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Abstract

Crown-of-thorns starfish (CoTS; Acanthaster spp.) are among the most extensively studied

coral reef taxa, largely owing to their devastating impacts on live coral cover during popula-

tion outbreaks. Much of this research has however, been conducted in the western Pacific,

although it is now apparent that there are several distinct species of Acanthaster spp.

across the Indo-Pacific. The purpose of this study was to test for biogeographical variation

in behaviour, comparing between Acanthaster planci at Lankanfushi Island in the Maldives

and Acanthaster cf. solaris at Rib Reef on Australia’s Great Barrier Reef. The extent to

which CoTS were exposed (cf. concealed within or beneath coral substrates) was substan-

tially higher (63.14%) for A. planci at Lankanfushi Island, compared to 28.55% for A. cf.

solaris at Rib Reef, regardless of time of day. More importantly, only 52% of individuals were

exposed at night at Rib Reef compared to >97% at reefs around Lankanfushi Island. Biogeo-

graphic variation in the behaviour of Acanthaster spp. was independent of differences in the

size structure of starfish and coral cover at specific study sites, but may be attributable to

other environmental factors such as habitat complexity or prey availability. This is the

first study to explicitly test for biogeographical differences in the biology and behaviour of

Acanthaster spp., potentially linked to species-specific differences in the causes and expla-

nations of population outbreaks. However, we did not find evidence at this stage of differ-

ences in behavior among regions, rather behavioural differences observed were most likely

products of different environments.

Introduction

Crown-of-thorns starfishes (CoTS; Acanthaster spp.) have gained considerable notoriety over

the last few decades following outbreaks throughout the Indo-Pacific [1–8]. Along with

anthropogenic climate change, outbreaks of CoTS are a major contributor to coral loss and

reef degradation [9], causing extensive coral mortality [10] and shifts in the biological and

physical structure of coral reef habitats [11–14]. Unsurprisingly, CoTS are among the most

extensively studied organisms from coral reef environments [2], though the majority of this
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research has been conducted in the western Pacific, and particularly on Australia’s Great Bar-

rier Reef (GBR) [15]. Extensive research into causes and consequences of recurring outbreaks

on the GBR (e.g., [16–19]) has been foundational to understanding and managing outbreaks

globally. However, outbreaks on the GBR are unlike outbreaks in many other locations [20–

21] and the generality of conclusions drawn, and broader relevance of learning from GBR

studies may be limited.

CoTS were initially described from several different geographical regions across the Indo-

Pacific and assigned distinct species names [22]. However, all coral reef species were

subsequently synonymised as A. planci, as distinct from Acanthaster brevispinus that occurs

in deep-water non-reefal environments [23]. Extensive molecular sampling has since revealed

marked genetic differences [24] consistent with at least 4 distinct species [25]. Most importantly,

Acanthaster planci [26], which is restricted to the northern Indian Ocean, is readily distinguish-

able from the Pacific species, nominally, Acanthaster solaris [22] in both phylogenetics [24] and

appearance [15]. Species-specific differences in biology and behaviour may account for geo-

graphic variation in the occurrence of outbreaks, and their impacts on reef ecosystems [27].

Ecological effects of CoTS on coral assemblages are influenced by their individual behav-

iour, including feeding preferences and diurnal activity patterns [28, 29]. In general, CoTS

preferentially consume Acropora and Montipora corals (reviewed by [27]), leading to localised

depletion of these corals, which often dominate coral assemblages in the Indo west-Pacific.

Reported departures from this typical feeding pattern (e.g. [30, 31]) are attributed to localised

differences in the size and abundance of CoTS, as well as regional variation in the structure of

coral assemblages [28]. Similarly, there are reported biogeographical differences in diurnal

activity patterns [28]. For example, in the Red Sea, Ormond and Campbell [32] reported that

CoTS are almost exclusively nocturnal, whereas CoTS in the Pacific are often active during the

day [33], especially during population outbreaks. Variation in diurnal activity patterns is often

attributed to the individual size and density of CoTS, whereby CoTS become less cryptic as

they increase in size [3, 23, 28] and increasingly feed both day and night when food becomes

limiting [33]. Geographical variation in behaviour may however, reflect inter-specific differ-

ences in the biology and behaviour of distinct CoTS species, which was potentially overlooked

when all CoTS were considered to be the same species.

