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Abstract 

This thesis primarily investigated the effect of supplementing pasture-based dairy sheep with 

different plant oil-infused and rumen-protected pellets containing eicosapentaenoic acid (EPA, 

20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) on lactation performance, milk and cheese 

fatty acid composition and cheese eating quality. It was hypothesised that plant oil supplements 

would interact with sire breed to influence feed intake, body condition score, milk yield and 

composition, milk and cheese fatty acid contents and sensory attributes of ripened cheese.   

Sixty Awassi and Awassi × East Friesian crossbred ewes in mid-lactation, balanced by 

liveweight (59 ± 5.9 kg), milk yield (657 ± 100 g/day), parity (2.8 ± 0.5), and sire breed were 

randomly allocated into 6 treatment groups of 10 ewes each, that were: (1) supplemented with 

on-farm existing commercial wheat-based pellets without oil inclusion (control) or 

supplemented with wheat-based pellets infused with 50 mL/kg dry matter of oils from (2) 

canola, (3) rice bran, (4) flaxseed, (5) safflower, and (6) rumen-protected EPA + DHA in a 10-

week supplementary feeding trial including a 2-week adjustment period. All supplementary 

diets included the same level of 50 mL/kg DM of oil except for the control group, and all diets 

were isocaloric and isonitrogenous. Experimental animals were grazed in the same paddock 

with ad libitum access to pasture, hay, and water. During milking time, each ewe was fed 1 

kg/day of the supplemented pellets individually in the milking parlour.  

Data on weekly body condition score, daily feed intake, feed composition, weekly bulked fresh 

milk, raw milk, and ripened cheese samples were collected. Feed intake, body condition score, 

milk yield, milk composition, fatty acid composition of milk and cheese, and cheese sensory 

attributes were analysed in SAS with sire breed, diet, and week of supplementation and their 

second-order interactions as fixed effects.   
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It was demonstrated that oil supplementation and sire breed affected animal performance, 

productivity and quality of milk and its processed product, in that: 

1) Rumen-protected oil pellet containing EPA + DHA was the most effective diet that 

improved milk production, n-3 long-chain (C≥20) polyunsaturated fatty acids (n-3 

LC-PUFA) in fresh milk and ripened cheese without any negative effect on animal 

performance and cheese eating quality. A serving of milk and cheese reached the 

“good source” and “source” levels of n-3 LC-PUFA, respectively; 

2) Flaxseed oil supplementation elicited not only the highest concentration of α-

linolenic acid (ALA, 18:3n-3) in both fresh milk and ripened cheese, but also 

improved all cheese eating sensory traits. Flaxseed oil also significantly increased 

n-3 LC-PUFA in milk because a serving of fresh milk met the claimed “source” of 

n-3 LC-PUFA; 

3) Safflower oil diet considerably improved milk, fat and protein yields. More 

importantly, this diet also had the most efficiency at enhancing the level of linoleic 

acid (18:2n-6) in milk and cheese. Safflower oil inclusion had no effect on cheese 

eating quality; 

4) Rice bran oil was the sole diet that improved milk yield with an increase in protein 

content. However, adding rice bran oil to the diet of grazing dairy ewes had only 

minor effects on altering milk and cheese PUFA composition. Together with 

flaxseed oil, rice bran oil significantly enhanced consumer acceptability of ripened 

cheese; 

5) Canola oil was found to have minor but statistically significant effect on milk yield, 

body condition score, and docosapentaenoic acid (DPA, 22:5n-3) content in milk; 

6) Sire breed and its interaction with diet mainly affected milk production, but not milk 

quality, in which crossbred Awassi x East Friesian had higher milk yield than pure-bred 

Awassi.  

Taken together, these outcomes suggest that oil supplements and crossbreeding can be utilised 

by Australian sheep milk producers in pasture-based systems to improve production traits and 

cheese eating quality to increase farm-gate value. 
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Chapter 1: General Introduction 

 

The Australian dairy sheep industry is small and mostly based on a natural grass grazing system 

(AgriFutures Australia, 2013). Therefore, the contribution of milk derived from sheep to 

national milk production in the country is low, with an annual milk production of 500 thousand 

litres (AgriFutures Australia, 2013) compared to 9 billion litres of milk produced by dairy cows 

nationwide (Dairy Australia, 2018). The lack of specialised breeds and typical Australian sheep 

milk products, in addition to pre-weaning lamb mortality, are the main challenges that limit the 

growth of the industry (Bencini, 1999). It was estimated that 250,000 ewes would have to be 

milked to meet the domestic market demand of 8000 tons of sheep milk products (Bencini and 

Murray, 2012). Currently, only 5,500 sheep are milked in Australia (AgriFutures Australia, 

2013). Therefore, the market demand for sheep milk products is increasing over and above the 

supply from local producers (Bencini and Murray, 2012). This could be the basis and 

justification for expanding the dairy sheep industry in Australia.  

Chronic or non-communicable diseases have remained the most leading cause of death 

worldwide, with 41 million deaths accounting for 71% of reported global deaths (57 million) 

(WHO, 2018). This report also indicated that an unhealthy diet with low intake of omega-3 

long-chain polyunsaturated fatty acids (n-3 LC-PUFA), continues to be one of the main factors 

that either directly or indirectly induce chronic diseases. Omega-3 polyunsaturated fatty acids 

(n-3 PUFA) contain two or more double bonds with the first double bond on the third carbon 

atom from the methyl end of the molecule. The common types of n-3 PUFA are: Short chain 

(SC, ≤C18) n-3 PUFA including α-linolenic acid (ALA, 18:3n-3) and stearidonic acid (SDA, 

18:4n-3), and long-chain (≥C20) n-3 PUFA (n-3 LC-PUFA) including eicosapentaenoic (EPA, 

20:5n-3); docosahexaenoic (DHA, 22:6n-3); and the less studied docosapentaenoic (DPA, 

22:5n-3) acids (Nichols et al., 2010). Previous studies on n-3 LC-PUFA focused mainly on 



2 
 

EPA and DHA, but not DPA, despite its structural and beneficial effects on human health being 

similar to those of EPA and DHA (Byelashov et al., 2015). The unavailability of pure DPA as 

a commercial product for performing clinical and nutritional trials is one possible explanation 

for this shortcoming. The term n-3 LC-PUFA in this study includes EPA, DHA, and DPA. 

Although there is a general awareness that fish and seafood are the dominant sources of n-3 

LC-PUFA, seafood consumption is still insufficient, thus the human diet persists with low n-3 

PUFA intake (Simopoulos, 2011). The traditional diet often does not contain regular 

consumption of fish and marine products, especially in Western countries (Cordain et al., 

2005). When taken together with the often high cost of seafood (Kennedy et al., 2012), these 

combined factors probably have been the major grounds for the insufficiency of seafood 

consumption. In contrast, milk and its processed products are known as poor sources of n-3 

LC-PUFA content (Shingfield et al., 2013), although they have played an important role in 

human diets for more than 8000 years (Rozenberg et al., 2016). This is because dairy foods are 

important sources of energy, protein, fat, and vital microelements including calcium, vitamin 

D and potassium for humans (Burgess, 2013; Kardas et al., 2016). According to the 

OECD/FAO report (2017), the 2015 global consumption of milk and dairy products was 111.3 

kg per capita, and is expected to increase by approximately 12.5% by 2025. This fact has led 

to a number of studies focusing on enhancing the beneficial n-3 PUFA and n-3 LC-PUFA in 

milk and its processed products, mostly from cows and sheep, for human consumption 

(Shingfield et al., 2013).  

Nutritional manipulation to date has been the main approach for altering milk fatty acids (FA) 

due to public health concerns of lactose intolerance in some people for milk from dairy cows 

(Chilliard et al., 2001) and high levels of short to medium chain fats in milk from small 

ruminants (Sanz Sampelayo et al., 2007). According to Chilliard et al. (2007), FA profiles in 

milk are derived from four different sources including: de novo synthesis in the mammary 
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gland, diet, ruminal biohydrogenation, and body reserves in which dietary FA contribute half 

of the C16 and all of the long-chain FA that includes all n-3 PUFA and n-3 LC-PUFA.  Lipid 

supplementation  is an effective tool for altering milk fat composition (Chilliard et al., 2003; 

Kennelly et al., 2005) and increasing milk production (Palmquist and Jenkins, 2017).  

The inclusion of oil seeds and vegetable oil in dairy animal diets significantly elevates ALA 

content (Glasser et al., 2008a), while the addition of rumen-protected marine-derived oil is the 

most effective way to increase the concentration of EPA, DHA, and DPA in dairy products 

(Shingfield et al., 2013). The main challenge of this nutritional manipulation approach is 

ruminal biohydrogenation in which dietary PUFA are hydrogenated into monounsaturated FA 

and/or ultimately, saturated FA, due to rumen microbial activities (Bauman and Griinari, 2003). 

In addition, a comprehensive review by Nguyen et al. (2018) reported that the biosynthetic 

pathway of n-3 LC-PUFA from the precursor ALA seems to be limited. 

To our current knowledge, there is a dearth of studies investigating the effect of dietary 

supplementation with pellets infused with oils from canola, flaxseed, rice bran, and safflower 

on milk production and FA composition of grazing dairy ewes, particularly under Australian 

on-farm pasture-based production system. Canola is the largest oilseed crop in Australia 

(Seymour et al., 2012). It contains an abundance of ALA together with an ideal ratio of n-6 

PUFA to n-3 PUFA at 2:1 (Sakhno, 2010). Therefore, the utilisation of canola oil as infused 

pellets as supplements for lambs (Flakemore et al., 2017; Nguyen et al., 2017; Le et al., 2018; 

Malau-Aduli et al., 2019) and dairy cows (Otto et al., 2015) was investigated under both 

pasture and feedlot systems. Flaxseed oil is well-known as the richest source of ALA among 

plant oil sources, and contains up to 59.3% ALA in total fatty acid composition (Teh and Birch, 

2013). Thus, feeding flaxseed to ruminants either as whole or extruded grain, is a common 

strategy for improving FA profile of dairy products (Glasser et al., 2008a). Rice bran and 

safflower oil on the other hand, are more abundant in linoleic acid (18:2n-6, LA) (Gopala 
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Krishna et al., 2006; Matthaus et al., 2015) than ALA. The LA content of rice bran oil varies 

widely from 28.0-53.4% depending on the refining process (physical or chemical) (Gopala 

Krishna et al., 2006). The effect of supplementing ruminants with rice bran on animal 

performance and FA composition has been investigated in lambs (Bhatt et al., 2013; Flakemore 

et al., 2017; Le et al., 2018) and dairy cattle (Lunsin et al., 2012a,b), but not to a large extent 

in dairy sheep.   

Grown in over 60 countries (Glibert and Porter, 2008), safflower is a very highly sustainable 

annual oilseed crop (Singh and Nimbkar, 2016). Therefore, it has been used widely as a 

supplement for ruminants (Alizadeh et al., 2012) because of its rich poly and monounsaturated 

FA contents, particularly LA, which constitutes up to 77% of total FA (Matthaus et al., 2015). 

However, there is relatively little information on its efficacy for improving milk production, 

composition and FA content as a supplement in lactating sheep diets.  

 

Therefore, the series of studies in this thesis were conducted to answer the following primary 

research question: What is the impact of diverse dietary omega-3 oil supplements on animal 

performance, yield, composition, fatty acid profile and quality of milk and cheese from dairy 

ewes in a pasture-based system? The major objectives were to investigate the impact of 

supplementing grazing dairy ewes with rumen-protected oil pellets or pellets infused with oils 

from canola, rice bran, flaxseed, or safflower independently and their interactions with sire 

breed on: 

• Animal performance traits of feed intake, lactation and body condition score. 

• Enhancing the concentration of milk and cheese n-3 LC-PUFA. 

• Enhancing cheese eating quality and consumer acceptability. 

The thesis has been structured into the following chapters: 
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Chapter 1: General Introduction 

Chapter 2: Literature Review: Comprehensively reviews existing published literature on the 

background of Australian dairy sheep industry, nutritional value of sheep milk, the role of body 

condition score in dairy sheep management, parameters that drive lactation and cheese flavour, 

and recent research aimed at elevating n-3 LC-PUFA content of dairy products. Knowledge 

gaps were identified after critical analysis of existing literature that in turn, informed the 

formulation of research objectives investigated in this thesis.  

Chapter 3: Evaluates the impact of canola, rice bran, flaxseed, safflower, and rumen protected 

oil-infused supplements and their interactions with sire breed on lactation performance, milk 

composition and body condition score of dairy ewes in mid-lactation grazing low quality 

pastures. 

Chapter 4: Uncovers the relationship between canola, rice bran, flaxseed, safflower, and 

rumen protected oil-infused diets and the concentration of n-3 LC-PUFA in milk from grazing 

ewes.  

Chapter 5: Examines the hypothesis that supplementing grazing dairy ewes with different 

plant oil infused and rumen-protected EPA+DHA pellets would affect the concentration and 

recovery of n-3 LC-PUFA and alter cheese eating quality. 

Chapter 6: Presents a general discussion and summary of the main findings from the study 

and suggests possible areas requiring further investigation. 

Appendices: Contains copies of peer-reviewed publications from this thesis and all 

supplementary materials that were excluded from thesis chapters on the basis of direct 

relevance. 
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Chapter 2: Literature Review 

 

2.1. Dairy sheep industry background 

According to the Food and Agriculture Organization of the United Nations (FAOSTAT, 2018), 

there are approximately 200 million dairy sheep worldwide, accounting for 21.3% of the total 

sheep population. In 2017, 10 million tonnes of sheep milk were produced (FAOSTAT, 2018) 

representing 1.3 % of the total milk production in the world. Asia is dominant over all regions 

for the number of dairy sheep and total milk yield (Table 2.1). Due to the growing trend during 

the last 50 years, it is expected that worldwide dairy sheep production will increase by 26% 

(approximately 2.7 million tonnes) in the next decade (Pulina et al., 2018). Cheese is the major 

processed product manufactured from sheep milk, with worldwide production of 680 thousand 

tonnes in 2014 (Table 2.1).  

 

Table 2.1. Worldwide sheep milk products (Source: FAOSTA (2018) 
 

Items Unit World Asia Africa Europe America Year 

Fresh milk Million tonnes 10.4 5.02 2.44 2.85 0.097 2017 

Cheese Thousand tonnes 680.3 273.3 57.4 34.2 7.84 2014 

Butter and ghee Thousand tonnes 63.3 61.0 2.3 - - 2014 

 

Although milking sheep have been kept in Australia since 1906, the Australian dairy sheep 

industry remains small compared to meat and wool sheep (Cameron, 2014). The lack of 

specialised breeds and typical Australian sheep milk products compared to lamb meat and wool 

industries is probably the main reason for this (Bencini, 1999). It was expected that 250,000 
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milking ewes producing 8,000 tonnes of milk products could meet the demand of the Australian 

domestic market (Bencini and Murray, 2012). However, of the 72 million sheep in Australia 

(FAOSTAT, 2018), only 5,500 head are used for milking in 13 commercial farms producing 

550,000 litres of milk annually (AgriFutures Australia, 2013). Sixty percent of fresh milk is 

processed into yoghurt, and the rest is used for cheese production for the domestic market 

(AgriFutures Australia, 2013). Similar to most of the Australian meat and wool sheep, dairy 

ewes are raised in extensive grazing systems that may include dryland, senesced, green and 

irrigated pastures (Ponnampalam et al. 2014). As extensive production systems mainly depend 

on local environmental conditions that affect pasture quality and availability, animals raised on 

these systems generally have low production efficiency (De Brito et al., 2017). The effort to 

establish a stable sheep milking industry was made by introducing the East Friesian (EF) and 

Awassi breeds into the country in the 1990s (Bencini and Murray, 2012). However, statistics 

on milk production of these productive breeds that might help the producers improve their farm 

gate value remain inadequate.  

2.2. Sheep milk  

2.2.1. Nutritional value 

In comparison to milk from cows and goats, sheep milk is a richer source of fat and protein 

(Figure 2.1), and other vital micro and macro elements, particularly calcium (Park et al., 2007; 

Balthazar et al., 2017) (Figure 2.1). 

2.2.1.1. Milk fat 

Fat is the most important component of milk defining its nutritional and energetic values. Fat 

in milk from sheep is two times higher than fat in milk from goats and cows (Figure 2.1 a). It 

contributes a noticeable higher energy value of 105 calories/100 ml compared to 69 and 70 

calories/100 ml in cow and goat milk (Park et al., 2007). Moreover, milk fat globule size from 

goats (3.0 µm) and sheep (3.6 µm) are smaller than from cows (4 µm) (Gantner et al., 2015). 
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Small size and high dispersion state results in easier  access of lipolytic enzymes to fat globules, 

enabling easier digestibility for humans consuming sheep and goat milk than cow milk 

(Tomotake et al., 2006). These fat globule characteristics also have technical advantages in 

reducing phase separation under frozen storage conditions used for cheese production. In terms 

of fatty acid profile, similar to goat and cow, sheep milk contains mainly saturated fatty acids 

(SFA) varying from 57-75% (of total fatty acids) (Gantner et al., 2015). However, citing a 

number of authors, Markiewicz-Keszycka et al. (2013) concluded that the proportion of PUFA 

at 4.82% in sheep milk, is higher than in cows and goats (4.05 and 3.70%, respectively). 

Similarly, sheep milk has a higher concentration of conjugated linoleic acid (CLA) compared 

to goat and cow milk (1.08, 1.01, and 0.65%, respectively). A significantly lower ratio of n-6 

PUFA to n-3 PUFA (Markiewicz-Keszycka et al., 2013) makes sheep milk more desirable than 

cow and goat milk in inhibiting the risk of chronic diseases  (Simopoulos, 2002; Zymon et al., 

2014).  

2.2.1.2. Milk protein 

In comparison with cow milk, sheep milk contains a higher percentage of protein (5.8 vs 3.3%) 

(Park et al., 2007), of which 80% are casein complexes and the rest are whey protein fractions 

(Balthazar et al., 2017). This high concentration of casein is of benefit to cheesemakers due to 

a positive relationship between casein content of raw milk and cheese yield (Colin et al., 1992; 

Hurtaud et al., 1995). Another structural advantage of sheep milk protein is that casein micelles 

have a rich calcium content that serves as a catalyst for rennet coagulation (Kethireddipalli and 

Hill, 2015), thus adding CaCl2 is not required in sheep cheese making. Higher mineralization 

of casein micelles support cheesemakers to produce adequate curd from sheep milk using less 

rennet or chymosin and still achieve the same coagulation time compared to cow milk 

(Kalantzopoulos, 1993). With regards to nutritional value, a higher protein concentration with 

lower allergic sensitization (Masoodi and Shafi, 2010) are attributes of sheep milk that make it 

an ideal alternative protein source for consumers who have allergy to cow milk (Scintu and 

Piredda, 2007).  
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2.2.1.3. Minerals and Vitamins 

Sheep milk is the richest source of vitamins and some critical minerals compared to goat and 

cow milk (Table 2.2). Calcium and phosphorus, the main macrominerals that affect growth and 

maintenance of skeletal structure, are much higher in sheep milk than in cow and goat milk. 
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Figure 2.1. Fat (a), protein (b), lactose (c), solids-non-fat (SNF) (d), casein (e), albumin and 
globulin (f) percentage of milks from cow, goat, sheep and human (Park et al., 2007) 
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According to NHMRC (2013), 494 mg of calcium in one standard serving (494mg/250 ml) 

contributes nearly half of the daily recommended intake of 1000 mg of calcium for adults 

(NHMRC, 2006). In humans, high protein intake was shown to elevate calcium absorption 

(Kerstetter et al., 2011), thus sheep milk that contains high concentration of calcium and protein 

is considered as an effective dietary calcium supplement.  

 

Table 2.2. Mineral and vitamin contents in sheep, goat and cow milk (Sources: Park et al., 
2007; Balthazar et al., 2017) 
 

Items Unit Sheep Goat Cow 
Mineral     
Ca mg/100 g 197.5 130 112 
P mg/100 g 141 109 91 
Mg mg/100 g 18 16 12 
K mg/100 g 138 185.5 145 
Na mg/100 g 39 39.5 42 
Cl mg/100 g 160 150 100 
S mg/100 g 29 28 32 
Fe mg/100 g 0.08 0.07 0.08 
Cu mg/100 g 0.04 0.05 0.06 
Mn mg/100 g 0.02 0.03 0.007 
Zn mg/100 g 0.6 0.43 0.4 
Se µg/100 g 1.0 1.33 0.96 
Vitamin     
Vitamin A μgRE/100 g 64 54.3 37 
Vitamin B6 mg/100 g 0.08 0.046 0.042 
Vitamin B12 µg/100 g 0.712 0.065 0.375 
Vitamin C mg/100 g 4.16 1.29 0.94 
Vitamin D µg/100 g 0.2 0.2 0.15 
Biotin µg/100 g 2.5 1.75 2.0 
Niacin mg/100 g 0.416 0.27 0.08 
Riboflavin mg/100 g 0.376 0.21 0.16 
Pantothenic acid mg/100 g 0.408 0.31 0.32 
Folic acid µg/100 g 5.0 1.0 5.0 
Thiamine mg/100 g 0.08 0.068 0.045 



11 
 

2.2.2. Factors affecting milk yield and composition 

2.2.2.1. Genetic parameters  

Although approximately 180 different sheep breeds produce milk for human consumption, only 

a few of these breeds are considered as primary “dairy” breeds (Table 2.3), with East Friesian 

(EF) and Awassi being probably the most popular (Park et al., 2017). Developed in northern 

Germany and the Netherlands and known as the world’s most productive dairy sheep 

(Haenlein, 2007), the use of EF as purebred animals in unfavourable environmental conditions 

such as excessive heat and humidity is limited (Gootwine and Goot, 1996). Thus, EF has been 

used widely in crossbreeding systems to improve milk production and prolificacy of local 

breeds. For example, EF rams were mated with Dorset-cross, Polypay, and Rambouillet ewes 

to improve the productivity of local dairy sheep under North American production conditions 

(Berger and Thomas, 1997; Thomas et al., 1998; Thomas et al., 2000). Following EF regarding 

milk production capacity, the Awassi is the most numerous and widespread breed of dairy 

sheep in the world because of its ability to adapt to diverse environmental conditions (Galal et 

al., 2008).  

 

Table 2.3. Average lactation length, milk yield and composition of common sheep breeds used 

for milk production (Sources: Haenlein, 2007; Park et al., 2017) 

 

Breed Original 

country  

Lactation 

length 

(days) 

Milk 

Yield 

(kg) 

Fat 

(%) 

Protein 

(%) 

Total 

solids 

(%) 

Ash 

(%) 

Lactose 

(%) 

East Friesian Germany 300 632 6.5 5.25 17.0 0.9 4.9 

Awassi  Israel 270 495 6.61 5.74 18.24 0.93 4.96 

Lacaune France 165 270 7.40 5.63 18.63 0.93 4.67 

Chios Greece 210 218 7.90 6.20 19.08 0.92 4.06 

Sarda Italy 200 158 6.99 5.60 18.14 0.95 4.60 

Manchega Spain 210 300 7.78 6.01 18.98 0.90 4.29 

Churra Spain 150 150 7.30 5.98 18.30 0.95 4.25 
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Estimates of heritabilities and genetic correlations for major milk traits portrayed in Table 2.4 

range from moderate for milk, fat and protein yields (approximately 0.25-0.30), to high for fat 

and protein content (0.50 to 0.60) (Park et al., 2017). Genetic improvement programmes have 

been based on purebred selection and mainly implemented in Europe (Barillet, 2007) where 

milk, fat and protein yields are major selection criteria (Carta et al., 2009) used by breeders. 

For instance, genetic programmes employed for Lacaune in France contributed to the annual 

increases of 0.12 and 0.14% in fat and protein contents, respectively, with an annual genetic 

gain of 5 litres in milk production (Astruc et al., 2002).  

 

Table 2.4. Heritabilities and genetic correlations for lactating traits of different breeds (Source: 
Park et al., 2017) 

 

Trait Milk yield Fat yield Protein yield Fat (%) Protein (%) 

Milk yield 0.20 to 0.32 0.77 to 0.89 0.88 to 0.94 -0.43 to -0.56 -0.46 to -0.64 

Fat yield  0.16 to 0.26 0.82 to 0.93 0.02 to 0.25 -0.36 to -0.12 

Protein yield   0.18 to 0.28 -0.18 to -0.28 0.01 to -0.15 

Fat (%)    0.10 to 0.61 0.41 to 0.85 

Protein (%)     0.31 to 0.69 

 

2.2.2.2. Dietary nutrients for improving milk production and composition 

The synthesis of milk components is principally driven by secretory cells in the mammary 

gland from precursors derived directly or indirectly from circulating dietary nutrients (Pulina 

and Nudda, 2004). Therefore, the most effective approach to improve milk production and milk 

components is to alter dietary nutrition regimes (Bocquier and Caja, 2001; Kennelly et al., 

2005). As most sheep milk is used for cheese making (Balthazar et al., 2017), with cheese yield 
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depending mainly on milk fat and protein concentrations (Pellegrini et al., 1997), this review 

will lay emphasis on the effect of dietary nutrients on the yields and contents of milk fat and 

protein.  

Dietary nutrient composition and milk yield  

Milk production by dairy ewes is mainly affected by voluntary feed intake or more accurately, 

the level of energy intake to support the high energy content of sheep milk (Park et al., 2017). 

Increasing the energy and nutritional value of the diet for lactating ewes is considered as one 

of the most critical strategies for improving milk production (Palmquist, 1994; Bocquier and 

Caja, 2001; Mikolayunas et al., 2008; Mikolayunas et al., 2011; Vazirigohar et al., 2014). Fat 

supplementation has been demonstrated as an effective tool for not only improving milk yield 

(Palmquist, 1994; Vazirigohar et al., 2014), but also for altering milk composition for human 

health benefits (Kennelly et al., 2005).Various types and dosages of oil supplemented to dairy 

ewes have resulted in significant variation in animal performance (Table 2.5). 

Dietary nutrient composition and milk protein content 

Milk protein content is influenced by many nutritional factors with a lesser magnitude of 

changes than that of milk fat concentration in both dairy cows (Kennelly et al., 2005) and sheep 

(Pulina et al., 2006). According to Bocquier and Caja (2001), dietary energy concentration is 

positively correlated with milk protein content, especially when the energy sources are soluble 

carbohydrates (Gerson et al., 1985). This is because carbohydrates are energy sources for most 

rumen microbes including bacterial protein that control nitrogen utilisation in the rumen 

(Russell et al., 1992). Similar to dairy cows (Huhtanen and Hristov, 2009), dietary crude 

protein (CP) content has a negative influence on milk protein percentage in dairy sheep 

(Bocquier and Caja, 2001). This can be explain as the CP content of the diet increases, it may 

exceed microbial needs which induces excessive urinary N (Broderick, 2003) together with a 

decrease in microbial protein synthesis (Broderick and Clayton, 1997).  
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Table 2.5. Effect of lipid supplementation on milk yield and compositiona of dairy ewes 
 

Diet MY Fat  FY Protein PY  References 

Palm oil 
Olive oil 
Soybean oil 
Linseed oil 

1242 
1288 
1321 
974 

8.43 

9.55 

8.37 

8.77 

103.8 
120.3 
111.9 
96.5 

5.18 
5.35 
5.23 
5.29 

64.0 
67.9 
68.2 
55.2 

 Bodas et al. (2010) 

Control 
Sunflower oil (SO) 
SO + 8 g/ kg DM of Marine Algae 
SO + 16 g/ kg DM of Marine Algae 
SO + 24 g/ kg DM of Marine Algae 

3280 
3585 
3608 
3436 
3459 

6.15 
6.51 
5.75 
5.76 
5.29 

125.9 
140.9 
115.7 
118.4 
101.7 

5.22 
5.16 
4.93 
4.95 
4.96 

107.1 
110.1 
98.7 
103.4 
95.5 

Toral et al. (2010) 

Control 
100 g extruded linseed 
200 g extruded linseed 

1362 
1404 
1217 

5.91 
6.07 
6.10 

80.4 
85.15 
74.19 

4.81 
4.81 
4.89 

65.47 
67.48 
59.56 

Mughetti et al. (2012) 

Control 
Chestnut tannin 

825 
978 

5.80 
5.78 

47.8 
56.5 

5.56 
5.12 

45.8 
50.1 

Buccioni et al. (2015) 

Control 
Seaweed  
Whole flaxseed  
Seaweed + Whole flaxseed 

283.8 
324.2 
341.5 
346.3 

6.94 
7.21 
6.84 
6.85 

19.49 
22.96 
22.75 
22.36 

5.74 
5.85 
5.88 
5.89 

16.46 
19.09 
19.81 
19.48 

Caroprese et al. (2016) 

Control 
Canola oil 
Rice bran oil 
Flaxseed oil 
Safflower oil 
Rumen-protected oil 

484 
525 
527 
489 
562 
628 

7.4 
7.2 
7.2 
6.9 
6.6 
6.6 

36 
38 
38 
34 
37 
41 

5.4 
5.5 
5.9 
5.4 
5.6 
5.4 

26 
29 
31 
26 
31 
34 

Nguyen et al. (2018a) 

Control 
Soybean oil (SO) 
Linseed oil (LO) 
75% SO + 25% LO 
50% SO+ 50% LO 
25% SO + 75% LO 

782 
963 
862 
854 
805 
902 

6.42 
5.96 
6.59 
6.56 
6.75 
7.09 

50 
60 
60 
60 
60 
60 

5.69 
5.67 
5.18 
5.79 
6.10 
6.10 

50 
50 
50 
50 
50 
50 

Antonacci et al. (2018) 

 

 

a Milk yield (MY, g/day), fat (g/100 g milk), fat yield (FY, g/day), protein (g/100 g milk), protein yield (PY, g/day) 

 

In addition, results from Gonzalez et al., (1982) and Purroy and Jaime (1995) showed that milk 

protein content and yield can be influenced by different protein sources, probably due to the 

variation in rumen undegraded CP in dietary protein (Pulina et al., 2006). In response to lipid 

supplementation, inconsistent results in milk protein concentration have been reported (Table 
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2.5). The wide range of inclusion rates, dietary components, feeding regimes might have led to 

these contrasting outcomes. 

