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Abstract There are a wide range of Scleractinian corals

that are collected for the global reef aquarium market, often

from non-reefal environments. The sustainability of coral

harvesting is potentially threatened by increasing anthro-

pogenic disturbances and climate change, though it is

unknown to what extent many commonly harvested corals

are susceptible to environmental change, or actually bleach

during marine heatwaves. In this study, we experimentally

tested the temperature sensitivity and bleaching suscepti-

bility of six coral species (Homophyllia australis, Micro-

mussa lordhowensis, Catalaphyllia jardinei, Trachyphyllia

geoffroyi, Duncanopsammia axifuga, and Euphyllia glab-

rescens), which are important components of the aquarium

coral fisheries across northern Australia, in Western Aus-

tralia, the Northern Territory, and/or Queensland. Inter-

specific differences were evident in the temperature

sensitivity and bleaching susceptibility among the study

species. Homophyllia australis, and M. lordhowensis were

found to be particularly susceptible to elevated

temperatures, whereby all corals subjected to elevated

temperatures died within the course of the experimental

treatment (75 d). Catalaphyllia jardinei and E. glabrescens

also exhibited significant increases in mortality when

exposed to elevated temperatures, though some of the

corals did survive, and C. jardinei mostly died only after

exposure to elevated temperatures. The other species (T.

geoffroyi and D. axifuga) exhibited marked bleaching when

exposed to elevated temperatures, but mortality of these

corals was similar to that of conspecifics held at ambient

temperatures. This study highlights the potential for envi-

ronmental change to impact the sustainability and viability

of Australian coral harvest fisheries. More importantly, this

study highlights the need for specific and targeted in situ

monitoring for important stocks of coral fishery target

species, to assess their vulnerability to fishery and fishery-

independent effects.
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Introduction

Mass coral bleaching is an increasingly familiar and

recurring phenomenon, whereby many different species of

zooxanthellate corals lose their endosymbionts and asso-

ciated photosynthetic pigments (Glynn 1984), mainly in

response to environmental stress, including freshwater

inundation, aerial exposure, sedimentation and anomalous

temperatures (Wiedenmann et al. 2013). The severity,

extent and frequency of mass coral bleaching has increased

since the 1980s (Hughes et al. 2018a) in line with ocean

warming and increasing incidence of marine heatwaves

(Heron et al. 2016; Hobday et al. 2018; Skirving et al.
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2019). Marine heatwaves are now the foremost cause of

mass coral bleaching and elevated coral mortality (Hughes

et al. 2018a, b), threatening the population viability of

vulnerable coral species and undermining the ecological

integrity and function of reef ecosystems. Climate-induced

coral bleaching, as well as other causes of coral mortality,

may also directly undermine the sustainability and viability

of harvest fisheries that collect corals from the wild, mainly

for home and public aquaria (Harriott 2003; Rhyne et al.

2012).

International ornamental and aquarium coral fisheries

involve the annual trade of hundreds of thousands of small

coral pieces and are worth millions of dollars (Wood et al.

2012). An increasing portion of the coral sold comes from

aquaculture; however the majority is still collected from

the wild, from countries like Indonesia and the Philippines

(Rhyne et al. 2012). In Australia, coral harvesting is a

relatively minor cause of coral loss, and the annual biomass

of coral removed is negligible compared to reef-wide levels

of coral biomass and productivity (Harriott 2003). For the

Queensland Coral Fishery (QCF) the annual Total Allow-

able Commercial Catch (TACC) is 200 tonnes, with fishing

activity spread across a large area, and prohibited within

no-take marine reserves (QDEEDI 2009). Reported catches

have also been \ 50% of the TACC throughout the last

decade (DAF 2018). Coral fisheries in other jurisdictions

(Western Australia, Northern Territory, and the Coral Sea)

have much smaller quotas. Despite the limited overall

harvesting, it is possible that specific species may be over-

exploited where harvesting is concentrated on rare species.

Aquarium corals are mostly selected based on appearance,

especially colour, as well as their amenability to harvest-

ing, transport and maintenance within aquaria. Few juris-

dictions have species-specific quotas, and there is

insufficient knowledge of wild stocks to even propose

relevant harvest limits for most species (Roelofs and Sil-

cock 2008). Aside from fisheries effects, widespread and

accelerating degradation of coral reef ecosystems is placing

increasing pressure on coral fisheries globally, leading to

greater public and political scrutiny regarding the sustain-

ability of coral harvesting (Albert et al. 2015). The prin-

cipal concern relates to the potential risk of localized

depletion for vulnerable and slow-growing coral species

(Harriott 2003; Garrabou et al. 2017). This concern is

further magnified where harvested corals are simultane-

ously being impacted by fisheries-independent threats,

including rapid and accelerating environmental change

(Montero-Serra et al. 2019). Importantly, marine heat-

waves have caused severe and widespread coral bleaching

across Australia in recent years (Hughes et al. 2017), but it

is largely unknown how these events impacted many of the

corals (other than Acropora spp.) harvested by aquarium

coral fisheries.