The purpose of this study was to explicitly test for biogeographical differences in behaviour

of CoTS potentially linked to inter-specific differences, comparing between A. planci from the

northern Indian Ocean and A. cf. solaris from the western Pacific. In particular, we docu-

mented the number of starfish that were out in the open (as opposed to hiding on the underside

of corals or deep within the reef matrix) and whether they were observed feeding, resting or

moving, at different times of day. This study is important because it represents the first explicit

test of inter-specific differences in the biology and behaviour of CoTS, potentially accounting

for biogeographical differences in the incidence and severity of CoTS outbreaks [34], while also

focussing on A. planci from the northern Indian Ocean, which is particularly underrepresented

in previous research on CoTS [35]. The extent to which CoTS are cryptic versus exposed has

ramifications for their detectability, which constrains understanding and management of pop-

ulation outbreaks [36], but may also influence their ecological impacts [30].

Materials & methods

Acanthaster planci in the Maldives

Behaviour of A. planci was studied in the Maldives, in the central Indian Ocean. The earliest

reports of outbreaks of A. planci on Maldivian reefs are from the 1970s [37], though the first

well-documented outbreak started in 1987 in North Male Atoll, spreading to Gaafu Alifu/
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Gaafu Dhaalu Atoll in the south [38]. Elevated densities of A. planci were again recorded in the

Maldives in 1999 to 2007 [39]. Most recently, severe and widespread outbreaks of A.planci
have affected South Male and Ari Atolls [7, 35], starting in 2014. This study was undertaken in

March 2017, on the western facing fringing reef of the Lankanfinolhu-Lankanfushi-Himma-

fushi island group located on the eastern outer rim reef of North Male Atoll in central Mal-

dives (Fig 1). The site was chosen due to the high density of A.planci in comparison with

nearby reefs. Despite localised culling between October 2015 and June 2016, outbreaks of A.

planci had caused extensive coral loss in the study area, which was further compounded by

severe coral bleaching in May 2016 [35, 40, 41].

To test for diurnal changes in the behaviour of CoTS at Lankanfushi Island, three perma-

nent replicate 100m transects were established on both the reef crest (8m) and the reef slope

(15m) on the inner atoll rim reef between Lankanfinolhu Island and Himmafushi Island (4˚

17’53.0”N 73˚33’13.7”E). During surveys, which were conducted randomly at various times of

day and night from February 25th to March 29th, 2017, two divers carefully searched for CoTS

within a 1m wide belt on either side of the transect line, along each of the six transects. Divers

swam parallel to each other, whilst visually checking crevices and overhangs across the 2m belt

to allow for different angles of visual perception, paying particular attention to areas where

feeding scars were observed to ensure the likelihood of detection of both exposed and cryptic

animals. In all, each of the six transects were surveyed at four different times of day. Times

were grouped into categories including morning (surveys between 06:30–10:00), midday

(11:30–13:00), afternoon (14:00–17:15) and night (18:00–22:00). Surveys were undertaken

with permission from Gili Lankanfushi Resort, who manage the section of reef surveyed,

negating the need for a permit.