Dietary nutrients and milk fat content 

Among all components of milk, fat content is the most amenable to change by altering dietary 

composition (Kennelly et al., 2005). Energy balance (EB), neutral detergent fiber (NDF) intake 

and source, as well as dietary fat supplements are the most important factors influencing both 

milk fat yield and concentration (Bocquier and Caja, 2001; Pulina et al., 2006). 

Generally, milk fat content has a negative correlation with level of nutrition in dairy cows 

(Palmquist et al., 1993) and sheep (Caja and Bocquier, 2000). Undernutrition is often observed 

in typical extensive or semi-intensive dairy ewe grazing systems, resulting in negative EB, and 

inducing an increase in milk fat concentration (Bocquier and Caja, 2001), probably due to 

lower milk volumes and/or high body fat mobilization into milk. Moreover, the relationship 

between fat content and EB is stronger for higher milk production ewes and become weaker 

for lower milk production ewes (Pulina et al., 2006).  

A positive correlation between fat content and dietary NDF have been confirmed consistently 

in dairy cows, but inconsistently in dairy sheep (Pulina et al., 2006). Examining the relationship 

between NDF content and milk fat yield of 10 different dairy ewe breeds, Mele et al. (2005) 

conducted a meta-analysis and observed the highest fat yield in milk from ewes fed diets that 

contained 35% NDF on dry matter basis. These authors also noticed that when NDF level was 

either higher than 35% or lower than 30%, daily milk fat yield decreased. In contrast, Nudda 

et al. (2004) reported a weak positive correlation of +0.38 between dietary NDF and fat yield. 

However, Natel et al., (2013) found that an increase in the levels of dietary NDF did not affect 

the composition of milk, although it significantly decreased milk yield. Thus, the positive effect 

of NDF on milk fat content may be largely contributed by a strong negative association between 

milk yield and NDF (Pulina et al., 2006). Variable responses were also observed for milk 
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fat content when different sources of fat were included in the diet of dairy sheep (Table 

2.5).  

2.2.2.3. Other factors affecting milk yield and composition 

Beside genetics and nutrition, other factors including parity, lambing season, milking 

frequency and stage of lactation also influence milk content and yield in ewes (Sevi et al., 

2000; Bocquier and Caja, 2001; Abd Allah et al., 2011). According to Novotná et al. (2009) 

and Nudda et al. (2003), the highest daily milk yield is observed in parities 2 and 3. This high 

production normally remains up until the sixth lactation (6 years of age) (Pugliese et al., 2000) 

and then decreases. Differences in udder glandular tissue (Sevi et al., 2000) also significantly 

contribute to changes in milk protein and fat contents between ewes in their first and second 

lactations (Novotná et al., 2009). 

 In terms of milking frequency, ewes milked twice a day tend to produce higher milk yield with 

lower percentage of fat and protein than those milked once daily (Nudda et al., 2002). This is 

due to the autocrine regulation or local feedback mechanism of milk secretion which is defined 

as a self-regulated ability of mammary gland largely without the impact from systemic 

hormones or signals (Wilde et al., 1998; Weaver and Hernandez, 2016) presented in sheep 

(Bencini et al., 2003). Positive local feedback that cause greater milk secretion, can be induced 

by several factors such as increasing milking frequency (Wall and McFadden, 2012), cell 

proliferation (Collier et al., 1993), cell differentiation (Lykos et al., 2000), serotonin and 

parathyroid hormone activity (Laporta et al., 2014), somatostatin (Bauman and Vernon, 1993), 

and prolactin (Chen et al., 2012). The completeness of milk removal could affect milk secretion 

through changes in mammary blood flow together with the number and activity of secretory 

cells (Wilde and Peaker, 1990; Wall and McFadden, 2012). In addition, responses to milking 

frequency changes were not consistent across different breeds, probably due to the difference 

of the udder storage capacity (Pulina et al., 2007).  
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The influences of lambing season and stage of lactation on lactation traits on the other hand, 

are generally attributed to nutrient value of available pastures in the grazing system 

(CappioBorlino et al., 1997). Day length (hours of light) in different lambing seasons also 

causes changes in milk production (Cannas and Pulina, 2002). Increase in daylight for a long 

period (more than 30 days) resulted in an increase in feed intake and consequently improved 

milk production, but the opposite effect was observed with a short-term increment in day length 

(Pulina et al., 2007).  

2.3. Body condition score as an essential management tool for dairy sheep producers 

Body condition score (BCS) has been employed as a health management tool for estimating 

body fat or energy reserves (Caldeira et al., 2007) as well as animal welfare status (Morgan-

Davies et al., 2008; Caroprese et al., 2009; Phythian et al., 2011). BCS in dairy sheep was first 

standardized in the 1960s (Russel et al., 1969). The technique uses subjective palpation along 

the backbone and ribs to evaluate bone sharpness or muscle roundness with the score varying 

from 1 to 5 (Table 2.6). Ewes with BCS scores lower than 2 are identified as being thin and 

emaciated; an indication of sub-optimal nutrition during early lactation, while ewes with BCS 

4 and above are considered obese  and probably over-fed (Caroprese et al., 2009).   

According to Cannas and Boe (2003), the body weight of any sheep breed can be predicted by 

BCS which may assist producers in terms of estimating the volume and quality of feed needed 

to meet the nutrient requirements of ewes. A comprehensive review by Kenyon et al. (2014) 

confirmed the positive association between BCS and ewe reproductive traits in different sheep 

breeds (Kenyon et al., 2004; Abdel-Mageed, 2009 ; Yilmaz et al., 2011; Corner-Thomas et al., 

2015) and suggested that the optimum ewe BCS at breeding is between 2.5 - 3.0 in order to 

have the highest pregnancy rate. Morgan-Davies et al. (2008) found an increased lamb survival 

rate in subsequent winters of ewes which had higher BCS scores in their mid-pregnancy. 

Relationship between BCS and milk production of dairy animal was determined mostly in cows 

(Domecq et al., 1997; Berry et al., 2003; Jilek et al., 2008).  Domecq et al. (1997) demonstrated 

that increasing one-point BCS of dairy cows during the dry period resulted in 545.5 kg more 

milk in the first 120 days of lactation period. Therefore, knowledge of BCS and its correlation 
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with animal performance traits would help sheep producers to improve productivity through 

appropriate nutritional management of feed intake at different stages of production.  

 

Table 2.6. Description of body condition scoring of sheep (Source: Western Australian 
Department of Agriculture, 2018)  

 

Grade and illustration Description 
 Backbone Short ribs 
 
 
 
 
 
 
 
Score 1 

The bones form a sharp narrow 
ridge. Each vertebra can be 
easily felt as a bone under the 
skin. There is only a very small 
eye muscle. 
 
 
 

The ends of the short ribs are 
very obvious. It is easy to feel 
the squarish shape of the ends. 
Using fingers spread 1 cm 
apart, it feels like the fingernail 
under the skin with practically 
no covering. 

 
 
 
 
 
 
 
Score 2 

The bones form a narrow ridge 
but the points are rounded with 
muscle. It is easy to press 
between each bone. 
 
 
 

The ends of short ribs are well 
rounded but it is easy to press 
between them. Using fingers 
spread 0.5 cm apart, the ends 
feel rounded like finger ends. 
They are covered with flesh 
but it is easy to press under and 
between them. 

 
 
 
 
 
 
 
Score 3 

The vertebrae are only slightly 
elevated above a full eye 
muscle. It is possible to feel 
each rounded bone but not to 
press between them. 
 
 

The ends of the short ribs are 
well rounded and filled with 
muscle. Using 4 fingers pressed 
tightly together, it is possible to 
feel the rounded ends but not 
between them. They are well 
covered and filled in with 
muscle. 

 
 
 
 
 
 
 
Score 4  

It is possible to feel most 
vertebrae with pressure. The 
back bone is a smooth slightly 
raised ridge above full eye 
muscles and the skin floats over 
it. 

It is only possible to feel or 
sense one or two short ribs and 
only possible to press under 
them with difficulty. It feels 
like the side of the palm, where 
maybe one end can be sensed. 

 
 
 
 
 
 
Score 5 

The spine may only be felt (if at 
all) by pressing down firmly 
between the fat covered eye 
muscles. A bustle of fat may 
appear over the tail.  

It is virtually impossible to feel 
under the ends as the triangle 
formed by the long ribs and hip 
bone is filled with meat and fat. 
The short rib ends cannot be 
felt. 
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2.4. Enhancing omega-3 long-chain polyunsaturated fatty acid content of dairy-derived 

foods for human consumption 

2.4.1. Role of Omega 3 long chain polyunsaturated fatty acid 

Omega-3 polyunsaturated fatty acids (n-3 PUFA) are termed essential fatty acids because they 

cannot be synthesized de novo by humans due to the lack of delta-12 and delta-15 desaturase 

enzymes and must therefore be acquired from the diet (Lee et al., 2016). n-3 PUFA include α-

linolenic acid (ALA, 18:3n-3), eicosapentaenoic (EPA, 20:5n-3), docosahexaenoic (DHA, 

22:6n-3), and the less recognized docosapentaenoic acid (DPA, 22:5n-3) (Nichols et al., 2010). 

The three long-chain (≥C20) n-3 PUFA (n-3 LC-PUFA), EPA, DHA, and DPA play an 

important role in human health by reducing the risk of chronic diseases. Up to the present time, 

seafood, and in particular, fish oil-derived products, have been the richest sources of n-3 LC-

PUFA (Nichols et al., 2010). The human diet generally contains insufficient amounts of these 

essential FA due largely to the low consumption of seafood. This issue provides opportunities 

to enrich the content of n-3 PUFA in other common food groups. Milk and milk products have 

traditionally been a major component of human diets, but are also among some of the poorest 

sources of n-3 PUFA. Consideration of the high consumption of milk and its processed 

products worldwide and the human health benefits has led to a large number of studies targeting 

the enhancement of n-3 PUFA content in dairy products. Nutritional manipulation to date has 

been the main approach for altering milk fatty acids (FA) in ruminants (Kennelly et al., 2005). 

However, the main challenge is ruminal biohydrogenation in which dietary PUFA are 

hydrogenated into monounsaturated FA and/or ultimately, saturated FA, due to rumen 

microbial activities. The inclusion of oil seed and vegetable oil in dairy animal diets 

significantly elevates ALA content (Bayat et al., 2018), while the addition of rumen-protected 

marine-derived supplements is the most effective way to increase the concentration of EPA, 

DHA, and DPA in dairy products (Shingfield et al., 2013). The mechanisms of n-3 LC-PUFA 
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biosynthesis pathway from ALA and the biohydrogenation of individual n-3 LC-PUFA in 

ruminants need to be better elucidated. Identified knowledge gaps regarding the activities of 

candidate genes regulating the concentrations of n-3 PUFA and the responses of ruminants to 

specific lipid supplementation regimes are also critical to a greater understanding of nutrition-

genetics interactions driving lipid metabolism. 

2.4.2. Structure of omega-3 LC-PUFA 

Omega-3 polyunsaturated fatty acids (n-3 PUFA) contain more than two double bonds with 

the first double bond on the third carbon atom from the methyl end of the molecule. The 

common types of n-3 PUFA are: Shorter chain (SC, ≤C18) n-3 PUFA including α-linolenic 

acid (ALA, 18:3n-3) and stearidonic acid (SDA, 18:4n-3), and long-chain (≥C20) n-3 PUFA 

(n-3 LC-PUFA) including eicosapentaenoic (EPA, 20:5n-3); docosahexaenoic (DHA, 22:6n-

3); and the less studied docosapentaenoic (DPA, 22:5n-3) acids (Nichols et al., 2010) (Figure 

2.2).  

 

 

 

 

 

Figure 2.2. The structure of common omega-3 polyunsaturated fatty acids. Adapted from 
(Calder, 2017). 
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2.4.3. Metabolic pathways, human health benefits and recommended intake of n-3 PUFA  

2.4.3.1. Dietary n-3 PUFA intake recommendations 

Dietary intake recommendations of n-3 LC-PUFA from different organisations vary largely 

and also depend on many factors including age, gender, and consumption purposes of 

consumers (Nichols et al., 2010; Nguyen et al., 2018). Adhering to National Health and 

Medical Research Council (NHMRC) recommendations (NHMRC, 2006), the daily intakes of 

ALA and total EPA+DPA+DHA considered adequate for men are 1.3 g/day, and 160 mg/day, 

and for women, 0.8 g/day and 90 mg/day, respectively. These dietary requirements of n-3 

PUFA are not optimal, but are seen as sufficient to prevent deficiency symptoms for adults. 

However, with the aim at reducing chronic disease risk, the NHMRC suggested that dietary 

intakes of total n-3 LC-PUFA of 430 mg/day for women, and 610 mg/day for men should be 

adequate to meet requirement levels. In order to prevent the risk of coronary heart disease, 

FAO and WHO (FAO/WHO, 2008) recommended sufficient daily intake of EPA + DHA at 

250 mg for adult males and non-pregnant or/and non-lactating adult females, and at 300 mg for 

lactating and pregnant women. In the case of disease treatment, such as for 

hypertriglyceridemia patients who have high triglyceride level symptoms, a much higher intake 

of total EPA + DHA from 2 - 4 g/day is recommended by the American Heart Association 

(Miller et al., 2011). A recent review by Nguyen et al. (2018) stated that the intake 

recommendation of n-3 LC-PUFA for primary prevention of cardiovascular disease across all 

organisations is about 500 mg/day, which is equivalent to two or three servings of fish per 

week. 

2.4.3.2. Metabolic pathways for the biosynthesis and dietary sources of n-3 PUFA  

Due to the lack of delta-12 and delta-15 desaturase enzymes, mammals (including humans) 

cannot synthesize n-3 PUFA de novo, thus these essential FA must be acquired via foods or 
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nutritional supplements (Lee et al., 2016). The first step in the n-3 LC-PUFA synthesis pathway 

for the human body is the conversion of ALA to SDA, with ALA mostly acquired from green 

plant tissues and plant-derived oils, especially flaxseed/linseed and canola oil (Baker et al., 

2016) (Table 2.7).  

 

Table 2.7. Common food sources of ALA (18:3n-3, as gram per serving) 

 
Item Unit  ALA 

Flaxseed oil g/ tbsp 7.26 

Chia seed g/ ounce 5.06 

English walnuts g/ ounce 2.57 

Whole flaxseed g/ tbsp 2.35 

Canola oil g/ tbsp 1.28 

Soybean oil g/ tbsp 0.92 

Black walnut g/ ounce 0.76 

 

Data from Office of Dietary Supplements, National Institute of Health (NIH), USA                      

Tbsp denotes tablespoon. 

 

There are two recognised biosynthesis pathways for n-3 LC-PUFA (Figure 2.3), including the 

presently accepted pathway (Sprecher, 2002) and conventional metabolic pathway (Park et al., 

2009). In the former pathway, DHA was produced from DPA via sequential desaturation and 

elongation combined with a final β-oxidation where tetracosapentaenoic acid (24:5n-3) is 

chain-shortened by two carbons. The latter conventional metabolic pathway, in contrast, 

consists of direct conversion of DHA from DPA under the catalysis of delta-4 desaturase 

enzyme. The molecular evidence for delta-4 desaturase that supported the conventional 

metabolic pathway for n-3 LC-PUFA biosynthesis was first demonstrated by Park et al. (2015). 

Further research is needed to clarify the specific pathway for n-3 LC-PUFA biosynthesis in the 
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human body, but most studies have confirmed a very low rate of conversion of ALA to n-3 

LC-PUFA, in particular,  to DHA (0.05% or less) (Burdge and Calder, 2006). The specific 

mechanism(s) by which biosynthesis of these essential FA occurs is limited in man and is still 

largely unknown. Calder (2014) suggested that a possible cause for this limitation is the 

competition between biosynthetic pathways of ALA conversion to n-3 LC-PUFA and linoleic 

acid (18:2n-6) conversion to n-6 LC-PUFA as the two pathways employ the same set of 

enzymes. In addition, based on previous animal studies, deficiencies of insulin (Brenner, 1977), 

protein (Narce et al., 1988) and microminerals (Johnson et al., 1989) might lead to lower delta-

6 desaturase enzyme activity, thus contributing to the low efficiency of this pathway.  

 
 

Figure 2.3. Possible biosynthesis and metabolic pathway of n-3 LC-PUFA. Thick arrows represent 
the conventional metabolic pathway; dotted lines with arrows represent newly proposed pathway 
(Source: Park et al., 2009 and Sprecher, 2002).  
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Due to the limitation of n-3 LC-PUFA biosynthesis in the human body from ALA, the best 

way of acquiring these essential FA is from dietary sources (Simopoulos, 2016). Fish and 

seafood currently are the major sources of n-3 LC-PUFA with high concentration ranges 

(Nichols et al., 2010; Tur et al., 2012). The average content of total n-3 LC-PUFA in 150 g wet 

weight of wild caught Australian fish, shellfish, prawns, and lobsters are 350, 250, 180, and 

160 mg respectively, with a range of species also having markedly higher contents than these 

average values (Nichols et al., 2010). The level of these FA for the two common fish species 

farmed in Australia - Atlantic salmon, and barramundi - examined by Nichols et al. (Nichols 

et al., 2014) are 980 and 790 mg/100 g, respectively. Compared to the previous results (Nichols 

et al., 2010), the concentration of n-3 LC-PUFA for these farmed fish had decreased 

significantly by 50% or more. Changes in feed ingredients for farmed fish, in which fish meal 

and fish oils have been substituted by non-traditional oil sources such as plant and/or chicken 

oils were the reasons for this trend (Nichols et al., 2014). Foods derived from animals have 

much lower n-3 LC-PUFA content in comparison to marine products (Table 2.8). 

 

Table 2.8. Content of n-3 LC-PUFA in common seafood and other animal sources 

 
Item Unit EPA  DHA DPA Total n-3 LC-PUFA Reference 
Wild seafood      Nichols et al. (2010) 
Fish  mg/150 g - - - 350  
Shellfish mg/150 g - - - 225  

Prawns mg/150g - - - 180  
Lobster mg/150 g - - - 160  
Farmed fish       
Atlantic salmon mg/100 g - - - 980 Nichols et al. (2014) 
Barramundi mg/100 g - - - 790  
Other animal sources      
Beef mg/100 g 15 12 20 47 Garcia et al. (2008) 
Chicken breast mg/100 g - - - 62.04 Konieczka et al. (2017) 
Pork  mg/100 g 23.3 3.9 21.1 48.3 Dugan et al. (2015) 
Feedlot lamb meat mg/100 g 17.9 4.9 15.6 38.4 Nguyen et al. (2017) 
  28.9 13.3 19.6 61.8 Le et al. (2019) 
Grazing lamb meat mg/100 g 25 7.1  23.7 55.8  Le et al. (2018) 
Sheep milk mg/250 ml 17.8 19.8 24.1 61.7 Nguyen et al. (2018b) 
Sheep cheese mg/40 g 14.3 12.8 17.1 44.2 Nguyen et al. (2019) 
Cow milk mg/100 g 3.3 - 4.4 - Benbrook et al. (2013) 
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2.4.3.3. n-3 LC-PUFA consumption and chronic diseases 

 The biological functions of n-3 LC-PUFA are firstly represented by their occurrence in all 

cellular membranes in all tissues of the body, and in particular, at high content levels in the 

retina, brain, and myocardium (Surette, 2008; Li and Hu, 2009). For example, due to a high 

concentration of DHA in the membranes of the human retina and brain, it plays an important 

role in regulating membrane receptors, membrane-bound enzymes and transduction signals (Li 

and Hu, 2009). In addition,  n-3 LC-PUFA have the potential to transform into a group of 

mediators such as the E-series and D-series resolvins at the expense of inflammation mediators 

from arachidonic acid (20:4n-6, ARA) which is the primary cause of various chronic disease 

treatments (Calder, 2006; Surette, 2008). Chronic inflammation that persists for a long time 

has a strong link with the development of many chronic diseases including cancer, 

cardiovascular (CVD), neurodegenerative, and respiratory diseases (Calder, 2014; 

Kunnumakkara et al., 2018). Moreover, there is a positive correlation between n-3 PUFA 

dietary consumption and incorporation of these FA into cell membranes (Zuijdgeest-Van 

Leeuwen et al., 1999; Surette et al., 2003) that explains a positive effect of adequate dietary n-

3 PUFA consumption on inhibiting chronic diseases.  

Cardiovascular diseases refer to a collective term for heart and/or blood vessels related diseases 

that are by far, the most leading cause of mortality worldwide with 17.9 million deaths reported 

in 2018 (WHO, 2018). Therefore, the effects of n-3 PUFA on major CVD including coronary 

heart disease (CHD) and stroke have been reported in numerous studies (Bu et al., 2016; 

Mozaffarian et al., 2016; Alexander et al., 2017). One of the potential roles of n-3 PUFA in 

reducing the risk of CHD is by counteracting many steps of atherosclerosis (Colussi et al., 

2017), the major cause of CHD (Frostegard, 2013). Novel findings demonstrated that enriched-

DHA canola oil supplementation could reduce the risk of CHD by improving high-density 

lipoprotein cholesterol, triglycerides, and blood pressure (Jones et al., 2014). In addition, 
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previous meta-analyses established the link between increasing intakes of n-3 LC-PUFA and 

reducing the risk of CHD death by 10-30% (Alexander et al., 2017).  In terms of stroke, dietary 

consumption of n-3 PUFA can reduce the volume of ischemic stroke (Shirley et al., 2014) by 

promoting antioxidant enzyme activities or partly acting as an antioxidant. n-3 PUFA can 

provide further benefits relating to stroke post-treatments (Bu et al., 2016), by generating other 

important responses such as neuranagenesis and revascularization. The latest meta-analysis of 

prospective cohort studies (Zhao et al., 2019) supported a strong inverse relationship between 

daily fish intake and the risk of stroke.  

Following CVD, cancer is the second most common cause of death (WHO, 2018). Clinical and 

epidemiological studies have demonstrated the role of n-3 LC-PUFA in either reducing the risk 

of developing cancer or improving chemotherapy outcomes in existing cancer patients of 

several common types of cancer (Calder, 2014; Shahidi and Ambigaipalan, 2018). Long-term 

studies by Kato et al. (1997), Terry et al. (2001) and Takezaki et al. (2003) concluded that 

increased consumption of dietary n-3 LC-PUFA lowered the risk of colorectal, prostate and 

lung cancer, respectively. Van Blarigan et al. (2017) also reported that higher intake of n-3 LC-

PUFA improved disease-free survival by 28% in colon cancer patients. The effect of these 

PUFA is more varied. While Holmes et al. (Holmes et al., 2003) showed no relation between 

fish consumption and breast cancer, recent studies confirmed the positive impact of n-3 fat on 

not only inhibiting (Sczaniecka et al., 2012; Makarem et al., 2013), but also reducing fatigue 

(Pereira et al., 2018), in breast cancer patients. In contrast to the large number of studies that 

confirmed the positive effects of n-3 PUFA on these two major chronic diseases, other research 

findings reported neutral, inconclusive or even possible negative effects (Shahidi and 

Ambigaipalan, 2018). For instance, there was no statistically significant association between 

major CVD events and n-3 PUFA supplementation based on a meta-analysis of previous 

randomized clinical trials (Rizos et al., 2012). Similarly, results from a large prospective cohort 
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study by Rhee et al. (2017) reported a neutral effect of n-3 PUFA intake on the risk of major 

CVD in healthy women aged ≥45 years. With respect to cancer, Holmes et al. (2003) showed 

that there was no relationship between fish consumption and breast cancer, while in one case, 

the intake of n-3 PUFA was associated with higher risk of basal cell carcinoma on skin cancer 

(Park et al., 2017). 

Apart from CVD and cancer, large studies have recognised the role of n-3 LC-PUFA in regards 

to brain related cognitive treatments and other common chronic diseases such as rheumatoid 

arthritis, type-2 diabetes and obesity. Relating to brain issues in humans, bioactivities of n-3 

LC-PUFA, particularly DHA, play an important role in neural membrane structure, 

neurotransmission, and signal transduction (Salem et al., 2001), and positive effects on 

treatment of different neurodegenerative and neurological disorders (Dyall, 2015). Lower n-3 

PUFA intakes have been reported to induce the risk of Alzheimer’s disease (Cole et al., 2009), 

while increased fish oil intakes for Parkinson’s disease patients resulted in a significant 

reduction in depressive symptoms (da Silva et al., 2008). Examining rheumatoid arthritis, 

Abdulrazaq et al. (2017) reported that a majority of studies confirmed the beneficial effect of 

utilising n-3 LC-PUFA at doses of 3-6 g/day on pain relief in patients. Findings on the benefits 

of n-3 PUFA consumption in type-2 diabetes and obesity remain inconsistent. While some 

authors have recognised that n-3 PUFA intake can reduce the incidence of diabetes (Wang et 

al., 2003; Tsitouras et al., 2008), the findings from a systematic review and meta-analysis 

reported by Wu et al. (2012) suggested a neutral effect of EPA + DHA and seafood 

consumption on the development of diabetes. Similarly, no significant relationship between n-

3 PUFA and obesity was reported in the review by Albracht-Schulte et al. (Albracht-Schulte 

et al., 2018). In contrast, high fish intake in men could lower the risk of being overweight (He 

et al., 2002), although an opposite result was observed in women with higher fish consumption 

(Iso et al., 2001). 
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The controversies regarding the role of n-3 PUFA in chronic diseases may be explained by 

many factors such as dose, duration, baseline intake (Thota et al., 2018), specific type of the 

chronic disease and risk group (O'Connell et al., 2017). Due to this continuous debate and 

variations in experimental design, it has not been very evident from current scientific literature 

and medical opinion confirming or rejecting the beneficial effects of n-3 PUFA in reducing the 

risk of human chronic diseases (Shahidi and Ambigaipalan, 2018). Therefore, large and unified 

clinical trials need to be conducted to conclusively identify the exact role of n-3 PUFA as 

independent or supplementary factors in specific chronic diseases. 

2.4.4. Lipid metabolism in ruminants: Obstacles to enriching milk fat with n-3 PUFA  

Since all of the long-chain FA in milk fat are derived from the absorption of fatty acids from 

the small intestine and body fat reserves that have both originated from dietary FA (Chilliard 

et al., 2007; Shingfield et al., 2013), manipulating the diet or feeding regime is the most popular 

way to alter milk fat composition. However, the efficiency of this approach in ruminants is still 

limited due to rumen microbial fermentation (Buccioni et al., 2012a).  

Dietary lipid sources for ruminants are mainly from forages, supplements or concentrates 

including cereal grains, oilseeds and animal fats. Lipids derived from forages contain largely 

glycolipids and phospholipids, while triglycerides are found primarily in concentrates or 

supplements (Harfoot and Hazlewood, 1988). Once dietary lipids enter the rumen, lipolysis 

occurs and it involves hydrolysis of ester linkages to release free fatty acids for the next 

biohydrogenation (BH) process (Buccioni et al., 2012a) (Figure 2.4).  

