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Abstract

Background: The development of genome-wide genotyping resources has provided terrestrial livestock and crop
industries with the unique ability to accurately assess genomic relationships between individuals, uncover the
genetic architecture of commercial traits, as well as identify superior individuals for selection based on their specific
genetic profile. Utilising recent advancements in de-novo genome-wide genotyping technologies, it is now possible
to provide aquaculture industries with these same important genotyping resources, even in the absence of existing
genome assemblies. Here, we present the development of a genome-wide SNP assay for the Black Tiger shrimp
(Penaeus monodon) through utilisation of a reduced-representation whole-genome genotyping approach (DArTseq).

Results: Based on a single reduced-representation library, 31,262 polymorphic SNPs were identified across 650
individuals obtained from Australian wild stocks and commercial aquaculture populations. After filtering to remove
SNPs with low read depth, low MAF, low call rate, deviation from HWE, and non-Mendelian inheritance, 7542 high-
quality SNPs were retained. From these, 4236 high-quality genome-wide loci were selected for baits-probe
development and 4194 SNPs were included within a finalized target-capture genotype-by-sequence assay
(DArTcap). This assay was designed for routine and cost effective commercial application in large scale breeding
programs, and demonstrates higher confidence in genotype calls through increased call rate (from 80.2 ± 14.7 to
93.0% ± 3.5%), increased read depth (from 20.4 ± 15.6 to 80.0 ± 88.7), as well as a 3-fold reduction in cost over
traditional genotype-by-sequencing approaches.
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Conclusion: Importantly, this assay equips the P. monodon industry with the ability to simultaneously assign
parentage of communally reared animals, undertake genomic relationship analysis, manage mate pairings between
cryptic family lines, as well as undertake advance studies of genome and trait architecture. Critically this assay can
be cost effectively applied as P. monodon breeding programs transition to undertaking genomic selection.

Keywords: Genotype by sequencing, Advanced breeding, Black Tiger shrimp, Penaeus monodon, Diversity arrays
technology, Aquaculture

Background
Genotype-by-sequencing (GBS) has quickly been recog-
nised as a highly versatile and cost-effective approach to
rapidly generate genome-wide marker data for an emer-
ging aquaculture species, or those otherwise lacking
existing SNP-based genomic resources [1]. In particular,
since publication of the first Restriction-site Associated
DNA Sequencing (RAD-Seq) protocol by Miller [2], a
number of innovative developments of RAD-Seq proto-
cols have been published. These include RAD [3],
DArTSeq [4], ddRAD [5], 2bRAD [6], ezRAD [7] and
3RAD [8], all of which have seen dramatic improve-
ments in the ease of generating reliable, repeatable and
low-cost genotype data through GBS methods across a
plethora of species (reviewed by [9]). As such RAD-Seq
protocols have been increasingly applied within a num-
ber of aquaculture and fisheries fields of research
(reviewed by [1, 10]).
Across the range of RAD-Seq methods now available,

each protocol contains its own subtle differences in
methods undertaken throughout the sample-to-
sequencing process, which have been reviewed in detail
by Puritz [11], Andrews [9] and Robledo [1]. Importantly
however, all commonly utilized methods (e.g. RAD, [3];
ddRAD, [5]; DArTSeq, [4]) share the fundamental ap-
proach of sequencing only a reduced representation of
each individuals’ genome. Specifically, by undertaking
genomic complexity reduction steps (i.e. restriction en-
zyme digestion and/or fragment size selection) next-
generation sequencing efforts can be focused more effi-
ciently by consistently sequencing specific regions across
each individuals’ genome [9].
In an effort to further ensure consistent sequencing of

the same genomic regions, a number of RAD-Seq
methods have been paired with ‘targeted sequence cap-
ture’ protocols to enrich desired sequences (known as
‘RAD-tags’) in the sequencing libraries before final prep-
aration for high-throughput next-generation sequencing
[12]. Specifically, these approaches [e.g. Rapture, [13];
hyRAD, [14]; DArTCap, unpublished modifications of
Sansaloni [4]] utilize bead-based hybridization (e.g.
DYNAbeads®) or capture baits (e.g. MYbaits®) to exclu-
sively select RAD-tags from DNA samples that have
already undergone previous traditional complexity

reduction steps. This second stage of library refinement
is referred to as ‘enrichment’ [12].
By following this two-stage library preparation ap-

proach, it is possible to further improve the consistency
of genotype data compared to traditional RAD methods
in two ways. Firstly, it is possible to obtain higher se-
quence read coverage of a refined set of loci which im-
proves confidence in genotype calls [13]. Secondly,
through multiplexing more samples within a fixed allo-
cation of sequencing effort, it is possible to substantially
reduce the genotyping cost per individual [9, 13, 15, 16].
By leveraging these additional strengths of ‘RAD-Seq
target-capture’ hybrid protocols, genotyping strategies
(i.e. adjusting optimal sequence depth and/or multiplex-
ing a higher number of individuals) can be tailored to ef-
ficiently fulfil the intended uses of genotype data in
aquaculture (i.e. tracing pedigree, allocating mate-
pairings and determining family contributions). Further-
more, when ‘RAD-seq target capture’ genotyping is
coupled with the collection of large phenotypic datasets,
a plethora of advanced applications can be achieved. The
calculation of genomic relationship matrices (GRM),
genomic estimated breeding values (GEBV); discovery of
selection signatures, implementation of genomic selec-
tion (GS), genome-wide association studies (GWAS),
quantitative trait loci mapping (QTL), and genetic
marker imputation are now common place in the study
and management of most terrestrial livestock species.
Black tiger shrimp (Penaeus monodon) are an aquacul-

ture species of significant value (~$USD 4.5 billion [17];
), however, the industry has been troubled by inconsist-
ent seedstock quality and numerous devastating disease
outbreaks. While producing a current global production
of 713,318 metric tonnes per annum [17], the industry
stands to benefit greatly from developing genetic tools to
manage existing breeding programs more effectively, and
furthermore, facilitate a transition to genomic based
breeding programs (i.e. genomic selection [18–21];).
While efforts have been undertaken to develop a range
of genomic markers (e.g. microsatellites [22–24]), AFLPs
[25], low-density (59–122) SNPs [26]), these marker
panels lack the power for applications required in ad-
vanced breeding programs particularly when considering
complex traits like pathogen resistance or tolerance [20,
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26, 27]. The only existing medium density SNP-based
marker panel (6000 SNPs) produced for black tiger
shrimp was developed upon the high-cost Illumina iSe-
lect array platform, and as we are aware, has yet to be
made accessible for commercial use [28]. To date, no
genotyping assay has been produced for black tiger
shrimp that can feasibly be applied in routine high-
volume applications or to service the industries desire to
progress towards advanced selective breeding programs.
Here, the processes and rational underlying the devel-

opment of a hybrid ‘RAD-Seq target-capture’ GBS assay
for application within a black tiger shrimp industrial
aquaculture setting are detailed. We demonstrate the
versatility of this assay through traditional parentage as-
signment of animals reared under communal commer-
cial conditions (i.e. pedigree unknown), as well as the
utility of this assay in GRM calculations which set the
foundations for accurate estimations of GEBVs. The
ability to generate accurate GEBVs is integral for the es-
tablishment of genomic selection programs in black tiger
shrimp.

