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ABSTRACT Meteorological imagery prediction is an important and challenging problem for weather
forecasting. It can also be seen as a video frame prediction problem that estimates future frames based on
observed meteorological imageries. Despite it is a widely-investigated problem, it is still far from being
solved. Current state-of-the-art deep learning based approaches mainly optimise the mean square error
loss resulting in blurry predictions. We address this problem by introducing a Meteorological Predictive
Learning GAN model (in short MPL-GAN) that utilises the conditional GAN along with the predictive
learning module in order to handle the uncertainty in future frame prediction. Experiments on a real-world
dataset demonstrate the superior performance of our proposed model. Our proposed model is able to map the
blurry predictions produced by traditional mean square error loss based predictive learning methods back
to their original data distributions, hence it is able to improve and sharpen the prediction. In particular, our
MPL-GAN achieves an average sharpness of 52.82, which is 14% better than the baseline method. Fur-
thermore, our model correctly detects the meteorological movement patterns that traditional unconditional

GANESs fail to do.

INDEX TERMS Meteorological prediction, spatio-temporal forecasting, GAN, video prediction.

I. INTRODUCTION

Weather forecasting is one of the main applications of mete-
orological prediction. It is important for our daily life as
well as industrial and agricultural production. Common uses
include precipitation nowcasting [1], [2], streamflow predic-
tion [3]-[7], wind speed simulation [8], radiation estima-
tion [9], and temperature forecasting [10], [11]. Numerous
techniques have been proposed to predict more accurate
weather measurements including Numerical Weather Predic-
tion (NWP), radar map based methods, and satellite imagery
based methods. Recently, with the advances of deep learn-
ing techniques, researchers adopt Recurrent Neural Net-
work (RNN) based methods to improve those traditional
approaches in order to address this challenging problem.
For example, authors [1] formulated the precipitation now-
casting problem into a spatio-temporal sequence forecasting
model, and proposed a LSTM-based model named ConvL-
STM for radar echo map prediction. A Seq2Seq-LSTM based
model [11] was proposed to improve NWP performance
through historical observations. A study [12] proposed an
adversarial model to predict cyclone trajectory with satel-
lite imageries. These studies reveal that radar and satellite
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imageries play more and more important roles in meteoro-
logical prediction, not only because they are more robust, but
also they provide end-users with more sequential informa-
tion and better visualisations of the history from current to
predicted atmosphere. However, these approaches share some
common drawbacks: they do not generalise well in real-world
meteorological datasets especially for long term predictions.
To be more specific, the pioneering work, ConvLSTM, pro-
duces blurry radar imagery predictions, and keeps going
worse as the time step moves forward. These meteorological
imageries do not appear to be realistic but blurry resulting in
unpleasant visualisations. These drawbacks are mainly due
to two reasons. First, these models optimise Euclidean losses
such as Mean Absolute Error (MAE) and Mean Square Error
(MSE) across the overall length of sequential meteorolog-
ical imageries. A few studies introduced various models
with MAE and MSE, but produced blurry images [13], [14].
This is mainly due to the assumption that the data is drawn
form the Gaussian distribution which only works on a con-
tinuous portion of the image while ignoring isolated small
regional areas. Second, due to the nature of RNN archi-
tecture, small errors are quickly accumulated to become
large errors along the generated sequence because of the
gap between training and inference [15], [16]. These two
causes indicate that it is crucial to include an uncertainty
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handling procedure to generate realistic meteorological
predictions.

Meanwhile, the video frame prediction can be mod-
elled as a spatio-temporal sequence forecasting problem.
For instance, authors [17] extracted a sequence of images
from video frames, and proposed an encoder-decoder RNN
based model named PredRNN [17] and its improved ver-
sion PredRNN++ [18]. Nevertheless, these models suf-
fer from the same drawback as ConvLSTM produces
blurry predictions. Recently, Generative Adversarial Net-
work (GAN) [19] was used to handle uncertainties in video
frame prediction [13], [20]-[22]. GAN models match two
distributions by one generator and one discriminator playing
the minmax game, where the generator learns to generate
samples to fool the discriminator and the discriminator learns
to distinguish these fake samples. These unconditional GAN
based models are able to produce realistic looking videos by
learning a high dimensional distribution of complex datasets.
However, these models are not suitable for meteorological
predictive learning even though they are able to produce
realistic looking and temporally coherent video frames. This
is because those generated video frames do not model the
real-world meteorological changes given by the source of
meteorological imagery frames. Note that, meteorological
prediction needs to consider the moving entities’ (pixel wise)
direction, speed, rotation acceleration and other information.

