the target and 
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predicted model output values. The value of r presents the degree of correlation between the 

target and model output values, while NSE denotes the predictive power of a particular 

surrogate model. The performance of the GP and SVMR models at the training, validation 

and prediction stages in terms of the five evaluation criteria showed similar trends. The 

RMSE, MSE and RE values at the three stages were substantially smaller for the SVMR 

models. During the training stage, SVMR had the smallest RMSE value of 0.238 for M2 and 

the highest RMSE of 1.663 for M1. Comparing the RMSE values of the SVMR models at the 

validation stage, the lowest value of 0.323 was obtained for M2, while the highest value of 

1.691 was achieved for M1. Accordingly, the MSE values of the SVMR models were smaller 

than those of the GP models. Likewise, RE was also comparably smaller for the SVMR 

model. The r and NES values did not significantly differ for the two model types. However, 

the r values for SVMR model were slightly higher than those of the GP models at all 

monitoring wells. This outcome highlights the superiority of SVMR models over GP models.  

A model can be considered accurate if the calculated NSE value is greater than 0.8 (Shu and 

Ouarda 2008). The NSE values obtained using the GP and SVMR models were greater than 

0.8, indicating that both types of models had promising results and can be employed for SWI 

prediction.  

Table 3.2: Results of performance evaluation of the GP and SVMR models 

Training 

Mw Model MSE RMSE RE r NSE 
M1 SVMR 0.164 0.405 5.0 x 10-7 0.997 0.99 

GP 2.764 1.663 1.4 x 10-6 0.933 0.95 
M2 SVMR 0.057 0.238 1.6 x 10-7 0.997 0.99 

GP 0.571 0.756 6.1 x 10-7 0.963 0.99 
M3 SVMR 0.184 0.428 6.7 x 10-8 0.989 1.00 

GP 0.407 0.638 2.0 x 10-10 0.975 1.00 
Validation 

M1 SVMR 0.202 0.449 1.8 x 10-6 0.994 0.99 
GP 2.859 1.691 4.7 x 10-6 0.929 0.99 

M2 SVMR 0.105 0.323 2.6 x 10-7 0.993 1.00 
GP 0.379 0.616 2.4 x 10-6 0.971 0.99 

M3 SVMR 0.187 0.432 5.4 x 10-7 0.989 1.00 
GP 0.412 0.642 7.2 x 10-7 0.976 1.00 

Prediction (using a new set of input data) 
M2 SVMR 0.155 0.394 7.5 x 10-7 0.997 1.00 

GP 3.284 1.812 5.6 x 10-6 0.952 0.99 
M2 SVMR 0.073 0.271 2.9 x 10-7 0.996 0.99 

GP 0.570 0.755 1.5 x 10-6 0.965 0.99 
M3 SVMR 0.255 0.505 1.7 x 10-7 0.984 1.00 

GP 0.486 0.697 5.3 x 10-7 0.957 0.99 
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The performance of the developed SVMR models in predicting salinity levels at specified 

monitoring wells was superior to that of GP models (refer Table 3.2). At all the monitoring 

wells, higher r and NSE values and lower RMSE and RE values were observed for the SVMR 

model compared to the GP models. The values of r and NSE were also close to 1 if not 1. 

The obtained prediction results indicate that the SVMR model had higher prediction accuracy 

and was able to effectively emulate a complex numerical simulation model. Figure 3.2 shows 

scatterplots of simulated concentrations (from a numerical model) versus the concentrations 

at the three monitoring wells predicted by the GP and SVMR models. Overall, the 

performance evaluation results at all three stages establish that the SVMR model was the 

most effective in terms of forecasting SWI at specified wells in the modelled coastal aquifer. 
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Figure 3.2: Correlations between FEMWATER simulated salt concentrations (conc.) and 
concentrations predicted by surrogate models for wells (a) M1, (b) M2 and (c) M3 
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Figure 3.3:  MSE convergence for the GP model at wells a) M1, b) M2 and c) M3. d) 

Generalisation ability of the developed GP and SVMR models. 
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model indicates undertraining, while that of SVMR represents overtraining. Also, it is noted 

that the SVMR models were not undertrained in any of the cases. The Gav and Gap values of 

the SVMR models were either 1 or > 1. This establishes that SVMR can provide a reliable 

surrogate model.  

3.4.3 Improvements in surrogate model prediction capability 

The sensitivity of each input pumping rate (variable) was calculated and the results are 

presented in Fig. 3.4 (a). Determining the effect of pumping rate at each well on the salinity 

concentration at monitoring wells is essential in quantifying the influence of pumping rates 

on the aquifer. This quantification process showed the influence of different variables 

(pumping rates from beneficial and barrier wells) on the salinity levels at monitoring wells. 

It can be seen that variables 7, 9, 19, 24, 25, 29, 30, 31, 42, and 47 were of greater importance 

in predicting salinity concentrations at all three monitoring wells. However, variables 50, 21 

and 28 had little contribution and were of less importance in the prediction of salinity 

intrusion at the respective monitoring wells.  

The sensitivity analysis suggests that this information can be to adjust the pumping strategy 

to achieve desired concentrations and/or rectify deviations from predicted concentrations.  It 

recommends variables which need to be focused on and prioritised. Pumping rates at less 

influential wells can be altered since they have little influence on the salinity at monitoring 

wells. Also, training a model using only a subset of the most influential variables can improve 

its predictive capabilities (Chebrolu et al. 2005). Similarly, the sensitivity analysis 

undertaken in this study specified a subset of influential variables and redundant variables. 

The predictive performance of the new SVMR surrogate models developed using only the 

most influential variables (as indicated by the sensitivity analysis) were evaluated. GP models 

were also trained using a subset of the most influential variables. However, only a minor 

improvement (< 0.5 % improvement in RMSE) was shown for case A. Also, GP models took 

the same amount of time (~45 mins) to train and validate. Minor improvements and time are 

important factors that do not favour GP models. Hence, training GP models using other 

subsets of variables was unsuitable.  

The performance evaluation of the new SVMR models at the three respective stages is 

summarised in Table 3.3. These results confirm that a better-performing surrogate model can 

be obtained by using a subset of the most influential variables only. This is evident from 

Table 3.3, where decreases in MSE, RMSE and RE are observed in all cases. Consequently, 

minor increases in r and NSE values were also attained. The evaluation results suggest there 

were improvements in model performance at the three stages in all seven cases. The 

percentage improvements in the MSE, RMSE and r results at the prediction stage are shown 
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in Fig. 3.4 (b). Small improvements in the training, validation and prediction stages for the 

first three cases (A, B and C) were observed. However, when two variables were eliminated 

(i.e. in cases D, E, and F), a substantial improvement was observed. This improvement 

decreases slightly in case G, in which all three less sensitive variables were excluded. The 

improvements in cases D, E and F are greater than those of the other cases in which one or 

three variables were excluded. The results suggest that models can be improved by reducing 

the dimensionality of the sample dataset and using the most influential variables only.   
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Table 3.3: Results of SVMR surrogate model performance evaluation during training, validation and prediction stages 

 

 

   

Case (variables 
eliminated) Mw Training Validation Prediction 

MSE RMSE RE r NSE MSE RMSE RE r NSE MSE RMSE RE r NSE 

A (50) 
M1 0.159 0.405 4.9 × 10-7 0.998 0.99 0.199 0.446 1.4 × 10-6 0.995 0.99 0.150 0.387 7.1 × 10-7 0.998 1.00 
M2 0.051 0.238 1.5 × 10-7 0.998 0.99 0.101 0.318 2.5 × 10-7 0.994 1.00 0.069 0.236 2.6 × 10-7 0.997 0.99 
M3 0.179 0.428 6.3 × 10-8 0.990 1.00 0.179 0.423 5.1 × 10-7 0.991 1.00 0.251 0.501 1.4 × 10-7 0.988 1.00 

B (21) 
M1 0.162 0.402 4.8 × 10-7 0.998 0.99 0.200 0.447 1.2 × 10-6 0.996 1.00 0.148 0.385 7.0 × 10-7 0.997 1.00 
M2 0.054 0.232 1.4 × 10-7 0.998 0.99 0.100 0.316 2.0 × 10-7 0.995 1.00 0.070 0.265 2.1 × 10-7 0.997 0.99 
M3 0.180 0.424 6.2 × 10-8 0.991 1.00 0.181 0.425 5.1 × 10-7 0.990 1.00 0.248 0.498 1.5 × 10-7 0.989 1.00 

C (28) 
M1 0.161 0.401 4.8 × 10-7 0.998 0.99 0.198 0.445 1.3 × 10-6 0.996 0.99 0.152 0.390 7.2 × 10-7 0.998 1.00 
M2 0.053 0.230 1.2 × 10-7 0.998 0.99 0.102 0.319 2.0 × 10-7 0.995 1.00 0.071 0.266 2.3 × 10-7 0.997 1.00 
M3 0.181 0.425 6.5 × 10-8 0.992 1.00 0.183 0.428 5.4 × 10-7 0.993 1.00 0.250 0.500 1.1 × 10-7 0.986 1.00 

D (50, 21 ) 
M1 0.164 0.405 5.0 × 10-7 0.998 0.99 0.198 0.445 1.1 × 10-6 0.997 1.00 0.149 0.386 6.9 × 10-7 0.998 1.00 
M2 0.053 0.230 1.4 × 10-7 0.999 0.99 0.101 0.318 2.0 × 10-7 0.995 1.00 0.068 0.261 2.1 × 10-7 0.997 0.99 
M3 0.180 0.424 6.1 × 10-8 0.992 1.00 0.182 0.427 5.1 × 10-7 0.992 1.00 0.250 0.500 1.3 × 10-7 0.989 1.00 

E (50, 28 ) 
M1 0.158 0.397 4.8 × 10-7 0.998 0.99 0.197 0.444 1.3 × 10-6 0.996 0.99 0.148 0.385 6.8 × 10-7 0.998 1.00 
M2 0.055 0.235 1.1 × 10-7 0.998 0.99 0.101 0.318 2.2 × 10-7 0.995 1.00 0.067 0.259 2.2 × 10-7 0.998 1.00 
M3 0.180 0.424 6.2 × 10-8 0.993 1.00 0.183 0.428 5.1 × 10-7 0.993 1.00 0.247 0.497 1.1 × 10-7 0.991 1.00 

F (21, 28 ) 
M1 0.159 0.399 4.6 × 10-7 0.999 0.99 0.196 0.443 1.3 × 10-6 0.996 0.99 0.149 0.386 6.8 × 10-7 0.998 1.00 
M2 0.057 0.239 1.3 × 10-7 0.998 1.00 0.103 0.321 2.1 × 10-7 0.995 1.00 0.068 0.261 2.4 × 10-7 0.997 0.99 
M3 0.184 0.429 6.2 × 10-8 0.990 1.00 0.184 0.429 5.0 × 10-7 0.993 1.00 0.251 0.501 1.3 × 10-7 0.992 1.00 

G (50, 21, 28 ) 
M1 0.163 0.404 4.9 × 10-7 0.998 0.99 0.199 0.446 1.3 × 10-6 0.997 0.99 0.152 0.390 6.8 × 10-7 0.998 1.00 
M2 0.056 0.237 1.5 × 10-7 0.998 0.99 0.102 0.319 1.9 × 10-7 0.995 1.00 0.069 0.263 2.2 × 10-7 0.997 1.00 
M3 0.182 0.427 6.6 × 10-8 0.993 1.00 0.181 0.425 5.0 × 10-7 0.991 1.00 0.248 0.498 1.0 × 10-7 0.989 1.00 
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Figure 3.4: a) Influence of each variable on the predicted salinity levels at monitoring wells and b) improvements in SVMR surrogate models after 
variable elimination
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The better-performing SVMR surrogate models were those developed for cases D, E and F. 

Case E could be classified as the best surrogate model as it had a higher percentage 

improvement than the other cases. These improved surrogate models can be used for SWI 

prediction purposes as they yield more accurate and reliable results than the others. 

Eliminating variables with negligible influences on the outcome reduces the data 

dimensionality and, consequently, reduces unnecessary data collection and operational costs. 

These benefits could be of high significance in large-scale investigations where extensive 

data collection and effort are required. Also, prioritising which data are collected avoids the 

collection of redundant data, which reduces storage requirements saves time and costs.       

3.4 Conclusions 

This chapter presented SVMR models as a feasible alternative to the GP method for the 

problem of SWI prediction. Trained and validated GP and SVMR models were developed 

for predicting multifaceted SWI processes in coastal aquifers in response to variable pumping 

patterns at a combination of production and barrier wells. The performance evaluation results 

revealed that SVMR models are superior to GP models and can be successfully applied to 

obtain precise and dependable SWI predictions. The evaluation results suggest that SVMR 

prediction models can be applied in groundwater management studies as computationally-

efficient substitutes for the FEMWATER model. Another advantage of utilizing SVMR 

surrogates is that the time required to train and validate them is significantly less than that 

required by GP models. Also, the proposed method of ranking the input variables used in the 

surrogate models presented useful information. This study demonstrates that developing a 

surrogate model by refining the input dataset and retaining only the most influential variables 

can yield a superior predictive model with substantial benefits. In summary, this chapter 

establishes SVMR models as robust tools for predicting SWI into coastal aquifers. Hence, 

SVMR models can be utilized as proxies for more complex numerical models in coastal 

aquifer management studies incorporating surrogate models. The use of SVMR surrogates 

can significantly reduce the computational burdens encountered in optimization problems. 

The results of the present study establish that SVMR models can be applied to SWI prediction 

problems and related management studies. In the next chapter, reliable SVMR surrogates are 

used in a simulation-optimisation framework for developing optimal groundwater pumping 

strategies for the sustainable management of coastal aquifers.    
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Chapter 4: Optimal groundwater-use strategy for saltwater 
intrusion management in a Pacific Island country 
 

The main contents of this chapter have been published and copyrighted as outlined below: 

Lal, A., and Datta, B. (2019). "Optimal groundwater use strategy for saltwater intrusion 

management in a Pacific island country." Journal of Water Resources Planning and 

Management, 145 (9), 04019032.   

4.1 Summary 

Escalating salinity levels in the Bonriki aquifer due to unplanned groundwater extraction are 

a major concern for the people of Kiribati. A multi-objective management model capable of 

providing sustainable optimal groundwater pumping strategies, and simultaneously confining 

salinity concentrations in the aquifer within specified limits, are needed for the Bonriki 

aquifer system. This study applies a regional-scale linked simulation-optimization 

methodology with a Pareto front clustering technique to prescribe optimal groundwater 

withdrawal patterns from the Bonriki aquifer. A numerical simulation model is calibrated and 

validated using available field data. For computational feasibility, support vector machine 

regression (SVMR) surrogate models are trained and tested utilizing input-output datasets 

generated by a numerical flow and transport simulation model. The developed surrogate 

models were externally coupled with a multi-objective genetic algorithm (MOGA) 

optimization model as a substitute for the numerical model. The study area consisted 

freshwater pumping wells for extracting fresh groundwater. Pumping from barrier wells 

installed along the coastlines is also considered as a management option to hydraulically 

control saltwater intrusion. The multi-objective linked simulation-optimization (S/O) model 

generated 700 Pareto-optimal solutions. Analysing a large set of Pareto-optimal solutions is 

a challenging task for decision-makers. Hence, the k-means clustering technique is utilized 

to reduce the size of the original Pareto-optimal solution set to solve the large-scale saltwater 

intrusion management problem in the Bonriki aquifer.  

4.2 Background 

Kiribati is a small Pacific Island developing country that is heavily reliant on groundwater 

resources for its freshwater supply. The Bonriki aquifer is regarded as the national 

groundwater resource for Kiribati and supports the livelihood of Kiribati’s urban population. 

Generally, freshwater aquifers in atoll islands exist as thin lenses (a few tens of meters in 

depth), contained in highly-permeable aquifers surrounded by the sea (White and Falkland 

2010). These freshwater lenses are crucial for the survival of atoll settlements and any 
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degradation in freshwater aquifers has serious consequences for atoll populations. Extracted 

freshwater from the Bonriki aquifer is mainly used to meet the growing demands of the South 

Tarawa island community. South Tarawa, the capital of Kiribati, is currently experiencing a 

huge population influx from smaller islands that have already lost the fight against saltwater 

intrusion. Excessive groundwater withdrawals from the Bonriki aquifer have resulted in 

saltwater intrusion (White and Falkland 2010). Saltwater intrusion has increased the salinity 

of this freshwater aquifer, thereby threatening its suitability for domestic use. The issue of 

saltwater intrusion caused by groundwater pumping requires a multi-objective management 

model capable of determining optimal groundwater pumping strategies so that the coastal 

aquifer remains sustainable.    

Linked S/O utilizing trained surrogate models have the potential to provide the sustainable 

multiple-objective groundwater extraction strategies needed for the Bonriki aquifer system.   

Linked S/O models have delivered many management alternatives needed for the sustainable 

optimal management of coastal aquifers (Ataie-Ashtiani et al. 2013; Ketabchi and Ataie-

Ashtiani 2015; Kourakos and Mantoglou 2013; Park and Shi 2015; Roy and Datta 2017; 

Sreekanth and Datta 2010). However, the implementation of an S/O model has proven to be 

a challenging and multifaceted task. In an S/O model, the objective function (a function that 

is anticipated to be minimized or maximized) is evaluated many times before an optimal 

solution (depending on the constraints) is reached. When a complex numerical model is 

linked to an optimization algorithm, the optimization process becomes time-consuming and 

computationally demanding. The alternative use of embedded linked S/O with finite element 

or finite difference equations embedded as constraints to simulate transient three-dimensional 

density-dependent flow and transport in coastal aquifers may become computationally 

infeasible for such systems (Das and Datta 1999). Also, externally linking an optimization 

model algorithm with complex numerical flow and transport simulation models to search for 

an optimal solution can be very difficult, cumbersome and computationally inefficient. The 

computational complexity is further increased when multiple objectives are considered 

(Akhtar and Shoemaker 2016). In a coastal aquifer management case study, the 

computational time required to generate a single solution on the Pareto front for a small study 

area when a numerical simulation model (FEMWATER based model) model was linked to 

an optimization model was several days of CPU time (Dhar and Datta 2009). The solution to 

this issue is to use a surrogate modelling paradigm instead of a complex numerical simulation 

model in an S/O framework.  

A surrogate model can be understood as a “model of a model”, which describes the 

relationship between the inputs (a model's adjustable parameters) and outputs (Wang et al. 

2014). Substantial gains in computational efficiency and computational feasibility for large 
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study areas can be achieved when a surrogate model-assisted S/O method is used. Many 

saltwater intrusion management studies based on linked S/O studies have used surrogate 

models and have delivered dependable results. A detailed description of the use of surrogate 

models in the field of water resources research is presented in Razavi et al. (2012). In the 

domain of saltwater intrusion simulation and prediction, a range of surrogate model types has 

been successfully developed and implemented (refer to Section 3.2 of Chapter 3). It is evident 

from the literature that a range of surrogate modelling techniques is available. However, the 

selection of a surrogate modelling technique and its accuracy are dependent on the data 

available and the approach used for surrogate model construction (training and testing). The 

present study utilises the support vector machine regression (SVMR) surrogate modelling 

tool for the prediction of salinity concentrations at monitoring locations in response to 

changing transient groundwater pumping patterns. SVMR is a relatively new technique from 

the field of artificial intelligence that has been successfully applied to several forecasting 

applications (Xia et al. 2017). The key advantages of SVMR predictive models are listed in 

Chapter 3 (Section 3.2).   

One concern regarding the application of a multi-objective S/O-based saltwater intrusion 

management study is the interpretation and implementation of its results. The solution to a 

multi-objective optimization problem takes the form of a Pareto front, which consists of many 

solutions known as non-dominated solutions or Pareto-optimal solutions (Wang and 

Rangaiah 2017). Several studies in the field of saltwater intrusion management have obtained 

optimal solutions in the form of Pareto-optimal trade-offs dependent on the respective 

objective functions used in the proposed management model. All the solutions in the entire 

non-dominated Pareto-front can be used by the decision maker for selecting a single preferred 

solution as long as their preference ordering is identified before the multiple objective 

optimisation problems are solved. However, in various situations, a single optimal solution 

is not easily identified. Hence, selecting a solution from several hundred or thousands of 

Pareto-optimal solutions on the Pareto front is a difficult task for the decision maker. One 

way of alleviating this difficulty is to present the decision maker with a small number of 

solutions representative of the Pareto front’s characteristics (Zio and Bazzo 2010). This 

allows easy selection of the optimal solution, consequently allowing the decision maker to 

achieve their optimization goal. A method for selecting a scalar optimum solution from a set 

of vector optimization solutions allowing decision makers to make informed decisions for 

conceivable saltwater intrusion control needs to be developed and implemented.  A case study 

with an example of a search for a single compromise solution from a set of Pareto-optimal 

solutions for water management based on quantified required trade-off and decision maker’s 

acceptable compromises was presented in Datta and Peralta (1986). Formulation of a method 
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for selecting an optimal solution from a large set of Pareto-optimal solutions needs further 

attention. Such a method would provide decision-maker(s) with fewer representative 

solutions to choose from and aid the practical implementation of management policy.  

Various preference elicitation and ranking methods can be used to help decision-maker(s) 

find solutions that best meet optimization goals in multiple-objective scenarios. Three 

different approaches are commonly applied to describe decision-maker preferences for 

choosing a single solution to vector optimization problems: apriori, aposteriori and 

interactive approaches (Branke and Deb 2005; Geiger 2006; Jafari et al. 2014). The apriori 

approach necessitates preference articulation in the formulation of the objectives. The 

aposteriori approach, on the other hand, involves identification of an optimal solution on the 

Pareto-front through analysis of the trade-offs represented by it, which are obtained after the 

optimization process. In the interactive approach, the decision maker can express their 

preference at various times during an ongoing optimization process. In general, the 

aposteriori approach is more logical, as the final choice of optimal solution is based on 

weighting of the trade-offs between the objectives (Datta and Peralta 1986). The aposteriori 

approach has been used in many optimization-related studies (Kao 2010; Pawar et al. 2017; 

Yadollahi et al. 2015). The aposteriori approach has been proven to be less subjective than 

the other two Pareto-optimal solution analysis techniques (Bui and Alam 2008). Also, 

employing an aposteriori approach allows the decision-maker to navigate through the Pareto-

front (i.e., when there are changes in the decision-maker’s preferences) without repeatedly 

executing the optimization algorithm (Yu et al. 2017).  

The clustering technique is a common aposteriori approach used during the post-Pareto 

analysis stage of various optimization problems. Liong et al. (2004) used the clustering 

approach to analyse Pareto-optimal solutions in a reservoir optimization problem. Liong et 

al. (2004) established that the clustering approach aids in reducing the number of feasible 

solutions by offering a set of representative solutions distributed over the entire Pareto front. 

Taboada and Coit (2007) also used the clustering technique to prune the size of a Pareto-

optimal solution set and obtained a smaller representation of the Pareto front in a system 

reliability optimization problem. Taboada and Coit (2007) emphasized that clustering enables 

decision-makers to easily select meaningful solutions for final implementation. In this study, 

the clustering technique is used to help decision-makers concentrate on a smaller set of 

optimal solutions representative of the Pareto front. Clustering helps in reducing the number 

of solutions in the Pareto-front that need to be explicitly evaluated by the decision-maker. 

Specifically, the k-means clustering technique is used to partition the Pareto front solutions 

that share common features. The k-means clustering technique is utilized in the present study 

because it is known to be efficient (Mattson et al. 2004). Using the k-means clustering 
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approach reduces the number of solutions in the Pareto-optimal solution set to be the same 

as the number of clusters (Aguirre and Taboada 2011). Successful application of k-means 

clustering as a Pareto front analysis tool has been demonstrated in various studies (Aguirre 

and Taboada 2011; Bandyopadhyay and Maulik 2002; Chaudhari et al. 2010; Taboada and 

Coit 2008; Zio and Bazzo 2010). In k-means clustering, the centroid of each cluster provides 

the representative solution of that cluster and is used as a reference solution for comparison 

among all Pareto-optimal solutions, allowing decision-makers to choose from a smaller set 

of optimal solutions (Cheikh et al. 2010). The post-Pareto analysis allows the decision-maker 

to select the most preferred optimal solution by easily navigating through the trade-offs of 

the solutions in the reduced solution set.  

This study develops a linked S/O model for prescribing computationally-efficient, regional-

scale, multi-objective management strategies for a real-life coastal aquifer affected by 

saltwater intrusion. The SVMR technique is used for developing efficient surrogate models 

that approximate density-dependent saltwater intrusion processes in such aquifers. The 

efficiency and accuracy of SVMR-based surrogate models was evaluated for a hypothetical 

aquifer in Chapter 3, with the results reported in Section 3.4.1. This chapter also essentially 

deals with the application of the developed method to a regional-scale coastal aquifer in the 

Pacific Island of Kiribati. Here, groundwater is the most important source of freshwater and 

its contamination affects the local economy. This study addresses the goal of the linked S/O 

methodology while also highlighting the need for the implementation of an adequately 

calibrated and validated model that can predict the responses of the aquifer system to 

management strategies. In addition, this work also highlights some of the limitations of the 

method in terms of data availability and accurate modelling of the complex physical 

processes involved. The results and evaluations obtained are new and represent an important 

step in the application of management models to the sustainable management of regional-

scale coastal aquifers. 

The main objective of this study is to prescribe multiple-objective, optimal, freshwater 

pumping strategies for the sustainable management of the Bonriki aquifer in Kiribati utilizing 

a surrogate-assisted S/O model. The main aspects of this study are: (i) development 

(calibration and validation) of a 3D density-dependent saltwater intrusion model for the 

Bonriki aquifer, taking into consideration limited field data availability; (ii) application of  

SVMR-based, trained surrogate models for predicting saltwater intrusion to ensure the 

computational feasibility of the developed multi-objective management model at a regional 

scale; (iii) assessment of different management scenarios, such as the use of barrier well 

pumping to hydraulically limit saltwater intrusion into the Bonriki aquifer and (iv) 
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demonstrate the application of the k-means clustering method for the selection of a subset of 

representative solutions from a potentially large Pareto-optimal solution set. 

4.3 Study area 

4.3.1 Location of the Bonriki aquifer and groundwater use  

The Bonriki aquifer is situated in the Tarawa atoll (1°30′ N, 173°00′ E) in Kiribati. Kiribati 

consists of chains of small, low-lying, coral atoll islands and is situated in the central Pacific 

Ocean. Figure 4.1 illustrates the geographic location of Kiribati and the Bonriki aquifer.  

Kiribati has a tropical climate throughout the year and has a land area of approximately 800 

km2. Tarawa, the capital of the Republic of Kiribati, is divided into South Tarawa and North 

Tarawa. South Tarawa is an urban area and contains 48% of the nation’s population (Duvat 

et al. 2013). The Bonriki aquifer system is located in South Tarawa and is the main source of 

reticulated water for the urban population of South Tarawa (White et al. 1999).  

4.3.2 Hydrogeology of the Bonriki aquifer 

The Bonriki aquifer is a vertically-heterogeneous system typical of atoll island aquifers 

(Ayers and Vacher 1986; Terry et al. 2013). The fresh groundwater in the Bonriki aquifer is 

largely contained in unconsolidated Holocene sediments that unconformably overlie older 

Pleistocene limestone (Bosserelle et al. 2015). Holocene sediments are moderately permeable 

with hydraulic conductivity values ranging from 5 m/d to 20 m/d, while the hydraulic 

conductivity of the Pleistocene limestone sediments is much greater (Bosserelle et al. 2015; 

White et al. 2008). The very high hydraulic conductivity of the Pleistocene sediments 

enhances the mixing of freshwater and seawater (Bosserelle et al. 2015). The unconformity 

between these two geological layers is found at 12–20 m below mean sea level (Bosserelle et 

al. 2015). Such unconformity is very important to the formation of aquifers and is, therefore, 

regarded as the main feature controlling freshwater reserves in Bonriki (Metai 2002). Fresh 

groundwater flows into the adjoining and underlying seawater, and a transition zone 

consisting of brackish water exists at the interface.  The salinity levels at the transition zone 

progressively increase over several metres as the aquifer blends into seawater (Terry et al. 

2013). The aquifer is bounded by the water table and the transition zone. The thickness of the 

transition zone oscillates depending on the rate of groundwater withdrawal and recharge 

through rainfall (Storey and Hunter 2010). It is estimated that the transition zone in Bonriki 

is approximately 23 m deep (Bailey et al. 2010; Falkland 1992).  
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Figure 4.1:  a) Geographical location of Kiribati, b) close-up view of the Tarawa Atoll and 
c) close-up view of the study area (Bonriki aquifer) 

 

4.4 Methods 

4.4.1 Saltwater intrusion numerical modelling tool 

A 3D numerical model was developed using the FEMWATER computer package (Lin et al. 

1997) to simulate pumping-induced salinity intrusion into the aquifer. The FEMWATER 

package allows simulation of density-dependent coupled groundwater flow and transport 

processes in aquifer systems. FEMWATER uses the Galerkin finite-element approximation 

(b) (a) 

(c) 

Bonriki 
(Study area) 
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and residual finite-element methods to approximate flow and transport equations, 

respectively. A detailed description of the FEMWATER model is given in Section 3.3.1 of 

Chapter 3.  

4.4.2 Borehole data and lithology details 

Two aquifer layers were considered in the modelling of the island aquifer, similar to that in 

Bailey et al. (2009). Borehole data from Bosserelle et al. (2015) was used to map the lithology 

of the study area. Borehole data was imported into Groundwater modelling system (GMS) 

software and interpolated using the GMS horizon package. The study area was structured 

with two distinct layers: Holocene sediments (HS) and Pleistocene sediments (PS). The 

Holocene sediments extended from 5–15 m in depth and overlaid the Pleistocene sediments. 

Hydrogeological data from 19 boreholes were imported and used in the interpolation of 

aquifer characteristics. The model domain area was 1.50 km2 with a depth of 60 m.    

4.4.3 Groundwater level, concentration and extraction data 

Field-measured data for groundwater level, electrical conductivity (EC) and average 

groundwater abstraction (annual) from the Bonriki aquifer was obtained from Sinclair et al. 

(2015). Groundwater level and EC data for a period of 1.5 years were available (from April 

2013 to August 2014). Groundwater level and EC data from six monitoring locations (MLs) 

were included in the calibration and validation processes. Concentration data (in mg/L) was 

obtained by converting EC (in μS/cm) by a factor of 0.69, similar to that described by 

Ghassemi et al. (1996) and Ghassemi et al. (1990). The converted concentration and 

groundwater level data from the six MLs, and groundwater abstraction data from 19 

groundwater pumping wells, were used in the calibration and validation of the numerical 

model.  

4.4.4 Boundary conditions and key aquifer parameters 

The assigned boundary conditions (seaside, boundary A and boundary B) of the model 

domain are shown in Fig. 4.2 (a). The seaside boundary was in direct contact with the ocean 

and was defined as a constant head (Dirichlet boundary) and constant concentration boundary 

(seawater level and concentration). This means that the heads and salinity concentrations 

were specified and remained the same over time. A constant head of zero and a constant 

concentration of 35,000 mg/L was assigned to this seaside boundary. The sea level was taken 

as the zero level, as in many other previous studies. Specified pressure head boundaries were 

assigned to boundaries A and B because the heads along these two boundaries are not strictly 

zero. A pressure head of 1 m (at the top end) was assigned to boundaries A and B, and allowed 

to vary linearly along the boundary until it reached a constant value of 0 m at the seaside 

boundary. Groundwater recharge was represented by a constant vertical flux across the entire 
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model domain. The rainwater recharging the study area was assigned a salinity of zero. In 

addition, each pumping well constituted an important source and/or sink for groundwater into 

the Bonriki aquifer system. In the finite element-based numerical model, the model domain 

was horizontally discretised into a mesh of triangular elements. The vertical discretisation 

was based on the lithological structure of the study area. A 3D model of the study area with 

specific well locations is shown in Fig. 4.2 (b). A recent survey by the World Bank stated 

that sea-level rise will have no significant impact on the Bonriki aquifer and will slightly 

increase its volume (Terry et al. 2013). Hence, the impact of sea-level rise was not 

incorporated in the 3D model. Also, uncertainties in aquifer parameter values and model 

predictions were not explicitly included in this study.  