Results
SNP discovery, quality assessment and selection
After processing raw sequencing data from a DArTseq
GBS library of 650 individuals (ten individuals were ex-
cluded during library preparation), a dataset of 24,683
RAD-tags containing 31,262 SNP markers (31 K SNP
dataset), was returned. An average of 1.37 SNPs ±0.6 SD
were present in each RAD-tag, with a maximum of six
SNPs observed in a single RAD-tag (19,288 tags with
one SNP, 4300 tags with two SNPs, 915 tags with three
SNPs, 155 tags with four SNP, 22 tags with five SNP,
three tags with six SNPs). For this raw 31 K SNP dataset,
the average genotype call rate was 0.86 ± 0.14 SD and
the average MAF was 0.11 ± 0.15 SD.
An average of ~ 2.5 million reads were allocated to

each individual in library preparation and sequencing;
however, after removal of low quality sequences, mono-
morphic loci, and SilicoDArT markers (presence/ab-
sence variants), an average of 459,987 ± 88,493 SD reads
were associated with each individual (366,609,683 total
reads over 650 individuals). The average read depth over
all non-missing genotype calls was 17.0 ± 18.3 SD, how-
ever, 27.0% of non-missing genotype calls had 5 or less
reads associated.
To ensure only the highest quality markers were avail-

able for baits probe selection and assay development, a
series of SNP filtering thresholds were implemented to
remove individual genotype calls with low confidence,
remove less informative markers and remove erroneous
data (Fig. 1). Filtering for minimum read depth (< 5) re-
moved 20.4% of the non-missing genotype calls (4,155,
990), increasing the overall missing-ness of the 31 K

dataset from 14 to 33%. Subsequently filtering for mini-
mum minor allele frequency of ≥0.02 removed 16,391
SNPs. A further 4646 SNPs were removed due to having
a minimum call rate equal to or below 0.5; no SNPs
were discarded due to having a repeatability score of less
than 0.9 due to pre-filtering on repeatability before data
was provided. For SNPs that were derived from identical
clones (100% rad-tag sequence similarity), the SNP with
the highest MAF was retained from each clone resulting
in the removal of 1500 SNPs. Similarly, redundancy clus-
tering of clone sequences at 95% sequence similarity re-
moved a further 572 SNPs derived from highly similar
clones. Of the markers retained, tests of conformity to
Mendelian inheritance patterns and HWE were con-
ducted. A total of 364 SNPs were removed due to MI er-
rors (> 9%) and 247 SNPs were removed due to HWE
deviations. Finally, 3101 genotype calls identified as MI
errors across the remaining SNPs were silenced (Fig. 1).

Fig. 1 SNP qualtity control pipeline for development of Peneaus
monodon genotyping assay and the number of SNPs retained after
each step of filtering
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In total 23,720 SNPs were removed from the 31 K
dataset, leaving 7542 high quality SNPs for further rank-
ing and final SNP selection. After filtering, the average
MAF increased from 0.11 ± 0.15 to 0.22 ± 0.15. While
the average per genotype call rate decreased from 0.86 ±
0.14 to 0.84 ± 0.14, the average read depth per genotype
call increased from 17.0 ± 18.2 SD to 30.7 ± 27.9 SD.
Furthermore, the rate of average Mendelian inheritance
errors detected across SNPs decreased from 3.2 to 1.4%
after filtering.

SNP number and GRM analysis
To determine the number of markers required for accur-
ate genomic relationship calculations and selection of
the density of the DArTcap panel, a number of marker
subsets were modelled. An increasingly consistent GRM
estimate was achieved by including progressively more
random markers from 100 to 1000 markers (Fig. 2).
With 1000 markers a correlation of 0.95 was consistently
achieved when compared to the full 75,442 marker set
(Fig. 2). Increasing the number of markers from 1000 to
4000 further increased the correlation between marker
sets, with the correlation exceeding the desired mini-
mum cut off for future assay applications of 0.98 at 4000
markers (Fig. 2).
Since GRM correlations indicated an optimal assay

size of 4000 SNPs, a QC score was assigned to the set of
7542 high quality DArTseq markers allowing the priori-
tisation of 4236 SNPs for DArTcap probe systhesis. For

this selected subset of markers, the average call rate was
80.2% ± 14.7%, MAF was 0.35 ± 0.28 and the average
read depth per non-missing genotype call was 20.4 ±
15.6. Furthermore, genomic relationship values calcu-
lated with the 4236 markers showed high correlation
(r2 = 0.987) to the full 7542 marker panel (Fig. 3a). A
number of pairwise relationships were estimated to be
negative. These values are a result of the distinct under-
lying population structure between individuals from East
Australina Coast populations and those from Northern
Territory populations [29].

Linkage disequilibrium
Limited evidence of substantial linkage disequilibrium
was observed with the DArTseq datasets. A total of 4
marker pairs were found to be linked (r2 > 0.80) in the
7542 SNP dataset when considering all available individ-
ual genotypes, while only two of these marker pairs per-
sisted within the selected 4236 SNPs (r2 values of 0.96
and 0.85). When assessing genotypes of the Northern
Territory individuals only (Tiwi Island, Joseph Bonaparte
Gulf, Gulf of Carpentaria) from the 7542 SNP dataset,
there were three marker pairs with r2 values greater than
0.8. Likewise, for East Australian Coast individuals only
(Bramston Beach, Townsville, Etty Bay), there were 13 r2

values greater than 0.80, however, only one of these was
also observed in the Northern Territory population.
Using only Northern Territory individuals from the 4236
SNP dataset, there was one marker pair identified to be

Fig. 2 Correlations between GRMs estimated from randomly selected subsets of n marker density (Gni) and the complete pool of available
markers (7542 SNPs). Average correlations and error (SE) of each n derived from 50 replicated GRM estimates. Desired correlation of > 0.98
indicated by the dashed line
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in LD (r2 > 0.80). Likewise, when considering genotypes
of East Australian Coast individuals, there were 12 r2

values greater than 0.80, with one pair shared with those
observed in the Northern Territory population.