All zooxanthellate organisms are susceptible to tem-

perature-induced bleaching at some level (Buddemeier and

Fautin 1993), and very severe marine heatwaves can cause

comprehensive bleaching and mortality across a wide

range of different coral species (e.g., Vargas-Angel et al.

2019). There are however, apparent taxonomic differences

in the susceptibility and responses of corals to increasing

temperature (Loya et al. 2001; Grottoli et al. 2014; Hoey

et al. 2016; Claar and Baum 2019). Among common,

widespread and well-studied coral taxa, the rank order of

bleaching susceptibility (based on the proportion of colo-

nies that bleach or die) appears to be fairly conserved

among geographic locations (e.g., McClanahan et al.

2004), whereby Acropora spp. are often the first to bleach

and experience the highest mortality rates (Baird and

Marshall 2002; Pratchett et al. 2013; Burt et al. 2019; but

see Guest et al. 2012; Chou et al. 2016). Conversely, other

corals, such as Turbinaria spp. are rarely observed to

bleach (e.g., Marshall and Baird 2000) and appear partic-

ularly capable of withstanding thermal stress. There are

many coral taxa for which we know very little about

temperature sensitivity and bleaching susceptibility, mostly

because they do not occur on shallow carbonate reefs,

where in situ studies of coral bleaching are predominantly

conducted (e.g., Hughes et al. 2017; Gilmour et al. 2019;

Raymundo et al. 2019; but see Camp et al. 2018). This

includes many of the coral taxa that are collected for the

aquarium fishery from turbid intertidal habitats.

The purpose of this study was to assess the temperature

sensitivity and bleaching susceptibility of six commonly

harvested aquarium corals (Homophyllia australis, Micro-

mussa lordhowensis, Catalaphyllia jardinei, Trachyphyllia

geoffroyi, Duncanopsammia axifuga, and Euphyllia glab-

rescens), by exposing each of these coral species to ele-

vated temperatures in aquaria. While such experimental

studies are highly constrained in their capacity to assess

how corals respond to elevated temperatures in the wild

(Camp et al. 2018), there is a paucity of data regarding the

bleaching susceptibility of these study species and experi-

mental studies provide the most tractable way to assess

relative bleaching susceptibility of poorly studied species.

Methods

Experimental set-up

This study was conducted in the Marine Aquarium

Research Facility (MARFU) at James Cook University, in

Townsville, Australia. Licensed coral collectors in

Queensland (both CQ and NQ), WA and NT provided a

total of 257 distinct corals (mostly whole colonies or

individual polyps, but sometimes fragments) across 6
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different study species (H. australis, M. lordhowensis, C.

jardinei, T. geoffroyi, D. axifuga, and E. glabrescens) that

were transported to Townsville within 1–2 weeks of col-

lection. Where possible, samples of each coral species were

obtained from Western Australia (WA), Northern Territory

(NT), north Queensland (NQ) and central Queensland (CQ)

(Table 1). All corals were mounted on ceramic discs,

which were coded to distinguish individual corals and their

provenance. Corals (1–2 individuals per species per loca-

tion) were randomly assigned to each one of 12 different

tanks across four different treatments (Fig. 1).

To test the bleaching responses and temperature sensi-

tivity of the different corals, corals within the ‘‘heated

treatments’’ were subject to gradual warming (1.0 �C
change per week) until the temperature reached a maxi-

mum of 32 �C. The reason for using prolonged heating to

relatively high maximum temperatures was intended to

explicitly assess interspecific and regional variation in

bleaching susceptibility, based on the time until individual

corals exhibited bleaching. Temperatures in control tanks

started at 25.6 �C, and varied between 25.1 and 27.5 �C
through the course of the experiment. Given most of the

study species come from turbid inshore or deeper inter-

reefal habitats, it was possible that bleaching susceptibility

would be moderated by the light environment. To test this,

we further divided corals into high and low light treat-

ments, whereby the maximum light intensity (measured

using a Li-Cor portable light meter during peak irradiance)

was 208.0 (± 10.6 SE) and 48.7 (± 2.8 SE) lmol m-2 -

s-1, respectively. These different light intensities are

equivalent to those used to assess the role of light

([ 180 lmol m-2 s-1) in previous experimental bleaching

studies (e.g., Wiedenmann et al. 2013), and are approxi-

mately equivalent to light regimes recorded in open reef

environments versus shaded environments (e.g., within

caves) at a depth of 5 m (Anthony and Hoegh-Guldberg

2003).

