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Abstract 
 

Marine debris, also known as marine litter, is defined as any persistent, 

manufactured or processed solid material discarded, disposed of or abandoned in the 

marine and coastal environment. Mostly consisting of plastic, marine debris is polluting 

global oceans at an increasing rate. Plastic items of all shapes and sizes can have 

detrimental impacts on marine fauna, and increases the stress on marine organisms. 

Beach clean-ups are one way to reduce plastic pollution but such actions only remove a 

small fraction of the debris currently present in the ocean, and they will need to occur 

frequently and indefinitely with existing levels and the current rates of use and 

production of plastics in society. Instead, identifying preventative techniques for 

reducing the inputs of debris in the environment or stopping it before it reaches ocean is 

the key to successfully reducing marine debris pollution in the long-term. Doing this 

will require multidisciplinary research, including understanding human behaviours, 

monitoring plastic loads from specific sources, and implementing a wide range of 

infrastructure and policy to create change.  

My overall thesis aim is to provide meaningful insights into plastic pollution 

management using inter-disciplinary research on marine debris abundance, education 

and source reduction in Queensland, Australia. To do this, my thesis is split into four 

research themes. Theme 1 is to understand the distribution patterns of marine debris on 

Queensland reefs to narrow down potential sources (Chapter 2). Theme 2 is to identify 

exactly how plastic is entering the aquatic environment (Chapter 3 and 4). Theme 3 is to 

identify ways to monitor macroplastics (>5mm in size) and microplastics (plastics 

<5mm in size) to identify impacts, create baselines, and monitor change (Chapter 3, 4 

and 5). Lastly, theme 4 is to understand community awareness and concern about 

marine debris to reduce land based sources, such as that from littering (Chapter 6).  

 In my first data chapter, I use citizen science data to determine the distribution 

of subtidal marine debris on reefs in Queensland coastal waters. Using this dataset, I 

identified the average debris loads collected during reef-health impact surveys 

completed since 2001. Results showed that debris is present in the highest abundances 

on the reefs near urban communities, particularly in South East Queensland. Debris 

loads near the Gold Coast were the highest with a maximum of 27 items per surveys 

(400m2). There was a wide range of items recorded on surveys, however fishing and 
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boating related debris were among the highest observed. This suggests that debris 

effecting subtidal reefs are more likely to be sourced by fishing and boating, and 

therefore, targeted messaging and source-reduction plans, specifically for recreational 

fishers and boaters are needed to reduce debris on the reef itself.  

In my second data chapter, I monitored debris loads adjacent to and outside 

stormwater effluents after rainfall events to determine how much plastic was originating 

from urban sources, using Ross River in Townsville, Queensland as a case study. No 

seasonal differences in debris abundance were observed, however, I found that even 

during below-average rainfall years, there was a relatively high and constant flow of 

debris items entering the river system year-long. In addition, I found that the likely 

origin of debris items was site dependent. For example, in one of the monitored sites the 

proportion of the most common plastic debris items in the river matched those found in 

the nearby park. Whereas, in the other site, the proportion of debris items varied from 

the types of items found in nearby parks, suggesting that debris may be traveling longer 

distances via storm drains to enter the river system. These results suggest that the 

placement of infrastructure, such as drain socks and river booms may be more helpful in 

some sites, but not others. As a result, this data chapter provides insight into the 

pathways in how debris can enter aquatic systems, which ultimately flush into the 

ocean. Most importantly, my chapter suggest relatively small cities, such as Townsville, 

can contribute to plastic loads in the ocean.  

 In my third data chapter, I monitored microplastic loads (plastics <5mm) within 

Ross River, to identify potential sources in local aquatic systems. Sediment and water 

samples were collected throughout the freshwater section of the river, within the 

estuary, and within Cleveland Bay both before and after the wet season. Similar to my 

2nd data chapter, I did not find any seasonal difference in plastic loads within any 

section of the river. However, the abundance of plastics within the freshwater sediments 

was high, with highest concentrations matching levels found in rivers and lakes in 

Europe. As a result, this data chapter suggests that even in low rainfall years, the Ross 

River retains a high abundance of plastics in the sediments. Since the rainfall that 

occurred did not show measurable differences of microplastic abundances within the 

bay after the wet season, I hypothesise that after heavy rainfall (in excess of the 687 mm 

that occurred during the sampling period) a proportion of these plastics will be flushed 

to into sea. In addition, this chapter identifies that the majority of the plastic particles 
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were fragments from degraded larger plastic items, indicating that the reduction of 

macro debris in the river long term would likely reduce the amount of microplastics in 

the system. 

 In my fourth data chapter, I identify ways to monitor microplastic pollution on 

reef systems by using bioindicators. Currently, there is little information on the degree 

to which microplastics interact with benthic organisms. Therefore, in this Chapter, I 

assess new ways to monitor plastic loads by performing experiments using two filter 

feeders, a sponge, Carteriospongia foliascens and a soft coral species, Lobophytum sp. 

In this experiment, I fed two different concentrations of fluorescent microspheres to 

both species for three days, and determined how much plastic was ingested, how long it 

was retained, and whether or not the organisms can detect differences in concentration 

loads. In addition, I observed how plastics interact with the organism, finding that much 

of the microspheres adhere to the surface of the organism, which is then removed via 

mucus production. I found that ingestion rates for both species were low, with neither 

able to detect differences in concentration loads. Sponge species, C. foliascens ingestion 

rates were higher (>1% of the total exposed particles), and able to retain the 

microspheres up to 7 days. Alternatively, the coral species, Lobophytum sp. was low 

(less than 1% of the total exposed particles), but retained the small amount of ingested 

particles for the full 14 day experiment. Interestingly, differences in plastic 

concentrations found on the surface of the organism shed by mucus was detected. 

Therefore, to monitor microplastic loads on reef systems, it is possible to collect mucus 

off of benthic species to monitor plastic loads. This has broad implications on potential 

non-invasive monitoring techniques. 

 Lastly, my fifth data chapter uses social surveys to understand the community 

knowledge and perception of marine debris and its sources, again using Townsville, 

Queensland as a case study. Previous research has shown that the increased awareness, 

knowledge, concern, and feelings of responsibility for environmental issues have been 

found to directly link to the likelihood for people to show pro-environmental behaviour 

such as responsible plastic use and disposal. Therefore, these themes were used to 

provide information on the current understanding of marine debris and its sources from 

Townsville residents. Questionnaires distributed online and in-person identified that 

approximately 70% of Townsville residents had a relatively high awareness of marine 

debris, and its sources. In addition, a large portion of participants were able to correctly 
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identify that litter occurring inland, such as that from storm drains and within the river 

system can contribute to marine debris. My results also showed that over 70% of 

residents believed that individuals had the most responsibility regarding reducing the 

inputs of marine debris into the environment, and I found a strong connection between 

people and the Great Barrier Reef. Therefore, in this chapter, I suggest that future 

messaging to focus on the individual responsibility, pride, and identity to reduce litter in 

the urban environment, and ultimately, reduce debris from arriving to the ocean.  

Overall, in this thesis, I use interdisciplinary research to make a novel 

contribution to science which can be directly useful to local managing agencies in 

Australia. For the first time, I collected data of plastic abundances on the Great Barrier 

Reef, and a local river system, creating baselines for future research, and provided new 

insights on the possible pathways in which plastic enters the aquatic environment. I 

identified ways to improve local management, by providing advice on the placement of 

infrastructure, and identifying the current views and perspectives of marine debris and 

littering in Townsville.  
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Marine debris, also known as marine litter, is defined as “any persistent, manufactured or 

processed solid material discarded, disposed of or abandoned in the marine and coastal 

environment” (UN Environment Program, 2009). Marine debris can consist of a wide range of 

materials including plastic, glass, metal, paper and wood, and is considered to be a prominent, 

global threat to the marine environment. The use and increased reliance of plastics over the last 50 

years has caused plastic-based materials to dominate the majority of marine debris items, and 

which now up 95% of all marine debris (Ryan, 2015). Consequently, research on plastic pollution 

has gained momentum now recognized as a pollutant globally. 

Marine debris is ubiquitous, occurring in some of the most remote areas of the world 

(Avio et al., 2017; Gregory, 1999). Persistent items, such as plastics, can be moved large 

distances, transported by waves, wind and currents and then accumulating in ocean gyres (known 

as ‘garbage patches’), ocean trenches, and uninhabited islands at increasing rates (Lavers and 

Bond, 2017; Lebreton et al., 2018; Taylor et al., 2016). For example, plastic debris were found to 

accumulate up to 26.8 new items/m per day on a remote, uninhabited, Pacific island,  with an 

overall density of  671.6 items/m2 of debris/plastic occurring on the beach (Lavers and Bond, 

2017).  It is difficult to stem the flow of the debris, as it crosses geographic boundaries and 

multiple jurisdictions.  

Further complicating the difficulties of identifying the source of debris for 

plastics found in marine environments is that they are often fragmented and comprise 

numerous material types as well as different sizes and shapes. Plastics items greater 

than 5mm in size are generally categorised as ‘macro plastics’ (National Oceanic and 

Atmospheric Administration (NOAA)). These typically consist of larger fragments, or 

whole, identifiable, items, such as water bottles, bags, and rope. Due to their synthetic 

composition and manufacturing process, plastic items remain in the marine environment 

for unknown periods of time (Moore, 2008). Instead, plastics break into smaller pieces 

and are termed 'microplastics' when less than 5 mm in size (Vandermeersch et al., 

2015). This breakdown occurs when plastic items become increasingly brittle in 

ultraviolet (UV) radiation, or are damaged by mechanical forces such as waves on 

beaches (Andrady, 2011). Microplastics can also be manufactured at small sizes, such 

as resins pellets or microbeads for cosmetic products, facewashes, and toothpaste. 

Microbeads can enter natural systems because they are small enough to fit through 

filtering membranes in water treatment plants and thus exit into aquatic systems via 
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sewage effluents (Hartline et al., 2016; Rochman et al., 2015). Synthetic fibres can also 

be categorised as microplastics, and can be produced a wide range of materials, such as 

shedding from synthetic clothing in the washing machine or breaking off from ropes, 

fishing nets, and moorings (Gago et al. 2018).The variety of plastic types, sources, and 

sizes makes it difficult to quantify plastics in the marine environment, and pinpointing 

exactly where the plastic originates. As a result, it is difficult to determine the 

appropriate management strategies to reduce plastic waste before it reaches marine 

environment.  

 

1.1 Marine debris and plastic pollution as a threat to wildlife 

Marine debris and plastic pollution can inflict harm on individuals, species, and 

habitats. To date over 693 marine species, ranging from plankton to whales, have been 

recorded to be harmed from plastic alone (Cole and Galloway, 2015; Gall and 

Thompson, 2015; Gregory, 2009). Harm to species and individuals can take many 

forms. Derelict fishing and boating gear, for example, has been recorded in the marine 

environment for hundreds of years by maritime shipping and boating (National Ocean 

Service, 2019). Discarded (intentionally or not intentionally) rope, nets and fishing line 

can entangle animals, causing individuals to drown (Sheavly and Register, 2007; 

Richardson et al. 2019). Furthermore, discarded and lost fishing gear, such as lobster 

traps, can continue to ghost-fish, unnecessarily entrapping organisms within, eventually 

leading to starvation or drowning (Matsuoka et al., 2005). Other fishing debris, such as 

fishing line, can entangle animals or wrap around benthic organisms and substrate 

(Bauer et al., 2008). In tropical reef systems, fishing line can cause abrasions to coral 

tissue, increasing the risk of infection from disease (Lamb et al., 2018). Other boating 

gear, such as derelict anchors, chains, lead sinkers, or other sinking materials discarded 

from boats and ships have been documented for more than 40 years to crush and 

damage benthic fauna, which can influence habitat and ecosystems (Davis, 1977).  

An increasing number of studies have investigated the potential harm from the 

ingestion of plastic waste (Ryan, 2015).  Plastics pieces of all sizes can become 

accidentally ingested and trapped in the gut of marine animals, which can lead to harm 

or starvation (Wright et al., 2013). Soft plastic items such a plastic bags and balloons 

have been found to be some of the most likely items to be ingested and cause death of 
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marine animals (Roman et al., 2019). If ingested plastics do not cause immediate harm, 

they can also cause external or internal abrasions, which can have longer term impacts 

(Gall and Thompson, 2015). For example, microplastics have been found to decrease 

fecundity in copepods (Cole et al., 2015), and potentially alter hormonal systems in fish 

(Rochman et al., 2014).  

Lastly, plastics or other floating debris items traveling in ocean currents are 

capable of transporting invasive species, bacteria, disease, and toxins between 

ecosystems (Carlton 1996; Lobelle and Cunliffe, 201; Rochman et al., 2013; Keswani et 

al., 2016;;). Due to their synthetic make-up, plastics are able to both carry and absorb 

toxins around them (Engler, 2012; Gouin et al., 2011). If particles are ingested, the toxic 

traces are capable of bio-accumulating throughout the food chain (Desforges et al., 

2015; Koelmans, 2015). Despite recent evidence and research, the relative threat, 

concentrations, and harm on species and ecosystems as a whole remains relatively 

unknown (Beaumont et al., 2019). Further research on quantifying plastic loads, 

understanding how much enters the environment, and how much interacts with marine 

species is needed to fully understand the threat of marine debris and plastic pollution to 

global oceans.   

 

1.2 Sources of marine debris and plastic pollution 

Management and mitigation strategies are only effective if the pathways and 

contributing sources of marine debris and plastic pollution are known. Sources and 

pathways of marine debris can be complex; arriving in the ocean from different 

pathways (Figure 1.1). Marine debris can originate from two broad sources: ocean and 

land ((Rees amd Pond 1995). Land-based items can be littered directly into the marine 

environment, such as that on beaches, or originate from inland sources, which can be 

washed from storm water and sewage effluents. Both of which can carry both macro 

and microplastic loads to the marine environment.  
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Figure 1.1: Top: Examples of potential sources and pathways in which marine debris can enter the 

ocean. Blue outline= marine based litter, green outline = land based litter, and orange outline = 

potential pathways. Bottom: Quantifying debris items alone is not enough to identify the source. Some 

items, such as water bottles, can originate from multiple different sources. Blue outline = ocean based, 

green = land based, and purple = item can originate from land, but carried long distances by sea. 

 

Although marine based sources, such as derelict boating and fishing gear have 

been recorded in the literature since the 1980s (Pruter, 1987; Schrey and Vauk, 1987), it 

is now estimated that a large, generally unquantified amount of debris in the marine 

environment actually originates from land-based sources (Andrady, 2011; Derraik, 

2002; Oosterhuis et al., 2014) although far less is known about this. Recent research 

suggests in 2010 alone, somewhere between 0.01 to greater than 5 million metric tons 

of litter and other mismanaged waste was likely to enter the ocean from land based 

sources per year (Jambeck et al., 2015). If the current use and reliance of plastic items 

continues to increase, mismanaged waste entering the environment is likely to increase 
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by 20-25% by the year 2050 (Jambeck et al., 2015; Worm et al., 2017). However, once 

items are in the ocean, it becomes increasingly difficult to identify specific sources to 

apply effective and targeted management strategies. Therefore, identifying, quantifying, 

and monitoring of each potential pathway is needed to identify problem areas, and 

identify where further research is needed. 

In addition to understanding the pathways and improving waste management on 

a local scale, supplementary strategies are needed to reduce plastic pollution in the 

ocean. Top-down approaches and policies in addition to changing human behaviour 

regarding plastic use and disposal is essential to reduce marine plastic pollution. 

Otherwise, maintenance and clean-ups, and the economic costs associated with this will 

be needed long-term. To use an analogy, mopping the floor around a leaking tap does 

not fix the leaking tap. To solve the situation, the tap must be turned off, then you may 

continue to mop up the mess. In other words, mitigation techniques used to capture litter 

before arriving into the marine environment can never be completely successful. To 

truly reduce marine debris, managing agencies need to ‘turn off the tap’ by 

understanding the underlying human behaviours of plastic use and disposal to 

effectively redirect actions to reduce or remove the threat. 

 

1.3 Rivers as transport mechanisms for land-based debris 

Within the last decade, research has found that a large proportion of land-based 

debris and plastics from inland sources are capable of flowing into freshwater systems, 

which eventually lead to the ocean (Lebreton et al., 2017; Moore et al., 2011). This is 

because any mismanaged litter from urban sources, such as any of the pathways in 

Figure 1.1 (e.g. littering, over flowing bins, litter from trucks etc.) can be washed into 

storm water drains, which then can enter directly into river systems. Large quantities of 

plastic debris within an urban river system was first extensively described by Moore et 

al. (2011), where both macro and microplastic particles were recorded in high 

concentrations in two Southern Californian river systems, coastal waters, and beaches. 

Later, research showed a high abundance of microplastic particles in the surface water 

of The Great Lakes and later extended throughout the St. Lawrence River system in 

Canada, where up to 1.4 x 105 microplastic particles were recorded within the sediment 

(Castaneda et al., 2014; Eriksen et al., 2013). Research on plastic loads has continued to 
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grow in freshwater systems in areas with lower human populations, such as the lakes in 

Tibet (Zhang et al., 2016). Overall, it is now estimated that is somewhere between 0.41 

to 4 million tonnes of plastic waste per year being washed into the ocean via river 

systems per year world-wide (Lebreton et al., 2017; Schmidt et al., 2017).  

Despite this estimation of high loads of plastic contributed by river systems 

around the world, the plastic pollution load of many of the world’s river systems remain 

unquantified, and the exact pathways of  debris and plastic pollution remain unknown 

(Brennholt et al., 2018). For example, some countries, such as Australia, have large 

quantities of debris washing ashore, but many of the land based sources from river 

systems, have yet to be quantified (Cunningham and Wilson, 2003; Hardesty and 

Wilcox, 2011; Kiessling and Hamilton, 2001; Smith, 2010). This provides a level of 

uncertainty regarding local and urban contributions of debris and plastics to the marine 

environment, and how to appropriately implement intervention techniques, such as 

implementing infrastructure, improving waste management, and engaging the 

community. Therefore, fine scale monitoring of river systems at local levels can better 

inform local and national legislation to mitigate debris from entering the ocean system 

(Carpenter and Wolverton, 2017). 

One pathway in which mismanaged waste can enter the ocean is through the act 

of littering (Law 2017). As such, the behavioural intentions of plastic disposal is an 

important aspect of marine debris that needs to be examined to reduce plastic and debris 

loads before it arrives in the ocean. Both accidental and active littering in urban and 

coastal communities are the underlining source of the litter that arrives from storm 

water systems that enter river systems or littered directly in the ocean. The factors that 

drive littering behaviours have been well documented in literature (Campbell et al., 

2014; Madhani et al., 2009; Robinson, 1976; Spehr and Curnow, 2015), however, this is 

rarely examined in relation to marine debris (Hartley et al., 2018). Consequently, it is 

unknown if people in coastal communities identify that the litter occurring in and 

around their local areas, and not just that on beaches, can contribute to marine debris. 

Based on relevant theories of pro-environmental behaviours and intentions, knowledge 

and awareness of the issues are likely to influence action and behaviours. Conversely, a 

lack of overall awareness can be important information for local policy governing 

structures to fuel education and awareness campaigns in combination of other 
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management and mitigation techniques (Slavin et al. 2012; Vince and Hardesty 2016; 

Campbell et al. 2016).     

 

1.4 Marine debris and plastic pollution in Australia 

Over the last few decades, there has been increasing evidence that marine debris 

and plastic pollution is a threat to the Australian marine environment (e.g. Bauer-

Civiello et al., 2018; Cunningham and Wilson, 2003; Frost and Cullen, 1997; Verlis et 

al., 2014). Marine debris and plastic waste have been recorded on many, if not most 

Australian beaches, with as much as 2,094,768 plastic items collected around coastal 

areas of Australia in 2018 alone (Australian Marine Debris Database-2018).  In 

addition, microplastic particles have been recorded to be present around the entire 

coastline of the country, likely originating from a combination of domestic and 

international sources (Reisser et al., 2013). As a result, the latest 2009 report by the 

Canberra Department of Environment identifies that 77 Australian marine species were 

impacted by plastic, including turtles, cetaceans, seabirds, dugongs, pinnipeds, sharks, 

and rays (Ceccarelli, 2009). Despite the growing number of studies documenting debris 

ingestion and interaction with Australian marine species (e.g. Kroon et al., 2018; 

Roman et al., 2019; Verlis et al., 2013, 2014; Wilcox et al., 2018), there is very little 

information quantifying how much debris is in the environment, where it is coming 

from, how much debris is interacting with species, and exactly how much of a threat it 

poses to marine habitats. Therefore, understanding the extent and contribution of 

potential pathways and sources of marine debris in coastal waters is essential for 

mitigation and litter management on a national scale. The state of Queensland, 

Australia, neighbouring state to the Great Barrier Reef, has the highest measured litter 

incidence in Australia; 1.4 times higher than the national average according to litter data 

from a nation-wide clean-up initiative (Boomerang Alliance, 2015). Yet, the pathways 

through which inland urban litter can enter the marine environment, such as that 

through river systems have yet to be examined in peer reviewed literature in Australia. 