Under the activity of rumen microbes, unsaturated fatty acids (UFA) including PUFA are 

hydrogenated to monounsaturated FA (MUFA) and ultimately, saturated FA (SFA) through 

the addition of two hydrogen atoms to a double bond. The principal role of this process is to 

maintain a stable rumen environment by reducing the toxic effects of free UFA on bacterial 
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growth in the rumen (Harfoot and Hazlewood, 1988). Due to the high rate of hydrolysis and 

BH, only small amounts of PUFA from the diet can pass through the rumen into the duodenum 

for absorption (Bauman and Lock, 2006). According to Shingfield et al. (Shingfield et al., 

2010), dietary ALA in the rumen can be hydrogenated into 18:0 (Figure 2.5) at the rate of 85 

to 100%. Both in vivo (Shingfield et al., 2012) and in vitro (Kairenius et al., 2011) studies have 

confirmed an extensive BH of dietary EPA and DHA that was greater than 90%. In contrast to 

ALA, these PUFA are not completely hydrogenated into SFA, but numerous intermediates are 

produced including a majority of UFA and much lesser amounts of SFA (Chilliard et al., 2000). 

 

Figure 2.4. The scheme of lipolysis and biohydrogenation (adapted from Buccioni et al. 
(2012a) 

 

The most recent in vitro study (Toral et al., 2018) suggests that while the reduction of the 

double bond at the closest position to the carboxyl group is the main BH pathway of EPA and 
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DPA (Figure 2.6), this process is much less important for DHA. In addition, these authors 

stated that the possible interspecies differences between bovine and ovine BH of n-3 LC-PUFA 

is directly correlated with slower and less complete BH observed in cattle, especially for EPA 

and DPA. However, the specific pathways for BH of individual n-3 LC-PUFA still remain 

unclear.  

 

 
 

Figure 2.5. Ruminal biohydrogenation of α-linolenic acid. Thick arrows represent the major pathway; 
dotted lines with arrows represent putative pathway (adapted from Gomez-Cortes et al. (2009b).  

 

Apart from ruminal BH, given the relatively low absorption rate from the small intestine into 

the mammary gland at 49% for ALA, and ranging from 14 to 33% for EPA, and from 13 to 

25% for DHA (Shingfield et al., 2013), it is not surprising that the proportion of these PUFA 

in dairy products is generally very low.  Principal strategies for increasing n-3 PUFA in milk 
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and milk products, therefore, have been to minimize the biohydrogenation effects of ruminal 

microbes and/or improving the absorption rate of these FA into the mammary gland.  

 
 

Figure 2.6. Possible biohydrogenation pathways of 20:5n-3. Solid arrows represent possible 

major pathway; dotted lines with arrows represents hypothetical pathway (adapted from Toral 

et al. (2018). 
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2.4.5. Recent attempts to increase n-3 PUFA content in dairy-derived products  

Up to the present time, the nutritional manipulation of feeding regimes and supplementation 

with lipid sources containing high amounts of n-3 PUFA (Shingfield et al., 2013; Manso et al., 

2016) are the major approaches to improving n-3 PUFA content in dairy products. In contrast, 

current efforts to employ genetic programmes in this theme have not yet yielded significant 

enhancement because the FA profile of milk processed products primarily depends on the FA 

composition of raw milk (Collomb et al., 2006; Bisig et al., 2007; Prandini et al., 2011). 

Therefore, current studies mostly focus on milk content as the principal route of increasing n-

3 PUFA in other processed products.  

2.4.5.1. Feeding regime  

Previous studies had demonstrated that feeding regime, particularly changes in forage sources 

and feeding systems, had significant effects on short chain n-3 PUFA, but minor effects on n-

3 LC-PUFA concentrations in both dairy ewes and cows (Table 2.9). This is because lipids 

from pasture sources contain abundant amounts of ALA (Dewhurst et al., 2006; Woods and 

Fearon, 2009), but not EPA, DHA and DPA. For example, ALA content of fresh ryegrass 

varieties, a popular pasture used for ruminants worldwide, ranges from 62 to 74% of total fatty 

acids (Gilliland et al., 2002). However, the pasture conservation processes, particularly grass 

wilting in the field, generally cause the oxidative loss of forage PUFA, subsequently and 

markedly reducing the content of ALA in hay or silage (Dewhurst et al., 2006). Wilting 

ryegrass 24 h in glasshouse, for instance, reduced the percentage of ALA by 33% compared to 

unwilted grass (Elgersma et al., 2003). Therefore, dairy ruminants that are kept in grazing 

systems or have free access to fresh grass produced much higher proportions of ALA in milk 

compared with animals fed conserved grass (hay and silage) (Leiber et al., 2005; Gomez-Cortes 

et al., 2009a; Mohammed et al., 2009; Mierlita et al., 2018). These results appear to be 

supported by the higher ALA intake of animals fed or grazed on fresh pastures.   
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Table 2.9. Effect of pasture feeding regimes on n-3 PUFA content of milk (g/100g fatty acids) 

Forage source/ feeding system Species ALA  EPA  DHA  DPA  References 
Ryegrass-dominated pastures Bovine 0.703 0.083 0.009 0.109 Leiber et al. (2005) 

Freshly harvested ryegrass  0.619 0.073 0.009 0.113  
Alpine pastures  1.146 0.083 0.009 0.120  
Freshly harvested Alpine  0.950 0.083 0.010 0.118  
Silage-concentrate diet (control)1  0.516 0.063 ND 0.082  

Ryegrass pasture Bovine 0.68 0.05 0.02 0.07 Mohammed et al. (2009) 
Freshly harvested ryegrass  0.82 0.07 0.02 0.08  
Ryegrass silage  0.34 0.05 0.02 0.09  

Indoor hay based diet Bovine 0.72 0.08 - 0.147 Coppa et al. (2011) 
Rotational grazing system  0.727 0.070 - 0.137  
Continuous grazing system  0.940 0.087 - 0.150  
Indoor conventional system Bovine 0.579 0.072 - 0.118 Stergiadis et al. (2014) 
Indoor organic system  1.199 0.098 - 0.098  

Mixed forage2 Bovine 0.47 - - - Liu et al. (2016) 
Corn stalk1 diet (35%)  0.58 - - -  
Corn stalk2 diet (53.8%)  0.63 - - -  
Daisy forb - winter Ovine 1.62 - - - Addis et al. (2005) 
Ryegrass - winter  1.47 - - -  
Burr medic - winter  2.19 - - -  
Sulla - winter  2.98 - - -  
Daisy forb - spring  1.26 - - -  
Ryegrass - spring  1.44 - - -  
Burr medic - spring  1.84 - - -  
Sulla - spring  3.15 - - -  
Pasture Ovine 1.07 0.06 - 0.13 Gomez-Cortes et al. 

(2009a) 
Pasture + oat grain  0.59 0.05 - 0.12  
Total mixed ration3  0.33 0.03 - 0.06  
Grass hay (in door) Ovine 1.31 0.19 0.30 - Mierlita (Mierlita, 2016) 
Part-time grazing  2.06 0.28 0.39 -  
Pasture Ovine 2.09 0.30 0.37 - Mierlita et al. (2018) 
Pasture + standard concentrate  1.04 0.11 0.18 -  
Pasture  Ovine 0.44 0.01 0.07 0.13 Mohamed et al. (2018) 
Pasture + concentrate  0.24 0.00 0.12 0.07  
Concentrate  0.21 0.00 0.00 0.08  
Red clover silage Ovine 0.92 0.05 - 0.09 Guzatti et al. (2018) 
Lucerne silage  0.70 0.05 - 0.09  

 

1 The control diet contained 60% ryegrass silage, 30% maize silage and 10% grass hay on dry matter basis. 
2 Mixed forage contained 26.7% corn silage, 23.4% alfalfa hay and 3.7% Chinese wild rye on dry matter basis. 
3 Total mixed ration contained concentrate and forage in proportion of 80:20.   
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The transfer of n-3 PUFA from forage into milk and milk products is also influenced by forage 

species (Table 2.9). Grazing dairy cows on diverse alpine pastures produced more ALA in their 

milk than on ryegrass-dominated paddocks (1.15 vs 0.70 g/100g FA) (Leiber et al., 2005).  

Both Addis et al. (2005) and Bonanno et al. (2016) reported the greatest concentration of ALA 

in sheep milk and cheese from ewes grazed on Sulla pasture, versus other common forages 

including ryegrass, burr medic and daisy forb. Guzatti et al. (2018) showed higher levels of 

ALA in ewe milk for animals fed on clover silage compared with lucerne silage (0.92 vs 0.70 

g/100g FA). Disparities observed between forage species in the transfer of n-3 PUFA into milk 

in these studies were not correlated with ALA intake, but were associated with variation in 

condensed tannin content in the forages. The most possible mechanisms and effects of the 

condensed tannins were explained by Cabiddu et al. (Cabiddu et al., 2009), in which tannins 

inhibited rumen microbial activities, thus ultimately lowering the PUFA biohydrogenation 

process in the rumen. The attempt to reduce microbial species involved in biohydrogenation 

such as B. proteoclasticus has been implemented with limited success due to many factors. See 

comprehensive coverage by Lourenco et al. (Lourenco et al., 2010). 

2.4.5.2. Lipid supplementation 

Lipid supplementation has been used as an effective tool to improve animal performance due 

to its significant energy contribution (Woods and Fearon, 2009), and it can also alter FA 

composition of milk fat (Hristov et al., 2004; Kennelly et al., 2005). Fish oils and marine 

products, oilseeds and vegetable oils are the main sources that have been employed in ruminant 

diets to enhance the concentrations of health beneficial n-3 PUFA and n-3 LC-PUFA in milk 

and milk products (Woods and Fearon, 2009). 
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Oil seed and vegetable oil 

Plant-derived fat is the most common fat source in ruminant supplements, and includes both 

oilseeds and extracted vegetable oils. This is because these materials not only contain a high 

concentration of PUFA (Dubois et al., 2007), protein and energy (Petit, 2010), but are also 

more readily available and cheaper than other (marine) sources (Nguyen et al., 2018). 

Therefore, a number of studies have examined the effects of oilseed and vegetable oils on the 

concentration of health beneficial n-3 FA in both bovine and ovine milk products (Table 2.10). 

Based on previously reported results, the addition of flaxseed or linseed supplements in 

ruminant diets is a more effective strategy to enrich milk n-3 PUFA compared to other plant 

fat supplementation methods (Table 2.10).  Due to its very high content in ALA at 

approximately 53% of all FA (Bernacchia et al., 2014), cows or sheep supplemented with 

flaxseed had substantial enhancement of this short chain n-3 PUFA in milk products (Table 2.10).  

Oil infusion is also considered an effective form of providing plant oil supplements that 

increases the escape rate of UFA from the BH of rumen microbes, thus enhancing the 

availability of n-3 PUFA for absorption (Shingfield et al., 2013). Khas et al. (Khas et al., 2010) 

reported that adding 160 g/day of infused free ALA in the diet for lactating cows increased 

ALA content in milk by 41-fold, and also resulted in significant increases in milk EPA and 

DPA by two-fold and three-fold, respectively. However, supplementation with vegetable seed 

and oils only marginally increased milk EPA, DHA, and DPA in both bovines and ovines, with 

the percentages of these FA often lower than 0.1 g/100g FA (Table 2.10). These findings 

indicated that the endogenous biosynthesis pathway of these n-3 LC-PUFA from dietary ALA 

in dairy animals is limited.  
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Table 2.10. Effect of supplementing ruminants with plant-derived dietary sources on n-3 

PUFA concentration in milk and milk products (g/100g fatty acids) 

Diet Species Product ALA  EPA  DHA  DPA  References 

Control 
40 g/day infused LNA-rich FA1 

80 g/day infused LNA-rich FA 
120 g/day infused LNA-rich FA  
160 g/day infused LNA-rich FA 

Bovine Milk 0.61 
6.49 
12.42 
18.75 
25.38 

0.09 
0.18 
0.22 
0.21 
0.22 

- 
- 
- 
- 
- 

0.07 
0.12 
0.16 
0.29 
0.23 

Khas et al. (2010) 

Control 
Whole flaxseed 

Bovine Milk 0.75 
0.81 

0.003 
0.022 

0.001 
0.001 

- 
- 

Caroprese et al. (2010) 

Control  
Rapeseed oil 
Peanut oil 
Sunflower seed oil  

Bovine Milk 
 
 
 

0.41 
0.38 
0.33 
0.32 

0.05 
0.06 
0.06 
0.06 

- 
- 
- 
- 

0.05 
0.04 
0.06 
0.05 

Dai et al. (2011) 

Control 

25ml/kg DM2 Canola oil 

35 ml/kg DM canola  oil 

50 ml/kg DM canola oil 

Bovine Milk 0.83 

0.85 

0.95 

0.97 

0.09 

0.09 

0.08 

0.08 

0.01 

0.01 

0.01 

0.00 

0.13 

0.14 

0.12 

0.11 

Otto et al. (2014) 

Control 

500 g/day extruded flaxseed 

1000 g/day extruded flaxseed 

Bovine Milk 0.28 

0.50 

0.59 

0.02 

0.02 

0.02 

- 

- 

- 

- 

- 

- 

Cattani et al. (2014) 

Linseed oil 

Safflower oil 

Bovine Milk 0.249 

0.180 

0.019 

0.013 

- 

- 

0.014 

0.007 

Li et al. (2015) 

Control 

3% Canola oil 

6% Canola oil   

Bovine Milk 0.19 

0.36 

0.35 

0.012 

0.011 

0.011 

0.004 

0.003 

0.003 

0.037 

0.034 

0.033 

Welter et al. (2016) 

Control 

Extruded linseed 

Bovine Milk 

 

0.19 

0.51 

- 

- 

0.019 

0.008 

- 

- 

Vanbergue et al. (2018) 

Palm oil 

Olive oil 

Soybean oil 

Linseed oil 

Ovine Milk 0.52 

0.36 

0.53 

1.07 

0.04 

0.03 

0.03 

0.05 

0.02 

0.02 

0.02 

0.04 

0.08 

0.06 

0.07 

0.11 

Bodas et al. (2010) 

Control 

100 g extruded linseed 

200 g extruded linseed 

Ovine Milk 1.21 

1.65 

2.26 

0.05 

0.06 

0.06 

0.05 

0.09 

0.10 

- 

- 

- 

Mughetti et al. (2012) 

Control 

Seaweed  

Whole flaxseed  

Seaweed + Whole flaxseed 

Ovine Milk 0.57 

0.59 

1.53 

1.32 

0.07 

0.06 

0.08 

0.08 

0.05 

0.04 

0.05 

0.06 

0.08 

0.08 

0.09 

0.10 

Caroprese et al. (2016) 



37 
 

Table 2.10. (Continued) Effect of supplementing ruminants with plant-derived dietary sources on n-3 
PUFA concentration in milk and milk products (g/100g fatty acids) 
 
Diet Species Product ALA  EPA  DHA  DPA  References 

Control 
Canola oil 
Rice bran oil 
Flaxseed oil 
Safflower oil 

Ovine Milk 0.62 
0.73 
0.51 
1.74 
0.67 

0.08 
0.09 
0.07 
0.11 
0.07 

0.04 
0.06 
0.04 
0.06 
0.06 

0.08 
0.13 
0.10 
0.15 
0.10 

Nguyen et al. (2018b) 

Control 
Canola oil 
Sunflower oil 
Castor oil 

Ovine Milk 0.31 
0.26 
0.24 
0.28 

0.04 
0.03 
0.03 
0.05 

0.02 
0.02 
0.02 
0.01 

0.08 
0.07 
0.07 
0.08 

Parentet et al. (2018) 

Control 
500 g/day extruded Flaxseed at  
1000 g/day extruded Flaxseed at  

Bovine  Cheese 0.29 
0.50 
0.61 

0.02 
0.02 
0.02 

- 
- 
- 

- 
- 
- 

Cattani et al. (2014) 

Palm oil 
Olive oil 
Soybean oil 
Linseed oil 

Ovine Cheese 0.54 
0.36 
0.51 
1.04 

0.04 
0.03 
0.03 
0.03 

0.02 
0.03 
0.02 
0.03 

0.07 
0.06 
0.06 
0.09 

Bodas et al. (2010) 

Control 
100 g extruded linseed  
200 g extruded linseed  

Ovine  Cheese 1.18 
1.84 
2.02 

0.02 
0.04 
0.04 

0.03 
0.05 
0.06 

- 
- 
- 

Mughetti et al. (2012) 

Control 
Canola oil 
Rice bran oil 
Flaxseed oil 
Safflower oil 

Ovine Cheese 0.71 
0.79 
0.63 
1.30 
0.71 

0.11 
0.11 
0.10 
0.11 
0.11 

0.06 
0.06 
0.06 
0.06 
0.08 

0.12 
0.13 
0.12 
0.13 
0.13 

Nguyen et al. (2019) 

Control 
2% Palm oil 
4% Palm oil 
6% Palm oil 

Ovine  Yogurt 0.0 
0.0 
0.28 
0.31 

- 
- 
- 
- 

- 
- 
- 
- 

- 
- 
- 
- 

Bianchi et al. (2017) 

 

1 FA: fatty acid 
2 DM: dry matter 

 

Marine lipid sources 

Feeding dairy animals with marine oil resulted in the highest n-3 LC-PUFA concentration in 

milk and milk products (Table 2.11) among all types of lipid supplements examined. Previous 

studies also confirmed the efficiency of utilising rumen-protected forms of marine products 
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that were markedly higher than in the untreated controls; mainly as a result of the lesser extent 

of ruminal biohydrogenation with the rumen-protected diets (Kitessa et al., 2001a). Kitessa et 

al. reported that the content of EPA and DHA, which are generally little in milk (Tables 2.9 & 

2.10), could be increased by supplementing both dairy cattle (Kitessa et al., 2004) and ewes 

(Kitessa et al., 2003) with rumen-protected fish oil. The proportion of DHA, the most essential 

n-3 LC-PUFA, observed in these studies, exceeded 1% of the total FA. Similarly, an effective 

incorporation rate of DHA from a marine algae supplement, an alternative to fish oil into milk, 

was also confirmed by a number of studies (Table 2.11). This transfer rate appears to be higher 

as observed in ovine (Papadopoulos et al., 2002) than in bovine (Boeckaert et al., 2008). 

Results presented in Table 2.11 also indicate that supplementing fish oil is more advantageous 

than marine algae in terms of improving milk EPA and DPA content.  

Recent focus on achieving quantitatively significant amounts of n-3 PUFA per standard serve 

of milk and milk products has occurred (Nguyen et al., 2018b; Nguyen et al., 2019). This 

absolute FA concentration data, may be more accurate than the proportion (expressed as %FA) 

itself, since fat percentage of milk from different species varies widely (Park et al., 2007), and 

such quantitative data can potentially assist consumers in purchasing decisions. One serve of 

fresh milk produced from grazing ewes supplemented with rumen-protected EPA + DHA 

contains 62 mg of total n-3 LC-PUFA, three-fold higher than the control group (Nguyen et al., 

2018b). This result is higher than the concentration of total EPA + DHA + DPA in one serve 

of cooked lamb meat (55 mg) reported by Flakemore et al. (2017). In achieving 60 mg/serving, 

this sheep milk can also be considered as achieving a “good source” level of n-3 LC-PUFA 

adhering to Food Standards Australia and New Zealand (FSANZ) (2002). Although the 

inclusion of fish oil into ruminant diets might have a negative effect on meat quality such as 

possible rancidity and abnormal flavour in cooked or grilled lamb (Watkins et al., 2013), no 

side effects on milk and milk products have been reported. Nguyen et al. (2019) observed no 

differences in sensory eating traits between ripened cheese processed from milk produced by 

dairy sheep supplemented with rumen-protected marine source and the unsupplemented group. 
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However, the higher cost of the marine oil source possibly limits its utilisation as a routine 

supplementation for dairy ruminants (Woods and Fearon, 2009). 

 

Table 2.11. Effect of supplementing ruminants with dietary marine sources on n-3 PUFA 
concentration of milk and milk products (g/100g fatty acids) 
 

Diet Species Product ALA  EPA  DHA  DPA  References 

Control 

Protected algae 

Unprotected algae  

Bovine Milk 0.54 

0.49 

0.47 

- 

- 

- 

0.00 

0.76 

0.46 

- 

- 

- 

Franklin et al. (1999) 

Control 

Rumen-protected tuna oil 

Bovine Milk 0.86 

1.28 

0.0 

0.61 

0.0 

1.09 

- 

- 

Kitessa et al. (2004) 

Control 

Fish oil and sunflower oil 

Bovine Milk 0.21 

0.23 

0.03 

0.11 

0.00 

0.07 

0.07 

0.16 

Shingfield et al. (2006) 

Control 

Marine algae 

Bovine Milk 0.50 

0.42 

- 

- 

0.09 

1.01 

- 

- 

Boeckaert et al. (2008) 

ABO/ABO1 

RUM/ABO2 

RUM/RUM3 

ABO/RUM4 

Bovine Milk 14.4 

4.78 

2.33 

11.6 

0.22 

0.14 

0.09 

0.16 

- 

- 

- 

- 

0.22 

0.22 

0.12 

0.18 

Kazama et al. (2010) 

Control 

Fish oil 

Bovine Milk 0.75 

0.84 

0.003 

0.060 

0.001 

0.117 

- 

- 

Caroprese et al. (2010) 

Control 

Fish oil  

Fish oil + palm oil  

Bovine Milk 0.45 

0.62 

0.69 

0.06 

0.10 

0.09 

0.10 

0.21 

0.14 

- 

- 

- 

Vargas-Bello-Pérez et 

al. (2015b)  

Control 

Ultrarefined fish oil at 75 g/day 

Ultrarefined fish oil at 150 g/day 

Ultrarefined fish oil at 300 g/day 

Bovine Milk 0.41 

0.38 

0.39 

0.48 

0.06 

0.06 

0.07 

0.17 

0.03 

0.03 

0.05 

0.10 

0.09 

0.08 

0.10 

0.18 

Kairenius et al. (2015) 

Control 

Microalgae DHA Gold® 

Extruded linseed + DHA Gold® 

Bovine Milk 

 

 

0.19 

0.25 

0.46 

- 

- 

- 

0.019 

0.444 

0.170 

- 

- 

- 

Vanbergue et al. (2018) 

Control 

Low algae (23.5 g) 

Medium algae (47 g) 

High algae (94 g) 

Ovine Milk 0.33 

0.31 

0.33 

0.25 

ND 

0.04 

0.12 

0.21 

ND 

0.43 

0.69 

1.24 

ND 

0.21 

0.28 

0.31 

Papadopoulos et al. 

(2002) 
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Table 2.11. (Continued) Effect of supplementing ruminants with dietary marine sources on n-

3 PUFA concentration of milk and milk products (g/100g fatty acids) 
 

Diet Species Product ALA  EPA  DHA  DPA  References 

Control 

Sunflower oil (SO) 

SO + 8 g/ kg DM of Marine Algae 

SO + 16 g/ kg DM of Marine Algae 

SO + 24 g/ kg DM of Marine Algae 

Ovine Milk 0.53 

0.41 

0.37 

0.36 

0.34 

0.05 

0.04 

0.05 

0.09 

0.10 

0.03 

0.02 

0.17 

0.46 

0.57 

0.10 

0.07 

0.10 

0.13 

0.15 

Toral et al. (2010) 

Sunflower oil 

Sunflower oil + Marine algae 

Ovine Milk 0.49 

0.48 

0.04 

0.06 

0.05 

0.38 

0.10 

0.12 

Bichi et al. (2013) 

Control 

Rumen-protected EPA+DHA oil 

Ovine Milk 0.62 

0.74 

0.08 

0.17 

0.04 

0.19 

0.08 

0.23 

Nguyen et al. (2018b) 

Control 

Fish oil  

Fish oil + palm oil 

Bovine Cheese 0.01 

0.02 

0.01 

0.05 

0.12 

0.09 

0.09 

0.34 

0.18 

- 

- 

- 

Vargas-Bello-Pérez et 

al. (2015b) 

Control 

Rumen-protected EPA+DHA 

Ovine Cheese 0.71 

1.02 

0.11 

0.16 

0.06 

0.15 

0.12 

0.19 

Nguyen et al. (2019) 

 

1 ABO/ABO diet contains abomasal flax oil and hulls infusion. 
2 RUM/ABO diet contains flax oil placed in the rumen and hulls infused in the abomasum. 
3 RUM/RUM diet contains flax oil and hulls placed in the rumen and abomasal infusion of water. 
4 ABO/RUM diet contains flax hulls administered in the rumen and abomasal flax oil infusion  

 

2.4.5.3. Genetic manipulation as a potential tool for the enrichment of dairy products with n-3 PUFA 

Attempts at understanding and estimating genetic parameters influencing milk FA content that 

may be beneficial for human health had been made a decade ago (Soyeurt et al., 2007; Stoop 

et al., 2008). Up to the present time, low heritabilities (<0.1) for individual n-3 PUFA (Table 

2.12) were consistently reported in dairy cows (Stoop et al., 2008; Bilal et al., 2014; Pegolo et 

al., 2016) and dairy sheep (Correddu et al., 2018), indicating a low impact of genetics or breed 

on the concentration of n-3 PUFA. This observation probably arises because the fatty acids 

longer than 18 carbon chains are not de novo synthesised in the mammary gland, but are 

circulated from the blood which contains lipids that originated from the diet (Chilliard et al., 

2000). Moderate heritabilities for the whole group of n-3 PUFA were reported by Boichard et 
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al. (2014) and Maroteau et al. (2014), and could be explained by major contribution of the 

short-chained n-3 PUFA. First identified in the human genome in 2000 (Marquardt et al., 

2000), fatty acid desaturase 1 and 2 (FADS1 and FADS2) are considered as the major candidate 

genes that regulate the endogenous synthesis of n-3 LC-PUFA from ALA in mammals 

including ruminants (Malau-Aduli et al., 2011; Malau-Aduli and Kashani, 2015; Malau-Aduli 

et al., 2016; Malau-Aduli et al., 2019). The first effort to define the association between these 

two encoding genes and n-3 PUFA in the milk of Holstein cows (Ibeagha-Awemu et al., 2014) 

found that three significant single nucleotide polymorphism (SNP) markers within FADS1 and 

FADS2 were associated with EPA. Apart from the two well-characterized FADS1 and FADS2, 

Ibeagha-Awemu et al. (Ibeagha-Awemu et al., 2016) uncovered more potential candidate 

genes with several novel SNPs that were significantly associated with milk EPA and DPA. 

Consequently, by employing these potential genetic markers, future research can investigate 

the specific relationships between combining genetics and other environmental strategies such 

as nutritional supplementation for elevating n-3 LC PUFA in milk.  

 

Table 2.12. Heritability estimates of major individual and group of n-3 fatty acids  
 

Breed  Species Unit ALA EPA DPA n-3 Reference 

Holstein-Friesians Bovine %FA 0.09 - - - Stoop et al. (2008) 

Holsteins Bovine % FA 0.06 0.04 0.01 - Bilal et al. (2014) 

Brown Swiss Bovine % FA 0.093 0.045 0.039 0.085 Pegolo et al. (2016) 

Sarda Ovine % FA 0.02 - - - Correddu et al. (2018) 

Holstein 

Saanen 

Lacaune 

Bovine 

Caprine 

Ovine 

% fat 

 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0.26 

0.23 

0.18 

Boichard et al. (2014) 

Alpine 

Saanen 

Caprine 

Caprine 

% fat - 

- 

- 

- 

- 

- 

0.28 

0.25 

Maroteau et al. (2014) 
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2.5. Nutritional aspect of sheep cheese and factors driving cheese eating quality 

2.5.1. Nutritional aspects of sheep cheese 

Similar to cow and goat cheese, the major nutritional components of sheep cheese include fat 

and protein. Fat and protein concentration in sheep cheese varies widely across different breeds 

depending largely on the composition of the raw milk and cheese processing method (Raynal-

Ljutovac et al., 2008) (Table 2.13).  

 

Table 2.13. Major nutritional properties of sheep cheese (%) (Source: Raynal-Ljutovac et al. 