Fig 1. Study site locations highlighted in orange at both Lankanfushi Island and at Rib Reef. A) The Republic of Maldives located in the Indian

Ocean. B) North Malé Atoll. C) Study site located at Lankanfushi Island in the Himmafushi-Lankanfushi-Lankanfinolhu Island Group. D) The Great

Barrier Reef located off Australia’s Queensland coast. E) Central Great Barrier Reef. F) Study site located at Rib Reef.

https://doi.org/10.1371/journal.pone.0228796.g001
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Acanthaster cf. solaris on the Great Barrier Reef

Comparable research on A. cf. solaris was conducted at Rib Reef, in the central GBR, Australia

(Fig 1) (18˚29’11.1”S 146˚52’33.8”E). The first documented outbreak of CoTS on the GBR

occurred in 1962, with subsequent outbreaks starting in 1979, 1993 and 2009–10 [27]. In all

instances, outbreaks have started in the northern GBR, between Cooktown and Cairns, before

spreading north and south [21, 42, 43] affecting mid-shelf reefs along the entire length of the

GBR. This study was conducted from December 2016 to May 2017, when outbreaks were

concentrated in the area between Cairns and Townsville [34]. High densities of A. cf. solaris
caused extensive coral depletion at Rib Reef during 2015 and 2016, though patches of high

coral cover remained, mostly on distinct patch reefs on the leeward, north-west margin, as

well as inside the lagoon.

Reef access was much more limited at Rib Reef, compared to Lankanfushi Island, in the

Maldives. As such, two-four permanent replicate 50m transects were established during each

of three distinct reef visits, with sampling conducted in a different location on each visit to

account for prevailing conditions and changes in the distribution and abundance of CoTS.

In all, five transects were surveyed on reef crest habitats (3m) and five on slope habitats (6m).

CoTS were surveyed within 2.5m either side of transects on the reef crest, where there was

high cover of tabular Acropora (live and dead). In deeper, less complex habitats, surveys were

extended to 5m either side of the transect line to ensure enough CoTS were captured to allow

for statistical analysis. As densities of CoTS were analysed, rather than abundance per site, this

did not confound results. Each of the ten transects were surveyed at several different times of

the day, including at least one survey during daylight hours and one survey after dark. Survey

times were placed into the same time categories as the Maldives surveys for comparative analy-

sis. Surveys at Rib Reef were undertaken under Marine Parks permit G15/37363.1 issued by

the Great Barrier Reef Marine Park Authority.

Quantifying diurnal patterns of behaviour

All CoTS recorded within the area of belt transects at both Lankanfushi Island, Maldives and

Rib Reef, central GBR, were measured (diameter from arm tip to opposite arm tip) in situ to

the nearest cm. The extent to which individuals were visible from above (or at 90˚ perpen-

dicular to the substrate on particularly steep sections of reef) was then recorded to the near-

est 10%. There were however, two distinct modes in these data, where the majority (85%) of

starfish were either completely (100%) exposed or entirely concealed (0% exposed) beneath

the reef substrate and only visible from an acute angle. As such, we categorised starfish as

either cryptic, where�50% of the starfish was exposed, versus exposed where >50% of the

starfish was visible from above. In addition to exposure, we also recorded whether each star-

fish was moving versus stationary, based on sustained movement of the body of the starfish.

For starfish that were not moving, one or more arms were lifted away until it was possible to

see whether the stomach was everted. Starfish with stomachs partially or fully everted were

recorded as feeding, whereas individuals with stomachs completely retracted were consid-

ered to be resting.

Coral cover

Coral cover was determined along each of the transects, which were demarcated by a fibreglass

tape, at both locations before CoTS surveys began. Benthic cover was determined to the lowest

possible taxonomic level, with scleractinian corals identified to genus and growth form, using

the point intercept method every 50cm.
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Statistical analysis

To assess the variation in CoTS density between reef locations and habitats, a linear model

with gaussian error distribution was constructed, to which the time of observation (Time:

Morning, Midday, Afternoon, Night) and interaction terms for location:Habitat and location:

Time was also included. Similarly, a linear model was constructed to determine variations in

the size of CoTS individuals between reef locations, habitats and time of day, using the same

interaction terms as above. Analysis of variance and post-hoc comparisons (using R package

‘lsmeans’) of factor levels was also conducted to determine the significance of these variations

in density and size. Potential interactions were tested and retained if they improved model fit

on the basis of the corrected Akaike information criterion [44]. To test for differences between

the proportions of CoTS observed exhibiting different behaviours between reefs, Chi-Squared

two sample tests for proportions were conducted. Additionally, to assess the differences

between the coral communities at the two reef locations, non-metric multidimensional scaling

and an analysis of similarity (ANOSIM) were conducted using R 3.5.1 [45] using the ‘vegan’

(v2.5.6, [46]) package, using a Bray-Curtis dissimilarity matrix and Wisconsin double

standardization.