To sum up, on one hand RNN based meteorological predic-
tive models with MAE and MSE produce blurry predictions.
On the other hand, GAN based models are able to generate
realistic looking video frames but fail to catch the actual
atmospheric movement missing local variations and patterns.
In this work, we propose a Conditional GAN based model
named Meteorological Predictive Learning GAN (in short
MPL-GAN) that optimises both the regression loss and GAN
loss, and aims at generating realistic meteorological pre-
dictions. Optimising regression loss aims at modeling the
real-world atmosphere imagery movement which is crucial
for weather forecasting. The GAN loss is used to estimate
the data distribution to deal with the uncertainty to produce
non-blurry predictions.

Our main contributions are summarised as follows:

« to the best of our knowledge, this is the first model that
combines regression loss with GAN loss to generate
realistic meteorological predictions that provide better
visualisations;

o to conduct extensive experiments on a real-world
radar imagery dataset. Experimental results demonstrate
our model generates non-blurry predictions even in
the long term while it catches real-world atmosphere
changes;

o to provide an extensive experiment analysis to show
that the pure GAN model without the predictive learn-
ing module fails to catch the actual atmospheric move-
ment, which demonstrates the effectiveness of our
proposed MPL-GAN model detecting meteorological
changes.
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Il. RELATED WORK
This section briefly reviews related studies.

A. METEOROLOGICAL PREDICTIVE LEARNING

Optimal flow based methods [23], [24] have been a long his-
tory in the meteorological predictive learning literature. With
the recent advances in deep learning, authors [1] explored the
possibility of applying RNN, and proposed a model called
Convolutional LSTM (ConvLSTM) [1] and its improved ver-
sion TrajGRU [2] for radar echo imagery prediction. Both
approaches tried to optimise the MSE loss. In the meantime,
the video frame prediction and the traffic flow prediction
can be considered as the same problem. PredRNN and its
improved version PredRNN+-+ are proposed by [17] to
tackle this problem, again these methods optimised the MSE
loss as well, and they shared the same issue that the prediction
gets more blurry over time.

Beyond the meteorological imagery predictive learning,
neural network based methods have also been used in numer-
ical weather forecasting. For example, a study [11] proposed
a Seq2Seq LSTM to predict temperature, wind speed, and
relative humidity. Another study [10] improved such method
by introducing a temporal progressive growing schedule sam-
pling strategy. Nevertheless, these approaches suffer from the
same long term prediction accuracy degradation.

B. GAN FOR IMAGE AND VIDEO GENERATION

GAN [19] has been the most popular generative model since
it was first released in 2014. Since then GAN models have
shown their superior abilities especially in image generation,
starting from hand-written digit generation [19], [25] to large
scale image set generation [26], [27]. Recently, researchers
try to push the limit of GAN by generating photo-realistic
videos using unconditional GAN [13], [20]-[22], [28]. Those
video GANs aim at producing photo-realistic and tem-
poral coherent videos, and they are used to match the
high-dimensional data distribution between the two. Note
that, there are no other considerations those models take
into account. That is, for given initial frames, generated
frames do not need to consider the moving entities’ direc-
tion, speed and other moving information. However, these
moving properties play an important role in our study,
and our GAN takes them into account unlike traditional
unconditional GANs.