4.4.5 Calibration and validation of the flow and transport numerical simulation model 

Monthly groundwater levels and EC data from six MLs for the period of April 2013 to August 

2014 was available. This field data was divided into two sets: Set 1 consisted of 12 months’ 

data (April 2013 to March 2014), which was used for model calibration. Validation was 

performed using data from Set 2, which consisted of five months’ data (April 2014 to August 

2014). The calibration process was performed manually based on a trial-and-error approach. 

For calibration, a transient approach was utilised in which the model was simulated for a 

period of 334 days (April 2013 to February 2014) in monthly time steps. Initially, during the 

calibration stage, the model groundwater level and concentration data from the numerical 

model did not match the field measurements. However, after gradually and iteratively 

modifying various parameters (hydraulic conductivity, recharge and porosity) within a 

reasonable range in the numerical simulation model, the correlation between observed and 

simulated values improved (in terms of R2 values). The targeted R2 value for calibration was 

> 90%. Other parameter values were based on previous field investigations, and some were 

obtained from the literature (refer to Table 4.1). Once a desired level of accuracy was 

achieved, the validation stage commenced. The parameter values of the calibrated aquifer 

model are listed in Table 4.1.  
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Figure 4.2: a) Study area with freshwater pumping wells, barrier wells and monitoring 
locations and b) developed finite element based 3D model 
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Table 4.1: Aquifer hydrogeological parameters. 

 

4.4.6 Surrogate models as approximate simulators of saltwater intrusion processes 

The SVMR prediction algorithm is a promising tool that has been used in various non-linear 

predictive modelling studies (Al-Anazi and Gates 2012; Gizaw and Gan 2016; Liu et al. 

2013). For the present study, the values of  𝐶 and ɛ and the kernel function were obtained 

through trial-and-error in a process similar to that of Suganyadevi and Babulal (2014). 

Specifically, various combinations of SVMR parameters and kernel functions were used to 

construct SVMR models. Combinations that provided strong correlations (R2 > 90 %) 

between simulated and predicted values were selected.  

4.4.7 Generation of input-output training and testing datasets 

The calibrated numerical model was used to generate sets of transient pumping (input)-

concentration (output) datasets for use in surrogate model development. A total of 700 

transient pumping patterns from freshwater pumping wells (FPWs) and barrier wells (BWs) 

were obtained from a uniform sampling distribution using the LHS methodology. For the 

illustrative coastal aquifer management problem investigated in the previous chapter (Section 

3.3.4.2), 700 pumping and concentration datasets were found to be sufficient for training and 

validating SVMR surrogate models with reasonable predictive accuracy. Also, the numbers 

of training and testing datasets required are dependent on the predictive performance of each 

surrogate model type. The numbers can be increased or decreased depending on the 

prediction capabilities of the models, which can be deduced from performance evaluation. 

The 700 pumping patterns generated were fed into the numerical simulation model (one set 

at a time) and the output concentrations at MLs were obtained for each input pumping pattern. 

Each numerical simulation model took approximately 4-5 minutes to converge. The 700 input 

pumping patterns and resulting 700 output ML concentrations were generated by running the 

Hydrogeological parameter Holocene 
sediment 

Pleistocene 
sediment 

Source 

Hydraulic conductivity (m/d) 
x 15 450 

Calibrated y 7.5 225 
z 1.5 45 

Porosity (%) 20 30 Calibrated 
Effective recharge (m/d) 0.0055 Calibrated 
Seawater density (kg/m3) 1025 Oberdorfer et al. (1990) 
Freshwater density (kg/m3) 1000 Oberdorfer et al. (1990) 
Molecular diffusivity (m2/s) 1.5 x 10-9 Ghassemi et al. (1996) 
Dynamic viscosity of water (kg/ms) 280985.76 - 
Longitudinal dispersivity (m) 1 Bosserelle et al. (2015) 
Lateral dispersivity (m) 0.05 Bosserelle et al. (2015) 
Compressibility of water (m2/N) 4.4 x 10-10 Oberdorfer et al. (1990) 
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simulation 700 times. These input-output patterns were used to train and test the SVMR 

surrogate models.  

4.4.8 Surrogate model development procedure 

Out of the 700 data sets assembled, 500 were used for training the models and 200 were used 

for testing them. Six surrogate models were trained for predicting concentrations at the six 

corresponding MLs. After training, each of the six surrogate models was tested using the 

corresponding testing dataset. The SVMR models were trained and tested offline using the 

MATLAB 2017a platform. An offline training and testing paradigm was employed because 

it can deliver reliable saltwater intrusion surrogate models with low computational 

complexity. The surrogate models were named SVMR1, SVMR2, SVMR3, SVMR4, 

SVMR5 and SVMR6, where the numbers represent the corresponding MLs. In constructing 

the predictive SVMR models, a Gaussian kernel was used with the values of parameters ɛ, 𝐶 

and γ set to 0.0004, 10 and 0.05, respectively. These parameter values were obtained after 

several trial-and-error runs.  

4.4.8 Surrogate model performance evaluation 

Assessing the performance of the surrogates was decisive in determining the accuracy and 

reliability of the developed models. The performance evaluation criteria used to quantify the 

saltwater intrusion prediction capabilities of each SVMR model during the training and 

testing stages are given by Eqs. 4.1 to 4.4.  The root mean square error (RMSE) was calculated 

to measure the difference between the predicted values (SVMR model) and the simulated 

values (numerical model). An SVMR surrogate model was considered acceptable when the 

RMSE was < 5 mg/L. Mean bias error (MBE) can also represent the difference between 

predicted and simulated values. Coefficients of determination (R2) were calculated to indicate 

the degree of association between the predicted and simulated values. Nash-Sutcliffe 

efficiency coefficients (NSE) were calculated to assess the predictive capabilities of the 

hydrological models.  

    𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑆𝑛 − 𝑃𝑛)2   𝑁

𝑛=1                      (4.1) 

  𝑀𝐵𝐸 =
1

𝑁
∑ (𝑆𝑛 − 𝑃𝑛)𝑁

𝑛=1                                (4.2) 

  𝑅2   =
(∑ (𝑆𝑛 − 𝑆𝑛̅̅̅̅ )(𝑃𝑛 − 𝑃𝑛̅̅̅̅ )𝑁

𝑛=1 )2   

  ∑ (𝑆𝑛 − 𝑆𝑛̅̅̅̅ )2𝑁
𝑛=1  ∑ (𝑃𝑛 − 𝑃𝑛̅̅̅̅ )2𝑁

𝑖=1  
   (4.3) 

𝑁𝑆𝐸 = 1 −
∑ (𝑆𝑛−𝑃𝑛)2𝑁

𝑛=1

∑ (𝑆𝑛−𝑆𝑛̅̅̅̅ )2𝑁
𝑛=1

                                (4.4) 
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In the above equations, 𝑆𝑛 is the simulated concentration, 𝑃𝑛 is the predicted concentration, 

𝑆𝑛̅̅̅̅  is the average simulated concentration, 𝑃𝑛̅̅̅̅  is the average predicted concentration and 𝑁 

represents the number of data points.  

4.4.9 Linked simulation-optimization-based management model 

The urban population of South Tarawa is heavily reliant on freshwater from Bonriki aquifer. 

Thus, the main aim of the proposed management model was to prescribe optimal groundwater 

pumping rates from the FPWs that meet the growing freshwater demand while 

simultaneously restricting the salinity levels in the aquifer to specified limits. The decision 

variables within the approximate simulators (surrogate models) represent the pumping rates 

at each of the FPWs and BWs. The objective function measures the performance of the 

different pumping solutions while satisfying the set constraints. A four-year management 

horizon was chosen for this illustrative evaluation, taking into consideration the number of 

input patterns of FPW and BW pumping rates to be included for training the SVMR surrogate 

model. If the aquifer system was considered to be in a steady-state in terms of head and salt 

concentration, the management period would not need to be restricted. However, in this 

study, both pumping rates and heads are considered transient. Therefore, training of the 

SVMR surrogate models (which approximate the response of the aquifer to various pumping 

stresses) was dependent on the initial conditions, time-varying concentrations and heads 

during the training period. Therefore, the random patterns generated as inputs, and their 

corresponding outputs, needed to consider input patterns that covered the entire management 

time horizon as paired sets. For training or learning purposes, an input pattern constituted a 

randomized pumping rate at each FPW and BW, with the rate varied for each management 

period over the entire management time horizon. Hence, to restrict the training process to 

reasonable computation time, a four-year management time horizon was chosen. While 

longer horizons could be considered, this would require larger pumping-concentration 

datasets for SVMR model training, which would likely increase the complexity of the S/O 

models. A total of 100 decision variables were considered for the management of Bonriki 

aquifer. These decision variables correspond to pumping rates from the FPWs and BWs 

during the four-year management period (4 time-steps). Variables P1-P19, P26-P44, P51-P69 

and P76-P94 represented freshwater withdrawal rates from the 19 FPWs, while variables 

P20-P25, P45-P50, P70-P75 and P95-P100 represented pumping rates from the six BWs for 

the four management periods. The management model was formulated by coupling the 

approximate simulators to an optimization algorithm. For the present study, a multi-objective 

genetic algorithm (MOGA) (Deb et al. 2002) was used to solve the multi-objective 

optimization problem. MOGA has been successfully implemented as an optimisation tool in 

various saltwater intrusion management studies, including Dhar and Datta (2009), Sreekanth 
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and Datta (2010) and Gad and Khalaf (2013). The working principle of MOGA is extensively 

discussed in Deb (2001) and Coello et al. (2007). To execute the MOGA model, a population 

size of 2000, function tolerance of 1 × 10-4, constraint tolerance of 1 × 10-3 and crossover 

fraction of 0.8 was used in the developed optimisation problem. These MOGA parameters 

were obtained after several trial runs. Function tolerance and constraint tolerance were used 

as the stopping criteria of the optimization problem. The tested SVMR models were 

externally coupled to the MOGA via the MATLAB 2017a platform. The surrogate models 

presented candidate groundwater pumping rate (from the FPWs and BWs) solutions to the 

MOGA. This allowed the optimization algorithm to search for solutions whereby the only 

way to improve a particular objective was to decrease the performance of another conflicting 

objective. Mathematical expressions of the objective function, constraints and bounds are 

given below.  

Objective I: Maximize pumping from FPWs 

Maximize:  

             𝐹1(𝑃 𝐹𝑃𝑊) = ∑ ∑ 𝐹𝑃𝑊𝑛
𝑡                                        (4.5)

𝑇

𝑡=1

𝐿

𝑛=1

 

Objective II: Minimize pumping from BWs 

Minimize:  

               𝐹2(𝑃 𝐵𝑊) = ∑ ∑ 𝐵𝑊𝑚
𝑡                                         (4.6)

𝑇

𝑡=1

𝑀

𝑚=1

 

Subject to: 

              Constraints   𝑐𝑖 =  𝜉(𝐹𝑃𝑊, 𝐵𝑊)                            (4.7) 

                        𝑐𝑖 ≤ 𝑐 𝑚𝑎𝑥,𝑖  ∀𝑖, 𝑇                                               (4.8) 

           Bounds          𝐹𝑃𝑊𝑚𝑖𝑛 ≤ 𝐹𝑃𝑊𝑛
𝑡 ≤ 𝐹𝑃𝑊𝑚𝑎𝑥             (4.9) 

               𝐵𝑊𝑚𝑖𝑛 ≤ 𝐵𝑊𝑚
𝑡 ≤ 𝐵𝑊𝑚𝑎𝑥                                          (4.10) 

                                                                                          

Where 𝐹𝑃𝑊𝑛
𝑡 denotes pumping from the nth freshwater pumping well at time t and 𝐵𝑊𝑚

𝑡  

denotes pumping from the mth barrier well at time t. 𝑐𝑖 represents the salinity concentration 

at the ith monitoring location at the end of management the time horizon. 𝜉( , ) symbolizes 

that the surrogate model replaces the numerical simulation model, while constraint (4.7) 

denotes the coupling of the surrogate model with the optimisation algorithm within the S/O 
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framework. Variables L, M and T are the total numbers of FPWs and BWs and the length of 

the management time horizon, respectively. Inequality (4.8) represents the imposed 

constraints, which ensure that the salinities at the MLs are within specified limits. Inequalities 

(4.9) and (4.10) represent the upper and lower bounds of pumping rates from FPWs and BWs, 

respectively. For the present case, salinities at MLs were maintained below specified limits 

to ensure that the water withdrawn from the 19 FPWs was suitable for domestic consumption. 

The maximum tolerable salinity for ML1 and ML2 was set to 20,000 mg/L. These locations 

are closer to the shoreline and the sea-side boundary is assigned a concentration of 35,000 

mg/L. Therefore, very low permissible concentrations at ML1 and ML2 may not be feasible 

if the time horizon considered is limited to a few years. The maximum allowable salinities at 

ML3 and ML4 were set to 5000 mg/L and 4000 mg/L, respectively. Lastly, the maximum 

tolerable salinity at ML5 and ML6 was set to 450 mg/L. ML5 and ML6 were located in an 

area with a dense distribution of FPWs and it was anticipated that water withdrawn from this 

region was suitable for a range of activities of the South Tarawa community (household 

chores and irrigation). The upper and lower pumping rate bounds for both the FPWs and BWs 

were set to 1200 m3/day and 0 m3/day, respectively. The search space was restricted by these 

bounds. The pumping rate of 1200 m3/day was just an upper bound. The optimal solutions 

were, however, based on the objective functions and the set constraints and should lie within 

these bounds. It is also possible that the upper bound of 1200 m3/day would not be reached 

in the prescribed optimal solutions. Further justification of the upper bound is presented in 

the Results and Discussion sections.  

4.4.10 Clustering of Pareto-optimal solutions and decision-making 

In this study, k-means clustering was used to group the Pareto-optimal solutions into clusters 

with similar characteristics. The clustering was done by calculating the centroid of each 

cluster and iteratively assigning each solution to the cluster with the closest centroid (Taboada 

and Coit 2008). Detailed descriptions of the k-means clustering algorithm are presented in 

Bandyopadhyay and Maulik (2002) and Zio and Bazzo (2010). However, a brief outline of 

the pruning of the Pareto-optimal solution set using the k-means clustering technique is 

presented below.  

Step 1: Obtain the Pareto-optimal solution set by executing the multi-objective optimization 

problem.  

Step 2: Apply the k-means clustering technique to group the optimal solutions enclosed in 

the Pareto front into separate clusters.  

Step 3: Once the k-means stopping criterion is reached, locate the centroid of each cluster.  
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Step 4: Select the solution in the Pareto-front closest to the centroid. The reduced optimal 

solution set will contain as many solutions as the number of centroids.  

Step 5: The decision-maker is now provided with a reduced number of optimal solutions 

representative of the original Pareto-optimal solutions. A solution from the reduced Pareto-

front is chosen based on the decision-maker’s preferences and is implemented to achieve the 

optimization goal.  

The k-means clustering code was written in the R software package. A fixed number of 

iterations was taken as the stopping criterion (Zio and Bazzo 2010); in this case, 50.  The 

rule-of-thumb approach (Cui et al. 2014; Kodinariya and Makwana 2013) (Eq. 4.11) was 

used to decide the number of clusters required.  

                               𝑘 ≈ √𝑗/2       (4.11) 

Where 𝑗 represents number of optimal solutions in the original Pareto-front.  

A flowchart of the implemented management strategy utilizing the linked S/O model and the 

Pareto-front clustering technique is given in Fig. 4.3.  
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Figure 4.3: Multi-objective management model development framework 
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4.5 Results and discussion 

4.5.1 Calibration and validation results: Observed vs simulated 

During both the calibration and validation stages, the simulated groundwater levels and 

salinity concentration data at the respective MLs were in good agreement with the observed 

field values. The close agreement between the observed and simulated values indicates that 

the numerical model accurately replicated saltwater intrusion processes in the Bonriki 

aquifer. An acceptable level of agreement (R2 > 90 %) between the simulated and field values 

was obtained.  Before calibration, the R2 values for the correlations between the simulated 

and observed groundwater levels and salinities were in the ranges of 35–45 % and 40–45 %, 

respectively. Comparisons of the simulated and observed groundwater levels and 

concentration at the validation stage are presented in Figs. 4.4 and 4.5, respectively. The R2 

values for the simulated vs. observed groundwater levels at the six MLs were within the range 

of 93.86–99.2 %, while those for salinities were 98.7–99.9 %. This was perceived to be an 

acceptable level of accuracy, as the differences between the simulated and observed values 

were < 10 % of the variability in the field data across the model domain (Khadri and Pande 

2016). Also, as per the upheld calibration criteria stated in the methodology, it was observed 

that the simulated data not only agreed satisfactorily with the observed data in terms of 

accuracy, they also correlated with the observed patterns of fluctuation in salinity. The 

observed fluctuations in salinity due to variations in pumping rate were also reflected by the 

numerical model. While it is obvious that there are some uncertainties involved in the 3D 

modelling of the saltwater intrusion process in the Bonriki aquifer, the overall results suggest 

that manual calibration allows the numerical model to reflect the actual regional 

characteristics of groundwater flow and transport processes in the Bonriki aquifer with 

reasonable accuracy.  
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Figure 4.4: Correlations between observed and simulated groundwater levels obtained 
during the model calibration (a, b, c and d) and validation stages (e and f) 
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Figure 4.5: Correlations between observed and simulated concentrations (conc.) obtained 
during the model calibration (a, b, c and d) and validation stages (e and f). 
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4.5.2 Effect of barrier well pumping on the Bonriki aquifer 

Before incorporating BWs into the S/O model, it was important to compute their potential 

benefit in minimizing saltwater intrusion into the Bonriki aquifer. Pumping from BWs 

installed near a coastline is a common approach to controlling saltwater encroachment into 

fresh groundwater and has been applied in several cases worldwide (Kallioras et al. 2013; 

Sreekanth and Datta 2010). BW pumping creates a trough along the shoreline, causing the 

seawater to flow inwards and the freshwater to flow in the opposite direction; i.e., towards 

the sea (Todd 1974). This results in a hydraulic barrier which can reduce saltwater intrusion 

into the freshwater system. In the present study, a series of BWs were installed to minimize 

saltwater intrusion into the Bonriki aquifer. To establish and quantify its benefit, five 

randomized transient pumping rates (before and after initiating BW pumping) obtained by 

LHS were implemented in the numerical model. The salinities obtained at the respective MLs 

are presented in Fig. 4.6.  For the five pumping rate sets, reductions in salinity concentration 

were recorded at all six MLs after pumping was initiated at BWs. Analysis of the salinity 

data, in terms of maximum, upper quartile, median, lower quartile and minimum values (both 

before and after BW pumping initiation) clearly demonstrates that BW pumping has a 

positive impact on the Bonriki aquifer.  

The evaluated results highlight that BWs can serve as a practical saltwater intrusion control 

method where feasible. However, it can be noted that any pumping rate at any of the specified 

BW locations is indeed a decision variable. An optimal solution can also specify a zero 

pumping from one or, all barrier well pumping locations if the optimization model infers that 

no further pumping from the BWs can increase the beneficial pumping from the FPWs. Also, 

in scenarios with two conflicting objectives, decision-makers can choose a Pareto-optimal 

solution which specifies zero BW pumping.  
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Figure 4.6:  Comparisons of concentrations at MLs before and after BW pumping 
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4.5.3 SVMR surrogate model performance evaluation 

The performance of the SVMR models at the training and testing phases is summarized in 

Table 4.2. The performance evaluation results obtained for both phases show similar trends 

in terms of the four evaluation criteria. The obtained results indicate that the models were 

adequately trained to predict salinity at the MLs in response to changing pumping rate 

patterns at the BWs and FPWs. The RMSE values for the developed models at both phases 

were substantially smaller and ranged from 2.75–7.14 mg/L). Accordingly, the MBE values 

of the SVMR models were comparatively smaller. Also, the R values for all six models were 

close to 1 and ranged from 0.96–0.99. The R values computed for the six SVMR models 

indicate the strength of the linear relationship between the actual and predicted salinity 

values. Taylor (1990) reported that an R-value close to 1, regardless of the direction, indicates 

a strong linear relationship between two variables. Also, the NSE values obtained indicate 

the models are reliable in their predictions. An NSE value of 1 indicates a perfectly trained 

predictive model (He et al. 2014). Shu and Ouarda (2008) stated that a model can be 

considered accurate if its NSE value is > 0.8. In the present case, the NSE values for all six 

SVMR models were either 0.99 or 1. This indicates an adequately-trained predictive model. 

Figure 4.7 shows the comparison between actual and predicted salinities at the testing stage. 

For easy visualization, Fig. 4.7 only shows 20 randomly-selected points instead all 200 

testing points. The results at the testing stage indicate that the developed models have good 

predictive performance.  

 

Table 4.2: Results of performance evaluation of the developed SVMR models 

Phase Model RMSE MBE R NSE 

Training 

SVMR 1 4.62 0.21 0.99 1 
SVMR 2 2.75 0.12 0.99 1 
SVMR 3 3.58 0.16 0.99 1 
SVMR 4 5.67 0.24 0.99 1 
SVMR 5 3.59 0.16 0.99 1 
SVMR 6 3.80 0.17 0.99 1 

Testing 

SVMR 1 5.66 0.40 0.98 1 
SVMR 2 4.95 0.35 0.98 1 
SVMR 3 5.30 0.38 0.96 0.99 
SVMR 4 5.73 0.41 0.96 0.99 
SVMR 5 7.07 0.50 0.98 0.99 
SVMR 6 7.14 0.51 0.98 0.99 
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Figure 4.7: Comparisons of actual and predicted salinity values using 20 test points for a) 
ML1, b) ML2, c) ML3, d) ML4, e) ML5 and f) ML6 

 

Overall, the performance evaluations indicate that the SVMR models effectively learnt the 

non-linear relationship between the groundwater pumping rate and salinity datasets. This 

highlights that the developed SVMR models are capable of emulating the numerical 

simulation model’s responses to variable transient groundwater pumping rate patterns. 

Hence, the SVMR models can be used as an approximation of the more complex numerical 

model.  
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4.5.4 Pareto-optimal trade-offs 

The execution of the linked S/O model presented a Pareto-optimal solution set comprising 

various solutions depending on the trade-offs between conflicting objective functions. Use of 

a population size of 2000 and a Pareto front population factor of 0.35 generated 700 optimal 

solutions in the Pareto-front. Figure 4.8 (a) presents the Pareto front of the executed S/O 

model. A clear trade-off is observed between the total FPW and total BW pumping rates. The 

Pareto-front reveals the rate of BW pumping required to achieve a preferred rate of FPW 

pumping. The total optimal pumping rates from all FPWs and all BWs for the four-year 

management horizon ranged between approximately 40,000–47,000 m3/day and 2000–8000 

m3/day, respectively. These optimal pumping rates are based on the permissible salinity limits 

specified for the different MLs in the management model. For example, a total optimal 

pumping rate of 40,000 m3/day from the FPWs is the total pumping rate from all 19 FPWs 

for the four-year management horizon. Annually, the pumping rate would be around 10,000 

m3/day (40,000 m3/day divided by 4 years). This rate implies a total annual withdrawal of 

water from the aquifer of nearly 3.65 million m3 per year (10,000 m3/day × 365 days). The 

soil layer above the aquifer is quite permeable and consists of sand and gravel. The maximum 

and minimum annual rainfalls in Tarawa are approximately 4300 mm and 2100 mm, 

respectively (Bosserelle et al. 2015). With this annual rainfall over a highly-permeable 

aquifer top cover with a proportionately very small built-up area, it is reasonable to assume 

an average vertical annual recharge rate of nearly 2000 mm. This vertical recharge amount is 

itself around 3 million m3 per year. Therefore, if the BW extraction rate is excluded from the 

total withdrawal amount computed above (FPWs plus BWs), and as a large proportion of BW 

extraction is contributed to by the sea face constant head boundary, the total specified 

withdrawal from the freshwater supply wells nearly matches the vertical recharge estimate. 

Therefore, the solutions and the boundary conditions imposed appear to be reasonable. To 

demonstrate specific pumping patterns from each well for each year in the management 

period, an optimal solution was randomly chosen from the Pareto front (Fig. 4.9). Similar 

pumping patterns were observed for other solutions on the Pareto-front. In Bonriki, the 

average withdrawal rate (field pumping rate) averaged over all FPWs for a one-year period 

was approximately 85 m3/day per well. There were 19 FPWs; therefore, the annual average 

pumping rate for the entire aquifer was 1600 m3/day (85 m3/day × 19). This amounts to 

584,000 m3/year (1600 m3/day × 365 days) from the entire aquifer. The average pumping rate 

from a single well for a year would be 31,000 m3/year (85 m3/day × 365 days). The upper 

bound of 1200 m3/day was only used as a management upper bound to consider the option of 

utilising BWs in the search for an optimal solution. It does not reflect actual solutions but 

makes such an option plausible in the search for acceptable solutions. Essentially, this upper 

bound with a lower bound of zero defines the restrictions on the feasible decision space. 
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However, as is evident from Fig. 4.9, a typical average optimal FPW pumping rate is only 

about 450 m3/day at the end of the management horizon. The upper bound is never reached 

in any solution. This increase in pumping rate is possible and also intuitively logical due to 

the option of utilizing BWs and also because it is based on a planned optimal strategy. 

Depending on the decision-maker’s preference, a solution from the 700 optimal solutions 

available can be selected and implemented for the Bonriki aquifer. However, choosing a 

solution from a Pareto-front with a uniform spread and wide coverage is a challenging task 

for the decision-maker.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8:  a) Pareto front from the SVMR-MOGA management model and b) Pareto front 
with clusters and centroid locations. Insert: Reduced Pareto front. 
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4.5.5 Reduced Pareto front  

To facilitate decision-making, 700 solutions on the Pareto front were grouped into 19 clusters 

using k-means clustering. These 19 clusters presented 19 centroids, which were used as 

reference points. The solution closest to these reference points forms part of the reduced 

Pareto front. Figure 4.8 (b) presents the clustered Pareto front with centroid locations and the 

reduced Pareto front. The centroids with the closest corresponding Pareto-optimal solutions 

are presented in Table 4.3. For the present case, 19 centroids from the 19 clusters delivered 

19 Pareto-optimal solutions.  The decision-maker now has 19 optimal solutions which best 

represent the Pareto front under analysis. The decision-maker now has the option to choose 

solutions from the reduced Pareto front and decide on a strategy for optimal extraction of 

groundwater from the Bonriki aquifer.  

Table 4.3: Cluster centroids with corresponding solutions in the reduced Pareto front 

 

 

Solution 
Centroid Solutions in the reduced Pareto front 

(closest to centroid) 
Total FPW 

pumping (m3/day) 
Total BW 

pumping (m3/day) 
Total FPW pumping 

(m3/day) 
Total BW pumping 

(m3/day) 
1 40664.92 2156.72 40719.89 2101.82 
2 41391.71 2392.14 41383.78 2407.41 
3 42056.11 2613.22 42035.38 2602.83 
4 42386.75 2756.35 42380.53 2764.25 
5 42692.82 2888.45 42677.52 2888.64 
6 43363.04 3218.48 43420.89 3200.24 
7 43959.38 3593.71 43939.32 3588.87 
8 44407.63 3886.25 44408.37 3879.08 
9 44897.02 4323.91 44891.49 4330.59 
10 45104.19 4524.89 45085.43 4517.93 
11 45379.91 4821.59 45366.83 4831.36 
12 45619.88 5168.69 45617.43 5159.23 
13 45871.98 5580.98 45877.21 5572.04 
14 46013.52 5962.60 46022.76 5933.92 
15 46171.84 6313.68 46168.41 6317.32 
16 46277.27 6735.05 46278.19 6745.76 
17 46319.39 6943.08 46317.06 6939.55 
18 46384.30 7400.16 46386.55 7395.34 
19 46410.97 7824.99 46410.37 7859.84 
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Figure 4.9:  Pumping rates over the 4-year management horizon for a randomly-selected optimal solution 
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4.6 Discussion 

This study shows that a decision-maker can be provided with a small number of 

representative solutions (Table 4.3). The decision-maker can then easily select a focused and 

informed solution based on the importance of two different objectives and the acceptable 

level of trade-off between them. The pruned Pareto-front containing 19 optimal solutions 

makes it relatively easier for decision-makers to weigh up the various trade-offs in the Pareto 

front. A solution from the reduced Pareto-front can be selected and implemented based on 

the decision-maker’s preferences. The management model proposed in this study has the 

potential to control aquifer salinity levels and, simultaneously, meet the growing water 

demands of Kiribati. The Public Utility Board, which looks after the management of the 

Bonriki aquifer can implement the proposed management model and possibly solve the 

groundwater salinization issue in Kiribati. If implemented, the groundwater extracted from 

FPWs can be distributed to local communities and groundwater withdrawn from BWs can be 

discharged to the sea.  

An important point of discussion is the optimal number of clusters to be used in the k-means 

clustering approach. Apart from the rule-of-thumb, other approaches such as the elbow 

approach, Silhouette approach and cross-validation approach could also be considered to 

decide on the number of clusters to be used. Also, validation of the optimal solutions obtained 

from the S/O model is another crucial component of the S/O approach. The optimal solutions 

are derived from the SVMR-assisted linked-S/O model. Hence, the validation of these 

solutions in terms of constraint satisfaction is critically important. For the present case study, 

validation was accomplished by implementing five randomly-selected optimal solutions from 

the reduced Pareto front into the complex numerical model. The concentrations obtained from 

the numerical model were compared with those predicted by SVMR.  The relative differences 

between concentrations obtained as solutions of the optimization model and those of the 

corresponding numerical simulation are presented in Table 4.4. Table 4.4 indicates a very 

small relative difference (within 5 %) in concentration datasets obtained from the two types 

of model. This highlights the fact that the SVMR surrogate models accurately predict salinity 

concentration in response to transient pumping rate patterns. It was observed that the 

predicted concentrations were below the permitted levels (as per the imposed constraints), as 

required by the management strategy. In addition, the SVMR-predicted concentrations also 

converged to the upper limit of the permissible salinity level specified as a constraint. For 

example, at ML1, the maximum allowable salinity limit was 20,000 mg/L. All the predicted 

solutions at ML1 (Table 4.4) did not exceeding this limit. Also, as seen in Table 4.4, the 

SVMR-predicted concentrations converge to the upper limits of the constraints but do not 

exceed the maximum allowable limit.  Similar trends were evident for ML2, ML3, ML4, 
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ML5 and ML6. These results demonstrate the validity of the optimal groundwater extraction 

patterns determined for the Bonriki aquifer. Use of such optimal pumping patterns will ensure 

sustainable withdrawal of acceptable-quality groundwater for the South Tarawa community.  
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Table 4.4: Results of implementing optimal solutions in the numerical model (NM) and SVMR surrogate model 

 

 

 

 

 

 

 

 

 

 

 

 

Solution Cmax at 
ML1 ≤ 20,000 mg/L 
 

Cmax at 
ML2 ≤ 20,000  mg/L 
 

Cmax at 
ML3 ≤ 5000  mg/L 
 

Cmax at 
ML4 ≤ 4000  mg/L 
 

Cmax at 
ML5 ≤ 450  mg/L 
 

Cmax at 
ML6 ≤ 450  mg/L 
 

NM SVMR RE (%) NM SVMR RE 
(%) 

NM SVMR RE 
(%) 

NM SVMR RE 
(%) 

NM SVMR RE 
(%) 

NM SVMR RE 
(%) 

1 20021.5 19995.5 0.13 20019.9 19991.3 0.14 5002.9 4998.2 0.09 4012.3 3998.2 0.35 455.2 444.2 2.42 456.7 448.7 1.75 
2 20008.4 19982.3 0.13 20014.6 19989.2 0.13 5010.2 4899.6 2.21 4029.6 3991.8 0.94 459.6 446.8 2.79 461.2 443.9 3.75 
3 20011.5 19994.1 0.09 20028.2 19988.5 0.20 4999.8 4995.1 0.09 3998.2 3986.5 0.29 461.2 449.1 2.62 467.9 448.2 4.21 
4 20016.1 19998.7 0.09 20016.9 19991.2 0.13 5008.2 4997.3 0.22 4011.2 3997.5 0.34 456.8 448.2 1.88 451.2 441.8 2.08 
5 20008.3 19982.2 0.13 20006.7 19993.3 0.07 5011.3 4996.2 0.30 4019.7 3994.2 0.63 449.4 441.9 1.67 449.8 446.8 0.67 
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It is important to note that the use of BWs is only an option in the decision model. In a 

decision model based on the linked S/O approach, the options are to use BWs, recharge wells 

or no wells at all. It is not possible to predict all outcomes in a complex system with 

temporally- and spatially-varying pumping patterns and multiple interconnected layers. 