To test for variation in the cryptic behaviour of CoTS, we constructed a Bayesian general-

ised linear model to investigate the effects of 7 different predictor variables; location (Lankan-

fushi Island versus Rib Reef), habitat (crest and slope), body size, coral cover, behaviour

(moving or stationary), time of day (morning, midday, afternoon, night) and CoTS density

(per 100m2). Exposure was recorded as a binary variable (either cryptic or exposed) and thus

modelled using a Bernoulli distribution using the R package ‘brms’ [47]. All potential interac-

tions were tested and retained if they improved model fit on the basis of the widely applicable

information criterion [48]. Effects plots with 95% credible intervals were produced to show the

magnitude and direction of the effect for each variable reported as log odds ratios. Marginal

effects plots were also produced to show how CoTS exposure varied with respect to each of the

predictor variables individually.

Results

Average densities of CoTS recorded at Rib Reef (6.29 starfish per 100m2 ±1.08 SE) were signifi-

cantly higher than recorded at Lankanfushi Island, Maldives (2.65 starfish per 100m2 ±0.31 SE;

F1,63 = 8.29, p<0.01) however, there was no difference detected among habitats (F1,63 = 0.81,

p = 0.37) or time of day (F3,63 = 0.92, p = 0.44) (Fig 2). The size of A. cf. solaris ranged between

10-56cm and 22-57cm at Rib Reef and Lankanfushi Island, respectively (Fig 2b). The average

size of CoTS was significantly smaller at Rib Reef (31.01cm total diameter ±0.25 SE) compared

to Lankanfushi Island (40.73cm total diameter ±0.43 SE), owing to the increased number of

small starfish at Rib Reef (F1,967 = 269.3, p<0.0001), however there were also significant inter-

actions between reef and observation time (Fig 2d: F3,967 = 7.23, p<0.0001) and reef and habi-

tat (Fig 2c: F1,967 = 6.65, p<0.0001)). At Rib Reef, slightly larger starfish were found on the

slope (32.12cm ± 0.39SE) compared to the crest (29.86cm ± 0.30SE: t1,967 = -5.45, p<0.0001)

and starfish observed in the morning were significantly larger compared to all other time peri-

ods (Morning-Midday: t1,967 = 3.19, p = 0.008; Morning-Afternoon: t1,967 = 3.75, p = 0.001;

Morning-Night: t1,967, p = 0.0002) however, these differences were very low in magnitude (1-

2cm, Fig 2). At Lankanfushi Island, there was no significant difference between habitats (t1,967

= 0.21, p = 0.83). In contrast to Rib Reef, slightly smaller starfish were observed in the morning

compared to the night and afternoon (Morning-Afternoon: t1,967 = -2.85, p = 0.023; Morning-

Afternoon: t1,967 = -2.41, p = 0.076), however these differences were also low in magnitude

(~3cm) (Fig 2).
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The coral composition was significantly different between the two reefs (ANOSIM:

R = 0.863, p = 0.001), with Porites being the most abundant coral genus at Lankanfushi Island

(15.44% ± 6.38SE), while coral cover at Rib Reef was dominated by the preferred prey Acropora
(31.75% ± 4.88SE) (Fig 3a and 3b).