(2008) 

 
Cheese Breed Age of cheese Total solids Fat Protein 
Ricotta Sarda  30  18  
Canestrato Pugliese  1-56 days 39 31 25 
Canestrato Pugliese  10-12 months 67 30 27 
Fiore Sardo   70 29 28 
Pecorino Romano   65 30 27 
Manchego Manchega 90 days 63   

Soft lactic  0-33 days 53 26  
Manchego  1-9 months 37 31 25 
Feta  3-240 days 45 22 18 
Serra da Estrela  1, 7, 21, 35 days    
Manchego   66   
Serena   58   
Halloumi  Fresh 65 32 23 
Terrincho  0-60 days 46 25 21 
Pecorino Sarda 1 day/60 days 70 37/36 26 
Manchego Manchega 90 days 70 30/42/37 23 

Los Pedroches Merinos 2-100 days 35 31/33 26 
Robiola delle Langhe  1, 11, 28 days 49 24 18 
Roquefort   57 33 19 
Ossau-Iraty   61 32 24 
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In general, ruminant dairy products containing a high proportion of SFA contribute to 

cardiovascular diseases (Mozaffarian et al., 2010). Menotti et al. (1999) reported a positive 

correlation between milk and cheese consumption and coronary heart disease (R = 0.6 and 

R=0.407, respectively). However, this meta-analysis failed to mention the specific type of 

cheese, particularly the animal species these cheeses were produced from. Three weeks’ 

consumption of sheep cheese in contrast, was demonstrated to significantly increase the plasma 

concentrations of α-linolenic, conjugated linoleic, vaccenic, and eicosapentaenoic acids at the 

expense of low-density lipoprotein (LDL) concentration reduction by 7% in adults diagnosed 

with mild hypercholesterolemia (Pintus et al., 2013). According to Mihaylova et al. (2012), the 

reduction in LDL could inhibit the risk of major vascular diseases. Under the same production 

technology, sheep cheese contains a higher level of healthy fatty acids for human consumption 

including conjugated linoleic acid (CLA) and total n-3 PUFA (Prandini et al., 2011; Aguilar et 

al., 2014) than cow and goat cheeses. Beneficial human health effects were also indicated by 

the lower content of palmitic acid (16:0) in sheep cheese in comparison with other ruminant 

cheese (Aguilar et al., 2014). This medium-chain FA intake is well-known to have a positive 

association with CHD risk in humans (Praagman et al., 2016).  

2.5.2. Factors driving cheese eating quality 

Appearance, flavour (taste and aroma) and texture are very important features that determine 

cheese quality (Fox et al., 2000) and affect consumer choice (Awad et al., 2007). Cheese 

flavour defined as organoleptic properties, is the most important quality attribute formed by a 

large complex of sapid and aromatic compounds (McSweeney and Sousa, 2000). These 

elements are developed through biochemical and microbiological activities during cheese 

manufacture (McSweeney, 2004). Therefore, factors that influence different stages of cheese 

making including milk supply, rennet (coagulant), starter, non-starter lactic acid bacteria, 

cheese composition, ripening temperature and their complex interactions all contribute to 
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cheese quality (Fox et al., 2000) (Figure 2.7). This complexity explains some of the reasons 

behind unsuccessful efforts to produce consistent premium-quality cheese (Fox et al., 2000).  

The foundation of cheese flavour is based on the quality of raw milk contributed mainly by 

total somatic cell count (SCC) and chemical composition (Amenu and Deeth, 2007; Murphy et 

al., 2016) that are indirectly influenced by animals’ characteristics and nutrient inputs (Coulon 

et al., 2004). SCC has a negative correlation with cheese quality (Andreatta et al., 2007; Mazal 

et al., 2007; Murphy et al., 2016). Milk utilised for cheese making is recommended to contain 

less than 300,000/ml of SCC (Fox et al., 2000). Milk content with emphasis on casein, fat, and 

calcium contents as discussed in Section 2.2, has a major impact on both cheese yield and 

composition and subsequently affects cheese texture and quality. Therefore, all genetic and 

non-genetic parameters, discussed in Section 2.2, as features that impact on the composition of 

milk, may indirectly influence cheese quality. Bonanno et al. (2013) observed smoother 

texture, sweeter, and more acidic taste in cheese produced from Cinisara than Brown cow milk, 

those are the local breeds in Sicily, Italy. In contrast, Brown cow milk produces cheese with 

more bitterness and saltiness.  

The review by Kilcawley et al. (2018) suggested that pasture-based diets for dairy cows 

increase yellow density of ripened cheese resulting in the enhancement of cheese eating quality. 

Different levels of concentrate supplementation for grazing dairy cows also modifies cheese 

sensory properties (Bovolenta et al., 2009).  The relationships between lipid supplementation 

of dairy animals and fatty acid changes and cheese eating quality have been examined, but still 

remain unclear. Najera et al. (2017) and Vargas-Bello-Perez et al. (2015a,b) reported a neutral 

effect of rapeseed oilcake and different vegetable oil supplements on cheese sensory attributes 

in sheep and cows, respectively. On the other hand, Sympoura et al. (2009) demonstrated the 

ability of altering odour compounds in cheese produced from cow milk fed extruded linseed. 

The influence of milk fatty acid composition on cheese sensory attributes probably because 

volatile flavour compounds that form the cheese flavour are derived from raw milk fatty acids 

(McSweeney, 2004).   
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Composition 

 

Species 
Breed 
Stage of lactation 
Plane of nutrition 
Animal health 

Composition 
- Casein 
- Fat 
- Calcium 
- pH 
- Enzymes 
 

Somatic cell count 

Curd/whey 

Curds 

- Cook 

- Agitate 

- Drain 

- Curd syneresis 
- Curd composition 
- Acidification 
- Retention of coagulant 

- Curd syneresis 
- Curd composition 
 

Whey 

Acidification - 

- Syneresis 
- Curd composition 
- Curd structure 
- Retention of coagulant 
- Solubilization of CCP 

- Acidification 
- Dehydration 
- Texturization 
- Salting 
- Moulding 
- Pressing 

Unripened/fresh cheese 

Ripening 

- Salting 
- Special secondary cultures 
- Coating/packaging 
 

Mature cheese 

- Composition 
- Temperature 
- Humidity 
- Time 

Flavour 

Texture 

Functional properties 

- Proteolysis 
- Lipolysis 
- Glycolysis 
- Secondary changes 

- Rennet 
- Milk enzymes 
- Starter enzymes 
- Secondary culture 
- Adventitious microflora 

 
- Moisture 
- pH 
- NaCl 
- Fat 

 

Coagulum 

Raw milk 

Microbiological 
quality 

On-farm             hygiene 
Transport          temperature 
In-factory          time 
 

Public health 
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Figure 2.7. Factors affect cheese quality, adapted from (Fox et al., 2000) 
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2.6. Justification and Research Objectives of the study 

Feeding programs in animal production should take into account animal requirements for 

optimal growth, productive performance and product quality. Other important production 

parameters include feed availability, costs of nutrients, animal health and wellbeing. 

Furthermore, feed supplementation at a commercial level should not have negative impacts on 

consumer ethics, eating quality and acceptability. 

Evidence from published literature suggests that the nutritional content of feeds has an impact 

on milk production, milk composition, and fatty acid profile of sheep milk, with subsequent 

implications on the value of cheese product. It is also evident that there are considerable 

existing knowledge gaps in the use of plant oil supplementation on dairy sheep and its products, 

especially under Australian pasture-based production conditions. Therefore, the aim of this 

study is to compare the utilisation of different oils of plant origin as supplementary feed sources 

and evaluating their incorporation into dairy sheep milk and cheese for commercial production. 

Therefore, the research objectives needed to address the identified knowledge gaps are: 

 To compare and evaluate the impact of different oils of plant origin and rumen-

protected EPA + DHA as dietary supplements on grazing dairy sheep performance, 

including:  body conformation, feed intake, milk yield, milk composition and milk and 

cheese fatty acid profiles.   

 To examine cheese eating quality and consumer acceptability of products from dairy 

sheep supplemented with different types of oils.  
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Chapter 3: Supplementing dairy ewes grazing low quality pastures with 

plant-derived and rumen-protected oils containing EPA + DHA pellets 

increases body condition score and milk, fat, and protein yields 

 

3.1. Abstract 

The Australian dairy sheep industry is small and mostly based on a natural grass grazing 

system, which can limit productivity. The current study tested different plant oil-infused and 

rumen protected polyunsaturated fats and their interactions with sire breeds to improve 

lactation traits and body condition scores (BCS) of ewes grazing low quality pastures. It was 

hypothesised that supplementing lactating ewe’s diets with plant-derived polyunsaturated oils 

would improve milk production and composition without compromising BCS. Sixty ewes (n = 

10/treatment) in mid-lactation, balanced by sire breed, parity, milk yield, body condition score, 

and liveweight, were supplemented with: (1) control: wheat-based pellets without oil inclusion; 

wheat-based pellets including; (2) canola oil (CO); (3) rice bran oil (RBO); (4) flaxseed oil 

(FSO); (5); safflower oil (SFO); and (6) rumen protected marine oil containing 

eicosapentaenoic acid and docosahexaenoic acid (RPO). Except for the control group, all 

supplementary diets included the same level of 50 mL/kg DM of oil and all diets were isocaloric 

and isonitrogenous. Experimental animals were grazed in the same paddock with ad libitum 

access to pasture, hay, and water during the 10-week study. RPO was the most effective diet 

that enhanced milk, fat, and protein yields by approximately 30%, 13%, and 31%, respectively 

(p < 0.0001). A significant increase in milk production was also observed with CO, RBO, and 

SFO treatments (p < 0.0001) by 8.5%, 8.9%, and 16.1%, respectively. Breed significantly 

influenced animal performance with higher milk yields recorded for crossbred Awassi x East 

Friesian (AW x EF) (578 g/day) vs. purebred Awassi (452 g/day) (p < 0.0001). This study 
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provides empirical evidence for the use of rumen-protected and plant-derived oil-infused 

pellets as supplements under low quality pasture grazing conditions to improve the production 

performance of purebred Awassi and crossbred AW x EF ewes. 

3.2. Introduction 

Although previously published studies have demonstrated that sheep milk has more nutritional 

value compared to cow milk (Park et al., 2007; Silanikove et al., 2015), the contribution of 

milk derived from sheep to national milk production in Australia is relatively low. As of 2013, 

there were 13 commercial farms producing 550,000 litres of milk annually (AgriFutures 

Australia, 2013) compared to 9 billion litres of milk produced by dairy cows nationwide (Dairy 

Australia, 2018). Milk yield and composition are influenced by various factors, including diet, 

breed, age, management practices, health, and the environment (Caja and Bocquier, 2000; Abd 

Allah et al., 2011; Ayadi et al., 2014). Dietary supplementation with fat is considered as an 

effective tool to improve milk yield and alter milk composition (Hristov et al., 2004; Kennelly 

et al., 2005). Plant derived oils are a potential source of dietary fat and have been used in 

ruminant feeds to increase the energy density of diets and modify the milk fatty acid profile 

(Caja and Bocquier, 2000; Chilliard et al., 2003; Pulina et al., 2006), with the aim of increasing 

n-3 long–chain (≥C20) polyunsaturated fatty acids (n-3 LC-PUFA) in dairy products. This is 

because high consumption of n-3 LC-PUFA in humans has been demonstrated to inhibit 

adipogenic, diabetogenic, atherogenic (McGuire and McGuire, 2000), inflammatory (Calder, 

2012; Calder, 2013), and carcinogenic (Belury, 2002) diseases and lower the risk of developing 

Alzheimer’s disease (Calon and Cole, 2007). A number of authors have demonstrated that 

while dietary fat supplements can enhance milk yield (Castro et al., 2009; Bernal-Santos et al., 

2010; Otto et al., 2015; Pirondini et al., 2015), it is generally accompanied by a decrease in 

milk fat and protein compositions because of the negative correlation between milk solids 

concentration and milk yield in dairy sheep (Caja and Bocquier, 2000; Pulina et al., 2005). This 
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could reduce the income of the producers as milk is generally traded based on total milk solids. 

For this reason, the use of fats as dietary sources to improve the milk yield of sheep used for 

commercial milk harvesting within Australia is not widely undertaken and is mostly applied as 

a supplement only during the dry seasons when pasture quality and quantity are low, in order 

to increase the energy intake of lactating animals (Akbaridoust et al., 2014). 

To our current knowledge, studies on the effect of dietary supplementation with rice bran, 

canola, and safflower oils on milk yield and composition have only been conducted with dairy 

cows (Bell et al., 2006; Lunsin et al., 2012a,b; Otto et al., 2015)  and goats (Park et al., 2013), 

but not dairy ewes. The effects of supplementation with flaxseed on animal performance and 

milk fatty acid profiles have been studied with dairy ewes, however, these investigations 

supplemented flaxseed either as whole or extruded grain (Caroprese et al., 2011; Mughetti et 

al., 2012; Caroprese et al., 2016). In addition, there has been a paucity of studies that have 

examined the effects of different dietary sources of supplementation on lactation and 

liveweight traits in grazing dairy ewes of different genetic backgrounds under the same 

management and feeding regime. 

The major objective of the current work was to fill these knowledge gaps by comparing the 

lactation performance, milk composition, and body condition score of dairy ewes in mid 

lactation grazing low quality pastures and supplemented with canola, rice bran, flaxseed, 

safflower, and rumen protected oil-infused pellets. It was hypothesised that supplementing 

grazing dairy ewes with oils of different plant-derived and marine origins will have different 

effects on milk yield, milk composition, and body condition score. 
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3.3. Materials and Methods 

3.3.1. Animal Management and Experimental Design  

The use of animals and procedures performed in this study were all approved by the University 

of Tasmania Animal Ethics Committee (Permit No A0015657). 

Sixty lactating Awassi and crossbred Awassi _ East Friesian ewes in mid-lactation, located in 

the South East of Tasmania (Grandvewe Cheeses Farm, Birchs Bay, Woodbridge, Tasmania, 

Australia), were included in a 10-week feeding trial where the ewes were kept in the same 

paddock and had ad libitum access to local natural velvet tussock grass, hay, and water. The 

experimental animals were allocated to six dietary treatments with each group balanced for 

liveweight (59±5.9 kg), breed, parity (2.8±0.5), body condition score (BCS), and milk yield 

(657±100 g/day). Treatments consisted of (1) commercial wheat-based pellets without oil 

inclusion (control); wheat-based pellets infused with 50 mL/kg DM of (2) canola (CO); (3) rice 

bran (RBO); (4) flaxseed (FSO); (5) safflower (SFO), and (6) rumen protected EPA + DHA 

(RPO) oils, as represented in Table 3.1. The RPO treatment was based on a modification of the 

microencapsulation of oil droplets in a protein-aldehyde matrix procedure (Scott et al., 1971). 

All treatments were isocaloric and isonitrogenous (Table 3.2). Each ewe was fed 1 kg/day of 

the supplemented pellet individually in the milking parlour during milking time over a 10-week 

period with an initial two-week adjustment period, followed by an 8-week experimental period. 

In the first two weeks of the adjustment period, commercial pellets (control) for each treatment 

group were increasingly substituted at 100 g/day by the experimental diets, CO, RBO, FSO, 

SFO, and RPO, until the attainment of 1 kg/day on day 10 was achieved. Ewes were milked in 

the mornings at 0600 h and individual milk yield was electronically recorded by the La Laval 

platform using De Laval’s Alpro Herd Management System software version 6.54 (De Laval, 

Tumba, Sweden). 
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Table 3.1. Ingredient composition of the experimental pelletsa. 

 

Items Control  CO RBO FSO SFO RPO 

Ingredient, g/kg       

Wheat 585 545 535 465 535 530 

Paddy rice 210 210 220 280 210 215 

Lupins 148 148 148 148 148 148 

Canola oil, ml/kg - 50 - - - - 

Flaxseed oil, ml/kg - - - 50 - - 

Safflower oil, ml/kg - - - - 50 - 

Rice bran oil, ml/kg - - 50 - - - 

EPA+DHA, ml/kg - - - - - 50 

Ammonium sulphate 12.6 12.6 12.6 12.6 12.6 12.6 

Salt 10 10 10 10 10 10 

Limestone 20.9 20.9 20.9 20.9 20.9 20.9 

Sheep premix 1 1 1 1 1 1 

Acid buffer 6.25 6.25 6.25 6.25 6.25 6.25 

Sodium bicarbonate 6.25 6.25 6.25 6.25 6.25 6.25 
 

a Canola oil (CO), rice bran oil (RBO), flaxseed oil (FSO), safflower oil (SFO), rumen-protected oil 

(RPO). Sheep premix contains Calcium, Phosphorous, Ammonium Chloride, Magnesium, Sulphur, 

Manganese, Iron, Zinc, Copper, Selenium, Cobalt, Iodine, Sodium Chloride, Vitamins, A, D E. Vitamin 

B1, Molasses. 

 

3.3.2. Feed intake and body condition score 

The amount of offered pellets and residuals were weighed daily to calculate supplement intake. 

Weekly feed samples were collected and stored at -20 °C for subsequent chemical analysis.  

Body condition score (BCS) was subjectively evaluated at weekly intervals on a scale of 1-5 

(Kenyon et al., 2014) by the same evaluator to ensure consistency and repeatability.  
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Table 3.2. Nutrient compositionsa of basal and experimental dietsb 

 

Component      

(% DM) 

Pasture Hay Control  CO RBO FSO SFO RPO 

DM 96.5 95.5 91.5 93.0 91.6 90.0 91.7 91.6 

OM 90.5 97.3 92.2 93.3 92.7 91.0 91.8 92.0 

Ash 9.5 2.7 7.8 6.7 7.3 9.0 8.2 8.0 

ADF 45.5 37.6 10.6 7.1 8.1 9.7 9.0 8.5 

NDF 69.9 68.3 30.0 21.8 19.4 23.3 23.9 22.0 

EE 1.4 1.2 3.3 5.7 5.2 5.4 5.0 5.1 

CP 4.7 4.3 14.6 14.0 14.7 14.6 14.5 15.6 

TDN 48.5 54.1 73.4 75.9 75.2 74.1 74.5 74.9 

ME, MJ/kg DM 7.1 8.1 11.7 12.2 12.0 11.8 11.9 12.0 
 

a Dry matter (DM), organic matter (OM), acid detergent fibre (ADF), neutral detergent fibre (NDF), 

ether extract (EE), crude protein (CP), (TDN) and metabolisable energy (ME).  
b Canola oil (CO), rice bran oil (RBO), flaxseed oil (FSO), safflower oil (SFO), rumen-protected oil 

(RPO). 

 

3.3.3. Milk sample analyses 

Weekly milk samples from each animal were bulked from daily milkings at 0600 h and stored 

in labelled plastic vials containing bronopol blue preservative at 4 °C before sending the 

samples off to Hadspen for compositional analysis at the officially contracted herd recording 

laboratory - TasHerd Pty Ltd, Hadspen, Tasmania. The Fourier Transformed Infrared 

spectrometry technology (Bentley Fourier Transform Spectrometer) was used to quantify milk 

composition. This system uses Bentley Flow Cytometry to measure the somatic cell count, 

while the Bentley Fourier Transform Spectrometer measures somatic cell count, milk fat, 

protein and lactose based on official laboratory analysis method (AOAC, 1990). The equation 

from Mavrogenis and Papachristoforou (1988) was used to calculate Fat-corrected milk 

(FCM):  
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6% FCM=M (0.453+0.091F), where “F” is the percentage of fat and “M” is milk yield (kg). 

3.3.4. Chemical analysis of experimental and basal diets 

Before analysing dry matter (DM), ash and chemical composition, samples of the basal and 

experimental diets were dried in a fan-forced oven at a constant temperature of 65 °C and 

subsequently ground through a 1 mm sieve using a Thomas Model 4 Laboratory Mill (Thomas 

Scientific). DM content was determined by placing the ground samples at 150 oC in an oven 

for 24 h to remove moisture. The samples were combusted in a furnace set at 600 °C for 8 h 

to determine ash content. Neutral detergent fibre (NDF) and acid detergent fibre ADF were 

quantified using an ANKOM220 fibre analyser, while an ANKOMXT15 fat/oil extractor 

(ANKOM Technology Corp., Macedon, NY, USA) was used to measure ether extract. The 

crude protein percentage was calculated based on the value of nitrogen that was determined 

using a Thermo Finnigan EA 1112 Series Flash Elemental Analyser (Thermo Fisher Scientific, 

MA, USA). Metabolisable energy (ME) and total digestible nutrients (TDN) were calculated as per 

Weiss (1992). Table 2 shows the nutritional composition of the experimental diets.   

3.3.5. Data and statistical analysis 

All data were analysed using ‘Statistical Analysis System’ software (SAS, 2009). Initial 

descriptive summary statistics were computed with means, standard errors, and minimum and 

maximum values scrutinised for data entry errors and outliers. The data were then subjected to 

General Linear Model (PROC GLM) analysis, with different oil supplementation, sire breed, 

week of supplementation and their interactions fitted as fixed effects and feed intake, milk 

yield, milk composition, and body condition score as dependent variables. Level of significance 

threshold was P < 0.05 and differences between means were established using Duncan’s 

multiple range and Turkey’s probability pairwise comparison tests. The final statistical model 

used for the analysis was: 
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Yijk = µ + SBi + Dj + Wk + (SBD)ij + (SBW)ik + (DW)jk + eijk 

where Yijk is the dependent variable, µ is the overall mean, SB, D and W are the fixed effects 

of sire breed, diet and week of supplementation, respectively, brackets represent second-order 

interactions and eijk is the error term.  

3.4. Results  

The results of this study suggest that dietary treatments significantly influenced supplement 

intake of grazing dairy ewes (P<0.0001; Table 3.3), with DM intakes being greatest in control 

group, followed by the RBO, SFO, CO, RPO, and FSO groups respectively. Estimated intake 

of OM, ADF, NDF and CP followed a similar pattern to DMI with the greatest intakes observed 

in the control group except the intake of EE which was greatest in the RBO group (41 g/day). 

Breed and its interaction with supplementation had no significant effect on intake among 

treatments (Table 3.3).  

Significant differences in dairy performance traits, milk composition, and body condition score 

were observed among all treatments (Table 3.4). Ewes receiving RPO produced the greatest 

milk yield at 628 g/day, followed by SFO, RBO, CO, FSO, and the control (P<0.0001). 

Inconsistent with milk yield, fat concentration was highest in milk from control (P=0.015), 

whereas RBO yielded the greatest content of protein (5.9 g/100g) (P<0.0001) resulting in the 

highest concentration of solids-non-fat (11.7 g/100g) in this group. Although milk from ewes 

fed RPO had the least proportion of fat at 6.6 (g/100g), this group produced the greatest fat 

yield (FY) (41 g/day; P=0.0008). In addition, RPO followed by SFO produced the most protein 

yield (P=0.0004). There were no significant differences among treatments in the percentage of 

milk lactose. The type of oil included in the dietary supplement affected BCS (P=0.0008), 

although the mean BCS of experimental ewes only varied from 2.1-2.3 (Table 3.4). Since the 

cell counts for healthy sheep range from 10 to 200×1000 cells/ml, cell counts of all treatments 
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ranged from 60 to 109×1000 cells/ml (Table 4) indicating that all experimental animals were 

free from intramammary infections during the feeding trial.  

Table 3.3. Least square means and standard errors (LSM ±SEM) of experimental feed intakea 
(g/head/day). 

 

Items 
Feed 

intake 

DMI OM ADF NDF EE CP 

Treatmentb  (T)        

Control 885.5a 810.3a 741.4a 85.9a 243.1a 26.7e 118.3a 

CO 751.3c 698.7c 651.9b 49.6e 152.3d 39.8b 97.8e 

RBO 860.4b 788.0b 730.5a 63.8c 152.9d 40.9a 115.8b 

FSO 754.3c 678.9d 617.8d 65.9b 158.2c 36.7c 99.1e 

SFO 767.1c 703.4c 645.8bc 63.3c 168.1b 35.2d 102.0d 

RPO 753.9c 690.5cd 635.3c 58.7d 151.9d 35.2d 107.7c 

Breedc        

AW 793.5 726.5 678.8 64.3 170.6 35.7 106.5 

AW x EF 797.1 729.9  671.9 64.7 171.5 35.8 107.0 

SEM 4.1 3.8 3.5 0.6 1.7 0.3 0.6 

P-values        

Treatment 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Breed 0.4483 0.4384 0.4423 0.3670 0.3492 0.5652 0.4358 

T x Breed 0.7877 0.7982 0.7993 0.7557 0.6935 0.8934 0.8082 
 

a Dry matter intake (DMI), organic matter (OM), acid detergent fibre (ADF), neutral detergent fibre 

(NDF), ether extract (EE), crude protein (CP). 
b Canola oil (CO), rice bran oil (RBO), flaxseed oil (FSO), safflower oil (SFO), rumen-protected oil 

(RPO). 
c Awassi (AW), East Friesian (EF), Awassi x East Friesian (AW x EF) crossbred. 

Values with different superscripts within columns are significantly different (P<0.05). 

 

It was evidenced that breed also had major impacts on milk production rather than milk 

composition (Table 3.4), with significantly higher milk (P<0.0001), fat (P<0.0001) and protein 

(P<0.0001) yields observed in crossbred AW x EF than purebred AW. There were minor 
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variations in terms of mean fat, protein and lactose contents between AW x EF and AW, despite 

the statistical difference in lactose percentage.  

Table 3.4. Effect of supplementation with diverse plant-derived oils on body condition score and 
lactation performance traitsa. 

 

Item MY FCM Fat  FY Protein PY Lactose  SNF SCC BCS 

Treatmentb (T)        

Control 484d 542bc 7.4a 36bc 5.4c 26c 4.9 10.9bc 109a 2.1c 

CO 525c 573b 7.2ab 38b 5.5bc 29b 4.9 11.1bc 98ab 2.3a 

RBO 527c 578b 7.2ab 38b 5.9a 31b 4.9 11.7a 73c 2.2bc 

FSO 489d 523c 6.9bc 34c 5.4c 26c 4.8 10.8c 60c 2.3a 

SFO 562b 587b 6.6c 37b 5.6b 31ab 4.8 11.2b 105ab 2.2bc 

RPO 628a 649a 6.6c 41a 5.4c 34a 4.8 11.0bc 81bc 2.2bc 

Breedc (B)           

AW 496b 535b 7.1 35b 5.5 27b 4.8b 11.1 97a 2.2b 

AW x EF 578a 617a 6.9 40a 5.5 32a 4.9a 11.2 78b 2.3a 

SEM 3.4 7.8 0.07 3.6 0.04 2.9 0.02 0.05 3.6 0.0 

P-values           

Treatment 0.0001 0.0001 0.0001 0.0021 0.0001 0.0001 0.1689 0.0001 0.0002 0.0018 

Breed (B) 0.0001 0.0001 0.1765 0.0001 0.7444 0.0001 0.0006 0.1351 0.115 0.0030 

Week (W) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0257 0.0012 0.0001 

T x B 0.0001 0.0001 0.0001 0.0002 0.0003 0.0001 0.0001 0.0257 0.0795 0.0002 

T x W 1.0000 1.0000 0.9766 0.9999 0.8717 1.0000 0.8348 0.8039 0.3630 0.9999 

B x W 0.9061 0.8724 0.9494 0.8517 0.9971 0.9380 0.6808 0.9910 0.9974 0.8640 
 

a Milk yield (MY, g/day), fat-corrected milk (FCM, g/day), fat (g/100g milk), fat yield (FY, g/day), protein 
(g/100g milk), protein yield (PY, g/day), lactose (g/100g milk), solids-non-fat (SNF, g/100g milk), somatic cell 
count (SCC, ×1000 cells/ml), body condition score (BCS). 
b Canola oil (CO), rice bran oil (RBO), flaxseed oil (FSO), safflower oil (SFO), rumen-protected oil (RPO). 
c Awassi (AW), East Friesian (EF), Awassi x East Friesian (AW x EF) crossbred. 
Values with different superscripts within columns are significantly different (P<0.05). 
 

Weekly trends for BCS and lactation traits are presented in Figures 3.1 and 3.2. As observed 

in all treatment groups, BCS, fat percentage and protein percentage (Figure 3.1a and 3.2a,b) 

increased, while milk yield decreased over the duration of the experimental period (Figure 
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3.1b). The best weekly milk yield trend was recorded in RPO group, where its decrease was 

smaller (4.9 at the start to 3.9 kg/week) than the other groups at the end of the trial.  