DArTcap assay validation
A number of samples resubmitted for genotyping did
not pass sample digestion QC, and were excluded from
sequencing (Table 1). This was most prominently

Fig. 3 Comparison of genomic relationship values calculated from the full 7542 SNP set, the selected 4236 SNP set provided for DArTCap probe
synthesis, and the final set of 4194 DArTcap SNPs. GRMs were calculated with all common individuals available between datasets including; 650
individuals (a), 195 individuals (b) and 195 individuals (c) respectively

Table 1 Individuals genotyped with DArTseq and DArTcap

Population Region DArTSeq DArTCap

# submitted # passing library preparation # submitted # passing library preparation

Townsville East Coast, Australia 22 22 10 10

Etty Bay East Coast, Australia 50 50 15 7

Bramston Beach East Coast, Australia 60 60 12 9

Gulf of Carpentaria Northern Territory, Australia 42 35 14 14

Tiwi Island Northern Territory, Australia 56 56 10 10

Joseph Bonaparte Gulf Northern Territory, Australia 34 34 13 13

Nickol Bay Western Australia, Australia – – 19 18

1st Generation Farm Stock 165 162 87 86

2nd Generation Set 1 Farm Stock 231 231 90 46

2nd Generation Set 2 Farm Stock – – 282 272

Total 660 650 552 485
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observed in the initial set of 2nd generation farm stock
(44 of 90 submitted), and was identified to be due to
DNA degradation during storage. Across the remaining
462 individuals, 21 samples from across various popula-
tions failed QC and were excluded (Table 1). Processing
of raw sequencing data obtained from a DArTcap
target-capture library including a total of 485 individuals
produced a dataset of 15,880 RAD-tags containing a
total of 26,751 SNP markers (raw DARTcap dataset). An
average of 1.7 SNPs ±1.0 SD were present in each RAD-
tag, with a maximum of 18 SNPs observed in a single
RAD-tag (9110 tags with 1 SNP, 4142 tags with 2 SNPs,
1731 tags with 3 SNPs, and 897 with > 3 SNPs). For the
raw DArTcap dataset, the average individual call rate
was 72.0% ± 6.8% SD, average genotype call rate was
72.0% ± 25.17% SD, and average MAF was 0.11 ± 0.13
SD. Approximately 600,000–700,000 reads were allo-
cated to each individual in library preparation and se-
quencing, and after removal of low quality sequences, an
average of 670,610 ± 185,993 reads were associated with
each individual (328,598,913 total). The average read
depth per genotype call was 34.8 ± 61.8 SD, however
32.0% of non-missing genotype calls had 5 or less reads
associated.
Within the raw DArTcap dataset, 4194 (99.0%) of the

selected 4236 panel were observed, with only 52 baits
probes failing to capture the desired rad-tag sequences.
For the 4194 DArTcap dataset, the average individual
call rate was 93.0% ± 3.5% SD, and average MAF was
0.23 ± 0.15 SD. An average of 312,343 ± 83,235 reads
were associated with each individual (153,048,102 total).
An average of 46.8% ± 1.6% of the total DArTcap se-
quencing effort was successful in obtaining target se-
quences per individual. The average read depth per non-
missing genotype call was 80.0 ± 88.7 SD, while 5.78% of
non-missing genotype calls had 5 or less reads
associated.

DArTcap assay utilisation
Parentage assignment
The results of parentage assignment success using Col-
ony are presented in Table 2. At a conservative genotyp-
ing error rate of 10%, parentage assignment across the
three sets of markers (7542 DArTseq, 4236 DArTseq,

4194 DArTcap) were essentially identical, where only
one individual (from 72 known parent-progeny relation-
ships) had a single parent incorrectly left unassigned
(false exclusion) when using the 4194 DArTcap marker
set (1.39% assignment error). The occurrence of false ex-
clusions increased to 4.2 and 8.3% for the DArTcap
marker set when using genotyping error rates of 5 and
1% respectively. The rate of false exclusions (2.3%)
remained consistent irrespective of the error rate used in
Colony for both the 7542 and 4236 DArTseq marker
sets; however, the individual false exclusions did vary be-
tween either exclusion of the mother or father for some
progeny.
Across all analyses, progeny containing higher missing

data (> 10%) accounted for the majority of false parent
exclusions. Furthermore, irrespective of the markers
used in the analysis, there was a single individual where
at least one of the two true parents could not be
assigned consistently. For this individual, across analyses
the unassigned parent was not consistent with either
both parents unassigned, only the mother unassigned, or
only the father unassigned. There were no untrue parent
assignments (false assignments) observed across any of
the assignment analyses, with all putative parents cor-
rectly excluded where the true parent/s were absent
from the dataset tested.

Genomic relationship calculations
Genomic relationship values calculated with the 4194
DArTcap markers showed high correlation to the 7542
DArTseq marker set (r2 = 0.98; Fig. 3b) and the 4236
DArTseq marker panel ((r2 = 0.98; Fig. 3c), importantly
indicating high concordance between the genotypes ob-
tained for the 195 samples that were genotyped through
the two GBS approaches. As with the comparision of
DArTseq 7542 and 4236 marker panels (see above) a
number of pairwise relationships were less than 0 (no re-
lationship). This is likely to be due to the structured na-
ture of the wild samples included in the dataset [29, 31,
32].
To further explore the utility of the 4194 DArTcap

SNP panel, genomic relationship values were calculated
for an additional independent set of G2 samples (n =
272) that were produced from novel Northern Territory

Table 2 Success rate of parentage assignment analysis using three SNP marker sets (7542 DArTseq, 4236 DArTseq, 4194 DArTcap)
and three genotyping error rates that range from strict to conservative (0.01, 0.05 and 0.1) in Colony [30]. There were no untrue
parent assignments for any dataset at any error rate

SNP dataset Success rate of parentage assignment at different genotyping error rates

0.01 0.05 0.10

7542 DArTseq 97.2% 97.2% 97.2%

4236 DArTseq 97.2% 97.2% 97.2%

4194 DArTcap 91.8% 95.8% 98.6%

Guppy et al. BMC Genomics          (2020) 21:541 Page 6 of 16



sourced broodstock (i.e. not genotyped with either
DArTseq or DArTcap). Utilising the GRM values of pro-
geny alone, in the absence of parental genotypes, it is
possible to clearly obtain sib-ship information (block
structure in Fig. 4), including delineating full-sib and
half-sib relationships. Furthermore, when compared to
routine pedigree based relationship matrixes, it is pos-
sible, by assessing the values off the diagonal of the heat-
map (within and outside blocks), to identify cryptic re-
latedness between otherwise traditionally unrelated indi-
viduals (Fig. 4).