Furthermore, there is little information regarding the act or behavioural intentions of 

littering and the level of community awareness of marine debris, particularly in regional 

areas of Australia. Previous research has shown that the Great Barrier Reef and coastal 

environment are held with high regard among Australian residents (Goldberg et al., 

2018), however, litter remains a problem (Great Barrier Reef Marine Authority 2019 
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Outlook Report). Identifying this connection between litter and marine debris can 

provide further information as to why litter occurs, and how to reduce it from arriving in 

the ocean and provide further information for one of the many pathways toward the 

complex problem of land-based marine debris.  

 

1.5 Knowledge gaps and information needed for management of marine debris 

Management of marine debris is complex and requires a combination of science, 

policy, and litter management to mitigate the input of marine debris (Rochman, 2016; 

Rochman et al., 2016). Since there is a wide range of factors that influence the input of 

litter and plastic into the environment, interdisciplinary research, including 

environmental science, biological science, and social science is required to understand 

the whole picture of marine debris and plastic pollution (Pahl and Wyles, 2017). 

Interdisciplinary research has been previously used on a wide range of coastal issues, 

for example, a combination of understanding human behaviour and ecological 

monitoring are needed for reducing light pollution that impacts turtle nests, and other 

marine related issues, such as illegal fishing (Kamrowski, 2014; Kamrowski et al., 

2014; Riskas 2017; Riskas et al., 2018). Although this need for interdisciplinary 

research, particularly for coastal issues, is acknowledged in recent literature on coastal 

and litter management (e.g. Benham and Daniell, 2016; Christie, 2011; Ciannelli et al., 

2014), this rarely occurs, particularly in graduate level studies (Ciannelli et al., 2014). 

Therefore, in my thesis I will make a novel contribution to the science by using a cross-

disciplinary approach across multiple knowledge gaps to provide management-relevant 

information for Townsville and Queensland. This thesis uses these overarching themes 

to provide meaningful insights to marine debris management, education, and source 

reduction in Queensland, Australia, using Townsville Queensland, as a case study (Box 

1).  

 Theme 1: Understand distribution patterns to narrow down potential 

sources (Chapter 2) 

 Theme 2: Identify exactly how plastic is entering the aquatic environments 

and why (Chapters 3 & 4) 

 Theme 3: Identify ways to monitor macro and microplastic loads to identify 

impacts, create baselines, and monitor change. (Chapters 4 & 5) 
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 Theme 4: Understand community awareness and concern about marine 

debris to reduce land based sources, such as that from littering. (Chapter 6) 

 

1.6 Thesis Outline 

In light of the knowledge gaps described above, this thesis aims to understand the 

sources of marine debris and plastic pollution in Queensland, Australia, and provide a 

holistic approach to marine debris management. This thesis contains seven chapters, 

with five stand-alone data chapters which address the overall themes described above.  

 Chapter 1: Provides an overview of marine debris as a pollutant and identifies 

gaps in knowledge that are needed to effectively manage and reduce marine debris. 

Chapter 2: Aims to understand the current distribution and types of subtidal 

debris on the reefs along the Queensland coast. This information provides a baseline 

dataset to monitor debris loads and provides insights to: 1) the relative threat to subtidal 

debris on the reef, 2) identify the most common items found on Queensland Reefs, and 

3) identify the likely sources.  

Chapter 3: Aims to monitor debris loads entering freshwater systems using 

Townsville as a case study. This chapter focuses on: 1) debris inputs via storm drains 

into the river through time, 2) debris inputs from rainfall, and 3) identifying common 

items and their likely sources. 

Chapter 4: Aims to identify microplastic loads within Ross River as a source of 

microplastic in the Great Barrier Reef. Furthermore, it aims to quantify storm drains as 

a source of microplastic loads by quantifying microplastic within the sediment and 

water surface before and after the wet season.   

Chapter 5: Aims to identify a novel indicator species that can be used to 

monitor microplastic loads and relative impact on reefs and monitor acute events, such 

as those from monsoonal regions, where rainfall can influence rainfall microplastic 

loads.  

Chapter 6: Aims to identify the community perception and awareness of plastic 

marine debris in the Great Barrier Reef. Specifically, I aim to answer the following 

questions: 1) What is the current state of knowledge and awareness of marine debris and 
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its sources, and what are the attitudes and values regarding littering and marine debris? 

2) How does the level of knowledge or responsibility to care for the local marine 

environment predict the level of concern for marine plastic pollution? And lastly, 3) 

how can this information be used to engage the local community in Townsville and 

shape local policy measures and future research to reduce plastic?  

Chapter 7: Provides an overview of thesis results, and what this means for 

management of marine debris in the Great Barrier Reef, and Queensland coast. 
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Box 1.1: Case-site description: Townsville and Ross River 

Townsville is the largest 

neighbouring city to the 

Great Barrier Reef World 

Heritage Area (Panel B), 

and is home to 

approximately 229,000 

people (Australian Bureau 

of Statistics 2016 Census). 

A river and associated 

creek system, Ross River, 

flows through the urban 

community, discharging 

into Cleveland Bay (Panel C). Cleveland Bay contains sensitive habitats, including 

nearshore reefs and seagrass meadows important to dugong and marine turtle species 

(Waycott et al., 2005; GBRMPA 2004).  

Townsville has an average annual rainfall of 1,143 mm per year (Australia 

Bureau of Meteorology), 86% of which occurs between the months of September and 

March, making it susceptible to large monsoon rainfall flushes, carrying inland litter to 

the river system and ocean. To regulate river flow through the city, three weir systems 

are built within the river. During the dry season (April through October), these weirs act 

as dams, impeding river flow. The basin size of the river is about 1,340 km2 with annual 

discharge varying year to year, depending on rainfall (unpublished Townsville City 

Council data). After a large rain event or during a wet season, these weirs can overflow 

(unpublished Townsville City Council data). This means that any debris entering the 

system is retained until there is enough rain for the debris to flow over the weirs and out 

to the bay. Storm water drains are situated throughout the city, with multiple effluents 

leading directly to the river. No other effluents (such as treated sewage) enter the river 

at any locations.

A. 

C. 

B. 





 

 

 
 

Chapter 2 

Using citizen science data to assess 

the difference in marine debris loads 

on reefs in Queensland, Australia 
 

 

Abstract 

The prevalence of marine debris in global oceans is negatively impacting the marine 

environment. In Australia, marine debris has been an increasing concern for sensitive 

marine environments, such as coral reefs. Citizen science can contribute data to explore 

patterns of subtidal marine debris loads. This study uses data from Reef Check Australia 

to describe patterns of debris abundance on reef tourism sites in two Queensland 

regions, the Great Barrier Reef (GBR) and Southeast Queensland (SEQ). Debris was 

categorised into three groups, fishing line, fishing net, and general rubbish. Overall, 

debris abundance across reefs was relatively low (average 0.5-3.3 items per survey 

(400m2)), but not absent on remote reefs surveyed in the GBR region. Highest debris 

loads were recorded in SEQ near cities and high use areas. These results indicate the 

presence of marine debris on remote and urban reefs, and the applicability of using 

citizen science to monitor debris abundance. 

 

 

 

 

Citation: Bauer-Civiello A, Loder J, Hamann M. Using citizen science data to assess the 
difference in marine debris loads on reefs in Queensland, Australia. Marine Pollution 
Bulletin. 2018; 135: 458-465 
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2.1 Introduction 

In recent years, the growing prevalence of marine debris in world oceans is 

gaining attention as a critical issue in marine conservation (Currie et al., 2017; Darmon 

et al., 2017; Eriksen et al., 2014; Hardesty et al., 2017; Lavers and Bond, 2017). In 

particular, there is an increasing volume of literature from across the world indicating 

impacts to marine wildlife through either the entanglement or ingestion of plastic, 

suggesting that the problem is more ubiquitous than previously thought (Courtene-Jones 

et al., 2017; Denuncio et al., 2017; Law, 2017; Worm et al., 2017). Debris is even being 

recognised as a threat in more remote areas without human populations, for example, 

large amounts (53.1 to 4,492 pieces per m2) of plastic debris were found on Henderson 

Island, a remote island in the South Pacific (as reviewed by Lavers and Bond, 2017). 

Despite the extent and magnitude of the problem, there is still very little knowledge 

about the abundance of marine debris in sub-tidal marine environments, how it gets 

there, how it moves, and the degree to which it may threaten marine wildlife and their 

habitats (Ryan, 2015). 

In Australia, the impact of debris on local marine ecosystems has been an 

increasing concern for marine scientists, conservationists and governing agencies 

(Derraik, 2002; Gall and Thompson, 2015; Vince and Hardesty, 2017; Willis et al., 

2017). Due to the increasing records of debris impacts on marine wildlife, the 

Australian government identified marine debris as a “key threatening process” in coastal 

Australian waters (Smith and Edgar, 2014; Slavin et al. 2012; Willis et al., 2017).  In 

2009, the Australian government prepared a ‘Threat Abatement Plan for the Impacts of 

Marine Debris on Vertebrate Marine Life’ to further recognise the threat of marine 

pollution on marine wildlife and coordinate abatement strategies. In addition, scientists 

and conservation agencies have started to provide mechanisms to better manage   

fishing debris, such as the use of TAngler bins and initiating ‘Sealing the loop’ 

programs around public fishing spaces (Pearson et al., 2014). Despite this nation-wide 

plan and increased political attention, the sale and disposal of single use plastics and the 

volume of marine litter is expected to grow (Jambeck et al., 2015). Furthermore, while 

marine debris on shorelines are well quantified, there is still relatively little information 

on debris loads within the sub-tidal waters of Australia. A further understanding of the 
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abundance of debris, debris type, and accumulation is needed to provide a robust 

platform for legislation or incentives to mitigate marine debris.  

Survey data from beach-based clean ups indicates that Queensland beaches can 

accumulate between 439 and 2806 plastic items per km per year (Clark and Johnston, 

2016). These items include a variety of plastic products from fishing debris to everyday 

household items (Taylor and Smith, 2009) and they could come from a variety of 

marine and/or land-based sources (Critchell et al., 2015). This load of plastic items 

accumulating on beaches could have strong implications for the potential impact of 

sensitive marine habitats, such as the ecological and social values of important natural 

and cultural heritage areas such as the Great Barrier Reef World Heritage Area (Great 

Barrier Reef Marine Park Authority, 2019).  

In addition, it is likely that most of the impacts to marine species arises from 

debris within the water column or in benthic habitats, but unlike beach clean ups, it is 

exceptionally hard to quantify either the existing load of debris in marine habitats, or the 

volume of inputs into the marine system. Therefore, there is relatively little publically 

available information about the level of debris in subtidal Queensland coastal waters. 

Essentially, because quantifying patterns or abundances of debris in subtidal benthic 

habitats is more difficult and less cost effective debris loads are not well documented. 

Obtaining an estimate of the level of debris in benthic habitats is essential if we are to 

further understand how marine debris interacts and potentially alters the state and value 

of marine species and habitats.  

Volunteer organisations and citizen science groups are able to implement 

replicable and cost-effective monitoring across broad areas (Jambeck and Johnsen, 

2015; Dickinson et al., 2010; van der Velde et al., 2017), and have been successful in 

monitoring ecosystem health (Done et al., 2017; Marshall et al., 2012), tracking wildlife 

(Jaine et al., 2012; Marshall and Pierce, 2012), and providing information on invasive 

species (López-Gómez et al., 2014). In Australia, subtidal marine debris has been 

recorded by citizen science groups such as Tangaroa Blue Foundation 

(https://www.tangaroablue.org), PADI Project Aware 

(projectaware.org/diveagainstdebris), and the New South Wales Underwater Marine 

Debris database (https://www.uvnsw.net.au/marine-debris-surveys). However, these 
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volunteer diving programs often visit known debris prone areas, and thus their data does 

not provide means of quantifying overall patterns of subtidal debris abundance.  

Reef Check Australia (RCA) is a non-profit, citizen science organisation that has 

been monitoring reef health on Queensland reefs using a globally-standardised protocol 

since 2001. Specifically, RCA conducts regular surveys of long-term monitoring sites to 

provide a robust baseline dataset that can document changes in reef condition over time 

(Done et al., 2017), and contributes to the knowledge of reef scale health and condition 

assessments (GBRMPA 2014). During RCA reef surveys, volunteer divers record data 

on coral reef habitat, wildlife and condition. As part of the surveys they also record 

information on sub-tidal debris, providing an opportunity to quantify marine debris 

loads across regularly monitored reefs.  

To provide insights of patterns of benthic debris, I use RCA’s long term reef 

survey dataset to examine large scale patterns of marine debris occurring on Queensland 

sub-tidal reefs. With this dataset, I aim to describe state-wide patterns of debris 

abundance located at RCA monitoring sites.  In addition, since Queensland reefs are 

intrinsically separated geographically, I compare patterns of debris types among the two 

main surveyed regions: Southeast Queensland (SEQ) and the Great Barrier Reef (GBR). 

Due to differences in nearby population density, and ease of access, I predict that there 

will be more sub-tidal debris within SEQ reefs. In addition, I predict there will be 

differences in overall debris type between the two regions, suggesting different targeted 

management strategies for the relevant area’s managing agencies. 

 

2.2 Methods 

2.2.1 Reef Check Surveys 

RCA conducts annual standardised coral reef health surveys, using point 

intercept transects to measure substrate composition and belt surveys for reef impacts, 

and share information with stakeholders (Hodgson, 1999). In Queensland, surveys were 

conducted in two regions defined by RCA: the Great Barrier Reef (GBR) and Southeast 

Queensland (SEQ) (Figure 2.1). The GBR sites have been surveyed regularly since 

2001, and range from Heron Island in the south to Osprey Reef in the Coral Sea. SEQ 

surveys began in 2007 and occur on reefs from Fraser Island south to the Gold Coast. 

GBR and SEQ survey sites include both coastal and off-shore reefs. Sites occur in both  
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Figure 2.1: Average debris per survey (400m2) along the Queensland coast. Note: Osprey Reef is not 

located in the GBRMPA, however for the purpose of this paper, it was considered in the GBR analysis. 

Data was set to the boundaries using the natural jenks method of ArcGIS. These Categories were then 

rounded to the nearest whole number. Averages lower than 1, but > 0 were combined for a single ‘low’ 

category. 
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protected and non-protected zones, with the majority (76%) of GBR sites occurring in 

no-take, in which recreational and commercial line fishing is not allowed. In 

comparison, only 33% of SEQ sites are located in no-take zones. 

Most reef surveys were conducted within a five month survey period that 

occurred from February to June in the GBR, and August to December in SEQ. For the 

purpose of this paper, reef surveys were examined based on annual surveys, from 2001 

to 2016 in the GBR, and 2007-2016 in SEQ. There is a concerted effort taken to 

conduct surveys at each location within the same month each year to minimise seasonal 

variation. However, because RCA relies on the availability of trained volunteers and 

dive operators offering their services in-kind or at a reduced cost, there can be variation 

in survey timing. Other constraints, such as unfavourable weather or budget limitations, 

also restrict the ability to reach certain sites each year, or at the same time every year. 

Therefore, sites that were newly implemented or not surveyed more than two times 

were not included in this analysis.  

Reef check surveys were conducted on SCUBA or snorkel and carried out using 

measurement tapes to mark four, 20m transects, with five meters between each replicate 

transect (Hill and Loder, 2013). Sites were located with GPS coordinates, and detailed 

maps that were regularly updated to relocate sites. Surveyors use these coordinates and 

maps to haphazardly place transects in the same area each year, following the natural 

outline of the reef, and avoiding non reef building substrate, such as sand. Reef health 

surveys were made up of four parts, substrate percent cover, and abundance of reef 

impacts (such as bleaching, disease, and scaring), invertebrates, and fish. Debris was 

recorded as a part of the reef impact survey, where one to two divers performed a series 

of five meter wide,  20m long belt transects (2.5 meters on either side of the transect 

line) with 5 meters between transects (Figure 2.2), recording any debris item present 

within the belt area. This covers an area of 400m2. These surveys are repeated once a 

year, unless interrupted by unforeseen circumstances, such as poor weather or if site 

was no longer accessible.   
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Figure 2.2: Standardised Reef Check protocol, using the point line intercept and belt transect method. 

Figure modified from Hill and Loder (2013). In order to show debris abundance, debris items were 

summed across all transects to obtain debris abundance per survey area (400m2). 

 

2.2.2 Debris categorisation and quantification 

Within RCA impact surveys, debris items were categorised into; fishing line, 

fishing net, and general rubbish (any debris that does not fall within the previous 

categories). This included any visible items in any size range. Since the debris surveys 

were part of a larger site survey, the debris items were counted but not weighed or 

measured. Instead, once the items were observed they were recorded in one of the three 

categories, and if a camera was available, a picture was taken for documentation and 

further identification. Photographs were later cross-referenced to survey data, to provide 

more information on debris type. If safe for the surveyors, debris items were removed 

from the site, whenever possible. However, sometimes the debris items such as fishing 

line were tangled with reef structure, and attempting to remove them could cause 

damage.  

Due to low debris densities, the four twenty meter replicate transects were 

treated as a single eighty meter transect rather than as replicates (Figure 2.2). Therefore, 

the total debris items were summed across all transects to obtain debris abundance per 

survey area (400m2). The total debris abundance per survey was then averaged over 

multiple surveys to account for any double counting over time. Any site visited three or 

more times between 2001 and 2016 was included in the analysis.  
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2.2.3 Statistical analysis 

The average debris abundance per survey area (400 m2) was analysed in ArcGIS 

(ESRI) to determine patterns of debris along the Queensland coast. To compare the 

difference of debris abundance and type between the two regions (SEQ and GBR), 

average number of debris items over time was used. Since data did not meet parametric 

assumptions, a non-parametric Man-Whitney test was performed in IBM SPSS 

Statistics version 25.  

 

2.3 Results 

Across a 15 year time span, a total of 79 locations were surveyed along the 

Queensland coast, ranging from Osprey Reef to the Gold Coast. This included 54 sites 

within the GBR, and 24 within SEQ (Appendix 1). Within the two regions, a total of 

622 surveys were conducted from 2001 to 2016 (n= 437 in GBR, and n=185 in SEQ). 

Overall, debris was present in 32% of the surveys completed in the GBR, averaging less 

than one item per survey. Conversely, debris was recorded in over half (56%) of the 

surveys in SEQ, with an average of 3.2 items per survey.  

When comparing between regions, SEQ survey sites had more fishing line, 

fishing net, and overall debris abundance (Mann-Whitney p <0.001, p=0.033, p<0.001, 

respectively). However, there was no significant difference found in the general debris 

abundance between the two regions (Mann-Whitney p=0.08) (Figure 2.3). The highest 

overall debris abundance (including all categories) were recorded at SEQ sites from the 

Gold Coast, with an average of 27 pieces of debris were recorded per survey (400m2) 

(Figure 2.4). In comparison, the highest abundance of debris in the GBR was recorded 

in the Palm Islands and Magnetic Island with an average of 3 and 2 items of debris per 

survey, respectively (Figure 2.4). In both regions, across all sites, the number of items 

recorded on surveys remained relatively consistent over time (Figure 2.5).   

The type of debris was highly variable over the two regions. Fishing line and net 

made up over half of the debris items (72% and 7% respectively) in SEQ, but only 17% 

of the items recorded in the GBR (9% fishing line, 8% fishing net). Instead, in the GBR, 

approximately 82% of the items were recorded as ‘general rubbish.’ Unfortunately, only 

6% of the general rubbish items could be further classified by analysing photos. Either 
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due to the lack of camera availability in earlier surveys, or low prioritisation of 

photography. Photographed items included one item of plastic packaging, one item of 

fabric, two items of rope (>2m), one cardboard packaging, metal fishing items, and 

other boating related items such as anchors. On Heron Island in the GBR, a total of 

seven items of abandoned or lost scientific sampling gear was also recorded on surveys. 