However, different management constraints can be imposed to limit (even to zero) pumping 

from any or all BWs. The optimal decision models can determine whether there are any better 

alternatives. Indeed, our solutions for different management scenarios show that the total 

amount of beneficial pumping will be substantially reduced if BWs are not utilized i.e. 

restricted to zero withdrawal. The main utility of developing such a complex management 

decision model is to be able to consider all such scenarios and be able to identify the best 

strategy for maximizing beneficial and sustainable withdrawal from the aquifer. If the 

simulation model is calibrated (with reasonable accuracy), all such management options are 

generated by the optimization algorithm and evaluated as candidate solutions. Then one can 

be selected that attains the best objective function levels. This is the main motivation for 

developing such computationally-intensive linked-S/O models. For example, it is also 

possible to include the option of freshwater injection wells and determine whether their 

distribution and usage patterns could improve the total amount of water pumped from other 

locations over time. It is easy to add such management alternatives and search for the best 

solutions in terms of planning. If the BWs are not useful, the solution will indicate it is better 

not to use them, as one of the objectives is to minimize the total amount of BW pumping. In 

the present study, the solutions of the management model show substantial benefits if BW 

pumping is adopted as an alternative. Beneficial pumping was found to increase from about 

40,000 m3/day to nearly 47,000 m3/day over the time horizon of four years; i.e., an almost 20 

% increase in beneficial pumping was possible using only six potential BWs. However, there 

are some economic and environmental issues related to the disposal of saline water pumped 

from BWs. These issues were not within the scope of this study. 

4.7 Conclusions 

This study applied a linked S/O-based methodology with a Pareto-front clustering technique 

to prescribe optimal groundwater pumping strategies for the Bonriki aquifer that ensure its 

salinity levels remain within specified limits. The management model incorporates pumping 

from FPWs and the option of pumping from potential BWs to maximize the supply of 

freshwater to the South Tarawa community.  To ensure computational feasibility, the 

groundwater flow and transport numerical simulation model was replaced by trained and 

tested SVMR surrogate models. The evaluation of the surrogate models’ performance 

indicates that they can be adequately trained to accurately approximate the density-dependent 

saltwater intrusion dynamics in the Bonriki aquifer in response to groundwater pumping 
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patterns prescribed for FPWs and BWs. The SVMR surrogate models were externally linked 

to the MOGA optimization model. The multi-objective linked-S/O-based management model 

generated an optimal Pareto-front that exhibited different levels of trade-off between the total 

FPWs and BWs pumping solutions. Selection of a single solution from this huge optimal 

solution set was deemed a difficult task, especially for a group of decision-makers. Therefore, 

the k-means clustering technique was used to group solutions with similar features. A total 

of 19 clusters were formed, each having a different number of optimal solutions. The centroid 

of each cluster was used as a reference solution, and the solution in the Pareto front closest 

to these reference solutions formed part of the reduced Pareto front. The k-means clustering 

technique pruned the Pareto front and presented a workable reduced number of optimal 

solutions. This will aid decision-makers in decision-making. Overall, our limited 

performance evaluations show that the suggested method for solving multi-objective aquifer 

management problems has the potential for application to other islands facing similar 

saltwater intrusion problems. Hence, it can be further evaluated and utilized to develop 

feasible and reliable regional-scale coastal aquifer management strategies that ensure the 

sustainability of fragile groundwater resources. In the next chapter, a similar multi-objective 

coastal aquifer management model is presented that incorporates aquifer parameter 

uncertainty.  
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Chapter 5: A multi-objective groundwater management 
strategy incorporating aquifer parameter uncertainty: A 
solution for an island country in the South Pacific 
 

The main contents of this chapter have been published and copyrighted as outlined below: 

Lal, A., and Datta, B. (2019). "Multi-objective groundwater management strategy under 

uncertainties for sustainable control of saltwater intrusion: Solution for an island country in 

the South Pacific." Journal of Environmental Management, 234, 115-130.  

5.1 Summary 

To date, simulation-optimization (S/O)-based groundwater management models have 

delivered optimal saltwater intrusion management strategies for coastal aquifer systems. At 

times, however, uncertainties in numerical simulation models due to uncertainty in aquifer 

parameters are not incorporated into management models. The present study explicitly 

incorporates aquifer parameter uncertainty into a multi-objective management model to 

prescribe optimal strategies of groundwater pumping from the unconfined Bonriki aquifer, 

which is situated in a small Pacific Island country. The aim of the multi-objective 

management model was to maximise pumping from production wells and minimize pumping 

from barrier wells (hydraulic barriers) to ensure that the water quality at monitoring locations 

(MLs) remained within pre-specified sustainable limits. To achieve the targeted management 

goal, a coupled flow and transport numerical simulation model of the Bonriki aquifer was 

developed using the FEMWATER numerical code. This three-dimensional numerical model 

was calibrated and validated using limited available hydrological data. To make the 

management model computationally efficiency and feasible, the numerical simulation 

component of the S/O model was replaced with ensembles of support vector machine 

regression (SVMR) surrogate models. Each standalone SVMR surrogate model in each 

ensemble was constructed using datasets produced by numerical simulation models that used 

different hydraulic conductivity and porosity values as input. These ensemble SVMR models 

were coupled to a multi-objective genetic algorithm optimization model to solve the Bonriki 

aquifer management problem. The executed optimization model generated a Pareto-front 

with 600 non-dominated optimal trade-off pumping solutions. The reliability of the 

management model, which was established after validation of the optimal solution, suggests 

that the constraints implemented in the optimization problem were satisfied; i.e., the salinities 

at MLs were within the specified limits. The results of this study indicate that the developed 

management model has the potential to address groundwater salinity problems in small island 

countries.  
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5.2 Background 

As discussed and demonstrated in Chapter 4, the coupled simulation-optimization (S/O) 

methodology is undoubtedly a promising approach to developing optimal coastal aquifer 

management and remedial strategies. However, one of the major drawbacks of coupling a 

complex groundwater flow and transport simulation model to an optimization model within 

the S/O methodology is that the resulting model may be computationally-demanding and, 

therefore, infeasible for large-scale study areas (Das and Datta 1999; Dhar and Datta 2009). 

This drawback can be resolved by substituting the complex simulation model within the S/O 

framework with efficient approximate groundwater simulators termed surrogate models 

(Sreekanth and Datta 2011). The effectiveness and reliability of employing a surrogate model 

to approximate physical processes in coastal aquifers have long been topics of concern. In 

this chapter, ensembles of SVMR models are used to incorporate aquifer parameter 

uncertainty in a multi-objective coastal aquifer management model that informs the design 

of an optimal aquifer management strategy.  

 

The ensemble modelling paradigm is a new computational intelligence methodology in which 

diverse expert opinions are incorporated and integrated strategically to solve a problem 

(Rokach 2010). In the field of surrogate modelling research, the ensemble methodology 

combines standalone surrogate models using statistical means to build an “ensemble model”, 

with more accurate and reliable prediction capabilities. The use of ensemble surrogate models 

within coupled S/O-based coastal aquifer management models is quite rare. However, more 

recently, efforts have been made to use ensemble surrogate models instead of standalone 

surrogate models in S/O frameworks to develop computationally-feasible coastal aquifer 

management models. For example, Sreekanth and Datta (2011) and Roy and Datta (2017) 

developed optimal coastal aquifer management strategies using ensemble surrogate models 

to address predictive uncertainties in the surrogate models. However, uncertainties involved 

in saltwater intrusion numerical simulation models are yet to be investigated and incorporated 

into a coastal aquifer management model. Uncertainties in saltwater intrusion numerical 

simulation models due to uncertainties in aquifer parameters present an important research 

gap that needs to be explored.  Therefore, this study aims to incorporate aquifer parameter 

uncertainty in the development and evaluation of an ensemble surrogate model-based multi-

objective coastal aquifer management model. This is a logical extension of previously-

developed coastal aquifer management models based on the ensemble surrogate modelling 

paradigm.  

 

In addition to combining individual models to improve their predictive capabilities, the 

ensemble modelling paradigm can also be used to integrate divergent views of data, different 
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random selections of data and different diverse decisions (Anifowose et al. 2017). These 

properties of the ensemble modelling technique were utilized in this study to combine the 

responses of several numerical simulation models constructed using different values of 

uncertain coastal aquifer parameters. Liu et al. (2017) stated that structural uncertainties in a 

hydrological model can be handled using a multi-hydrological model ensemble. This is 

because a single hydrological model does not usually represent a system’s behaviour 

adequately. Various hydrological studies have addressed structural uncertainty in simulation 

models by integrating several hydrological models into a single composite model, an 

approach which can increase accuracy and decrease uncertainty (Corzo et al. 2009; Seiller et 

al. 2012; Toth 2009). Therefore, combining several coastal aquifer numerical simulation 

models with the help of ensemble surrogate models as approximate simulators can address 

the issue of uncertainty in aquifer parameters, thereby ensuring the robustness of optimal 

solutions obtained from S/O management models.  

 

In S/O models, numerical models are generally used to simulate groundwater flow and 

transport processes. However, the contaminant fate in the subsurface is considerably affected 

by uncertainties in natural porous media (Gelhar 1993). Owing to this uncertainty, numerical 

models are unlikely to precisely represent the real physical processes of hydrological systems. 

The issue of coastal aquifer parameter uncertainty usually arises due to the inaccurate 

estimation of model parameters (errors in field observations) due to heterogeneity in the 

hydrological environment and a scarcity of related data.  The present study considers 

hydraulic conductivity and porosity as two important parameters that cause uncertainty in 

numerical simulation models. The random distribution of hydraulic conductivity is the most 

important parameter contributing to uncertainty in simulation models (Luo et al. 2014; 

Ranjithan et al. 1993). Hydraulic conductivity regulates the transport mechanism in porous 

media through its effect on velocity. Konikow (2011) argued that the accuracy of a simulation 

model is dependent on how accurately it can represent the actual distribution of hydraulic 

conductivity. Porosity is another crucial uncertain parameter of aquifers that affects the 

seepage velocity, consequently affecting both mechanical dispersion and advection transport 

(Konikow 2011). In S/O models, disregarding the inherent uncertainty in hydrological model 

parameters can lead to significant errors in simulation results, resulting in ambiguous, 

inappropriate and/or infeasible optimal solutions (Chan Hilton and Culver 2005). Hence, 

aquifer parameter uncertainty cannot be discounted and should be considered a key 

component in any coastal aquifer management model.  

 

To the best of the authors’ knowledge, very few studies in the hydrologic literature have used 

ensemble surrogate modelling approach (combined several numerical simulation models) to 
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increase the robustness of the simulation models in coupled S/O model-based coastal aquifer 

management models. The design of a multi-objective coastal aquifer management model and 

its application to an island setting is a new contribution to the field of water resources 

management research. Details of the groundwater numerical simulation model, surrogate 

model, uncertain aquifer parameters, ensemble modelling paradigm, multi-objective 

management model design and the study area are provided in the Methods section. A 

comprehensive analysis of the results with key discussions is presented in the Results and 

Discussion section.  

5.3 Methods 

5.3.1 Characterisation of aquifer parameter uncertainty 

Support vector machine regression (SVMR) models were used as surrogate models to 

approximate saltwater intrusion processes in the Bonriki aquifer and to accurately predict 

salinity concentrations at monitoring stations. Details of the SVMR modelling paradigm are 

presented in Chapter 3. Hydraulic conductivity and porosity are two uncertain aquifer 

parameters that were considered in the development of the multi-objective coastal aquifer 

management model. As established by Binley et al. (1997), Chen et al. (2003) and Zhao et 

al. (2013), hydraulic conductivity and porosity have log-normal and normal distributions, 

respectively. Different combinations of these two uncertain parameters in different aquifer 

layers were implemented in the numerical model while keeping the other parameters constant 

during the simulation period. N numerical models were developed using u sets of hydraulic 

conductivity and porosity values. Uniformly-distributed, random, transient, groundwater 

pumping rate patterns were generated from the decision space using LHS to train and test the 

SVMR-based surrogate models. The implementation of each set of pumping rate patterns into 

the different numerical models generated different output salinities at each monitoring 

location m. The input-output (pumping rate-salinity) datasets from each of the numerical 

models were used to construct different surrogate models capable of approximating a 

particular numerical model. From each of the input-output datasets, 80% of the data was used 

to train each surrogate model, while 20% was used to test its performance. Utilizing the 

training and testing data from N numerical models led to the development of N surrogate 

models. An outline for constructing an ensemble surrogate model for each monitoring 

location is presented in Fig. 5.1. Specifically, the ensemble model responsible for predicting 

salinity concentration at each m had N standalone models. Each of these standalone surrogate 

models was built using the datasets generated from numerical models based on different 

hydraulic conductivity and porosity values. Ensembles of these N surrogate models were 

developed by combining the predicted output of each surrogate model in the ensemble using 

the simple averaging method (Shu and Burn 2004). This method is common and has produced 
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excellent results in a range of applications (Bishop 1995; Perrone and Cooper 1995). The 

formula for constructing an ensemble model (En) for predicting salinity concentration at each 

monitoring location m by combining the predicted output (P) of a standalone surrogate 

models (n) using the simple averaging method is given by: 

𝐸𝑛,𝑚 =
1

𝑁
∑ 𝑃𝑛                 𝑛 = 1,2, … , 𝑁𝑁

𝑛=1            (5.1) 

 

 
 

Figure 5.1: Procedure for the development of ensemble surrogate models 

 

5.3.2 Surrogate model performance evaluation criteria 

The performance of the standalone SVMR and ensemble models was evaluated using four 

statistical parameters: root mean square error (RMSE), correlation coefficient (r), Nash-
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Schliffe efficiency (NSE) and Willmott’s index of agreement (WI). The mathematical 

expressions of these statistical parameters are given below: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑐𝑇 − 𝑐𝑃)2𝑛

𝑖=1           (5.2) 

𝑟 =
∑ (𝑐𝑇

𝑛
𝑖=1 −𝑐𝑇)((𝑐𝑃−𝑐𝑃)

√∑ (𝑐𝑇−𝑐𝑇)2𝑛
𝑖=1  √∑ (𝑐𝑃−𝑐𝑃)2𝑛

𝑖=1

           (5.3) 

𝑁𝑆𝐸 = 1 −
∑ (𝑐𝑇−𝑐𝑃)2𝑛

𝑖=1

∑ (𝑐𝑇−𝑐𝑃)2𝑛
𝑖=1

            (5.4) 

𝑊𝐼 = |1 − (
∑ (𝑐𝑇−𝑐𝑃)2𝑛

𝑖=1

∑ |𝑐𝑃−𝑐𝑃|𝑛
𝑖=1 +|𝑐𝑇−𝑐𝑇|

)|          (5.5) 

Where 𝑛 represents the total number of datasets, 𝑐𝑇 is the true salinity from the numerical 

model, 𝑐𝑃 represents the salinity predicted by the surrogate model, 𝑐𝑇 is the mean true salinity 

predicted by the numerical model and 𝑐𝑃 denotes the mean salinity predicted by the surrogate 

model.  

5.3.3 Formulation of the multi-objective management model  

The main purpose of this study was to develop a coastal aquifer management model 

incorporating parameter uncertainty by utilizing an ensemble surrogate model-based 

simulation-optimization methodology. The main objectives of the multi-objective 

management model were to prescribe optimal groundwater pumping rates at freshwater 

pumping wells (FPWs) and barrier wells (BWs) while ensuring that salinities at monitoring 

locations (MLs) remained within specified limits. The pumping rates at the FPWs and BWs 

are the decision variables used in the management model. Instead of using a complex 

numerical model, the SVMR ensemble models constructed for predicting salinity 

concentration in the aquifer were separately coupled to a multi-objective genetic algorithm 

(MOGA) optimisation model. The mathematical expressions of the two objective functions 

and the constraints and bounds of the management model are given in Section 4.4.9 (Chapter 

4).         

5.3.4 Validation of the optimal solutions 

Execution of the multi-objective ensemble surrogate-based S/O model generates optimal 

solutions in the form of a non-dominated Pareto front. The Pareto front consists of a set of 

non-dominated optimal solutions dependent on the trade-offs between two conflicting 

objectives. Validating these optimal solutions by implementing them in the complex 

numerical model is a crucial step. For this purpose, five optimal solutions on the Pareto-front 

were chosen randomly and implemented into each numerical model. The salinities obtained 

from each numerical model were compared with those of their corresponding standalone 
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SVMR surrogate model. Finally, the ensemble model’s predicted salinities were compared 

with the mean salinity predicted by the numerical simulation. This comparison was 

performed to validate the role of the ensemble surrogate model in the coupled simulation-

optimization-based management model. Figure 5.2 outlines the complete stepwise procedure 

of the multi-objective coastal aquifer management model incorporating parameter 

uncertainty.   

 

 

Figure 5.2: Step-wise procedure of the developed S/O-based management framework using 
ensemble surrogate models 

 

5.3.5 Application of the developed method 

The developed method was applied to the Bonriki coastal aquifer, which is situated in the 

small Pacific Island nation of Kiribati. The aim was to derive an optimal, long-term, 

sustainable, groundwater management strategy. The study area’s location, hydrogeology and 
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field data (groundwater level and concentration) are extensively described in Chapter 4. A 

3D model of the Bonriki aquifer was developed using the FEMWATER numerical computer 

code, a detailed description of which is presented in Chapter 3. The modelling details are also 

described in Chapter 4. The developed model was calibrated and validated using available 

field data, as described in Chapter 4. The calibration and validation results are also presented 

in Chapter 4.  

Inclusion of aquifer parameter uncertainty in the management model was made possible with 

the help of ensemble surrogate models. Ten numerical models were developed using various 

values of hydraulic conductivity and porosity (Table 5.1). The values of hydraulic 

conductivity were derived from a lognormal distribution using the calibrated value of 

hydraulic conductivity as the mean and a variance of 0.4. Similarly, the values of porosity 

were derived using a normal distribution with a calibrated value of porosity as the mean and 

a variance of 0.1. Data from these ten numerical models was used to construct ten surrogate 

models for each monitoring location. Hence, the ensemble model used to predict the salinity 

at each monitoring location consisted of ten standalone surrogate models constructed using 

different numerical model solutions. The ten combinations of hydraulic conductivity and 

porosity values were used to evaluate the proposed methodology only. More combinations 

of these parameters could be used depending on the availability of high-performance 

computers. A total of 700 input-output datasets were used to construct each surrogate model 

in the ensemble (460 for training and 240 for testing). Each standalone SVMR model was 

constructed offline using MATLAB R2016a software. A Gaussian kernel was used with 

parameters ɛ, 𝐶 and ɣ having values of 0.60, 10 and 0.001, respectively. 

Table 5.1: Values of hydraulic conductivity and porosity used in the numerical models 
(NM) 

Model Holocene sediment Pleistocene sediment 
     Hydraulic conductivity               Porosity       Hydraulic conductivity               Porosity 
 Kx Ky Kz  Kx Ky Kz  

NM1 15.62 7.81 1.56 0.171 626.12 313.06 62.61 0.340 
NM2 20.87 10.44 2.09 0.213 299.85 149.93 29.99 0.267 
NM3 18.59 9.30 1.86 0.216 372.72 186.36 37.27 0.355 
NM4 21.48 10.74 2.15 0.171 475.35 237.68 47.54 0.340 
NM5 14.23 7.12 1.42 0.169 400.42 200.21 40.04 0.297 
NM6 14.14 7.07 1.41 0.182 507.72 253.86 50.77 0.257 
NM7 22.45 11.23 2.25 0.206 528.07 264.04 52.81 0.294 
NM8 12.26 6.13 1.23 0.194 310.21 155.11 31.02 0.295 
NM9 9.02 4.51 0.90 0.211 419.27 209.64 41.93 0.325 
NM10 12.87 6.44 1.29 0.231 349.89 174.95 34.99 0.320 

 

The developed ensembles of surrogates were linked externally to the MOGA optimisation 

model using the MATLAB 2017a platform. The model parameters used were: population 

size = 2000, function tolerance = 1 × 10-4, constraint tolerance = 1 × 10-3, Pareto front 

population fraction = 0.3 and crossover fraction = 0.8. The permissible salinity levels in the 
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aquifer were imposed as another set of management constraints. These constraints were 

assigned to the management model to ensure that the salinities at the MLs were restricted to 

the specified limits. The maximum acceptable salinities at ML1 and ML2 were set to 20,000 

mg/L. ML1 and ML2 were closer to the shoreline and confining their salinity levels to an 

extremely lower level was impractical. The maximum salinities at ML3 and ML4 were set to 

5000 mg/L and 4000 mg/L, respectively. Finally, the maximum salinities at ML4 and ML5 

were both set to 450 mg/L. ML5 and ML6 were located in an area with many pumping wells 

and it was anticipated that water extracted from these locations would be suitable for a range 

of activities (e.g., household use and irrigation) by the local community.  

5.4 Results and discussion 

5.4.1 Performance evaluation of the SVMR models 

Table 5.2 lists the salinity prediction capabilities of the SVMR models during the testing 

stage in terms of four performance evaluation criteria (RMSE, r, NSE and WI). RMSE is a 

quadratic scoring criterion that measures the average difference between predicted and actual 

values (Mehr and Kahya 2017). Hence, RMSE values were used to assess the difference 

between actual and SVMR-predicted salinities. The RMSE values for all 60 SVMR models 

were within a reasonable range of 1.33–8.43. These RMSE values are sufficient to classify 

the developed SVMR models as accurate. Similarly, r is another performance evaluation 

criterion used to assess the predictive capabilities of the developed SVMR models. The r 

value describes the degree of collinearity between actual and predicted values (Moriasi et al. 

2007). The r values can range from −1 to 1, where 1 indicates a perfect positive relationship 

and −1 indicates a perfect negative one. No linear relationship exists when r = 0. In the present 

case, the computed values of r were in the range of 0.96–0.99. These results establish that the 

degrees of collinearity between the actual and predicted salinities were positive and almost 

perfect.  
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Table 5.2: Performance of the surrogate models (SVMR) relative to the numerical models 
(NM) in the testing phase 

 

In addition, NSE values were calculated to evaluate the performance of the SVMR models. 

NSE is a normalised statistic that determines the relative magnitude of the residual variance 

compared to the variance in the measured data (Nash and Sutcliffe 1970). NSE values range 

from 0 to 1, with a value of 1 corresponding to a best-fit predictive model. A predictive model 

can be considered accurate if the NSE value is close to 1 (Pulukuri et al. 2018). The calculated 

NSE values were found to be within the range 0.96–0.99; hence, all were very close to 1, 

demonstrating the accuracy and reliability of the developed SVMR predictive models. Lastly, 

the WI criterion was used to evaluate the agreement between the actual and predicted 

salinities. The WI measures the closeness of two datasets to a 1:1 line and normally ranges 

from 0 (complete disagreement) to 1 (perfect agreement) (Willmott 1981). All the computed 

WI values were close to 1 (range of = 0.93–0.98), which demonstrates the closeness between 

NM Performance measure SVMR1 SVMR2 SVMR3 SVMR4 SVMR5 SVMR6 

1 

RMSE 5.10 6.17 3.74 2.95 2.02 1.89 
r 0.96 0.97 0.97 0.97 0.98 0.98 

NSE 0.97 0.96 0.98 0.97 0.98 0.98 
WI 0.94 0.95 0.95 0.96 0.96 0.96 

2 

RMSE 5.98 5.62 2.82 2.04 1.59 1.33 
r 0.97 0.97 0.98 0.97 0.98 0.98 

NSE 0.96 0.96 0.96 0.97 0.97 0.97 
WI 0.95 0.94 0.95 0.96 0.96 0.96 

3 

RMSE 4.16 5.22 3.51 4.86 3.02 2.14 
r 0.97 0.96 0.97 0.96 0.98 0.98 

NSE 0.97 0.97 0.98 0.97 0.98 0.99 
WI 0.94 0.95 0.95 0.94 0.95 0.96 

4 

RMSE 6.60 5.33 5.27 4.65 3.53 3.05 
r 0.97 0.98 0.96 0.97 0.97 0.97 

NSE 0.97 0.96 0.96 0.97 0.97 0.98 
WI 0.95 0.94 0.93 0.95 0.95 0.96 

5 

RMSE 6.96 7.13 5.12 5.68 4.25 4.56 
r 0.97 0.97 0.97 0.97 0.98 0.97 

NSE 0.97 0.98 0.98 0.97 0.98 0.97 
WI 0.95 0.94 0.95 0.94 0.96 0.95 

6 

RMSE 7.63 5.32 5.24 5.69 4.25 3.57 
r 0.97 0.98 0.98 0.97 0.99 0.99 

NSE 0.98 0.98 0.98 0.98 0.98 0.99 
WI 0.96 0.97 0.97 0.97 0.98 0.98 

7 

RMSE 7.26 6.75 6.03 5.87 5.66 5.12 
r 0.97 0.98 0.98 0.98 0.98 0.99 

NSE 0.97 0.98 0.98 0.98 0.98 0.99 
WI 0.96 0.97 0.97 0.97 0.98 0.98 

8 

RMSE 6.35 7.16 5.57 5.31 5.26 5.19 
r 0.98 0.97 0.98 0.98 0.98 0.98 

NSE 0.97 0.97 0.97 0.97 0.97 0.97 
WI 0.96 0.95 0.96 0.96 0.96 0.96 

9 

RMSE 7.37 6.89 8.43 6.22 5.32 4.41 
r 0.98 0.98 0.96 0.97 0.97 0.98 

NSE 0.97 0.97 0.96 0.97 0.97 0.98 
WI 0.95 0.96 0.95 0.96 0.97 0.97 

10 

RMSE 7.14 6.59 6.91 5.88 4.71 4.28 
r 0.98 0.98 0.98 0.98 0.98 0.99 

NSE 0.98 0.98 0.98 0.98 0.98 0.99 
WI 0.96 0.97 0.97 0.97 0.97 0.98 
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the actual and predicted salinity datasets. Overall, the performance evaluation results confirm 

that the developed SVMR models are sufficiently accurate, efficient and reliable. This 

suggests that they can emulate complex numerical model solutions with reasonable accuracy. 

The high accuracy of the developed SVMR models is evident in the high correlations between 

the input and output datasets presented to the models during the training stage. In addition, 

the accuracy of the SVMR models is dependent on the input data structure (especially during 

testing), the training/testing method used and the SVMR algorithm parameters. Hence, these 

features need to be selected carefully.   

5.4.2 Utilizing ensemble models to incorporate parameter uncertainty 

The ensemble of trained and tested surrogate models was used to address the uncertainties 

associated with the prediction of the saltwater intrusion process. The tested SVMR models 

were used as an approximation of the saltwater intrusion numerical simulation model in the 

coupled S/O management model to evaluate and provide optimal solutions based on the 

objective functions and set constraints. To ensure the robustness of the simulation model in 

the coupled S/O model, parameter uncertainty in the developed simulation model was 

incorporated by training and testing each SVMR surrogate model in the ensemble using 

different sets of hydraulic conductivity and porosity data. Ten sets of uncertain hydraulic 

conductivity and porosity values were used to train and test ten surrogate models. The ten 

SVMR surrogate models developed for predicting salinity at each monitoring location were 

combined using the ensemble modelling paradigm. Figure 5.3 presents the results of the 

ensemble model prediction using the ten standalone surrogate models. The ensemble SVMR 

surrogate models coupled in the S/O-based coastal aquifer management model provide a 

robust and versatile predictive system for the evaluation and selection of optimal groundwater 

pumping strategies from FPWs and BWs. It was observed that the salinity datasets obtained 

from the ten numerical models differed. Similarly, as shown in Fig. 5.3, the predictions of 

each standalone SVMR model also differed.  The accuracy of the standalone SVMR models 

(presented in Table 5.2) and the robustness of the ensemble SVMR models ensures the 

computational efficiency and reliability of the optimal pumping strategies obtained from the 

executed coupled S/O-based coastal aquifer management model.  
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Figure 5.3:  Salinities predicted by the standalone and ensemble SVMR models at six 
monitoring locations (ML1–ML6, shown in figs. (a) –(f), respectively). 

 

5.4.3 Pareto-optimal solutions and trade-offs 

The optimal or non-dominated set of solutions from the developed multi-objective coastal 

aquifer management model are presented in the form of a Pareto front (Fig. 5.4). The Pareto 

front consists of 600 (population size of 2000 × Pareto-front population fraction of 0.3) 

different solutions defining the trade-offs between the total FPW and BW pumping rates. 

When solving a multi-objective optimization problem, the decision-maker is responsible for 
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determining the most preferred optimal solution on the Pareto front based on their 

management goals and preferences. This process becomes a bit more complicated if multiple 

decision-makers with conflicting utility functions are involved (Datta and Peralta 1986). The 

decision-maker needs to understand the various trade-offs existing in the different Pareto-

optimal solutions.  

 

Figure 5.4:  Pareto-front defining the trade-off between total FPW and BW pumping rates for 
the entire four-year management period 

 

In the present case study, 600 optimal solutions provided 600 different FPW and BW 

pumping strategies to be evaluated by the decision-maker. From the information presented in 

Fig. 5.4, the maximum total FPW pumping rate for the four-year management period is 

42,297.35 m3/d with a corresponding total BW pumping rate of 8354.58 m3/d. The Pareto 

front only shows the total PW and BW pumping rates for the entire four-year management 

horizon. Therefore, for demonstration and evaluation purposes, four random solutions from 

different regions of the Pareto front were chosen and the corresponding yearly pumping 

amounts from the FPWs and BWs over the entire four-year management period (from years 

1 to 4, Y1–Y4) are presented in Fig. 5.5 (a). The FPW and BW pumping rates presented in 

Fig. 5.5 (a) are the total rates at the 19 FPWs and 6 BWs considered in the present study. A 

further breakdown of solution 1 is presented in Fig. 5.5 (b), where the specific optimal 

pumping solutions from each of the PWs and BWs are presented.  
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Figure 5.5: a) Annual FPW and BW pumping rates for the four randomly-selected optimal 
solutions and b) specific pumping rates from each well (wells 1-19 are FPWs and wells 20-
25 are BWs) 

 

Choosing the preferred solution from the large solution set comprised of 600 optimal 
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production well pumping rate (solution on the upper-right portion of the Pareto-front, Fig. 