Ill. PROPOSED MPL-GAN
In this section, we will describe our proposed MPL-GAN
model that aims to produce realistic looking meteorological
imageries. Figure 1 shows the overall architecture of our
proposed model that contains a predictive learning model
to generate predictions and a Conditional GAN module to
map those predictions back to photorealistic distributions.
First, we formulate the meteorological predictive learning as
follows:

Definition 1: Given a length-k matrix sequence M'{ =
[X], X, ..., Ak], where each matrix &X; € M represents
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FIGURE 1. Architecture of our proposed model MPL-GAN. The orange box indicates the predictive learning module that models the real-world
meteorological movement patterns. We use ConvLSTM for evaluation purpose that can be replaced by other predictive learning approaches if needed.
The blue box concludes the Conditional GAN module which consists of the conditional generator and two discriminators D, and Dg.

the meteorological imagery at time-step ¢. Metrological pre-
dictive learning is to predict a sequence of corresponding
meteorological imageries of following K time-steps based on
the past frames of M, denoted as 75f( = [XA] , 2\?2, e, XAK].

Note, a meteorological imagery carries important weather
information such as rainfall, temperature, and wind speed etc.

A. PREDICTIVE LEARNING

In order to model meteorological changes, we adopt encoder-
decoder ConvLSTM [1] as a predictive learning module.
As investigated by previous studies [1], [2], predictive learn-
ing aims to capture the local spatio-temporal pattern move-
ment such as rotation and scaling. As we mentioned earlier,
all existing GAN-based next frame prediction models are
not suitable for meteorological predictive learning as these
models do not capture the real-world meteorological changes.
Furthermore, these GAN models without such predictive
learning module are not able to produce long term predic-
tions. For example, a study [13] can only produce a maxi-
mum of two frames for future video predictions. In contrast,
our MPL-GAN model generates the next prediction condi-
tional on previous ground-truth and current predictive output
with conditional GAN. We manage to generate more than
10 frames of non-blurry and realistic meteorological imagery
predictions, and yet still model the real-world atmospheric
changes with the help of a predictive learning module. This
demonstrates that the predictive learning module is crucial
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for modelling meteorological changes. Note that, we use
ConvLSTM for evaluation purpose in this study, but it can
be replaced by any other advanced models such as Traj-
GRU [2] and PredRNN++- [18]. On one hand, the predictive
learning module is required for modelling meteorological
changes, but on the other hand, naive predictive learning
models suffer from the blurry image issue and they need to be
specially refined for meteorological change analysis. In the
next section, we will introduce Conditional GAN to solve
the blurry problem caused by the traditional naive predictive
learning module.

B. CONDITIONAL GAN

GAN [19] attempts to learn a mapping function G to map a
random noise vector z to an image X', G : z — X. In our
settings, we aim to map the blurry prediction produced by
ConvLSTM to the original non-blurry distribution. Let Pf(
denote the generated sequence of ConvLSTM, ./\/lf denote
the observed ground-truth frames, our goal is to train a con-
ditional Generator G : {z, 75f< } — Mf .

1) CONDITIONAL GENERATOR

As the prediction sequence is generated recursively by
the ConvLSTM, we train the Conditional Generator G
{z, AA’,} — X per frame along with the ConvLSTM time steps
instead of taking the whole generated sequence to train the
GAN generator, where /"A(t denotes the ConvLSTM output at
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time ¢ and A} is the ground-truth frame at time . However,
when the ConvLSTM prediction gets more blurry in the
later time steps, the Conditional GAN gets harder to map
the conditional distributions between the two. To solve this
problem, we train the generator along with conditioning on
the previous frame X;_1,i.e. G : {z, X;—_1, X;} = A;. Ideally,
we should train the generator conditioning on the current
ground-truth frame A&; and current ConvLSTM prediction
frame X,. We use the previous frame instead of the current
frame based on the observation that two consecutive meteo-
rological frames are very similar in terms of data distribution.
They even look to be very similar since the atmosphere
normally changes gradually and slowly. Moreover, during the
inference stage, none of the previous and current ground-truth
frames would be available. Then, we can replace the previ-
ous ground-truth frame A&;_; with the generator output of
previous time step during the inference phase, i.e. X, =
4g(z, 2@4 , f(t). We can also think the other way around, since
the ground-truth frames are not available during the inference
phase. However, we make an assumption that the output
distribution of our generator perfectly matches the actual data
distribution, then the data distribution can be carried forward
from the last known ground-truth frame to the predicting
frame recursively. Therefore, we use the ground-truth frame
X,_; instead of X;_; during the training phase for training
stability, then replace X;_; with 2?[_1 during inference.