In the SEQ sites, approximately half (47%) of the items labelled in the general rubbish 

category were able to be further identified from photographs. From the photographs, 

metal items were the most abundant (40% of the identified items) (Figure 2.6), 

including metal piping, metal fishing items such as rods and reels, foil, bottle caps, and 

aluminium cans. Plastic items made up approximately 32% of the photographed items 

in SEQ, and included rope, plastic film remnants, rubber and elastic straps, bait and 

tackle packing, and plastic food packaging (Figure 2.7). The rest of the items consisted 

of glass (18%), paper and cardboard packaging (3%), sanitary (3%), and other (3%).      
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Figure 2.3 Comparison of average debris abundance and type per survey (400m2) across the two regions 

(as described by Reef Check Australia) along the Queensland coast: the Great Barrier Reef, and 

Southeast Queensland. Box plots represent median and interquartile (25th and 75th). Asterisk indicate 

outliers. Outliers were identified by larger asterisks was removed since it was greater than the provided 

scale: 27 items/400m2, Gold Coast (see Fig. 2.4) 
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Figure 2.4 Comparison of average debris abundance and type in ‘hotspots’. The Gold Coast is located in 

Southeast Queensland Region, whereas Magnetic Island and Palm Island sites are located in the Great 

Barrier Reef region. Box plots represent median and interquartile (25th and 75th). * Indicate outliers.  
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Figure 2.5 Total debris abundance on most consistently surveyed reefs, two examples of GBR sites (Blue 

Pearl Bay and Low Isles), and two examples of SEQ sites (Gold Coast, Seaway and Mudjimba (Old 

Woman) Island). GBR surveys began in 2001, and SEQ surveys in 2007. Some reefs were not surveyed 

every ear, therefore absent markers indicate no survey performed that year. Data included multiple sites 

surveyed in the same reef. 
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Figure 2.6 Percent of debris categories identified in photographs in Southeast Queensland. Items only 

represent approximately half of the items labelled in ‘general rubbish’ category. The remaining items 

were unidentified.  
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Figure 2.7 Examples of photos of debris recorded on surveys. Photos were used for cross referencing 

with data collection. Top row: fishing line (left) and net (right). Bottom row: a fishing lure categorised in 

general rubbish (left), a strapping band categorised in general rubbish (middle) and a glass bottle 

(right).   
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2.4 Discussion 

Overall, the amassed data from RCA surveys suggest that subtidal marine debris 

abundance across Queensland reefs were relatively low but became higher on reefs 

closer to high-use recreational areas such as Brisbane, the Gold Coast, Magnetic Island 

and the Palm Islands. This pattern of relatively high debris densities around cities are 

commonly found among other shoreline and subtidal research around Australia 

(Hardesty et al., 2017; Smith and Edgar, 2014), and around the world (Coe and Rogers, 

2012; Galgani et al., 2000; Jambeck et al., 2015; Rosevelt et al., 2013). More 

specifically, in Queensland’s neighbouring state, New South Wales, marine debris 

surveys recorded lower densities of debris in offshore reefs, but higher densities closer 

to estuaries and nearshore reefs (Smith and Edgar, 2014). This pattern of higher debris 

densities surrounding areas with large populations add weight to a growing body of 

evidence that most waste enters the marine system from areas adjacent to high human 

populations and high use. 

Importantly, debris items were also found in remote areas of the Great Barrier 

Reef and offshore sites such as Osprey Reef, suggesting the relatively pristine reefs also 

do not escape the threat of marine debris. This is not unexpected, as debris has been 

recorded in some of the more remote and untouched areas in the world (Lavers and 

Bond, 2017). Specifically in Australia, debris has been found on remote beaches 

throughout northern Queensland, and sand cays located within the GBR (Smith and 

Edgar, 2014; Verlis et al., 2013, 2014; Wilson and Verlis, 2017). Although in low 

abundance, the very presence of debris on these more remote reefs suggests that their 

habitats and species could be subject to the relative impacts, such as coral damage, 

smothering, and entanglement, especially if deposition rates increase as projected 

(Chiappone et al., 2005; Sheavly and Register, 2007). In addition, the presence of 

plastic items on reefs, such as fishing line, net rope, and soft plastics, has recently been 

associated with other coral impacts, such as increased levels of coral disease (Lamb et 

al., 2018). This dataset provides valuable data to identify the presence of marine debris, 

and supports a further understanding of debris abundance patterns, which is useful for 

identifying how marine debris may influence marine systems and target relevant 

management actions.  

Fishing line debris was found to be the dominant debris type, and occurred in 

significantly greater amounts in reefs within SEQ than in the GBR. On the whole, the 
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SEQ region is smaller and more accessible to people than the GBR, and has higher 

coastal populations, therefore it is likely that the sites surveyed in SEQ are used more 

often by fishers and boaters than surveyed sites in the GBR (Department of Agriculture 

and Fisheries, 2017). Based on the latest Department of Agriculture and Fisheries 

surveys from 2013-2014, there was approximately 236,000 +/- 13,000 recreational 

fishers in Brisbane alone, in comparison to the 36,000 +/-3,400 in Townsville (the two 

largest cities in each region) (Webley et al. 2015). For both cities, approximately 50% 

of the fishermen own and use boats.  Fishing gear has been recorded as one of the 

dominant marine debris items in other reef habitats both in Australia and around the 

world (Edyvane et al., 2004, Donohue et al., 2001), but its abundance is heavily 

dependent on the degree to which the surveyed area is used by fishers (Bauer et al., 

2008) and the type of fising conducted. For example, in Gray’s Reef National Marine 

Sanctuary in Southeast USA, 75% of the debris in areas of high boat density was fishing 

line, compared to 23% in area with lower boat densities (Bauer et al., 2008). Similarly, 

significant abundances of fishing and other debris were recorded in South Australia due 

to heavy boating and fishing (commercial and recreational) activities in the Great 

Australian Bight (Edyvane et al., 2004). Proportionally, fishing line abundance was 

similar to those found on other underwater debris surveys in Australia, where 

approximately 82% of debris items were found to be fishing monofilament, occurring 

most commonly on nearshore sites (Smith and Edgar, 2014). This is slightly higher than 

the 67% found within SEQ region, suggesting relatively consistent debris loads across 

states. It is clear that strategic initiatives are needed to reduce fishing line debris is 

needed to reduce these loads on local reefs.    

 The difference in debris abundance and type across the two regions, is also 

likely influenced by regional artefacts such as differences in site placement. The 

majority (76%) of GBR sites occurred in no-take zones in which recreational and 

commercial line fishing is not allowed. In comparison, only 33% of SEQ sites are 

located in no-take zones (Appendix 1).  This is because there are fewer areas in SEQ in 

which fishing activity is regulated (in comparison to the GBR), with the only marine 

park located in Moreton Bay. In addition, RCA relies heavily on the in-kind services of 

the tourism industry, and most survey locations are popular tourist destinations, and are 

thus typically within protected, no fishing zones. Despite this, 64% of the fishing line 

and net were recorded on surveys occurring within protected areas in the GBR. 
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Therefore, it is likely that my data under-estimate the degree to which fishing line items 

accumulate in benthic habitats of the GBR.  

Unfortunately, due to the lack of photographs, I was unable to further identify 

debris type found within the GBR, beyond the 6% that were identifiable. In comparison, 

items on SEQ reefs had a greater diversity of general rubbish, consisting plastic, metals, 

paper, rubber and glass, likely due to the nearness of large urban sources. In both 

regions, observed items were similar to those commonly found on beaches throughout 

the Queensland coast (Hardesty et al., 2017; Hardesty and Wilcox, 2011; Wilson and 

Verlis 2017). Again, due to the nature of RCA, most surveys sites are also popular 

tourist destinations, in both regions of the Queensland coast. As such, I can assume a 

“dirty reef” would be less desirable to tourists (Bauer et al., 2008; Derraik, 2002), and 

vessel operators that visit these sites daily are likely to maintain them (Personal 

Observation). Regardless, general debris items were still observed at many sites.  

One of the key pieces of information required to underpin initiatives to reduce 

the future load of marine debris is to understand the source of the debris. It is important 

to identify specific sources because different strategies are required to reduce inputs 

from debris arising from boating and fishing activities than strategies used to minimise 

inputs from general litter and the urban storm water systems. It is likely that many items 

volunteers observed on the surveyed reefs are from boating based activities, either from 

fishing or tourism vessels or shore-based recreation fishing (Wilson and Verlis, 2017). 

Heavier items such as glass and metal are likely to sink near-immediately to the bottom, 

and are thus unlikely to move great distances from where they were discarded. 

However, plastic and rubber items are generally lighter and can more easily be shifted 

by wave action or water circulation, hence it is more challenging to determine the origin 

of plastic products because they may have been discarded elsewhere and been 

transported to the site (Critchell et al., 2015). Overall, the data suggests that litter 

education and/or waste management actions targeted at recreational boat users and 

island visitors in and around the sites that were surveyed could contribute to efforts to 

reduce future marine debris loads. Working with fishers directly, creating incentives, 

and encouraging fishers to participate in citizen science clean ups may also provide an 

important avenue for outreach, and offer people the chance to view the potential 

impacts of littering while on the reef. In addition, there should be a concerted effort for 

future surveys to refine techniques to improve identification of debris items – such as 
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photography, more detailed survey categories, or item removal to allow a stronger 

understanding about marine debris types and sources, particularly in the GBR. 

The data I analysed in this paper were collected during a structured component 

of a broader survey to monitor various aspects of reef health. Therefore, it is difficult to 

directly compare this data with other subtidal debris studies. Similarly, most studies on 

sub-tidal debris use different methods, or seek to answer different questions, so 

comparisons are challenging. For example, in another GBR study, benthic surveys 

found fishing line abundance to be as high as 18 items per 400m2 in the Palm Islands 

(Williamson et al., 2014). In comparison, RCA surveys recorded 0 items per 400m2 

surveyed within the same region by Reef Check Australia. The differences in results 

could arise because Reef Check Australia transects were not always occurring in areas 

of high fishing line hotspots and the Williamson et al. (2014) field work was assessing a 

larger scale project comparing protected and non-protected reefs so some of their 

transects where in heavily fished areas. While a survey design solely focused on benthic 

marine debris in reef systems might provide a more detailed analysis, the survey design 

has enabled a structured and comparative survey of benthic marine debris on reefs and 

could be used as a baseline for future surveys or refined sampling. In addition, it is 

important to note that due to internationally recognised standardised and replicable 

methods, these results could be used to directly compare debris abundances using other 

Reef Check data around the world.  

Adaptations to the data collection methods could add to considerable strength to 

future sub-tidal marine debris surveys. For example, double counting of durable debris 

items over time is possible because not all items were photographed and thus it is not 

always known how many of the items were removed from the sites during the surveys. 

An improved photography protocol could therefore aid in the data analysis by reducing 

the likelihood of double counting of heavy or entangled debris.  

 

2.5 Conclusion & Monitoring initiatives 

In summary, this study provides a baseline dataset for subtidal marine debris 

abundances along both urban and remote Queensland reefs, and highlights the 

importance of citizen science to identify patterns and monitor marine debris on the reef 

systems. Debris on reefs can have a direct influence on the state of reef health, and can 



   

32 
 

be a threat to inhabiting wildlife. To help reduce this threat, citizen science programs 

can be designed in a robust manner to help develop and implement more rigorous 

continuous debris monitoring, which aid understanding of marine debris and plastic 

pollution at targeted spatial and temporal scales. Long-term debris trends are highly 

relevant to agencies responsible for waste management or litter regulations, such as 

local municipal areas or management authorities and can provide a pathway for 

communities to contribute to science-based management approaches.  

 





 

 

 
 

Chapter 3 
Input of plastic debris in an urban 

tropical river system 

 
 

Land-based sources can contribute approximately 80% of anthropogenic debris in 

marine environments. A main pathway is believed to be rivers and storm-water systems, 

yet this input is rarely quantified. I aimed to quantify the abundance of land-based 

debris entering a river system through storm drains in an urban area of tropical 

Australia. To account for seasonal variability, debris was quantified pre, post and during 

the wet season from 2014-2017. Plastic items within the river were compared to those in 

adjacent parks to assess similarities in debris composition. A total of 27,943 items were 

collected (92% plastic). Debris loads in the post-wet seasons were significantly higher 

than the wet-season. Furthermore, variability in the portion of debris found in nearby 

parks compared to the river suggests that factors other than rainfall, play a role in debris 

abundance. These results can be used to identify targeted management strategies to 

reduce debris loads. 

 

 

 

 

 

 

Citation: Bauer-Civiello A, Critchell K, Hoogenboom M, Hamann M. Input of plastic 
debris in an urban tropical river system. Marine Pollution Bulletin. 2019. 144: 235-242. 
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3.1 Introduction 

Anthropogenic debris has become a ubiquitous problem threatening global 

waterbodies (Law, 2017; Moore, 2008; Worm et al., 2017). Consisting of up to 95% 

plastic, anthropogenic debris has been recorded in nearly every aquatic ecosystem (Auta 

et al., 2017), in addition to many freshwater rivers and lakes (Eerkes-Medrano et al., 

2015). Once in aquatic ecosystems, many debris items remain buoyant, and can easily 

be transported across vast distances via currents and winds (Maximenko et al., 2015). 

As a result, anthropogenic debris has been recorded in some of the most remote (from 

human settlements) aquatic locations in the world (Lavers and Bond, 2017; Munari et 

al., 2017; Ribic et al., 2012). Most importantly, anthropogenic debris in the marine 

environment is being increasingly found to not only negatively impact species, but the 

function of ecosystems (Lamb et al., 2018), and the health of fauna through 

entanglement, ingestion and habitat change (Gall and Thompson, 2015; Nunes et al., 

2018; Ryan, 2018). In response, many countries, and inter-governmental organisations 

have been working to understand the issue and develop management interventions to 

mitigate the growing problem of debris in marine environments (Critchell et al., 2019; 

Niaounakis, 2017; Vince and Hardesty, 2017). 

Oceans act as a sink for anthropogenic debris, however, managing the removal, 

and reducing impacts, of debris in the ocean is challenging. The vast expanse of the 

oceans, the sheer scale of abundance and variability of input sources of debris makes 

removal costly and time consuming (Islam and Tanaka, 2004). Currently, most 

strategies for in situ removal include beach clean-ups, and innovative pilot projects such 

as ‘marine bins’ (seabinproject.com) in semi-enclosed marine habitats, or the ocean 

clean up (theoceancleanup.com) (Vince and Hardesty, 2017). However, mismanaged 

waste from urban areas moving into freshwater and marine systems has been predicted 

to increase (Jambeck et al., 2015), and ongoing beach clean-ups will continue to be time 

and labour intensive, and at times highly reliant on volunteers or citizen science 

programs (Bauer-Civiello et al., 2018; Duckett and Repaci, 2015). Moreover, deploying 

and maintaining equipment in the marine environment is expensive and only provide 

short-term solutions (Critchell et al., 2019). Therefore, establish more effective means 

of mitigation directly at debris sources is a step forward the reduction of debris, in 

addition to removal of debris already in the ocean and on beaches. 
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Freshwater systems are a common pathway for land-based anthropogenic debris 

to reach the marine environment, as they connect coastal and inland urban communities 

to the ocean (Castaneda et al., 2014; Lima et al., 2014; Mani et al., 2015; Schmidt et al., 

2017; Zhao et al., 2014). The input from freshwater systems is not well known, however 

Lebreton et al. (2017) estimate that there is somewhere between 1.15-2.41 million 

tonnes of plastic are transported to the ocean from rivers per year. Debris items enter 

freshwater systems through various sources, including sewage effluents, storm drains, 

and through recreational and commercial activities such as water-sports and fishing 

(Kooi et al., 2018). Once items are in a freshwater system they can accumulate over 

time, and the flow of water ultimately flushes the debris into the coastal and ocean 

habitats (Browne et al., 2010; Eerkes-Medrano et al., 2015). Unlike research of marine 

debris on beaches, there is relatively little known about patterns of debris abundance in 

freshwater systems. Monitoring debris type and abundance can provide a better 

understanding as to how debris enters the system, and its most likely source. Knowing 

each of these can improve mitigation strategies to inform management agencies to 

target problem areas and likely sources of debris in the environment. 

In Australia, land-based debris is a commonly speculated source of 

anthropogenic debris found in the coastal and marine environment (Critchell et al., 

2015; Hardesty and Wilcox, 2011; Willis et al., 2017), however, the amount of debris 

that originates from river systems remains understudied (Willis et al., 2017). Tropical 

areas, such as northern Australia, undergo seasonal monsoonal rain flushes that 

commonly contribute to litter and other pollution loads in freshwater habitats (Li et al., 

2015; Moore et al., 2011). Litter originating from sidewalks, streets, highways, 

parklands, and carparks are collected by water flowing throughout the catchments and 

become washed into storm drains leading to river systems and eventually the sea 

(Armitage and Rooseboom, 2000; Marais et al., 2004; Moore et al., 2011; Rech et al., 

2014). Other environmental factors, such as wind, can also play an important role in the 

transportation of anthropogenic debris (Kooi et al., 2018), such as moving items from 

adjacent parks and recreational areas into aquatic systems. However, sources such as 

these are rarely examined in peer reviewed literature, particularly with monsoonal 

seasonal flow in monsoonal regions. Understanding these aspects provides insight into 

debris loads in a local river system and as well as information on specific sources that 

help management target local initiatives.   
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To establish effective ways to stop anthropogenic debris before it enters the marine 

system, it is important to understand the how the debris arrives into the river system to 

identify sources. . Thus, the overall aim of this study is to quantify the amount of 

anthropogenic debris entering a freshwater river system, and identify likely sources, 

using the Ross River in the tropical city of Townsville, Queensland, Australia as a case 

study. Since I expect to see higher debris abundances within the river after rainfall 

events, I aim to investigate the following questions: 1) How does the rainfall season 

influence the abundance of anthropogenic debris, specifically before, during, and after 

the wet season? 2) Is there consistent input of debris through time? 3) How much does 

litter in nearby parks influence debris loads in the river? With these data, I hope to 

provide some practical solutions to the debris problem in river systems, and therefore 

mitigate debris at the source before it arrives to the ocean. 

 

3.2 Methods 

3.2.1 Site description 

All data collection took place in the city of Townsville, North Queensland, 

Australia, home to approximately 229,000 people (Australian Bureau of Statistics 2016 

Census). The Ross River and associated creek system flows through the urban 

community, discharging into Cleveland Bay, which is part of the Great Barrier Reef 

World Heritage Area (Figure 3.1). Cleveland Bay contains sensitive habitats, including 

nearshore reefs and seagrass meadows important to dugong and marine turtle species 

(Waycott et al., 2005; GBRMPA 2004). The region has an average annual rainfall of 

1,143 mm per year (Australia Bureau of Meteorology), 86% of which occurs between 

the months of September and March. However, in the duration of my study the city has 

experienced rainfall levels lower than the average annual total; 1027.2 mm in 2014, 398 

mm in 2015, 951 mm in 2016, and 657 mm in 2017 (Bureau of Meteorology). Ross 

River has an impoundment that is used as a reservoir to supply the freshwater to the 

urban areas of Townsville, with a basin size of about 1,340km2. There are also three 

smaller, artificial weirs throughout the river, that impede water flow until large rainfall 

events provide enough local input for them to overflow (Figure 3.1). This means that 

any debris entering the system is retained until there is enough rain for the debris to 

flow over the weirs and out to the bay. Annual discharge varies, depending on the 
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amount of rainfall, which may result in the weirs and dam overflowing. For example, 

the most recent public report in 2010 suggests that peak flow occurred between 378 

m3/s to 418 m3/s, but after 150 mm of rain occurred within 12 hours, discharge 

increased to over 1000 m3/s (Townsville City Council, 2010). During the sampling time 

period, the weirs had periods over overflow in the 2014 and 2016-2017 wet season.  

 

3.2.2 Collection methods- River 

Prior to 2014 surveys, unstructured clean-ups (meaning not based on quadrat or 

distance sampling) took place to test site location and note areas of high densities of 

debris. These unstructured clean-ups occurred just before the river’s dam reached 

capacity and flushed the entire river in April of 2014. At this time, the majority of the 

debris around the river was removed, providing a baseline for the study. It should be 

noted that the riparian area of the river was cleaned haphazardly by council, local 

community groups and clean-up events. However, these events often cover small 

sections of the river and often has no formal data collection methods. 

Anthropogenic debris was subsequently collected from Ross River over three 

consecutive wet seasons, with collections occurring from October 2014 to June 2017. 

Since rainfall is likely to wash debris items into storm drains or directly into the river 

(Lattin et al., 2004; Moore et al., 2002; Rech et al., 2014), all data were collected over 

three sampling periods; before, after, and during the wet season, hereafter referred to 

pre-, post, and during. Pre-wet season sampling occurred from October to November of 

2014, 2015 and 2017 and post-wet season sampling occurred between January and 

March of 2015 and 2016. Each site was visited at least once in each season (Appendix 

2). To explore the effects of an individual rainfall event, sampling efforts intensified 

during the 2016-2017 wet season. Debris collections happened after every rain event 

over 5 mm (Bureau of Meteorology), hereafter described as the ‘during’ time period.  

Anthropogenic debris was collected at the mouth of storm drain effluents from 

two sites separated by weirs (Figure 3.1). All clean-ups were conducted by two or three 

people on kayaks, visiting the same two sites, and covering the same area each visit. 

Surveyors aimed to remove all of the debris items by hand within the specified area 

during each clean-up. However, it was noted that much of the debris items were 

obscured by surface vegetation, which could be more visible depending on the number 
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of surveyors. No other equipment except gloves, bags, and sharps containers, were used. 