Population segregation
The ability of the 4194 DArTcap SNP array to segregate
samples obtained from different populations across the
Australian distribution of P. monodon was assessed by
comparing these individuals through discriminant ana-
lysis of principle components (DAPC). By comparing the
first two principle components (with PC1 explaining
52.8% and PC2 explaining 44.3% of the variation), three
distinct clusters of individuals are clearly identified
(Fig. 5). Specifically, samples obtained from within East
Australia Coast, Northern Territory and Western
Australia form their own clusters. The G1 broodstock
and G2 progeny also cluster with their source population
(Northern Territory) showing no clear separation as a
result of breeding practices (Supplementary Figure 2).
The associated regional structure is consistent with pre-
viously identified population structure [22].

Discussion
Black tiger shrimp aquaculture is of substantial eco-
nomic value globally and is forecast to expand rapidly in
Australia with consistently increasing demand in domes-
tic and international markets. However, the industry as a
whole has lacked a viable low-cost genotyping assay cap-
able of being used for advanced selective breeding pro-
grams, including genomic selection. In this study, we
undertook de-novo SNP discovery, marker quality con-
trol and filtering, before selecting and successfully valid-
ating a custom DArTcap genotyping assay containing
4194 SNPs across Australian populations of P. monodon.
Access to such assays is highly sought after within P.
monodon breeding programs, particularly to facilitate the
transition to genomic selection.

DArTcap assay development
SNP discovery
In this study, we obtained 31,262 SNPs (24,683 unique
RAD-tags) by employing de-novo SNP discovery (DArT-
seq) genotyping of 650 individuals collected from across
the natural range of Australian P. monodon [22]. The
number of markers (and RAD-tags) obtained in this
study are closely comparable to studies using 2b-RAD
[33] and SLAF-seq [20] in white leg shrimp (Litopenaeus
vannamei) with 25,140 SNPs, and 23,049 SNPs obtained
previously. A recent study using SLAF-seq for P. mono-
don obtained a lower total number of markers (6821)
than this study, however, these were reported after

Fig. 4 Heat-map with dendrogram clustered from a genomic relationship matrix (GRM) of commercial, communally spawned black tiger shrimp
progeny. The pixel colouring denotes proportion of genomic relationship between two individuals with 0 = no relationship and 1 = identical.
Plotted with R package heatmaply
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completion of filtering (markers retained based on Par-
ent read depth (10–200), 90% call rate, MI > 0.01) and as
such is not directly comparable. Furthermore, these
markers were utilised for linkage map construction, ra-
ther than with the intent of inclusion in a genotyping
assay, and as such a single large family (98 G2 progeny,
G0 stock derived from Mozambique) was used in SNP
discovery [34] rather than employing a diverse discovery
population. Previously, Baranski [28] utilised transcrip-
tome sequencing (RNA-seq) of P. monodon obtained
from four locations around the coast of India, to dis-
cover 473,620 SNPs. Baranski [28] proceeded to produce
a custom solid-state 6 K Illumina iSelect genotyping
assay, and a subsequent genetic linkage map with the
completed assay, which has been further utilised in
GWAS and QTL studies [35]. In this study we aimed to
produce a low-cost genotyping assay that relied upon
genotype-by-sequencing (requiring a restriction enzyme
complexity reduction), and therefore were not able to
directly integrate existing SNP resources from Baranski
[28]. Furthermore with the intended focus on utilisation

of the DArTcap assay within the Australian industry, it
was important to derive SNPs from Australian stock, to
ensure marker ‘informativeness’ was maximised.

Determining SNP density required for GRM analysis
Since the initial shift from traditional co-dominant
markers (e.g. microsatellites) to SNPs, there has been a
focus on increasing the density of SNPs included in as-
says for many commercially important species. Particu-
larly with the SNP discovery through whole genome re-
sequencing approaches, and improvement of genotyping
techniques, commercially accessible assays have grown
from thousands of markers, to hundreds of thousands
markers for some species [e.g. salmon 130 K [36], catfish
250 K [37] and 690 K [38], common carp 250 K [39]].
While this is useful for some applications (e.g. genome
wide association studies), in many situations, genotyping
at this marker density is not economically feasible, or re-
quired to complete the desired analysis [40, 41]. For a
number of species with a closed nucleus breeding de-
sign, lower density SNPs assays with a few thousand

Fig. 5 Clustering of 168 wild-sourced samples based upon genetic similarity shown through discriminant analysis of principle components
(DAPC). PC1 and PC2 are shown on the x and y axis respectively. PC1 explains 52.8% and PC2 explains 44.3% of the variation
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markers are now being developed for routine breeding
applications for many species [e.g. cattle [42], chickens
[43] and salmon [40]].
In this study, for P. monodon we identified that 4000

markers were sufficient for the design of the DArTcap
array to ensure high concordance was obtained for GRM
calculations when compared to those derived from all
available filtered DArTseq markers (7542 SNPs; Fig. 2).
For use of this assay in future projects we desired a cor-
relation of 98%, however, depending on the end use ap-
plication and required genotyping costs, the marker
density could be reduced to between 2000 and 2500
markers while still achieving approximately 95% correl-
ation to the 7542 DArTseq SNPs. Reducing marker
densities further would result in the rapid decay of GRM
correlations and is not advised for using in advanced
genomic based breeding.
Similar studies have previously been completed for L.

vannamei, and indicated 3000 SNPs were appropriate
for GRM calculations [44]. Likewise, Wang [45] found
3200 SNPs for L. vannamei would be sufficient for ac-
curate GRM calculations when assessing an independent
commercial population. While the genome sizes of P.
monodon and L. vannamei are similar, and karyotypes
are identical [2.2 Gb vs 1.7 Gb; 44 chromosomes; Guppy
[46]], the lower required number of markers for GRMs
in L. vannamei may be due to both studies utilising sam-
ples from established breeding programs (many genera-
tions removed from wild) with large full-sib/half-sib
family structures rather than wild individuals from two
distinct regions in this study [47]. Effectively, a large
full-sib/half-sib family dataset structure requires fewer
markers to completely tag each segregating portion of
the genome, and as such results in lower variation in
GRM estimates at lower marker densities [48–50]. In fu-
ture studies it would be valuable to reassess the required
density of markers for P. monodon stock after multiple
generations of domestication. Species with smaller and/
or less complex (less polymorphic/repetitive elements)
genomes or low effective population sizes may be able to
use smaller arrays and should undertake a similar ap-
proach when designing an assay.