2) FRAME DISCRIMINATOR

We randomly select N frames among the K time steps to
train the frame discriminator Dg;. The Dy, outputs / for the
true frame X; and outputs O for the fake frame )N(,. Then,
we train the frame discriminator by optimising the minmax
game defined in the original GAN, we use Hinge Loss [29]
for Lpy, defined as follow:

EDFr = E[max(0, 1 — Dg(X}))
+E[max(0, 1 + Dr(X))]. (1)

3) FLOW DISCRIMINATOR

Frame discriminator aims to ensure that the generator pro-
duces samples matching the actual data distribution, i.e.
to ensure the produced samples looked to be realistic. On top
of this, similar to the video discriminator proposed by [22],
we propose a flow discriminator D ensuring the generator
produces temporal coherent frames. Similarly, Dg| outputs /
for the real sequence Mf and outputs O for the generator
sequence (/\/lk; 7515 ), here we concatenate the initial source
sequence MII‘ and the conditional generated sequence 7515 .
Lpy, defined as follow:

Lpy, = E[max(0, 1 — Dp(MK))
+E[max(0, 1 + D (MK, P (2)

C. TRAINING
Again, a predictive learning module is essential for mod-
elling the real-world meteorological movement patterns,
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and conditional GAN is used to map the blurry predictions
generated by predictive learning back to non-blurry imagery
distributions. Therefore, we divide the training process into
two stages. First, we start training the predictive learning
module, when the training of predictive learning module is
almost stable then we start the training of the GAN module.

1) PREDICTIVE LEARNING TRAINING

Following the settings of ConvLSTM [1] and TrajGRU [17],
we train our Predictive Learning (PL) module by minimising
the balance of MSE and MAE losses (B-MSE-MAE) with
Stochastic Gradient Descent (SGD) and Back-propagation
Through Time (BPTT) [30]. We train the B-MSE-MAE loss
until it becomes stable before we start training the Con-
ditional GAN so that the Conditional GAN learns the sta-
bled data distribution. However, we continue to train the
PL module along with the GAN module even the loss does
not decrease. The intuition behind this is to give the GAN
variances of distribution to make the GAN become more
robust.

2) CONDITIONAL GAN TRAINING

Training GAN models requires training both the generator
and discriminator by optimising the minimax game [19],
where the generator learns to fool the discriminator with gen-
erated fake samples and the discriminator learns to identify
true and fake samples. We follow the same spirit and extend
it to training one conditional generator and two separate
discriminators. The losses of Frame Discriminator Dg; and
Flow Discriminator are defined in Equation 1 and Equation 2.
Now we define the loss function for conditional generator as
follow:

Lg = —E[Dr(G(z, X1, X)) +Dr(G%(z X1, X)), (3)

where ¢ denotes a process of applying the generator recur-
sively with the ConvLSTM time steps to generate a sequence
flow of frames. Therefore our overall optimisation goal is to
minimise Lp, and Lp that maximises the probability of
the discriminators identifying fake frames and fake sequence;
and minimises L£g to maximise the probability of the gener-
ator producing samples that the discriminators think they are
true.

H}Jil’l I%?:f( ‘CDFr (ga DFF) + rngin n%?;f( ED]:] (gv Dr) . 4

Note, N random frames will be selected for training D,
N times for each training batch b, whereas Dp will be
trained once for each b. Moreover, the gradient of G will
be back-propagated multiple times recursively with operation
¢ when training G with Dgj. This makes it extremely diffi-
cult for training the GAN. Following the principle of [20]
and [27], we downsample each frame of the sequence passing
to Dpy to overcome the difficulties of training.