Site 1 is enclosed by weirs, approximately 0.09 km2 in area. The area between weirs 

around site 2 was 0.75 km2 and therefore impossible to clean the entire area in a single 

clean-up event in a manageable time period. As such, clean-ups were concentrated 

outside storm drains where the density of the debris had been found to be the highest 

(based on pilot expeditions), approximately 0.08km2 area (shown by blue lines in Figure 

3.1). The number of people and the time spent sampling was recorded after each clean-

up to quantify sampling effort. Dates of clean-ups for both sites were paired where 

possible and dependent upon time, volunteer availability, and weather conditions. . 

However, due to time constraints this could not happen for every clean-up event. For 

example, during the 2016-2017 wet season, a clean-up did not occur in January for site 

2 due to unforeseen circumstances. In addition, site 2 was visited twice in the post-wet 

season sampling, because we did not complete the site during a rainfall event, and I was 

not able to return to the site until after the event, due to safety of volunteers. 
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Figure 3.1: Map of site locations. Items were collected in areas enclosed by black box, with the left as 

site 1, and the right as site 2. Blue lines indicate channels along streets for each storm drain. Map layers 

provided by Queensland Spatial Catalogue: http://qldspatial.information.qld.gov.au, and Townsville City 

Council. 

 

3.2.3 Collection methods- Park  

To determine how much of the anthropogenic debris was originating from the 

surrounding areas and parklands adjacent to the study sites at any given point of time, 

clean-up data were opportunistically used from Clean-up Australia Day (CUAD), and 

clean-ups organised by the non-profit, citizen science organisation, Tangaroa Blue at 

two separate dates collected during the 2016-2017 wet season. CUAD is a nation-wide 

clean-up event and campaign, where volunteers around the country pick up debris in 
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public parks and beaches (https://www.cleanupaustraliaday.org.au). . Likewise, 

Tangaroa Blue is also a volunteer organisation that regularly organises clean ups around 

the country (https://www.tangaroablue.org/database.html). I worked with Townsville 

City Council to set aside CUAD bags of collected waste from river-side parks to sort, 

using the same methods as I used for my in-river clean-up data (see below). Parklands 

chosen were situated as close to the river cleaning sites as possible (Figure 3.1). The 

park near site 1 is approximately 200m from the edge of the river site, whereas the park 

near site 2 is approximately 50m away. All parkland clean-ups occurred within the 2017 

wet season, in the same time period as the ‘during’ wet season river sampling. 

Unfortunately, the land-based were organised separately to the kayak-based clean-ups, 

and only the data during the 2017-2017 time period could be obtained. The debris type 

and abundance found in the river can be compared to the adjacent parklands to provide 

additional information regarding how much of the debris was originating from the storm 

drains, or nearby parks along the river.    

 

3.2.4 Sorting methods 

Anthropogenic debris collected from clean-ups were sorted into categories based 

on the Australian Marine Debris Database 

(https://www.tangaroablue.org/resources.html) to standardise identification to other 

studies across Australia. Using this format I focused on the broader categories of debris, 

including plastic packaging (such as plastic drink bottles, plastic bags, plastic cups, and 

straws), food containers (such as paper/waxed packaging, and drink cartons), 

Styrofoam, toys (including balloons), cigarette items, personal care items, clothes and 

footwear, and fishing related items.  

 

3.2.5 Data analysis  

Since clean-ups occurred in a fluid, aquatic environment, where the number of 

people and time taken to search for debris influenced the ability to detect and collect 

items, all clean-up data were standardised to the number of debris items per unit of 

effort (number of surveyors multiplied by the number of hours the group spent 

sampling, as per (Hardesty et al., 2017; Maunder and Punt, 2004; Nelms et al., 2017). 

All statistical analyses were performed using SPSS.  



   

42 
 

To compare the abundance of anthropogenic debris across sampling seasons and 

across sites, a two-way ANOVA was used, with a Tukey’s HSD post hoc. Data were 

found to be normally distributed with a Shapiro-Wilk normality test, and Levene’s test 

of homogeneity. Since some of the seasonal observations did not occur across all years, 

a separate one-way ANOVA was used to compare abundances of debris items across 

sampling years to determine if there was consistent input of debris within the river 

system through time (2015-2017). The same test was performed among the most 

common debris types, collected across seasons. This was to further identify if there 

were any changes in patterns for specific debris items. Items that were evident across 

multiple sampling times were compared, with items that were singletons or not 

presented in all sampling times were excluded from analysis. A complete list of debris 

items can be found in Appendix 2. Most common debris items were identified as the top 

10 most abundant items collected. Since some item abundances differed among years, a 

ranking system was used to identify overall top items across all sampling periods.  

Lastly, to compare the abundance of anthropogenic debris collected in the 

parklands to that collected in the river, the percent abundance of individual plastic items 

were calculated for in river and park sites. Since it was not known how much effort 

(person hours) was given during the clean-ups performed by volunteers in Clean-up 

Australia Day, and other larger scale events, I analysed the proportional abundance of 

debris. Debris abundance on land was only compared to the data collected during the 

2017-2017 wet season since this only occurred once during the sampling period. I then 

analysed the top 10 most abundant items to compare the abundance of specific debris 

types between the river and parklands.   

 

3.3 Results 

A total of 27,943 items of anthropogenic debris were collected from the two 

study sites of the Ross River adjacent to storm drains over three consecutive wet 

seasons. A large proportion of the collected debris was plastics, 91% in site 1 and 93% 

in site 2. Metal items made up 5% of the total debris, and all other materials (glass, 

cloth/footwear, paper, wood, and unknown) collectively made up the remaining 2% of 

the total debris items. In a single wet season (September 2016- June 2017), a total of 

2,766 plastic food packing items, 1,089 straws, 1,028 foam insulation remnants, 804 
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soft plastic remnants, 990 plastic bottle tops, and 458 plastic bags were collected from 

both river sites.   

 

3.3.1 Debris trends through time 

Over the course of three years, the average abundance of anthropogenic debris 

decreased, with the highest amount of debris collected in 2015, with a total of 395 items 

per unit effort (Figure 3.2). This was significantly greater than the debris collected in 

2016 (F(3,24) = 9.451, p = 0.006), and 2017 (p < 0.000). Overall, the abundance of 

debris differed among seasons (F(2,22) = 5.226, p = 0.014), where the debris collected 

in the post-wet season was significantly greater than during the wet season (F(2,22) = 

5.226, p = 0.023, Figure 3.3). No significant difference was found between the total 

debris collected in the pre- and during-wet season (p = 0.894), or pre- and post-wet 

(p=0.171). In addition, there was no significant interaction between site and season 

(F(1, 2) = 3.322, p = 0.055), however, when only looking at the most common items, 

there was a significant interaction detected (F(1, 2) = 2.265, p-value = 0.026, Figure 

3.4). That is, at site 1, the most common items such as straws, drink bottles, plastic 

bottle caps, plastic cups, hard plastic pieces, and metal cans were significantly more 

abundant in the post-wet season sampling period than either the pre-wet or during. 

However, this same pattern did not occur in site 2, with only plastic bottles being 

significantly greater in abundance in the post-wet season.  

The number of anthropogenic items entering the system after every rain event 

varied from 23 items per unit of effort to 188 items per unit effort in site 1 (average of 

102 items/effort per rainfall event), and 70 to 287 at site 2 (average of 185 items/effort 

per rainfall event). Fewer items were collected in May through to June (dry season), 

after heavier rainfall (Figure 3.5). During the 2017 wet season, the number of items 

entering site 1 appeared to decrease after January sampling, but remained high until 

March at site 2. During the 2017 intensive sampling there was an average input of 23 

(+/- 7) items per day at the site 1, and 32 (+/- 9) items per day at site 2. 
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3.3.2 Comparison of parkland and river debris 

In comparison to the anthropogenic debris collected in the river, 82% of the 

items collected in the park area near site 1 were plastic, and 69% in the park near to site 

2 were plastic. Among the most common items, there was a greater disparity of plastic 

food packaging abundance in the parklands compared to the river near site 2 than that 

found near site 1. Plastic food packaging in parklands made up 19% near site 1, and 7% 

near site 2, compared to the 22% in both river sites (Figure 3.6).  However, there was a 

higher percentage of specific plastic items, such as utensils, plastic remnants and 

aluminium cans in site 1 parks. The same pattern did not occur in site 2, instead, only 

the relative abundance of plastic remnants and unknown plastics was higher in nearby 

parklands near site 2 than in the river.   

 

 

Figure 3.2: Average abundance of anthropogenic debris per effort (number of samplers multiplied by the 

total hours spent sampling) collected from the river, across years sampled. Note that 2014 clean-up was 

not included as only one clean up occurred at each site (n=2). Boxes represent the median, with the 

upper and lower quartiles. Whiskers represent maximum value, or a 95% confidence if outlier occurs. * 

indicates outliers (1.5 x Inter-Quartile-Range). 
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Figure 3.3: Range of debris items per unit of effort collected on each clean up across all seasons. Each 

dot represents a clean-up effort.  
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Figure 3.4: A comparison of the average abundance of debris for site 1 (A.) and site 2 (B.) per unit of 

effort (+/-SE) of the top ten most abundant items recorded in the pre-, post-, and during the wet season. * 

Signifies a significant difference between sites. 
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Figure 3.5: Number anthropogenic debris items collected over the 2016-2017 wet season in comparison 

to the amount of rainfall since the last clean up (solid black line), with A as site 1 and B as site 2. The 

dotted line denotes the average rainfall over the year (1134mm/12 months), anything above the dotted 

line indicates relatively heavy rainfall. Note, sampling days differ slightly between sites. Note that 

differences in y-axis range occurs.   
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Figure 3.6: The percent of most common anthropogenic debris collected from the river compared to that 

adjacent parks cleaned in two separate occasions during the 2016-2017 wet season for site 1 (A), and site 

2 (B). 

 

3.4 Discussion 

This research shows that large quantities of anthropogenic debris, primarily 

single-use plastics, are found in tropical Queensland river systems, and can ultimately 

flow into the ocean after monsoonal flushes. Furthermore, my results suggest that, in 

low rainfall years, there is a relatively consistent input of anthropogenic debris that 

accumulates in the river. Results of this study showed no significant difference between 

the abundance of items collected during the wet season and the pre-wet season, 

suggesting that wind or direct littering into the river from nearby parks, schools or 
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public spaces, may be as large a source of debris as the storm water discharge during 

rainfall events. It is also possible that small rainfall events that occur haphazardly 

outside the wet-season contribute to debris deposited in the river between the post-wet 

and the next pre-wet sampling periods. Other studies have identified storm drains as a 

likely source of anthropogenic debris. For example, Duckett and Repaci (2015) found 

correlations of the overall abundance of anthropogenic debris and number of storm 

water effluents emptying onto beaches (Cunningham and Wilson, 2003; Duckett and 

Repaci, 2015).  

My results are similar to what has been found by council reports in in Mackay, a 

city 388km south of Townsville and approximately 1/5th the population size. Here, a 

total of 8,281 anthropogenic debris items were recorded from 35 gross pollutant traps 

placed outside of the storm drains effluents at six sites between March 2014 and June 

2015 (Mackay Regional Council, 2015). In comparison, I collected a total of 10,440 

items in the same time frame from two sites in Townsville, but this is likely an 

underestimate due to missed items that sink or those which were obscured from view 

(Morritt et al., 2014). While these numbers are relatively small compared to studies in 

large cities in populated areas of Europe, Chile, and California, where up to millions of 

items flow out of large scale rivers per day (e.g. up to 36 tons of plastic debris in the 

Seine River in one year) (Gasperi et al., 2014; Morritt et al., 2014; Rech et al., 2014; 

Schmidt et al., 2017)., my results suggests that a considerable amount of litter is capable 

of flowing from relatively small cities in North Queensland.  

The variation in rainfall totals across the sampling period (2014-2017) was 

likely to have influenced the accumulation of anthropogenic debris items in the river 

(Figure 3.5). Low rainfall in 2015 led to restricted water flow, and as a result, any items 

blown or washed into the river were likely to be retained. In addition, any 

anthropogenic debris entering the system following heavier rainfall in 2014 could have 

accumulated in the time between the weirs overflowing and my sampling. Moreover, 

after heavy rainfall events (heavy being greater than monthly average of 95mm), for 

example, when over 200 mm of rainfall occurred in March of 2017 (Figure 3.5), it is 

possible that debris items were washed away or submerged before they were able to be 

collected (especially at site 2, where the collection site did not cover the entire area 

between the weirs), creating the illusion of less debris in the system (Kooi et al., 2018; 

Moore et al., 2011). This pattern is illustrated on a smaller scale during the 2016-2017 
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wet season, where more debris items were collected during multiple lower volume 

rainfall events, rather than after a heavier rainfall event (as shown in Figure 3.5). 

Therefore, it is likely that the fluctuations between light and heavy localised rainfall in 

addition to the catchment area influences the dispersal and distribution of debris located 

within the river. 

Unexpectedly, I did not cumulatively collect more anthropogenic debris items 

during the wet season than I did in the post-wet. This is in contrast to previous research 

where debris loads increased after rainfall events (e.g. Moore et al., 2011). Originally, I 

thought I would be able to capture more of the debris before it washed away, or sank, 

but instead I found that that frequency in which debris enters the river system is more 

likely to be due to variance in rainfall and wind patterns. Regardless, I collected 1,656 

pieces of litter in the river immediately after rainfall events (a total of 724mm of rain), 

which suggests that large amounts of anthropogenic debris is entering the system after 

each rainfall. It is also important to highlight that during times of river flow (which 

occurred during the 2016-2017 wet season), the surface vegetation often becomes 

concentrated by wind and river flow, and sometimes covered the entire river surface 

making it difficult to navigate and access. This surface vegetation traps debris and 

prevents it from flowing downstream, and therefore could obscure the actual timing of 

debris input. Moreover, heavy surface vegetation could also have obscured the 

anthropogenic debris from view and this would influence the amount of debris visible to 

surveyors and thus reduce the amounts collected. Unfortunately, the surface vegetation 

was too thick and heavy to remove with such a small team of surveyors on kayaks.  

Our study was able to identify inland sources of litter, outside river systems 

directly contributing to the abundance found in the river. The strongest evidence for this 

comes from the proportion of plastic debris found in the park near site 1 is nearly 

identical to that found in the river, and therefore may be one of the primary sources of 

debris abundance in that area. However, there seemed to be a disparity in the proportion 

of the most abundant littered items in parks near site 2 and those found within the river. 

These results were similar to that found in Carpenter and Wolverton (2017), where 

anthropogenic debris within streams depended on the context and use of the 

surrounding area. I stress that future research examining the sources and inputs of debris 

into aquatic systems should be expanded to include surveys of adjacent or nearby 

parklands to help pinpoint exact debris sources for source reduction management. 
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3.4.1 Potential solutions 

Over the course of a single wet season, it took 108 person hours to clean 

approximately two square kilometres of the Ross River. Using average wages in 

Townsville (approximately $26 per hour) (estimated via Payscale.com), this effort is 

worth AUD$2,700 per year to clean these sections of the river, and therefore 

hypothetically, AUD$66,150 per year to clean the entire 49 km length of Ross River. 

These figures are estimates as this data has not been published in literature, to my 

knowledge. This does not include volunteer hours of people cleaning parklands and 

beaches individually and through other citizen science or community events. Regular 

clean-ups are costly for local councils, and therefore, unlikely to be sustained across the 

entire river. Instead, I recommend the following strategies be considered in relation to 

the local socio-economic context to reduce debris loads entering local river systems: 

1. Implementing infrastructure, such as river booms, gross pollutant traps and 

Sea Bins, is useful to reduce anthropogenic debris loads entering into rivers and 

creeks (Gasperi et al., 2014). River booms used to capture floating debris have 

been implemented in other areas of Australia, such as Adelaide, Melbourne, 

Sydney and Cairns. Gross pollutant traps have been implemented in Mackay. 

Furthermore, floating ‘Sea Bins’ have been recently implemented in Perth 

marinas to remove littered items within marinas. The cost in Australia for a 

small scale river booms (15-30 meters) is between AUD$200 and AUD$5,000 

depending on type and size (via Spillpro.com.au). These costs increase for larger 

infrastructure (such as those that cross entire river estuaries). For example, in the 

United States, large booms can cost up to USD$36,000 with USD$16,000 in 

annual maintenance fees (Santa Clara Valley Urban Runoff Pollution Prevention 

Program). To reduce maintenance costs such as regular debris removal and 

equipment repairs, the river boom in Townsville could be strategically placed 

only during the wet seasons, downstream to avoid capturing the bulk of the 

surface vegetation and directly outside storm drain effluents. However, the 

efficiency of this infrastructure is not well understood (Gasperi et al., 2014), and 

cannot act alone. In addition, it should be noted that the cheap inflatable booms 

can also degrade in the sun over time. Therefore, I stress that this infrastructure 

should be used in combination with the suggestions below. 
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2. Anti-littering campaigns are popular management tools and may be more 

effective in sites that are more driven by wind, whereas storm drain socks or 

river booms may be most beneficial for sites influenced by rain events. This 

includes targeted debris management for the most common items may also be 

necessary to reduce debris loads in and around the river. For example, 22% and 

19% of the items at site 1 and the nearby park, respectively, were snack-sized 

food packaging items. I also found more pens, highlighters, and markers, at site 

1 than site 2 (Appendix 2). These items may originate from the school grounds 

that border site 1, and/or from the school-age children that frequent the 

surrounding park and bike paths in transit from other neighbourhood schools or 

shopping centres. Therefore, providing focused efforts, initiatives and 

educational material to the children that attend Townsville schools, could be a 

solution to reducing litter in the area. Other management strategies, such as 

ensuring that bins in nearby parks are regularly maintained and emptied, in 

addition to educational signage would benefit these areas. Straws made up a 

significant proportion of the debris in the river (7% at both sites) therefore 

targeted action to eliminate unnecessary straws from local shops and cafes could 

reduce total debris in the environment.  

3. Collaboration between scientists, community groups, local government, and 

industry is important for debris monitoring programs and initiatives. A 

significant challenge of this study was finding the many small scale, informal 

data collection efforts done by local councils on litter and debris abundance in 

local river systems, as well as in Australia. Moreover, the issue of plastic 

pollution currently has the public’s attention, and thus some parks and public 

spaces are cleaned in informal ways. These small and informal collections could 

be a useful resource for management, however, these data are not often 

collected, shared, or publicly available. Improved collaboration between 

scientists, community groups and councils (or other organisations collecting 

data) would provide an improved picture of small scale debris patterns. This 

could be achieved through standardised data collection, such as the Australian 

Marine Debris Initiative (Tangaroa Blue).To help this issue, all data was 

uploaded in the Australian Marine Debris Initiative database in effort to make a 

collaborative approach to reduce the litter issue in Townsville. Further 
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coordinated approaches would be valuable to compare anthropogenic debris 

types, abundances, and patterns between regions, and share information on 

effective mitigation strategies.  

 

3.5 Conclusion 

My research identifies that there is large and consistent supply of anthropogenic 

debris entering a small Australian river system that has the potential to enter the Great 

Barrier Reef World Heritage Area from a small city in North Queensland. The 

monitoring of these debris loads within this river system provides information on a 

management relevant scale to reduce debris before it enters the ocean. Furthermore, this 

dataset provides the unique opportunity to test for the effect of local and state 

government legislation, such as the recent plastic bag bans and container deposit 

scheme, as well as, local scale anti-straw campaigns. I stress that continuously 

monitoring the river in a systematic way is important to further identify sources and 

therefore help reduce anthropogenic debris in aquatic environments. 



 

 



 

 

 

Chapter 4 
Microplastic loads in an Australian 

tropical river system 
 

 

Around the world, river systems can carry large abundances of microplastics 

(plastic <5mm in size) from inland communities to the ocean. To determine plastic 

loads within an Australian river system, sediment and water samples were collected 

outside storm water effluents in the Ross River in Townsville, North Queensland. Since 

the river system is located in the monsoonal tropics, samples were collected before and 

after the wet season to assess the seasonal input of microplastic in aquatic systems. 

Samples were also collected within the estuary and bay to determine if plastic 

abundance in coastal waters increases after rainfall. Results showed a 16% increase of 

microplastic abundance within the water samples of the freshwater section of the river 

after a heavy rainfall event, but no differences in any other location throughout the 

estuary and bay. However, high variability within and among locations means that no 

significant difference in microplastic loads was detected between seasons in either the 

water or sediment samples. There was also no significant increase of microplastics in 

water or sediment after the wet season outside of storm drains. The results of this study 

indicate that microplastics are always present even in a relatively small tropical river 

system, but heavy rainfall (in excess of 687mm) is likely needed to contribute to ocean 

concentrations of microplastic pollution. Overall, this dataset provides a baseline 

against which plastic loads can be compared over time, and suggests the reduction of 

macroplastics is likely to be a more effective method for reducing microplastic loads 

within urban rivers than managing inputs of microplastics directly.  