All colonies were acclimated to experimental conditions

(ambient temperature and low light) for a minimum of

1-week before being subject to high light and/or experi-

mental warming. The day that warming was initiated (April

9th 2018) was set as Day 1, and corals were subject to

experimental conditions until Day 75, at which time

experimental tanks with high temperatures were reduced to

ambient temperatures over 72 h. We then continued to

monitor all surviving colonies until Day 150. Corals were

inspected every 1–2 d to record survival, and scored for

colour, following Siebeck et al. (2006) every 1–2 weeks.

Survival of individual coral colonies was recorded as the

sum of the proportion of time a coral survived during the

heating experiment plus the proportion of time the coral

survived post treatment; i.e. corals that survived to day 75

(end of heating experiment) were assigned a survivorship

of 1.0, and corals that survived to day 150 (end of study

period) were assigned survivorship of 2.0. Changes in

colour were based on changes in colour saturation (mea-

sured on a 6-point scale), between initial records taken on

Day 1 versus Day 75 (or the last record of colour hue taken

prior to mortality). Bleaching was defined as a change in

colour saturation of 2 units or more, following Siebeck

et al. (2006).

Data analyses

We modelled colour change and survival in corals as a

function of ‘Temperature’ and ‘Light’ using linear mixed-

effects models (Bates et al. 2015). ‘Species’, ‘Tempera-

ture’, and ‘Light’ were included as fixed effects. We also

included the individual ‘Tank’ where the corals were

placed as a random effect to account for the non-inde-

pendence of replicates tested within the same aquarium.

‘Region’ was not included as a factor since some species

were only sourced from one locality (see Table 1). Alter-

native models were compared using Akaike’s information

criterion corrected for small sample sizes (AICc) following

Burnham and Anderson (2002). Models were fitted using

the ‘lmer’ function (library lme4) in R 3.0.1 (R Core Team

2019). Post hoc comparisons were conducted for survival

data using the Tukey method in the R package emmeans

(Lenth et al. 2018).

To better resolve differences in survival among corals,

we obtained nonparametric estimates of the shape of the

survivorship curves for each coral species under the two

temperature treatments using Kaplan–Meier product-limit

Table 1 Identity and provenance of corals used in the controlled

bleaching experiment to test for interspecific differences in suscep-

tibility to elevated temperature and light

Species NT NQ CQ WA Total

Family Lobophyllidae

Homophyllia australis 17 17

Micromussa lordhowensis 18 18

Family Merulinidae

Catalaphyllia jardinei 18 20 38

Trachyphyllia geoffroyi 18 23 15 56

Family Dendrophylliidae

Duncanopsammia axifuga 20 18 19 21 78

Family Euphyllidae

Euphyllia glabrescens 18 16 16 50

Total 20 72 113 52 257

Source region: NT Northern Territory (Darwin), NQ North Queens-

land (Cairns), CQ Central Queensland (Mackay), WA Western Aus-

tralia (Karratha). Corals were equally distributed among the four

treatments
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analysis. The Kaplan–Meier model is based on estimating

conditional probabilities at each time point when an event

occurs, and taking the product limit of those probabilities

to estimate the survival rate at each point in time (Kaplan

and Meier 1958). Survival probabilities were calculated

using the ‘survfit’ function in the R package survival

(Therneau 2015) and visualised by plotting survival curves

using the ‘ggsurvplot’ function in the R package survminer

(Kassambara et al. 2017). To test whether survival trends

were significantly different for each treatment, survival

probabilities were compared using the Log-rank test, which

takes into account both individuals that died during the

course of the experiment and individuals that were still

alive at the end of the study, i.e. right-censored data

(Walker and Shostak 2010). All plots and analyses were

implemented in R 3.0.1 (R Core Team 2019).