SNP linkage disequilibrium
While a small number of marker pairs were observed to
have linkage disequilibrium (LD) greater than 0.8, only
one of these pairs was regarded as highly linked in both
Northern Territory and East Australian Coast regions.
Given the genetic distinction between regions (Fig. 5), it
is expected that the patterns of LD across individuals
from each region will be different as well, and markers
in low LD in one population may be unlinked (or show
a varied level of linkage) in another [51, 52]. As such,
these markers were not removed from the assay.

Furthermore, unlike livestock species which have low
effective populations sizes (with highly similar organisa-
tion of genomes between individuals), the majority of
commercial P. monodon cultured in Australia are not yet
distinctly separated from wild stock (Supp. Figure 2),
and will exhibit a large degree of varied genome arrange-
ment across various individuals. Further investigation is
warranted, however, as patterns of LD, both across re-
gions and within regions, will impact the ability to trans-
late genomic selection models (both in GRMs and
estimating SNP effects) across to commercial stocks de-
rived from different regions [41, 53, 54].
While not available at the time of SNP selection, an

early draft assembly of the P. monodon genome has since
been made available [55]. Mapping markers to this as-
sembly could be an additional approach used to filter
out loci by genome position; however, the assembly con-
tains over four million contigs and as such, currently has
insufficient contiguity to be informative for this ap-
proach. Further work is underway to improve the P.
monodon genome assembly, and the distribution of
SNPs in this assay should be assessed further when this
is available.

Assay performance
The conversion rate of the selected probes into a suc-
cessful assay was high, with 99% of the targeted 4236
markers returned. Furthermore the genotyping call rate
across the individuals resubmitted for DArTcap geno-
typing was high (92.40% ± 2.75% SD), and has remained
high in subsequent genotyping of independent samples
from additional Australian populations (Western
Australia) and commercial stock (93.50% ± 3.90% SD).
Furthermore, while the average call rate obtained across
all individuals (93.05% ± 3.51% SD) in this study with
DArTcap genotyping is marginally lower than those
achieved with solid state genotyping [e.g. 98.92%, Illu-
mina Infinium ShrimpLD-24; Jones [56]], it is markedly
higher than call rates achieved through traditional de
novo GBS approaches (e.g. 86% in raw DArTseq data for
this study). The improvement in data quality obtained
with DArTcap genotyping over de novo GBS is further
evident after the removal of low confidence genotype
calls from the DArTseq dataset as the call rate decreased
to 66%. Similarly, while the average MAF of the DArT-
cap SNPs (0.23 ± 0.15) was lower than reported by Jones
[56] (0.37), the DArTcap assay holds sufficient ‘inform-
ativeness’ for routine applications including assigning
parentage (Table 2) and assessing genomic relatedness
(GRM; Fig. 4) or population structure (Fig. 5).
A secondary SNP (additional non-targeted polymorph-

ism with the target sequence) was obtained for a number
of the probes and for routine application should be re-
moved (as these are in complete linkage with target
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SNP); however they may represent additional valuable
information if combined into RAD-tag haplotypes [57],
or when the assay is applied to populations where the al-
lele frequency of the target SNP is not as informative as
the original tested populations (e.g. rare or fixed). Given
the global value of the P. monodon industry it would be
of interest to further assess the utility of this assay across
potentially divergent international populations and com-
mercial stocks.
The sequencing effort applied to each sample was

markedly reduced for each individual (from 2.5 million
to 670,610 reads per individual total) in DArTcap over
DArTseq; however the average read depth obtained for
each genotype call was higher (80.03 reads in DArTcap
vs 17.01 reads DArTSeq), substantially increasing the
confidence and accuracy of genotype calls. Furthermore,
given sequencing costs are the most substantial cost as-
sociated with GBS, being able to reduce the total alloca-
tion required to obtain robust data is critical for routine
applications involving the genotyping of thousands of in-
dividuals annually as required by breeding programs or
when undertaking genome-wide association studies.
Through utilising DArTcap genotyping over DArTseq
genotyping, three times the total number of individuals
can be assessed for an equivalent fixed financial invest-
ment (accounting for fixed per sample costs such as
DNA extraction, service provider labour).

Assay utilisation
Parentage assignment
The ability to undertake parentage assignment remains a
fundamental requirement for the vast majority of com-
mercial farms and research end users. In many aquacul-
ture production systems, including the P. monodon
industry, progeny are produced from mass spawning
events of multiple broodstock, with progeny of many
families being reared communally from fertilisation on-
wards. Quite often it is not possible to manually tag or
separate family lines. As a result, genotyping progeny
and broodstock, and assigning parentage through mo-
lecular means is essential as it enables the recovery of
pedigree information and ensures breeding programs are
managed effectively [27, 58].
The parentage assignment success rate obtained in this

study when using the 4194 DArTcap was high (up to
98.61%), and further validates the utility of this assay
more broadly. False assignment was not observed within
any parental assignment analysis over the three datasets
and various genotyping error rates, and would be highly
unusual given the statistical approach employed in Col-
ony [30]. Furthermore, false exclusions rates were low
across all analyses (with the exception of DArTcap par-
entage run at 1% error) with only a single individual per-
forming consistently poorly irrespective of SNP set or

other analysis variables. With the 4194 DArTcap SNP
sets, the rate of false exclusions were sensitive to the es-
timated genotype error rate included in the analysis,
however, this is well known [59] and can be easily ac-
commodated for in analysis.
Unlike in both DArTseq datasets, individual Mendel-

ian inheritance errors (single genotype calls) were not si-
lenced in the DArTcap dataset, and will have
contributed to a large degree of the variation in exclu-
sion rates seen between assays at each estimated geno-
typing error rate [60]. This approach was taken for
validation purposes, as we wanted to only utilise prior
parentage knowledge to valid assignments, rather than
to assist in the analysis itself (e.g. including a single par-
ent known). This provided the best equivalent to cir-
cumstances seen in routine commercial situations where
no parental data can be linked in advance.
Depending on marker polymorphism and the related-

ness of individuals, small arrays of 80–200 SNPs are
often sufficient for parentage assignment [60, 61]. In
previous studies using solid state technology (Sequenom)
rather than GBS, Sellars [26] found similar assignment
success (> 95%) to those achieved in this study are pos-
sible by using assays including 122 SNPs on eighth gen-
eration domesticated P. monodon stock. The parentage
assignment success of the 122 SNPs assay provided by
Sellars [26] was higher when compared to previous ap-
proaches with 12 or 13 microsatellites [62, 63]. Further
investigation of specific parentage subsets within the
DArTcap assay should be explored to allow substantial
reduction in time and computational requirement in-
volved in assignment. To date, no direct studies of par-
entage assignment using GBS for pooled samples are
available, but should be explored to further reduce geno-
typing expenses [46, 64].