IV. EXPERIMENT
In this section, we briefly describe the dataset used and
provide experimental results.

VOLUME 8, 2020



H.-B. Liu, I. Lee: MPL-GAN: Toward Realistic Meteorological Predictive Learning Using Conditional GAN

IEEE Access

A. DATASET

We use HKO-7 [1], [2] radar echo imagery dataset to evaluate
our proposed MPL-GAN model. The radar echo imagery is
recorded every 6 minutes, therefore there are 240 frames
per day. Each frame contains 480 x 480 pixels that cover a
512km x 512km area. We sample data into sequences of the
length of 15 frames by a sliding window, 5 for the encoder
and 10 for the decoder. In the total number of 993 days of
data, we randomly select 80% for the training set, 5% for the
validation set, and 15% for the testing set. Unlike the original
experimental setting of ConvLSTM and TrajGRU where they
try to predict the pixel value and report the precipitation pre-
diction based on that, we focus on imagery frame prediction
that is realistic for better visualisation.

B. IMPLEMENTATION AND PARAMETERS

1) PREDICTIVE LEARNING

We use ConvLSTM as the predictive learning module.
We implement a three layer ConvLSTM encoder-decoder with

the following parameters for each layer: [3 x 3 — 64,3 x 3 —
192,3 x 3 —192].

2) CONDITIONAL GAN

Training GAN is challenging, thus we carefully choose our
architecture for the generator and discriminators. For the gen-
erator, our architecture is somewhat similar to PG-GAN [27].
In order to match the resolution of generated samples,
we upsample the original resolution from 480 x 480 to 512 x
512. We randomly select N = 2 frames to train the Frame
Discriminator Dg;. 3D-Conv of Flow Discriminator consists
of three layers set to the following parameters: [3 x 3 x 3 —
64,3 x3x3—-16,3 x3x3—-1].

We implement our model using PyTorch 1.4, a well known
deep learning library developed by Facebook. Our model is
trained and evaluated on a server with Nvidia V100 32GB
GPU and Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz
(24 cores). We train our model with Adam optimiser [31]
with a learning rate of le™* for ConvLSTM and le—> for
the generator and discriminators. Batch size is set to 2 due to
the resource consumption of conditional GAN model. For all
models including baseline methods, we train 100,000 batches
and select the best model based on the minimum MSE against
the validation set. For MPL-GAN, we train the PL module
for 10,000 batches before training the conditional GAN.
All experimental results are reported based on the test set.

C. OVERALL EVALUATION

1) BASELINES

In order to evaluate the effectiveness of our proposed model,
we compare our model to two baseline methods.

o PL with MSE. In order to show that the PL with MSE
produces blurry predictions, we compare our model
to the pure ConvLSTM without the conditional GAN
module [1].
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« PG-GAN. We extend the PG-GAN [27] from image
generation to sequence generation with the same archi-
tecture of our conditional GAN module, that has a Frame
discriminator and a Flow discriminator. This is also very
similar to DVD-GAN [22].

2) EVALUATION MATRIX
We use the sharpness measure based on the gradient of two
images defined in [13] as follow:

Sharp. =101log;,

2
max’,
X

b (I |V +vix) - (mE+ v 2)|)

where, X' is the ground-truth frame and X is the output
frame; V,’X = |.X,',j— ‘Xi—l,j| and VjX = |‘le — X,',j_l 5
max p is the maximum possible value of the image intensities.
We report the average sharpness of the test set across K
frames in the table as well as the individual frame evaluations
as a line chart as shown in Figure 2.

)

56 4 —a— MPL-GAN
—e— PG-GAN
PL with MSE

Sharpness

46

44

Time step

FIGURE 2. Sharpness of 10 prediction time steps based on the test set.

TABLE 1. Experimental results based on the test data, averaged by
10 prediction time steps (Greater number indicates sharper prediction
imagery).

Model Sharpness 1
PL with MSE [1] 46.48
PG-GAN [27] 51.27
MPL-GAN (ours) 52.82

3) EXPERIMENT ANALYSIS

We conduct both quantitative and qualitative evaluations with
two baseline approaches. As shown in Table 1, our proposed
MPL-GAN achieves the overall average sharpness of 52.82;
PG-GAN achieves a similar result of 51.27; whereas PL
with MSE only achieves 46.48. This shows that GAN based
models are able to generate sharper meteorological imagery
predictions compared to PL with MSE. This is because GAN
models handle uncertainties of future frames. Per frame quan-
titative comparison in FIGURE 2 indicates that GAN based
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FIGURE 3. Future meteorological prediction samples. Left: ground truth. Middle: PL with MSE. Right: MPL-GAN (ours). Click to view the animations with

Adobe Acrobat Reader.