Overall, CoTS were exposed (where>50% of the animal was visible from directly above)

in only 37.14% (410/1104) of records. The proportion of CoTS exposed was however,

Fig 2. Comparisons between Lankanfushi Island and Rib Reef. A) Boxplot of CoTS per 100m2 between habitat types. B) Frequency histogram of

diameter of observed individuals. The mean is represented by the dotted line. C) Boxplot of diameter of observed individuals between habitats. D)

Boxplot of diameter of observed individuals among observation time categories.

https://doi.org/10.1371/journal.pone.0228796.g002
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substantially higher at Lankanfushi Island (63.14%) compared to Rib Reef (28.55%), regardless

of time of day. The proportion of exposed CoTS increased through the day at both locations,

with lowest levels recorded in the morning (33.97% at Lankanfushi Island and 13.78% at Rib

Reef) and highest levels of exposure recorded at night (97.47% at Lankanfushi Island and

52.09% at Rib Reef).

The best model (Bayesian generalised linear model) to account for variation in cryptic

behaviour of CoTS across both locations included an interaction between reef (Lankanfushi

Island versus Rib Reef) and time of day (morning, midday, afternoon, night), percent Acropora

Fig 3. Coral cover and composition. A) Mean percent cover of the benthic community at Lankanfushi Island and Rib Reef. B) Non-metric

multidimensional scaling and ANOSIM results for benthic community composition comparisons between the two study sites.

https://doi.org/10.1371/journal.pone.0228796.g003
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at each site, as well as the size (total diameter), and the behaviour of starfish (whether starfish

were resting, feeding or moving) (Fig 4). At both locations, the probability that CoTS were

exposed rather than cryptic was significantly greater at night as opposed to during the day

(2.58[1.46,3.97], p<0.05); log odds posterior mean and 95% highest posterior density intervals

calculated by contrasting night observations to the next most exposed time; afternoon (P value

is inferred as the HPD intervals do not overlap 0). While exposure was not significantly higher

at Lankanfushi Island across all time periods (0.54[1.59, 0.49], p>0.05), there was a significant

interaction between reef location and time of day with the differences between night and after-

noon being much more pronounced at Lankanfushi Island (4.19 [2.04, 7.42], p<0.05) com-

pared to Rib Reef (0.96 [0.39, 1.52]). Furthermore, post hoc analyses revealed that the

differences in exposure between Rib Reef and Lankanfushi Island were only significant during

night time observations (Fig 4c). The probability of exposure increased with increasing size of

CoTS (0.086[0.059, 0.11], p<0.05), in a manner that was consistent across locations (Fig 4b).

Unsurprisingly, individuals were also more likely to be exposed when feeding (2.56[2.15, 2.99],

Fig 4. A) Effects plot showing the mean posterior effect size and 95% credible intervals (as log odds) of each predictor variable in the full model (Eqn

1). Black dots indicate variables with "significant" effects. B) Partial effect of diameter on the probability of exposure (P(exposure)). C) Partial effects of

this interaction between observation time and reef location on P(exposure). D) Partial effect of behaviour on P(exposure).

https://doi.org/10.1371/journal.pone.0228796.g004
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p<0.05) or moving (2.11[1.52, 2.72], p<0.05) compared to resting (Fig 4d). The probability of

exposure did not vary with respect to habitat (Slope-Crest = 0.37[-0.14, 0.90], p = 0.16) or per-

cent Acropora (0.012[-0.002, 0.03], p = 0.09) (Fig 4a). However, when Reef was excluded from

the model, percent Acropora performed the same function as Reef location, with an overall sig-

nificant negative effect of percent Acropora (-0.02 [-0.035, -0.004], p<0.05) however, this

model had poorer performance overall according to widely applicable information criterion.

The proportion of A. planci that were observed feeding (as opposed to moving or resting)

was higher at Lankanfushi Island (44.03%) compared to A. cf. solaris at Rib Reef (35.00%: χ2 =

4.31, df = 1, p = 0.019). Conversely, a significantly higher proportion of CoTS were recorded

resting at Rib Reef (56.99%) compared to Lankanfushi Island (46.54%; χ2 = 5.48, df = 1,

p = 0.0097), whereas the proportion of starfish actively moving was similar between locations