Genomic relationship calculations
While comparisons of genomic relationships between
the two assay types have been discussed, for the pur-
poses of validating the assay we further tested the ability
of the GRMs calculated from the DArTcap array across
an independent communally reared commercial progeny
cohort. When visualising the genomic relationship
matrices with a dendrogram clustered heat map (Fig. 4),
it is evident that full-sib and half-sib relationships can be
separated into their respective family groupings, even in
the absence of reference to any parental genotype or
manual pedigree information. Furthermore a range of
cryptic relationships are evident in the group of individ-
uals tested, whereby individuals share either higher or
lower relatedness values than expected in the traditional
discrete pedigree relationships (i.e. 0 = unrelated, 0.25 =
half-sib, 0.5 = full sib).
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For genomic selection applications, it is not necessary
in all circumstances to be able to obtain full parentage
information (i.e. parent – progeny relationship), but in-
stead determine an accurate estimate of the relatedness
of individuals included in both the testing and training
populations datasets [49]. Under circumstances where
the true relationship between two individuals is inaccur-
ate, their relative value or merit in breeding programs
(EBV or GEBV) can be also incorrectly estimated [49].
The increase in selection accuracy by utilising GRMs has
been well studied in terrestrial agriculture species [65]
and has seen increasing attention in aquaculture breed-
ing programs [40, 66–68]. When compared to mass se-
lection approaches that are currently available for the
black tiger shrimp aquaculture industry, utilising GRMs
simultaneously allows increased accuracy of selection
[69], and further mitigation of inbreeding [e.g. optimised
contribution selection [70];].

Population segregation with DArTcap
The ability to identify cryptic genetic sub-structuring
within populations or groups can be useful to not only
identify unique genetic stocks for founder selection [71],
but also to trace captive lineages back to wild source
populations [72], or identify escapees from aquaculture
facilities [73].
Currently translocation of P. monodon broodstock oc-

curs under permits between the Northern Territory and
the East Australia Coast. Northern Territory broodstock
in particular are captured from wild fisheries, and
spawned in contained facilities in East Australia Coast
region. The DArTcap assay was successfully able to re-
assign Northern Territory, East Australia Coast and
Western Australia samples to their true population of
origin (Fig. 5). If an escape event was suspected, this
assay could be applied successfully to trace sampled in-
dividuals (broodstock or progeny) back to their source
population (Sup Figure 2) This approach has been ex-
plored extensively in salmonoid aquaculture [74, 75], as
well as in other species (e.g. turbot [76]).

Considerations for future filtering of GBS and SNP
selection GBS assays
While genotype-by-sequencing approaches are promis-
ing and are being applied across multiple species [1, 9,
46], there are a number of considerations that need to
be addressed. Compared to solid state genotyping on
fixed arrays (i.e. Illumina, Affymetrix), GBS approaches
usually yield lower genotyping accuracies due to the na-
ture of low read coverage in some SNPs. Filtering tai-
lored to specific datasets can remove genotype calls with
lower accuracies which in turn increase the accuracy
and quality of the dataset as a whole, however, overly ag-
gressive filtering can also remove large extents of data,

much of which is of sufficient quality for downstream
analysis [9]. Insufficient filtering thresholds, or absence
of specific criteria themselves (e.G. minimum read
depth) can result in spurious genotypes persisting in the
dataset and being used in subsequent downstream ana-
lyses [77–79].
During the design of the 4 k DARTcap array, we aimed

to use balanced SNP filtering thresholds that retained as
much data as possible, while removing the SNPs and
genotype calls for which we had low confidence. A num-
ber of major genotyping performance metrics were ex-
plored including call rate, minor allele frequency,
Mendelian error rates and Hardy-Weinberg deviations.
It is interesting to note that a number of these metrics
are intrinsically linked [e.g. call rate and read depth, read
depth and MI error, repeatability and read depth [9];]. In
addition, when transitioning from DArTseq to DArTcap
procedures, a number of metrics (Call rate, read depth,
reduced MI errors) were expected to improve dramatic-
ally [13, 16].
As such we placed the highest emphasis on marker

minor allele frequency and call rate to ensure the allele
frequencies remain high enough for use across multiple
generations of selective breeding, and the markers were
present in as many genotyped individuals as possible
(avoiding population specific markers and those that
were difficult to sequence). With reduced error in mind,
markers showing on average higher read depths and
higher repeatability of genotype calls (indicating consist-
ent sequencing both between and within individuals)
were preferentially ranked well. Furthermore, SNPs with
low levels of MI error and small deviations from HWE
were expected to improve with increased sequencing
depth of DArTcap genotyping, and comparatively were
not ranked down aggressively, instead the SNPs repre-
senting the majority of MI errors (> 9%) and significant
deviations from HWE in both populations were removed
earlier.
Markers with excessive read depth (e.g. > 200 reads/

genotype) should also be avoided, as this may indicate
two markers erroneously being called together from
paralogs (over-clustered), or located in highly repetitive
regions [41, 77]. Filtering these markers was overlooked
during the assay design phase of this study. While we re-
moved secondary loci from each RAD-tag, it is also ad-
visable to avoid highly polymorphic RAD-tags as the
clustering undertaken during the bioinformatics pro-
cesses involved in SNP calling becomes inherently more
complex, and can lead to over-splitting of markers due
incorrect phasing of alleles [41, 79]. Lastly, when select-
ing RAD-tags consideration should be taken to ensure
the target SNP is not located near the fragment end to
avoid issues with tag binding. Similarly, selection criteria
for inclusion markers within other genotyping
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technologies should be considered where possible. For
instance, SNP position is critical in Illumina probe de-
sign, and may hinder the transferability of the markers
developed in this study to other genotyping assays.