5.4) can be selected for implementation. This implementation will also result in a large 

volume of saline water being pumped from BWs. Disposal of this saline water may be 

uneconomical for island communities and can lead to other environmental issues. On the 

other hand, if priority is placed on minimising pumping from BWs, a solution from the lower 

portion of the Pareto-front can be selected for implementation.  

 

Validation of the optimal solutions is a key step in any S/O-based coastal aquifer management 

methodology. The optimal pumping solutions on the Pareto-front are the responses of the 

trained and tested ensemble surrogate models, and are not obtained using the complex 

numerical simulation model. Hence, validating the optimal solutions by implementing them 

in the numerical simulation model is necessary. Table 5.3 lists the salinity at ML1 obtained 

after implementing five randomly-selected optimal solutions in each of the individual 

numerical models and standalone SVMR surrogate models. The results presented in Table 

5.3 show that the standalone SVMR surrogate models in the ensemble models were accurate 

in approximating the corresponding numerical simulation model’s responses. Similar trends 

were observed for all other MLs. The validation results in Table 5.3 also show that the 

implemented constraints were satisfied; i.e., the salinity at ML1 was within the pre-specified 

limit.  For example, the salinities at ML1 converged to the upper limit of the maximum 

allowable concentration of 20,000 mg/L. Similar trends were observed for ML2, ML3, ML4, 

ML5 and ML6.  In addition, a comparison of the ensemble SVMR model’s predicted 

salinities with the average salinities predicted by the numerical model (NM_Av) for each 

monitoring location is presented in Fig. 5.6. The comparison establishes that the ensemble 

SVMR surrogate models approximate the numerical simulation model’s results with 

reasonable accuracy. In addition, for each of the optimal solutions, the corresponding 

salinities obtained from the NM_Av and ensemble surrogate models were not only below the 

pre-specified limit but also converged to the upper limit of the set constraint. 
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Table 5.3: Comparison of salinities predicted by the numerical models (NM) and corresponding standalone SVMR surrogate models 

 

 

 

 

 

 

 

 

 

 

ML1 [Cmax ≤ 20,000 mg/L] 

 NM1 SVMR1 NM2 SVMR2 NM3 SVMR3 NM4 SVMR4 NM5 SVMR5 NM6 SVMR6 NM7 SVMR7 NM8 SVMR8 NM9 SVMR9 NM10 SVMR10 

1 20079.3 19770.7 20036.5 19292.3 19434.8 19575.2 19185.3 19158.3 20446.7 19810.4 19788.5 19075.8 20178.8 19652.4 20032.6 19728.2 19630.7 19573.2 19891.1 19133.4 

2 19713.8 19162.2 19953.8 19661.0 19974.4 19901.9 19952.2 19287.0 19127.9 19583.6 19929.7 19285.3 19712.2 19587.3 19893.4 19842.9 19043.9 19993.8 19786.9 19906.6 

3 20266.8 19991.5 20290.1 19900.2 19801.2 19929.4 20226.2 19871.9 19984.4 20378.9 19820.8 19589.6 19878.9 19827.9 19720.3 19497.3 19872.9 19012.2 19930.5 19470.4 

4 19082.6 19473.0 19503.0 19092.8 19831.5 19025.2 19968.1 19516.6 19308.2 19771.6 20279.4 19612.8 19443.6 19283.1 20344.8 19764.5 19990.0 19739.7 20263.0 19395.0 

5 19337.4 19343.6 19654.1 19511.0 20314.8 19745.9 19833.0 19758.8 19877.3 19166.7 19033.7 19854.3 20154.9 19003.1 19018.3 19320.3 20199.4 19340.9 19850.9 19631.6 
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Figure 5.6: Comparison of the concentration results from numerical models (Average) and 
ensemble SVMR surrogate models 
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5.5 Conclusions  

This study demonstrates the potential feasibility of incorporating uncertainty in aquifer 

parameters (hydraulic conductivity and porosity) in the development of computationally-

feasible, regional-scale, sustainable management strategies for coastal aquifers. This was 

accomplished utilizing an ensemble surrogate model-based coupled multi-objective S/O 

model to develop reliable, optimal pumping strategies for the unconfined Bonriki aquifer 

system. The constraining issue of computational burden encountered during execution of the 

developed S/O model was resolved using SVMR-based surrogate models, which provided 

reliable approximations of the complex numerical saltwater intrusion simulation. The SVMR 

models were trained and tested using the input (pumping rate) and output (salinity) datasets 

obtained by solving the calibrated 3D saltwater intrusion numerical simulation model. To 

ensure the robustness of the developed S/O model, uncertainties in the numerical saltwater 

intrusion simulation model were characterised by developing several standalone SVMR 

surrogate models based on different combinations of uncertain hydraulic conductivity and 

porosity values. Therefore, instead of linking a standalone SVMR surrogate model, 

ensembles of ten standalone SVMR models for each monitoring location were coupled to a 

MOGA optimisation model.  

The performance evaluation criteria show that the standalone SVMR models provided 

accurate, efficient and reliable approximations of the saltwater intrusion numerical simulation 

model. The accuracy and reliability of the standalone SVMR models ensured that the 

ensemble models also generated reliable estimates. Execution of the ensemble surrogate-

based multi-objective S/O model produced 600 optimal solutions in the form of a Pareto 

front. The 600 optimal solutions represent 600 potential pumping strategies that could be 

evaluated and implemented to ensure the sustainable management of the Bonriki aquifer 

system. An optimal solution meeting decision-makers’ management goals can be selected for 

implementation. However, this may require an analysis of various other trade-off solutions 

on the Pareto front.  

This study makes three major contributions. First, it provides a methodology for 

incorporating aquifer parameter uncertainty when developing a computationally-feasible 

coastal aquifer management model. The incorporation of uncertainty in parameters (hydraulic 

conductivity and porosity) into the management model ensures that the prescribed optimal 

solutions are robust and reliable. Secondly, this study utilizes ensembles of SVMR surrogate 

models, which have not been used previously in the domain of S/O-based coastal aquifer 

management research. Thirdly, it evaluated the management model by implementing it in a 

regional-scale coastal aquifer system. Previous management models have mainly been 

evaluated using illustrative or hypothetical aquifer systems based on assumptions and, 
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therefore, without calibration and validation of the numerical models involved. The 

calibration and validation process outlined in this chapter, and the implementation and 

evaluation of the developed method of salinity prediction for the Bonriki aquifer, are 

advancements in the field of saltwater intrusion management research. Adoption of the 

proposed management model and its prescribed groundwater pumping patterns are strongly 

recommended for the Bonriki aquifer. This may help to ensure the sustainable management 

of the fragile groundwater resources of Kiribati, thus ensuring social and economic stability. 

In addition, the proposed coastal aquifer management methodology incorporating parameter 

uncertainty can be further evaluated and applied to other coastal aquifers prone to saltwater 

intrusion.   

The proposed approach also has some limitations. In the present field-scale application study, 

the Bonriki aquifer system was considered as a two-layer system due to limited data 

availability and to ensure the convergence of the developed 3D FEMWATER numerical 

model. The layers (constructed using limited borehole data) were considered vertically 

heterogeneous, based on the geological stratification of the layers. However, the materials in 

each layer were the same, albeit anisotropic. The proposed method can be applied to 

completely heterogeneous coastal aquifer systems in other geological settings. In addition, 

the current management model only considered two management strategies based on the two 

different objective functions. Other management objectives, such as assigning pumping well 

locations, prescribing optimal operating costs and incorporating recharge wells and other 

environmental risks, could also be considered. In addition, the influences of tidal fluctuations 

and seasonal variations on the movement of the saltwater front could also be investigated. 

These two influences are very important in island aquifer models; however, this study has 

ignored them for simplicity. These influences could be investigated further and incorporated 

into the proposed management model. Implementing them would present significant 

challenges as it would require higher 3D model convergence tolerance, mesh tolerance, 

computing power, and larger hydrological datasets for numerical model calibration and 

validation. In the next chapter, an adaptive management methodology is presented in which 

feedback information from a monitoring network design is used to modify prescribed optimal 

management strategies while considering user non-compliance and aquifer parameter 

uncertainty.  
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Chapter 6: Application of monitoring network design and 
feedback information for adaptive management of coastal 
aquifers 

 
 

A journal article based on the main contents of this chapter has been submitted to a journal 

for publication and is currently under review, as outlined below: 

Lal, A., and Datta, B. (2019). "Application of monitoring network design and feedback 

information for adaptive management of coastal aquifers subjected to saltwater intrusion." 

International Journal of Environmental Research and Public Health.  

6.1 Summary 

Optimal strategies for the management of coastal groundwater resources can be derived using 

coupled simulation-optimization-based management models. However, the management 

strategies actually implemented in the field sometimes deviate from the recommended 

optimal strategy, resulting in field-level deviations. Monitoring these field-level deviations 

during the implementation of a recommended optimal management strategy and sequentially 

updating the management model using feedback information is an important step towards the 

efficient adaptive management of coastal groundwater resources. In this study, a three-phase 

adaptive management framework for a coastal aquifer subject to saltwater intrusion is applied 

and evaluated for a regional-scale coastal aquifer study area. The methodology adopted 

includes three sequential components. First, an optimal management strategy stipulating 

groundwater extraction rates from production and barrier wells is derived and implemented 

in the aquifer. The implemented management strategy is obtained by solving a homogeneous, 

ensemble-based, coupled, simulation-optimization model. Second, a regional-scale optimal 

monitoring network is designed for the aquifer system that considers 1) possible user 

noncompliance with the recommended management strategy and 2) uncertainties in 

estimating aquifer parameters. A new monitoring network design objective function is 

formulated to ensure that candidate monitoring wells are placed in high-risk (highly- 

contaminated) locations. In addition, a new methodology is utilized to select candidate 

monitoring wells in areas representative of the entire model domain. Finally, feedback 

information in the form of salinity data measured at optimal monitoring wells is used to 

sequentially modify pumping strategies for future time periods in the management horizon. 

The developed adaptive management framework is evaluated by applying it to the Bonriki 

aquifer in Kiribati, a small developing South Pacific island country. The results of this study 

suggest that the implemented adaptive management strategy has the potential to address 
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important practical implementation issues arising due to noncompliance with an optimal 

management strategy and uncertainty in aquifer parameters.  

6.2 Background 

This chapter evaluates the application of a three-phase adaptive management framework for 

the optimal and sustainable control of saltwater intrusion in coastal aquifers. In Phase 1, an 

optimal management strategy obtained by solving a coupled simulation-optimization (S/O) 

model is implemented for the optimal management of the aquifer. The next phase (Phase 2) 

develops a regional-scale monitoring network for the aquifer that considers user 

noncompliance of a recommended management strategy and uncertainties in estimating 

aquifer parameters. In the final phase (Phase 3), feedback information from the optimal 

monitoring wells is used to sequentially modify/update pumping strategies for future time 

periods in the management horizon. 

 

The coupled S/O model provides optimal strategies for the management of coastal 

groundwater resources. However, the correct implementation of recommended optimal 

management strategies on the field is always a concern for decision-makers. To monitor field-

level deviations from a recommended management strategy due to uncertainty in aquifer 

parameters and non-compliant activity, a well-designed, robust and efficient groundwater 

monitoring network is essential. The major objectives, criteria and procedures for designing 

reliable groundwater monitoring networks can be found in Yangxiao (1994). Some key 

reasons for formulating and developing a groundwater monitoring network include 

groundwater level monitoring (Kumar et al. 2005; Prinos et al. 2002; Yang et al. 2008; Zhou 

et al. 2013), contamination detection (Dhar and Datta 2007; Hudak and Loaiciga 1992; Mahar 

and Datta 1997; Meyer et al. 1994; Prakash and Datta 2013; Storck et al. 1997; Zhu et al. 

2019), groundwater quality assessment (Ammar et al. 2008; Baalousha 2010; Loaiciga 1989; 

Masoumi and Kerachian 2010; Mogheir and Singh 2002) and conflicting 

economical/financial factors (Destandau and Zaiter 2019; Reed et al. 2000; Zhang et al. 

2005). In addition, a comprehensive review by Loaiciga et al. (1992) summarised the most 

important approaches to consider when designing groundwater monitoring networks. In 

saltwater intrusion management projects, a properly designed groundwater monitoring 

network helps to collect data on groundwater quality during and after the implementation of 

an optimal management strategy. Such field data can be used to assess the compliance of an 

implemented management strategy with the targeted coastal aquifer management objectives.  

 

A monitoring network is important in achieving the goals of an adaptive coastal groundwater 

management framework. Adaptive management is crucial in solving problems arising from 
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the field-level implementation of a recommended optimal management strategy. In adaptive 

management structure, the management strategies for future time periods in the management 

horizon is sequentially updated using feedback information gathered from the optimal 

monitoring wells. In the domain of saltwater intrusion research, only a few studies have 

developed and evaluated adaptive management methods for the management of coastal 

groundwater resources. Recently, Sreekanth and Datta (2013) developed an adaptive 

management method for saltwater intrusion control in coastal aquifers based on optimal 

monitoring network design and the sequential modification of management strategies 

according to feedback information. Also, Dhar and Datta (2009) designed and implemented 

a monitoring network to monitor compliance with an optimal aquifer management strategy. 

However, both of these studies were only validated using models of hypothetical/illustrative 

coastal aquifer systems. In contrast, the present study assesses the performance of the 

developed adaptive management methods after they were applied to a real, regional-scale, 

coastal aquifer system on an island.  

 

The application of a three-phase adaptive management framework for the optimal and 

sustainable control of saltwater intrusion into a coastal aquifer is of great significance. 

Adaptive management is an iterative process in which groundwater pumping strategies and 

policies are regularly revised/updated according to changing pumping conditions and 

uncertainty in aquifer parameters. The main goal of an adaptive management strategy is to 

ensure that the prescribed strategies and policies are accepted and correctly implemented in 

the field. An adaptive management strategy ensures the correct execution of the prescribed 

policies and will suggest amendments to the optimal pumping strategies that are not correctly 

followed. The proposed approach emphasizes the practical aspects of implementing a 

realistic coastal aquifer management strategy especially considering the following two issues. 

First, the recommended management strategy for optimal temporal and spatial groundwater 

withdrawals may differ from what actual users implement as often it may be very difficult to 

enforce the prescribed strategy. Second, even if the actually implemented strategy is identical 

to the optimal recommended withdrawal strategy, its impacts on the aquifer may be different 

from predicted impacts due to ubiquitous uncertainties in the estimated and modelled 

parameters, aquifer boundary conditions, errors in measurements including those in initial 

conditions and hydraulic heads. Therefore, the need arises to regularly revise the strategy 

based on measurements obtained from an aquifer monitoring network. Then, a revised 

management strategy can be derived by re-solving the optimal management model using 

updated information; e.g., hydraulic head and salinity data. The revised management strategy 

is an updated version of the initial strategy and, accordingly, its impacts will differ. The 

revised management strategy increases the likelihood that the original management goals can 
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be achieved. This approach also makes it possible to address the practical issues resulting 

from deviations from the prescribed pumping strategy or errors in predicting their impacts, 

which can arise even when the strategy is implemented correctly. The practical utility of this 

approach is enormous as it provides solutions to the practical difficulties in achieving the 

goals and objectives of the management model. This study applies this approach to the 

Bonriki aquifer and evaluates its implications in terms of improving the effectiveness of 

sequentially updating the optimal pumping strategy using salinity concentration 

measurements from a designed monitoring network. Hence, this integrated adaptive 

approach, together with the evaluation of its application, is significant and novel. 

 

This study is a logical extension of the author’s earlier work, in which groundwater 

management mythologies were tested using models of illustrative aquifer systems. The 

Bonriki aquifer considered in this study is situated in Kiribati, a small, developing, island 

country in the central Pacific Ocean. This study aimed to present a straightforward and step-

wise method for the adaptive management of the Bonriki aquifer system. Specifically, the 

combined use of a multi-objective optimization model, data clustering and integer 

programming is used to achieve the management goals. A first-ever monitoring network is 

designed and implemented for the adaptive management of the Bonriki aquifer. The Bonriki 

aquifer is a crucial life-sustaining resource for the Kiribati community and, as such, requires 

sustainable management. Hence, the development and application of the methods presented 

in this study make significant contributions to the field of sustainable water resource 

management and administration in Pacific Island developing countries. Also, a recent study 

by Post et al. (2018) concluded that more work is needed that focuses on the management of 

groundwater pumping from the Bonriki aquifer and re-evaluates its sustainable yield. This 

work presents a novel adaptive management framework for the Bonriki aquifer system which, 

if adopted, would be beneficial to the South Tarawa community. The results and evaluations 

obtained represent an important step in the regional-scale application of adaptive 

management strategies to the sustainable management of coastal aquifers.  

6.3 Methodology  

The coastal aquifer adaptive management framework methodology has three phases, which 

are presented in the following sections.  

 

6.3.1 Phase 1: Prescription and implementation of an optimal management strategy 

The first step towards adaptive management of coastal aquifers is the prescription and 

implementation of an optimal management strategy.  In this study, an optimal management 

strategy was prescribed using a coupled S/O approach. To reduce computational time and to 
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ensure feasibility, support vector machine regression (SVMR)-based homogeneous ensemble 

models were used as approximates of the simulation model in the S/O framework. Key details 

of the homogeneous SVMR ensemble models and the management model are described 

below.  

 

6.3.1.1 Homogeneous support vector machine regression-based ensemble surrogate models 

Homogeneous SVMR ensemble models were used in the S/O model as approximate 

simulators of the saltwater intrusion numerical simulation model. The SVMR surrogate was 

used because it is a relatively new and popular supervised data-driven methodology for 

constructing surrogate models (Liu and Zio 2016). SVMR has been used in numerous recent 

modelling studies. The newly developed SVMR-based surrogate models have been evaluated 

for efficiency and accuracy in modelling a hypothetical aquifer. The evaluation results are 

reported in Chapters 3 and 4. In addition, the results presented in Chapter 3 established that 

SVMR-based prediction performance was better than that of genetic programming-based 

surrogate models. The main focuses of this study were on the design of an aquifer monitoring 

network and adaptive management based on feedback information. Hence, a detailed 

description of the SVMR working principle is not presented here.  However, a thorough 

description of the SVMR algorithm can be found in Chapter 3 (Section 3.3.3.2).  To ensure 

the robustness of the optimal solutions, ensemble SVMR models were used to incorporate 

aquifer parameter uncertainty into the management model. 

 

Uncertainty in two aquifer parameters i.e., hydraulic conductivity and porosity was 

considered while developing the coastal aquifer management model. To train each SVMR 

model in the ensemble, paired sets of input data (hydraulic conductivity, porosity, and random 

transient groundwater pumping patterns from active wells) and output data (salinity at 

monitoring wells) were generated. In this study, the aquifer materials within each layer were 

considered homogeneous. The specific values of hydraulic conductivity and porosity for each 

homogeneous layer were obtained from log-normal and normal distributions, respectively. 

Transient groundwater pumping patterns were generated using a uniformly distributed Latin 

hypercube sampling (LHS) method. Different combinations of the two uncertain parameters 

in the respective aquifer layers were implemented into a variable density flow and salt 

transport numerical model, keeping the other parameters constant during the simulation 

period. Each set of pumping patterns was provided as input to the variable density flow and 

salt transport numerical model, with different combinations of the two uncertain parameter 

values yielding different output concentrations at each specified monitoring well. Of the 

input-output datasets, 80% were used for training the SVMR models while the remaining 

20% were used for validating their performance. The validated standalone SVMR models 
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were strategically combined into an ensemble model using the simple averaging method (Shu 

and Burn 2004). Each homogeneous ensemble SVMR model was constructed to predict 

salinity at each monitoring well. The simple average methodology for constructing ensemble 

models is a popular technique and has been used in various research applications (Bishop 

1995; Perrone and Cooper 1995). A mathematical expression for constructing an ensemble 

model (En) by integrating the predicted outputs (P) of various standalone models (n) using 

the simple averaging methodology is given in Eq. 6.1. 

 

𝐸𝑛 =
1

𝑁
∑ 𝑃𝑛                 𝑛 = 1,2, … , 𝑁𝑁

𝑛=1          (6.1) 

 

Once trained and validated, the predictive capabilities of the standalone SVMR and ensemble 

models were quantified using various statistical indices, such as root mean square error 

(RMSE), mean bias error (MBE), correlation coefficient (R), Nash-Sutcliffe efficiency (NSE) 

and index of agreement (IOA). 

 

6.3.1.2 Formulation of the multi-objective coastal aquifer management model 

The main aim of the developed management model was to prescribe optimal pumping 

strategy for two groups of wells (production and barrier wells) and simultaneously maintain 

salinity concentration in the aquifer within specified permissible limits. Freshwater pumping 

wells (FPWs) were designed to extract fresh groundwater for local consumption. Barrier 

wells (BWs) were installed closer to the sea-side boundary and were used to extract saline 

water. BWs acted as a hydraulic barrier, thus preventing saltwater intrusion into the aquifer. 

The mathematical formulation of the two conflicting objectives, constraints and bounds 

considered in the management model are given in Section 4.4.9 (Chapter 4).  

 

6.3.2 Phase 2: Regional-scale monitoring network design 

6.3.2.1 Possible deviations in pumping rates and aquifer parameter uncertainty 

One of the key features of a monitoring network is that it should be able to accommodate 

possible deviations in field-level implementation of the prescribed optimal pumping strategy 

and also uncertainties associated with the aquifer parameters. In this study, uncertainty due 

to possible field-level deviations in implementation of a prescribed optimal pumping strategy, 

and uncertainty in aquifer parameter (hydraulic conductivity and porosity) estimates were 

considered in the design of an optimal monitoring network. First, to consider field-level 

deviation in the chosen optimal management pumping solution, slightly perturbed optimal 

pumping rates were utilized. To achieve this perturbation, a truncated normal distribution of 

the deviations, ranging from 0-20% of the actual deviations in pumping rates, similar to 
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Sreekanth and Datta (2013), was considered. Second, uncertainty in aquifer parameter 

estimates was incorporated by utilizing different realization of the hydraulic conductivity and 

porosity values in the variable-density flow and salt transport numerical simulation model. 

Different realization of hydraulic conductivity and porosity were obtained using lognormal 

and normal distributions, respectively. The perturbed input optimal pumping rates and 

different realization of the two uncertain aquifer parameters were used in the variable-density 

flow and salt transport numerical simulation model to obtain different realizations of salinity 

concentration at all the candidate (potential) monitoring wells.  

 

6.3.2.2 Location of candidate monitoring wells 

The location of candidate monitoring wells demands careful consideration. A subset of these 

candidate monitoring wells will be selected as optimal monitoring wells. Many times, only 

certain areas of the model domain are randomly chosen and used as locations of candidate 

monitoring wells. However, in real scenarios, any possible node on the model domain can be 

considered as a candidate location for a monitoring well. In this study, k-means clustering 

(MacQueen 1967) was utilized to determine the locations of candidate monitoring wells that 

would be representative of the entire model domain. Clustering of all existing nodes using 

the k-means clustering methodology ensured that candidate monitoring wells were chosen 

from the entire area of the model domain. The k-means clustering is a distinctive clustering 

algorithm that offers an efficient and simple method of data clustering (Žalik 2008). Detailed 

explanations of the k-means clustering methodology are presented in Bandyopadhyay and 

Maulik (2002) and (Nazeer and Sebastian 2009).  The main idea of using k-means clustering 

is to categorize the set of nodes into k disjoint clusters, where k is fixed in advance. After 

convergence, the k-means clustering solution offers a centroid for each of the clusters. The 

node number closest to this centroid is chosen as the node, indicating where a candidate 

monitoring well is to be installed.  

 

6.3.2.3 Formulation of the optimal monitoring network model 

The main goal of designing an optimal monitoring network was to monitor compliance with 

the management strategy. This is achieved by comparing salinity concentration resulting 

from an optimal management strategy (prescribed) with the actual concentrations (measured 

on the field). The salinity measurements from a designed monitoring network also provide 

feedback on the actual impacts of the field-level implementation of a management strategy. 

This feedback information can be utilized to redesign the management strategy to better 

achieve its objectives. In many cases, monitoring data can be collected from numerous 

locations in an aquifer. However, this may be impractical and inefficient due to restrictions 
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in budget and data redundancy (Dhar and Datta 2009). Therefore, a key feature of a 

monitoring network design is to locate the permissible number of monitoring wells (within 

budgetary limits) at locations suitable for collecting useful and reliable monitoring data.  For 

the present study, the mean of the logarithmic salinity concentration at each candidate 

monitoring well was maximized to ensure that candidate monitoring wells were placed in 

high-risk areas (with high salinity). The objective function with respective constraints is 

described below.   

 

                        Maximize  ∑ 𝑙𝑜𝑔(𝐶 𝑖
𝑁
𝑖=1 ) 

𝑁
 𝑌 𝑖                               (6.2) 

                        subject to; ∑ 𝑌 𝑖 ≤ 𝑀𝑁
𝑖=1                                   (6.3) 

𝑌 𝑖  Є (0,1) 

Where 𝐶 𝑖 is the concentration at the 𝑖th candidate monitoring well and 𝑌 𝑖 is the decision 

variable indicating whether to install a monitoring well (𝑌 𝑖 = 1)  or not (𝑌 𝑖 = 0)  at the 𝑖th 

location. Variable M represents the maximum number of monitoring wells permitted in the 

monitoring network (due to budgetary or other management limitations). Phase 2 is designed 

to obtain optimal monitoring well locations. As an adaptive measure, feedback information 

in the form of salinity concentration data will be used to sequentially modify future year 

pumping rates. The monitoring network was designed once; however, the information from 

this network of wells is used sequentially for the modification of future year pumping rates.  

 

6.3.3 Phase 3: Sequential modification of the management strategy  

Optimal coastal aquifer management strategies for the sustainable control of saltwater 

intrusion are largely developed for longer time horizons, T. However, they are implemented 

in smaller time-steps t. With the help of a properly designed monitoring network, it is possible 

to gather feedback information regarding compliance with a management strategy based on 

the comparison of measured and predicted salinities. This information can be utilized to 

sequentially modify and/or update the management strategy at succeeding time steps, thereby 

improving the prospects of attaining its goals.  

 

In this study, a management time horizon of four years (T = 4) was considered. However, the 

management strategy was implemented in steps of one year; i.e., t = 1, 2, 3 and 4. The 

implemented four-year optimal pumping strategy (selected from the Pareto-front) was 

obtained by solving the homogeneous ensemble SVMR surrogate-based coupled S/O model. 

Yearly salinity concentration data from the monitoring network due to implemented pumping 

rates can be obtained using the variable-density flow and salt transport numerical model. 

However, in real field scenarios, it is common practice that the prescribed optimal pumping 
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strategy will not be accurately implemented, and/or, the actual concentrations resulting from 

an implemented strategy will differ from the predicted impacts due to various uncertainties 

in prediction. In this study, for performance evaluation purposes only, the field level-

deviations between actual and predicted concentrations after first year of the implementation 

(t=1) of optimal pumping strategy is incorporated by simulating the concentrations taking 

into account random deviations of actual pumping rates from prescribed pumping rates. The 

perturbed pumping rates different from optimal prescribed pumping rates are generated by 

adding random errors (0-20%) to the optimal prescribed pumping rates. The inclusion of such 

deviations will affect the resulting salinity and may lead to noncompliance with management 

goals in terms of permissible salinities. Again, for performance evaluation purposes, the 

actual salinity concentrations at the designed optimal monitoring wells for each time step can 

be simulated for the perturbed pumping rates, using the variable-density flow and salt 

transport numerical simulation model. In actual applications, no such artificial perturbation 

is required, as the actual salinities will be measured in the field using the monitoring network. 

The monitoring network (designed to gather information about noncompliance with the 

prescribed management strategy) helps in updating or revising the management strategy for 

t = 2, 3 and 4 to achieve the original management goals. The multi-objective coupled S/O 

model was utilized to sequentially update the management strategy using feedback 

information from the earlier time steps. This was performed by re-running the S/O model for 

future time steps after updating the initial and boundary conditions according to feedback 

from the monitoring network. For sequential modification of the pumping rates using 

feedback information’s, the multi-objective management model was solved as a single 

objective optimization problem. Objective 2 (Eq. 4.6) of the original multi-objective 

management model (i.e. barrier well pumping for the selected management strategy) was 

added as an additional constraint. The other constraints (Eqs. 4.7 and 4.8) and bounds (Eqs. 

4.9 and 4.10) of the optimization problem remained unchanged.  

 

6.3.4 Case study: Application and evaluation of the developed method 

The developed coastal aquifer adaptive management methodology was applied to the Bonriki 

aquifer. A detailed description of the study area is given in Chapter 4. Groundwater extracted 

from the Bonriki aquifer is the main source of freshwater for the people of South Tarawa 

(White et al. 1999). Approximately 60% of the South Tarawa population are dependent on 

groundwater extracted from the Bonriki aquifer (Metutera 2002). The FEMWATER 

computer package was used to construct a 3D numerical simulation model of the Bonriki 

aquifer. A detailed description of the modelling paradigm and boundary conditions, the 

hydrogeology of the area, and field data are given in Sections 4.3.2, 4.4.2, 4.4.3 and 4.4.5 
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(Chapter 4). The calibration and validation procedure of the numerical model with the results 

are also given in Section 4.4.5 (Chapter 4).   

 

The validated model was used to evaluate the adaptive management framework. Firstly, the 

multi-objective management model was evaluated using the developed variable-density flow 

and salt transport numerical model. All 19 operational FPWs and 6 BWs were used. A total 

management horizon of four years was considered. A total of 100 decision variables (25 wells 

× 4-year management horizon) was implemented into the S/O model. The maximum (1200 

m3/day) and minimum (0 m3/day) pumping rates for both well types were added as bounds. 

The maximum allowable salinity concentration at the six MWs at the end of the management 

horizon were incorporated as optimization constraints. Each SVMR model was trained and 

validated using 700 input-output datasets. The 700 sets of randomised input pumping rates 

(from both well types) were generated using the LHS method. The maximum (1200 m3/day) 

and minimum (0 m3/day) pumping rates for both well types were added as bounds. Each set 

of generated input pumping rates was fed separately into the variable density flow and 

transport numerical model to obtain salinity concentration data at the respective monitoring 

wells. Input pumping and output concentration datasets were used to train and test an SVMR 

surrogate model for each well location. Training and testing of the SVMR models in the 

ensemble were done on the MATLAB 2017a platform. To achieve satisfactory predictions, 

a Gaussian kernel was used with parameters ɛ, 𝐶 and ɣ having values of 0.60, 10 and 0.001, 

respectively. These parameter values were obtained after numerous experimental runs. Each 

standalone SVMR model could only predict salinity concentration at a specific monitoring 

well. Ten different combinations of hydraulic conductivity and porosity values were used to 

develop ten SVMR models for each monitoring well. The predictions of these ten SVMR 

models were integrated into an ensemble. Thus, six ensemble SVMR models were developed 

to predict salinity at the six corresponding MWs. The hydraulic conductivity values were 

derived from a lognormal distribution with the calibrated value of hydraulic conductivity as 

the mean, and a variance of 0.4 m/d. Similarly, porosity values were derived using a normal 

distribution with a calibrated value of porosity as the mean and a variance of 0.1. 