(9.43% at Lankanfushi Island and 8.02% at Rib Reef;; χ2 = 0.19, df = 1, p = 0.67). It was appar-

ent that the proportion of individuals observed feeding at Lankanfushi Island was more consis-

tent throughout the day (ranging from 38–64%) and was significantly higher during the

midday surveys (64.5%) compared to night time (38.2%; χ2 = 3.49, df = 1, p = 0.031), whereas

the incidence of feeding by A. cf. solaris at Rib Reef increased throughout the day. The propor-

tion of A. cf. solaris recorded feeding at night (65.4%) was more than twice that recorded at

any time during the day (13.4–26.7%; χ2 = 58.27, df = 1, p<0.0001, compared to next highest

proportion, afternoon). To test whether this result was attributable to the large number of

smaller (<25cm total diameter) starfish at Rib Reef, whereby smaller starfish may be more

cryptic and tend to feed nocturnally [23, 3, 28], we compared behaviour of starfish�25 cm

total diameter, but this did not alter the overall pattern; even for among A. cf. solaris�25 cm

total diameter, the proportion of individuals feeding increased from 13.02% in the morning to

62.92% at night.

Discussion

Given their important contribution to degradation and disturbances on coral reefs, there has

been extensive and increasing research into the biology and ecology of Acanthaster spp. over

the last three decades (reviewed by [15, 27]), with a particular focus on reproductive biology,

outbreak dynamics and population control. However, most of this research has been con-

ducted in the western Pacific, and mainly on the GBR (e.g., [49]). Despite marked genetic dif-

ferences between the Pacific and Indian Ocean populations of CoTS, which were first revealed

20 years ago [50], there has been comparatively limited research on the biology or behaviour

of CoTS from the Indian Ocean (but see [15, 35]). It is implicitly assumed that all putative spe-

cies (at least four different species; [25]) from different bioregions behave in much the same

way. Whilst this study has revealed potentially important differences in the diurnal behaviour

between A. planci from Lankanfushi Island in the Maldives and A. cf. solaris from Rib Reef on

the GBR, this is likely attributable to varying environmental conditions, rather than species-

specific traits.

The most pronounced difference observed between A. planci from the Maldives and A. cf.

solaris on the GBR were higher levels of cryptic behaviour for CoTS on the GBR, especially at

night. The proportion of starfish exposed at night was higher than during the day at both loca-

tions, but for A. cf. solaris on the GBR only 52% of individuals were found out in the open

during the night, while a similar proportion remained largely concealed within and/ or

beneath live or dead corals. In contrast, at Lankanfushi Island in the Maldives, virtually all

individuals of A. planci (>97%) were fully exposed at night. Similarly, Ormond and Campbell

[32] reported marked increases in activity and exposure at night for Acanthaster spp. from the

Red Sea, where CoTS were reported to feed almost exclusively at night. Increased nocturnal
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exposure in the Maldives did not translate into higher feeding incidence, though movement

was greatest at night. At Rib Reef on the GBR however, greater exposure at night was accompa-

nied by pronounced nocturnal feeding. In some locations, Acanthaster spp. are reported to

switch from feeding mainly at night to feeding day and night with the onset of population out-

breaks (e.g., [51]). These shifts in diurnal behaviour may occur in response to increased food

competition or food limitation, though we’d expect to see increased diurnal feeding at higher

CoTS densities. In our study, diurnal feeding was more apparent at Lankanfushi Island, despite

lower CoTS densities compared to Rib Reef. Coral cover was however, much lower at Lankan-

fushi Island (21.4%) than at Rib Reef (43.4%), and a pronounced difference in preferred prey

existed between the two locations as live coral cover was dominated by Acropora at Rib Reef

and Porites at Lankanfushi Island. To fully explain behavioural changes that may occur due to

changes in CoTS densities and depletion of prey sources, we would need to observe the behav-

iour of A. planci versus A. cf. solaris through the entire course of population outbreaks at mul-

tiple reefs.