To assess interspecific and regional variation in the

tolerance of corals to temperature and light treatments,

standardised mean differences (SMDs), using Hedges’

G (Hedges 1981) as an effect size metric, were calculated

using the ‘metacont’ function in the R package meta

(Schwarzer 2007). Calculated effect sizes and 95% confi-

dence intervals were used to generate forest plots in R 3.0.1

(R Core Team 2019).

Results

Bleaching susceptibility

A total of 257 small (\ 60 mm diameter) corals were used

in the experiment (Table 1). Of these, 128 (49.8%) corals

exhibited declines in colour saturation through the course

of the experiment, with bleaching (where declines in colour

saturation were[ 2) recorded for 74 corals (28.8%). All

six species exhibited bleaching (Fig. 2). The incidence of

bleaching was consistently higher for corals subject to

experimental warming (35.6%), though 16.67% of the

colonies maintained at ambient temperatures also bleached

(Fig. 2). The overall incidence of bleaching (across all

treatments) was greatest for M. lordhowensis (38.9%,

n = 18) and E. glabrescens (38.0%, n = 50). Lower inci-

dence of bleaching was recorded for C. jardinei (26.3%,

n = 38) and T. geoffroyi (23.2%, n = 56), and particularly

for H. australis (17.6%, n = 17) and D. axifuga (11.5%,

n = 78). For D. axifuga, bleaching incidence ranged from

10 to 17% with no obvious regional differences. For E.

glabrescens, however, it was notable that only colonies

collected from the GBR (NQ and CQ) exhibited bleaching

(even when exposed to high light at ambient temperatures),

whereas none of the colonies from WA exhibited major

colour loss even when exposed to elevated temperature.

The best models to explain variation in the extent of

colour loss recorded during this study included ‘Species’,

‘Temperature’, ‘Light’, and the interaction between

‘Temperature’ and ‘Light’ (Table 2). For M. lordhowensis,

C. jardinei, T. geoffroyi and D. axifuga, bleaching (declines

in colour saturation[ 2) was more prevalent and more

pronounced for corals subject to warming, but the extent of

colour loss was also exacerbated by exposure to high light

(Fig. 2). Based on standardised mean differences, elevated

temperature resulted in significant colour change for C.

jardinei, T. geoffroyi, and D. axifuga, while high light

intensity accounted for significant colour loss in M. lord-

howensis and D. axifuga (Fig. 3). For E. glabrescens, the

median level of colour loss was greatest in the high tem-

perature and high light treatment, but bleaching was

recorded across all treatments (Fig. 2). For H. australis, the

incidence of bleaching was low across all treatments

(Fig. 2).

Survivorship

Eighty-five (out of 257; 33.1%) corals survived to the end

of the experiment (150 d). Survivorship was lower (21.3%)

among corals subject to warming, than for corals main-

tained at ambient temperatures (57.8%). However, there

was also marked interspecific variation in the survival of

corals between the two temperature treatments. The best

model (based on wAICc) for explaining variation in sur-

vivorship included the interaction between ‘Species’ and

‘Temperature’, but did not include light levels (Table 2).

Post hoc pairwise comparisons showed that there were

significant differences in survival between corals subject to

warming versus ambient temperatures for H. australis

(p\ 0.001), M. lordhowensis (p\ 0.001), C. jardinei

(p = 0.028), and E. glabrescens (p\ 0.001); but not for T.

geoffroyi (p = 0.791) and D. axifuga (p = 0.270).

Survivorship of the different coral species varied both in

extent and timing. For H. australis and M. lordhowensis,

survival declined sharply from day 1 to day 75, during the

treatment period for corals subject to warming (Fig. 4).

Importantly, many colonies of H. australis died without

exhibiting prior bleaching. For C. jardinei and E. glab-

rescens, there were also significant differences in survival

with respect to temperature treatments, though this differ-

ence was most pronounced after the recovery period, on

Day 150. For C. jardinei, differences in survival between

temperature treatments were limited (92% vs. 81%) during

bFig. 1 Select images of experimental colonies to indicate interspeci-

fic differences in responses of the six coral species (H. australis, M.

lordhowensis, C. jardinei, T. geoffroyi, D. axifuga, and E.

glabrescens) with exposure to increasing temperature and high levels

of light intensity
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the treatment period, from day 1 to day 75, but overall

survivorship (at day 150) was much lower for corals

subjected to warming (19%) compared to colonies main-

tained at ambient temperatures (75%) (Fig. 4c). There was
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no difference in survival of T. geoffroyi or D. axifuga with

respect to temperature treatments (Fig. 4). For D. axifuga,

\ 50% of corals survived 50 d, and there was ongoing

mortality throughout the subsequent treatment and recov-

ery period (Fig. 4e). Survival of T. geoffroyi was much

higher than for D. axifuga, but there were sustained levels

of mortality throughout the experiment both for corals

exposed to elevated temperatures and those maintained at

ambient temperatures (Fig. 4).