FIGURE 4. Meteorological prediction movement of our MPL-GAN and PG-GAN. Left: ground truth. Middle: MPL-GAN (ours). Right: PG-GAN. Click to view
the animations with Adobe Acrobat Reader.

models not only beat PL with MSE in the average score but
also in the long term predictions. MPL-GAN and PG-GAN
achieve a similar score in the first frame, however, PG-GAN
drops performance quickly in the long term.

Besides quantitative evaluation, we visualise a sample of
prediction sequence in Figure 3 (please view the animation by
clicking the figure using Adobe Acrobat Reader). As shown
in the animation, both PL with MSE and MPL-GAN catch
the real-world meteorological movement patterns. However,
PL with MSE generates blurry predictions and continues
to get more blurry over time, especially in the long term.
Whereas our proposed MPL-GAN continues to generate real-
istic looking and sharp predictions. Furthermore, if we look
at small regions of the prediction frames, PL. with MSE tends
to omit small areas as the result of MSE loss, whereas our
model has more regional details with the incorporation of
uncertainty handling in GAN.

Furthermore, the whole experiment aims to find out
whether the GAN model is able to solve the blurry prediction
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problem caused by PL with MSE. In fact, we can see our
proposed model as PL with MSE with the advanced version of
PG-GAN with two discriminator heads. As stated previously,
GAN based models are able to produce sharper predictions
compared to PL with MSE. However, as samples of Figure 4
show that PG-GAN is not able to model the meteorological
movements. More specifically, the first generated frame of
PG-GAN looks very close to the first generated frame of our
model MPL-GAN, but the later frames are just the expansion
of the first frame which is obviously not the real-world sce-
nario. On the other hand, with the constraint of the predictive
learning module, our proposed model MPL-GAN contin-
ues to generate realistic looking and diverse meteorological
frames that catch the real-world meteorological movement
pattern. We summarise the findings above in Table 2.

In summary, the quality of meteorological imagery pre-
diction is of crucial importance in weather forecasting, and
in monitoring climate change. Figure 3 clearly depicts that
MPL-GAN produces a quality prediction result identifying

VOLUME 8, 2020



H.-B. Liu, I. Lee: MPL-GAN: Toward Realistic Meteorological Predictive Learning Using Conditional GAN

IEEE Access

TABLE 2. Performance comparison.

Model Sharpness MLeet:,ag;Stt.
PL with MSE Blurry Vi
PG-GAN Sharp X
MPL-GAN (ours) Sharp VA

both global trends and local variations whilst PL. with MSE
is too blurry and coarse missing local variations and details.
PL with MSE is less useful in practice since it misses many
localised patterns, and results in inaccurate predictions, how-
ever MPL-GAN is practically useful for forecasting weather
and monitoring local and global climate change as evidenced
in Figure 3 and Figure 4.

V. CONCLUSION

We propose MPL-GAN to solve the blurry prediction prob-
lem of predictive learning methods such as ConvLSTM and
TrajGRU. We utilised a conditional GAN to handle this prob-
lem by mapping the blurry predictions generated by predic-
tive learning methods back to their original non-blurry data
distributions. To do that, we recursively apply a conditional
generator conditioning on the previous output of itself and
the current output of the predictive learning module. Through
the novel design of Frame Discriminator and Flow Discrim-
inator, the generator learns to produce temporally coherent
and realistic frames. Experiments on a real-world radar echo
dataset demonstrate that our proposed MPL-GAN model not
only produces sharp and realistic looking meteorological
predictions, but also models the real-world meteorological
movement patterns with the constraint of predictive learning
module. Although our model is able to generate non-blurry
predictions, there is room to improve the prediction accuracy.
Since the GAN model brings uncertainties improving the
sharpness of prediction, but deteriorates the accuracy, our
future work will investigate this problem, and evaluate our
proposed model with various real-world datasets.
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