Conclusions
A method to routinely genotype thousands of individuals
is required to undertake advanced selective breeding in
black tiger shrimp. This study described the develop-
ment and validation of a crucial genotyping resource,
which by utilising target capture genotype by sequencing
(DArTcap) can for the first time be cost-effectively uti-
lised in routinely commercial breeding (< $15 AUD per
sample). This assay containing 4194 SNPs, simultan-
eously provides the ability reconstruct the pedigree of
communally reared families, while also being able to ac-
curately calculate the cryptic genomic relationships be-
tween individuals. Furthermore, this assay will facilitate
genome-wide association studies, linkage mapping, and
unlocks the ability to undertake genomic selection black
tiger shrimp.

Methods
Sample collection and DNA isolation
To develop informative genotyping assays, it is necessary
to compile as diverse discovery population as practically
possible while encapsulating the range of individuals to
be utilized within the industry breeding programs. As
such, samples were collected from a number of sources
across the natural range of Australian P. monodon (n =
264; Supplementary Figure 1) and from 1st and 2nd gen-
eration farm stock (n = 165 and n = 231 respectively).
Given the aims and design of this study, a priori sample
size calculations were not appropriate. Farm stock were
provided for sampling by Seafarms Group Ltd. as part of
routine operational practises, while individuals from nat-
ural populations were obtained from CSIRO fishery sur-
veys and were collected within the guidelines of
appropriate permits for each location. All individuals
were euthanized upon collection through immersion in
an ice-slurry. Pleopod tissue or whole post larvae were
collected and stored in ethanol or RNA-later at − 20 °C
until extraction. Genomic DNA was extracted either fol-
lowing the CTAB extraction protocol or MagJET Gen-
omic DNA Kit ([80] and ThermoFisher Scientific).
Genomic DNA was purified using Sephadex G-50 (GE
Healthcare Life Sciences 2000) and visualised on 0.8%
agarose gel to ensure quality and quantity were
sufficient.

Genome-wide SNP discovery
In the absence of existing published GBS datasets for P.
monodon, a reduced-representation genome by sequen-
cing (GBS) approach, DArTseq, was employed for SNP

discovery through a service provider, Diversity Arrays
Technologies (DArT [4];). High quality DNA was pro-
vided to DArT to identify SNP markers through a re-
striction digest reduced-representation based sequencing
strategy as described in [4, 81]. Briefly, DNA from 660
shrimp underwent a restriction digest using Pstl and
Hpall restriction enzymes and unique proprietary bar-
codes for each sample were ligated to size-selected
DNA. Samples that demonstrated non-uniform digestion
patterns were excluded from library preparation (n = 10).
To allow a measure of technical repeatability in genotype
calls and library preparation, 147 random replicates
(23%) were included within the library preparation
process. Equimolar amounts of barcoded samples were
pooled, with 94 samples forming a single pool, before se-
quencing cluster preparation on the Illumina c-Bot
bridge PCR system. Libraries were sequenced on three
flow cell lanes on an Illumina HiSeq2500 to provide an
average of 2.5 million raw reads per individual.
Reads with low sequence quality scores (Q < 25) were

eliminated and SNP calling was completed using the
KDcompute pipeline (DArT [81];). Following this, both
monomorphic loci and sequences associated with species
other than P. monodon (human, bacterial etc.) were ex-
cluded from the data set.

Marker quality control
To ensure only high quality markers were included in
the final target capture genotyping assay, multiple steps
of filtering were applied to the dataset before the
remaining SNPs were ranked on quality and level of
polymorphism prior to final selection. Custom python
scripts were developed to efficiently handle the datasets
provided by DArT (github.com/esteinig/dartQC) and
undertake preliminary SNP filtering for quality. Briefly,
genotype calls were silenced on the basis of low cumula-
tive raw read depth (i.e. with sum of reads for both al-
leles less than five), before SNPs with minor allele
frequency (MAF) less than 0.02, call rate less than 50%
or less than 90% repeatability were removed. Next, SNP
redundancy filtering was undertaken, whereby sequence
clusters (RAD-tag or clones) were identified using the
CD-HIT clustering algorithm at 95% identity [82], and
then the SNP with the highest MAF within each se-
quence cluster was retained. This redundancy filtering
was undertaken to ensure that overrepresentation of
specific areas of the genome did not occur, as this may
introduce bias into future genomic analyses.
Hardy Weinberg Equilibrium (HWE) deviations were

calculated within PLINK [83] utilizing discrete datasets
for the East Coast (n = 132) and Northern Territory
stocks (n = 125) (Table 1). SNPs identified to signifi-
cantly deviate (p < 0.0001) from HWE in both popula-
tions were removed. Known parental trio relationships

Guppy et al. BMC Genomics          (2020) 21:541 Page 12 of 16

http://github.com/esteinig/dartQC


(81, progeny-dam-sire) were utilised to identify SNPs
that displayed Mendelian Inheritance (MI) errors using
PLINK [83]. MI errors were investigated on an individ-
ual SNP call basis as these could be due to incorrect
genotype calls from sequencing error, or insufficient
read depth [84]. SNPs with high levels of aberrant MI er-
rors (> 9%) not associated with sequence coverage errors
were removed.

SNP selection and assay design
To determine the number of markers required to accur-
ately obtain GRMs in P. monodon, calculations were
undertaken using a similar approach to Rolf [42]. GRMs
calculated from increasing densities of markers were
compared to a GRM estimated from all 7542 SNPs (G).
The programs R v3.4.1 and PLINK v1.9 [83] were used
to create randomly selected marker subsets (n = 100,
200, 500, 1000, 1500, 2500, 3000, 3500, 4000, 4500,
5000, 5500, 6000, 6500, 7000), with replacement, from
the pool of 7542 SNPs available. For each marker subset
(n), 50 random replicates (i) were generated and a GRM
(Gni) was estimated using GCTA v1.91.7b [85]. Correla-
tions were then drawn between the pairwise relatedness
of 650 individuals (Table 1) produced in each Gni GRM
and the corresponding relatedness values of G. Average
pairwise relatedness values across the 50 replicates for
each marker subset were calculated before correlation
plots were produced using the R package ggplot2 [86].
Such GRM analysis (detailed below) indicated that a
panel of 4000 SNPs was able to produce a GRM with an
r2 correlation of 0.98 to the full 7542 array. Therefore,
this defined the target size of the DArTcap sub-array to
be developed.
To prioritise the selection of the highest quality SNPs

in the final assay, a custom quality score (QC score) was
developed to rank each SNP by a range of SNP quality
metrics (Eq. 1). Metrics included were, call rate (CR)
which ranged from 0 to 1 with a weighting of 1.4; minor
allele frequency (MAF) ranging from 0 to 0.5 with a
weighting of 2.4; average repeatability (Rep_Avg) ranging
from 0 to 1; standardised read depth (RD) whereby the
average read depth of the SNP was divided by the largest
read depth observed to give a proportion between 0 and
1; Hardy Weinberg Equilibrium deviation (HWE) as a
percentage; and Mendelian inheritance error rate (MI).