Based on standardised mean differences, elevated tem-

perature had a substantial negative effect on the survival of

H. australis (as well as for M. lordhowensis, which was

excluded from analyses due to zero variance in the ‘Am-

bient’ treatment, i.e. 100% survival) and E. glabrescens

(Fig. 3). Warming also had a moderate effect on the sur-

vival of C. jardinei, but we did not observe any adverse

effect on T. geoffroyi and D. axifuga. For those species that

did exhibit significant differences in survival between

temperature treatments, interspecific differences in tem-

perature sensitivity are also reflected in the time to median

(50%) survival, which was lowest for H. australis (51 d),

but also\ 75 d for M. lordhowensis (58 d) and E. glab-

rescens (60 d), and longest for C. jardinei (118 d).

Discussion

This study explored the temperature sensitivity and

bleaching susceptibility of six different coral species (H.

australis, M. lordhowensis, C. jardinei, T. geoffroyi, D.

axifuga, and E. glabrescens), which are important target

species for aquarium fisheries in QLD, WA and/or NT

(DEEDI 2012; DPIR 2019; Newman et al. 2019). All six

corals species exhibited bleaching to a greater or lesser

Light Intensity Effect Size 
on Colour Change

Temperature Effect Size 
on Colour Change

Temperature Effect Size 
on Survival

−3 −2 −1 0 1 −3 −2 −1 0 1 −25 −20 −15 −10 −5 0

H. australis

M. lordhowensis

C. jardinei

T. geoffroyi

D. axifuga

E. glabrescens

Fig. 3 Inter-specific differences in the effect of light intensity and

temperature on colour change and the effect of high temperature on

survival, based on Hedge’s G (i.e. effect size). Red dashed line

indicates zero effect, while points to the left of this line suggest a

negative treatment effect on colour change or survival

Table 2 Linear mixed-effects

model (LMM) results for

(a) survival and (b) colour

change predicted as a function

of ‘Species’, ‘Temperature’,

‘Lighting’, and their interaction

effects

Model df LL AICc wAICc Adj R2

(a) Colour change

Species ? temperature ? light ? (1 | Tank) 10 - 421.3 863.5 0.347 0.229

Species ? temperature 9 light ? (1 | Tank) 11 - 420.7 864.5 0.207 0.229

(1|| Tank) 3 - 432.5 871.1 0.008 0.131

Species 9 temperature 9 light ? (1 | Tank) 26 - 410.0 878.2 0.000 0.253

(b) Survival

Species 9 temperature ? (1 | Tank) 14 - 177.3 384.3 0.922 0.535

Species 9 temperature 9 light ? (1 | Tank) 26 - 179.3 416.8 0.000 0.555

(1 | Tank) 3 - 232.4 471.0 0.000 0.080

All models include the tank as the random effect. Shown above are the degrees of freedom (df), maximum

log-likelihood (LL), Akaike’s information criterion corrected for small sample sizes (AICc), AICc weight

(wAICc), and the adjusted R2 (adj R2). Only models with DAICc\ 2 are shown, in addition to the saturated

and null models, and are ordered by increasing AICc
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extent. Most notably, M. lordhowensis, C. jardinei, D.

axifuga and T. geoffroyi exhibited significant colour loss

(or bleaching) when exposed to elevated temperatures, and

bleaching was exacerbated by high light intensity for M.

lordhowensis and. D. axifuga. Even more concerning

however, were the high levels of coral mortality ([ 80%)

recorded for H. australis, M. lordhowensis, E. glabrescens

and C. jardinei when these corals were subjected to ele-

vated temperatures. Maximum temperatures to which cor-

als were exposed in this experiment (32 �C) were high,

though corals living in the shallow subtidal and intertidal

zones in northern Australia may be exposed to tempera-

tures C 32 �C during severe heatwaves (Moore et al. 2012)

or in areas where water pools for extended periods at low

tide (Dandan et al. 2015).

While bleaching is commonly recorded among sclerac-

tinian corals exposed to elevated temperatures and/or high

light intensity, there are marked interspecific differences in

the responses of corals (Loya et al. 2001; Hueerkamp et al.