Figure 3.3 presents significant interactions between oil supplementation and breed in milk yield 

(P<0.0001), fat percentage (P<0.0001), and protein percentage (P=0.0003). Regarding milk 

production, crossbred AW x EF ewes had greater responses to oil supplements than AW with 

the highest milk yield at 751 g/day observed in RPO group (Figure 3.3a). Breed and diet 

interactions, however, varied across treatments in which AW ewes fed with RBO produced the 

highest percentages of fat and protein (7.8, and 6.1 g/100g, respectively). 

3.5. Discussion 

3.5.1. Effect of dietary supplements on dry matter intake and body condition score  

The decrease in DMI was inconsistent with previous studies that examined the effect of adding 

2% plant oil in the diets of dairy ewes (Hervas et al., 2008), but was similar to recent reports 

in dairy cows that found a negative impact of a high level supplemented oil on DMI (Shingfield 

et al., 2006; Mapato et al., 2010; Lunsin et al., 2012b; Ammah et al., 2018). According to Illius 

et al. (Illius and Jessop, 1996) voluntary ruminant feed intake is affected by nutrient and energy 

flows related to ruminal fermentation. Adding high levels of oil in diets that was the case of 

the current study, may reduce diet acceptability (Petit et al., 2005) which is caused by ruminal 

function reduction. Other studies have shown that oil addition to diets reduces fibre 

digestibility, DMI and feed palatability in ruminants, suggesting negative effects of plant oils 

on animals’ appetite (Gonthier et al., 2004). This occurs due to selection against 

microorganisms with cellulolytic capability leading to a decrease in ruminal fibre digestion 

(Gonthier et al., 2004). Moreover, DMI differences among oil supplement groups (with the 

highest observed in RBO), indicates the effect of oil type on nutrient digestibility (Doreau and 

Chilliard, 1997). 
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Figure 3.1. Weekly trends in body condition score (a) and milk yield (b). 
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Figure 3.2. Weekly trends in milk fat (a) and milk protein (b) concentration. 
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Figure 3.3. Supplementary diet and breed interactions on (a) milk yield, (b) milk fat, and (c) 
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rumen-protected oil (RPO) 
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Known as an important indicator of cow heath status in dairy management, body condition 

score (BCS) is also regularly used to estimate fatness in the form of energy reserves as well as 

animal welfare status (Malau-Aduli and Anlade, 2002; Morgan-Davies et al., 2008; Roche et 

al., 2009; Phythian et al., 2011). A meta-analysis by Kenyon et al. (Kenyon et al., 2014) 

demonstrated a positive association between BCS at breeding and ewe reproductive traits 

(pregnancy rate and number of lambs born). Generally, these parameters increase as BCS 

increases from 2.0 to 3.0 (Kenyon et al., 2004; Abdel-Mageed, 2009 ; Yilmaz et al., 2011). At 

the commencement of the feeding trial, the average BCS of the experimental animals was 1.5; 

a reflection of the low quality pastures the ewes were grazing and a pointer to fat mobilisation 

from body reserves for sustaining milk synthesis (Komaragiri et al., 1998). At the end of the 

feeding trial, average BCS values of ewes fed CO, RBO and FSO rose to 2.55, 2.60, and 2.55, 

respectively. These BCS were within the target of 2.5-3.0 (Kenyon et al., 2014), which suggests 

that the use of such supplements could have a positive effect on not only milk yield, but also 

reproductive performance and the general welfare of dairy ewes.    

3.5.2. Effect of dietary supplements on milk yield, and milk composition 

Despite the wide accessibility and availability of canola and rice bran in Australia (Seymour et 

al., 2012; Ricegrowers’ Association of Australia, 2013), the extent of use of these plant lipid 

sources as dietary supplements in the Australian dairy industry is unknown. Supplementing 

diets with canola and rice bran oils in the current study increased milk yield without exerting 

negative effects on milk fat and protein compositions. Lunsin et al. (2012b) supplemented dairy 

cow diets with 2, 4, 6% rice bran oil in a confined system and did not observe any statistical 

variation in milk production. This was inconsistent with a reduction in the milk yield of dairy 

goats fed total mixed rations that included 5, 10 and 20% rice bran (Park et al., 2013). In 

contrast, an increase in milk yield of RBO group observed in the current study suggests the 

advanced effect of rice bran oil inclusion in a pasture-based system compared to a confined 
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system. Regarding milk fat and protein concentrations, supplementation of grazing dairy ewes 

with rice bran oil in the current study, had no influence on milk fat. However, it significantly 

enhanced milk protein even though the potential to alter milk protein concentration by changing 

the dietary composition is considered less compared with the potential to alter milk fat 

composition (Kennelly et al., 2005). This increment of change in protein composition in milk 

agrees with the findings of Park et al. (2013) in goat milk, but disagrees with a decrease 

observed in cows when the percentage of dietary RBO increased (Lunsin et al., 2012b). On the 

other hand, supplementation of ewes in this study and cows (Otto et al., 2015) in similar 

pasture-based dairy systems with 5% of CO demonstrated an increase in milk yield. However, 

while inclusion of CO had no statistically significant effect on all milk components of lactating 

ewes, Otto et al. (2015) reported marginal decreases in fat and protein percentages of cow milk. 

These contrasting results in response to rice bran and canola oil supplementation suggest that 

there could be physiological differences between species in lipid metabolisms that might need 

further investigation. 

Variations in results assessing the effect of mostly whole or extruded flaxseed (Nudda et al., 

2014) and flaxseed oil (Antonacci et al., 2018) on milk production and composition of dairy 

ewes have been reported. Akin to the current results, no statistical difference in milk production 

was observed when ewes were supplemented with extruded linseed at 128 g/day (Gomez-

Cortes et al., 2014) and 220 g/day (Nudda et al., 2015) or linseed oil at 6% of estimated total 

DM intake (Antonacci et al., 2018). These findings were in contrast with other authors who 

distinguished either an increase (Caroprese et al., 2016) or a decrease (Mughetti et al., 2012) 

in milk yield of dairy ewes fed 250 g/day of whole flaxseed or 200 g/day of extrude flaxseed 

respectively. Milk fat depression in response to supplementation with FSO in this study was 

supported by other studies in sheep (Gomez-Cortes et al., 2014) and cows (Li et al., 2015; 

Ammah et al., 2018; Brossillon et al., 2018), but disagrees with others that showed no changes 
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in sheep (Nudda et al., 2015; Caroprese et al., 2016; Antonacci et al., 2018) or a minor increase 

in sheep (Mughetti et al., 2012; Caroprese et al., 2016), and goats (Nudda et al., 2013). These 

variations might be due to the multi nutritional effects including energy balance, NDF 

concentration, feed particle size, when these factors were demonstrated to have strong 

correlations with milk yield and milk fat concentration (Pulina et al., 2006).  

Safflower, which is grown in over 60 countries (Glibert and Porter, 2008), has been used widely 

as a supplement in ruminant diets (Alizadeh et al., 2012). Despite studies investigating the 

effects of using various types of safflower on bovine and caprine performance (Shingfield et 

al., 2013), there is relatively little information on its effectiveness as a supplement for 

influencing milk yield and composition in lactating ewes. In this study, supplementation of 

grazing dairy ewes with SFO increased milk production by 16%. This supports the findings of 

Ahmadpour et al. (2017) who supplemented dairy cows with rolled safflower seed at 3 and 6% 

and reported increases in milk yield by 2 and 9% respectively. Other studies have, however, 

reported no significant effects on milk yield when the diets of lactating cows (Bell et al., 2006; 

Dschaak et al., 2011; Alizadeh et al., 2012; Oguz et al., 2014) and goats (Shi et al., 2015) were 

supplemented with safflower oil or seed.  Similarly, variable responses and changes in milk 

components had been observed when the diets of lactating goats or cows were supplemented 

with safflower. Regarding fat content, some results portrayed negative effects (Bell et al., 2006; 

Shi et al., 2015; Ammah et al., 2018) which align with our results, while others did not observe 

any significant effects (Dschaak et al., 2011; Alizadeh et al., 2012; Oguz et al., 2014; 

Ahmadpour et al., 2017). The wide range of inclusion rates and variation in dietary components 

in these studies might have led to the variable responses reported.  

A significant enhancement of milk yield by approximately 30% compared to the control 

animals, was observed in ewes supplemented with RPO. Increases in fat yield (13%) and 

protein yield (31%) were also observed. These improvements in milk yield and total solids 



64 
 

production play an important role in positively enhancing the economic benefits for dairy sheep 

producers as most sheep milk is used for cheese making (Balthazar et al., 2017). The quantity 

of cheese that can be produced from sheep milk is limited by the concentrations of fat and 

especially protein, in raw milk (Pulina et al., 2006). Reviews on bypass fat supplementation 

studies suggest a consistent increase in the milk production of lactating cows by 5.5-24% (Naik, 

2013), while variable responses were presented in lactating ewes (Pulina et al., 2006). 

According to Pulina et al. (2006), positive effects of supplementing rumen-protected fat on 

dairy sheep production performance generally occur with feeding trials longer than 4 weeks. 

This was confirmed in the current work, while short-term studies had a minor reduction or no 

change (Kitessa et al., 2003; Appeddu et al., 2004; Garcia et al., 2005).  In this study, we 

recorded a reduction in the concentration of milk fat in the RPO group. This agrees with the 

findings of Rotunno et al. (1998) who fed ewes with 4 and 8% rumen-protected fat, whereas 

this disagreed with consistent increase in milk fat concentration reported by Pulina et al. 

(2006). Differences in dietary components, type and dosage of protected fat, feeding regimes, 

or stage of lactation might have accounted for this contrasting set of outcomes.  

3.5.3. Effect of breed on animal performance  

The East Friesian (EF) breed of sheep was developed in northern Germany and the Netherlands, 

and has become one of the world’s most productive dairy sheep. The EF has earned the 

reputation as the most productive dairy sheep breed in terms of milk yield (Haenlein, 2007). 

However, it has a low ability to adapt under unfavourable environmental conditions, especially 

excessive heat and humidity (Gootwine and Goot, 1996). Thus, this breed has been used widely 

in crossbreeding systems to improve milk production of local breeds in various temperate 

environments (Gootwine and Goot, 1996; Thomas et al., 1998; Konečná et al., 2013). Together 

with Awassi (AW), the predominant breed in The Eastern Mediterranean countries (Galal et 

al., 2008), EF was introduced to Australia in the 1990s, and since, has been used more widely 
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in the dairy sheep industry as reported by the Australian Rural Industries Research and 

Development Corporation (Stubbs et al., 2009). The improvement in milk yield without any 

negative effects on relative content of milk composition in crossbred ewes AW x EF was akin 

to Clement et al. (Clement et al., 2006), whereas it was inconsistent with Gootwine and Goot 

(1996) who demonstrated similar milk volumes between AW and AW x EF. Local heat stress 

that leads to a depression of feed intake, milk production and reproduction (Silanikove, 2000; 

West, 2003), might be the principal factor for this performance variation by crossbreds in some 

studies. Moreover, statistically significant variation in the interaction between treatments and 

sire breed regarding milk production and composition, but not supplement intake, in the current 

research, suggests that gene regulation may be involved in experimental oil metabolism. 

Therefore, identification of regulated genes for milk yield and composition in response to plant 

and rumen-protected oil supplements needs to be investigated.        

3.6. Conclusion 

The current study demonstrated that canola, rice bran, safflower and rumen-protected 

EPA+DHA could improve lactation traits without any negative impact on BCS of dairy ewes 

grazing low quality pasture. Under the same nutrition and management conditions, crossbred 

AW x EF significantly showed greater lactation performance than AW. Utilising these oil 

supplements combined with crossbreeding the AW and EF sheep breeds, is therefore, 

recommended for Australian sheep milk producers in pasture-based systems. In addition, the 

novel potential of supplementing dairy sheep with rice bran and canola oils explored in this 

study, may need further research to better elucidate their metabolic mechanisms. 
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Chapter 4: Supplementing grazing dairy ewes with plant-derived oil and 

rumen-protected EPA+DHA enhances health – beneficial n-3 long-chain 

polyunsaturated fatty acids in sheep milk 

 

4.1. Abstract 

This study investigated the impact of supplementing dairy ewes in mid lactation with rumen-

protected (RPO) pellets containing eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic 

acid (DHA, 22:6n-3) or pellets infused with 50 ml/kg DM of either canola (CO), rice bran 

(RBO), flaxseed (FSO) or safflower (SFO) oils on enhancing the concentration of n-3 long-

chain (≥C20) polyunsaturated fatty acids (n-3 LC-PUFA) in milk. It is hypothesized that 

including these oils in the diet of grazing dairy ewes will improve milk fatty acid (FA) 

composition by increasing levels of n-3 LC-PUFA. Sixty grazing dairy ewes balanced by sire 

breed and parity were randomly allocated to one of 6 treatments: 1) Control: commercial pellets 

without oil inclusion; 2) pellets containing 50 ml/kg DM of CO; 3) RBO; 4) FSO; 5) SFO; and 

6) RPO at the rate of 1 kg/day for each ewe for 8 weeks. Weekly bulked daily milk FA analysis 

showed that RPO was the most effective diet at elevating n-3 LC-PUFA content by twofold, 

threefold and fivefold greater concentrations of EPA, DPA and DHA respectively, than the 

control (0.17 vs 0.08%, 0.23 vs 0.08%, 0.19 vs 0.04%) (P<0.0001). FSO improved levels of 

EPA (0.11%) and DPA (0.15%), while CO increased DPA (0.13%) (P<0.0001). FSO and RPO 

reached the ‘source’ and good source’ of n-3 LC-PUFA (ΣEPA+DHA+DPA) contents of 35.1 

and 61.7 mg/250 ml, respectively. These findings recommend that rumen protected pellets 

containing EPA + DHA, flaxseed and potentially canola oil supplements, can be used to 

improve the content of n-3 LC-PUFA in dairy ewe milk.  
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4.2. Introduction 

More attention is being paid to human diets rich in n-3 long-chain (≥C20)  polyunsaturated fatty 

acids (n-3 LC-PUFA) because of the potent ability of these natural ingredients to inhibit 

adipogenic, diabetogenic, atherogenic (McGuire and McGuire, 2000), inflammatory (Calder, 

2012; Calder, 2013) and carcinogenic (Belury, 2002; Calder, 2004) diseases and their effects. 

Furthermore, high consumption of n-3 LC-PUFA is typically associated with a lower incidence 

of depression, a decreased prevalence of age-related memory loss and a lower risk of 

developing Alzheimer's disease (Laugharne, 1996; Kalmijn et al., 1997; Calon and Cole, 

2007). This has led to a large number of studies aimed at increasing LC-PUFA content in dairy 

products for human consumption (Bargo et al., 2006; Luna et al., 2008; Shingfield et al., 2012; 

Park et al., 2013; Aprianita et al., 2014; Otto et al., 2014).  

Although the fatty acid (FA) profile in ruminant tissues and milk is difficult to modify because 

of ruminal fermentation by microorganisms (Demeyer and Doreau, 1999), various studies have 

shown that manipulating the diet or feeding regime could enhance the ruminal escape rate of 

unsaturated fatty acids (UFA) from feeds to tissues (Chilliard et al., 2007; Otto et al., 2014; 

Manso et al., 2016). FA profiles in milk are derived from 4 different sources including: de novo 

synthesis in mammary gland, diet, ruminal biohydrogenation and body reserves in which 

dietary FA directly or indirectly contribute half of the C16 and all of the long-chain FA 

(Chilliard et al., 2007). Therefore, dietary supplementation with UFA is one of the ways to 

alter  milk fat profile (Glasser et al., 2008a; Hristov et al., 2011) and increase the PUFA 

proportion of milk fat (Leiber et al., 2011; Sterk et al., 2011; Buccioni et al., 2015). However, 

previous studies have mainly focused on cow milk despite the fact that consumption of sheep 

milk has more nutritional advantages such as the higher levels of protein and fat, and smaller 

size of fat globules (Park et al., 2007; Silanikove et al., 2015), compared to cow milk. 
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A comprehensive review of recent developments in altering the FA composition of ruminant-

derived foods (Shingfield et al., 2013) stated that the “potential to increase 20:5n-3 and 22:6n-

3 in milk is extremely limited” and the proportion of eicosapentaenoic acid (EPA, 20:5n-3) 

typically is less than 0.1 % of total FA in ruminant milk. This present study, however, explores 

the novelty of utilising rumen-protected EPA+DHA and a variety of oil pellets at 50ml/kg DM, 

to elevate the levels of n-3 LC-PUFA (∑EPA+DHA+DPA) to ‘source’ and ‘good source’ levels 

of 30 and 60 mg / standard serve as determnined by FSANZ  (2012), respectively, in sheep 

milk. Furthermore, under Australian on-farm production conditions, a combination of limited 

research,  scarcity of published studies investigating the effect of different oils of plant origin 

and the current absence of the use of rumen-protected oil in the diets of grazing dairy ewes for 

enhancing milk n-3 LC–PUFA content represent a major knowledge gap that this study intends 

to fill. Therefore, it was hypothesized that supplementing grazing dairy ewes with different 

sources of dietary n-3 oils will affect the concentration of n-3 LC-PUFA in milk. The main 

objective of this study was to evaluate the effects of adding CO, RBO, FSO, SFO and RPO to 

the diets of grazing dairy ewes on the proportions and concentrations of  beneficial LC-PUFA, 

particularly n-3 and also n-6 PUFA in sheep milk.  

4.3. Materials and methods 

This experiment was carried out at Grandvewe Cheeses Farm, Birchs Bay, Woodbridge, 

Tasmania, Australia, in accordance with the University of Tasmania Animal Ethics Committee 

guidelines, 1993 Tasmanian Animal Welfare Act and the 2004 Australian Code of Practice for 

the Care and Use of Animals for Scientific Purposes (Animal Ethics Permit Number 

A0015657). 
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4.3.1. Animal management and experimental design 

A completely randomised experimental design comprising sixty lactating Awassi and Awassi 

x East Friesian crossbred ewes in mid-lactation at Grandvewe Cheeses Farm was utilised in 

allocating the animals into one of the following 6 treatments: (1) Control: existing on-farm 

commercial wheat-based pellets without oil inclusion; wheat-based pellets infused with (2) 

canola (CO); (3) rice bran (RBO); (4) flaxseed (FSO); (5) safflower (SFO) and (6) rumen 

protected EPA+DHA (RPO) oils. The RPO treatment was based on a modification of the 

microencapsulation of oil droplets in a protein-aldehyde matrix procedure (Scott et al., 1971). 

The same level of 50 ml/kg DM of oil was included in all supplementary diets except for the 

control treatment and all treatments were isocaloric and isonitrogenous. The nutritional 

composition of the experimental diets is shown in Table 4.1. Experimental animals were balanced 

by breed, parity (2.8±0.5), liveweight (59±5.9 kg), and milk yield (657±100 g/day) in each 

treatment and kept in the same paddock with ad libitum access to pasture, hay and fresh water. 

Each ewe was fed 1 kg/day of the supplemental pellets individually during milking time for a 

total of 10 weeks including an initial two-week adjustment period, followed by an 8-week 

experimental period. During the initial two-week adjustment period, the proportions of 

experimental diets CO, RBO, FSO, SFO, and RPO were gradually increased by 100 g/day the 

attainment of 1 kg/day on day 10. Ewes were milked in the mornings at 0600 h in batches of 

ten according to their treatment groups and individual milk yield automatically recorded by the 

Alfa Laval platform. The daily milk yield per ewe was sampled and the weekly samples bulked 

for milk composition analysis and processing into cheese.  

4.3.2. Chemical analysis of experimental feeds 

The chemical composition of the basal and experimental diets was determined by the standard 

AOAC procedure previously reported in detail (AOAC, 1990). Briefly, samples were dried in 

a fan-forced oven at a constant temperature of 65oC before being ground through a 1 mm sieve 



70 
 

using a Thomas Model 4 Laboratory Mill (Thomas Scientific) and then used for analysing dry 

matter (DM), ash content and chemical composition. Ground samples were placed at 150oC in 

an oven for 24 h in order to remove moisture and determine DM content. The samples were 

combusted in a furnace set at 600oC for 8 h to determine ash content. Neutral detergent fibre 

(NDF) and acid detergent fibre (ADF) were quantified using an ANKOM220 fibre analyser and 

ether extract was measured using an ANKOMXT15 fat/oil extractor (ANKOM Technology, 

Macedo, NY, USA). The crude protein percentage was calculated based on the value of 

nitrogen that was determined using a Thermo Finnigan EA 1112 Series Flash Elemental 

Analyser. Metabolisable energy (ME) and total digestible nutrients (TDN) were calculated as per 

Weiss (1992) 

 

Table 4.1. Nutrient compositiona of experimental dietsb. 
 

Component  

(% DM)   

Pasture Hay Control  CO RBO FSO SFO RPO 

DM 96.5 95.5 91.5 93.0 91.6 90.0 91.7 91.6 

OM 90.5 97.3 92.2 93.3 92.7 91.0 91.8 92.0 

Ash 9.5 2.7 7.8 6.7 7.3 9.0 8.2 8.0 

ADF 45.5 37.6 10.6 7.1 8.1 9.7 9.0 8.5 

NDF 69.9 68.3 30.0 21.8 19.4 23.3 23.9 22.0 

EE 1.4 1.2 3.3 5.7 5.2 5.4 5.0 5.1 

CP 4.7 4.3 14.6 14.0 14.7 14.6 14.5 15.6 

TDN 48.5 54.1 73.4 75.9 75.2 74.1 74.5 74.9 

ME, MJ/kg DM 7.1 8.1 11.7 12.2 12.0 11.8 11.9 12.0 

 

a Dry matter (DM), organic matter (OM), acid detergent fibre (ADF), neutral detergent fibre (NDF), 
ether extract (EE), crude protein (CP), total digestible nutrients (TDN) and metabolisable energy (ME).  
b Canola oil (CO), rice bran oil (RBO), flaxseed oil (FSO), safflower oil (SFO), rumen-protected oil 
(RPO). 
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4.3.3. Milk sample collection and fatty acid analysis 

Daily fresh milk samples from each dairy sheep (100 ml/sample) were collected and bulked 

each week into two sets of plastic vials containing bronopol blue milk preservative. One set of 

of milk samples was stored at 4oC and later sent to TasHerd Pty Ltd, Hadspen, Tasmania, for 

milk composition analyses.  The other part was flushed with nitrogen and stored at -20oC before 

weekly analysis right through to the end of the experiment. Representative aliquots from 

individual milk samples collected over the  8 weeks of the experimental period were used to 

analyse milk FA profile. 

Milk samples were analysed  for fatty acid composition using a gas liquid chromatography 

(GC) method (Otto et al., 2014). Approximately 5 mg of diet samples and 0.5 g of milk samples 

were accurately weighed into methylating tubes and freeze-dried to remove moisture. The dried 

materials were methylated in a solution of methanol/HCl/dichloromethane (10/1/1; 3 ml; 80oC 

2hr) to produce fatty acid methy esters (FAME), which were extracted 

(hexane/dichloromethane; 4/1, 2 ml, 3x) and transferred to glass GC vials. FAME were diluted 

with dichloromethane containing C19:0 FAME as the internal injection standard before 

analyses were performed using an Agilent Technologies 7890B gas chromatograph equipped 

with an equity™-1 fused silica capillary column (15 m x 0.1 mm internal diameter and 0.1 μm 

film thickness), a flame ionisation detector, a split/splitless injector and an Agilent 

Technologies 7683B Series autosampler. The temperature profile of the oven was 120oC for 1 

minute which was then increased by 10oC/min to 270oC, and then by 5oC/min to 310oC. 

ChemStation software (Agilent Technologies, Palo Alto, CA, USA) was used to quantify  peak 

areas. FAME identities were confirmed by GC-mass spectrometry (GC-MS) analysis using  a 

Finnigan Thermoquest GCQ GC-MS fitted with an on-column injector and Thermoquest 

Xcalibur software (Austin, Texas USA). 
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4.3.4. Statistical analysis 

Statistical analysis of all collected data was performed in SAS version 9.2 (SAS Institute, Cary, 

NC, USA). Since the control pellets were the existing commercial pellets without any oil on 

the farm that all the ewes were already used to before the feeding trial begun, individual 

variability between and within animals were minimised to the barest minimum with enough 

replications of animals in each treatment group. Initially means, standard deviations, standard 

errors, minimum and maximum values of data were computed using PROC MEANS and these 

were scrutinized for any data entry errors. Selected fatty acids were then evaluated using 

General Linear Model (PROC GLM) analysis, with different oil supplementation, sire breed, 

parity, and week of experiment fitted as fixed effects and their second-order interactions. The 

changes between the initial and final liveweight measurements at the end of the adaptation 

period were  fitted as covariates in the analytical model. Level of significance threshold was P 

< 0.05 and differences between means were established using Duncan’s multiple range and 

Tukey’s probability pairwise comparison tests. 

4.4. Results 

Sire breed, parity, week of experiment and their interactions with diet had no significant (p > 

0.05) influence on FA profile during experimental period, hence these interactions were 

eliminated from all tables.  

The values of the main fatty acids (expressed as % of total fatty acids) in the supplements are 

depicted in Table 4.2, which shows that the FSO group had the highest proportion of total 

PUFA followed by the SFO group. In terms of individual PUFA, SFO had the greatest 

percentage (56.5%) of linoleic acid (LA), FSO had the highest alpha linolenic acid (ALA) level 

(20.5%) while the highest n-3 LC-PUFA level (4.7%, EPA+DHA+DPA) was observed in RPO. 

These differences in FA profile of the supplements resulted in significant variations in milk yield, 

composition and absolute content of FA per standard serve of milk (mg/250 ml) within the dietary 

treatments (Tables 4.3 and 4.4). 
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Table 4.2. Fatty acida compositions (% of total fatty acids) of basal (pasture, hay) and experimental 
diets  
 

Fatty acid Pasture Hay Control CO RBO FSO SFO RPO 

12:0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

13:0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

14:0 1.60 2.85 0.05 0.14 0.14 0.14 0.22 2.35 

15:0 0.47 0.89 0.13 0.06 0.09 0.12 0.10 0.36 

16:0 18.8 35.8 21.8 12.4 17.4 11.0 14.0 19.5 

17:0 0.38 0.92 0.19 0.08 0.08 0.09 0.08 0.24 

18:0 4.48 7.57 1.05 1.12 2.28 3.38 2.26 2.86 

20:0 3.55 5.81 0.40 0.57 0.59 0.37 0.47 0.45 

22:0 4.28 5.60 0.34 0.31 0.49 0.29 0.19 0.43 

24:0 4.43 5.06 0.39 0.36 0.63 0.22 0.33 0.37 

16:1n-9c 0.20 0.00 0.01 0.00 0.01 0.00 0.02 0.00 

16:1n-7c 0.65 0.55 0.13 0.27 0.20 0.25 0.22 4.03 

16:1n-7t 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

18:1n-9c 10.2 0.0 20.5 41.8 31.8 18.8 20.3 20.9 

18:1n-7c 1.31 1.15 1.22 2.54 1.11 1.83 1.48 1.90 

C18:1n-7t 0.08 0.37 0.00 0.00 0.00 0.00 0.00 0.00 

18:2CLAa 0.01 0.02 0.15 0.02 0.08 0.00 0.04 0.05 

18:2CLAb 0.00 0.41 0.00 0.00 0.00 0.00 0.00 0.00 

18:2n-6 LA 18.7 8.6 47.0 33.8 41.1 40.9 56.5 35.7 

18:3n-3 ALA 24.1 12.2 3.0 4.8 2.3 20.5 1.7 2.7 

20:4n-6 ARA 0.05 0.24 0.00 0.00 0.00 0.00 0.00 0.23 

20:5n-3 EPA 0.00 0.00 0.00 0.13 0.10 0.12 0.07 2.50 

22:6n-3 DHA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.63 

22:5n-3 DPA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 

ΣSFA 41.2 69.1 25.3 15.3 22.0 16.0 18.0 27.1 

ΣMUFA 15.0 7.1 23.4 45.7 34.0 21.7 22.9 28.3 

ΣPUFA 43.8 23.8 51.3 39.0 44.0 62.3 59.1 44.6 

Σn-6 PUFA 19.5 10.7 47.8 34.0 41.4 41.6 57.0 37.1 

Σn-3 PUFA 24.2 12.3 3.1 4.9 2.4 20.6 1.7 7.4 
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a Linoleic acid (LA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid 

(DHA), docosapentaenoic acid (DPA), total saturated fatty acids (ΣSFA), total monounsaturated fatty acids 

(ΣMUFA), and total polyunsaturated fatty acids (ΣPUFA). 