 

The validated SVMR ensemble models were externally coupled to the multi-objective genetic 

algorithm (MOGA) optimisation model using the MATLAB 2017a platform. One of the main 

reasons for using MOGA is its efficiency. In a single run, MOGA can provide an optimal 

Pareto-front comprising non-dominated solutions at the end of the stated number of 

generations. The MOGA model used a population size of 2000, function tolerance of 1 × 10-

4, constraint tolerance of 1 × 10-3, Pareto front population fraction of 0.3, and crossover 

fraction of 0.8. The number of generations was fixed to 10,000. This value was obtained after 
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trying different generation sizes for the convergence of the population. The constraint of the 

optimization (maximum allowable salinity at the 6 MWs) ensured that the salinity at the MWs 

was restricted to a pre-specified limit. The maximum tolerable salinities for MW1 and MW2 

were set to 20,000 mg/L. MW1 and MW2 were closer to the shoreline and restricting the 

salinity at these locations to lower levels was impractical. The maximum acceptable salinities 

at MW3 and MW4 were set to 5000 mg/L and 4000 mg/L, respectively. Finally, the 

maximum salinities at MW5 and MW6 were set to 450 mg/L. MW5 and MW6 were located 

in an area with many pumping wells. It was anticipated that the water extracted from these 

locations was of good quality and suitable for consumption by the local South Tarawa 

communities. 

 

For Phase 2, 100 candidate monitoring well locations were chosen using the k-means 

clustering method. The k-means clustering code was written and executed in the R platform. 

A fixed number of iterations was used as the stopping criterion (Zio and Bazzo 2010). In the 

present case, 50 iterations were considered. Also, before the execution of the k-means 

clustering code, the number of candidate monitoring wells to be used in the monitoring 

network was specified as the value of k (number of clusters). One hundred perturbed pumping 

rates from the chosen optimal pumping rates were obtained using the LHS strategy. These 

perturbed pumping rates and 100 combinations of hydraulic conductivity and porosity were 

used in the variable density flow and salt transport numerical simulation model to obtain 100 

different realizations of salinity concentration at the 100 candidate monitoring wells. Ten (M 

= 10) optimal MWs out of the 100 candidate monitoring well locations were obtained by 

implementing the designed monitoring network. For Phase 3, the single objective 

optimization problem used for sequential modification of future year pumping rates was 

solved using the genetic algorithm optimization solver available in the MATLAB 2017 

platform. A flowchart of the proposed adaptive management framework is presented in Fig. 

6.1.  
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Figure 6.1: Flowchart of the adaptive management framework procedure  
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6.4 Results and discussion 

6.4.1.1 Performance evaluation of the homogeneous ensemble models 

The utility of the integrated approach to management strategy development, implementation, 

and subsequent modification based on feedback measurements obtained from a monitoring 

network were evaluated to establish its potential applicability to the study site. The 

homogeneous SVMR ensemble model was used to approximately simulate aquifer responses 

in the coupled S/O model. The homogeneous SVMR ensemble model consisted of ten 

standalone SVMR models. Each standalone SVMR model was trained and tested using 

datasets obtained from different variable-density flow and salt transport numerical models 

developed using different combinations of hydraulic conductivity and porosity values. The 

predictive accuracy of each standalone model in the ensemble is shown in Table 6.1. It was 

observed that all the standalone models in the ensemble predicted salinity at the monitoring 

wells with reasonable accuracy (quantified in terms of RMSE, MBE, R, NSE and IOA). This 

accuracy of the standalone models was eventually reflected in the accuracy of the ensemble 

models used in the coupled S/O model. The performance of the homogeneous SVMR 

ensemble surrogate model is presented in Table 6.2.  
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Table 6.1: Performance evaluation results of the standalone SVMR models 

Model  Evaluation measure SVMR1 SVMR2 SVMR3 SVMR4 SVMR5 SVMR6 
NM1  RMSE 5.10 6.17 3.74 2.95 2.02 1.89 

 MBE 0.41 0.45 0.38 0.41 0.39 0.35 
 R 0.96 0.97 0.97 0.97 0.98 0.98 
 NSE 0.97 0.96 0.98 0.97 0.98 0.98 

  IOA 0.94 0.95 0.95 0.96 0.96 0.96 
NM2  RMSE 5.98 5.62 2.82 2.04 1.59 1.33 

 MBE 0.47 0.56 0.62 0.52 0.39 0.44 
 R 0.97 0.97 0.98 0.97 0.98 0.98 
 NSE 0.96 0.96 0.96 0.97 0.97 0.97 

  IOA 0.95 0.94 0.95 0.96 0.96 0.96 
NM3  RMSE 4.16 5.22 3.51 4.86 3.02 2.14 

 MBE 0.71 0.43 0.48 0.47 0.38 0.31 
 R 0.97 0.96 0.97 0.96 0.98 0.98 
 NSE 0.97 0.97 0.98 0.97 0.98 0.99 

  IOA 0.94 0.95 0.95 0.94 0.95 0.96 
NM4  RMSE 6.60 5.33 5.27 4.65 3.53 3.05 

 MBE 0.52 0.55 0.64 0.64 0.43 0.48 
 R 0.97 0.98 0.96 0.97 0.97 0.97 
 NSE 0.97 0.96 0.96 0.97 0.97 0.98 

  IOA 0.95 0.94 0.93 0.95 0.95 0.96 
NM5  RMSE 6.96 7.13 5.12 5.68 4.25 4.56 

 MBE 0.59 0.63 0.72 0.52 0.33 0.36 
 R 0.97 0.97 0.97 0.97 0.98 0.97 
 NSE 0.97 0.98 0.98 0.97 0.98 0.97 

  IOA 0.95 0.94 0.95 0.94 0.96 0.95 
NM6  RMSE 7.63 5.32 5.24 5.69 4.25 3.57 

 MBE 0.44 0.65 0.66 0.46 0.41 0.34 
 R 0.97 0.98 0.98 0.97 0.99 0.99 
 NSE 0.98 0.98 0.98 0.98 0.98 0.99 

  IOA 0.96 0.97 0.97 0.97 0.98 0.98 
NM7  RMSE 7.26 6.75 6.03 5.87 5.66 5.12 

 MBE 0.58 0.62 0.55 0.47 0.44 0.36 
 R 0.97 0.98 0.98 0.98 0.98 0.99 
 NSE 0.97 0.98 0.98 0.98 0.98 0.99 

  IOA 0.96 0.97 0.97 0.97 0.98 0.98 
NM8  RMSE 6.35 7.16 5.57 5.31 5.26 5.19 

 MBE 0.54 0.58 0.52 0.49 0.33 0.41 
 R 0.98 0.97 0.98 0.98 0.98 0.98 
 NSE 0.97 0.97 0.97 0.97 0.97 0.97 

  IOA 0.96 0.95 0.96 0.96 0.96 0.96 
NM9  RMSE 7.37 6.89 8.43 6.22 5.32 4.41 

 MBE 0.59 0.63 0.67 0.56 0.42 0.38 
 R 0.98 0.98 0.96 0.97 0.97 0.98 
 NSE 0.97 0.97 0.96 0.97 0.97 0.98 

  IOA 0.95 0.96 0.95 0.96 0.97 0.97 
NM10  RMSE 7.14 6.59 6.91 5.88 4.71 4.28 

 MBE 0.55 0.62 0.52 0.55 0.39 0.44 
 R 0.98 0.98 0.98 0.98 0.98 0.99 
 NSE 0.98 0.98 0.98 0.98 0.98 0.99 

  IOA 0.96 0.97 0.97 0.97 0.97 0.98 
 

Table 6.2: Performance evaluation results of the homogeneous ensemble models 

Evaluation measure En_SVMR1 En_SVMR2 En_SVMR3 En_SVMR4 En_SVMR5 En_SVMR6 
RMSE 4.70 5.61 3.34 2.99 2.16 1.79 
MBE 0.42 0.44 0.36 0.41 0.33 0.31 

R 0.97 0.97 0.98 0.97 0.98 0.98 
NSE 0.98 0.97 0.98 0.98 0.98 0.98 
IOA 0.96 0.96 0.96 0.97 0.97 0.97 

En_SVMRn = homogeneous ensemble surrogate model developed using 10 standalone SVMR 
surrogate models for monitoring well n 
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6.4.1.2 Implementation of the optimal aquifer management strategy 

The executed homogeneous SVMR ensemble-based coupled S/O model presented a Pareto-

front containing several trade-off optimal solutions in a runtime of about three hours. Each 

optimal solution on the Pareto-front represents an optimal pumping strategy that can be 

implemented as a management policy. The total optimal pumping rates from all the FPWs 

and all the BWs for the four-year management horizon ranged from about 30,000–44,000 

m3/day and 1000–9000 m3/day, respectively. These pumping rates were based on the imposed 

constraints (permissible concentration limits placed at the different MWs) specified in the 

management model. The optimal pumping values were also within the specified bounds used 

in the optimization model. The maximum and minimum annual rainfall in Tarawa is 

approximately 4300 mm and 2100 mm, respectively (Bosserelle et al. 2015). Based on this 

annual amount of rainfall over a highly permeable aquifer top cover with the proportionately 

very small built-up area, it is reasonable to assume a vertical annual recharge rate of nearly 

2000 mm. This vertical recharge amount is itself around 3 million m3 per year. Therefore, if 

the BW extraction rate is excluded from the total withdrawal amount computed above, as a 

large proportion of BW extraction is contributed by the sea face constant head boundary, the 

total specified withdrawal from FPWs nearly matches the estimated vertical recharge. 

Therefore, the recharge rate imposed appears to be reasonable.     

Validation of these optimal solutions is a crucial step in an S/O management framework. 

Validation of optimal solutions was carried out by randomly selecting a few optimal solutions 

from the Pareto-front and implementing them in the original variable-density flow and salt 

transport numerical model. In this study, five random optimal solutions were implemented 

into each of the ten variable-density flow and salt transport numerical models and ten 

standalone SVMR surrogate models. The average of the concentration values of the ten 

variable-density flow and salt transport numerical models were compared with those of the 

homogeneous SVMR ensemble surrogate models. These comparisons are presented in Table 

6.3. The relative errors in this comparison were less than 5% at all MWs. This establishes the 

fact that the homogeneous ensemble SVMR surrogate model approximated the variable flow 

and salt transport model with reasonable accuracy. Also, it was observed that the salinity 

values converged to the upper limit of the set constraints. For example, at MW1, the 

maximum allowable salt concentration in the optimization model was specified as 20,000 

mg/L. In the comparison result presented in Table 6.3, it is seen that for all five selected 

optimal solutions, the salinities converged to the upper limit (20,000 mg/L). A similar pattern 

was observed for all other MWs.  
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The main focus of this study was to design a monitoring network for the Bonriki aquifer. For 

this purpose, a randomly-selected optimal solution (solution R in Fig. 6.2) was selected and 

implemented as a coastal aquifer management strategy. The total production well and barrier 

well pumping rates for the selected optimal solution were 39,728.44 m3/day and 3630.89 

m3/day, respectively. The specific pumping rates for each FPW and BW for the selected 

management strategy are shown in Fig. 6.3.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Pareto-front displaying various trade-off optimal solutions 
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Table 6.3: Optimal solution validation results 

NMAV = mean salinity values from all 10 variable density flow and salt transport numerical models; RE = relative error 

 

 

 

 

 

 

 

 

 

 

Solution 
number 

MW1 MW2 MW3 MW4 MW5 MW6 
NMav 
(mg/L) 

En_SVMR1 
(mg/L) 

RE 
(%) 

NMav 
(mg/L) 

En_SVMR2 
(mg/L) 

RE 
(%) 

NMav 
(mg/L) 

En_SVMR3 
(mg/L) 

RE 
(%) 

NMav 
(mg/L) 

En_SVMR4 
(mg/L) 

RE 
(%) 

NMav 
(mg/L) 

En_SVMR5 
(mg/L) 

RE 
(%) 

NMav 
(mg/L) 

En_SVMR6 
(mg/L) 

RE 
(%) 

1 19870.4 19677.0 1.0 19795.63 19742.53 0.3 4868.18 4844.85 0.5 3963.43 3932.23 0.8 447.82 444.94 0.6 432.72 429.88 0.7 
2 19708.8 19621.2 0.4 19783.73 19735.64 0.2 4811.80 4776.57 0.7 3959.52 3916.66 1.1 433.94 429.27 1.1 435.97 433.33 0.6 
3 20009.2 19846.9 0.8 19975.89 19949.89 0.1 4931.85 4928.47 0.1 3944.47 3911.19 0.8 444.84 437.12 1.7 436.18 431.45 1.1 
4 19798.4 19660.5 0.7 19793.16 19757.80 0.2 4915.77 4906.76 0.2 3868.29 3868.82 0.0 433.54 427.58 1.4 439.93 436.34 0.8 
5 19727.4 19567.6 0.8 19829.44 19795.19 0.2 4828.40 4839.35 0.2 3972.34 3967.71 0.1 430.35 427.29 0.7 427.90 426.47 0.3 
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Figure 6.3: Pumping rates specified (recommended) by the management strategy 

 

6.4.2 Optimal monitoring wells 

The locations of candidate monitoring wells were obtained using the k-means clustering 

method and are presented in Fig. 6.4. The clustering method ensured that the candidate 

monitoring wells were scattered over the entire model domain. The truncated optimal 

pumping patterns (to demonstrate field-level deviations) and uncertain aquifer parameters 

were used to generate 100 salinity concentration realization at 100 candidate monitoring 

wells. Out of the 100 candidate monitoring wells, only 10 were selected as optimal 

monitoring wells. The monitoring network optimization formulation using the LINGO 17 

platform (Scharage 1999) presented ten optimal monitoring wells, which are presented in Fig. 

6.5. The average of the logarithmic salinity at each candidate monitoring well was maximized 

to ensure that candidate monitoring wells were placed in high-risk areas (high salinity areas). 

As seen in Fig. 6.5, the locations of all optimal monitoring wells were close to the seaside 

boundary, where salinities due to production well pumping were the highest. Also, a good 

spread of optimal monitoring wells was observed, which avoids redundancy in monitoring 

well installation. The objective function used in the design of a monitoring network is only 

one possible objective. Other objectives based on different study area management scenarios 

can also be considered. The locations of the optimal monitoring wells were dependent on the 

monitoring network design’s objective functions and will differ according to the monitoring 

network objectives. For example, maximizing the weighted mean salinities at candidate 

monitoring locations, as an objective function, will result in a different set of optimal 

monitoring wells compared to the set designed in this study. However, for this particular 

study, a simple objective function was used to highlight the other aspects of linked S/O 

models and the use of sequential information to modify management strategies over time. 
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Figure 6.4: Locations of the 100 candidate monitoring wells (+) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Locations of the 10 optimal monitoring wells (green circles) 

 

 

6.4.3 Modifying pumping rates using feedback information  

The management strategy selected from the Pareto-front was used to adaptively modify 

pumping rates based on deviations in salinity concentration data; i.e., the difference in 
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salinities obtained after using the recommended (optimal) and actually implemented 

management strategy. The selected recommended four-year management strategy was 

modified based on feedback information obtained based on the preceding year’s implemented 

pumping rates. For the selected management strategy, the total production well pumping and 

barrier well pumping rates were 39,728.44 m3/day and 3630.89 m3/day, respectively. The 

resulting salinity values obtained at the optimal monitoring wells at the end of year 1 as a 

result of the recommended pumping strategy are given in Table 6.4 (Situation A of year 1). 

It is highly likely that the pumping rates recommended by the management strategy will not 

be exactly implemented in the field. To cater to this field-level deviations, the recommended 

production well and barrier well pumping rates were perturbed by 0–20%. This perturbation 

reflects actual pumping rates implemented in the field. However, this step is only relevant for 

performance evaluation purposes. In actual field applications, deviations from recommended 

rates will be measured at monitoring wells in a monitoring network. The salinity 

concentration at the optimal monitoring wells at the end of year 1 as a result of the perturbed 

pumping rates are given as Situation B of year 1. It is observed from Table 6.4 that the 

deviations in pumping rates in year 1 causes a slight deviation in the salinity values. Based 

on these values, the pumping rates for years 2, 3 and 4 were modified by rerunning the 

coupled S/O model while keeping the other management constraints unchanged. The 

modified FPW pumping rates are given in Table 6.5. The modifications were only applied to 

the pumping rates for years 2, 3 and 4 after gathering feedback on the implementation of the 

year 1 pumping rates. These three changes were obtained based on the revised solution of the 

optimization model i.e., using using feedback information from the optimal monitoring wells. 

The first year’s pumping rates remained unchanged. 
 

Table 6.4: Salinities (mg/L) at the optimal monitoring wells 

 Year 1 Year 2 Year 3 Year 4 
OML* Situation 

A 
Situation 
B 

Situation 
A 

Situation 
B 

Situation 
A 

Situation 
B 

Situation 
A 

Situation 
B 

1 24,168.14 24,135.24 25,951.33 25,612.34 27,952.67 27,956.33 30,215.25 30,258.11 
2 23,256.87 23,247.65 24,696.11 24,616.56 26,151.85 26,146.51 27,298.55 27,204.65 
3 23,055.84 23,016.28 24,856.22 24,843.22 25,871.43 25,886.93 26,598.29 26,577.16 
4 24,136.82 24,089.56 24,623.64 24,647.89 25,026.94 25,049.66 26,884.34 26,813.55 
5 17,452.31 17,486.33 17,898.23 17,954.62 19,560.05 19,587.79 22,389.71 22,384.02 
6 19,585.62 19,546.20 20,114.95 20,168.77 22,895.44 22,905.68 25,468.92 25,423.96 
7 23,656.98 23,641.25 24,891.33 24,923.56 26,454.72 26,484.66 28,355.79 28,397.10 
8 24,556.28 24,587.34 25,831.25 25,838.51 27,206.84 27,198.23 28,113.95 28046.82 
9 23,584.02 23,546.95 24,669.27 24,646.85 26,158.34 26,144.26 27,138.24 27138.16 
10 25,136.57 25,136.18 26,882.16 26,876.29 28,654.23 28,679.34 30,218.97 30158.49 

Situation A = due to recommended strategy; Situation B = due to implemented strategy; OML = 
optimal monitoring well 
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Table 6.5: Modified production well pumping rates (m3/day) over the entire management 
period 

 Year 1 Year 2 Year 3 Year 4 
 R I R I R I R I 

Year 1 9946.89 9822.57       
Year 2 10,426.51  10,335.12 10,378.77     
Year 3 9957.58  9987.14  9874.23 9904.38   
Year 4 9397.47  9414.87  9369.16  9325.29 - 
Total 39,728.44  29,737.13  19,243.39  9325.29  

 R* = recommended; I* = implemented 

 

The implemented year 1 pumping rates (9288.57 m3/day) and the future modified year 2, 3 

and 4 modified pumping rates (29,737.13 m3/day) was 39,559.70 m3/day. This was less than 

the pumping rates from the originally recommended management strategy. The salinity 

concentration due to the modified recommended pumping rates at the end of year 2 is given 

in Table 6.4 (Situation A of year 2). Situation B of year 2 is the salinity concentration due to 

the implementation of the perturbed pumping rates. Similarly, Situations A and B for years 3 

and 4 in Table 6.4 represent the salinities resulting from the modified and perturbed pumping 

rates, respectively. The pumping rates for future years 3 and 4 were modified using the same 

procedure as discussed above. The modified objective function value for year 3 was 

39,444.73 m3/day, which is also less than the total pumping rates of the original 

recommended management strategy. With the adaptive management framework, the total of 

4 years’ implemented pumping rates were 39,431.01 m3/day, which is less than the pumping 

rates of the recommended management strategy (39,728.44 m3/day). This is intuitively 

justifiable, as the actually implemented strategy for the initial year was suboptimal.  

 

The results presented in Tables 6.3 and 6.4 demonstrate that optimal pumping solutions 

recommended from the S/O model will need modification because of the field-level 

deviations encountered during the implementation process, or noncompliance by the user. As 

observed, the feedback salinity measurement information can be utilized to modify pumping 

rates for the remaining future time periods of the management horizon. Therefore, a properly 

designed optimal monitoring network and feedback information are crucial for the adaptive 

management of coastal groundwater resources.   

 

In general, the adaptive management method evaluated for the Bonriki aquifer system has 

given promising results. Solving the multi-objective management model prescribed a set of 

optimal solutions in the form of a Pareto-front. The obtained solutions were validated to 

ensure that the constraints were satisfied. Obtaining an optimal solution and then exactly 

implementing it in the field are two different but critical issues discussed in this study. An 

optimal solution can be obtained using all the computational powers at hand. The issue of 
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user non-compliance due to incorrect implementation of a selected optimal solution is the 

main concern addressed.  To monitor the possible effects of user non-compliance and to 

update the subsequent time period’s optimal solution in order to rectify it, feedback 

information in the form of salinity data was obtained from the optimal monitoring wells. The 

subsequently modified yearly pumping strategies help to achieve the original management 

goals despite of earlier deviations from the prescribed strategy. All the computational powers 

can be used to develop an optimal pumping strategy for the aquifer system, but the question 

of user non-compliance remains the same and is not entirely a computational issue. In 

practical situations, we cannot guarantee that an optimal solution will be correctly 

implemented. In such scenarios, the adaptive management framework presented in this study 

will be useful. Theoretically, it is possible to search for and then identify an optimal solution 

by enormous enumerations; however, for complex large-scale problems, this is totally 

impractical. The main contribution of optimization is that it can efficiently search for an 

optimal solution that is almost impossible to identify by enumeration. When more than one 

objective is considered, this becomes more critical. 

6.5 Conclusions 

This study demonstrated the use of an integrated approach to the adaptive management of an 

island aquifer system. This involved formulating an optimal management strategy, designing 

an optimal monitoring network, and obtaining feedback information from it. In achieving the 

targeted management goals, an optimal production well and barrier well pumping strategy 

was considered as an option for the sustainable control of saltwater intrusion into the Bonriki 

aquifer system in the South Pacific. Using this prescribed optimal strategy, optimal 

monitoring wells were identified. A new monitoring objective function was developed to 

determine the locations of optimal monitoring wells in high-salinity areas. The resulting 

optimal monitoring wells were then used to monitor compliance with the recommended 

management strategy. Based on the field-level deviations between actual and planned salinity 

levels, the pumping rates for future time periods in the management horizon were revised 

using the updated coupled S/O model. It is noted that field-level deviations observed during 

the implementation of recommended pumping rates could lead to significant differences 

between the salinity concentrations measured at optimal monitoring wells. Hence, updating 

the management model using the feedback information from earlier time periods could be 

crucial to the management of the Bonriki aquifer system. The practical aspects of the actual 

implementation of coastal aquifer management strategies are emphasized in this approach. 

The solutions presented in this study open pathways for similar studies that could be 

undertaken in other small island countries, where saltwater intrusion due to excessive 

groundwater withdrawal threatens the sustainability of freshwater resources. The developed 
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and evaluated adaptive management method has the potential to be applied to other regional-

scale coastal aquifers subject to saltwater intrusion. However, such applications would 

require the development of a variable density groundwater flow and transport numerical 

model specific to the study area. This would necessitate numerical modelling skills, software 

and computational resources and groundwater datasets (head and salinity). These datasets are 

not always readily available and may require rigorous field investigations, which can be 

costly. In the next chapter, the predictive performance of homogeneous and heterogeneous 

ensemble models is investigated to establish a better-performing type of ensemble model.  
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Chapter 7: Comparative performance evaluation of 
homogeneous and heterogeneous ensemble models for 
groundwater salinity prediction 
 

A manuscript based on the main contents of this chapter has been submitted for publication 

and is currently under review, as outlined below: 

Lal, A., and Datta, B. (2019). "A comparative performance evaluation of homogenous and 

heterogeneous ensemble models for groundwater salinity predictions." Environmental 

Monitoring and Assessment.  

7.1 Summary 
Accurate prediction of salinity concentrations in aquifers in response to fluctuating 

groundwater pumping patterns is an essential component of any coastal groundwater 

planning and management framework. Ensemble predictive models are known to be more 

accurate and robust than standalone predictive models. The present study develops and 

utilises homogeneous and heterogeneous ensemble models of various standalone 

evolutionary algorithms, such as artificial neural network (ANN), genetic programming (GP), 

support vector machine regression (SVMR), and Gaussian process regression (GPR), to 

predict groundwater salinity concentrations in a small Pacific Island coastal aquifer system. 

Standalone and ensemble predictive models are trained and validated using identical pumping 

and salinity concentration datasets obtained by solving a numerical 3D transient density-

dependent coastal aquifer flow and transport model. After validation, the ensemble models 

are used to predict salinity concentration at selected monitoring wells in the modelled aquifer 

under variable groundwater pumping conditions. The predictive capabilities of the developed 

ensemble models are quantified using standard statistical procedures. The performance 

evaluations suggest that the predictive capabilities of the developed standalone prediction 

models (ANN, GP, SVMR and GPR) are comparable to those of the groundwater variable-

density flow and salt transport numerical model.  However, the GPR standalone models had 

better predictive capabilities than the other standalone models. Also, the SVMR and GPR 

standalone models were more efficient (i.e. took less computational training time) than the 

other standalone models. In terms of ensemble models, the performance of the homogeneous 

GPR ensemble model was superior to that of the other homogeneous and heterogeneous 

ensemble models. Overall, the homogeneous GPR ensemble model was better both in terms 

of accuracy and efficiency. Therefore, it can be utilised as a reliable groundwater salinity 

prediction tool and as an approximate simulator in coupled simulation-optimization models 

needed for prescribing optimal groundwater management strategies.  
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7.2 Background 

As evident from the results presented in Chapters 3, 4, 5 and 6, the advantages of using 

predictive models in saltwater intrusion management are significant. Predictive models 

constructed using input-output datasets obtained from a numerical simulation model are 

largely used to predict future groundwater salinity levels in aquifers and as approximate 

simulators in coupled simulation-optimization models. The latter has attracted considerable 

attention in water resource engineering, as coupled simulation-simulation models are often 

used to prescribe optimal management strategies for high-risk coastal aquifers (as discussed 

in Chapters 4, 5 and 6).  In many cases, the predictions of standalone models can be combined 

into homogeneous or heterogeneous ensemble models. These ensemble models tend to have 

greater predictive accuracy and reliability. Comparing the predictive capabilities of the two 

ensemble modelling approaches using identical datasets is vital, as it will help in establishing 

a more robust predictive model. However, to the best of the authors’ knowledge, no such 

comparisons have been reported.  

With advancements in computer systems and measurement techniques, several data-driven 

modelling algorithms have been applied to develop reliable models for predicting 

groundwater salinity by emulating the responses of a complex numerical simulation model.  

This has been well explained in the previous chapters. However, these standalone models 

have sometimes been statistically combined to develop ensemble predictive models capable 

of providing more accurate and robust predictions. An ensemble model consists of several 

standalone models whose predictions are combined statistically to predict new instances 

(Petrakova et al. 2015). A homogeneous ensemble model is produced when all the standalone 

models in the ensemble are constructed using the same algorithm. On the other hand, in a 

heterogeneous ensemble model, all the standalone models in the ensemble are different; i.e., 

developed using different algorithms. Both of these ensemble modelling approaches have 

yielded accurate predictions in various hydrological investigations (Duan et al. 2007; Qu et 

al. 2017; Velázquez et al. 2011). While the ensemble modelling paradigm has successfully 

contributed to many hydrological studies, its use in saltwater intrusion modelling is very rare. 

Only recently, Sreekanth and Datta (2011) and Roy and Datta (2017) utilized ensemble GP 

and multivariate adaptive regression spline (MARS) models, respectively, to predict the 

responses of a saltwater intrusion numerical model with greater accuracy than that achieved 

by standalone models. These results establish that ensemble models can be more accurate 

than standalone models and are better suited to the prediction of salinity in coastal aquifers.  

The idea of using ensemble models (both homogeneous and heterogeneous) for groundwater 

salinity prediction is very attractive but somewhat unexplored. In this paper, homogeneous 

and heterogeneous ensemble predictive models are developed using several data-driven 
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techniques and utilized to predict salinity concentrations in a small-island coastal aquifer 

system. Homogeneous ensemble models are used to harness the capability of several 

standalone models that use a single algorithm. This study also aimed to investigate the 

performance of heterogeneous ensemble models, since the different standalone models can 

perform best locally, while merging their outputs can help achieve better prediction accuracy. 

The novelty of this work lies in comparing the performance of homogeneous and 

heterogeneous ensemble models based on the identical datasets used for the prediction of 

groundwater salinity in a real island coastal aquifer system. A first-ever comparative study 

of homogeneous and heterogeneous ensemble models is made to establish a better-

performing ensemble model. It is important to compare the performance of homogeneous 

and heterogeneous ensemble predictive models developed using identical training datasets 

generated from a regional-scale variable-density flow and salt transport numerical simulation 

model. This comparison will allow the establishment of more accurate and reliable prediction 

tools. Hence, the results of this study can be used as a reference on potential tools for 

groundwater salinity prediction, and when utilizing it as approximate simulators in coupled 

simulation-optimization models.  

7.3 Methods 

7.3.1 Predictive modelling techniques 

Of the regression-based predictive modelling tools available in the literature, we selected 

ANN, GP, GPR and SVMR algorithms for investigation in this study. These tools have been 

widely used in saltwater intrusion prediction studies. However, their performances have not 

been compared with each other. The GP and SVMR models are extensively discussed in 

Chapter 3. However, a basic account of the working principles of the ANN and GPR 

modelling tools is made in the sections below.  

7.3.1.1 Artificial neural networks 

The ANN is an artificial intelligence-based approach, which has been used in various 

domains of research worldwide. ANN has also been the most common modelling tool used 

in saltwater intrusion prediction studies. The main advantages of ANN models are that they 

provide an opportunity to retrieve hidden information, which enables decision-makers to 

solve complex problems, and can generalise and produce both linear and non-linear outputs 

(Petrakova et al. 2015). An ANN model behaves like a simplified model of brain cells that 

collaborate with each other to perform a desired function. ANN can be described as a parallel 

knowledge processing system containing a set of neurons arranged in layers (Angelaki et al. 

2018). An ANN model comprises an input layer, hidden layer and target layer. The target 

layer is the main processing part of an ANN model. The flow of information takes place from 
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layer to layer, serially. ANN models possess a number of connecting weights, which 

ultimately control the flow of information through the various layers. In the present work, 

ANN models were developed (trained and tested) using large input (pumping rate)-output 

(salinity) datasets. The resulting validated ANN models were used to predict salinity 

concentration at several monitoring wells in a coastal aquifer.  

7.3.1.2 Gaussian process regression 

Gaussian process regression is a full Bayesian non-parametric machine learning tool used in 

various field of studies worldwide (Crevillén-García et al. 2017; Grbić et al. 2013; Sun et al. 

2014; Zhang et al. 2016). GPR has been applied to a variety of approximation, regression and 

classification problems (Karbasi 2017). GPR offers a powerful method of accurate function 

approximation in highly-dimensional space (Nguyen-Tuong et al. 2009). Detailed 

descriptions of the working principles of GPR models are widely available in the literature 

(Aye and Heyns 2017; Kong et al. 2018; Richardson et al. 2017; Zhang et al. 2016). When 

using GPR, we model a finite set of random variables 𝑓 = [𝑓(𝑎1, … , 𝑓(𝑎𝑆)]𝑇 as a joint 

Gaussian distribution with mean μ and covariance 𝐺, where  𝑎1 is the 𝑖th input. The GPR 

method directly defines a prior probability distribution over a latent function with assigned 

values of  μ and 𝐺 (Karbasi 2017). If the function 𝑓 has a GP prior, it can be denoted as  

                  𝑓~𝐺𝑃(𝜇, 𝐺)                 (7.1) 

In many cases, a zero mean and a chosen kernel matrix are assigned as a covariance matrix. 