2001; Dandan et al. 2015; Hughes et al. 2018b). In this

study, H. australis was extremely sensitive to elevated

temperature, whereby all colonies subjected to elevated

temperatures had died within 60 d, even though this spe-

cies rarely exhibited bleaching. Rather than losing colour,

tissues of H. australis would retract in response to warming

(Fig. 1) prior to complete mortality of the corals. Con-

versely, T. geoffroyi exhibited a high incidence of bleach-

ing when exposed to elevated temperatures, but low levels

of mortality (\ 50%). We observed yet another response

for C. jardinei, for which, tissues would often detach from

the underlying skeleton when subject to elevated temper-

ature (Fig. 1). In many instances, the free-living tissue

persisted ex situ and retained its colour intensity for the

duration of the experiment. However, this is likely to be an

experimental artefact, as free-living tissues of C. jardinei

would likely be vulnerable to smothering or predation once

dislodged in the wild. The only corals that exhibited more

pronounced bleaching with increased light intensity were

M. lordhowensis and D. axifuga, but this did not translate

to differences in survivorship. Temperature and light act

synergistically to influence bleaching susceptibility (Jokiel

and Coles 1990), such that high turbidity in some nearshore

environments may actually moderate bleaching-induced

mortality during marine heatwaves (e.g., Fisher et al. 2019;

Teixeira et al. 2019). However, this study shows that ele-

vated temperatures are the predominant cause of bleaching

and mortality, and the overriding concern for the corals

considered in this study.

Interspecific differences in the environmental sensitivity

and bleaching susceptibility among the six study species

(H. australis, M. lordhowensis, C. jardinei, T. geoffroyi, D.

axifuga, and E. glabrescens) may partially account for

apparent differences in their abundance in different regions

and habitats, or at least reflect the limited area over which

corals were collected. Notably, the two coral species that

were most susceptible to experimental warming (H. aus-

tralis and M. lordhowensis) were provided exclusively

from CQ, having been collected from the southern GBR in

areas where these corals are relatively abundant. Both these

corals are distributed further north on the GBR in much

warmer waters (Veron et al. 2019), and it is possible that

colonies from lower latitudes might exhibit greater resi-

lience to elevated temperatures (sensu Hoegh-Guldberg

1999). Accordingly, E. glabrescens collected from WA

exhibited much greater resilience to changing temperatures

and light regimes, than conspecifics from the GBR. How-

ever, there was limited evidence of geographical variation

in temperature sensitivity and bleaching susceptibility for

D. axifuga (which was sampled from all four locations),

nor for T. geoffroyi (sampled from WA, NQ and CQ).

Although, this experiment did not specifically account for

local temperature regimes from where individual corals

were collected (and then test bleaching susceptibility

against regionally specific bleaching thresholds), we would

have expected that corals provided from lower latitudes

and warmer water in WA and NT would be more resistant

to elevated temperatures than corals from CQ (sensu

Hoegh-Guldberg 1999). Ultimately, it would be best to

explicitly account for the specific environmental conditions

in habitats from where each individual coral was collected,

but this was not possible given that corals were provided by

licenced coral collectors and their individual provenance

was only broadly known.

This study shows that at least some Australian aquarium

coral fishery target species (specifically, H. australis, M.

lordhowensis, E. glabrescens and C. jardinei) are suscep-

tible to elevated temperatures, thereby highlighting the

potential for sustained and ongoing environmental change

to undermine the sustainability and viability of these fish-

eries. More importantly, there is an increasing shift in

aquarium coral collections and exports towards small polyp

coral species (mainly, Acropora spp., Dee et al. 2014;

Barton et al. 2017) which are, in general, even more sus-

ceptible to environmental change (Baird and Marshall

2002; Pratchett et al. 2013; Hughes et al. 2018b; Burt et al.

2019), though vulnerability assessments will need to be

undertaken for the specific species that are targeted and

habitats from which they are taken. Similarly, results for

this preliminary experimental study should not be used to

bFig. 4 Species-specific Kaplan–Meier-estimated survival probabili-

ties under two temperature treatments. p values for the log-rank test

comparing survival curves between ‘Ambient’ and ‘Hot’ treatments

are shown. Dashed line indicates termination of experimental

treatments and start of recovery period at 75 d
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infer relative or absolute vulnerability of the coral fishery

target species to ocean warming, marine heatwaves, or

changing environmental conditions. Rather, this study

highlights the need for specific and targeted in situ moni-

toring for important stocks of coral fishery target species, to

assess their vulnerability to fishery and fishery-independent

effects.
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