ΣSFA is the sum of 12:0, 13:0, i14:0,14:0, i15:0, a15:0,15:0, i16:0, 16:0, i17:0, 17:0, i18:0, 18:0, 

18:0FALD, 19:0, 20:0, 21:0, 22:0, 23:0, 24:0. 

ΣMUFA is the sum of 14:1, 16:1n-9c, 16:1n-7c, 16:1n-7t, 16:1n-5c, 16:1n-13t,17:1n-8(+a17:0), 18:1n-

9c, 18:1n-7c, 18:1n-7t, 18:1a, 18:1b , 18:1c, 18:1FALD ,19:1a, 19:1b, 20:1n-11c, 20:1n-9c, 20:1n-7c, 

20:1n-5c, 22:1n-11c, 22:1n-9c, 24:1n-9c. 

ΣPUFA is the sum of 18:2n-6, 18:3n-3, 20:4n-6, 20:5n-3, 22:6n-3, 22:5n-3, 18:3n-6, 18:4n-3, 

18:2CLAa, 18:2CLAb, 18:2CLAc, 20:3, 20:3n-6, 20:4n-3, 20:2n-6, 22:5n-6, 22:4n-6. 

Σn-6 PUFA is the sum of 18:2n-6, 18:3n-6, 20:4n-6, 20:3n-6, 20:2n-6, 22:5n-6, 22:4n-6. 

Σn-3 PUFA is the sum of 18:3n-3, 20:5n-3, 22:6n-3, 22:5n-3, 18:4n-3. 

ΣEPA+DHA+DPA is the sum of 20:5n-3; 22:6n-3 and 22:5n-3. 

 

Supplementation had a significant effect on milk yield and composition (Table 4.3). Ewes 

receiving RPO produced the greatest milk yield at 628 g/day, followed by SFO (562 g/day), 

RBO (527 g/day), CO (525 g/day), FSO (489 g/day), and control (484 g/day) (P<0.0001). 

Inconsistent with milk yield, fat percentage was highest in milk from control (7.4 %) (P=0.015), 

whereas RBO yielded the most protein (5.9 %) (P<0.0001). Although milk from ewes fed RPO 

had the least proportion of fat at 6.6 (g/100g), this group produced the greatest fat yield (FY) 

(41 g/day; P=0.0008). In addition, RPO followed by SFO, produced the most protein yield 

(P=0.0004). There were no significant differences among treatments in the percentage of 

lactose. 

Table 4.4 shows that total PUFA in milk of  FSO and SFO groups  increased significantly 

(p<0.0001) compared to the control group;  ewes receiving SFO produced the greatest 

proportion of total PUFA (7.2±1.1%, expressed as percentage of total FA), followed by FSO 

(6.6±0.3%), RPO (5.5±0.2%), RBO (4.8±0.5%), control (4.8+0.2%), and CO (4.7±0.2%) 
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respectively. This finding was alligned with the difference (p<0.0001) in content of Σn-6 that 

was also highest in milk from SFO ewes (5.8±0.3%). Supplemented diets were also significant 

sources of variation in the proportion of Σn-3, as well as n-3 LC-PUFA  in the milk (p<0.0001). 

The relative proportion of Σn-3 PUFA was highest in milk from FSO (2.07±0.08), whereas 

RPO yielded the highest percentage of EPA (0.17±0.01%), DHA (0.19±0.01%), and also DPA 

(0.23±0.02%). There were no significant differences among control, CO and RBO in the 

percentages of Σn-6 PUFA and Σn-3PUFA. 

Interaction between diets and week of supplementation on the concentration of n-3, and n-6 PUFA, 

as well as n-3 LC-PUFA are presented in Figure 4.1. Changes started in the first week of 

adaptation period when the control diet was increasingly being replaced by experimental diets 

with a rapid increase in milk LA (Figure 4.1a) for SFO, ALA (Figure 4.1b)for  FSO, EPA 

(Figure 4.1c), DHA (Figure 4.1d), and DPA (Figure 4.1e) for RPO up to week 3. 

Concentrations of these beneficial FA then remained stable with minor changes from weeks 3 

to 10 in all treatments.  

The health beneficial fatty acids of milk were also presented in quantitative terms per standard 

serve (mg/250 ml of milk) to further investigate the potential nutritional benefits to consumers. 

The absolute content of beneficial shorter chain (SC, ≤C18) and long-chain n-3 and n-6 PUFA 

per standard serve (mg/250 ml of milk) are portrayed in Table 4.5. Consistent with the 

percentage FA composition results, ewes fed FSO produced the greatest amount of ALA 

(185.2±5.8 mg/250 ml), and Σn-3 PUFA (221±7.6 mg/250 ml), while SFO and RPO fed ewes 

had the highest Σn-6 PUFA (639±30.6 mg/250 ml) and ΣEPA+DHA+DPA (61.7±5.0 mg/250 

ml) respectively. The extent of these increases were from 1.5 to 3 times the values observed in the 

control group (ALA, Σn-3 PUFA, Σn-6 PUFA, and  ΣEPA+DHA+DPA contents were 74.1±7.1; 

99.6±7.4; 441±36.5; and 24.1±2.1 mg/250 ml respectively).  
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4.5. Discussion 

To our current knowledge, there is a paucity of peer-reviewed published literature assessing 

the incorporation of health beneficial n-3 long-chain polyunsaturated fatty acids from canola 

and rice bran oils into sheep milk under on-farm grazing management. Among treatments in 

this study, CO and RBO had only minor effects on altering milk FA composition. Adding rice 

bran oil to the diet of grazing dairy ewes in this study had no major effect on the concentration 

of PUFA, but induced a significant increase in milk saturated fatty acids (SFA). Inconsistent 

with (Lunsin et al., 2012b) who reported that the content of 14:0 and 16:0 in milk was lower 

while the content of 18:0 was higher in response to supplementing dairy cows with rice bran oil, 

this current study observed the reverse trend for these short and medium-chain SFA. However, 

it was demonstrated (Park et al., 2013) that there were no statistical differences in the 

proportions of 14:0 and 16:0 in milk when assessing the effect of supplementing rice bran to 

the diets of dairy goats. Disparities between cow, sheep and goat milk in the concentrations of 

medium chain SFA in diets supplemented with rice bran and rice bran oil could be the result of 

species differences in mammary lipid metabolism (Chilliard et al., 2014). PUFA incorporation 

observed in CO group was largely similar to the control, except for the minor but statistically 

significant elevation of the proportions of 18:1n-7c and 22:5n-3 (DPA). Increases in the 

concentrations of 18:1 isomers have been reported in lactating cows supplemented with canola 

oil (Otto et al., 2014) and canola seed (Chichlowski et al., 2005). Desaturation of 18:0 fatty 

acids in the mammary gland could be the reason behind the elevation of 18:1cis9 fatty acid 

concentration found in milk (Enjalbert et al., 1998). Increase in ewe milk DPA on the other 

hand, was contradictory to the finding of Otto et al. (2014) who reported a decrease in n-3 LC-

PUFA in cow milk; thus suggesting physiological differences between ovine and bovine lipid 

metabolisms in response to canola oil supplementation. Further research is therefore needed in order to 

better elucidate the use of canola and rice bran oils as dietary supplements for dairy ewes. 
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Table 4.3. Ewe milk yield and composition (Means ± SE)  
 

Item Control CO RBO FSO SFO RPO P-value 

MY 484±8.0d 525±7.8c 527±7.1c 489±4.7d 562±8.2b 628±10.8a 0.0001 

Milk composition        

Fat (%) 7.4±0.2a 7.2±0.1ab 7.2±0.2ab 6.9±0.1bc 6.6±0.1c 6.6±0.2c 0.015 

FY 36±7.2bc 38±8.8b 38±8.1b 34±5.7c 37±9.3b 41±10.5a 0.0008 

Protein (%) 5.4±0.1c 5.5±0.1bc 5.9±0.1a 5.4±0.1c 5.6±0.1b 5.4±0.2c 0.0001 

PY 26±7.2c 29±7.4b 31±6.2b 26±3.5c 31±6.4b 34±8.9a 0.0004 

Lactose (%) 4.9±0.0 4.9±0.0 4.9±0.0 4.8±0.0 4.8±0.0 4.8±0.1 0.524 

SNF (%) 10.9±0.1bc 11.1±0.1bc 11.7±0.1a 10.8±0.1c 11.2±0.1b 11.0±0.1bc 0.0001 

 

Milk yield (MY, g/day), fat yield (FY, g/day), protein yield (PY, g/day), solids non-fat (SNF). 

Abreviations are as defined in Table 4.1.  

 

In stark contrast, milk from ewes receiving FSO pellets showed a marked improvement in 

PUFA composition, recording the highest Σn-3 PUFA due to its high ALA proportion 

compared to all the other diets. These increases were in accordance with other studies that 

supplemented dairy sheep and cows with whole or extruded flaxseed (Caroprese et al., 2010; 

Mughetti et al., 2012; Caroprese et al., 2016). The relatively high level of PUFA in the FSO 

diet also resulted in increased biohydrogenation of 18:2 and 18:3 in the rumen into 18:0, which 

is an inhibitor of de novo fatty acid synthesis of short-chain FA including 16:0 (Chilliard et al., 

2003; Buccioni et al., 2012a). Therefore, the percentage of 16:0 in the FSO treatment in the 

current study decreased significantly, also consistent with a better outcome in terms of the 

overall FA profile from a human health perspective; this feature is because a high percentage 

of 16:0 is associated with cardiovascular problems (Noakes et al., 1996). In agreement with 

Caroprese et al. (2010), the proportions of EPA and DPA in milk from ewes supplemented 

with FSO in our study were also higher compared to the control group (0.11 vs 0.08%, and 

0.15 vs 0.08%; respectively). This finding confirms that the concentration ALA was the 

essential precursor for the synthesis of EPA (Leonard et al., 2004), while EPA was the 

precursor for DPA synthesis (Gregory et al., 2013) through enzymatic elongation and 

desaturation in adipose tissue of mammals (Leonard et al., 2004). 
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Table 4.4. Fatty acid profiles of ewe milk (as % of total fatty acids ± SE)  
 

Fatty acid Control CO RBO FSO SFO RPO P-value 
12:0 2.82±0.28 3.33±0.53 4.37±0.59 2.56±0.26 3.15±0.30 3.43±0.45 0.0667 

13:0 0.05±0.02 0.02±0.00 0.07±0.02 0.02±0.01 0.05±0.02 0.03±0.01 0.1408 

14:0 11.2±0.56b 12.1±1.07b 14.7±0.84a 10.8±0.61b 12.4±0.60b 12.7±0.71ab 0.0138 

15:0 1.12±0.03 1.04±0.03 1.04±0.05 1.02±0.03 1.05±0.04 1.09±0.03 0.4118 

16:0 30.6±0.8bc 29.8±1.7c 35.4±1.5a 26.7±0.7d 30.3±1.3bc 33.1±0.9ab 0.0001 

17:0 0.75±0.03a 0.59±0.03cd 0.53±0.03d 0.65±0.02bc 0.58±0.02cd 0.72±0.03ab 0.0001 

18:0 11.8±0.7a 10.6±1.05ab 7.9±1.1b 12.0±0.8a 9.1±0.8b 8.7±0.7b 0.0255 

20:0 0.43±0.02b 0.42±0.05b 0.31±0.04b 0.38±0.02b 0.33±0.03b 0.58±0.06a 0.0001 

22:0 0.12±0.01bc 0.13±0.02bc 0.08±0.02c 0.15±0.02ab 0.11±0.01bc 0.18±0.02a 0.0043 

24:0 0.10±0.00 0.07±0.02 0.05±0.02 0.09±0.01 0.06±0.02 0.08±0.01 0.0949 

16:1n-9c 0.34±0.02a 0.36±0.02a 0.34±0.02a 0.28±0.01b 0.33±0.02ab 0.22±0.01c 0.0001 

16:1n-7c 1.40±0.09bc 1.45±0.14bc 1.81±1.20a 1.15±0.11c 1.66±0.12ab 1.63±0.11ab 0.05 

16:1n-7t 0.35±0.02b 0.26±0.03c 0.22±0.02c 0.50±0.04a 0.39±0.03b 0.53±0.04a 0.0001 

18:1n-9c 23.0±0.8ab 23.5±1.8a 18.9±1.2cd 21.5±0.9ab 19.9±0.9bc 16.3±0.9d 0.0047 

18:1n-7c 1.17±0.16c 2.19±0.12a 1.63±0.04bc 1.90±0.10ab 1.63±0.28bc 2.14±0.09a 0.0017 

C18:1n-7t 3.46±0.17b 3.49±0.32b 2.74±0.16b 6.47±0.40a 5.53±0.57a 6.06±0.47a 0.0001 

18:2CLAa 0.20±0.00b 0.18±0.01b 0.19±0.06b 0.31±0.02a 0.22±0.01b 0.24±0.03ab 0.0363 

18:2CLAb 0.04±0.01b 0.04±0.02b 0.05±0.02ab 0.09±0.01a 0.09±0.01a 0.07±0.02ab 0.0333 

18:2n-6 LA 3.27±0.16bc 2.94±0.13c 3.52 ±0.35bc 3.76±0.19b 5.29±0.30a 3.10±0.13bc 0.0001 

18:3n-3 ALA 0.62±0.05bc 0.73±0.03b 0.51±0.06c 1.74±0.08a 0.67±0.04bc 0.74±0.04b 0.0001 

20:4n-6 ARA 0.23±0.02bc 0.23±0.02bc 0.28±0.02ab 0.21±0.01c 0.32±0.02a 0.22±0.01c 0.0004 

20:5n-3 EPA 0.08±0.00c 0.09±0.00c 0.07±0.01c 0.11±0.00b 0.07±0.01c 0.17±0.01a 0.0001 

22:6n-3 DHA 0.04±0.01b 0.06±0.01b 0.04±0.02b 0.06±0.01b 0.06±0.01b 0.19±0.01a 0.0001 

22:5n-3 DPA 0.08±0.02d 0.13±0.01bc 0.10±0.02cd 0.15±0.01b 0.10±0.02cd 0.23±0.01a 0.0001 

ΣSFA 62.5±0.8b 61.1±2.0bc 66.9±1.5a 57.8±1.4c 60.3±1.2bc 63.9±1.1ab 0.0007 

ΣMUFA 32.7±1.9ab 34.2±0.7ab 28.3±1.3c 35.5±1.2a 32.5±1.1ab 30.6±1.0bc 0.0036 

ΣPUFA 4.8±0.2b 4.7±0.2b 4.8±0.5b 6.7±0.3a 7.2±1.1a 5.5±0.2b 0.0001 

Σn-6 PUFA 3.7±0.2b 3.4±0.1b 3.7±0.4b 4.1±0.2b 5.9±0.3a 3.8±0.2b 0.0001 

Σn-3 PUFA 0.84±0.05cd 1.01±0.04c 0.72±0.07d 2.07±0.08a 0.90±0.06cd 1.36±0.05b 0.0001 

PUFA/SFA 0.08±0.00b 0.08±0.00b 0.07±0.01b 0.12±0.01a 0.12±0.02a 0.09±0.01b 0.0001 

Σn-6/ Σn-3 4.5±0.4c 3.4±0.2d 5.5±0.5b 2.0±0.0e 6.7±0.3a 2.8±0.1de 0.0001 

AI 2.05±0.11bc 2.21±0.38abc 2.72±0.19a 1.71±0.12c 2.07±0.16bc 2.39±0.17ab 0.0237 

IT 0.32±0.01abc 0.32±02abc 0.39±0.02a 0.27±0.02c 0.31±0.02bc 0.35±0.02ab 0.0172 

 

Values with different superscript are significantly different 
IA = Atherogenic index [12:0 + (4*14:0) +16:0] / [(ΣPUFA) + (ΣMUFA)], and IT = Thrombogenic index 
[14:0 + 16:0 + 18:0]/[(0.5*ΣMUFA) + (0.5*Σ n-6) + (3*Σn-3)+(n-3/ n-6)] calculated as per Ulbricht and 
Southgate (Ulbricht and Southgate, 1991) 
All abreviations are as defined in Tables 4.1 and 4.2.  
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Safflower has been known as the richest source of linoleic acid among oilseeds, although its 

use as a supplement for dairy sheep has not been previously reported. The total relative level 

of PUFA in milk from the SFO group in our study increased significantly by 149% (7.2 vs 

4.8%) and mainly due to an increase in the level of linoleic acid (5.3 vs 3.3%). These findings 

were in agreement with outcomes from recent studies in lactating bovines that evaluated the 

effect of safflower oil (Bell et al., 2006; Li et al., 2015) as well as safflower seed (Alizadeh et 

al., 2012) on milk fat composition. Post-ruminal infusion increased the escape rate of LA from 

biohydrogenation in the rumen for eventual absorption and subsequent transfer into milk fat in 

the mammary gland (Shingfield et al., 2013). As a consequence, the proportion of 18:0 in SFO 

also reduced significantly. In contrast, the result from Bell et al. (2006) showed significant 

increase in 18:0. In terms of n-3 PUFA, concentration differences between the control and SFO 

in our study align with the outcomes reported by Li et al. (2015). Therefore, the inclusion of 

safflower oil in diets would not improve the concentration n-3 LC-PUFA in milk for both dairy 

cows and dairy sheep. 

The highest level of n-3 LC-PUFA in the diet resulting in significant increases in these FA in 

milk was for ewes receiving RPO, a result that is in agreement with previous studies that 

examined milk fat n-3 LC-PUFA in reponse to fish oil supplements in cow (Kitessa et al., 

2004), sheep (Kitessa et al., 2003; Toral et al., 2010; Toral et al., 2015) and goat (Kitessa et 

al., 2001b). These increases suggest that the use of n-3 LC-PUFA in protected oil was able to 

facilitate an escape from ruminal biohydrogenation that reduces the double bonds of LC-PUFA 

due to the activity of rumen microbial communities. It has been reported that sheep fed 

protected tuna oil pellets increased significantly the proportion of DHA that bypassed the 

rumen than those fed unprotected tuna oil pellets (Kitessa et al., 2001a). According to 

(Palmquist, 2009), the potential lengthening of 20:5n-3 to 22:5n-3 and shortening of 22:6n-3 

to 22:5n-3 in body tissues induced higher rates of transfer from the supplementary diet into 
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milk for 22:5n-3 in comparision with 20:5n-3 and 22:6n-3. In agreement with (Kitessa et al., 

2001a; Toral et al., 2015) the concentrations of EPA, DHA, and DPA increased in inverse 

proportions to that of  18:0 in milk from RPO group. This further difference is probably because 

of the lower levels of 18:0 in the RPO, and therefore reduced availability for its direct 

incorporation in the mammary gland.  

Precise interactions between the stage of lactation and dietary effects on FA composition were 

observed. This is because experimental animals were fed the same control diet before the start 

of experiment that minimized the effects of random variabilty on this relationship. Changes in 

LA in SFO (Figure 4.1a) and ALA in FSO during adaptation period in this study (Figure 4.1b) 

were akin to previous findings (Roy et al., 2006) that demonstrated significant increases in 

these FA on day 6 after feeding dairy cows with high-concentrate diets suplemented with 

sunflower oil and hay diet supplemented with linseed oil, respectively. Our results 

demonstrating rapid increases in EPA, DHA and DPA in RPO treatment (Figure 4.1 c, d, e) 

align with those of (Kitessa et al., 2001a).  

Examination of the nutritional value per standard serve size of milk  (250 ml) identified by the 

National Health and Medical Research Council of Australia (NHMRC, 2013) (expressed as 

mg/250 ml of milk) showed that the content of total n-3  PUFA in milk from ewes fed FSO 

was the greatest at 221 mg/250 ml and provided 34% of the recommended 650 mg daily 

consumption for humans (Simopoulos et al., 2000). In parallel with total n-3 PUFA, the FSO 

dietary treatment also showed the highest content of ALA at 185.2 mg per serve that accounted 

for approximately 14.2% and 23.2% of the adequate intake level for men and women (1.3-0.8 

g/day), respectively, recommended by NHMRC (2006). This value was higher than the 

contribution of cooked lamb meat to ALA needs at 3.7% and 6.1% (Flakemore et al., 2017). 

In terms of linoleic acid, milk from ewes supplemented with SFO showed the highest content 

among treatment groups with each serve containing 575 mg/250 ml that covered 4.4%-7.2% 

of the proposed daily allowance (NHMRC, 2006).  
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Consumption of DPA also has beneficial effects on human health,  such as lowering the risk of 

heart diseases (Rissanen et al., 2000; Phang et al., 2009; Mozaffarian et al., 2013), and 

inhibition of inflammation (Chen et al., 2012); however, previous studies on n-3 LC-PUFA 

Figure 4.1. Interactions between supplemented diets and week of supplementation on the 
concentrations of  LA (a), ALA (b), EPA (c), DHA (d), and DPA (e) in milk 
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have often not considered or included DPA, but rather focused mainly on  EPA and DHA. This 

shortcoming may be in part, due to pure DPA not being available as a commercial product, and 

therefore its effects for both animal models and ultimately human consumers, remain very 

much understudied. Its structure is similar to EPA and DHA (Byelashov et al., 2015). In our 

study, DPA contributed more than 40% of total n-3 LC-PUFA in all treatments (Table 4.4), 

thus the intake of n-3 LC-PUFA should include DPA as suggested by NHMRC (2006). The 

content of total n-3 LC-PUFA (ΣEPA+DHA+DPA) in a cup of milk from RPO supplemented 

ewes supplied 38.6% of the requirement for men and 68.6% for women compared with current 

recommendations (NHMRC, 2006). Furthermore, one serve of milk produced from FSO and 

RPO supplemented diets contains more than 30 mg, and 60 mg repectively , hence they can be 

considered as ‘source’ and ‘good source’ of n-3 LC-PUFA respectively (FSANZ, 2012). These 

findings suggest that for consumers who do not habitually eat fish or fish products, sheep milk 

can be considered as an alternative and/or complimentary source of n-3 LC-PUFA.  

Table 4.5. Mean concentrations (± SE) (mg/250 ml of milk) of n-3 and n-6 PUFA and LC-PUFA  
 

FA (mg/250 ml) Control CO RBO  FSO SFO RPO P-value 

18:2n-6 LA 392±32.0b 326±18.2b 431±20.3b 403±17.7b 575±27.9a 320±18.5b 0.0001 

18:3n-3 ALA 74.1±7.1b 80.6±4.8b 67.7±3.4b 185.2±5.8a 72.9±4.2b 74.5±3.7b 0.0001 

20:5n-3 EPA 9.1±0.6c 9.6±0.6c 8.6±0.5c 12.0±0.7b 8.0±0.7c 17.8±1.2a 0.0001 

22:6n-3 DHA 5.4±0.89b 7.2±0.9b 5.7±0.7b 7.0±0.8b 6.2±0.5b 19.8±1.8a 0.0001 

22:5n-3 DPA 9.7±2.0c 15.2±1.7bc 13.1±2.0bc 16.1±1.6b 11.5±2.1bc 24.1±2.1a 0.0001                                               

ΣSFA 7426±348 6987±456 7988±385 6295±393 6646±342 6667±483 0.2167 

ΣMUFA 3917±235 3915±341 3574±270 3838±196 3553±149 3146±188 0.2433 

ΣPUFA 578±42.5b 526±28.0b 630±36.4b 712±28.0a 781±34.9a 565±31.0b 0.0001                                               

Σn-6 PUFA  441±36.5b 380±21.2b 486±27.5b 440±19.0b 639±30.6a 386±24.7b 0.0001                                               

Σn-3 PUFA  99.6±7.4c 113±7.6c 95.8±4.4c 221±7.6a 98.5±6.4c 140±6.8b 0.0001                                               

ΣEPA+DHA + DPA 24.1±2.1c 31.9±3.1bc 27.5±3.2bc 35.1±3.0b 25.6±2.8bc 61.7±5.0a 0.0001 

 

Values in rows with different superscripts are significantly different 

All abreviations are as defined in Tables 4.1 and 4.2.  
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4.6. Conclusion  

This study evaluated the ability of different plant oils and rumen bypass protected EPA+DHA 

to alter milk fatty acid composition (as percent total FA) and concentration (as mg/250 ml) 

toward enhancing n-3 LC-PUFA of grazing dairy ewes. Results demonstrated that rumen 

bypass protected EPA+DHA was the most effective supplementary diet at elevating milk n-3 

LC-PUFA levels of EPA, DHA and DPA. The addition of flaxseed and canola oils in the diets 

also increased the levels of these milk n-3 LC-PUFA, but to a lesser extent. The inclusion of 

flaxseed oilwas the most effective at increasing the amount of α-linoleic acid. Therefore, in 

terms of nutritional value to consumers, our research clearly validates the health beneficial 

impact of adding flaxseed and rumen protected EPA + DHA oils to grazing dairy ewe diets to 

produce high quality milk with elevated levels of n-3 LC-PUFA. Although diets including rice 

bran and canola oil demonstrated minor effects on milk fat composition of grazing dairy sheep 

in this study, further research is necessary to fill the knowledge gap regarding the optimum 

level of oil inclusion in the diet of lactating ewes. 
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Chapter 5: Enhancement of dairy sheep cheese eating quality with 

increased n-3 long-chain polyunsaturated fatty acids 

 

 

5.1. Abstract 

This study investigated the effect of different plant oil-infused and rumen-protected wheat-

based pellets containing eicosapentaenoic acid (EPA, 20:5n3) and docosahexaenoic acid 

(DHA, 22:6n3) on n-3 long-chain (≥C20) polyunsaturated fatty acids (n-3 LC-PUFA) content, 

fatty acid recovery and sensory attributes of ripened cheese from dairy sheep. During a ten-

week supplementary feeding trial, sixty dairy ewes balanced by liveweight, milk yield, parity, 

and sire breed were randomly divided into six groups that were (1) supplemented with on-farm 

existing commercial wheat-based pellets without oil inclusion (Control) or supplemented with 

wheat-based pellets infused with 50 ml/kg DM of oils from (2) canola, (3) rice bran, (4) 

flaxseed, (5) safflower (SFO), and (6) rumen protected EPA+DHA. Milk samples from each 

treatment were collected separately by sire breed during the experimental period for cheese 

processing at the end of the experiment. Twelve batches of cheese (2 batches per treatment) 

were processed and ripened for 120 d. Three cheese samples were collected and analysed for 

each cheese making session (total of 36 cheese samples) at day 120 of ripening. Processed 

cheese of RPO had the highest total n-3 LC-PUFA [total EPA + DHA + docosapentaenoic acid 

(DPA, 22:5n-3] content compared with the control (0.49 vs 0.28%). Flaxseed elicited the 

greatest enhancement of α-linolenic acid (ALA, 18:3n3), whereas safflower was the most 

effective diet in enhancing the level of linoleic acid (18:2n6) in cheese (1.29 vs 0.71%; 4.8 vs 

3.3%; respectively). Parallel recoveries of n-3 and n-6 LC-PUFA were observed across all 

treatments except for α-linolenic acid (P=0.0090), and EPA. Cheese eating sensory traits were 

also highly affected by oil supplementation with the highest score of 7.5 in cheese from the 
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rice bran and flaxseed treatments. These results provide new insights into the biological 

mechanisms and processes that determine dairy ewe milk productivity by underpinning the 

vital biological role of n-3 LC-PUFA in not only enhancing the healthy composition of cheese 

from ewes, but also translating it into consumer acceptability. 

5.2. Introduction 

Over the last three decades, numerous studies have examined the health benefits of n-3 long-chain 

(≥C20) PUFA (n-3 LC-PUFA) and consistently demonstrated their vital role in inhibiting chronic 

diseases. According to the global status report on non-communicable diseases of the World Health 

Organization (Mendis and Chestnov, 2014), 38 million people died of chronic diseases and unhealthy 

dietary habits, with the deficiency of n-3 LC-PUFA intake as one of the main causes of death. In 

response to this health concern, a large number of studies aimed at increasing n-3 LC-PUFA content 

in human foods have emerged. Cheese is the most popular long shelf-life dairy product and its global 

production has been predicted to increase by 19% between 2008 and 2020 (OECD/FAO, 2011). 

Among the numerous cheese varieties, sheep cheese has been reported to have higher levels of 

beneficial PUFA than cow and goat cheeses under the same processing conditions (Prandini et al., 

2011). Therefore, the enhancement of health beneficial fatty acids (FA) in sheep cheese have been of 

immense research interest (Zhang et al., 2006a,b; Bodas et al., 2010; Buccioni et al., 2012b). 