QC score ¼ CR� 1:4ð Þ þ MAF � 2:4ð Þ
þ Rep Avg þ RD −

HWEð Þ
10

−MI ð1Þ

A total of 4236 highest ranked QC score SNPs were
selected for the 4 K genotyping assay allowing for some
redundancy for marker drop out (cross probe affinity,
probe failure) during probe synthesis. Furthermore, a

GRM was calculated using the 4236 subset of markers
and compared to the full 7542 markers to ensure con-
cordance was maintained. Selected sequences were pro-
vided to DArT, and DArTcap probes synthesized
(MYbaits®, MYcroarray®) for testing.

Linkage disequilibrium
To approximate the distribution and independence of
markers across the genome, linkage disequilibrium (LD)
was calculated across the complete datasets of 7542
SNPs and 4236 DArTseq SNPs with all available samples
in PLINK [83]. Similarly, population specific LD was cal-
culated with samples from the Northern Territory (n =
125) and East Australian Coast (n = 132) regions inde-
pendently. Pairwise LD values between loci greater than
> 0.2 were reported, and then compared between North-
ern Territory and East Australian Coast regions to iden-
tify if any markers were consistently in complete (r2 = 1)
or high LD (r2 > 0.8).

Assay validation
Validation of the DArTcap probes involved the re-
genotyping of a subset of 251 individuals from the dis-
covery population (Table 1). DArTcap follows similar
methodology to DArTseq, however, it involves an add-
itional magnetic bead hybridization step (Dynabeads,
MyOne) that utilises the DArTcap probes to capture
and enrich the 4236 target SNP sequences before being
put forward for sequencing. Sequencing of the targeted
(DArTcap) library and preliminary sequence data quality
control was identical to the DArTseq procedure de-
scribed above. A minimum of 8% technical replicates
(i.e. 8 samples per 94 well plate) were included to pro-
vide a measure of SNP repeatability.
In addition to sequencing a representation of the

DArTseq discovery population, two groups of additional
novel individuals (19 individuals from Nickol Bay, West-
ern Australia, and 282 additional commercial progeny;
Table 1) were also included in the DArTcap sequencing
effort as independent datasets for validation and analysis.
In order to evaluate the quality and integrity of the
DArTcap assay, comparisons were drawn between SNP
metrics (i.e. call rate, read depth, Mendelian inheritance
errors) produced by the two GBS methods (DArTseq
and DArTcap). In addition, parentage analysis, GRM cal-
culations and sample relatedness were also assessed with
the 7542 DArTseq SNP dataset, the 4236 DArTseq SNP
dataset and the final 4194 DArTcap SNP dataset to val-
idate the utility of the finalized assay.

Parentage assignment
As parentage assignment is a fundamental requirement
for many genotyping assays, power to assign parentage
was tested across three SNP datasets (the 75,442 filtered
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DArTseq SNPs, the 4236 DArTseq SNPs selected for
assay design and the 4194 DArTcap SNPs). A total of 46
progeny and 56 broodstock with known parent-progeny
relationships were available for genotyping on both the
DArTseq and DArTcap platforms. A number of add-
itional broodstock with known parent-progeny relation-
ships had insufficient DNA when undertaking DArTcap
genotyping and were excluded. For these 72 family pair-
wise relationships, parentage assignment was undertaken
in the program Colony [30]. Repeated analyses with esti-
mated genotyping error rates ranging from strict (1%),
to moderate (5%), to conservative (10%) were completed
to account for undefined genotyping error rates across
the three SNP datasets [87]. Since the progeny were the
first generation of wild broodstock pairings, inbreeding
was not included. Prior sib-ship assumptions were ex-
cluded allowing for highly skewed family sizes com-
monly observed in mass-spawning aquaculture systems
[58]. Likewise maternal and paternal polygamy were
allowed to account for potential of half-sib breeding de-
signs that utilise artificial insemination. All analyses were
completed with the ‘long run’, ‘high precision’ and ‘full-
likelihood’ options within Colony. The two types of par-
entage assignment errors; a) incorrect exclusion of a true
parent, and b) assignment of an untrue parent, were de-
termined for each assignment analysis.

Calculating relatedness and identifying genetic structure
To confirm the estimates of relatedness obtained from
DArTcap genotyping (4129 SNPs) were concordant with
those of the selected 4236 DArTseq markers, a GRM
was calculated in GCTA v1.91.7b for both datasets and
all common individuals (n = 195) in the two datasets
were compared..
To provide a complementary approach to visually as-

sess the utility of GRMs derived from DArTcap genotyp-
ing, GRMs and dendrograms were calculated for an
independent set of G2 samples (n = 272; Table 1) and
then plotted as a heat-map in R with the package ‘heat-
maply’ [88].
To confirm the DArTcap assay retained sufficient in-

formativeness to distinguish between individuals from
distinct populations, we completed discriminant analysis
of principal components (DAPC) using the R package
adegenet [89]. We completed this analysis with three
subsets of the 4194 DArTcap SNP dataset. Firstly, all
available individuals (n = 418) secondly retaining only
wild sourced broodstock and wild samples and excluding
all G2 individuals (n = 168) to ensure closely related in-
dividuals were not influencing the analysis, and lastly
with only an independent set of G2 samples (n = 272) to
assess the ability to discriminate between family lines.
Concordance of sample placement within source popula-
tions was assessed.
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Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-06960-w.

Additional file 1: Supplementary Figure 1. Penaeus monodon
distribution across Australia (light grey), approximate locations of current
pond based farming operations (dark grey), and location of samples
included in DARTcap ‘discovery’ populations (1 – Joseph Bonaparte Bay
(n = 34), 2 – Tiwi Islands (n = 56), 3 – Gulf of Carpentaria (n = 43), 4 –
Bramston Beach (n = 60), 5 – Etty Bay (n = 50), 6 – Townsville (n = 22) and
7 – Commercial Farm site (n = 394). Supplementary Figure 2.
Clustering of samples based upon genetic similarity shown through
discriminant analysis of principle components (DAPC). PC1 and PC2 are
shown on the x and y axis respectively. (A) Including all samples (n =
418). (B) Including only second generation (G2) individuals (n = 272)
obtained from routine commercial spawning.
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