The differences in behaviour of CoTS between the two locations, particularly the increased

levels of exposure at Lankanfushi Island, is most likely linked to the lower levels of complex

branching corals (e.g., branching and tabular Acropora) at this location. Reef habitats with

high cover of complex corals are likely to offer more opportunities for Acanthaster spp. to

remain concealed, even while continuing to feed. While coral composition and habitat (slope

vs crest) had no effect on the probability of exposure for CoTS that were recorded, the effect of

percent Acropora was likely masked in our model by the inclusion of reef location. Indeed, our

results showed percent Acropora performing the same function as reef location, when the latter

was removed from the model. Despite this, it is also likely that detectability itself varies with

coral cover and habitat complexity [36]. It was very apparent, for example, that a greater num-

ber of CoTS were detected during nocturnal surveys on the shallow reef crest compared to

diurnal surveys at the same location. While it is possible that these starfish are moving among

habitats, it is also possible that the starfish are so cryptic during the day that they completely

avoid detection. Study sites at Lankanfushi Island were surveyed in the aftermath of the 2016

bleaching event [40], which combined with sustained high densities of A. planci since 2015,

have caused extensive depletion of acroporid and pocilloporid corals, which are generally pre-

ferred prey of Acanthaster spp. [27]. The lack of nutritional value afforded by the remaining

non-preferred coral species (predominantly massive Porites) [52], combined with declines in

structural complexity following the inevitable degradation of branching coral skeletons, may

explain the generally higher levels of exposure and consistently high levels of feeding behaviour

of CoTS at Lankanfushi Island (cf. Rib Reef) regardless of time of day. Conversely, the higher

abundance of preferred prey species (mostly Acropora) at Rib Reef likely explains higher densi-

ties and wider size ranges of CoTS recorded at this location. Despite being subject to moderate

bleaching in 2016 and 2017 [53] and sustained outbreaks of A. cf. solaris, there was still moder-

ate cover of Acropora spp. at Rib Reef, allowing prey to not only sustain large densities of adult

starfish, but also facilitate secondary waves of recruitment and replenishment.

The most likely explanation for the diurnal variation in exposure, and specifically increases

in cryptic behaviour of CoTS during daylight hours, is that predation risk is substantially

greater during the day compared to night [33]. The role of predator evasion in explaining

probability of exposure is further reinforced by the relationship between body size and proba-

bility of exposure across both species and study locations. Therefore, as well as clear differences

in topography, regional differences in predation risk may also account for differences in

behaviour between locations, rather than it being a reflection of inherent differences between

species of Acanthaster. Predation risk will vary with size, abundance and composition of

potential predators which will, in turn, vary due to inherent biogeographical patterns, as well
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as overarching influences of anthropogenic extraction and reef degradation [54]. In the Philip-

pines, for example, the proportion of A. cf. solaris with sublethal injuries, presumed to be

caused by sublethal predation, was higher inside a marine reserve compared to nearby areas

that were open to fishing [54]. If Acanthaster spp. respond to increased predation risk inside

marine reserves by being more cryptic, this might lead to differences in detectability, which

will need to be considered when comparing density estimates inside versus outside of marine

reserves (e.g., [19]). There remains a definite need to quantify predation rates on CoTS at dif-

ferent times of day and in different habitats [15, 55].

This study has revealed differences in behaviour between A. planci at Lankanfushi Island in

the Maldives and A. cf. solaris at Rib Reef on Australia’s GBR. These preliminary results from

just two locations suggest these differences are a product of variation in extrinsic factors, in

particular coral prey availability and structural complexity afforded by differences in coral

composition, along with possible differences in predation risk. It is important, however, given

recognition of species boundaries for Acanthaster spp. across the Indo-Pacific [24, 25], that we

expect species-specific differences in their biology and behaviour which may, in turn, mean

that there are different causes and explanations for population outbreaks in different biogeo-

graphic regions. This study is the first to present behavioural data from a population of A.

planci in the Maldives, which is useful for the management and control of CoTS throughout

this region, but more work is required to establish whether any behavioural differences are

reflective of intrinsic biological differences between species of Acanthaster.
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