The FA profile of cheese, especially beneficial FA that have positive effects on human health, 

primarily depends on the FA composition of raw milk rather than cheese processing technology 

(Collomb et al., 2006; Bisig et al., 2007; Prandini et al., 2011).  Because dietary FA contributes all 

of the long-chain FA in milk fat (Chilliard et al., 2007), dietary supplementation of ruminants with 

unsaturated fatty acids (UFA) remains one of the most popular ways to alter milk fat profile 

(Reynolds et al., 2006; Zhang et al., 2006a,b; Castro et al., 2009; Gomez-Cortes et al., 2011) and 

increase the proportion of PUFA in sheep milk and cheese. However, recent research has only 

focused on limited sources of unsaturated plant lipids, mostly linseed, soybeans, safflower and 
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sunflower (Nudda et al., 2014). This suggests the need for further investigations into the effect of 

other available plant oil sources including canola and rice bran on FA composition of dairy sheep 

products. Furthermore, about 30% of milk processed in Australia is used for the production of cheese 

(Dairy Australia, 2016). However, to the best of our knowledge, available published literature about 

the concentration of beneficial FA including n-3 LC-PUFA in cheese under Australian on-farm 

production conditions is at best scanty or non-existent, thus representing a major knowledge gap that 

this study intends to fill. Therefore, the objective of this study was to determine the effects of 

supplementing grazing Australian dairy ewes with oil-infused canola, rice bran, flaxseed, safflower 

and rumen-protected eicosapentaenoic acid and docosahexaenoic acid pellets on the concentrations 

and recovery of LC-PUFA as well as the eating quality of sheep cheese. It was hypothesized that 

supplementing grazing dairy ewes with different sources of dietary oils, including those containing 

n-3 and n-6 PUFA, will affect the concentration and recovery of n-3 LC-PUFA, and alter the 

appearance, texture, taste, flavour and aroma of ripened cheese. 

5.3. Materials and methods 

5.3.1. Animals and treatments  

This study was carried out at Grandvewe Cheeses Farm, Birchs Bay, Woodbridge, Tasmania, 

Australia, with all experimental protocols approved by the University of Tasmania Animal 

Ethics Committee in accordance with the 1993 Tasmanian Animal Welfare Act and the 2004 

Australian Code of Practice for the Care and Use of Animals for Scientific Purposes (Animal 

Ethics Permit Number A0015657). 

Sixty lactating Awassi and Awassi x East Friesian crossbred ewes in mid-lactation were 

randomly assigned to six groups balanced by breed, parity (2.8±0.5), liveweight (59±5.9 kg), 

and milk yield (657±100 g/day). The six groups were (1) supplemented with on-farm existing 

commercial wheat-based pellets without oil inclusion (control) or supplemented with wheat-
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based pellets infused with 50 mL/kg DM of (2) canola (CO); (3) rice bran (RBO); (4) flaxseed 

(FSO); (5) safflower (SFO) and (6) rumen-protected eicosapentaenoic acid (EPA) + 

docosahexaenoic acid (DHA; treatment referred to as RPO). The RPO treatment was based on 

a modification of the microencapsulation of oil droplets in a protein-aldehyde matrix procedure 

(Scott et al., 1971). All supplementary diets were isocaloric and isonitrogenous. The nutritional 

composition of the experimental diets is shown in Table 5.1. Ewes were grazed as a single mob 

in the same paddock with free access to local natural velvet tussock grass, hay and fresh water. 

Each ewe received 1 kg of the pellet supplements daily during milking time at 0600 h for 10 

weeks including an initial two-week adjustment period, followed by an 8-week experimental 

period. The proportions of experimental diets CO, RBO, FSO, SFO, and RPO were gradually 

increased by 100 g/day during the transition period until the attainment of 1 kg/day per head 

on day 10 of the adjustment period. Milk in each group were collected separately by sire breed 

during experimental period using the De Laval Sheep Milking Platform and store at the farm 

in sanitised plastic containers at -20 oC for cheese processing at the end of the experiment.   

5.3.2. Cheese making 

Twelve batches were processed following Grandvewe Cheeses farm standard protocols without 

pasteurization. Briefly, raw milk was heated to 38 oC in a cheese vat and rennet was added to 

form curd. The curds were then cut, stirred into very small pieces, and left to compact at the 

bottom of the vat. Then, the curd was removed from the vat and the whey was drained and put 

into small, 1-kg plastic mould blocks. After brine-salting for 24 h, the cheeses were transferred 

to a ripening room adjusted to remain at constant temperature (11-12 °C) and 75-80% relative 

humidity for 120 d. Three cheese samples of each batch were randomly collected and stored in 

air-tight bags at -20 oC until analysed at d 120 (36 cheese samples in total), when they were 

ripened and ready for trading.  
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5.3.3. Chemical analysis of experimental feeds 

Samples of supplementary and basal diets were collected weekly and stored at -20 oC during 

the feeding trial, then dried at a constant temperature of 65 oC in a fan-forced oven before 

being ground to pass through a 1-mm screen using a Thomas Model 4 Laboratory Mill 

(Thomas Scientific, Swedesboro, NJ), and then used for analysing DM and ash contents 

according to AOAC (1990). An ANKOM220 fibre analyser was used to analyse NDF and 

ADF, and ether extract was measured using an ANKOMXT15 fat/oil extractor (ANKOM 

Technology, Macedon, NY, USA). The CP percentage was calculated based on the value of 

nitrogen that was determined using a Thermo Finnigan EA 1112 Series Flash Elemental 

Analyser (Thermo Scientific, Waltham, MA, USA). Metabolisable energy (ME) and total 

digestible nutrients (TDN) were calculated as per Weiss (1992). The chemical compositions of the 

control, treatments, pasture and hay are presented in Table 5.1. 

Table 5.1. Proximate analysisa of experimental dietsb 

 

Component  

(% DM)   

Pasture Hay Control  CO RBO FSO SFO RPO 

DM 96.5 95.5 91.5 93.0 91.6 90.0 91.7 91.6 

OM 90.5 97.3 92.2 93.3 92.7 91.0 91.8 92.0 

Ash 9.5 2.7 7.8 6.7 7.3 9.0 8.2 8.0 

ADF 45.5 37.6 10.6 7.1 8.1 9.7 9.0 8.5 

NDF 69.9 68.3 30.0 21.8 19.4 23.3 23.9 22.0 

EE 1.4 1.2 3.3 5.7 5.2 5.4 5.0 5.1 

CP 4.7 4.3 14.6 14.0 14.7 14.6 14.5 15.6 

TDN 48.5 54.1 73.4 75.9 75.2 74.1 74.5 74.9 

ME, MJ/kg DM 7.1 8.1 11.7 12.2 12.0 11.8 11.9 12.0 
 

a Dry matter (DM), organic matter (OM), acid detergent fibre (ADF), neutral detergent fibre 
(NDF), ether extract (EE), crude protein (CP), total digestible nutrients (TDN) and 
metabolisable energy (ME).  
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b Canola oil (CO), rice bran oil (RBO), flaxseed oil (FSO), safflower oil (SFO), rumen-
protected oil (RPO).   
 
5.3.4. Fatty acid analysis 

Approximately 5 mg of diet samples and 0.5 g of raw milk samples were accurately weighed 

into methylation tubes and freeze-dried to remove moisture according to Otto et al. (2014), and 

0.1 g of unground cheese sample was extracted for total lipids according to the procedures 

reported by Malau-Aduli et al. (2016).  The dried feed samples and aliquots of the extracted 

lipids from cheese samples were then methylated in a solution of 

methanol/HCl/dichloromethane (10/1/1; 3 mL; 80°C for 2 h) to produce fatty acid methyl esters 

(FAME), which were extracted (hexane/dichloromethane, 4/1; 2 mL, 3×) and transferred to 

glass GC vials. The FAME were diluted with dichloromethane containing C19:0 FAME as the 

internal injection standard before analyses were performed using an Agilent Technologies 

(Santa Clara, CA, USA) 7890B gas chromatograph equipped with an Equity-1 fused silica 

capillary column (15 m × 0.1-mm i.d. and 0.1-μm film thickness), a flame ionization detector, 

a split/splitless injector, and an Agilent Technologies 7683B Series autosampler. Oven 

temperature profile was set initially at 120°C for 1 min and was raised to 270°C at 10°C/min, 

then to 310°C at 5°C/min. ChemStation software (Agilent Technologies) was used to quantify 

peak areas. We performed GC-MS analyses on selected samples to confirm FA identities using 

a Thermo Scientific 1310 GC coupled with a TSQ triple quadrupole. Samples were injected 

using a Tripleplus RSH autosampler with a nonpolar HP-5 Ultra 2 bonded-phase column (50 

m × 0.32-mm i.d. × 0.17-μm film thickness; Agilent Technologies). The HP-5 column was of 

similar polarity to the column used for GC analyses. The initial oven temperature of 45°C was 

held for 1 min, followed by temperature programming at 30°C/min to 140°C, then at 3°C/min 

to 310°C, where it was held for 12 min. Helium was used as the carrier gas. Mass spectrometer 

operating conditions were as follows: electron impact energy = 70 eV; emission current = 250 
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μA; transfer line = 310°C; source temperature = 240°C; scan rate = 0.8 scan/s; mass range = 

40 to 650 Da. Mass spectra were acquired and processed with Thermo Scientific Xcalibur 

software.  

5.3.5. Calculation of cheese FA recovery 

Recovery of cheese for selected individual FA [REC(FA))] was calculated using the formula 

described by (Cattani et al., 2014):  

 

 

5.3.6. Consumer sensory evaluation 

Following the procedure of Fuentes et al. (2015), a sensory evaluation test was conducted at 

the University of Tasmania by trained consumer panelists comprising 25 male and female 

volunteer staff and students (aged between 20 and 55 yr) who habitually consume cheese in 

their diets. The assessors had a training session before the official testing so that they were 

familiar with the whole process of hedonic evaluation of sensory characteristics. As 

demonstrated by Lim (2011), the 9-point hedonic scale is easy, simple, reliable, and highly 

effective for quantifying sensory differences among foods and for predicting consumer 

acceptability; hence, it was chosen in this study. In both sessions, cheese was refrigerated until 

served as 1.5-cm3 cubes in a completely randomized block design in a tasting room at 20°C. 

Panelists were given the opportunity to taste each sample 5 times, including 2 of the cheeses 

for pretesting sessions (Mughetti et al., 2012). Unsalted crackers and water were used to 

remove any lingering effects of the previous samples. A 9-point hedonic scale was used to rate 

the degree of liking, appearance, aroma, flavor, texture, and overall acceptability, where 1 = 

dislike extremely, 2 = dislike very much, 3 = dislike moderately, 4 = dislike slightly, 5 = neither 

Cheese fatty acid (g) 

Milk fatty acid (g) 
REC(FA) = x  

Cheese fat (g) 

Milk fat (g) 



91 
 

like nor dislike, 6 = like slightly, 7 = like moderately, 8 = like very much, and 9 = like 

extremely. 

5.3.7. Statistical analysis 

Statistical analysis of all collected data was performed in SAS version 9.2 (SAS Institute, Cary, 

NC). Initially means, standard deviations, standard errors, minimum and maximum values of 

data were computed using PROC MEANS, and these were scrutinized for any data entry errors. 

Selected cheese FA were subjected to a General Linear Model (PROC GLM), mixed model 

analysis with treatment, breed, and their second-order interactions fitted as fixed effects, while 

milk yield and ewe age were fitted as random effects. All non-significant interactions were 

removed from the final analytical model. Level of significance threshold was set at P < 0.05 

and differences between means were established using Tukey’s probability pairwise 

comparison test. 

5.4. Results 

5.4.1. FA composition and recovery of the main n-6 and n-3 LC-PUFA in ripened cheese 

As depicted on Table 5.2, there were differences in FA percentages between the diets. These 

differences resulted in significant variations in selected raw milk FA (Table 5.3), and cheese 

FA (Table 5.4). The largest improvement in the proportion of total n-3 PUFA  was recorded in 

cheese produced from milk from ewes fed FSO and RPO (P<0.001; 161% and 158% 

respectively), compared to the control (unsupplemented) group. The enrichment of total n-3 

PUFA in cheese produced from animals in the FSO group was mainly due to the significant 

increase in the proportion of α-linolenic acid (ALA, 18:3n-3, 1.30%) compared with the control 

(0.71%). observed in cheese produced from animals in the RPO treatment compared with the 

control group was attributable to increases in the proportions of ALA (1.02 vs 0.71%) as well 

as total n-3 LC-PUFA [EPA + DHA + docosapentaenoic acid (DPA); 0.50 vs. 0.29%; P < 

0.001; Table 5.4]. In terms of linoleic acid (LA), the greatest percentage was observed in the 
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cheese produced from the SFO group, which increased by 147% compared with the control 

group (4.78 vs 3.26%) and followed by FSO (3.79%), RPO (3.52%), RBO (3.45%), and CO 

(3.06%; P < 0.001). 

 

Table 5.2. Selected fatty acida compositions of pasture, hay and experimental dietsb (% of total 
fatty acids) 
 

Fatty acid Pasture Hay Control CO RBO FSO SFO RPO 

14:0 1.60 2.85 0.05 0.14 0.14 0.14 0.22 2.35 

16:0 18.8 35.8 21.8 12.4 17.4 11.0 14.0 19.5 

18:0 4.48 7.57 1.05 1.12 2.28 3.38 2.26 2.86 

16:1n7c 0.65 0.55 0.13 0.27 0.20 0.25 0.22 4.03 

18:1n9c 10.2 0.0 20.5 41.8 31.8 18.8 20.3 20.9 

18:1n7c 1.31 1.15 1.22 2.54 1.11 1.83 1.48 1.90 

18:2n6 LA 18.7 8.6 47.0 33.8 41.1 40.9 56.5 35.7 

18:3n3 ALA 24.1 12.2 3.0 4.8 2.3 20.5 1.7 2.7 

20:5n3 EPA 0.00 0.00 0.00 0.13 0.10 0.12 0.07 2.50 

22:6n3 DHA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.63 

22:5n3 DPA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 

ΣSFA 41.2 69.1 25.3 15.3 22.0 16.0 18.0 27.1 

ΣMUFA 15.0 7.1 23.4 45.7 34.0 21.7 22.9 28.3 

ΣPUFA 43.8 23.8 51.3 39.0 44.0 62.3 59.1 44.6 

Σn6 PUFA 19.5 10.7 47.8 34.0 41.4 41.6 57.0 37.1 

Σn3 PUFA 24.2 12.3 3.1 4.9 2.4 20.6 1.7 7.4 

ΣEPA+DHA+DHA 0.00 0.00 0.00 0.13 0.10 0.12 0.07 4.67 

 
a Linoleic acid (LA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid 

(DHA), docosapentaenoic acid (DPA), total saturated fatty acids (ΣSFA), total monounsaturated fatty acids 

(ΣMUFA), and total polyunsaturated fatty acids (ΣPUFA). 
b Canola oil (CO), rice bran oil (RBO), flaxseed oil (FSO), safflower oil (SFO), rumen-protected oil (RPO). 
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Table 5.3. Selected fatty acid composition of raw milk (as % of total fatty acids)  
 

Fatty acid Control CO RBO FSO SFO RPO SEM P-value 
12:0 2.68 3.11 3.89 2.62 3.42 3.37 0.20 0.5019 
14:0 11.13b 11.75b 15.22a 11.17b 13.15ab 12.42ab 0.45 0.0484 
15:0 1.09 1.06 1.01 0.97 1.09 1.08 0.02 0.3425 
16:0 31.38ab 29.61b 36.95a 27.11b 31.58ab 32.22ab 0.83 0.0294 
17:0 0.71a 0.59b 0.48c 0.62ab 0.57bc 0.71a 0.02 0.0002 
18:0 11.42a 10.99ab 7.48b 11.57a 8.19ab 8.63ab 0.50 0.0500 
20:0 0.42bc 0.45b 0.29c 0.39bc 0.31bc 0.60a 0.02 0.0009 
22:0 0.13b 0.13b 0.08c 0.15ab 0.09bc 0.19a 0.01 0.0022 
24:0 0.07abc 0.07abc 0.04c 0.08ab 0.05bc 0.09a 0.00 0.0335 
16:1n-9c 0.35a 0.35a 0.31a 0.26b 0.32a 0.21b 0.01 0.0001 
16:1n-7c 1.49 1.47 1.82 1.33 1.75 1.72 0.07 0.3007 
16:1n-7t 0.36c 0.28cd 0.23d 0.48b 0.38ab 0.59a 0.02 0.0001 
18:1n-9c 23.22ab 24.03a 18.10bc 21.86ab 18.57bc 16.29c 0.77 0.0194 
18:1n-7c 1.49c 2.15ab 1.58bc 1.84abc 1.69abc 2.23a 0.08 0.0466 
18:1n-7t 3.18b 3.42b 2.54b 6.15a 5.34a 6.77a 0.33 0.0001 
18:2 CLA 0.24 0.22 0.32 0.36 0.29 0.35 0.03 0.5052 
18:2n-6 LA 3.15b 2.86b 3.54b 3.62b 5.30a 3.08b 0.16 0.0001 
18:3n-3 ALA 0.56bc 0.69bc 0.53c 1.69a 0.65bc 0.71b 0.07 0.0001 
20:4n-6 ARA 0.24bc 0.23bc 0.26b 0.18c 0.34a 0.19c 0.01 0.0001 
20:5n-3 EPA 0.07cd 0.08c 0.06d 0.11b 0.07cd 0.17a 0.01 0.0001 
22:6n-3 DHA 0.04b 0.06b 0.05b 0.06b 0.06b 0.19a 0.01 0.0001 
22:5n-3 DPA 0.09b 0.13b 0.11b 0.13b 0.13b 0.23a 0.01 0.0001 
ΣSFA 62.44ab 60.82b 67.73a 58.02b 61.68ab 62.72ab 0.89 0.0001 
ΣMUFA 32.89ab 34.57a 27.18b 35.61a 31.08ab 31.66ab 0.84 0.0038 
ΣPUFA 4.66d 4.61d 5.09cd 6.37ab 7.25a 5.62bc 0.19 0.0001 
Σn-6 PUFA 3.55b 3.37b 3.95b 3.95b 5.93a 3.88b 0.17 0.0001 
Σn-3 PUFA 0.78cd 0.96c 0.75d 1.99a 0.91cd 1.33b 0.08 0.0001 
PUFA/SFA 0.08b 0.08b 0.08b 0.11a 0.12a 0.09b 0.00 0.0006 
Σn-6/ Σn-3 4.74b 3.57c 5.32b 1.99d 6.58a 2.92cd 0.30 0.0001 

 

Row means bearing different superscripts within a fixed factor significantly differ.  

Canola oil (CO), rice bran oil (RBO), flaxseed oil (FSO), safflower oil (SFO), rumen-protected oil 

(RPO), linoleic acid (LA), α-linolenic acid (ALA), Arachidonic acid (ARA), eicosapentaenoic acid 

(EPA), docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), total saturated fatty acids (ΣSFA), 

total monounsaturated fatty acids (ΣMUFA), and total polyunsaturated fatty acids (ΣPUFA). 
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Table 5.4. Selected fatty acid composition of ripened cheese from ewe milk (as % of total fatty acids)  
 

Fatty acid Control CO RBO FSO SFO RPO SEM P-value 
12:0 0.79 1.12 1.36 1.02 1.19 1.37 0.13 0.854 
14:0 9.48b 10.59ab 11.89a 10.17b 10.64ab 10.53b 0.20 0.0222 
15:0 1.15a 1.04c 1.01d 1.02d 1.06c 1.09b 0.01 0.0001 
16:0 30.68d 30.69d 34.25a 30.72d 32.11c 33.09b 0.25 0.0001 
17:0 0.83a 0.65c 0.58d 0.65c 0.65c 0.73b 0.68 0.0001 
18:0 12.22a 11.06c 9.72d 11.41b 9.79d 9.87d 0.17 0.0001 
20:0 0.51a 0.43b 0.39c 0.39c 0.42bc 0.54a 0.01 0.0001 
22:0 0.17a 0.12b 0.11b 0.13b 0.14b 0.17a 0.01 0.0005 
24:0 0.08 0.05 0.05 0.05 0.05 0.07 0.00 0.1125 
16:1n-9c 0.34c 0.41a 0.35b 0.29e 0.32d 0.25f 0.01 0.0001 
16:1n-7c 1.44c 1.45c 1.72a 1.41c 1.73a 1.62b 0.02 0.0001 
16:1n-7t 0.34c 0.29d 0.25e 0.42b 0.43b 0.52a 0.02 0.0001 
18:1n-9c 24.54a 24.61a 21.87b 21.24b 20.23c 18.39d 0.39 0.0001 
18:1n-7c 1.58f 2.36a 1.99d 1.92e 2.08c 2.21b 0.04 0.0001 
18:1n-7t 3.84c 3.79c 3.37d 5.67b 5.62b 6.41a 0.20 0.0001 
18:2 CLA 0.98b 0.84c 0.84c 1.23a 1.09b 1.07b 0.03 0.0001 
18:2n-6 LA 3.26d 3.06e 3.45c 3.79b 4.78a 3.52c 0.10 0.0001 
18:3n-3 ALA 0.71d 0.79c 0.63e 1.30a 0.71d 1.02b 0.04 0.0001 
20:4n-6 ARA 0.22cd 0.23bc 0.26ab 0.21cd 0.27a 0.19d 0.01 0.0001 
20:5n-3 EPA 0.11b 0.11b 0.10b 0.11b 0.11b 0.16a 0.01 0.0001 
22:6n-3 DHA 0.06b 0.06b 0.06b 0.06b 0.08b 0.15a 0.01 0.0001 
22:5n-3 DPA 0.12b 0.13b 0.12b 0.13b 0.13b 0.19a 0.01 0.0008 
ΣSFA 59.02bc 58.45c 61.73a 58.36c 58.76bc 60.16b 0.26 0.0001 
ΣMUFA 35.12ab 35.96a 32.42e 34.47bc 33.66cd 33.20de 0.24 0.0001 
ΣPUFA 5.86d 5.59d 5.85d 7.17b 7.58a 6.64c 0.13 0.0001 
Σn-6 PUFA 3.73c 3.51d 3.94c 4.25b 5.33a 3.90c 0.10 0.0001 
Σn-3 PUFA 1.00bc 1.09b 0.91c 1.61a 1.04b 1.58a 0.05 0.0001 
PUFA/SFA 0.09c 0.09c 0.09c 0.12a 0.13a 0.11b 0.00 0.0001 
Σn-6/ Σn-3 3.72c 3.21d 4.34b 2.65e 5.17a 2.47e 0.16 0.0001 

 

Row means bearing different superscripts within a fixed factor significantly differ.  

Canola oil (CO), rice bran oil (RBO), flaxseed oil (FSO), safflower oil (SFO), rumen-protected oil 

(RPO), linoleic acid (LA), α-linolenic acid (ALA), Arachidonic acid (ARA), eicosapentaenoic acid 

(EPA), docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), total saturated fatty acids (ΣSFA), 

total monounsaturated fatty acids (ΣMUFA), and total polyunsaturated fatty acids (ΣPUFA). 
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The effect of oil supplements on the recovery of main n-6 and n-3 LC-PUFA is depicted in 

Table 5.5. In terms of individual FA, there were significant differences in due to dietary 

supplementation, with the highest transferred rates of ALA and EPA observed in RPO (1.09) 

and SFO (1.03). The recoveries of group FA had similar patterns across treatments except for 

n-3 PUFA (P < 0.0514), which ranged from a minimum of 0.56 in FSO to a maximum of 0.86 

in RPO.    

 

Table 5.5. Recovery of n-3 and n-6 PUFA in ripened cheese 
 

Fatty acid Control CO RBO FSO SFO RPO SEM P-value 

18:2n-6 LA 0.66 0.67 0.64 0.73 0.63 0.83 0.02 0.1045 

18:3n-3 ALA 0.84ab 0.73bc 0.78bc 0.54c 0.75bc 1.09a 0.04 0.0090 

20:5n-3 EPA 0.97ab 0.83abc 1.02a 0.76bc 1.03a 0.68c 0.03 0.0098 

22:6n-3 DHA 0.89 0.64 0.87 0.74 0.95 0.52 0.05 0.1347 

22:5n-3 DPA 0.77 0.70 0.73 0.70 0.68 0.59 0.03 0.8512 

ΣEPA+DHA+DHA 0.87 0.72 0.84 0.72 0.83 0.59 0.03 0.1745 

ΣSFA 0.59 0.61 0.59 0.69 0.64 0.68 0.01 0.2070 

ΣMUFA 0.68 0.69 0.79 0.67 0.74 0.75 0.02 0.5989 

ΣPUFA 0.79 0.77 0.75 0.78 0.72 0.86 0.02 0.5743 

Σn-6 PUFA 0.67 0.66 0.66 0.75 0.63 0.74 0.02 0.5503 

Σn-3 PUFA 0.83a 0.73ab 0.79a 0.56b 0.78ab 0.86a 0.03 0.0514 

 

Row means bearing different superscripts within a fixed factor significantly differ.  

Canola oil (CO), rice bran oil (RBO), flaxseed oil (FSO), safflower oil (SFO), rumen-protected oil 

(RPO), linoleic acid (LA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid 

(DHA), docosapentaenoic acid (DPA), total saturated fatty acids (ΣSFA), total monounsaturated fatty acids 

(ΣMUFA), and total polyunsaturated fatty acids (ΣPUFA). 
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5.4.2. Concentration of the main n-6 and n-3 LC-PUFA per standard serve of cheese and 

cheese sensory test 

To investigate the potential nutritional benefits to consumers, LA and the main n-3 LC-PUFA 

of cheese were also analysed in quantitative terms per serving (mg/40 g; Table 5.6). In relation 

to the proportion of FA (expressed as % of total FA), cheese in the FSO treatment had the 

greatest amount of ALA (113.8 mg/40 g), and RPO and SFO had the highest total n-3 LC-

PUFA (44.3 mg/40 g) and LA (414.3 mg/40 g), respectively. 

 

Table 5.6. Mean values of main LC-PUFA in one standard serve of cheese (mg/40 g) 
 

Fatty Acid  Control CO RBO FSO SFO RPO SEM P-value 

18:2n6 LA 302.7b 235.4c 297.8b 329.7b 414.3a 320.8b 11.3 0.0001 

18:3n3 ALA 66.3c 61.1cd 54.3d 113.8a 61.9cd 92.0b 4.0 0.0001 

20:5n3 EPA 10.6b 8.2c 9.2bc 10.2bc 9.1bc 14.3a 0.5 0.0001 

22:6n3 DHA 4.9b 4.4b 4.7b 5.2b 6.1b 12.8a 0.6 0.0001 

22:5n3 DPA 10.7b 10.0b 10.3b 11.8b 10.5b 17.1a 0.6 0.0001 

ΣEPA + DHA 15.5b 12.6b 13.9b 15.4b 15.1b 27.2a 1.0 0.0001 

ΣEPA + DHA +DPA 22.5b 22.5b 24.2b 27.3b 25.7b 44.3a 1.5 0.0001 

 

Row means bearing different superscripts within a fixed factor significantly differ. 

Canola oil (CO), rice bran oil (RBO), flaxseed oil (FSO), safflower oil (SFO), rumen-protected oil 

(RPO), linoleic acid (LA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid 

(DHA), docosapentaenoic acid (DPA). 

 

Despite the application of the same cheese making process to all treatments, the varied 

preferences of cheese tasting panelists across treatments reflect the effect of dietary 

supplements on eating quality of the final product. Cheeses made from RBO and FSO milk 

yielded the highest scores for all sensory traits, with an overall acceptability or overall liking 

of 7.5, implying that the consumers’ preferences for these cheeses were between “like 
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moderately” and “like very much”. In contrast, the CO cheese had a slightly negative effect on 

sensory attributes, with the lowest overall liking rating from the panelists at 4.4 (slightly 

dislike) compared with 5.7 (neither like nor dislike) in the control (Table 5.7). Inclusion of 

RPO and SFO in the diets elicited similar levels of all tested sensory attributes except for the 

improvement in appearance at 6.1 and 6.2, respectively. As shown in Table 5.8, there were 

strong positive correlations between all sensory traits, in which flavour was the key assessed 

attribute contributing to the consumer enjoyment of sheep cheese (r = 0.91; P < 0.001). Partial 

sums of SFA and PUFA were correlated positively with eating quality traits, ranging from 

weak to moderate, whereas correlations were strongly negative (r = −0.58 to 0.76) for the sum 

of MUFA. However, correlations between selected individual and partial sums of FA were not 

statically significant (Table 5.8).   