 
 

Citation: Bauer-Civiello A, Hamann M, Hoogenboom M. Microplastic loads in an 
Australian tropical river system in prep. 
  



  

   
 

56 
 

4.1 Introduction 

It is recently  estimated that there are somewhere between 5 to 51 trillion 

particles of plastic in the global oceans, a number which is predicted to increase in 

future years (Eriksen et al., 2014; Jambeck et al., 2015; van Sebille et al., 2015). The 

high uncertainty in these estimates is associated with a lack of knowledge of the 

breakdown rates of large plastic items into microplastics (plastic < 5 mm in size) and 

the scarcity of data quantifying inputs of plastic into the ocean from different sources 

(Auta et al., 2017; Critchell et al., 2019). In addition to a lack of knowledge of plastic 

inputs into the ocean, the relative threat to marine, terrestrial, and freshwater habitats 

from microplastic pollution is not fully understood (Eerkes-Medrano et al., 2015). As a 

result, research regarding microplastic quantity, fate, and impacts is increasingly 

important to determine management strategies at local, national, and global scales.  

Microplastic particles in river systems have been found in sediment, water, 

bivalves and fish (Castaneda et al., 2014; Mani et al., 2015; Sanchez et al., 2014). In 

some cases, the abundance of microplastic particles in the water column outnumbers 

fish larvae (Lechner et al., 2014). Studies conducted in the last five years have shown 

that plastic can enter freshwater systems through numerous sources, such as 

atmospheric fall out (plastic in dust and air), industrial spills, storm water run-off, and 

sewage effluents (Dris et al., 2018). Furthermore, the debris from these sources can 

accumulate, especially if the river passes through multiple urban communities (Dris et 

al., 2018; Koutsodendris et al., 2008; Lechner et al., 2014). Accumulation of 

microplastic particles within river systems can potentially have severe impacts on the 

freshwater systems themselves, as well as act as a major source of microplastic particles 

to the marine environment (Lebreton et al., 2017; Lechner et al., 2014). However, the 

abundance and sources of plastics and microplastics in freshwater systems is likely to 

vary depending on local contexts. Therefore, further research is needed to understand 

microplastic abundances and sources in freshwater systems to help manage loads 

entering the marine system. 

Microplastic pollution, and its dispersal from freshwater to marine systems can 

be heavily influenced by rainfall events or seasonal inflow of water (Dris et al., 2018). 

Similar to macro plastics, this is likely to occur because microplastics from the 

surrounding urban communities can be washed into storm drains and are then expelled 
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directly into the river system (Baldwin et al., 2016; Horton et al., 2017b; Peng et al., 

2018). Recent research has identified an increased abundance of plastic in estuaries after 

periods of rainfall (e.g. Cheung et al. 2016). However, few studies have attempted to 

quantify how many microplastics enter marine and freshwater environments from 

specific sources (such as storm drains), or compared the abundance of microplastic 

loads in the environment after seasonal rainfall (Dris et al., 2018). Furthermore, 

identifying and monitoring specific sources of microplastics in freshwater systems can 

be easier than waiting until the plastics have dispersed into the marine environment, as 

particles likely occur at higher densities, are often less degraded, and biofouling is 

minimal (Eriksen et al. 2018). Therefore, monitoring plastic loads directly after rain 

events, and outside specific point sources, can help quantify exactly where and how 

plastic enters aquatic systems. Such location-specific knowledge could thus help 

identify more cost-effective means of clean-up or prevention.  

In Australian coastal waters, there is an estimated oceanic concentration of 

approximately 4200-9000 microplastic particles per km2 (Reisser et al., 2013). 

However, it is unknown how much of the microplastic loads in Australia’s oceans are 

derived from local sources. River systems pass through all of the coastal cities of 

Australia, but there is currently no peer reviewed literature identifying or monitoring 

microplastic loads in freshwater or estuarine systems of Australia (Critchell et al., 

2019). Furthermore, there has yet to be an attempt to quantify plastic loads from 

specific sources, such storm water drains. Therefore, this study aims to quantify loads of 

microplastic pollution in a freshwater system of Australia and in doing so, create a 

baseline assessment of plastic loads and identification of potential sources. Since higher 

pollution rates within storm water effluents has been correlated with rainfall volume, 

particularly in monsoonal areas of the Australian tropics (Dris et al., 2018; Kim et al., 

2007), I here assess microplastic abundance in a river system that flows through the 

largest city of tropical north Queensland as a case study. To do this, I aimed to answer 

the following specific questions: 1) what are the microplastic loads in a Queensland 

river system; 2) are microplastic concentrations close to storm drains elevated after 

rainfall events; 3) are microplastic concentrations in coastal waters adjacent to the river 

mouth elevated after seasonal rainfall flushes? 
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4.2 Materials and Methods 

4.2.1 Field methods  

Site Description. All samples were collected from Ross River in Townsville, 

Queensland, Australia. Ross River is 49 kilometres in length and runs through 

Townsville in close proximity to the urban environment, and empties into Cleveland 

Bay which is part of the Great Barrier Reef World Heritage Area (GBRWHA) (Bauer-

Civiello Ch. 3, Fig. 3.1). The river is dammed as the primary water source for the city of 

Townsville, and three weirs exist within the river to help regulate river flow. These 

weirs can overflow after a large rain event, particularly during the wet season. Storm 

water drains are situated throughout the city, with multiple drainage channels leading 

directly to the river (See Chapter 3 Figure 3.1 and 4.1 below). No other effluents (such 

as treated sewage) directly enter the river. 

To determine whether storm drains are a source for microplastic pollution, 

sediment and water samples were collected from the Ross River directly adjacent to 

effluents (see below for more details).. Since rainfall is likely to influence the amount of 

water flowing from storm drains into the river, sampling was completed both before and 

after the wet season. This sampling design allowed me to determine how much plastic is 

present in the sampled portion of the river system, whether plastic abundance is 

elevated after rainfall, and potentially, whether microplastic exits the river system into 

the GBRWHA.  For this study, I focussed on a total of seven storm drains, six of which 

occur in the freshwater section of the river, and the other located in the estuary. Drain 

locations were chosen based on known locations of high debris abundance as identified 

in Chapter 3.  Furthermore, drains within the freshwater section were seperated by two 

artificial weirs that impeed water flow during the dry season (as described in Chapter 1, 

Box 1; Figure 1.1 and Chapter 3, Figure 3.1). This divides the river into four sections, 

and sampling occurred in three of these sections.  
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Figure 4.1: Map of sampling sites on Ross River. Water sampling sites are indicated with squares, and 

sediment sampling sites are indicated with circles. Red lines indicate placement of artificial weirs. Box 

outline indicate grouped locations, Freshwater (FW), Estuary and River mouth (E), Port channel (PC), 

and Pallarenda (PA). Paired sediment and water sampling occurred 1) Downstream, 2) Mid-stream, and 

3) Upstream. During rainfall events, water flow from Ross River is likely to flow north past Pallarenda, 

or along the east side of Magnetic island and around (Critchell et. al. 2015). 

 

Water Sampling. Water samples were collected adjacent to specific storm drain 

effluents within the four different sections of the river (Figure 4.1). To detect whether 

plastic was exiting the river, water samples were also collected within the river mouth 

(at high and low tide) and at six sites in Cleveland Bay, before the wet season in 

November of 2016, and once after the wet season in May 2017. Sampling sites located 

in Cleveland Bay were chosen based on hydrodynamic models that predict the most 

likely dispersal path of particles exiting the river during flood (Critchell et al., 2015). 

Plastic on the water surface was sampled by performing plankton tows with a 63 

µm mesh net and a 1 L mesh cod end (Sea-Gear Corporation, USA). Since some areas 

of the freshwater section of the river were shallow and narrow (particularly during the 

dry season), a relatively small net was used for all of sampling (2 m long, 0.5 m 

diameter). Each tow was performed for 5 minutes at a speed of approximately 3-6 
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knots, and the net was pulled behind the boat, away from the engine flow (Hall et al., 

2015). Three replicate tows were performed at each site and GPS coordinates were 

collected at the start and end of each tow to determine exact distance travelled and water 

volume sampled. Objects captured in the net were transferred into a glass jar at the end 

of the tow for laboratory processing. All jars and equipment were washed with 

detergent and rinsed three times with tap water before sampling, and were also rinsed 

(with river or ocean water) three times in situ to reduce plastic contamination from 

outside sources (Barrows et al., 2017).  

Sediment Sampling. To quantify plastic abundance within the sediments of the 

river, a pilot study was first performed to determine the number of samples needed to 

account for within-site variation, and to refine laboratory methods for extracting 

microplastics from fine sediments. Sediments were collected using a 5 L Van Veen 

sediment grab (432 cm2 sampling area) deployed from a small vessel adjacent to each of 

the seven storm drains selected for sampling. A gradient sampling design was used to 

determine plastic accumulation outside of the storm drains (Ellis and Schneider, 1997), 

in which sediment samples were taken along three replicate transect lines which fanned 

out from each drainage point. Since the majority of the effluents led directly into the 

river, difficult to access, or surrounded by rocks or concrete, the banks of the river were 

not sampled in this study. The pilot study indicated no statistically significant 

relationship between plastic abundance and the distance from the drain a sample was 

collected (K-W(1, 6) = 0.549, p = 0.459). Therefore, subsequent sediment grabs were 

taken at distances of 1 m and 27 m away from the mouth of each storm drain along 

three transect lines from each drain (n = 6 per drain), which were both pooled and kept 

separately depending on analysis (see data analysis below). For storm drains that had 

rocky or cement areas along the river edge, the starting point of all three transect lines 

was the closet area with soft sediment adjacent to this rock/cement. Despite this, some 

sampling points were too rocky to collect sediment. Collected sediment samples were 

transferred from the grab into an aluminium tin and covered with aluminium foil. 

Before use, each tin was rinsed with tap water, then rinsed (with river water) 3 times in 

situ, before placing sediment in the tin (Barrows et al., 2017). This was to remove any 

potential outside contaminates from storing and transporting the containers. It was 

assumed that any microplastics occurring on the surface of the water would be similar 

to that found in the sediments.  
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4.2.2 Laboratory plastic extraction methods 

Plastic extraction & quantification - water samples. Entire samples were 

vacuum filtered onto Macro Science MS GA (porosity 1.6 µm) glass filter papers. If 

significant amounts of organic material was present (which largely occurred in salt 

water/brine samples), samples were left to settle for at least 0.5 h and the supernatant of 

the sample was vacuum filtered. For a subset of these samples from the pre-wet season 

sampling event (n = 8), the organic matter was retained and visually inspected. For 

these samples, no plastic particles were observed to be trapped in the organic material. 

However, due to difficulties in extracting and examining this organic matter, which 

often contained gelatinous matter that formed thick flocs, microplastic particle loads in 

samples with high organic matter content may be underestimated (see Discussion 

section). Filter papers containing microplastics and other material filtered from the 

samples, were immediately placed in a fume hood, or on the bench, and covered by 

clean aluminium foil for drying. Once dried, filter papers were transferred into 

aluminium foil envelopes and stored in a refrigerator prior to visual inspection to count 

microplastic abundance.  

Microplastic particles on the filter papers were counted using a dissecting 

microscope under 4x magnification. Items were identified as plastic based on colour, 

shape, texture, and brittleness, and were classified as either particles or fibres (Wu et al., 

2018). Counted particles were also tallied under categories based on level of certainty 

that it was plastic: high certainty plastic particles and fibres, low certainty plastic 

particles and fibres, and non-plastic particles. The colour of all items was noted during 

counting. Items that were considered not plastic consisted of organic material, glass, or 

metal fragments. Particles were randomly selected and retained to account as the most 

common particle types, and were placed in small plastic vials for subsequent analysis 

using Fourier-Transform-Infrared (FTIR) spectroscopy (see section 4.2.5 below).  

Plastic extraction & quantification - sediment samples. The river sediment 

collected had a wide range of base-substrate types, from rocky material to leaf litter and 

detritus. The majority of the sediment was fine silts and clays with a high organic matter 

content. As such, many of the protocols previously used to extract microplastic from 

sediments resulted in low plastic recovery during pilot trials (Appendix 3). 
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Consequently, several extraction protocols were tested to improve recovery (as noted in 

Appendix 3) before analysis of the full sample set commenced. These pilot trials 

revealed that sieving dried sediment into 2 mm and 1 mm size grain size fractions 

resulted in the highest recovery rates. Consequently, to extract microplastic from 

sediments, all samples were dried under a fume hood for 1 to 3 days (fine clay-like 

sediment typically took longer to dry than other sediment types). Sediments were then 

sieved through a set of metal geological sieves with mesh diameters of 2 mm and 1 mm, 

and both size classes were weighed. Sediments and other material retained in the 2 mm 

sieve were visually inspected, and plastics in this size fraction were removed with 

forceps, counted, and retained for subsequent FTIR analysis. Any macro plastics 

(plastics > 5 mm) or other anthropogenic debris items also collected within the grab 

were counted and categorised. Since the plastics within the 1-1.99 mm size range were 

too difficult to see without a microscope, and were numerically more abundant, 

sediment from this size category was subsampled for counting. To do so, sediments 

were mixed using a wooden or metal spoon and three replicate subsamples, each 10% of 

the sediment weight, were taken. Each subsample was placed in a petri dish and 

examined under a dissecting microscope using 1 x magnification. Plastic particles for 

both size ranges were identified, removed, and categorised as per particles from the 

water samples. Categories including high certainty plastic fragments, high certainty 

plastic fibres, low certainty plastics particles, low certainty plastics fibres, and non-

plastic particles, were retained and placed into plastic vials for subsequent FTIR 

analysis. Sediments in the <1 mm size fraction were not analysed due to difficulties 

associated with confidently distinguishing plastic from other particle types within this 

size range.  

 

4.2.3 Accounting for potential sample contamination 

To account for potential contamination of samples during both sample collection 

and laboratory analysis, I assessed contamination from fibres dislodging from the 

plankton net, fibres and particles from materials present within the boat used during 

sampling, and fibres and particles from materials used in the laboratory during sample 

processing.  
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Net contamination. To understand how fibres from the net could contribute to 

contamination I tested the plankton net used for sampling (Straight conical net, model 

9000, Sea Gear Corporation, mesh 60 or 64 µm, opening diameter 50 cm). Before 

testing the net the hose was flushed for three minutes. Each net was then suspended 

from a frame and sprayed with freshwater from a hose three times, for three minutes, 

with the spray nozzle set to ‘full’. Water samples were retained with the same mesh cod 

end which was used for water sampling. The water samples were transferred into a pre-

washed and rinsed glass jars, transported to the lab, and processed using the same 

protocol as for the other water samples. To test whether the hose could also contribute 

additional contamination, three replicate 1L water samples from the hose were also 

placed into glass jars and analysed. The volume of water used in the trial was calculated 

by using the same hose setting and recording the time taken to fill a 10 L bucket, 3 

times.  

Boat contamination. The carpet on the flooring of the boat used for all but 

freshwater sampling was noted as another potential source of fibre contamination of the 

water samples. To assess this, carpet fibres were removed via tweezers, and placed into 

a plastic vial to be observed under a dissecting microscope and then these were 

compared to particles commonly found in samples. This was possible because the 

colour, shape, and size of these fibres were consistent and easily detected (Figure 4.2C).  

Laboratory contamination. Based on previous research, airborne 

contamination of samples with microplastics is a common occurrence (Torre et al., 

2016). To account for airborne plastic contamination while samples were being dried, a 

total of 18 control samples were created using 100 ml of tap water. These samples were 

vacuum filtered onto filter paper, and half were placed under a standard laboratory fume 

hood, and half were placed under a rinsed aluminium tin to dry for 1-3 days. These were 

the same methods used to dry the filter papers from the samples. The number of plastic 

particles occurring on the filter papers were counted before and after placing them out 

to dry.  

 

4.2.4 FTIR analysis.  

A sub-sample of all suspected plastic particles observed in both water and 

sediment samples were identified using a Nicolet Continuum FT-IR spectrometer 
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(Thermo Fisher, USA). A total of 170 high certainty plastic fibres and particles and 130 

low certainty plastic fibres and particles were scanned and their spectra compared to the 

Nicolet plastic library for polymer identification. This included 20-30 examples from 

each season (half fibres, half particles). In addition, a total of 38 particles categorised as 

‘not plastic’ were also scanned (18 from water samples, and 20 from sediment). In total 

338 particles were scanned. This provided me with an approximate accuracy percentage 

for the counted plastics. For the majority of particles the ATR reflectance mode with 

germanium crystal was used (Wu et al., 2018). For fibres and particles too small for 

reliable results in ATR mode, transmission mode was used. Since many of these 

particles extracted from sediments were commonly coated with organic material, 

particles were rinsed with Milli-Q water prior to analysis. If the FTIR reads remained 

unclear, particles were then soaked in hydrogen peroxide until the organic material was 

removed, which took approximately 0.5 to 1 hour, depending on how heavily the 

particles were soiled. Scanned particles were considered to be definitely plastic if there 

was at least a 50% match to a polymer in the library, and at least 5 out of 10 of the 

match options provided by the software were of plastic (example in Figure 4.2). 

Unfortunately, the FTIR machine that was used was not consistent with detecting the 

material of plastic, rather more consistent with where or not it was plastic. Therefore, 

type of polymer was not recorded. Accuracy percentages for each plastic identification 

category are depicted in Table 4.1. 
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Figure 4.2: Example of a microplastic scan results using the FT-IR, included in analysis. The top red, is 

the particle scan, with the top 5 matches provided by the software program below. 

 

4.2.5 Data analysis 

Correction of data for contamination and plastic identification. Assessment 

of potential contamination of samples by external microplastics revealed ubiquitous 

contamination from several sources. Contamination of samples by fibres from the boat 

carpet was detected (Figure 4.3C), as was contamination of samples by fibres present in 

tap water and airborne in the laboratory (1.78 ± 0.46 SE) fibres were observed settling 

on each blank filter paper after drying them under an aluminium tin, and an average of 

3.78 (±0.72 SE) fibres were observed on the filter paper after drying under the fume 

hood). Contamination of samples by fibres from sampling nets was also detected, with 

an average of 28 fibres (largely blue and pink) from host control test, plus an additional 

5 particles, likely to be contaminated from previous sampling (Figure 4.3D). In 

addition, FTIR analysis showed very low accuracy of identifying fibres from the water 

samples as plastics (17 – 22% accuracy, Table 4.1). Consequently, all fibres were 

removed from counts of microplastics in the water samples. Fibres found in sediments 

were more accurately identified as plastics (60 – 66%, Table 4.1), and were visually 

different from the boat carpet and net fibres. Therefore, fibres were retained in counts of 

microplastics in the sediment samples. In addition to removing the fibres, particle 

counts were corrected according to the proportion of particles analysed with FTIR that 
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were confirmed to be plastics. Counts of microplastic particles, as distinct from fibres, 

were not corrected for contamination because no particle contamination was detected.   

 

 

 

Figure 4.3: A: Examples of plastic particles in the 2-5mm size range. B: Examples of plastic particles in 

the 1-2mm size range. C: Fibres taken from boat carpet. Note that white and grey fibres would be 

counted as boat fibres in photo (B) above. D: Most common fibres found in water samples that were from 

the net. 
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Table 4.1: Number of particles analysed using Fourier Transform Infrared Spectroscopy for each 

particle type, sample type, and certainty level. Note that some of the particles that I thought to be not 

plastic, were actually plastic under my criteria. 

 

Particle 

category 

Sample type Particle type Number of 

particles 

% Plastic  

Likely plastic Water Fibre 41 17% 

Particle 41 82% 

Sediment Fibre 33 60% 

Particle 55 76% 

Possibly 

plastic 

Water Fibre 33 18% 

Particle 33 33% 

Sediment Fibre 35 66% 

Particle 29 48% 

Unlikely 

plastic 

Water Mostly 

particles 

18 22%  

Sediment All 20 10%  

Total   338  

 

 

4.2.6 Statistical analysis 

All corrected microplastic particle counts from the water samples were 

standardised per cubic meter of water sampled, which was calculated by using the total 

tow distance (in meters), multiplied by the area of the net. Data from sediment samples 

were standardized per 1 kg of sediment to facilitate comparison with other similar 

studies. All preliminary calculations occurred in Microsoft Excel and all data analysis 

was conducted in IBM Statistics SPSS vs. 25 and RStudio. 