In GPR, the objective is to predict the responses 𝑏∗ of a new input 𝑎∗, given a training set 

{(𝑎𝑖 , 𝑏𝑖)}𝑖=1
𝑆  containing 𝑆 training points, where 𝑎𝑖 is the input variable and 𝑏𝑖 is the 

corresponding response variable. The response variable 𝑏𝑖 is modelled as a noise-version of 

the function value 𝑓(𝑥𝑖): 

                           𝑏𝑖~𝒯((𝑓(𝑎𝑖), 𝜎2)                            (7.2) 

Where the distribution of noise is Gaussian 𝒯(0, 𝜎2) with variance 𝜎2. According to the 

above definition, the combined probability of the response variables and latent function 

variables 𝑝(𝑏, 𝑓) = 𝑝(𝑏|𝑓)𝑝(𝑏) can be calculated. Then, we can infer that the distribution of 

the latent function value 𝑓∗ is a Gaussian distribution with mean 𝜇(𝑎∗) and variance 𝑣(𝑎∗): 

              𝜇(𝑎∗) = 𝑘𝑎∗𝐴(𝜎2𝐼 + 𝑘𝐴𝐴)−1𝑏                             (7.3) 

          𝑣(𝑎∗) = 𝑘𝑎∗𝑎∗ − 𝑘𝑎∗𝐴(𝜎2𝐼 + 𝑘𝐴𝐴)−1𝑘𝐴𝑎∗               (7.4) 

Where 𝑘𝑎∗𝐴 = 𝑘(𝑎∗, 𝐴) represents an n-dimensional row vector of the covariance between 

𝑎∗ and 𝑆 training points, and 𝑘𝐴𝐴 = 𝑘(𝐴, 𝐴) specifies the kernel matrix of the 𝑆 training 

points.  
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7.3.1.3 Homogeneous ensemble models 

The standalone models used within the homogeneous ensemble model were developed using 

the same algorithms. In this case, homogeneous ensemble models of ANN, GP, SVMR and 

GPR algorithms were developed for comparison with the heterogeneous ensemble model. 

For easy identification, we name the developed homogeneous ensemble models using ANN, 

GP, SVMR and GPR as ANN_En model, GP_En model, SVMR_En and GPR_En model, 

respectively. Each homogeneous model comprised four standalone models trained and testing 

using different realizations of input-output datasets. These realizations of the datasets were 

generated using a random sampling without replacement procedure. Figure 7.1 (a) shows the 

procedure for developing a homogeneous ensemble model. The output of the homogeneous 

ensemble model (En, m) is obtained by combining the outputs of N standalone models using 

the simple average methodology expressed by Eq. 7.5:  

𝐸𝑛,𝑚 =
1

𝑁
∑ 𝑃𝑛                 𝑛 = 1,2, … , 𝑁𝑁

𝑛=1            (7.5) 

 

7.3.1.4 Heterogeneous ensemble models 

Each standalone model in the heterogeneous ensemble model was developed using a different 

algorithm; in this study, ANN, GP, GPR and SVMR standalone models were used.  For easy 

identification, we will name this heterogeneous ensemble model the 

ANN_GP_SVMR_GPR_En model. The four different standalone models were trained and 

tested using different realizations of training and testing datasets, similar to the process used 

for the homogeneous ensemble models. The outputs of each standalone model were 

combined using Eq. 9. Figure 7.1 (b) shows the procedure for developing a heterogeneous 

ensemble model.  
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Figure 7.1:  Flowcharts of the procedure for constructing homogeneous (a) and heterogeneous 
(b) ensemble models 
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7.3.2 Datasets and cross-validation 

Transient groundwater pumping rates from all operating wells (inputs) and salinity 

concentrations (outputs) in the aquifer were required to train and test the standalone models. 

The input training pumping rate data from all operating pumping wells were obtained using 

the Latin hypercube sampling strategy. Each set of pumping patterns was fed into the 

numerical model as input and the corresponding salinities at different monitoring wells were 

obtained. This procedure was repeated D times to gather D input-output datasets. For cross-

validation purposes, these input-output datasets were partitioned into construction and 

independent sets at the ratio of 0.9:0.1. The construction set was used to develop (train and 

test) the standalone models. The standalone models were constructed using the “hold-out 

strategy”, in which 80 % of the construction datasets were used to train the models while the 

remaining 20 % were used to test the models. The independent set was used to determine the 

performances (validate) each ensemble model type. Once all the standalone models were 

trained and tested, the input data (pumping rates) of the independent set was used to establish 

the predictive capabilities of both the ensemble models.  Finally, the predicted outputs from 

the ensemble models were compared with the output of the independent set.  

7.3.3 Statistical performance evaluation criteria 

Various statistical criteria were used to assess the performance of the developed standalone 

and ensemble models: root mean square error (RMSE), coefficient of determination (R2), 

Nash-Sutcliffe coefficient (NSE) and Wilmott’s index of agreement (WI). These evaluation 

criteria are defined by Eqs. 7.6 to 7.9.  

𝑅𝑀𝑆𝐸 = √
1

𝑑
∑ (𝑡𝑖 − 𝑝𝑖)

2𝑑
𝑖=1    (7.6) 

𝑅2 =
∑ (𝑝𝑖−𝑡)

2𝑑
𝑖=1

∑ (𝑡𝑖−𝑡)
2𝑑

𝑖=1

    (7.7) 

𝑁𝑆𝐸 = 1 −
∑ (𝑡𝑖−𝑝𝑖)2𝑑

𝑖=1

∑ (𝑡𝑖−𝑝)2𝑑
𝑖=1

    (7.8) 

𝑊𝐼 = |1 − (
∑ (𝑡𝑖−𝑝𝑖)2𝑑

𝑖=1

∑ |𝑝𝑖−𝑡|𝑑
𝑖=1 +|𝑡𝑖−𝑡|

)|   (7.9) 

Here, 𝑑 represents the total number of datasets, 𝑡𝑖 is the true salinity from the numerical 

model, 𝑝𝑖 represents the predictive model’s salinity estimates, 𝑡 is the mean true salinity from 

the numerical model and 𝑝 denotes the mean predictive model’s salinity estimates. 
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7.3.4 Evaluation of the developed method 

For evaluation purposes, the developed methodology was applied to the Bonriki aquifer 

system located in Kiribati. Detailed descriptions of the study area and its hydrogeology and 

field data are provided in Chapter 4. The FEMWATER computer package was used to 

construct a 3D coupled flow and transport model of the Bonriki aquifer system. The 

modelling details are extensively presented in Chapter 4. Details on the calibration and 

validation of the numerical model and its results are also presented in Chapter 4.   

After calibration and validation, the numerical model was simulated for the next four years 

to generate the input-output datasets required to develop the predictive models. Salinity 

datasets at six monitoring wells were collected by feeding 100 input pumping rates (yearly 

pumping rate from 25 pumping wells × 4 years) into the numerical model at once. A total of 

700 datasets were generated by running the validated numerical model 700 times. Four 

different realizations of the datasets were generated using the random sampling without 

replacement technique (Friedman et al. 2001). These different realizations of the datasets 

were used to train, test and validate the standalone and ensemble models, as discussed in 

Section 7.3.2. Salinity was monitored at six monitoring wells. Therefore, six different 

standalone models were developed using each predictive modelling algorithm. Six ensemble 

models were also developed using both homogeneous and heterogeneous modelling 

techniques. These standalone and ensemble models were only responsible for predicting 

salinity concentrations at particular monitoring wells. In this study, all the predictive models 

were developed using the MATLAB 2017b platform. A feed-forward neural network with a 

back propagation training algorithm was used to develop the ANN-based predictive models. 

In developing the GP models, minimization of the sum of the squared errors was chosen as 

the fitness function. For the GPR models, a squared-exponential covariance function with 

automatic relevance determination was used as the covariance function. All the related hyper-

parameters of this covariance function were set to the default MATLAB parameters. Lastly, 

in developing the SVMR-based models, a Gaussian kernel function was used with the values 

of parameters ɛ (insensitive tube), 𝐶 (cost function) and γ (Gaussian kernel parameter) set to 

0.0004, 10 and 0.05, respectively. 

7.4 Results and discussion 
7.4.1 Performance of the standalone models  

The performance evaluation results for the ANN, GP, SVMR and GPR standalone 

groundwater salinity prediction models are presented in Tables 7.1, 7.2, 7.3 and 7.4, 

respectively.  
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Table 7.1: Performance evaluation results for the standalone ANN models 

Monitoring well Performance indicator Model 
ANN1 ANN2 ANN3 ANN4 

Train Test Train Test Train Test Train Test 
MW1 RMSE 6.33 6.27 6.12 6.53 6.68 6.9 6.15 6.62 

R2 0.92 0.93 0.93 0.94 0.95 0.92 0.92 0.93 
WI 0.91 0.93 0.92 0.93 0.92 0.92 0.91 0.92 

NSE 0.97 0.98 0.99 0.98 0.98 0.97 0.98 0.98 
MW2 RMSE 6.15 6.09 6.28 6.37 6.61 5.99 6.24 6.15 

R2 0.95 0.93 0.93 0.93 0.94 0.94 0.93 0.93 
WI 0.92 0.93 0.93 0.93 0.93 0.93 0.92 0.93 

NSE 0.99 0.98 0.98 0.98 0.99 0.98 0.99 0.98 
MW3 RMSE 5.33 6.12 5.88 6.46 6.37 5.94 5.68 5.88 

R2 0.92 0.93 0.94 0.92 0.94 0.93 0.92 0.92 
WI 0.93 0.94 0.93 0.93 0.94 0.92 0.92 0.91 

NSE 0.98 0.99 0.99 0.99 0.98 0.98 0.99 0.99 
MW4 RMSE 6.33 6.21 6.18 6.03 6.17 6.28 5.99 5.87 

R2 0.93 0.92 0.94 0.93 0.95 0.93 0.94 0.93 
WI 0.94 0.93 0.94 0.94 0.94 0.92 0.94 0.93 

NSE 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99 
MW5 RMSE 4.85 4.67 4.92 4.13 4.88 4.41 4.06 4.18 

R2 0.95 0.94 0.95 0.95 0.94 0.94 0.95 0.95 
WI 0.94 0.94 0.95 0.94 0.94 0.95 0.94 0.95 

NSE 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
MW6 RMSE 4.99 4.87 4.67 4.54 4.83 4.99 4.01 4.88 

R2 0.95 0.95 0.95 0.94 0.95 0.94 0.95 0.94 
WI 0.94 0.94 0.95 0.94 0.94 0.95 0.94 0.95 

NSE 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 
ANNk: denotes the ANN model developed using realisation k of the dataset, where k = 1, 2, 3, 4 

Table 7.2: Performance evaluation results for the standalone GP models 

Monitoring well Performance indicator Model 
GP1 GP2 GP3 GP4 

Train Test Train Test Train Test Train Test 
MW1 RMSE 5.21 5.68 5.98 5.72 5.63 5.84 5.39 5.67 

R2 0.96 0.92 0.96 0.94 0.96 0.93 0.96 0.94 
WI 0.93 0.94 0.93 0.93 0.94 0.92 0.93 0.92 

NSE 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.99 
MW2 RMSE 5.46 5.13 5.1 5.67 5.24 5.59 5.27 5.09 

R2 0.96 0.94 0.97 0.95 0.95 0.95 0.96 0.94 
WI 0.93 0.93 0.94 0.93 0.93 0.93 0.94 0.93 

NSE 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.99 
MW3 RMSE 4.65 5.84 5.13 5.9 5.68 5.53 5.08 5.37 

R2 0.95 0.93 0.95 0.93 0.96 0.94 0.95 0.93 
WI 0.94 0.95 0.95 0.93 0.95 0.92 0.93 0.94 

NSE 0.98 0.99 0.99 0.99 0.98 0.98 0.99 0.99 
MW4 RMSE 5.96 5.79 5.19 5.68 5.39 5.56 5.83 5.44 

R2 0.95 0.92 0.95 0.95 0.96 0.96 0.96 0.95 
WI 0.95 0.95 0.96 0.94 0.96 0.93 0.93 0.94 

NSE 1 0.99 0.98 1 0.99 0.97 0.99 0.99 
MW5 RMSE 4.65 4.38 4.18 5.76 4.33 4.61 4.28 4.91 

R2 0.97 0.92 0.97 0.96 0.96 0.96 0.97 0.95 
WI 0.95 0.95 0.96 0.96 0.97 0.96 0.96 0.96 

NSE 0.99 0.99 1 0.99 1 0.99 1 1 
MW6 RMSE 4.68 4.37 4.3 4.04 4.68 4.62 4.82 4.31 

R2 0.96 0.96 0.97 0.95 0.96 0.95 0.96 0.95 
WI 0.96 0.97 0.96 0.96 0.96 0.95 0.96 0.96 

NSE 1 0.99 1 1 0.99 1 1 1 
GPk denotes GP model developed using realisation k of the dataset, where k = 1, 2, 3, 4 



Chapter 7: Comparative performance evaluation of homogeneous and heterogeneous ensemble models for 
groundwater salinity prediction 

135 
 

Table 7.3: Performance evaluation results for the standalone SVMR models. 

SVMRk denotes SVMR model developed using realisation k of the dataset, where k = 1, 2, 3,  

Table 7.4: Performance evaluation results for the standalone GPR models. 

Monito-
ring well 

Performance 
indicator 

Model 
GPR1 GPR2 GPR3 GPR4 

Train Test Train Test Train Test Train Test 
MW1 RMSE 3.21 4.15 3.98 4.58 4.37 4.28 4.26 4.1 

R2 0.98 0.96 0.98 0.95 0.98 0.96 0.98 0.97 
WI 0.96 0.96 0.97 0.96 0.97 0.96 0.97 0.96 

NSE 1 1 1 1 1 1 1 0.99 
MW2 RMSE 2.72 3.68 3.33 4.18 4.07 3.98 4.11 3.42 

R2 0.98 0.95 0.98 0.96 0.98 0.96 0.98 0.96 
WI 0.96 0.96 0.96 0.96 0.97 0.95 0.97 0.96 

NSE 1 1 1 1 1 0.99 1 0.99 
MW3 RMSE 3.11 3.18 2.88 3.52 3.16 3.45 3.2 3.28 

R2 0.98 0.96 0.98 0.98 0.98 0.95 0.98 0.97 
WI 0.97 0.97 0.97 0.96 0.98 0.96 0.97 0.96 

NSE 1 0.99 1 1 1 1 1 1 
MW4 RMSE 4.11 4.2 3.79 3.73 4.15 4.83 4.11 3.85 

R2 0.98 0.95 0.98 0.97 0.98 0.96 0.98 0.97 
WI 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.96 

NSE 1 1 1 1 1 1 1 1 
MW5 RMSE 3.25 3.1 2.81 2.57 2.31 2.46 2.18 2.46 

R2 0.98 0.94 0.98 0.97 0.98 0.96 0.99 0.97 
WI 0.98 0.98 0.99 0.98 0.98 0.99 0.98 0.98 

NSE 1 1 1 1 1 1 1 1 
MW6 RMSE 2.22 2.61 2.37 2.16 3.04 3.12 2.58 2.34 

R2 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 
WI 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98 

NSE 1 1 1 1 1 1 1 1 
GPRk denotes GPR model developed using realisation k of the dataset, where k = 1, 2, 3, 4 

 

Mon-
itoring 
well 

Performance 
indicator 

Model 
SVMR1 SVMR2 SVMR3 SVMR4 

Train Test Train Test Train Test Train Test 
MW1 RMSE 4.33 5.44 5.18 5.66 5.07 5.12 5.18 4.93 

R2 0.98 0.93 0.97 0.94 0.97 0.95 0.98 0.95 
WI 0.94 0.95 0.95 0.94 0.96 0.94 0.94 0.93 

NSE 1 1 1 1 1 1 1 0.99 
MW2 RMSE 4.79 4.61 4.59 4.48 4.06 4.82 4.62 4.02 

R2 0.98 0.94 0.98 0.95 0.98 0.94 0.97 0.93 
WI 0.95 0.94 0.95 0.94 0.96 0.93 0.96 0.95 

NSE 1 1 1 0.99 1 0.99 0.99 0.99 
MW3 RMSE 5.54 5.13 4.66 4.08 4.79 4.37 4.08 3.82 

R2 0.98 0.95 0.97 0.93 0.98 0.95 0.97 0.94 
WI 0.95 0.96 0.96 0.95 0.97 0.94 0.96 0.95 

NSE 1 0.99 1 0.99 1 1 0.99 0.99 
MW4 RMSE 5.58 5.46 4.56 4.12 5.18 5.47 5.65 4.89 

R2 0.96 0.94 0.97 0.95 0.98 0.96 0.98 0.96 
WI 0.97 0.96 0.97 0.96 0.98 0.95 0.98 0.95 

NSE 1 0.99 1 1 0.99 1 0.99 0.99 
MW5 RMSE 3.62 3.33 3.10 3.47 3.68 3.34 3.18 3.92 

R2 0.98 0.96 0.98 0.95 0.98 0.95 0.98 0.94 
WI 0.96 0.97 0.98 0.98 0.98 0.97 0.98 0.97 

NSE 1 0.99 1 0.99 1 0.99 1 1 
MW6 RMSE 3.71 3.79 3.22 3.87 3.25 2.89 3.46 3.88 

R2 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.98 
WI 0.97 0.98 0.98 0.97 0.98 0.97 0.98 0.98 

NSE 1 0.99 1 1 1 1 1 1 
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7.4.2 Performance evaluation of the ensemble predictive models 

A comparison of the performance evaluation of the homogeneous and heterogeneous 

ensemble models is presented in Table 7.5.  

Table 7.5: Performance evaluation results for the homogeneous and heterogeneous 
ensemble models 

Monit-
oring 
well 

Performance 
indicator 

Ensemble model type 

Homogeneous ensemble models Heterogeneous 
ensemble model 

ANN_En GP_En SVMR_E
n GPR_En ANN/GP/SVMR/GP

R_En 

MW1 

RMSE 6.23 5.46 4.62 3.99 4.56 
R2 0.92 0.96 0.96 0.98 0.97 
WI 0.92 0.94 0.95 0.97 0.96 

NSE 0.99 0.99 0.99 1 0.99 

MW2 

RMSE 5.82 5.07 3.99 3.16 3.25 
R2 0.94 0.96 0.97 0.98 0.97 
WI 0.94 0.94 0.96 0.97 0.96 

NSE 0.99 0.99 0.99 1 0.99 

MW3 

RMSE 5.67 5.19 3.82 3.07 3.56 
R2 0.94 0.95 0.96 0.97 0.97 
WI 0.95 0.96 0.97 0.98 0.96 
NE 0.99 0.99 0.99 1 1 

MW4 

RMSE 5.48 5.23 4.11 2.98 3.13 
R2 0.94 0.96 0.96 0.98 0.97 
WI 0.95 0.96 0.97 0.98 0.96 

NSE 0.99 1 0.99 1 1 

MW5 

RMSE 4.66 4.28 3.17 2.19 2.79 
R2 0.96 0.96 0.97 0.98 0.97 
WI 0.95 0.97 0.98 0.99 0.97 

NSE 1 1 1 1 1 

MW6 

RMSE 4.42 4.11 2.88 2.32 2.95 
R2 0.95 0.97 0.98 0.99 0.97 
WI 0.96 0.97 0.98 0.99 0.97 

NSE 1 1 1 1 1 
 

The predictive models used in this study are common modelling tools that have been widely 

used in groundwater salinity prediction. All standalone models performed reasonably well, 

as demonstrated by the evaluation results presented in Tables 7.1, 7.2, 7.3 and 7.4. For a 

particular monitoring well, four standalone models (each using a different realization of the 

dataset) were developed for predicting salinity concentration at that specified location. When 

developing the standalone ANN predictive models (as per Table 7.1), the calculated RMSE 

values ranged from approximately 4.06 mg/L to 6.90 mg/L.  The calculated R2 values ranged 

from 0.92 to 0.95. 

Similarly, the WI and NSE values ranged from 0.91 to 0.95 and 0.97 to 0.99, respectively. 

For the standalone GP models, the RMSE values ranged from 4.04 mg/L to 5.98 mg/L. The 

minimum and maximum R2 values obtained when training and testing the standalone GP 

models were 0.92 and 0.97, respectively. Likewise, the values of WI and NSE ranged from 

0.92 to 0.97 and 0.98 to 1, respectively. For the standalone SVMR models, the RMSE values 
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ranged from 3.10 mg/L to 5.66 mg/L. Similarly, the R2 and WI values ranged from 0.93 to 

0.98 and 0.93 to 0.98, respectively. The calculated NSE values for all the standalone SVMR 

models were either 0.99 or 1.  Lastly, for the standalone GPR models, the RMSE values 

ranged from 2.12 mg/L to 4.58 mg/L. Also, the values for R2 and WI ranged from 0.95 to 

0.99 and 0.96 to 0.99, respectively. The NSE values obtained for all standalone GPR models 

were either 0.99 or 1. Overall, the performance evaluation results presented in Tables 7.1, 

7.2, 7.3 and 7.4 establish that all the standalone predictive models based on the four 

algorithms approximated the variable density flow and salt transport numerical model with 

reasonable accuracy. However, the standalone GPR models were found to be superior to the 

corresponding ANN, GP and SVMR standalone models. The standalone ANN models were 

the least effective and had lower prediction accuracy.  

The developed homogeneous ANN_En, GP_En, SVMR_En, GPR_En and heterogeneous 

ANN_GP_SVMR_GPR_En models demonstrated reliable salinity prediction capabilities, as 

demonstrated by the performance evaluation results (Table 7.5). Of the four homogeneous 

ensemble models, GPR_En was found to be the most reliable and to have better prediction 

accuracy. The GPR_En model had the lowest RMSE and highest R2, WI and NE values of 

the homogeneous ensemble models. In addition, the GPR_En model was found to perform 

better and be more accurate than the heterogeneous ANN_GP_SVMR_GPR_En model in 

terms of the four performance indicators. Overall, as per the findings of this study, the 

homogeneous GPR_En models were found to be better suited to salinity prediction at the six 

monitoring wells.  

Along with accuracy, efficiency in computational time is another major factor influencing 

decision-makers’ choice of which model to use for groundwater salinity prediction. The 

training and testing time for each model type is different, and the decision-maker needs to 

prioritize accuracy or efficiency and achieve a balance between the two. In this study, all four 

standalone model types required different training and testing times. The ANN was the least 

accurate model in terms of the four evaluation criteria and it also took a reasonable amount 

of time (~10 minutes) to train. Similarly, the standalone GP models took approximately 15 

minutes to train. 

On the other hand, the SVMR and GPR models took much less time to train (~0.03 minutes). 

The time required to train a standalone model is dependent on the size of the training dataset; 

a larger dataset requires significantly more training time. In addition, developing ensemble 

models requires extra computational effort. For example, the standalone models can be 

integrated into an ensemble using various techniques. In this study, a simple average 

methodology was applied to construct homogeneous and heterogeneous ensemble models. 
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Using other techniques, such as majority voting and weighted voting, can yield more accurate 

results but may require more computational effort and development time. All these factors 

need to be evaluated before deciding on a modelling algorithm to be used for a particular 

prediction activity. Out of all the algorithms used in this study, the training of standalone 

GPR models required the least computational time and they also had the best prediction 

accuracy. The accuracy and efficiency of the standalone GPR models were reflected in the 

accuracy and efficiency the of GPR_En models. Hence, GPR_En models were established as 

the most preferred model (both in terms of accuracy and efficiency) for predicting salinity at 

monitoring wells in the Bonriki aquifer. On the other hand, ANN_En models were the least 

accurate and, hence, the least preferred. A ranking of the ensemble models from most to least 

preferred is provided in Figure 7.2.  

Finally, the main purpose of developing the ensemble models was to predict salinity 

conditions in the Bonriki aquifer with reasonable accuracy and efficiency. The performance 

of the ensemble models was entirely dependent on the variable density flow and salt transport 

numerical simulation models used to develop the predictive models (i.e., on the 

training/testing datasets). Determining the precision of a numerical simulation model in 

approximating actual groundwater salinity conditions is essential. The calibration and 

validation of numerical simulation models remain important issues in real-life applications.  

Despite having acceptable calibration and validation results, the variable density flow and 

salt transport numerical model may contain uncertainties resulting from inadequate 

calibration/validation datasets, uncertain aquifer parameters and erroneous boundary 

conditions. These aspects of groundwater modelling need to be thoroughly explored and 

correctly implemented into numerical simulation models.  
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Figure 7.2: Preference ranking of the ensemble models. 

 

7.5 Conclusions 

This study compared the groundwater salinity prediction performance of standalone models 

and homogeneous and heterogeneous ensemble models. Specifically, ANN, GP, SVMR and 

GP standalone models were developed to construct homogeneous ensemble models 

(ANN_En, GP_En, SVMR_En and GPR_En) and a heterogeneous ensemble 

(ANN_GP_SVMR_GPR_En) model capable of predicting salinity concentration in the 

Bonriki aquifer. A summary of the major contributions of this study is as follows. 

1. All the tested standalone models predicted the salinity concentration at respective 

monitoring wells with reasonable accuracy. However, in terms of the four 

performance indicators, standalone GPR models displayed better predictive accuracy 

than the corresponding ANN, GP and SVMR standalone models. 

2. The standalone SVMR and GPR models required significantly less time to train 

compared to the ANN and GP standalone models.  

3. The homogeneous GPR_En model was the best-performing model, even compared 

to the heterogeneous ANN_GP_SVMR_GPR_En model. 

4. Overall, the GPR_En model performed the best of all the models evaluated. Hence, 

it is a potentially powerful tool for predicting salinity levels in the Bonriki aquifer. 

In addition, with its accurate and efficient prediction capabilities, the GPR_En model 

can be employed as an approximate simulator in the simulation-optimization models 

needed to develop regional-scale saltwater intrusion management strategies for 

coastal aquifers. 
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Comparisons of homogeneous and ensemble models of groundwater salinity have not been 

conducted in previous studies. The present comparison is the major contribution of this study. 

Also, the results presented in this study help in the establishment of better-performing 

ensemble model. This provides a valuable reference for decision-makers and engineers who 

may use these methods to predict groundwater salinity in coastal aquifers. Although the 

results presented are promising, the prediction capabilities of all the standalone models can 

be increased further. This can be achieved by using an optimal number of training and testing 

datasets. Also, recent developments and advancements in computational power will aid in 

developing hybrid models with increased predictive power. In addition, more comparative 

studies using other new predictive modelling algorithms are recommended in line with the 

objectives of the current work. It is hoped that future research will focus on these areas, which 

may eventually lead to the establishment of a more robust, accurate, efficient and versatile 

salinity prediction tool. In the next chapter, group method of data handling models are 

introduced into the field of saltwater intrusion modelling.  
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Chapter 8: Application of Group Method of Data Handling 
and variable importance analysis for prediction and 
modelling of saltwater intrusion processes in coastal 
aquifers  
 

A manuscript based on the main contents of this chapter has been submitted to a journal and 

is currently under review, as outlined below: 

Lal, A., and Datta, B. (2019). "Application of the Group Method of Data Handling and 

variable importance analysis for prediction and modelling of saltwater intrusion processes in 

coastal aquifers." Neural Computing and Applications.   

8.1 Summary 

Data-driven mathematical models are powerful predictive tools that can approximate the 

responses of saltwater intrusion numerical simulation models. Employing data-driven 

predictive models instead of complex groundwater flow and transport models enables the 

prediction of future scenarios. Most importantly, they help save computational time, effort 

and requirements when developing optimal coastal aquifer management strategies using 

complex and large-scale coupled simulation-optimization models. In this study, a new data-

driven model, namely, the group method of data handling (GMDH) model, is developed and 

utilized to predict salinity concentrations in a coastal aquifer by mimicking the responses of 

a variable-density flow and solute transport numerical simulation model. In addition, an 

important characteristic of GMDH models is explored and evaluated; i.e., the ability to 

identify a set of input variables (pumping rates) that are most influential to the outcomes 

(salinity concentration at monitoring locations). To confirm variable importance, three tests 

are conducted in which new GMDH models are constructed using subsets of the original 

datasets. In TEST 1, new GMDH models are constructed using a set of the most influential 

variables (consisting of pumping rates at selected locations). In TEST 2, a subset of 20 

variables (10 of the most and least influential variables) is used to develop new GMDH 

models. In TEST 3, a subset of the least influential variables is used to develop GMDH 

models. Performance evaluation demonstrates that the GMDH models developed using the 

entire dataset had reasonable prediction accuracy and efficiency. Comparative performance 

evaluation of the three test scenarios highlights the importance of the appropriate selection 

of relevant input pumping rates when developing accurate predictive models. The results 

suggest that incorporating the least influential variables decreases the accuracy of predictive 

models; thus, by considering the most influential pumping rates, it is possible to develop 

more accurate and efficient salinity prediction models. Overall, the evaluation results of this 
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study establish that GMDH models and the inherent input variable ranking capability can be 

utilized to construct accurate and efficient coastal saltwater intrusion prediction models. 

Hence, GMDH models are viable saltwater intrusion modelling tools, which can be employed 

in future regional-scale saltwater intrusion prediction and management investigations. 

8.2. Background 

Thus far, many data-driven mathematical models have delivered reasonably accurate and 

reliable saltwater intrusion prediction results. However, investigators are still challenged by 

two complications. First, not all predictive models explicitly describe the influence of 

individual input variables on the output. It is important for investigators to employ a 

predictive model that allows them to assess the impact of each input variable on the outcome. 

This is a significant component of predictive modelling that needs further attention. Second, 

the development of data-driven predictive models requires investigators to be experts in 

setting the optimal model parameters. In reality, investigators do not always have such in-

depth knowledge in handling model parameters. Determining optimal model structures is 

always considered a burden; however, it is very important as it can affect the accuracy and 

efficiency of the model. These two critical issues can be resolved by using the GMDH model 

as a complex saltwater intrusion process prediction tool.  

 

In the hydrogeological literature, GMDH models have not been used for the approximation 

of complex saltwater intrusion processes in coastal aquifer systems despite possessing 

significant advantages over other approaches. However, GMDH-based predictive models 

have been employed in various engineering and science applications due to their four 

advantages. First, GMDH is a self-organizing and inductive evolutionary algorithm, which 

has the potential to deal with multi-dimensional and complex variables (Liu et al. 2018). 

Second, GMDH models have an automatic modelling mechanism, which allows self-

structuring of the models with optimal parameters without any user input (Xiao et al. 2017). 

Third, GMDH models have a strong anti-interference capability, which allows them to handle 

noisy datasets (Xiao et al. 2017). Lastly, GMDH models can display explicit expressions that 

relate input variables to the output. Lastly, GMDH models have the capability to select and 

present subsets of the most influential input predictor variables (Teng et al. 2017). This 

characteristic allows the user to understand the effect of each input predictor variable on the 

output.  

 

In pumping-induced saltwater intrusion modelling investigations, determining the pumping 

rates that have the greatest influence on salinity at monitoring locations is of great 

significance. First, selection of the most influential variables for the prediction task can 
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provide higher prediction accuracy (Mohammadi et al. 2016). Second, the inclusion of the 

least influential variables in predictive models will lead to unnecessary model complexity 

(Braun and Oswald 2011). Also, the need for a higher number of input datasets can 

significantly increase the cost of data monitoring and collection. To the best of our 

knowledge, there are few studies that have determined the pumping rates most influential to 

the salinity at monitoring locations in coastal aquifer systems. The important contribution of 

this study is its utility of GMDH to predict the pumping rates most influential to saltwater 

intrusion. The evaluations conducted in this study establish the influence of pumping rates 

on saltwater intrusion, as well as the importance of properly selecting input pumping rates 

when developing accurate and efficient groundwater salinity prediction models.   

In the present work, GMDH models were trained and tested to predict groundwater salinity 

concentration in a coastal aquifer, and to determine the pumping rates most influential to 

groundwater salinity. Sets of the most- and least-influential pumping rates, and a combination 

of them, were identified and used to construct new GMDH-based predictive models. This 

process illustrates the importance of identifying influential variables when developing 

predictive models, and also assesses how the inclusion of less-influential variables degrades 

their performance. The outcomes of this study establish GMDH models as accurate and 

efficient saltwater intrusion modelling tools that can be applied to solve future regional-scale 

saltwater intrusion modelling problems. Most specifically, they can also be used in coupled 

simulation-optimization models needed for the sustainable and optimal management of 

coastal aquifer systems (Sreekanth and Datta 2010). Based on this study, it is anticipated that, 

in future, GMDH models may be considered as potential candidates for evaluating input 

variable importance, and for developing reasonably efficient and accurate predictive tools for 

various groundwater management-related applications.  