5.5. Discussion 

5.5.1. Effect of oil supplementations on the proportion of beneficial PUFA in ripened cheese 

Cheese produced from FSO milk showed a marked improvement in total n-3 PUFA due to its 

high ALA proportion compared with all other treatments. Our findings agree with previous 

results from other studies that also examined the effect of adding flaxseed to dairy sheep (Zhang 

et al., 2006b; Bodas et al., 2010; Mughetti et al., 2012) and dairy cow (Santillo et al., 2016) 

diets on the FA profile of cheese. The high level of ALA in the diet supplemented to the ewes 

accounted for this enrichment. Although ruminal biohydrogenation of ALA for most diets is 

very high and varies from 85 to 100% (Glasser et al., 2008b; Shingfield et al., 2010), the 

postruminal infusion, increased the passage rate of ALA through the rumen for eventual 

absorption in the small intestine and subsequent transfer and conversion into milk fat in the 

mammary gland (Glasser et al., 2008a). Typically, supplementation with oilseeds rich in ALA, 

such as flaxseed, also has the potential to enhance the concentration of 20:5n-3 (EPA) in milk 

and the final product through the elongation and desaturation of 18:3n-3 in mammalian tissues 
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(Leonard et al., 2004). Kazama et al. (2010) and Khas et al. (2010) reported a minor but 

significant increase in EPA content in dairy cows. However, outcomes observed in the current 

study are in agreement with the results of Cattani et al. (2014) and Bodas et al. (2010), who 

did not find any significant correlation between ALA in the diet and EPA content in the milk 

product. Species differences in mammary lipid metabolism could be the principal reason for 

these disparities (Chilliard et al., 2014). 

The greatest improvement of n-3 LC-PUFA was observed in RPO cheese. This outcome was 

in agreement with several studies that targeted an increase in EPA and DHA contents in ovine 

milk by supplementing lactating ewes with diets containing high levels of these ingredients 

(Kitessa et al., 2003; Reynolds et al., 2006; Toral et al., 2010a,b; Bichi et al., 2013) 

Polyunsaturated FA, EPA, and DHA are also biohydrogenated in the rumen, resulting in the 

production of 18:0 (Palmquist et al., 2005), but this occurs to a lesser extent than for the 

biohydrogenation of LA and ALA (Chilliard et al., 2000). Given the relatively low absorption 

rate from the small intestine into the mammary gland, ranging from 14.3 to 33.0% for EPA and 

13.3 to 25.0% for DHA (Shingfield et al., 2013), it is not surprising that the proportion of these 

2 n-3 LC-PUFA in dairy products  is generally very low. However, the significant improvement 

in total n-3 PUFA content at the expense of a significant decrease of 18:0 in the RPO treatment 

(Table 5.3) indicates that using rumen-protected EPA + DHA in supplementary diets is an 

effective physiological and biochemical by-pass of rumen biohydrogenation and a smart escape 

from the negative effect of typical fat metabolism in dairy sheep. This substitution of long-

chain SFA with PUFA in human diets has been reported to reduce the risk of coronary heart 

disease (Hu et al., 1999). In addition, because of the resultant elevated total n-3 PUFA, the 

inclusion of flaxseed oil and rumen- protected EPA + DHA significantly reduced the ratio of 

n-6 to n-3 FA (2.65/1 and 2.47/1, respectively). These ratio values are close to the ratio of 2.5/1 

that had been reported to have a positive effect in colorectal cancer patients by reducing rectal 
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cell proliferation and between the ratio of 2 to 3/1 that inhibited inflammation in rheumatoid 

arthritis (Simopoulos, 2002).  

Although safflower has been known as one of the richest sources of LA, studies on the 

influence of supplementing dairy sheep diets with safflower oil on FA compositions have not 

been found by the authors. The largest improvement of LA, observed in the SFO group, was 

due to the high proportion of this FA in the diet. This present finding is in line with previously 

reported results by Bell et al. (2006) and Li et al. (2015), who evaluated the effect of safflower 

oil on dairy cows’ FA. These outcomes also supported the conclusion of Shingfield et al. (2013) 

that similar to ALA, the amount of LA during mammary gland secretion strongly depends on 

the amount of FA in the abomasum. The highest ratio of n-6 to n-3 (5.17 vs. 3.72) occurred in 

SFO cheese over the control, and as a result of LA enhancement, this ratio is still within the 

optimal n-6/n-3 ratio of <6:1 (Zymon et al., 2014). 

Rice bran is an agricultural by-product known to be an effective energy and FA dietary feed 

source for livestock due to its high content of oleic, linoleic, and palmitic acids (Warren and 

Farrell, 1990; Cicero and Derosa, 2005). Canola, on the other hand, has an ideal ratio of n-6 to 

n-3 PUFA (Sakhno, 2010) and is by far the largest oilseed crop in Australia (Seymour et al., 

2012). Despite its availability and accessibility, peer-reviewed published information on the 

use of these plant lipid sources in the Australian dairy sheep industry is limited. The limited 

outcome of supplementing sheep diets with rice bran and canola oils to enhance the availability 

of desired PUFA in cheese in this study aligned with previous studies in cow milk (Lunsin et 

al., 2012b; Otto et al., 2014) and goat milk (Mir et al., 1999; Park et al., 2013). Adding rice 

bran oil in the diet for experimental animals increased the concentration of medium-chain SFA 

14:0 and 16:0 in cheese, and this agrees with the results of Park et al. (2013), who observed 

increased proportions of SFA 14:0 and 16:0 in goat milk due to the high proportions of these 

FA in rice bran oil. The increased proportions of these 2 SFA show the potentially negative 
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effect of the RBO diet on cheese FA profile in lactating ewes in terms of human health 

concerns. This is because, a high consumption level of 14:0 and 16:0 in humans may increase 

low-density lipoprotein cholesterol, which is associated with atherosclerotic cardiovascular 

disease (Siri-Tarino et al., 2010). 

5.5.2. Effect of oil supplementations on the recovery of LC-PUFA of ripened cheese 

To date, there is a paucity of studies assessing FA retention in ripened cheese produced from 

sheep milk supplemented with oil pellets. Cattani et al. (2014) demonstrated no statistical 

differences in the recovery of group FA, including SFA, MUFA, PUFA, n-6 and n-3 PUFA 

and all individual FA, including LA, ALA, and EPA in ripened cheese processed from milk 

produced by cows supplemented with 500 or 1,000 g of extruded flaxseed. Our investigation, 

however, observed significant differences in the transfer rates for ALA, EPA, and total n-3 

PUFA from raw milk to ripened cheese in grazing dairy sheep. This disparity between the 2 

studies could be the result of differences in dietary supplements, species, or cheese making 

processes. Further research is therefore needed to better elucidate the effect of adding oils in 

dietary supplements for dairy ewes on the recovery of FA in ripened cheese. 

5.5.3. Effect of oil supplementations on the concentration of LC-PUFA in absolute terms 

(mg/40 g) and eating quality of ripened cheese 

In 2016, 260,000 t of cheese was traded in Australia, where the annual cheese consumption 

was estimated to be 13.5 kg per person (Dairy Australia, 2016). These values make cheese the 

second major dairy product after milk for the Australian domestic market. To assist in the 

promotion of the health and nutritional benefits of dairy products as one of the key focuses of 

the Australian dairy industry, our research examined the nutritional value of cheese from ewe 

milk in terms of selected beneficial LC-PUFA per standard serving (mg/40 g; NHMRC, 2013). 

These absolute data can potentially assist consumers in purchasing decisions. The LA at 414.3 

mg/serving in the SFO treatment corresponds to a 137% increase compared with the control. 
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Adhering to Australian nutritional values, the content of this essential n-6 FA contributes only 

a small proportion of approximately 3.2 and 6.2% of the 13 and 8 g/d required for adequate 

intake in men and women, respectively (NHMRC, 2006). The increase of ALA in FSO cheese 

was almost double the value observed in the control, accounting for approximately 8.8 and 

14.2% of the adequate intake level requirements for men and women (1.3 and 0.8 g/d), 

respectively (NHMRC, 2006). In comparison, the ALA content in 1 serving of cheese produced 

from the FSO treatment was markedly higher than that in a 100-g serving of cooked lamb meat 

at 48.5 mg/100 g, as reported by Flakemore et al. (2017).  

 

Table 5.7. Effect of different diets on sensory eating quality of sheep cheese 

 

 

Row means bearing different superscripts within a fixed factor significantly differ. 

Canola oil (CO), rice bran oil (RBO), flaxseed oil (FSO), safflower oil (SFO), rumen-protected oil 

(RPO). 

 

Previous studies on n-3 LC-PUFA often have generally focused on EPA and DHA rather than 

also including DPA, although DPA consumption also contributes to reduced risk of heart 

disease (Rissanen et al., 2000; Phang et al., 2009; Chen et al., 2012) and the inhibition of 

inflammation (Chen et al., 2012). This shortcoming may in part be due to pure DPA not being 

produced at commercial levels; consequently, its effects in both animal models and ultimately 

human consumers remain very much understudied. In line with suggested dietary targets by 

 Treatment Appearance Aroma Flavour Texture Overall 

liking 

 

 

 

Control 5.0c 5.9ab 5.8b 5.6b 5.7b 

CO 5.0c 5.6b 4.2c 5.0b 4.4c 

FSO 7.0a 6.7a 7.3a 7.0a 7.5a 

RBO  7.3a 6.6a 7.5a 7.0a 7.5a 

RPO 6.1b 6.1ab 5.5b 5.7b 5.7b 

SFO 6.2b 6.5a 5.7b 5.8b 6.0b 

SEM  0.13 0.10 0.15 0.14 0.15 

P value  0.0001 0.0097 0.0001 0.0001 0.0001 
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NHMRC (2006), this study has also included EPA, DHA, and DPA in the total n-3 LCPUFA. 

In 1 serving of RPO cheese, the content of total n-3 LC-PUFA at 44.3 mg accounts for 28 and 

49% of the daily dietary target of 90 and 160 mg/d required for men and women, respectively. 

The minimum recommended daily intake of milk and alternative products of 2.5 servings per 

day (NHMRC, 2013) corresponds to 100 g of cheese/d in adults; at this serving size, RPO 

cheese can provide up to 69% of the total n-3 LC-PUFA requirement for men and exceeds the 

requirement for women, as depicted in Figure 5.1. Moreover, at an excess of 30 mg/serving, 

RPO cheese can be considered as meeting the “source” (30 mg/serving) level of n-3 LCPUFA 

based on FSANZ (2012) guidelines. 

 

Table 5.8. Pearson’s correlation coefficients between sensory eating quality traits and selected 
fatty acids of sheep cheese 
 

 

Degree of correlation: 0.00-0.19 (very weak), 0.20-0.39 (weak), 0.40-0.59 (moderate), 0.60-0.79 

(strong), 0.80-1.0 (very strong).  

* P < 0.05; ** P < 0.01; *** P < 0.001. 

Item Appearance Aroma Flavour Texture Overall liking 

Appearance       

Aroma 0.52***     

Flavour 0.61*** 0.56***    

Texture 0.57*** 0.53*** 0.72***   

Overall liking 0.65*** 0.62*** 0.91*** 0.76***  
18:2 CLA 0.46 0.40 0.39 0.32 0.37 
18:2n-6 LA 0.40 0.59 0.22 0.20 0.28 
18:3n-3 ALA 0.45 0.16 0.31 0.31 0.28 
20:5n-3 EPA -0.09 -0.24 -0.29 -0.29 -0.27 
22:6n-3 DHA 0.01 -0.08 -0.23 -0.22 -0.19 
22:5n-3 DPA 0.02 -0.16 -0.25 -0.23 -0.22 
ΣSFA 0.36 0.41 0.38 0.43 0.43 
ΣMUFA -0.68 -0.76 -0.58 -0.61 -0.64 
ΣPUFA 0.52 0.57 0.31 0.28 0.35 
Σn-6 PUFA 0.39 0.59 0.22 0.21 0.28 
Σn-3 PUFA 0.37 0.09 0.18 0.18 0.16 
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Conjugated linoleic acid (CLA), linoleic acid (LA), α-linolenic acid (ALA), eicosapentaenoic acid 

(EPA), docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), total saturated fatty acids (ΣSFA), 

total monounsaturated fatty acids (ΣMUFA), and total polyunsaturated fatty acids (ΣPUFA). 

 

Figure 5.1. Mean values of ΣEPA+DHA+DPA (mg/100 g) in cheese. Different letters indicate 

significant differences between treatments (p<0.05). Lines indicate daily required intake of n-

3 LC-PUFA for women (90 mg/day) and men (160 mg/day), respectively. 

Canola oil (CO), rice bran oil (RBO), flaxseed oil (FSO), safflower oil (SFO), rumen-protected oil 

(RPO), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), docosapentaenoic acid (DPA). 

 

 

Besides nutritional value, appearance, aroma, flavour, and texture are very important features 

of commercial cheese marketing that affect consumer choice (Awad et al., 2007). The 

enhancement of all sensory eating traits observed in the RBO and FSO groups were 

inconsistent with previous studies that showed a minor effect on cheese sensory attributes made 

with milk from sheep (Najera et al., 2017) or cows (Ryhanen et al., 2005; Vargas-Bello-Perez 

et al., 2015a) supplemented different plant oils. In the current study, no statistical correlation 

between FA content and sensory attributes was observed although levels of MUFA showed a 

strongly negative effect on cheese eating quality. In addition, cheese flavour is due to 

contributions from complex agents including mainly milk constituents like casein, milk fat, 
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lactose and citrate (Singh et al., 2003) combined with the activity of microorganisms during 

the ripening period (Pastorino et al., 2003; Sheehan and Guinee, 2004; Awad et al., 2007). This 

current study primarily focused on improving the FA profile of ripened cheese. Further 

research, therefore, is recommended to investigate the effect of utilising milk from ewes 

supplemented with flaxseed and rice bran oils on cheese manufacture focusing on 

microbiological, biochemical, and chemical aspects of cheese ripening. 

5.6. Conclusion 

Outcomes of this novel on-farm study demonstrated a valuable process of increasing the 

healthy food functionality and consumer acceptability of sheep cheese fortified with dietary n-

3 LC-PUFA. Feeding rumen bypass-protected EPA + DHA to grazing dairy sheep offers the 

best strategy to increase desired n-3 LCPUFA in cheese without any negative effect on eating 

quality. Inclusion of flaxseed oil elevates not only the concentration of ALA but also all sensory 

attributes significantly. The diet containing safflower oil was the most effective in relation to 

LA enhancement, with a minor improvement in customer sensory evaluation results. Diets 

including rice bran and canola oil demonstrated minor effects on cheese PUFA, and rice bran 

oil had a positive effect on cheese eating quality in this study. Due to the current paucity of 

data and knowledge in the published literature, further research should be performed regarding 

the optimum level of rice bran and canola oil supplementation in grazing dairy sheep to further 

elevate the proportion of valuable cheese FA. In addition, precise interactions between cheese 

processing and oil supplementation also need to be examined to maximize transferred rate of 

healthy FA from sheep milk into ripened cheese. 
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Chapter 6: General Discussion and Conclusion 

 

The series of studies identified variations in animal performance, production, composition, FA 

profiles, and quality of milk and cheese of dairy ewes in an on-farm, pasture-based system. 

These variations attributable to supplementation with different n-3 PUFA oil sources from 

canola, rice bran, flaxseed, safflower and rumen-protected oil pellets in combination with sire 

breed, had impacts on: 

1. Feed intake and body condition score; 

2. Milk yield and composition; 

3. Fatty acid compositions of milk and cheese; 

4. Recovery of n-3 PUFA in cheese; and 

5. Cheese eating quality; 

In Chapter 3, the hypothesis that a lower dry matter intake due to the high energy density of 

oil infused pellets will be compensated by higher milk production, body condition score and 

overall performance of dairy sheep in an on-farm pasture-based system was tested. A 

significant decrease in DMI of ewes in all groups supplemented with oil pellets was evident. It 

confirms the negative association between high level of oil inclusion and feed intake of dairy 

ruminants reported by Mapato et al., (2010) and Ammah et al., (2018). The reverse impact of 

high level of oil inclusion on feed intake can be explained by the reduction in ruminal function 

(Petit et al., 2005) primarily in response to higher energy density of the diets requiring lesser 

volume of feed intake (Illius and Jessop, 1996). Besides, another driving factor influencing 

feed intake in ruminants is palatability (Baumont et al., 2000; Kawamoto et al., 2001). Rice 

bran has a comparatively higher palatability which might have contributed to the highest DMI 

found in RBO among oil supplemented groups. The pelleted experimental diets were different 
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in physical characteristics (hardness, aroma and integrity). These quality features, particularly 

hardness, have been demonstrated to significantly influence animal preferences for pellets 

(Thomas and vander Poel, 1996). However, the focus of this current research was not on the 

relationship between the attributes of pellet quality from different oil origins and voluntary 

intake of dairy ewes. 

Regarding body condition score, previous studies consistently confirmed a greater BCS loss in 

early lactation (Ruegg and Milton, 1995; Roche et al., 2007) due to fat mobilisation from body 

reserves for sustaining milk synthesis due to the imbalance of dietary energy (Komaragiri et 

al., 1998; Berry et al., 2007). Akin to that, very low BCS of experimental animals was observed 

at the commencement of the feeding trial (Chapter 3) which indicated that the pasture quality 

was insufficient. Supplementing these grazing dairy ewes with high energy sources was 

necessary to maintain animal welfare and productivity. This was demonstrated by the increase 

in BCS values during the feeding trial with more benefits improved BCS to ewes supplemented 

with CO, RBO, and FSO pellets than other diets. At the end of the feeding trial, BCS of ewes 

in these groups increased significantly within the optimum target of 2.5–3.0 for dairy sheep 

(Kenyon et al., 2014).  

More importantly, milk production (Chapter 3) responded positively to supplementation with 

oil-infused or rumen-protected pellets. Except for the flaxseed oil group, all supplementary 

diets significantly increased milk production compared with the control. Taken with DMI data, 

rumen-protected oil pellets was the most effective diet that enhanced the volume of milk, fat 

and protein by approximately 30, 13 and 31%, respectively. Moreover, the weekly trend in 

milk production over the whole experimental period for RPO seemed to be more stable than in 

other groups. This finding agrees with previous studies on the positive effect of bypass fat on 

the milk production of cows (Naik, 2013) and lactating ewes supplemented for longer than 4 
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weeks (Pulina et al., 2006). Interestingly, the inclusion of rice bran oil in this study marginally, 

but statistically, enhanced milk protein composition in contrast to Depeters and Cant (1992) 

who were of the view that changing milk protein composition is less likely to occur compared 

with the potential to alter milk fat composition (Depeters and Cant, 1992). However, Park et 

al. (2013) reported an increase in protein composition in the milk of dairy goats, while a 

reduction was observed in cows (Lunsin et al., 2012b). These variations could be explained by 

the disparity of species and feeding systems among studies.  Not surprisingly, breed also had a 

major impact on the yields of milk, fat and protein. Milk production from crossbred AW x EF 

was significantly higher than purebred AW by 16.5%. This is because EF is the most productive 

dairy sheep breed in terms of milk yield worldwide, and generally used in crossbreeding 

systems to improve milk production of local breeds (Ugarte et al., 2001). Sire breed also had a 

significant interaction with diet with greater responses in crossbred AW x EF ewes to oil 

supplements with respect to milk yield, particularly within the RPO group. In general, the 

results in Chapter 3 confirmed acceptance of the tested hypothesis and illustrated the positive 

effect of utilising oil supplements combined with a crossbreeding strategy between the AW 

and EF sheep breeds to improve animal performance, body condition score, milk production 

and composition in pasture-based dairy ewe production systems. 

The study in Chapter 4 was carried out to assess the effects of including rumen-protected 

pellets containing EPA+DHA or pellets infused with either canola, rice bran, flaxseed or 

safflower oils in the diet of grazing dairy ewes on milk n-3 PUFA content. The hypothesis 

tested was that supplementing grazing dairy ewes with different sources of dietary oils, 

including those containing n-3 and n-6 PUFA, would affect the concentration of n-3 LC-PUFA 

in milk without any negative effect on milk production. Results demonstrated that rumen 

bypass protected EPA + DHA was the most effective supplementary diet at elevating levels of 

n-3 LC-PUFA. The outstanding enhancement of EPA, DHA and DHA content by twofold, 
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threefold, and fivefold, respectively than the control in the current study, agrees with outcomes 

reported by Kitessa et al., (2001a; 2004). The form of rumen-protected oil utilised in these 

works increased the escape rate of dietary n-3 LC-PUFA from ruminal biohydrogenation for 

eventual absorption in the abomasum and transfer into the mammary glands (Shingfield et al., 

2013).  

The addition of flaxseed oil in the diets also significantly increased EPA and DPA content, but 

to a lesser extent compared to RPO. The increment of these FA in FSO group were positively 

associated with an increase in ALA, confirming the conversion of ALA to n-3 LC-PUFA in 

mammalian tissues (Leonard et al., 2004). However, the proportions of DHA observed in the 

control, CO, RBO, FSO, SFO were not different despite the variation in milk ALA, suggesting 

that the conversion rate of ALA to DHA is limited. Therefore, supplementing a rich source of 

ALA such as flaxseed and canola oil at levels of 5% could improve EPA and DPA constituent 

but not DHA, in sheep milk.  

In line with previous findings in dairy cows (Roy et al., 2006) and sheep (Kitessa et al., 2003), 

this study observed rapid changes in ALA, LA, and n-3 LC-PUFA contents in FSO, SFO, and 

RPO, respectively, during the feeding trial. These results indicated potential utilisation of oil 

supplements to produce desirable FA composition during ewe lactation for dairy sheep 

producers. No sire breed effect on n-3 PUFA concentration was found in this study, which 

demonstrated the low heritabilities of individual n-3 PUFA that were consistently reported by 

previous studies in dairy animals (Stoop et al., 2008; Bilal et al., 2014; Pegolo et al., 2016; 

Correddu et al., 2018). This would probably be as a result of half of the C16 and all of the long-

chain fatty acids in milk being derived from dietary and body reserves (Chilliard et al., 2007). 

By elevating the content of n-3 PUFA, the inclusion of canola, flaxseed and rumen-protected 

oil in the diets of grazing dairy ewes, noticeably decreased the n-6:n-3 ratio. This would benefit 
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consumers in terms of reducing the risk of inflammation (Di Nicolantonio and O'Keefe, 2018). 

This reduction in n6:n3 ratio is caused by competition between mediators such as the E-series 

and D-series resolvins transformed from n-3 LC-PUFA and inflammation mediators from 

arachidonic acid (20:4n-6, ARA) (Calder, 2006; Kunnumakkara et al., 2018). To potentially 

assist consumers in purchasing decisions, quantitative data regarding FA concentration was 

investigated in this chapter. It was concluded that fresh milk produced from ewes supplemented 

with flaxseed and rumen-protected oil achieved “source” and “good source” of n-3 LC-PUFA 

respectively, in line with Food Standards Australia and New Zealand (FSANZ, 2002).  

The objectives described in Chapter 5 were to investigate the influence of supplementing 

different plant oil-infused and rumen-protected wheat-based pellets for grazing dairy ewes on 

n-3 LC-PUFA concentration, fatty acid recovery and sensory attribute of ripened cheese. It was 

hypothesized that supplementing grazing dairy ewes with different sources of dietary n-3 oils 

would affect the concentration and recovery of n-3 LC-PUFA and alter the eating sensory traits 

of ripened cheese. Akin to the finding of Cattani et al., (2014), there were obvious parallels 

between FA composition of milk and ripened cheese observed in this study. Diets containing 

flaxseed oil, safflower oil and rumen bypass-protected EPA + DHA effectively increased the 

concentration of ALA, LA, and n-3 LC-PUFA, respectively. This is because FA composition 

of ripened cheese primarily depends on the FA profile of milk that was demonstrated by a 

number of studies (Collomb et al., 2006; Bisig et al., 2007; Prandini et al., 2011). Therefore, 

similar to the findings in Chapter 4, a significant increase in n-3 LC-PUFA was found in RPO 

cheese, while FSO and SFO cheeses had the highest levels of ALA and LA, respectively. 

According to NHMRC (2006), a standard serve of 40 mg cheese produced from RPO 

contributes approximately 28 and 49% of the 90 and 160 mg/day required for adequate intake 

in men and women, respectively. The content of total n-3 LC-PUFA at 44.3 mg also exceeded 

the “source” (30 mg/serving) level of n-3 LC-PUFA (FSANZ, 2002). Regarding the effect of 
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dietary supplements on major PUFA recovery, this investigation found similar conversion rate 

of n-3 and n-6 LC-PUFA except for α-linolenic acid and EPA.  The specific mechanism 

explaining the association between FA retention in cheese and FA content of raw milk is 

unknown due to paucity of studies on this theme.  

Besides nutritional value, sensory quality attributes critically affect the acceptability of 

commercial foods in general (Morales and Tsimidou, 2000) and consumer choice of cheese in 

particular (Awad et al., 2007). Thus, Chapter 5 also investigated the effects of oil supplements 

on cheese eating quality and the association between sensory features and fatty acid 

composition. In contrast with findings in  sheep (Najera et al., 2017) and cows (Vargas-Bello-

Perez et al., 2015a) where it was observed that supplementation with different plant oils had 

minor effect on cheese quality, the inclusion of rice bran and flaxseed oil in this study 

significantly enhanced all sensory traits. Disparities in forage sources, feeding system and type 

of oil supplement could be the reasons for this variation. However, this study could not find 

any statistically significant correlation between sensory attributes and FA content. Cheese 

quality is affected by a complexity of factors and their interactions during cheese processing. 

These factors include milk supply, rennet (coagulant), starter, non-starter lactic acid bacteria, 

cheese composition and ripening temperature (Fox et al., 2000). Thus further research is 

needed to clarify which factors could interact with oil supplementation, particularly rice bran 

and flaxseed oil regarding changes cheese eating quality.    

In summary, this on-farm study utilising different plant oil derived and rumen-protected oil 

supplements for grazing dairy sheep demonstrate an improvement in overall animal 

performance, lactation traits, and milk and cheese quality. The inclusion of rumen bypass-

protected EPA + DHA pellets offers the best strategy to increase milk productivity and 

desirable n-3 LC-PUFA content in both fresh milk and cheese without any adverse effect on 
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sensory attributes. The usage of flaxseed oil supplement considerably elevates the content of 

ALA and cheese eating quality, but has no incremental effect on milk production. The best 

approach to enhance n-6 PUFA is through supplementing ewes with safflower oil that also 

significantly improves milk yield, although to a lesser extent than rumen-protected oil. At 

present, the practical use of canola and rice bran supplements for dairy sheep in grazing systems 

is limited. This first effort shows that there is a promising potential of including rice bran oil 

in supplementary diets aimed at improving milk production, whilst at the same time, 

significantly increasing consumer acceptability of the processed cheese product. On the other 

hand, canola oil supplementation has only minor effects on dairy sheep productivity and 

product quality. Therefore, together with potential easy access to oil supplements, the use of 

these supplementation strategies depends on different on-farm goals focussing on enhancing 

animal performance, milk production, milk composition, milk and cheese fatty acid 

composition, or consumer acceptability of ripened cheese. It was also shown that sire breed 

independently interacts with oil supplementation to influence milk production, but not milk 

and cheese quality. The use of crossbred AW x EF ewes for improving milk, fat and protein 

yields is recommended for producers in pasture-based systems to increase the farm gate value 

of dairy sheep. 

Further research investigations are needed to better elucidate the: 

1) Effect of canola and rice bran oil on animal performance, milk and cheese FA 

concentration of dairy sheep in different management systems; 

2) Profitable margins of oil supplementation for sheep producers; 

3) The biosynthesis pathway of n-3 LC-PUFA from α-linolenic acid and the 

biohydrogenation mechanism of individual n-3 LC-PUFA; 

4) Activities of fat regulatory genes on the concentration of n-3 PUFA and their as 

associations with lipid supplementation; 
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5) Effect of oil supplementation for dairy ewes on biochemical and microbiological 

activities during cheese manufacture contributing to cheese quality. 

Limitations of the study: 

• This study was only conducted in Southern Tasmania where the climatic conditions 

and production systems may not be generally applicable to the whole country. 

Therefore, similar research in different production conditions in different regions 

of the country will comprehensively elucidate the findings revealed in the current 

study.    

• Profitability margins were not computed due to lack of feed costs associated with 

each supplement. Future investigations on profitability margins of using oil based 

supplementation for dairy sheep production will fill this knowledge gap. 
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