For the water sample data, a two-way ANOVA with a type III sum of squares 

was used to detect any significant differences in microplastic concentrations between 

sampling locations (i.e., freshwater, estuary, port channel versus Pallarenda) and 

seasons (i.e., before versus after wet season). Sampling locations grouped samples from 

all freshwater sites (n=9 per season, across all storm drains), estuary and river mouth 
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(n=9 per season), Pallarenda beach (n=6 per season), and the port channel (n=9 per 

season). Data were treated as independent between seasons, rather than repeated 

measures, because surface waters are dynamic through time due to wind and water flow 

and tows were conducted at slightly different sites in each season. To meet ANOVA 

assumptions, the data were log10 plus one transformed prior to analysis. Q-q plots 

showed residuals were approximately normally distributed for this analysis, and 

Levene’s test showed that variances were homogenous (F = 1.208, p = 0.276). For the 

sediment sample data, I hypothesised that microplastic concentrations would be higher 

close to the storm drains after the wet season, when the input from storm drains is most 

likely the largest. Therefore to determine whether proximity to the storm drain affected 

microplastic concentrations within river sediments, and whether this effect depended on 

sampling season and/or varied among locations, a three-way repeated measures 

ANOVA was conducted. I used a linear mixed-effects analysis in R, with proximity to 

storm drain within season and within drain as the random effect to account for the 

repeated sampling of sediments adjacent to drains. Data were log10 + 1 transformed 

prior to analysis and inspection of residuals versus fitted values indicated that residuals 

were approximately normally distributed and with homogenous variances for this 

analysis. 

 

4.3 Results 

4.3.1 Microplastic loads within the river and bay after seasonal rainfall flushes 

Across all surveyed sites there was an overall average of 0.17 microplastic 

particles m-3 of water in the pre wet season and 0.29 particles m-3in the post wet season. 

These particles ranged in size from approximately 0.5 - 5 mm in size. Microplastic 

concentrations were highly variable within sites, particularly in the estuary where 

concentrations ranged from 0 to 2.19 particles m-3 (Figure 4.4). Microplastic particles 

were most abundant in the estuary in the post-wet season, with an average of 1.31 

particles per m-3 compared with 0.01 in the freshwater in the pre-wet (Figure 4.4). 

However, differences among locations were not statistically significant (Table 4.2). 

Despite sampling across multiple locations in the river, and between seasons where 

rainfall differed 19-fold (36.6 mm in the pre-wet season and 687 mm over the duration 

of the wet season) there was no seasonal difference found in the water samples across 
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the different locations, and the similarity between seasons was consistent among 

locations (Table 4.2).  

 

 

 

 

Figure 4.4: Total number of particles per cubic meter (FTIR-corrected) for water samples collected at 

each site. Fibres were excluded. Since there was no significant difference between high and low tides at 

the river mouth (n=6), these were combined for graphical reasons. Similarly, all water sampling tows at 

Pallarenda beach (n=6) and the port channel (n=9). Boxes represent the median, with the upper and 

lower quartiles. Whiskers represent a 95% confidence or maximum value. * indicates outliers (1.5 x Inter 

Quartile Range). 
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Table 4.2: ANOVA of microplastic concentrations in surface water and sediment samples between pre-

wet and post-wet seasons and between river locations (for water samples) and also at different distances 

from the drain (for sediment samples). 
 

Sample Factor df F statistic p-value 

Water Location 3,65 0.60 0.62 

Season 1,65 1.84 0.18 

Location*Season 3,65 1.98 0.13 

Sediment Location 3,3 13.8 <0.05 

Season 1,3 0.63 0.82 

Distance 1,6 0.13 0.73 

Site * Season 3,3 0.44 0.74 

Site * Distance 3,6 1.91 0.23 

Season * Distance 1,6 1.95 0.21 

Site * Season * Distance 3,6 1.22 0.38 

 

 

4.3.2 Influence of storm drains on microplastic loads in Ross River sediments 

Overall, microplastic concentrations in sediments were highly variable among 

sites, with an average of 141.5 ± 19.6 (SE) microplastics kg-1 sediments across all sites 

(Figure 4.5). Fibres were slightly more abundant than particles, with an average of 78.9 

(± 13.4 SE) fibres kg-1 of sediment, compared to particles with an average of 61.4 (± 9.3 

SE) particles kg-1 of sediment. Microplastic counts within the sediments were found to 

differ between sites, and were recorded the lowest in the estuary, with an average of 

6.15 particles kg-1 sediment (± 3.19 SE) (Table 4.2, Figure 4.5).  

Microplastic particles that were counted ranged from 1-5 mm in size, with fibres 

sometimes slightly larger (one fibre was 32 mm in size). Other materials within the 1-5 

mm size range, such as glass and aluminium, were also found within the sediments. For 

example, a total of 81 clear glass spheres were observed in pre-wet sediment samples, 

which doubled to 170 in post-wet samples (not standardised). These clear glass spheres 

were sometimes encased in bitumen or concrete with yellow paint, and therefore 
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assumed be parts of the reflected paint used on roads as have also been reported by 

(Horton et al., 2017a). 

Proximity to storm drains did not affect microplastic loads within the sediment 

(Table 4.2). Similar to the pilot study, there was no significant difference found between 

microplastic loads within the sediments 1 m away from the storm drain compared with 

27 m away (Table 4.2), and this effect was consistent between seasons (Table 4.2). In 

addition, there was no significant interaction between the plastic loads in sediments 

collected in the pre and post-wet season and the distance from the drain (Table 4.2). In 

comparison to water samples, where the highest plastic loads were found within the 

estuary site, plastic loads were the lowest in the sediments in this location (Figure 4.6). 

 

Figure 4.5: Microplastic abundance within sediments at different locations within the 

freshwater section of the river, and in the Estuary. Sediments were collected outside storm water 

effluents, 3 and 27 meters away along three different transect lines. Whiskers represent a 95% 

confidence. * indicates outliers (1.5 x Inter Quartile Range). 



  

   
 

72 
 

 

 

Figure 4.6: Microplastic abundance compared between the pre and post-wet season within the 

freshwater and estuary in the water surface samples. Plankton tows were performed outside the same 

storm drains where sediment samples were collected. For water samples, fibres were excluded. Boxes 

represent the median, with the upper and lower quartiles. Whiskers represent a 95% confidence. * 

indicates outliers (1.5 x Inter Quartile Range). 

 

4.4 Discussion 

4.4.1 Microplastic loads within the river and bay after seasonal rainfall flushes 

For this chapter, I aimed to quantify the microplastic loads in a Queensland river 

system by sampling microplastic concentrations close to storm drains and coastal waters 

elevated after rainfall events. For the first time, this study quantifies microplastic loads 

within a small urban river system in tropical Queensland, Australia. Results reveal that 

rainfall (687 mm) during the wet season did not lead to a measurable change in plastic 
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loads within the river or bay. Moreover, there was no seasonal change in microplastic 

abundance in any other location of the river or bay, and there was no clear gradient of 

microplastic abundance leading out of the river after the wet season. While these 

patterns are inconsistent with results from other freshwater systems in Australia 

(Hitchcock and Mitrovic, 2019) and around the world (Castaneda et al., 2014; Fischer et 

al., 2016), these findings are consistent with the results in chapter 3, where wet-season 

rainfall had negligible effect on macro plastic loads in the river. Unlike my study site, 

much of the current literature investigating microplastics in freshwater systems focusses 

on large, continuously flowing rivers (e.g. (Castaneda et al., 2014; Morritt et al., 2014; 

Yonkos et al., 2014). I suggest that the presence of weirs and a dam in Ross River, 

which constrict water flow for at least half of the year, likely underpins the differences 

between my results and other studies of freshwater rivers. 

As rainfall was below the overall average for Townsville, which is typically 

approximately 1000 mm per year (Australian Bureau of Meteorology, 2017), it is also 

possible that seasonal differences in microplastic loads could occur during years with 

higher rainfall and increased outflow from the river. Indeed, at the time of sampling 

after the wet season and a heavy rainfall event, all of the weirs were flowing but the 

dam was not spilling. After several years below average rainfall in the area and little 

water movement (Townsville BOM), hydrodynamic models suggest that plastic 

particles will biofoul and sink to the bottom of the river, where they are unlikely to 

become re-suspended unless there is significantly water movement from rainfall or wind 

(Kooi et al., 2018). This is consistent with my findings of high microplastic loads within 

river sediments. The only place that did not have high plastic loads in the sediment was 

within the estuary, where sediment resuspension due to large tidal flow and water 

movement (Allen et al. 1980) and would prevent particles from accumulating (as per 

modelling study (Kooi et al., 2018). In addition, due to slow water flow, the river 

system has significant aquatic plant life that grows on the surface of the water. During 

years with limited rainfall, this plant life accumulates along the weirs. While sampling, 

floating microplastic particles were observed to be trapped in the vegetation. This has 

been recorded previously in freshwater models and studies (Kooi et al., 2018; Williams 

and Simmons, 1996), and it means that microplastic counts reported in this study are 

likely underestimates, as the vegetation prevents release of microplastics into the open 

river water and sediments and therefore cannot be efficiently sampled using a plankton 
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tow net (Kooi et al., 2018). Regardless, in the event of a cyclone or other large scale 

storm, much of the plastic accumulating within the river vegetation is likely to be 

washed out to sea. 

 

4.4.2 Storm drains as a source 

In addition to finding no seasonal effect on microplastic abundance within the 

river, proximity to storm drains did not affect the abundance of microplastics in 

sediments. A likely explanation for this finding is that microplastics can be wind driven, 

and after heavy rainfall they can be subject to turbulent mixing (below the surface of the 

water), and accumulate in “microplastic hotspots” (Besseling et al., 2017; Kooi et al., 

2018). Therefore, the nature of water flow out of the storm drain and within the river 

will determine where microplastics accumulate. Instead of a gradient sampling design 

for sediment samples, I suggest randomised sediment sampling such as that performed 

in (Nel et al., 2018; Peng et al., 2018), or sampling  patterns associated with sources and 

provide a more accurate estimate of microplastic concentrations across all locations and 

sediment types. For water samples, I suggest that alternative sampling methods, such as 

that conducted by Dris et al. (2018) which instead captured water exiting the storm 

drains directly, would be useful for quantifying microplastic loads in storm water 

effluents.  

Some items collected in sediment samples such as glass beads used as reflectors 

in road-marking paint, were found in high abundance in sediment samples and doubled 

in abundance in the post wet season, suggesting the influence of storm drains to the 

river environment. The road paint is often made up of thermoplastic composite paints, 

and were similar in appearance to the glass beads from roads found in the Thames River 

(Horton et al. 2017a). Although these beads and surrounding paint could not be reliably 

identified by FTIR in my study, possibly because the paint coating was worn, excluding 

these beads from my analysis means that plastic particle concentrations could be 

underestimated in my study. Additional research is needed to determine whether these 

sediment-associated particles are derived from urban roads in the Ross River catchment.    

Overall, microplastics collected in both water and sediments were largely 

particles and fibres that are likely to be fragments of larger plastic pieces. This suggests 
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that a large number of the microplastics within the Ross River originate from the macro 

debris items collected in Chapter 3 (Bauer-Civiello et al., 2019). Therefore, 

macroplastic reduction strategies, such as the reduction of litter in nearby parks and the 

placement of river booms, will likely be beneficial to reduce microplastic loads within 

the river on a local scale.  

 

4.4.3 Plastic loads within Ross River and Cleveland Bay compared to other studies 

In comparison to other studies on microplastic contamination in freshwater 

systems and estuary systems around the world, my water samples contained relatively 

low concentration of microplastic (see review by Li et al., 2018). For example, a recent 

study in New South Wales, Australia found microplastic concentrations in the surface 

waters outside three estuaries between 98 to 246 particles m-3 within 45-5000 µm in size 

(Hitchcock and Mitrovic, 2019). While other larger rivers, such as the Yangtze Estuary 

with population sizes up to 400 million people have been found to have average 

abundances of 4,414 particles m-3, of which, approximately 33% of this was made up of 

particles from 1000-5000 µm in size  (Zhao et al., 2014). In contrast, my study only 

found between 0.124-0.308 particles m-3 on average in the pre and post-wet season 

(within the size range of 500-5000 µm), respectively, with a maximum concentration of 

2.25 particles m-3. Since previous research, such as that by Hitchcock and Mitrovic 

2019, includes particles a magnitude smaller, it is likely that the counts reported in this 

chapter are underestimated. Nevertheless, previous research indicates that local 

population size and local industry influences plastic abundance (Jambeck et al., 2015), 

suggesting that contamination of Ross River waters is low due to the relatively low 

population density in the catchment.  

Conversely, microplastic abundance in sediments were equivalent to those 

reported from river and lakes systems in urban areas of Europe (Fischer et al., 2016; 

Horton et al., 2017a; Vaughan et al., 2017). For example, microplastic loads (1-4 mm in 

size, similar to the present study) in the Thames ranged from 185 particles per kg to 660 

particles per kg (Horton et al., 2017a). In comparison, I found an average of 143.43 kg 

+/-20.16 SE particles in Ross River. While sampling techniques differed between 

studies, collectively these results indicate that relatively low inputs of microplastics 

have been accumulating within the sediments of Ross River over the course of 
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successive low-rainfall years. Only with more widespread and continued standardised 

sampling will we know more about spatial and temporal variation in microplastic loads 

in freshwater systems, particularly in comparison to other river systems world-wide. 

 

4.4.4 Study limitations and future directions 

Fibres are typically one of most abundant particle type found in both freshwater 

and marine environments from a variety of sampling methods and techniques (Carr, 

2017; Gago et al., 2018). In this study, fibres were removed from analyses of plastics in 

water samples due to evidence of contamination of these samples by fibres from 

external sources (within tap water, and within the laboratory environment). Based on 

the contamination of samples I observed, I stress that any future research in this field be 

more vigorous in contamination control, particularly with regard to net and boat carpet 

contamination. To the best of my knowledge, no other studies have accounted for net 

contamination, yet the type of plankton net used for sampling in this study is commonly 

used for plastic sampling around the world (e.g. Prata et al., 2018).  

In addition, there were some difficulties in extracting plastics from very fine 

river sediments, and from water samples with very high organic matter content 

(Appendix 3). Other studies use a fluidised sand bath, or density separation to rinse 

microplastics free from sediments (Claessens et al., 2013; McCormick et al., 2014; Van 

Cauwenberghe et al., 2015; Van Cauwenberghe et al., 2013). However, these methods 

could not be used with very fine river sediments that are too small to remain at the base 

of the sand bath, or remained suspended in high density solutions (Appendix 4). 

Similarly, in other studies, water samples are usually first sieved to remove organic 

material, with material extracted from the sieves then placed in a high density solution 

to separate plastics from organic material (Mani et al., 2015; Masura et al., 2015). 

Unfortunately, the organic material encountered in Ross River and Cleveland Bay 

plankton tow samples was too adhesive and dense to allow sieving (Appendix 3). 

Therefore, I omitted sieving and instead allowed samples to settle with the organic 

material sinking, with the assumption that plastics floating would remain floating. 

Although visual inspection showed there were no obvious microplastic particles or 

fibres on the surface of the organic matter layer, it’s possible that some particles and 

fibres may have been trapped within this dense and sticky layer.  These challenges mean 
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that microplastic concentrations reported here are likely to underestimate true 

concentrations.  

Although contamination was eliminated to the best of my ability, it is possible 

that samples were contaminated via ‘in-situ’ rinsing. I was following the protocol of 

similar studies (Barros et al. 2017), however in retrospect, it is possible that other boat 

contaminations, such as paint chips could have contaminated rinses and samples (Cole 

et al. 2011). This contamination may have occurred in the estuary, and open water 

samples, where a painted boat was used.    

Finally, due to the difficulties in extracting plastics from fine river sediments, 

microplastic particles less than 1 mm in size were not able to be quantified. Particles 

less than 1 mm in size are difficult to extract and quantify accurately (Nuelle et al., 

2014; Quinn et al., 2017). In addition, hydrodynamic and river-flow models suggest 

particles larger in size (millimetres) are more likely to be retained, whereas particles 

around the 5 µm size range are more likely to be expelled into the ocean from river 

systems (Besseling et al., 2017). Therefore, identifying smaller plastic sizes, particularly 

in the pre-wet season, may have been important to identify plastic loads in Townsville.  

Despite the caveats outline above, I have provided a baseline dataset as a 

foundation for monitoring plastic loads through time. However, further research and 

monitoring is essential to confirm the sources of microplastics in the Ross River. I 

recommend future studies within the region should focus on the following: 

1. Randomised sampling throughout the river using a water grab may be beneficial to 

estimate microplastic loads entrapped in areas with high aquatic vegetation 

(Barrows et al., 2017). 

2. Sampling throughout the water column may also provide a more accurate 

representation of plastic particles, particularly after rainfall events, where turbulent 

mixing is most likely to occur (Kooi et al., 2018). 

3. Randomised sediment sampling, or using grids to randomise sampling locations 

would also be beneficial to determine plastic accumulation hotspots, and overall 

plastic loads within the river.  

4. Further development of methods for extracting microplastic <1mm from fine 

sediment types, or use of analytical techniques on sediment samples directly 

without need for extraction (Such as Dumichen et al. 2015).  
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4.5 Conclusion 

In this study, I show the presence of microplastics within the sediment and 

surface waters in a river system in Australia, and provide baseline data that can be 

monitored through time. Monitoring plastic loads from local sources is the first step to 

reducing plastic in important ecosystems. This not only effects local coastal marine 

systems, but contributes to plastic in the oceans around the world



 

 
 

 

Chapter 5:  
Assessing prospective indicator 

species of plastic contamination for 
nearshore coral reefs 

 

 

Microplastics are an emerging contaminate of concern in the marine 

environment, but are difficult to sample. Bioindicators are important tools to monitor 

contaminants in aquatic environment. I focus on two benthic, filter feeding species, 

based on criteria suggested by Fossi et al. (2018) including the sponge, Carteriospongia 

foliascens, and the soft coral, Lobophytum sp. to understand the impact and interaction 

of plastics on coral reef ecosystems. I tested if plastic was ingested and retained by 

these two species, and whether ingestion reflected differences in microplastic 

concentrations. I found total ingestion of particles was low relative to the concentrations 

provided, with less than 1% of the particles ingested within the tissues. However, I 

found adherence of microspheres to the surface of the soft tissue to occur at 

approximately half the ingestion rate for C. foliascens, and approximately double the 

ingestion rate for Lobophytum sp. These results indicate that collecting and quantifying 

microplastics attached to the surface of marine organisms is possibly a more effective 

mechanism for monitoring microplastic concentrations in the environment than taking 

biological samples for measurement of ingestion.  
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5.1 Introduction  

Microplastic particles (<5 mm) are a threat of emerging concern, with models 

estimating as much as 2.25 trillion tonnes of microplastic particles existing in global 

oceans (Avio et al., 2017; Eriksen et al., 2014). This increasing contamination poses a 

hazard to marine life, as numerous field and laboratory studies have shown that plastic 

ingestion can cause direct harm to individuals by blockage of the gut leading to 

starvation and internal abrasions (Wright et al., 2013; Zettler et al., 2013). Ingestion of 

plastic particles can also lead to disease, reduced fecundity, and other harmful impacts 

(Browne et al., 2015; Cole et al., 2015; Gall and Thompson, 2015; Koelmans, 2015).  

The risk to organisms likely depends on the quantity of plastics present at a location, 

and whether or not plastic exposure is acute or prolonged. However, except for a few 

well-sampled areas such as the Pacific garbage patch (Law et al., 2014), there is only 

limited data quantifying temporal variation in microplastic concentrations in situ.  

Quantifying the concentrations of microplastics in rivers and oceans are 

logistically challenging (Bauer-Civiello, Chapter 4). Microplastic particles in aquatic 

environments tend to aggregate together, meaning that the spatial distributions of these 

particles are patchy and highly dependent on waves, wind, and currents (Bauer-Civiello 

Chapter 4, Critchell and Lambrechts, 2016; Paul-Pont et al., 2018). Depending on the 

density of the plastics themselves, and how long the particles have been in the 

environment, microplastics can occur on the water surface, within the water column, or 

in the sediment (Lusher, 2015; Paul-Pont et al., 2018). Plastic particles can also be 

ingested by organisms, transported to the ocean floor as faeces or detritus and 

subsequently be re-suspended by waves, and currents (Paul-Pont et al., 2018).  

Furthermore, weather events such as heavy rainfall and flooding can contribute to large 

pulses of microplastics from land based sources (Cheung et al., 2016; Dris et al., 2018). 

To date, much of the current research has attempted to determine plastic loads on the 

water surface, and within the sediment (Lusher, 2015), whereas the concentrations of 

microplastics within the water column are more relevant to the ecology of plankton-

feeding and suspension-feeding organisms. Consequently, new approaches are needed 

to quantify how much microplastic is ‘available’ for ingestion by marine organisms in 

their natural environments.  

Bioindicators are “processes, species, or communities used to assess the quality 

of the environment and how it changes over time” (Holt and Miller, 2010) and can be 
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useful tools to determine the abundance of microplastics, and the interactions between 

these contaminants and local marine life (Bonanno and Orlando-Bonaca, 2018). 