 

8.3. Methods 

8.3.1 Coastal groundwater mathematical simulation code 

The mixing of freshwater and saltwater due to their density difference makes the saltwater 

intrusion process highly non-linear. For the accurate simulation of saltwater intrusion 

dynamics, flow and transport equations need to be solved simultaneously. In this study, the 

finite element code FEMWATER (Lin et al. 1997) was utilized to numerically simulate three-

dimensional variable-density flow and solute transport processes in the study area. The 

governing equations used to solve coupled groundwater flow and mass transport problems in 

porous media can be found in Lin et al. (1997). Depending on the specified values of 

hydrological properties such as hydraulic conductivities, recharge, initial conditions and 
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boundary conditions, the governing flow and transport equations can be solved. The 

FEMWATER code has been successfully applied in various regional-scale saltwater 

intrusion modelling investigations, such as Datta et al. (2009), Kim et al. (2012), Insigne and 

Kim (2010) and Lal and Datta (2019).  A complete description of the FEMWATER model is 

given in Chapter 3.  

 

8.3.2 Development of GMDH predictive models 

8.3.2.1 The GMDH algorithm 

The GMDH algorithm was first suggested by the former Soviet scientist Ivakhnenko. It is a 

method for identifying non-linear relationships between sets of input and output data 

(Fernández and Lozano 2010). In principle, the GMDH model functions by generating a high-

order polynomial network, which is principally a feed-forward and multilayer neural 

network. The GMDH algorithm provides a self-organizing data mining platform, which 

automatically decides the variables to be used in the modelling framework, and the structure 

(neurons in hidden layers) and parameters of the model. The model itself provides an optimal 

structure, thus reducing the need for prior knowledge and assumptions. This feature of the 

GMDH algorithm reduces the potential for user bias and also minimises the complexity of 

the model (Xiao et al. 2017). Construction of a GMDH model requires division of the input 

dataset into two groups. The first group is used to approximate the parameters of each neuron 

to obtain a partial description of the process, while the second group is used to weigh the 

performance of the candidate models that describe the process most efficiently (Fernández 

and Lozano 2010). Specifically, the training dataset is used for the approximation of the 

coefficients of the Kolmogorov-Gabor polynomial, while the testing set is used in the GMDH 

network for error evaluation. GMDH works by constructing successive layers with 

connections that are the individual terms of a polynomial (Srinivasan 2008). The output of 

each neuron is assessed and evaluated by an external criterion. The model eliminates the 

neurons that provide the poorest predictions and preserves the neurons with excellent 

performance for use in the next layer. These steps are repeated to create new layers until the 

error criterion stops decreasing. The whole process of training and assortment is repeated on 

this new layer. Once neurons that best satisfy the pre-specified criterion are chosen, the model 

is verified using the testing dataset. More comprehensive descriptions of the GMDH 

modelling algorithm are available in the literature (Farlow 1984; Liu et al. 2018; Srinivasan 

2008).  
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8.3.2.2 Datasets, model development and cross-validation 

Development of the GMDH models required several input-output datasets. The pumping 

patterns from all operational pumping wells made up the input dataset. The outputs were the 

resulting salinity concentration values obtained after implementing each set of the input 

pumping patterns into the numerical simulation model. Each time a new pumping pattern was 

implemented into the numerical simulation model, a new output dataset was recorded 

(salinities at the respective monitoring wells). Thus, collecting N input-output datasets 

required running the variable-density flow and solute transport numerical model N times. The 

collected input-output datasets were used to develop and assess the performance of the 

GMDH predictive models. The N datasets were separated into a development set and an 

independent set. The development set was used to train and test the predictive models. In 

principle, the GMDH algorithm only approximates the relationship between multiple input 

variables and a single output variable. Hence, for m monitoring wells, m GMDH models need 

to be developed. Each model is only able to predict salinity at each monitoring location. 

During model development, the collected input-output datasets were divided into training and 

testing datasets. In this study, the “holdout” cross-validation procedure (Kohavi 1995) was 

used, in which a portion of the dataset is randomly held and not used in the training process. 

This holdout dataset was used to examine the performance of the trained models. Lastly, the 

independent set was used to assess the performance of the predictive models. 

8.3.2.3 Performance assessment indices 

The accuracy of the GMDH models was assessed using the statistical indices root mean 

square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe efficiency (NSE), 

coefficient of determination (R2) and correlation coefficient (r). These are standard accuracy 

evaluation measures that have been used in various other predictive modelling studies in the 

field of hydrology. Their mathematical formulations are in Eqs. 8.1 to 8.5.  
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Here, 𝐶𝑖
𝑜 is observed salinity concentration, 𝐶𝑖

𝑝is predicted salinity concentration, 𝐶𝑜̅̅̅̅  is the 

mean observed salinity concentration, 𝐶𝑝̅̅̅̅  is the mean predicted salinity concentration, and 𝑑 

represents total number of data points.  

8.3.3 Data dimensionality reduction 

The originally developed (with input variables) GMDH models provided a subset of the most 

influential pumping rates (input variables), which made the greatest contribution to the 

resulting salinities at the monitoring locations. To establish the importance of identifying and 

utilizing influential pumping rates in the construction of accurate GMDH models, new 

GMDH models were developed using only a subset of the original dataset. In this study, three 

subsets were used to construct new GMDH models, as follows: 

TEST 1: New GMDH models were constructed using the most influential variables only. 

TEST 2: New GMDH models were constructed using a mixture of the ten most- and ten least-

influential variables. 

TEST 3: New GMDH models were constructed using only the least influential variables.  

The performance of the GMDH models constructed for three scenarios consisting of three 

tests were evaluated and compared using the five statistical criteria (Eqs. 8.1 to 8.5).  

8.3.4 Application 

For performance evaluation purposes, GMDH models were used to predict salinity 

concentration in an illustrative coastal aquifer system. A portion of a coastal aquifer (2.5 km2 

in area) was simulated using the FEMWATER computer code. The aquifer was 60 m in depth 

and was divided into three equal layers. The seaside boundary (Boundary A) was about 2.1 

km in length. Similarly, Boundaries B and C were 2.0 and 2.7 km in length, respectively. The 

aquifer comprised eight groundwater abstraction wells (A1, A2, A3, A4, A5, A6, A7 and A8), 

which were utilized to extract groundwater for beneficial local use. Additionally, a set of five 

barrier wells (B1, B2, B3, B4 and B5) were installed in the aquifer. These barrier wells were 

installed closer to the seaside boundary and were used to extract saline water. The extraction 

of saline water creates a hydraulic pressure towards the sea, which helps control saltwater 

intrusion into the aquifer. Salinity was monitored at three monitoring wells (M1, M2 and M3). 

The specific well locations and the study area model domain are illustrated in Fig. 8.1. The 

study area conceptual model was discretised into thin, triangular, finite elements containing 

a total of 4660 nodes. Element size was selected after conducting several numerical trials. 

Boundary A was the seaside boundary, which was constant head; i.e., 0 m at both ends, and 

constant concentration (35 kg/m3) boundary. Boundaries B and C were treated as no-flow 

boundaries. Groundwater recharge was considered constant over the simulation period. A 
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recharge rate of 0.00054 m/d was distributed uniformly over the entire model domain. The 

aquifer was considered homogeneous (all 3 layers had the same hydraulic properties) but 

anisotropic with different hydraulic conductivities in the x-, y- and z-directions. The hydraulic 

conductivity of the aquifer was set to 15 m/d, 7.5 m/d and 1.5 m/d in the x-, y- and z-

directions, respectively. The porosity of the aquifer materials was set to 0.4. The bulk density 

of the aquifer materials was taken as 1600 kg/m3. The longitudinal and lateral dispersivity 

were taken as 50 m and 25 m, respectively. The molecular dispersion coefficient was set to 

0.69 m2/d. The density reference ratio and compressibility of the aquifer were taken as 0.69 

and 8.5 × 10-15 md2/kg, respectively. The resulting 3D finite element mesh was used to 

generate the initial conditions for the simulation model. The initial head and concentration 

conditions were obtained by executing the simulation model for a period of 20 years. Only 

the abstraction wells were used during this simulation. After 20 years, the head and 

concentration values had very minimal deviations compared to the previous year’s values.  

Using this as the initial conditions, the simulation was run for a period of four years in a 

transient state (different annual pumping rates) using all the operational wells (8 abstraction 

and 5 barrier wells).  
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Figure 8.1: a) 2D triangular mesh representation of the study area with locations of barrier wells (B1 - B5), abstraction wells (A1 - A8) and monitoring wells 
(M1 - M3) and b) 3D view of the study area model domain. 
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The total of 13 pumping wells with different yearly pumping values resulted in 52 decision 

variables (13 wells × 4-year simulation period). These 52 variables (labelled x1-x52) 

represented yearly the annual pumping rates from each well over the four-year simulation 

period. A total of 800 sets of randomized input pumping patterns were produced using Latin 

hypercube sampling. Each time a pumping pattern was initiated in the numerical model, 

salinity outputs at the three monitoring wells were recorded. The numerical model took 

approximately four minutes to converge. The 800 input-output datasets were obtained by 

successfully executing the simulation model 800 times. Out of the 800 datasets, the 

development set consisted of 700 datasets and the independent set contained 100 datasets. 

GMDH shell software was used to construct the predictive models. Of the 700 development 

datasets, 560 were used for model training, while 140 were used for testing. Dividing the data 

into training and testing sets is user-dependent and can be easily implemented in the GMDH 

shell software. For model development, RMSE was used as the external criterion. The 

GMDH shell simultaneously provided three predictive models capable of estimating salinity 

at the three monitoring wells. For easy identification, the GMDH models used for predicting 

salinity at monitoring wells 1, 2 and 3 were labelled GMDH1, GMDH2 and GMDH3, 

respectively. Once the models were developed, the independent set was imported into the 

shell and used to measure the true prediction competencies of the models.  

8.4 Results and discussion 

8.4.1 Accuracy of the predictive models 

The performance assessment of the GMDH predictive models is summarized in Table 8.1. In 

addition, the comparison between observed and predicted salinities made during the testing 

phase is presented in Fig. 8.2. According to the performance evaluation results obtained for 

the training and testing phases, the three GMDH models predicted salinity concentration with 

reasonable accuracy. This was verified using the independent dataset. The performance of 

the developed models in predicting salinity during the training and testing stages are 

summarized in Table 8.1. A similar performance result, in terms of the five evaluation 

criteria, was observed for the independent set as well.  
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Table 8.1: GMDH model performance evaluation results 

Model Stage RMSE MAE NSE R2 (%) r 
GMDH1 Training 0.366 0.292 1 99.68 0.997 

 Testing 0.358 0.289 1 99.72 0.997 
 Prediction 0.379 0.299 1 99.61 0.996 

GMDH2 Training 0.221 0.175 1 99.67 0.998 
 Testing 0.218 0.174 1 99.66 0.998 
 Prediction 0.243 0.186 1 99.73 0.997 

GMDH3 Training 0.440 0.298 1 99.68 0.998 
 Testing 0.368 0.293 1 99.69 0.998 
 Prediction 0.458 0.306 1 99.66 0.996 

 

For a similar aquifer system, Lal and Datta (2018) used genetic programming and support 

vector machine regression models to predict salinity concentration. It was observed that 

GMDH models delivered comparable or even better results than genetic programming and 

support vector machine regression models. This establishes the fact that GMDH models can 

accurately approximate the relationship between input transient pumping patterns and 

corresponding output salinity concentrations. The results also show that GMDH models 

provide a better approximation of the saltwater intrusion process than genetic programming 

and support vector machine regression models. Hence, in future, GMDH models can be used 

to predict salinity concentrations at monitoring wells in response to transient groundwater 

pumping from operational abstraction and barrier wells.  
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Figure 8.2: Comparisons of observed and predicted salinity concentration at the three monitoring wells using scatter plots (a, b and c) and line graphs (d, e 
and f) 

390

400

410

420

430

440

390 400 410 420 430 440

P
re

di
ct

ed
 c

on
ce

nt
ra

tio
n 

(m
g/

L)

Observed concentration (mg/L)

(a) MW1

390

400

410

420

430

440

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

S
al

in
ity

 c
on

ce
nt

ra
tio

n 
(m

g/
L)

Data points

(d) MW1

Observed Predicted

495

500

505

510

515

495 500 505 510 515

P
re

di
ct

ed
 c

on
ce

nt
ra

tio
n 

(m
g/

L)

Observed concentration (mg/L)

(b) MW2

490

495

500

505

510

515

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

S
al

in
ity

 c
on

ce
nt

ra
tio

n 
(m

g/
L)

Data points

(e) MW2

Observed Predicted

615

620

625

630

635

640

615 620 625 630 635 640P
re

di
ct

ed
 c

on
ce

nt
ra

tio
n 

(m
g/

L)

Observed concentration (mg/L)

(c) MW3

610

615

620

625

630

635

640

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

S
al

in
ity

 c
on

ce
nt

ra
tio

n 
(m

g/
L)

Data points

(f) MW3

Observed Predicted



Chapter 8: Application of group method of data handling and variable importance analysis to the modelling of 
saltwater intrusion processes in coastal aquifers  

152 
 

8.4.2 Efficiency of the predictive models  

Efficiency is another major factor that needs consideration before using predictive models 

for saltwater intrusion approximation. Salinity prediction using data-driven modelling 

techniques are not always efficient. The time taken for model development and prediction 

using independent datasets is presented in Table 8.2. It was observed that the development of 

all three GMDH models only needed a computation time of 0.45 minutes. This is significantly 

less than that of other predictive models, such as genetic programming-based models. In a 

similar aquifer system, development of a genetic programming predictive model required 

approximately 45 minutes of CPU runtime (Lal and Datta 2018). On the other hand, 

compared to support vector machine regression models, the development of GMDH models 

takes slightly more time. For a similar coastal aquifer problem, developing support vector 

machine regression models took only a few seconds (Lal and Datta 2018). These results 

establish that GMDH models are reasonably efficient, because they were developed in 

significantly less time than genetic programming-based models and in a similar timeframe to 

support vector machine regression models.  

Once the GMDH models were developed, a new set of independent datasets was used to 

verify the prediction capability of the models. Prediction using the independent dataset 

comprising of 100 sets of pumping patterns took almost 0.40 mins of runtime. This is 

significantly less than the time required for the original variable density and solute transport 

numerical model. For each set of pumping patterns, the numerical model took about five 

minutes to converge to a solution. Running 100 sets of pumping patterns would take 

approximately 500 minutes. Therefore, it can be established that the ability to predict salinity 

for 100 input datasets at once within 0.40 minutes makes the GMDH model highly efficient.  

Table 8.2: GMDH efficiency results 

Stage Time (minutes) 
Model development (training and testing) 0.45 
Prediction using an independent set 0.40 

 

8.4.3 Variable importance ranking  

One of the key features of the GMDH modelling algorithm is that it automatically recognizes 

and selects the dominant variables for a prediction model. In this study, the GMDH model 

only selected the pumping rates that had the greatest influence on the output salinity 

concentration. Out of the 52 input pumping rates (ranked variables x1-x52), those most 

influential to resulting salinity concentrations are presented in Fig. 8.3 

It is observed that only 15 variables were most influential and, hence, were used for the 

development of model GMDH1. Variables x9, x12 and x22 were found to be the most 
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important and had the greatest impact on the salinity output. Likewise, 20 variables were used 

in developing model GMDH2. Variables x10, x23 and x7 had the greatest impact on the output 

salinity. Lastly, only the 14 most important variable was used for developing model GMDH3. 

Variables x10, x8 and x11 were the most influential. The variable ranking feature of the 

GMDH algorithm provides two major benefits to the decision-maker. First, it allows them to 

focus only on the most influential variables for the efficient and accurate prediction of 

saltwater intrusion processes. The most influential pumping rates can also be modified to 

control the concentration at respective monitoring wells. Also, the least influential pumping 

rates can be modified (possibly increased) to maximize the total feasible beneficial pumping 

in the study area, since they do not have much impact on the salinity at specified or critical 

locations. Second, fewer input variables means less computational burden in terms of model 

training and prediction time, as demonstrated in Lal and Datta (2018). Also, the cost in terms 

of data monitoring, collection and preparation will be significantly lower when fewer 

variables are used in the development of prediction models.  
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 Figure 8.3: Selected pumping rates used for the development of models a) GMDH1, b) GMDH2 and c) GMDH3 
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8.4.4 Analysis of variable importance  

The performance evaluation results for TEST 1, TEST 2 and TEST 3 are presented in Tables 

8.3, 8.4 and 8.5, respectively. In TEST 1, the GMDH models were constructed using a subset 

of the original dataset comprising the most influential variables only. The prediction 

performance in terms of the five evaluation criteria was similar if not even better than that of 

the models constructed during the original datasets. This result establishes that using less 

influential variables can help achieve satisfactory prediction results without any significant 

loss in accuracy.  

In TEST 2, new GMDH models were constructed using 20 variables instead of the original 

dataset of 52 variables. These 20 variables comprised 10 of the most and least influential 

variables. The performance evaluation results presented in Table 8.4 show a reduction in the 

accuracy of the predictive models in terms of all five evaluation criteria when compared to 

the results of models constructed using the original dataset. This result shows that the 

inclusion of less influential variables in the model-construction phase can diminish the 

accuracy of the models.  

Lastly, in TEST 3, a set of the least influential variables was used in the construction of 

GMDH predictive models. The developed models had worse prediction capability than the 

other models constructed using the original dataset. This is highlighted by the high values of 

RMSE, MAE and extremely small values of NSE, R2 and r.  

Table 8.3: Performance of the GMDH models constructed using the most influential 
variables (Test 1) 

Model No. of variables 
used Stage RMSE MAE NSE R2 (%) r 

GMDH1 15 
Training 0.356 0.284 1 99.67 0.998 
Testing 0.441 0.346 1 99.62 0.998 

Prediction 0.388 0.295 1 99.68 0.997 

GMDH2 20 
Training 0.213 0.172 1 99.69 0.998 
Testing 0.261 0.185 1 99.62 0.998 

Prediction 0.262 0.173 1 99.63 0.998 

GMDH3 14 
Training 0.448 0.340 1 98.70 0.993 
Testing 0.451 0.336 1 98.83 0.994 

Prediction 0.492 0.321 1 99.76 0.995 
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Table 8.4: Performance of the GMDH models constructed using the 10 most and 10 least 
influential variables (Test 2) 

Model No. of 
variables used Stage RMSE MAE NSE R2 (%) r 

GMDH1 20 
Training 0.560 0.454 0.98 99.18 0.996 
Testing 0.575 0.468 0.98 99.35 0.997 

Prediction 0.552 0.484 0.98 99.27 0.996 

GMDH2 20 
Training 0.406 0.319 0.98 98.86 0.994 
Testing 0.409 0.329 0.98 99.06 0.995 

Prediction 0.411 0.365 0.98 98.83 0.995 

GMDH3 20 
Training 0.528 0.403 0.98 98.29 0.991 
Testing 0.551 0.432 0.97 98.27 0.992 

Prediction 0.602 0.448 0.97 98.22 0.991 
 

Table 8.5: Performance of the GMDH models constructed using the least influential 
variables (Test 3) 

Model No. of 
variables used Stage RMSE MAE NSE R2 (%) r 

GMDH1 37 
Training 6.078 4.787 0.13 3.57 0.189 
Testing 7.394 6.077 0.11 7.07 0.086 

Prediction 7.221 6.451 0.10 7.35 0.095 

GMDH2 32 
Training 3.684 3.011 0.18 6.35 0.252 
Testing 4.298 3.398 0.15 3.64 0.016 

Prediction 4.228 3.295 0.16 3.28 0.224 

GMDH3 38 
Training 3.928 3.194 0.17 5.33 0.231 
Testing 4.111 3.282 0.16 3.92 0.214 

Prediction 4.089 3.322 0.16 3.87 0.228 
 

Overall, these performance evaluation results show that GMDH models can predict 

groundwater salinity with reasonable accuracy, and also identifying the most and least 

influential pumping rates. Identification of the variables most and least influential to output 

salinity concentrations offers practical and economic benefits to decision-makers and 

managers. First, it allows construction of predictive models containing fewer variables 

without any loss in prediction accuracy. Second, the cost related to the monitoring, collection 

and preparation of the dataset is lower as the decision-maker only needs focus on the most 

influential pumping rates. 

8.5 Conclusions 

In this study, a new application of GMDH models was employed to predict salinity 

concentration at specified monitoring wells in a coastal aquifer in response to variable 

transient groundwater pumping patterns. The performance assessment results suggest that the 

developed models can predict salinity concentrations with reasonable accuracy and 

efficiency. Apart from displaying accurate and efficient prediction capabilities, GMDH 

models provide a way to identify the most influential pumping rates. Identification of the 

most and least influential pumping rates offers substantial benefits to the decision-maker. 
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Specifically, it allows them to focus on the pumping rates most influential to the management 

outcomes and prediction accuracy. These characteristics offer both computational and 

economic benefits. Second, the results of this study establish that the identification of 

influential pumping rates should be given important consideration. Including the least 

influential variables in predictive models can diminish their accuracy. In general, the results 

of this study suggest that GMDH models can be considered accurate and efficient saltwater 

intrusion modelling tools that can be used for regional-scale saltwater intrusion prediction 

modelling purposes. GMDH models can also be used to comprehend the importance or 

influence of input pumping rates, which can be useful in developing efficient management 

plans for aquifer systems. In addition, the highly accurate and efficient GMDH predictive 

models can be used as approximate simulators in coupled simulation-optimization models to 

develop computationally-practicable regional-scale coastal aquifer management 

methodologies. However, it is advisable that researchers first compare the performance of 

GMDH models with other well-established predictive modelling techniques in a more 

rigorous manner. Such comparative study will be part of future investigations. In the next 

chapter, the benefit of using artificial freshwater recharge to control saltwater intrusion is 

qualified and a multi-objective management model incorporating artificial freshwater 

recharge is developed and evaluated.  
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Chapter 9: Development and evaluation of a multi-objective 
strategy for management of coastal aquifers utilizing 
planned artificial freshwater recharge  
 

The major contents of this chapter have been published, as outlined below: 

Lal, A., and Datta, B. (2017). "Modelling saltwater intrusion processes and development of 

a multi-objective strategy for management of coastal aquifers utilizing planned artificial 

freshwater recharge." Modeling Earth Systems and Environment, 1-16. 

9.1 Summary 

The need for freshwater is emerging as the most critical resource issue facing humanity. In 

several arid and semi-arid parts of the world, groundwater resources are being used as an 

alternative source of freshwater. Excessive and/or unplanned groundwater withdrawals have 

negative impacts on aquifers. Groundwater withdrawn from coastal aquifers is susceptible to 

contamination by saltwater intrusion. This study investigates the efficiency and viability of 

using artificial freshwater recharge (AFR) to increase fresh groundwater pumping from 

production wells. A 3D, transient, density-dependent, finite element-based flow and transport 

model of an illustrative coastal aquifer was implemented using the FEMWATER code. First, 

the effect of AFR on the inland encroachment of saline water is quantified for existing 

scenarios. Specifically, groundwater head and salinity differences at monitoring locations 

before and after AFR are presented. Second, a multi-objective management model 

incorporating groundwater pumping and AFR is implemented to control groundwater 

salinization in an illustrative coastal aquifer system. To avoid computational burden and 

ensure computational feasibility, support vector machine regression (SVMR) predictive 

models are used as an approximate simulator in the coupled simulation-optimization 

framework. Performance evaluation indicates that the SVMR models were adequately 

trained and capable of approximating saltwater intrusion processes in the aquifer. A multi-

objective genetic algorithm (MOGA) was used to solve the multi-objective optimization 

problem. The Pareto-optimal front obtained from the SVMR-MOGA optimization model 

presented a set of optimal solutions for the sustainable management of the aquifer. The 

pumping strategies, obtained as Pareto optimal solutions with and without freshwater 

recharge wells, show that saltwater intrusion is sensitive to AFR. Also, the hydraulic head 

lenses created by AFR can be used to control saltwater intrusion in coastal aquifers. The 

developed 3D saltwater intrusion model, the predictive capability of the developed SVMR 

models, and the feasibility of using the proposed linked multi-objective SVMR-MOGA 
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optimization model, makes the proposed method potentially attractive in solving large-scale 

regional saltwater intrusion management problems.   

9.2 Background  

This chapter incorporates the benefits of AFR with the S/O methodology for the management 

of coastal aquifers and focuses on the real-world benefits of using the presented method to 

solve large regional-scale groundwater salinization management problems. Use of AFR can 

be an efficient way to solve water scarcity problems  (Benseddik et al. 2017; Clark et al. 

2015; Hashemi et al. 2013; Owusu et al. 2017) and control saltwater intrusion into coastal 

aquifers (Koussis et al. 2010; Roumasset and Wada 2010). Hashemi et al. (2013) stated that 

artificial recharge is a method for balancing and recovering groundwater resources and is a 

vital component of groundwater systems. In addition, Guttman et al. (2017) explained that 

artificial recharge is needed to increase the water budget of aquifers, improve water quality 

and prevent saltwater intrusion by creating freshwater barriers. In addition, Hussain et al. 

(2016) demonstrated the effects of artificial recharge on the general advancement of salt 

water into hypothetical and real-world coastal aquifers. However, the study did not develop 

optimal rates of groundwater pumping and freshwater recharge. Despite numerous benefits, 

only a limited number of studies have integrated the methods of artificial recharge into an 

S/O framework to control saltwater intrusion in coastal aquifers. Bhattacharjya and Datta 

(2009) presented a coastal aquifer management model which maximized groundwater 

pumping and minimized artificial recharge. However, the study utilised ANN models as 

surrogate models, which have some complexities and limitations (Tu 1996). More robust and 

efficient surrogate modelling techniques are needed to obtain improved and reliable optimal 

results.  More recently, Abd-Elhamid and Javadi (2011) presented a methodology termed 

ADR (abstraction, desalination and recharge) to control saltwater intrusion into coastal 

aquifers. However, their proposed management model only considered a single objective 

function.  

A linked S/O model used for developing a coastal aquifer management strategy requires 

linking of a coastal aquifer simulation model to an appropriate optimization algorithm. 

However, as discussed in the previous chapters, linking a simulation model to an optimization 

model is highly computationally demanding. An efficient solution to this problem is to use a 

trained and validated surrogate model instead of the complex numerical simulation model. 

Utilising a surrogate model significantly decreases the computational requirements, which 

subsequently reduces the total optimization time. In this study, a comparatively new 

predictive modelling technique; SVMR-based surrogate models instead of the complex the 

numerical simulation model are used in the S/O framework. A detailed description of SVMR 

models is given in Chapter 3.   
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Another key feature of this study is its incorporation of planned AFR as a management 

strategy within a multi-objective S/O framework to control saltwater intrusion in a coastal 

aquifer. As mentioned earlier, only a few studies have explored the use of multi-objective 

coastal aquifer management models incorporating artificial recharge as decision variables. In 

this study, groundwater pumping from production wells and artificial recharge injection at 

recharge wells is considered as a method for controlling saltwater intrusion in a simulated 

coastal aquifer. This study is divided into three components: 1) quantifying the effects of 

artificial recharge on the study area and demonstrating lens formation due to AFR; 2) 

development and evaluation of SVMR models for approximating salinity concentration at 

respective monitoring locations; and 3) using the developed SVMR models as surrogate 

models in an S/O framework to prescribe optimal groundwater pumping and artificial 

recharge rates.  

9.3 Methods 

9.3.1 Quantifying the effects of artificial freshwater recharge on the study area 

The use of artificial recharge to control saltwater intrusion has been proposed as an effective 

method for controlling groundwater salinization. In a laboratory-scale study, Luyun et al. 

(2011) demonstrated that artificial recharge creates a hydraulic barrier by raising the 

piezometric head of the aquifer, thereby controlling saltwater intrusion.  Similarly,  Ros and 

Zuurbier (2017) suggested that water artificially recharged through wells remains at the top 

of the aquifer and forms local freshwater lenses that form barriers to saltwater intrusion. 

Figure 9.1 illustrates the impact of groundwater pumping and artificial recharge on saltwater 

intrusion processes. Before developing an optimal coastal aquifer management strategy 

based on using AFR in an S/O approach, assessing the effect of artificial recharge on salinity 

levels at monitoring locations was essential. Salinity concentrations and head differences 

over time at monitoring locations with and without recharge were evaluated. In addition, 

differences in head contours before and after AFR were appraised, and the possibility of lens 

formation due to AFR was considered. Random pumping and recharge rate datasets 

generated via Latin hypercube sampling (LHS) were implemented in the numerical 

simulation model, and a comparison between salt concentrations before and after artificial 

recharge initiation was carried out. LHS is a homogeneous stratified sampling technique 

established from the Monte-Carlo method (Loh 1996).  
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Figure 9.1: (a) Movement of saline water into fresh groundwater as a result of groundwater 

pumping (modified from Essink, 2001) and (b) controlling fresh groundwater salinization 

through artificial recharge.  

9.3.2 Management model utilizing production wells and artificial recharge wells 

The key components of the proposed coastal aquifer consisted of objective functions, 

variables and constraints. The main goal of the proposed coastal aquifer management model 

was to maximize the total volume of groundwater pumped from pumping wells and minimize 

injection at recharge wells. Hence, the management model consisted of two objective 

functions. The variables used are the transient pumping and recharge rates at pumping and 

recharge wells, respectively. The linked SVMR model within the SVMR-MOGA 

optimization framework acted as a binding constraint defining the response of the aquifer to 

various stresses; i.e., recharge and pumping. Also, maintaining the salinity levels at pre-

specified values were treated as constraints i.e., defining the permissible salinity limits at 

different locations based on specified water use types. Mathematical expressions of the two 

conflicting objective functions, the constraints, and the pumping and recharge bounds; 

similar to Sreekanth and Datta (2011) are given by:  

Objective Function I 

Maximize,  

 F1(P) = ∑ ∑ Pl
t                                         (9.1)

T

t=1

L

l=1

 

 

Objective Function II 

Minimize,  
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 F2(P) = ∑ ∑ Rq
t                                     (9.2)

T

t=1

Q

q=1

 

Constraints   ci =  ξ(P, R)                            (9.3) 

                        ci ≤ c max ∀i, t                        (9.4) 

Bounds          Pmin ≤ Pl
t ≤ Pmax                  (9.5) 

                        Rmin ≤ Rq
t ≤ Rmax               (9.6) 

                                                                                       

𝑃𝑙
𝑡 denotes pumping from the nth PW at time t and 𝑅𝑞

𝑡  denotes artificial recharge (injection) 

from the mth RW at time t. 𝑐𝑖 represents the salinity concentration at the ith monitoring well 

at the end of the management time period. 𝜉(, ) symbolizes the surrogate model replacing the 

numerical FEMWATER model and constraint (9.3) denotes the coupling of the surrogate 

model within the S/O framework. Variables L, Q and T denote the total number of pumping 

wells, recharge wells, and time steps in the management model, respectively. Inequality (9.4) 

represents the constraints imposed to keep salinities within specified limits at the respective 

monitoring locations. Inequalities (9.5) and (9.6) represent the upper and lower bounds of 

pumping and artificial recharge injection rates at pumping wells and recharge wells, 

respectively.  