Research identifying bioindicators for microplastic pollution is still in its infancy, but is 

a topic of increasing attention in the scientific community (e.g. recent review by 

Bonanno and Orlando-Bonaca, 2018).  According to Fossi et al. (2018), bioindicators 

for microplastics need to meet the following criteria: i) commonness within multiple 

habitats; ii) widely distributed across habitats; iii) ease of collection without impact to 

surrounding habitat; and iv) have been previously identified to ingest plastic. To date, 

mussels have been identified as ideal bioindicators to monitor microplastic abundances, 

as they occur in a wide range of coastal environments and can ingest particles at a rate 

that reflects the concentration of plastics in the environment around them (Li et al., 

2019). However, these organisms have only been tested in areas where they are likely to 

be continuously exposed to microplastics, such as river mouths and estuaries close to 

urban areas. In habitats with lower microplastic abundances, an additional criterion that 

must be met by a prospective bioindicator is that the organism must also be capable of 

retaining ingested particles within their tissue long enough to be identified by sampling 

efforts. Further research is needed to identify species that meet all of these criteria in 

different habitats and ecosystems. 

To provide an easier, less-invasive way to determine plastic loads interacting 

with marine organisms, alternative sampling methods should also be considered for 

bioindicators. There is recent evidence that microplastics may adhere to the surface of 

sessile organisms rather than being ingested, as has been shown for seagrasses (Goss et 

al., 2018) and bivalves (Kolandhasamy et al., 2018). However, the adherence of plastics 

to tissue in addition to microplastics that are directly ingested has only recently been 

identified, and rarely considered in microplastic research. Therefore, the identification 

and quantification of plastic adherence to exposed tissue of benthic and sessile fauna 

may provide additional information about the relative threat of plastic pollution to 

marine organisms.  

There is limited knowledge about the microplastic concentrations in coral reef 

ecosystems, and the use of bioindicators could be beneficial to determine the relative 

threat to reef systems worldwide. However, bivalves are difficult to extract without 

causing damage to neighbouring reef organisms. In contrast, sponges and soft corals can 

be easily removed from reefs without destruction of nearby habitat and are commonly 
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found in a wide range of environments, including nearshore reefs (Bannister et al., 

2012). Sponges are an important part of the reef community, as they serve as a link 

between benthic and pelagic habitats (Bell, 2008; Diaz and Rützler, 2001; Simister et 

al., 2012). In addition, some species of sponge have been used to detect gradients of a 

sewage outflow, demonstrating their utility as indicators of environmental conditions 

(Perez et al., 2003; Topçu et al., 2010). Soft corals are also an important part of reef 

communities and obtain energy and nutrients via photosynthesis of their symbionts and 

by feeding on plankton and particles present in the water column (Lewis, 1982). There 

is a high diversity of soft corals in nearshore habitats that are likely to be regularly 

influenced by river plumes (Fabricius et al., 2005), which can be a large source of 

microplastic pollution in the ocean (Schmidt et al., 2017).  

The aim of this study is to assess the possible use of the sponge Carteriospongia 

foliascens, and the soft coral Lobophytum sp., as bioindicators of plastic loads in reef 

ecosystems. Since polyp or pore size can influence the ability to ingest plastics, and size 

of the plastic can also impact how long ingested particles are retained within the tissue 

of the organism (Qu et al., 2018); I aimed to answer the following questions: (1) Do 

Carteriospongia foliascens (sponge) and Lobophytum sp. (soft coral) ingest plastic 

particles, and is ingestion dependent on microplastic particle size? (2) How long are 

microplastic particles retained within tissues? (3) Does the ingestion reflect differences 

in microplastic concentrations present in the water column? (4) Do microplastics adhere 

to the tissues of these filter feeding species?  

 

5.2 Methods 

5.2.1 Species selection  

Two benthic filter feeding taxa, Carteriospongia foliascens (sponge), and 

Lobophytum sp. (soft coral), were selected as potential indicator species of plastic 

contamination based on the criteria suggested by Fossi et al. (2018). Both taxa are 

prevalent on the Great Barrier Reef, and are easy to locate and identify (Michalek-

Wagner and Willis, 2001; Wahab et al., 2014b; Wilkinson, 1983). Both taxa are found 

at depths ranging from inshore intertidal reef flat to lower slopes of mid-shelf reefs 

(Michalek-Wagner and Willis, 2001; Wahab et al., 2014a). Comparable species can be 

found on coral reef habitats around the Indo-Pacific, and the potential for identifying 
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similar indicator species globally is high (Sung et al., 2009; Wahab et al., 2014b). For 

example, the Lobophytum genus is found throughout the Indo-pacific, and the Red Sea 

(Sung et al., 2009). Lastly, collection of both species involves minimal damage to the 

surrounding habitat, and they are relatively easily maintained in aquaria.  

 

5.2.2 Sample collection  

Specimens of each species (54 per species, 108 specimens in total) were 

collected on the reef flat and crest around Orpheus Island, a coastal island within the 

Palm Island group in the central Great Barrier Reef (18.6161° S, 146.4972° E) in May 

2018. Specimens were collected from three bays, approximately 2 km apart, to ensure 

the collection of different genotypes. Each specimen had a maximum diameter of 10 

cm. Specimens were typically located within the intertidal zone, from 0.5 to 3 m in 

depth (depending on the tide), and were collected using hammer and chisel via snorkel. 

Solitary specimens were targeted to minimise harm to surrounding fauna, or injury to 

the experimental specimens. For example, C. foliascens specimens were often located 

on small pieces of rubble, making their extraction from the reef habitat unobtrusive. To 

keep the specimens upright, a small piece of rock was placed at the base of the organism 

if necessary. Specimens were temporarily stored in large buckets of seawater covered 

with a shade cloth, before being transferred to the aquaria facilities within 5 hours of 

collection. 

 

5.2.3 Experimental set up and preparation  

The experiment occurred in the outdoor aquaria facilities of Orpheus Island 

Research Station under a 50% ultraviolet shad canopy. Specimens were divided evenly 

between 60 experimental feeding chambers (11.5 cm wide x 12 cm deep x 41 cm long, 

5.6 1 L in volume), with 1 to 2 specimens per chamber (Figure 5.1). Each chamber was 

filled with natural seawater at ambient temperature (~24 – 25 °C), filtered to 5 µm and 

allowed to flow-through the system. Each feeding chamber had flow rate of 

approximately 1 L per 90 seconds. This was the maximum flow rate possible to prevent 

microplastic particles from overflowing the 5 µm filter bags that were used on the 

system effluent to prevent contaminating the local environment. Specimens were placed 

upright or laying on its side (for C. foliascens), or propped up by rock or tile when 
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needed. Specimens were allowed a minimum of 3 days to acclimate to aquaria 

conditions prior to the start of the experiment.  

 

 

Figure 5.1: Schematic of experimental feeding chambers structure and specimen distribution across 

chambers for Carteriospongia foliascens (left), and Lobophytum sp. (right). The same species, 

undergoing the same feeding concentration shared the same feeding chamber. 

 

A mixture of supplemental coral food (Aquasonic SeaFood) and fluorescent 

coloured polyethylene (PE) microspheres (Cospheric LLC) was prepared prior to the 

experiment. Polyethylene is likely to be one of the most common plastic materials in the 

marine environment, and can be neutrally buoyant (Andrady, 2011; Cole et al., 2011). 

Plastic microspheres used in this mixture consisted of two different size ranges and 

colours: orange (45-52 µm) and green (27-32 µm). This is consistent with the size range 

of food items such as diatoms and plankton (Ribes et al., 1999) and the size range used 

in other coral feeding experiments (Hall et al., 2015). 

To ensure neutral buoyancy of microspheres, the larger orange microspheres 

were coated in the surfactant Tween80 by Sigma-Aldrich (composed of Polyethylene 

glycol sorbitan monooleate, Polyoxyethylenesorbitan monooleate, or Polysorbate 80) 

following the manufacturer’s protocol. Briefly, 50 µl of Tween80 was added to 500 ml 

of Milli-Q water heated to 80 ºC, and allowed to cool. Once at room temperature, 1 g of 

orange microspheres (45-52 µm) were placed in the solution, and soaked for a minimum 

of 19 hours. Plastic microspheres were subsequently rinsed twice in a 39 µm sieve with 

Milli-Q water to remove any excess surfactant. The smaller green spheres were 

neutrally buoyant in seawater, so no further action was needed. The coated orange 

microspheres were combined with 0.131 g green microspheres to ensure that the 
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concentration of particles were exactly the same, and added to a 3:1 ratio of filtered 

seawater and the supernatant of Aquasonic SeaFood to replicate biofouling (Paul-Pont 

et al., 2018). The solution was kept at -20 ºC between feeding days. 

 

5.2.4 Feeding trials 

Once acclimated, specimens were exposed to a three day feeding trial based on 

the results of a pilot study that demonstrated measurable microsphere ingestion within 

this time frame (Appendix 4). Specimens were fed the plastic-food mixture 

approximately 2 hours after dusk (~ 8 pm) during normal active feeding times for corals 

in the field (Lewis and Price, 1975), with the assumption that sponges do not have 

active feeding periods, rather feed continously. During feeding, the water flow was 

turned off for one to two hours to ensure that plastic microspheres would interact with 

the experimental specimens.  

On each feeding day, the prepared plastic food mixture was placed on a John 

Morris Scientific, MIXcontrol 20 magnetic stirrer plate to ensure a homogenous 

suspension of microbeads. A 3 ml aliquot of the plastic food mixture was extracted from 

the middle of the mixture using a 3 ml syringe. To assess whether ingestion is 

concentration-dependent, specimens were exposed to either high or low concentrations 

of plastic food mixture. High concentrations (3 ml of food mixture) resulted in 24,900 

orange microspheres and 24,876 green microspheres, equating to a total of 49,776 

microspheres, or 8,888 spheres L-1 fed to each specimen per night. Low concentrations 

(1.5 ml of food mixture) were exactly half of the high concentration (4,444 spheres L-1). 

The high and low concentrations were fed to 24 individuals of each species per 

treatment (12 chamber per species per concentration; Figure 5.1). The food mixture was 

expelled directly over the top of each specimen, such that each sample was potentially 

exposed to a maximum of ~75,000 (low concentration) or ~145,000 (high 

concentration) microspheres. Such high concentrations of plastics are unlikely to occur 

in-situ, however, these concentrations were selected to enable detection of 

concentration-dependent microplastic ingestion and adherence. The remaining 54 

specimens were placed into six control feeding chambers interspersed throughout the 

experimental chambers and fed 1 to 2 ml of Aquasonic SeaFood in place of the plastic-
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food mixture. These control samples were included to ensure that any accidental cross 

contamination could be accounted for. 

On the third day of feeding (subsequently referred to as day 0 after the plastic 

exposure period), six high, six low of each species were sampled at random (using a 

random-number generator) approximately one hour after feeding, placed in individual 

specimen bags, and immediately frozen at -80 ºC. This sampling was repeated on days 

2, 7, and 14, after the plastic exposure period (Figure 5.2). Since fluorescent spheres 

were used, it was deemed that control samples were not needed throughout the entire 

experiment. Therefore a total of 6 specimens were used as controls were spread out 

throughout the experiment, with 3 specimens extracted from day zero and three 

extracted from day 7. To ensure adequate food supply for survival of the organisms 

after the plastic exposure period, any remaining specimens were fed between 1 to 1.5 ml 

of Aquasonic SeaFood every other day at the same time of the feeding trials until the 

experiment was over. Also, to ensure that the specimens were not continuously exposed 

to plastic particles after the three day feeding trial, each experimental feeding chamber 

was gently siphoned and wiped down with a cloth. Care was taken not to touch the 

specimens when cleaning the chamber, however, any mucus strands were removed from 

the organism as these would typically be swept away with the currents in the natural 

habitat. Throughout the experiment, there was only one mortality of Lobophytum sp., 

which was most likely due to stress of transportation/aquaria setting, rather than plastic 

ingestion. This individual was added to day 2 collections, resulting in one fewer 

individual sampled on day 7. 

 

 

 

Figure 5.2: Experimental sampling design for Carteriospongia foliascens and Lobophytum sp. after the 

three day feeding trial. ‘Day zero’ specimens were sampled on the third day of feeding. 
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5.2.5 Laboratory analysis 

All specimens were frozen and transferred on ice to the laboratory facilities at 

James Cook University in Townville, Australia and stored at -80 ºC until further 

analysis. In preparation for tissue digestion, samples were rinsed and thawed in a hyper-

saturated saline solution (800 g of NaCl in 1.2 L of DI water) to remove any plastic 

particles adhered to the external tissue of the organism (as protocol by Thompson et al. 

2004). The resulting salt solution was used to determine adherence concentrations by 

vacuum filtering microspheres onto glass filter papers (Macro Science MS GA, porosity 

1.6 µm). The fluorescent plastic microspheres were then counted using a dissecting 

microscope (Olympus SZ40) under illumination by a deep-violet VI Light (Northwest 

Marine Technology, Washington, USA) to assist visual detection (following modified 

protocol by Cole et al. 2013). To ease quantification, a 1 cm clear grid was placed on 

top of the filter paper.  

After rinsing, tissue samples were transferred onto an aluminium weigh boat and 

dried in an oven at 60 ºC for 48 to 72 hours until dry. After drying, samples were cooled 

to room temperature and weighed using a Sartorius Entris balance with accuracy 0.00 g. 

To assess whether plastic ingestion was evenly distributed, specimens extracted on 

experimental day 0 were subsampled at three different parts of the body. Subsamples of 

C. foliascens were randomly selected from the left, middle, and right side of the body 

were subsampled and digested separately. For Lobophytum sp., a branch tip, mid 

branch, and the connecting tissue were subsampled and digested separately.  

Samples were digested using a sodium hydroxide (NaOH) solution, with a 

concentration of 0.5 M for Lobophytum sp., and 1 M for C. foliascens. Before 

experimental digestions took place, pilot tests were performed to test if NaOH was 

appropriate, and how long digestions would take with extracted species taken before 

experiment commenced. It was noted that C. foliascens took longer to digest using 

0.5M concentrations, so to shorten the digestion length, concentrations for this species 

was increased to 1M.  Visual inspections of plastic particles exposed to 1 M NaOH for 6 

hours in a pilot tests demonstrated that this digestion process did not affect the 

fluorescence of the microspheres. During digestion, samples were placed in individual 

100 ml Erlenmeyer flasks with enough NaOH solution to cover the sample entirely 

(between 50 – 70 ml). The flasks were then heated to 80 ºC on a Ratek dry block heater 

(solid state control) and samples were left until the tissue was completely digested into a 
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liquid state. Lobophytum sp. tissue was fully digested after 1 hour, whereas C. 

foliascens tissue was fully digested in 0.5 M NaOH after 18 hours (or after 6 hours in 1 

M NaOH). Each sample was then diluted into 800 ml of DI water, and vacuum filtered 

onto 5 to 6 glass filter papers (Macro Science MS GA, porosity 1.6 µm). The filter 

papers were allowed to dry under a fume hood and temporarily stored in an aluminium 

envelope before microspheres were counted as described above.    

 

5.2.6 Statistical analysis  

Microspheres counted within the digested tissue were standardised per gram of 

tissue to account for variation in the size of the sampled corals and sponges. All 

analyses were conducted using IBM SPSS Statistics v 23, and R studio 3.5. Since 

control samples were simply used to ensure no natural particles were counted as the 

fluorescent particles and account for any accidental cross contamination irrespective of 

time, data from control samples collected at day zero and day 7 of the post-plastic 

exposure period were combined for greater statistical power. Comparison of the tissue 

subsamples from different parts of the specimens showed consistency in feeding rates 

within samples (C. foliascens (Table 5.1, Figure 5.3) so data were averaged across the 

subsamples for each of the different time points for subsequent analyses.  To compare 

the total ingestion rates to the overall abundance of microspheres adhered to the surface 

of the organism, the ingestion rate per sub sample/g was multiplied to the total weight 

of the organisms.  

To test differences in overall preference for particle size, mean ingestion rates 

were compared. Several transformations were attempted to normalize data, however the 

Shapiro-Wilk test showed that data still violated normality assumptions. Therefore, a 

non-parametric Kruskal-Wallis test was used to compare the ingestion of orange 

particles (45-52 µm) and green particles (27-32 µm) within species.   

A two way ANOVA with a Tukey’s post hoc test was used to test for variation 

in retention of microspheres across time and concentration. For this analysis, both sizes 

of microspheres were combined to assess overall ingestion. Counts of microspheres 

from control samples revealed presence of low concentrations of microspheres in some 

controls, averaging 1.94 ± 0.95 microspheres g-1 for Lobophytum sp., and 0.97 ± 0.50 

microspheres g-1 for C. foliascens. Therefore, the total average of ingested microspheres 
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across control samples was subtracted from the total counts of the treated samples. To 

meet ANOVA assumptions, microsphere counts for Lobophytum sp. were square root 

transformed, and data for C. foliascens were log10 plus one transformed. C. foliascens 

rejected the null hypothesis for the Shapiro-Wilk test of normality for both time, and 

consumption, however Lobophytum sp. showed normal distribution for all but one time 

point  and one concentration (Shapiro-Wilk time point 2, p=0.004, and low 

concentrations p = 0.000). However, since there is no non-parametric test to test 

interaction effect, I used this test cautiously.   

A two-way ANOVA was used to detect whether total microplastic that adhered 

to the surface of the organism varied over time and between microsphere concentrations 

for each species. Again, to account for any potential contamination of samples with 

microspheres adhered to the surfaces, the average number of adhered microspheres g-1 

from control samples was subtracted from total ingested particles for both species. To 

test for normality, a Shapiro-Wilk test was conducted using square root transformed 

data for C. foliascens, and log10 plus 1 transformed data for Lobophytum sp. showing 

that the data was normally distributed throughout time, and across concentrations.  

 

5.3 Results 

Both species were found to ingest plastic microspheres of both size ranges 

(Figure 5.3). On day zero, C. foliascens individuals ingested an average of 142.8 ± 31 

particles g-1 (SE) when fed the high concentration, and 48.2 ± 10 particles g-1 when fed 

the low concentration. This is between 1 to 1.3% of the total plastics fed across the three 

days of microsphere exposure assuming that each sample was potentially exposed to the 

maximum of ~75,000 (low concentration) or ~145,000 (high concentration) 

microspheres at each feeding time. In comparison, Lobophytum sp. individuals ingested 

on average 18.1 ± 5 particles g-1 when fed the high concentrations, and 18.8 ± 3 

particles g-1 when fed the low concentrations, suggesting that individuals consumed 0.1 

to 0.3% of the total amount of plastic introduced across all three days. On day zero, 

initial ingestion values were on average (± SE) 142.8 ± 0.19 particles g-1 for feeding 

rates of C. foliascens were 2.5 to 7 times higher than Lobophytum sp.  

Microspheres were detected within the tissue of both species throughout the 14 

day experiment, however average plastic loads within the tissue decreased substantially 
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for C. foliascens, (up to an average of 95% egestion by day 14). For Lobophytum sp. the 

majority of microspheres remained within the tissue, only decreasing by an average of 

52% of the initial ingestion for Lobophytum sp. by day 14 (Figure 5.5). However, high 

variation among samples meant that this decline over time was not statistically 

significant (Table 5.1). Of the ingested particles, orange microspheres (54 microns) 

were consumed in approximately 2-fold higher numbers than green (37 microns) for 

Lobophytum sp.  (Table 5.1). However, there was no significant difference between 

particle sizes detected for C. foliascens (Table 5.1). When the two microsphere sizes 

were combined, ingestion and retention by both species did not reflect differences in 

microplastic exposure concentrations. Moreover, there was a significant difference 

between time treatments, with up to 96% of the particle expelled from the tissue by day 

14, and this decrease consistent regardless of initial concentration (Table 5.1).  

Table 5.1: Statistical analysis and test results for the ingestion, retention and adherence of microspheres 

to Lobophytum sp. and Carteriospongia foliascens. 

 

Species Dependent 

variable 

Factor/s Df Test statistic p 

Lobophytum sp. Ingestion Within-colony variation 2,44 K-S = 3.59 0.17 

Ingestion Microsphere size 1,47 χ2= 12.00 <0.05 

Retention Time 

Concentration 

Time * Concentration 

3,47 

1,47 

3,47 

F = 2.2 

F = 0.41 

F = 0.26 

0.1 

0.53 

0.86 

Adherence Time 

Concentration 

Time * Concentration 

3,47 

1,47 

3,47 

F = 24.2 

F = 23.8 

F = 1.4 

<0.01 

0.01 

0.26 

C. foliascens Ingestion Within-colony variation 2,44 F= 0.91 0.41 

Ingestion Microsphere size 1,47 χ2= 0.78 0.38 

Retention Time 

Concentration 

Time * Concentration 

3,47 

1,47 

3,47 

F = 19.7 

F = 3.8 

F = 1.3 

<0.01 

0.06 

0.30 

Adherence Time 

Concentration 

Time * Concentration 

3,47 

1,47 

3,47 

F = 12.3 

F = 6.8 

F = 1.5 

<0.01 

0.01 

0.23 
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Microspheres were 2 times more likely to be ingested by C. foliascens, than 

adhered to the surface (at day zero), but adherence was more variable (Figure 5.5). 