9.4 Application of the management model to an illustrative study area 

9.4.1 Description of the study area 

The developed management model was applied to an illustrative coastal aquifer. A detailed 

description of the aquifer system is presented in Chapter 3. The study area (Fig. 9.2) 

contained a portion of a multi-layered coastal aquifer system.  The FEMWATER modelling 

paradigm was used to develop a saltwater intrusion numerical simulation model for the study 

area. Details of the FEMWATER modelling paradigm, well locations, and aquifer layers are 

presented in Chapter 3. The study area incorporated five recharge wells (RWs), eight 

production wells (PWs) and three monitoring locations (MLs). PWs were installed for 

withdrawing fresh groundwater for beneficial use, whereas RWs were installed to prevent 

saltwater intrusion by creating freshwater barriers (Guttman et al. 2017). Recharge wells 

were installed outside the intruding saltwater wedge to allow saltwater intrusion repulsion 

with increasing recharge rates, as demonstrated in Luyun et al. (2011). Salinity concentration 

was recorded at the respective MLs.   
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Figure 9.2: Study area and locations of PWs, RWs and MLs 

 

9.4.2 Boundary conditions, model discretization and key aquifer properties 

The seaside boundary had a constant head and constant concentration boundary with a 

concentration of 35 kg/m3. Boundary A and Boundary B of the study area were treated as no-

flow boundaries. The modelled aquifer was discretised into triangular finite elements with an 

average element size of 150 m. Constant groundwater recharge of 0.00054 m/d was specified 

over the entire study area. The compressibility and dynamic velocity of water were taken as 

6.69796 × 10-20 md2/kg and 131.328 kg.md, respectively.  Other key parameters used for the 

aquifer simulation are listed in Table 9.1. 

For the present case study, pumping and injection bounds for both the PWs and RWs were 

set between 0 – 1300 m3/day. The constraints imposed as permissible limits on salinity 

concentration (assumed to be a conservative pollutant) were 𝑐𝑖 ≤ 𝑐 𝑚𝑎𝑥,𝑖  of 1000 mg/L at 

ML1, 𝑐𝑖 ≤ 𝑐 𝑚𝑎𝑥,𝑗  of 400 mg/L at ML2 and  𝑐𝑖 ≤ 𝑐 𝑚𝑎𝑥,𝑘  of 400 mg/L at ML3. A 

management period of 4 years (1460 days) was considered for this study. A total of 52 

variables (8 PW × 4-year management period and 5 RWs × 4-year management period) was 

considered.  

Boundary A 

      PWs 

      RWs 

      MLs 
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Table 9.1: Aquifer properties used in the numerical simulation model 

 

9.4.3 Development of surrogate models and cross-validation 

The coastal aquifer flow and transport models were used to generate sets of input-output 

patterns to be used during the surrogate model construction and prediction phases. Some 600 

transient pumping and injection rates (inputs) were obtained from a uniform sampling 

distribution using LHS, with an upper bound of 1300 m3/d and lower bound of 0 m3/d. These 

600 pumping/injection rate input sets were fed into the numerical simulation model and the 

resulting salinity corresponding to each input dataset was recorded. Each numerical 

simulation model took approximately 4-5 minutes to converge. The 600 input datasets and 

resulting output salinities were assembled by running the simulation 600 times. These input-

output patterns were used in the surrogate model construction phase.  

 

Three SVMR models were constructed (M I, M II and M III). These models are capable of 

approximating salt concentrations at the three corresponding MLs. The SVMR models were 

constructed by learning from training data with the intent of determining the functional 

relationship between the pumping/injection rate and salinity datasets. For cross-validation 

(CV) purposes, the ‘holdout’ option (Lin et al. 2008) was chosen, in which the 600 datasets 

to be used during the surrogate model construction phase were partitioned randomly into 

training (80%) and testing datasets (20%) without replacement. Once the models were trained 

and tested, a separate test case of transient pumping and recharge rates (100 datasets obtained 

via LHS sampling) were fed into the respective predictive models to obtain resulting salinity 

concentration datasets from the corresponding MLs. The salinity concentration data from the 

SVMR was compared with the data from the numerical simulation model to evaluate the 

predictive capabilities of the developed models.  Selecting the best kernel function and its 

associated parameters was a key challenge of this study. However, after trial-and-error, a 

Gaussian kernel was selected with parameters ɛ =  0.60, 𝐶 = 6.49 and ɣ = 0.001. The 

Property Layer 1 value Layer 2 value 
Hydraulic conductivity x-direction 15 m/d 20 m/d 

y-direction 7.5 m/d 10 m/d 
z-direction 1.5 m/d 2 m/d 

Bulk density 1600 kg/m3 1500 kg/m3 
Longitudinal dispersivity 50 m/d 50 m/d 

Lateral dispersivity 25 m/d 25 m/d 
Molecular dispersion coefficient 0.69 m2/d 0.69 m2/d 

Density reference ratio 7.14 x 10-7 7.14 x 10-7 
Soil porosity 0.43 0.46 

Compressibility 8.5 x 10-15 md2/kg 8.5 x 10-15 md2/kg 
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predictive performance of the developed SVMR models was tested using the statistical 

indices RMSE, RE, NSE and r.  

9.4.4 Coupled simulation-optimization model 

The developed SVMR surrogate models were linked to the MOGA after evaluation of their 

predictive capabilities. The MOGA model available in the R2017a MATLAB environment 

allowed computation of an optimal solution in the proposed multi-objective management 

model. Selecting the key parameters for the MOGA was a challenge and was accomplished 

after doing numerous runs and trials. The important MOGA parameters used during the 

implementation of the SVMR-MOGA optimization model are listed in Table 9.2.  

Assessing the validity of the SVMR-MOGA model’s optimal solutions was an integral part 

of the present work. The optimal solutions obtained from the SVMR-MOGA model utilized 

the developed surrogate models instead of the original complex numerical model. Therefore, 

the solutions had to be verified with the original numerical simulation model. To quantify 

the validity of the optimal solutions, random optimal solutions (comprising transient 

pumping and recharge rates) were chosen and implemented into the complex numerical 

simulation model. The resulting salinity values obtained from the numerical model were 

compared with the corresponding salinity predictions of the SVMR models.  

 

Table 9.2: Key MOGA parameters used in SVMR-MOGA framework 

Parameter Population 
size 

Generations Function 
tolerance 

Constraint 
tolerance 

Crossover 
fraction 

Mutation 
probability 

Value 1500 5200 1 × 10-5 1 × 10-4 0.8 
 

0.02 
 

 

9.5 Results and discussion 

9.5.1 Three-dimensional saltwater intrusion modelling results 

The flow and transport process in an illustrative coastal aquifer was modelled using a finite 

element-based numerical flow and transport simulation model (FEMWATER). Figure 9.3 

shows the modelled aquifer with the respective well locations and salinity concentration front 

after a period of four years. Each set of pumping and artificial recharge rates at the PWs and 

RWs were fed into the simulated model and the resulting concentrations at MLs were 

recorded. These input-output datasets values were used to construct SVMR predictive models 

capable of approximating salinity concentration in response to pumping and artificial 

recharge rates within a similar domain. Therefore, to generate datasets for surrogate model 

construction and to evaluation, the numerical simulation model was executed a number of 
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times, each with different PW pumping and RW artificial recharge rates obtained by LHS. 

The training, testing and prediction results are discussed in the next section. 

 

Figure 9.3: 3D view of the simulated coastal aquifer with concentration contours after 4 years 
of simulation 

 

9.5.2 Effect of artificial recharge on saltwater intrusion 

9.5.2.1 Salinity concentrations and head differences at monitoring wells over time 

The potential effect of artificial recharge was evaluated by monitoring heads and salinities at 

the three MLs over time. Figures 9.4 and 9.5 illustrate the difference in these values with and 

without artificial recharge. It was observed that artificial recharge caused an increase in the 

head values. Head values at ML1 increased more than at ML2 and ML3 because it was also 

used as a RW for freshwater injection. In terms of the salinities at MLs, an inverse trend was 

observed: a decrease in salinity concentration was recorded when artificial recharge was 

initiated. Without any freshwater recharge, salinity increased over time (from the 1st to 4th 

time steps). However, initiation of artificial recharge decreased the salinity concentration 

compared to salinity concentration with no artificial recharge.   
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Figure 9.4: Changes in head over time at (a) ML1 (b) ML2 and (c) ML3 
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Figure 9.5:  Change in salinity concentrations over time at (a) ML1 (b) ML2 and (c) ML3 
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9.5.2.2 Comparison of head and lens formation due to artificial freshwater recharge 

The head contours before and after AFR using a set of random pumping and artificial 

recharge rates are illustrated in Fig. 9.6. An increase in head was observed after AFR 

initiation, as shown in Fig. 9.6 (b). This increase in head was responsible for reducing 

saltwater intrusion into the aquifer and controlling salinity levels at the MLs. To further 

demonstrate the formation of lenses due to AFR, two cross-sections (A-A’ and B-B’) were 

created. Figure 9.7 shows these two cross-sections and the observed lens formation near the 

RWs. At cross-section A-A’, lens formation was detected, as seen in the obvious head 

increase near the RWs. However, no such increase in head was observed at cross-section B-

B’ where no RWs were installed.  

 

 

 

Figure 9.6: Head contours before (a) and after (b) artificial freshwater recharge initiation 
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Figure 9.7: Lens formation due to AFR at cross-section A-A’ after 1460 days 

 

9.5.2.3 Salinity concentrations at monitoring wells after the 4th time step 

Five randomly selected pumping and recharge sets were selected to evaluate the effect the 

artificial recharge on the study area. The comparison in Fig. 9.8 establishes the influence of 

artificial recharge on the simulated aquifer. For each of the five sets of pumping and recharge 

rates used, significant decreases in salinity were observed at all MLs after artificial recharge 

initiation. This evaluation suggests that artificial recharge has the potential to control salinity 

intrusion into the aquifer, resulting in a substantial increase in beneficial pumping. Hence, 

the proposed management model, incorporating groundwater pumping with an AFR option, 

was formulated and solved.  
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Figure 9.8:  Salinity concentrations before and after artificial recharge initiation at (a) ML1 

(b) ML2 and (c) ML3 
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9.5.3 Training- and testing-phase performance 

Three SVMR surrogate models (M I, M II and M III) were developed for predicting salinity 

concentrations at the corresponding MLs. Performance measures of the developed SVMR 

models at the training and testing phases are given in Table 9.3. The mean RMSE, RE (%), 

NSE and r (%) at the training stage were 3.19, 0.03, 0.98 and 97.4, respectively. A similar 

trend in the results was found during the testing phase. The training and testing results 

indicate that properly trained and tested models are capable of emulating the complex 

numerical simulation model’s responses when supplied with pumping and injection rate 

datasets within the same domain.  

Table 9.3: Training and testing phase performance of the surrogate models (SM) 

SM Training phase Testing phase 
 RMSE RE (%) NSE r (%) RMSE RE (%) NSE r (%) 
M I 3.08 0.01 0.98 96.6 4.38 0.03 0.98 96.9 
M II 2.92 0.02 0.99 97.9 2.71 0.03 0.99 98.7 
M III 3.56 0.06 0.98 97.7 2.42 0.09 0.99 97.6 

 

9.5.4 SVMR model prediction capabilities 

The performance of the developed SVMR models in terms of prediction accuracy was 

quantified using a totally different prediction dataset. The prediction results for M I, M II and 

M III are listed in Table 9.4. The prediction results agree with the training and testing results 

in terms of the calculated error estimates. On average, the values of RMSE, RE (%), NSE 

and r (%) were 5.19, 0.11, 0.98 and 97.7, respectively. A slight increase in the RMSE was 

found for M I due to a greater range in the salinity values obtained at ML1. However, the 

NSE and r (%) values of 0.97 and 96.1, respectively, for M I are within an acceptable range.  

Table 9.4: SVMR surrogate models (SM) prediction errors 

SM Prediction performance  
 RMSE RE (%) NSE r (%) 
M I 8.70 0.06 0.97 96.1 
M II 2.94 0.13 0.99 98.8 
M III 3.93 0.14 0.98 98.3 

 

An NSE value of 1 indicates a perfect model (He et al. 2014); i.e., the errors in estimation 

are virtually zero. A model can be considered accurate if the calculated NSE value is greater 

than 0.8 (Shu and Ouarda 2008). All the NSE values for M I, M II, and M III were near 1, 

indicating accurate salinity concentration prediction capabilities. Overall, the observed trends 

in the prediction results indicate that the three SVMR models were adequately trained and 

could be utilised for predicting salinity concentrations at the respective MLs.  
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9.5.5 Optimal threshold groundwater pumping and recharge rates 

The executed SVMR-MOGA optimization model presented a set of optimal solutions from 

which one can be chosen and implemented, although the set may need additional preference 

ranking. The Pareto-front obtained from the multi-objective optimization methodology (Fig. 

9.9) provides a trade-off between two objectives values so that decision-makers can select 

the best solution from multiple Pareto optimal solutions.  

Figure 9.9: Optimal Pareto-front of the executed SVMR-MOGA model 

 

The Pareto optimal solutions for groundwater pumping rates at PWs ranged between ~30,500 

m3/day and ~−31,200 m3/day. The corresponding artificial recharge rates at the RWs ranged 

from ~500 m3/day to ~8000 m3/day. Also, a decent spread in the solutions was seen between 

the two extrema of the Pareto optimal solutions obtained. However, it is to be noted that the 

marginal gain in total pumping resulting from increased artificial recharge at the RWs was 

generally small, especially at smaller total pumping values, as evident in Fig. 9.9. This may 

not represent typical outcomes in general, as these trade-offs are dependent on the location 

of the RWs and their effectiveness in raising the groundwater table and head. Also, the study 

horizon was limited to four years and, therefore, the beneficial consequences of freshwater 

recharge were not evident, as it takes time to influence hydraulic heads at locations far from 

RWs. Therefore, the potential benefit of recharging the aquifer was further analysed in terms 

of increases to the water table/hydraulic heads. A random optimal solution from the optimal 

Pareto front was selected and implemented in the numerical model. The changes in heads at 

all three MLs before and after AFR are illustrated in Fig. 9.10. Increases in the heads at all 

three MLs were recorded. A significant increase in the head was recorded for ML1 because 
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it was also used as an AFR well. Salinities obtained as an optimal solution were also recorded 

and found to be within specified limits as restricted by the constraints (refer Fig. 9.11).  

 

Figure 9.10: Changes in the head at MLs with and without AFR initiation 

 

Selecting a solution from a Pareto-front is difficult when the preferences of the decision-

maker are unknown. Recently, many studies have proposed methods that allows decision-

makers to easily analyse huge sets of trade-off optimal solutions on the Pareto-front based 

on their preference ranking. The preference order is generally based on the implicit utility 

function of the decision-makers and the trade-offs required for changing the level of 

objectives (Datta and Peralta 1986). Another common approach is to detect and implement a 

solution from the knee region of the Pareto-front (Gong et al. 2016; Juang et al. 2014). Knee 

regions are the parts of Pareto-fronts that represent the maximum trade-off between 

objectives (Bechikh et al. 2011). Solutions from knee regions are preferred because of the 

fact that a small improvement in either objective will cause a large deterioration in at least 

one other objective, which makes moving in either direction unrealistic. Thus, in cases where 

the preferences of the decision-maker are unknown, a solution from the knee region is 

suggested. Similarly, for the present case, a solution from the knee region (region R in Fig. 

9.9), which is the best compromise solution, is most likely to be chosen so that optimal 

pumping from PWs and artificial recharge injection from RWs can be implemented. This 

implementation will ensure the optimal management of the simulated coastal aquifer by 

maintaining salinity levels beyond specified limits.  
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9.5.6 Validation of the optimal solutions  

The accuracy of the surrogate model in predicting salinity concentrations at the respective 

MLs in the proposed SVMR-MOGA optimization model was evaluated by comparing the 

surrogate model’s solutions with those of the original numerical flow and transport model. 

Ten random solutions from the Pareto-front were chosen and implemented in the original 

numerical simulation model. The relative error (RE) between the predicted salinities and the 

numerical responses are illustrated in Fig. 9.11. It was observed that the salinity concentration 

values from both models were very close. The minimum RE (within 5%) signified that the 

concentration values from the SVMR and numerical simulation model were very close to 

each other. Also, it was observed that when the optimal transient pumping and recharge rates 

were implemented into the numerical simulation model, the concentrations values were 

below the maximum allowable salinity concentration limit as specified in the constraints at 

MLs. Also, the optimal solutions converged to the specified upper bound of the salinity 

constraint. Overall, the validation results demonstrate that the SVMR surrogate models 

accurately predicted salinity at the MLs and can be utilized as efficient tools replacing 

complex, nonlinear, coupled, density-dependent, numerical simulation models; for 

developing sustainable coastal aquifer management strategies.  

 

Figure 9.11: Comparison of salinity concentration obtained from the numerical model and 

the SVMR predictive models, generated utilizing ten random optimal solution sets 
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9.6 Conclusions 

This study demonstrates the significant role of artificial recharge in controlling saltwater 

intrusion in coastal aquifers. The findings of this study demonstrate that integrated utilization 

of freshwater recharge and pumping strategies can form an efficient and practical solution to 

the current groundwater salinity crisis affecting people residing in coastal areas. The 

numerical modelling results quantify the effects of artificial recharge on heads and salinity 

levels at the three MLs. A considerable decrease in salinity levels occurred when 

groundwater pumping was combined with artificial recharge. Injected freshwater maintained 

a seaward gradient in the system by raising the inland piezometric head. Following the 

analysis of the developed 3D model results, and quantification of changes in head and salinity 

at monitoring wells over time, it could be inferred that saltwater repulsion increases with 

freshwater recharge. The simulation model results indicate that freshwater lenses created by 

AFR initiation could be used to efficiently manage coastal aquifers subject to saltwater 

intrusion. After this quantification of the practical benefits, recharge wells and production 

wells were considered in the development of a coastal aquifer management model capable of 

specifying regional-scale management strategies. 

A key component of this study included the use of a comparatively new, trained, SVMR-

based surrogate model to predict saltwater intrusion processes in coastal aquifers. In the 

pursuit of achieving a linked surrogate model-based S/O optimization methodology for the 

sustainable management of coastal aquifers, improvements in the surrogate model’s 

prediction capabilities were critical. The SVMR approach has several benefits and enhanced 

prediction efficiency. SVMR models were used to emulate the flow and transport simulation 

model once trained using the numerical model’s solutions for randomized inputs. The 

surrogate model’s responses were then linked to an S/O framework to ensure computational 

feasibility of the optimization-based management model. Evaluation of the surrogate model’s 

performance indicated that models M I, M II and M III were sufficiently trained and could 

accurately predict salinity at the respective MLs. After performance evaluation, the SVMR 

models were successfully linked to a MOGA optimization model to obtain optimal pumping 

and recharge rates while satisfying salinity limits specified as constraints. The multi-

objective optimization model derived a set of Pareto-optimal spatio-temporal pumping and 

artificial recharge strategies, which can be implemented for regional-scale optimal 

management of the coastal aquifer. 

 

The obtained Pareto-front offers a substantial benefit to decision-makers in terms of optimal 

management strategy selection. The Pareto-front obtained from the linked SVMR-MOGA 

model will enable decision-makers to understand the trade-offs between pumping from PWs 
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and artificial recharge injection at RWs. In general, the proposed method can successfully 

deliver optimal, integrated, pumping and recharge solutions while maintaining saltwater 

intrusion levels within acceptable limits. The accurate predictive capability of the developed 

SVMR models and the feasibility of the proposed linked multi-objective SVMR-MOGA 

optimization model makes the proposed methodology potentially attractive in solving large-

scale, regional, coastal aquifer management strategies. In future, assessing the practicality of 

the developed saltwater intrusion management strategy in a real case study area would be 

beneficial.  Lastly, while this study has demonstrated the potential of utilizing artificial 

recharge to minimise seawater intrusion in coastal aquifers, it would be valuable to identify 

optimal locations for installing recharge wells. Optimal locations could enhance the effect of 

artificial recharge, potentially improve groundwater usability, and provide more efficient and 

cost-effective ways to manage saltwater intrusion in coastal aquifers. The next chapter 

summarises the major findings of this thesis and draws the overall conclusions.  
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Chapter 10: Conclusions and recommendations 
 

10.1 Conclusions 

The main aim of this thesis was to develop and evaluate the performance of computationally-

efficient and feasible strategies for the management of coastal aquifers.  First, SVMR models 

were developed and utilized to predict saltwater intrusion by approximating the responses of 

a complex variable-density flow and transport numerical model. For evaluation purposes, the 

performance of the SVMR models was compared with that of the well-established GP 

modelling algorithm. The performance evaluation results revealed that the SVMR model is 

superior to GP models and can be applied to obtain precise and dependable SWI predictions. 

The evaluation results suggest that the SVMR predictive models can be applied in 

groundwater salinity management as computationally-efficient substitutes for numerical 

simulation models. Another advantage of utilizing SVMR surrogates is that the time required 

to train and validate them is significantly less than that required by GP models. Also, a 

sensitivity analysis method was presented and evaluated for ranking input variables for 

surrogate models. The sensitivity analysis presented a set of input variables most influential 

to the corresponding outputs. Thus, retraining a surrogate model by refining the input dataset 

and using only the most influential variables can yield a superior predictive model that offers 

substantial benefits in saltwater intrusion prediction.   

Secondly, after validating the use of the SVMR surrogate model, it was used in an S/O model 

to develop a computationally-efficient and feasible multi-objective management strategy for 

the Bonriki aquifer system. The management model incorporated pumping from FPWs and 

the option of pumping from BWs to maximize the supply of freshwater to the local South 

Tarawa community. The SVMR surrogate models were trained and tested using input 

(pumping rates at FPWs and BWs) and output (salinity concentration) datasets generated by 

the calibrated and validated Bonriki aquifer numerical simulation model. The developed 

SVMR surrogate models were externally linked to a MOGA optimization model. The 

executed, multi-objective, linked S/O-based management model generated an optimal 

Pareto-front presenting different trade-offs between the total FPW and BW pumping 

solutions. Selection of a single solution from this huge optimal solution set was deemed a 

difficult task, especially for a group of decision-makers. Therefore, the k-means clustering 

technique was used to group solutions with similar features. The k-means clustering 

technique pruned the Pareto front and presented a more workable reduced set of optimal 

solutions for decision-makers. Overall, our limited performance evaluations show that the 

suggested methodology for solving multi-objective aquifer management problems has the 

potential for application to other islands facing similar saltwater intrusion problems.  
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Thirdly, to ensure the robustness of the linked S/O model, a method was presented that 

incorporates uncertainty in aquifer parameters (hydraulic conductivity and porosity). Aquifer 

parameter uncertainty was accounted for by utilizing an ensemble surrogate model-based 

coupled multi-objective S/O model to develop reliable, optimal pumping strategies for the 

unconfined Bonriki aquifer system. Uncertainties in the numerical saltwater intrusion 

simulation model were characterised by developing several standalone SVMR surrogate 

models based on different combinations of uncertain hydraulic conductivity and porosity 

values. Therefore, instead of linking a standalone SVMR surrogate model, an ensemble of 

ten standalone SVMR models for each monitoring location were coupled to the MOGA 

optimisation model. The accuracy and reliability of the standalone SVMR models ensured 

that the ensemble models also retained reliable predictive capabilities. Execution of the 

ensemble surrogate-based multi-objective S/O model produced 600 optimal solutions in the 

form of a Pareto front. The 600 optimal solutions represented 600 pumping strategies that 

could be evaluated and implemented to ensure the sustainable management of the Bonriki 

aquifer system.  

This thesis also demonstrated the application of an adaptive management framework, which 

utilizes sequential feedback information from a designed monitoring network, to the 

management of the Bonriki aquifer. In achieving the targeted adaptive management goal, an 

optimal strategy of pumping from production and barrier wells was determined by an S/O 

model. This is an option for the sustainable control of saltwater intrusion into the Bonriki 

aquifer. Using this prescribed optimal strategy, optimal monitoring wells were identified. A 

new monitoring objective function was developed to determine the optimal locations of 

monitoring wells in high-salinity areas. The resulting optimal monitoring wells were then 

used to monitor compliance with the prescribed management strategy (recommended by the 

S/O model) when compared to those actually implemented in the field and also considering 

uncertainty of aquifer parameters (hydraulic conductivity and porosity). Based on the field-

level deviations between actual and planned salinity levels, the pumping rates for future time 

periods in the management horizon were modified according to a sequentially-updated 

coupled S/O model. It was noted that field-level deviations in implementing accurate 

pumping rates and uncertain aquifer parameters could lead to significant differences in the 

salinities measured at optimal monitoring wells. Hence, updating the management model 

using feedback information from earlier time periods is crucial to the management of the 

Bonriki aquifer.  

A key feature of this study was its comparison of the performance of homogeneous and 

heterogeneous ensemble models. Specifically, ANN, GP, SVMR and GP standalone models 

were developed to construct homogeneous ensemble models (ANN_En, GP_En, SVMR_En 
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and GPR_En) and a heterogeneous ensemble model (ANN_GP_SVMR_GPR_En) capable 

of predicting salinity concentration in the Bonriki aquifer. The results of this investigation 

demonstrate that all standalone models predicted salinity concentration at respective 

monitoring wells with reasonable accuracy. However, in terms of the four performance 

indicators considered, standalone GPR models displayed better prediction accuracy than the 

corresponding ANN, GP and SVMR standalone models. Also, the standalone SVMR and 

GPR models required significantly less time to train than the corresponding ANN and GP 

standalone models. The homogeneous GPR_En model was the best-performing ensemble 

model, even compared to the heterogeneous ANN_GP_SVMR_GPR_En model. Overall, the 

GPR_En model performed better than all four standalone models and the heterogeneous 

ensemble model. Hence, it can be used as a potentially powerful tool for predicting salinity 

in the Bonriki aquifer. In addition, with their accurate and efficient prediction capabilities, 

GPR_En models can also be employed as approximate simulators in simulation-optimization 

models used for developing regional-scale saltwater intrusion management strategies for 

coastal aquifers. The comparative investigation presented in this thesis provides a valuable 

reference for decision-makers and engineers who may choose to apply these methods for 

predicting groundwater salinity concentrations in coastal aquifers.  

In this thesis, a new application of group method of data handling (GMDH) models was 

employed to predict salinity concentration at specified monitoring wells in a coastal aquifer 

in response to variable transient groundwater pumping patterns. The performance assessment 

results suggest that the developed models can predict salinity concentrations with reasonable 

accuracy and efficiency. Apart from exhibiting accurate and efficient prediction capabilities, 

the GMDH models provide a method for identifying the most influential pumping rates. The 

identification of the most and least influential pumping rates offers substantial benefits to the 

decision-maker. Specifically, it allows the decision-maker to determine the variables most 

influential to the management outcomes and prediction accuracy. These characteristics offer 

both computational and economic benefits. Second, the results of this study establish that the 

determination of influential variables when developing groundwater salinity predictive 

models should be given important consideration. Including the least influential variables in 

predictive models can diminish their accuracy. 

Another important aspect of this thesis was its utilization of artificial freshwater recharge 

(AFR) to control saltwater intrusion into coastal aquifers. The findings of this study 

demonstrate that the integrated utilization of freshwater recharge and groundwater pumping 

can provide an efficient, practical solution to the current groundwater scarcity problems 

affecting people in coastal areas. The numerical modelling results quantified the effects of 

artificial recharge on heads and salinity levels at monitoring locations. A considerable 
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decrease in salinity occurs when groundwater pumping is combined with artificial recharge. 

Injected freshwater maintains a seaward gradient in the system by raising the inland 

piezometric head. Following analysis of the developed 3D models’ results, and quantification 

of changes in head and salinity at monitoring wells over time, it can be inferred that saltwater 

repulsion is increased by freshwater recharge. The simulation models’ results indicate that 

freshwater lenses created by AFR can be a practical alternative considered for the efficient 

management of coastal aquifers subject to saltwater intrusion. After this quantification and 

detection of practical benefits, recharge wells and production wells were utilized to develop 

an SVMR surrogate model-assisted linked S/O model capable of specifying regional-scale 

coastal aquifer management strategies. The multi-objective optimization model derived a set 

of Pareto-optimal spatio-temporal pumping and artificial recharge rates, which can be 

implemented in the regional-scale optimal management of coastal aquifers. In general, the 

proposed methods of incorporating planned AFR in multi-objective groundwater 

management models can provide solutions to saltwater intrusion problems in coastal aquifers.  

10.2 Recommendations 

This study can make several recommendations based on some of its limitations. A few of 

these aspects are as follows. First, in the present field-scale application study, a two-layer 

aquifer system was modelled due to limited data availability and to ensure convergence of 

the 3D FEMWATER-based numerical model. The layers (constructed using limited borehole 

data) were considered heterogeneous vertically, based on the geological stratification of the 

layers. However, the materials in each layer were the same, albeit anisotropic. The proposed 

method can be applied to completely heterogeneous coastal aquifer systems in other 

geological settings. Secondly, the multi-objective management model developed in this study 

only considered two management goals denoted by the two different objective functions. 

Other management objectives, such as assigning pumping well locations, prescribing optimal 

operating costs, and incorporating recharge wells as management options can also be 

considered and applied to the Bonriki aquifer system for evaluation purposes. Thirdly, the 

implications of tidal fluctuations and seasonal variations on the movement of saltwater fronts 

could be investigated. These factors were not considered in the present study but could be 

investigated further and incorporated into the proposed management model. Implementing 

these factors presents significant challenges, as higher requirements for 3D modelling 

convergence tolerance, mesh tolerance, computing power, and hydrological data would be 

needed for numerical model calibration and validation.  

The comparison of the homogeneous and heterogeneous models presented in this study 

showed promising results. However, the predictive capabilities of all standalone models 

could be further increased. This could be accomplished by using an optimal number of 
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training and testing datasets. Also, recent developments in computational power can aid in 

the development of hybrid models that have increased predictive capability. In addition, more 

comparative studies using new modelling algorithms are recommended in line with the 

objectives of the current work. It is hoped that future research will focus on these directions, 

which may eventually lead to the establishment of a more robust, accurate, efficient and 

versatile salinity concentration prediction tool.  

The results of this study suggest that adequately trained and tested GMDH models can be 

considered accurate and efficient saltwater intrusion prediction tools, which can be used for 

developing saltwater intrusion management models. GMDH models also allows decision-

makers to comprehend the importance of input variables (e.g. pumping rates), which can be 

useful in developing efficient management plans for aquifer systems. In addition, the highly 

accurate and efficient GMDH predictive models can be used as approximate simulators in 

coupled simulation-optimization models to develop computationally practicable regional-

scale coastal aquifer management methodologies. However, it is advisable that researchers 

first compare the performance of GMDH models with that of other well-established 

modelling techniques in a more rigorous manner.  

This study has demonstrated that AFR can be used as a strategy to control saltwater intrusion 

in coastal aquifers. However, in future, assessing the practicality of this approach in a real 

case study would be beneficial. On the other hand, while this study has demonstrated the 

potential for utilizing artificial recharge to minimize seawater intrusion in coastal aquifers, it 

would be valuable to identify defined zones for installing recharge wells. Optimal zones 

would enhance the effects of artificial recharge and potentially provide a more efficient and 

possibly more cost-effective way to manage saltwater intrusion. 

Lastly, the results presented in this study demonstrate pathways for future studies on other 

small island countries, where saltwater intrusion due to excessive groundwater withdrawal is 

a threat to sustainability of freshwater resources. The developed and evaluated predictive 

modelling tools, multi-objective management models, ensemble models incorporating 

aquifer parameter estimation uncertainty, and adaptive management methods can potentially 

be applied to other regional-scale coastal aquifers subject to saltwater intrusion. However, 

such applications require the development of a variable density groundwater flow and 

transport numerical model of the study area. Development of such a model necessitates 

numerical modelling skills, software, high computational power, and groundwater head and 

salinity data. Such datasets are not always readily available and may require field 

investigations, which can be costly and time-consuming.  
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