While there was a significant difference for adhered particles between time and 

concentration, there was no overall significant interaction between concentration and 

time (Table 5.1). Instead, the average number of microsphere g-1 that adhered to the 

surface of the organism decreased by approximately 85% for high and 74% for low 

concentrations by day 14 (Figure 5.5, Table 5.1).  

Unlike C. foliascens, adhered microspheres for Lobophytum sp. were equal or 

double the amount of the ingested microspheres. Moreover, unlike ingestion rates, 

particle loads decreased over time, showing a significant difference of approximately 3 

fold between high and low concentrations on day 2 (Table 5.1, Figure 5.4). 33-25% of 

the original microspheres remained on the surface up to seven days, and by day 14, only 

5-11% of the initially adhered particles remained on the surface.   

 

 

 

 

 

 

 

 



  

92 
 

 
 

 

Figure 5.3: Subsamples taken from different parts of the organism to ensure that particle ingestion was 
equal for (A) Carteriospongia foliascens and (B) Lobophytum sp. Box plots represent median and 

interquartile (25th and 75th). Whiskers represent highest and lowest values, apart from *, which indicate 
outliers. 
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Figure 5.4: Comparison of the total microspheres (minus the average number collected from controls) 

ingested by Lobophytum sp. versus Carteriospongia foliascens after three days of feeding plastic 

microspheres at two different concentration (high and low). Box plots represent median and interquartile 

(25th and 75th). Whiskers represent highest and lowest values, apart from *, which indicate outliers. 

Letters indicate significant differences between concentrations within the same time point. 
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Figure 5.5:  Total number of plastic microspheres per gram of tissue (minus the average number 

collected from controls) that adhered to the surface of the organism for Lobophytum sp. and 

Carteriospongia foliascens tissues under two different concentrations (high and low). Box plots represent 

median and interquartile (25th and 75th). Whiskers represent highest and lowest values, apart from *, 

which indicate outliers. Letters indicate significant differences between concentrations within the same 

time point. Photos show orange microspheres visible by the eye (45-54 µm) that adhered to the surface of 

each species, and shed by mucus. 

 

5.4 Discussion 

This chapter aimed to identify if two benthic reef species, Carteriospongia 

foliascens (sponge) and Lobophytum sp. (soft coral) could be used as indicator species 

for microplastics on subtidal reefs. This research shows, for the first time, that the 

sponge, C. foliascens and soft coral, Lobophtyum sp. are capable of ingesting and 

retaining plastic microspheres. However, total ingestion did not depend on microsphere 

concentrations in experimental tanks, and was low (~1%) relative to the concentrations 

of microspheres to which both species were exposed. There was considerable variation 

between species: C. foliascens ingested 3-8 times more microspheres than Lobophytum 

but expelled 83-95% of the plastics by 7 days post-exposure whereas Lobophytum sp. 

retained microspheres throughout the entire 14 day experiment. However, since the 

ingestion by this species was so low, it may not be detectable in in-situ samples. In 
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addition, microspheres were also found to adhere to the external tissue surface in both 

species, but this was also low (<1%) relative to the concentration of microspheres 

exposed to both species. Based on these findings, I do not recommend these species as 

bioindicators for microplastic pollution. 

The initial ingestion of C. foliascens and Lobophytum sp. is considerably lower 

compared to observations of other sessile fauna. For instance, the concentration of 

microspheres accumulated in the tissue of bivalves was similar to that in the 

surrounding waters (Kolandhasamy et al., 2018; Qu et al., 2018). Whereas for C. 

foliascens and Lobophytum sp. the concentration in the water column was between 75 to 

494 times higher than what was ingested (Figure 5.4). Also, greater plastic abundances 

were found within the tissues of other coral and sea anemones species under 

experimental settings, although it is difficult to compare concentration loads between 

studies because of methodological differences (Hall et al., 2015; Okubo et al., 2018). 

The low ingestion of microspheres by Lobophytum sp. might have been due to 

environmental conditions within the experimental tanks, particularly water flow (i.e., 

relatively slow flow and absence of waves). Soft corals thrive in areas with high water 

flow to filter feed (Hoegh-Guldberg, 2008), which could not be replicated in my 

experimental setup. During the experiment, it was noted that only 43 - 60% of the corals 

exhibited polyp activity/expansion on the three days of exposure to the microsphere-

food mix, and this may have influenced the low ingestion. However, additional research 

is required to determine how microsphere ingestion would change under natural field 

conditions. Nonetheless, this study showed that despite low initial ingestion, 

Lobophytum sp. retain microspheres in their tissues for at least 14 days, and the sponge 

C. foliascens can retain microspheres up to seven days. Further research on the 

ingestion and retention of microbeads for a range of filter feeding species is required to 

identify other potential bioindicators.  

Recent research has identified that the accumulation and retention of 

microplastics varies depending on the particle types, sizes, and shape (Qkubo et al., 

2018; Qu et al., 2018). In this study, C. foliascens did not show a preference for 

particular particle sizes but Lobophytum sp. was more likely to ingest the larger 

microspheres (54 µm in size). Previous research has observed the opposite in bivalves, 

where smaller microspheres were more easily taken up and incorporated in tissues, 

whereas larger particles were quickly expelled (Okubo et al., 2018). Therefore, the size 
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and shape of microspheres used in the experiment might have influenced the rates or 

patterns of ingestion of microspheres which I observed in the present study. In an effort 

to improve precision of counts of ingested microspheres, commercially produced 

florescent microspheres were used to determine microplastic ingestion and retention. 

However, other studies suggest that degraded particles and microfibers were more likely 

to be retained by indicator species than the microspheres, possibly due to their jagged 

and irregular edges that make it easier to be trapped within the gut tissue (Qu et al., 

2018). While this has only been documented in bivalves, it is possible that other active 

filter feeders, such as sponges and corals, also are more likely to retain certain particles 

types over the microspheres used in the present study.  Future research on bioindicators 

species should introduce greater variation in particle types and sizes to account for the 

potential differences in particle preferences.  Microsphere adherence to the surface of 

the organism occurred for both species. For C. foliascens, microspheres were more 

likely to be ingested than to adhere to the surface, with adherence concentrations 

approximately half the value of the ingested particle concentrations (Figure 5.5). This 

was similar to the adherence concentrations recorded for mussels which were about 

50% of the ingested particles, the only other species where microplastics have been 

observed on the surface (Kolandhasamy et al., 2018). Conversely, adherence levels for 

Lobophytum sp. were up to 2-fold higher than values for ingested microspheres during 

the first week post-exposure. However, by day 14, 4 times more particles remained 

within tissues (ingested) than remained adhered to external tissue surfaces, indicating 

that most particles were shed off by the mucus layer after two weeks. Moreover, the 

adherence of particles on Lobophytum varied depending on the concentration of 

microspheres during the exposure period, indicating that it may be possible to determine 

the microplastic concentration in the environment based on adherence. It is important to 

note that both species showed relatively high variability in adherence concentrations, 

likely due to differences in morphology of the sampled corals. Therefore, future studies 

replicating this experiment on a larger scale, using species and colonies with different 

morphologies, would be useful.  

Mucus production is a sediment-removal mechanism used by many benthic 

marine species, including corals and sponges (McGrath et al., 2017). These mucus 

‘ropes’ are used to trap sediment and organic matter suspended within the water 

column, and can be collected in a non-invasive manner directly off fauna (e.g. 
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Broadbent and Jones 2004;Wild et al., 2004). Therefore, in-situ mucus deposits may 

allow for detection and possibly quantification of microplastic loads in the marine 

environment. This could particularly be important after an acute contamination event, 

such as flood plumes from extreme weather events which can transport terrigenous 

materials up to 50 km offshore (Bainbridge et al., 2012; Devlin and Brodie, 2005; 

Devlin and Schaffelke, 2009). Further research is needed to test the utility of sampling 

mucus ropes from benthic species under natural field conditions, particularly in areas of 

high and low microplastic concentrations, such as nearshore and offshore reefs.  

 

5.4.1 Caveats and future research 

Previous experiments on microplastic ingestion by filter feeding species found 

that aged plastics were more preferred than pristine ones (Vroom et al., 2017). 

Therefore, the ‘clean’ microspheres provided to the organisms in the present study may 

have influenced the ingestion of the two species, as microplastic particles occurring in-

situ within the water column are likely to have biofouling (Fazey and Ryan, 2016). 

Although the particles in the present experiment were placed in a food-particle mixture, 

this may have influenced the ‘willingness’ of corals and sponges to ingest the 

microspheres. Therefore, the influence of biofouling needs to be further investigated to 

determine if this influences plastic ingestion.  

Lastly, microplastic particles are known to have positive charges in seawater, 

which possibly makes them more likely to adhere to plastic walls of experimental tanks 

(Keller et al., 2010; Paul-Pont et al., 2018). Indeed, during my feeding trials, a 

significant amount of microspheres was observed attached to the sides of the feeding 

chambers (made out of Polyvinyl chloride). While the concentrations of plastic particles 

in this study were high enough to detect ingestion and retention of microsphere 

particles, the adherence to the tank wall may have lessened the interaction rate of the 

microspheres with the organism. For future research, I therefore suggest to include an 

internal pump within each tank that ensures continuous circulation of the water column 

to prevent adherence of particles to the tank wall and maximize availability to the 

organism, while the water flow is turned off.  
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5.5 Conclusion 

The research presented in this study shows for the first time that C. foliascens is 

capable of retaining microplastics up to 7 days, and Lobophytum sp. can retain particles 

for at least 14 days. Moreover, microplastics were found to also adhere to the surface of 

both species, with greater concentrations found on the outside of Lobophytum sp. than 

ingested. C. foliascens also had high concentrations adhered to the surface, but greater 

proportions of microspheres were found to be ingested.  Based on the ingestion results, 

neither Lobophytum sp. nor C. foliascens are suitable candidates to use as indicator 

species for microplastic presence on reef systems because concentrations ingested did 

not reflect outside concentrations. While Lobophytum sp. were able to retain the 

microspheres for the entire 14 day experiment, microspheres were ingested in such 

small quantities, they are unlikely to be detected in in-situ samples. Further research is 

needed to identify species that meet all of these criteria in different habitats and 

ecosystems. In addition, further research needs to be done to identify species that could 

be helpful for monitoring plastic loads in the marine environment. However, I provided 

insights in to testing microplastic pollution on reefs and propose that further 

investigation on mucus extraction may be possible to detect plastic loads interacting 

with plankton-feeding and suspension-feeding organisms. 



 

 
 

 

Chapter 6  
Understanding Public Perception and 

Awareness of Marine Plastic 
Pollution in Relation to Littering: A 
case study in the Great Barrier Reef, 

Australia 
 

Reducing litter in urban environments is an important way to mitigate plastic 

waste and stop it from reaching the ocean. To do this, we first must understand 

underlying factors that influence human behaviour, such as littering, and determine if 

there is a connection between the act of littering to the consequence of marine debris. 

To fill this knowledge gap, a questionnaire was developed and distributed in 

Townsville, Queensland Australia. This questionnaire examined resident responses on 

overall knowledge and awareness of marine debris, stewardship/care of place, level of 

concern about the marine environment, and social norms that are believed to influence 

their decisions. A total of 566 respondents participated in the survey. Survey results 

indicated that Townsville residents had a well-defined working knowledge of what 

constitutes marine plastic pollution and that littering in Townsville was a contributing 

factor. Furthermore, there was a strong sense of connection and responsibility of people 

towards the Great Barrier Reef. As a result, targeted messaging focusing on individual 

responsibility, plus pride, and identity may resonate strongly for Townsville residents to 

take actions in regard to marine debris. Furthermore, future management and education 

tools can move away from educating the public to not litter, but rather, support 

individuals, and work on campaign where people can easily participate to reduce litter 

and plastic use.  

Citation: Bauer-Civiello A, Hamann M, Benham C. Understanding Public Perception 
and Awareness of Marine Plastic Pollution in Relation to Littering: A case study in the 
Great Barrier Reef in prep  
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6.1 Introduction 

Marine plastic pollution is a pervasive and complex global issue, with an 

estimated 8-13 million tons of plastic existing in the oceans today (Rochman et al., 

2015). Due to their longevity and durability, plastic materials are capable of remaining 

in the environment for years, impacting marine fauna, such as turtles, fish, and whales, 

in addition to habitat-building organisms, such as corals (Lamb et al., 2018; Worm et 

al., 2017). As plastic production and use continues to increase, models predict that 

plastic within the marine environment will increase 25% by 2025 (Jambeck et al., 

2015), suggesting that immediate action on plastic production, use and pathways is 

required to reduce the impacts on marine ecosystems.      

Some studies have suggested that up to 80% of marine plastic pollution in the 

world’s oceans originates from land-based sources (Andrady, 2011; Oosterhuis et al., 

2014). Mismanaged waste such as littered items in parks, streets, sidewalks, and 

beaches, overflowing bins and dumps, sewage waste, and industrial spills from urban, 

inland and coastal communities can be washed directly into the ocean, or into 

waterways that connect to the ocean (Bauer-Civiello et al., 2019; Jambeck et al., 2015; 

Lebreton et al., 2017). For example, it is estimated that approximately 1.15-2.41 million 

tonnes of plastic from inland sources are transported to the ocean from rivers around the 

world per year alone (Lebreton et al., 2017). In addition, I found that even in the 

relatively low population of Townsville, Queensland, large amounts of litter was 

entering and accumulating in local waterways (Chapter 3 and 4). Therefore, reducing 

mismanaged waste from both inland and coastal communities is a vital component in 

the reduction of global marine plastic pollution. 

Targeted management strategies have been used to reduce mismanaged waste 

and litter in the environment before it arrives in the ocean world-wide. This can include 

a variety of policy based strategies that intervene with plastic waste management on an 

international, national and state based, scales. On an international scale, this can include 

setting global waste management goals, such as providing adequate, safe and affordable 

waste collection services to all countries (United Nations Environment Programme 

2015. Other top down policy measures, such as plastic bag bans and container deposit 

schemes, encouraging the production of alternative materials, and implementing 

infrastructure such as bins and recycling centres are some components in which targeted 

management can be applied for overall source reduction (Clapp and Swanston, 2009; 
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Critchell et al., 2019; Xanthos and Walker, 2017). These are structured to help eliminate 

waste production, and therefore, reduce the chance of waste in the environment. 

Effective top down management incentives also require community support, 

knowledge, and awareness regarding the connection between litter in the environment, 

and marine pollution (Vince and Hardesty, 2017). Yet, understanding the community 

perception of marine debris to design or implement effective management strategies is 

rarely acknowledged in the marine debris literature, and there is limited research that 

attempts to identify whether people are aware that their actions can contribute to marine 

debris, and whether they are able to connect littering that occurs inland, with the 

consequence of marine plastic pollution (Campbell et al., 2016; Hartley et al., 2018; 

Slavin et al., 2012). Understanding the connection, or lack of connection, between 

littering in the urban environment and marine pollution is important for applying 

targeted management aimed at changing behaviours to reduce littering, and/or to 

encourage preventative and curative interventions, such as picking up litter, reducing 

the use of plastic products or supporting policy measures aimed at mitigation (Veiga et 

al., 2016).  

 

6.1.1 Study context and theoretical background 

Littering behaviours are complex, and the choice to litter or not can be 

influenced by a wide range of motivational drivers (Kollmuss and Agyeman, 2002). 

These drivers can include the level of concern for the environment and the relative 

knowledge of environmental impacts (Gifford, 2014). Littering behaviours can also be 

influenced by overall values and morals, or a person’s attachment toward the 

environment. For example, recent research has shown that a strong relationship with the 

ocean or their home city can improve behaviours linked to the environment (Pahl et al., 

2017). This can include specific connections to charismatic marine fauna, or culturally 

important ecosystems, such as World Heritage Areas and national parks (Jefferson et 

al., 2014; Goldberg et al., 2018). Therefore, focusing on the connection between the 

actions of littering to the impacts on the marine environment is important to understand 

underlying factors that drive littering behaviour, and as a result, mitigate marine debris 

(Madhani et al., 2009).  
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The first steps to understand the community engagement of marine debris and its 

sources, is to understand the overall perception, whether or not the community 

perceives it as a threat, and if people recognise whether or not their actions contribute to 

marine debris (Slavin et. al. 2012). Previous research regarding this connection between 

litter and marine debris have used a combination of different social theories to describe 

environmental behaviours that drive littering behaviours, such as the theory of planned 

behaviour, the theory of pro-environmental behaviour, norm-activation-theory, value-

belief-norm theory, value-action gap, and social marketing (Eagle et al., 2016; Hartley 

et al., 2018; Slavin et al., 2012). All of which use the four overarching researched 

themes described above: knowledge and awareness of environmental issues (via 

education and experience), stewardship and care of place, level of concern about the 

marine environment including environmental values and attitudes, and the societal 

norms that influence their decisions. These drivers of action and perception of 

environmental issues can vary greatly depending on location and individual 

communities, and therefore it is important to understand these on a local scale to 

provide a robust basis for allocation of effective resources towards marine debris 

management (Hartley et al., 2018). Therefore, I aim to investigate the community 

understanding of marine debris and its sources at a local scale (Townsville) to provide 

meaningful data on ways to engage and empower the community regarding littering and 

marine debris.  

 

6.1.2 Research Questions 

In order to determine the perception and awareness of marine plastic pollution 

sources on a local scale, the city of Townsville, Australia was used as a case study. 

Townsville is the largest city in the state of North Queensland (population of 229,000), 

and neighbours the Great Barrier Reef World Heritage Area (GBRWHA, or GBR for 

short). The GBR is an iconic ecosystem that holds cultural importance, both on a 

national and global scale (Goldberg et al., 2016). People view the GBR as a natural 

wonder and are willing to travel from all over the world to visit the largest coral reef 

ecosystem in the world.  Importantly, recent research found that Australians rate the 

GBR as one of the most inspiring Australian icons, and the majority of Australians feel 

that the GBR is part of their Australian identity (Goldberg et al., 2016). Recently, 

plastic pollution has been identified as a threat of emerging concern to GBR 
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ecosystems, and even more so, the GBR’s neighbouring state, Queensland, is regarded 

as the most littered state in Australia, with 1.4 times the litter than the national average 

(GBRMPA Outlook Report 2014; Boomerang Alliance 2015). Sources of long-term 

monitoring suggest that over half (56%) of litter found on the beaches of the 

Queensland coast originates from land-based sources, suggesting that littering in urban 

environments, such as Townsville, could contribute to a portion of marine debris 

(Australian Marine Debris Database). 

To understand the overall knowledge and perception of marine debris and its 

sources in Townsville, I used a social survey that focuses on the underlying factors of 

pro-environmental behaviour and marine stewardship in relation to littering and marine 

debris. Specifically, I aim to answer the following questions: (1) What is the current 

state of knowledge and awareness of marine debris and its sources? (2) What are the 

attitudes and values regarding littering and marine debris? (3) What does the 

community level of knowledge or responsibility to care for the local marine 

environment predict the level of concern for marine plastic pollution? And lastly, (4) 

how can this information be used to engage the local community in Townsville and 

shape local policy measures and future research to reduce plastic? These questions have 

a direct relevance to reducing plastic pollution in the oceans. 

 

6.2 Methods   

6.2.1 Survey design 

Residents of Townsville were surveyed to determine community awareness of 

marine debris and its sources within the local region. Participants were first asked a 

small selection of demographic questions, such as age, gender, highest degree or 

qualifications, how long they have lived in Townsville, and whether they had previously 

attended a beach clean-up. The remainder of the survey was structured using a mixed 

method approach, with a combination of Likert scale questions (1-10, strongly disagree 

to strongly agree), ranking questions, multiple choice, and qualitative-open ended 

questions (full survey located in Appendix 5). All multiple choice or ranking questions 

were automatically randomised into different orders for each individual survey to 

reduce any biases toward numerical order. These questions were constructed using 

similarly structured questions described with previous litter perception studies, such as 
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Hartley et al., (2018), Pearson et al., (2014), and Slavin et al., (2012). Lastly, in attempt 

to understand the connection and responsibility with the Great Barrier Reef specifically, 

three statements were taken from a recent broader survey developed by Marshall et al. 

(2016). 

 

6.2.2 Knowledge and awareness of marine debris, littering, and local sources 

At the beginning of the survey, participants were first asked to define the term 

‘marine debris’ in order to obtain a general understanding of what participants were 

likely to say in regard to this specific terminology, without being prompted by the rest 

of the survey. The term ‘marine debris’ was chosen because it is a popular colloquialism 

for ‘any persistent, manufactured or processed solid material discarded, disposed of or 

abandoned in the coastal environment’ and is a term used by many non-profit 

organisations and government  agencies (Australian Department of the Environment 

and Energy, 2019). However, since over 90% of marine debris is made up of plastic 

(Auta et al., 2017), I later defined marine debris to specifically mean ‘plastic pollution 

in the marine environment’ after the question was answered. Participants were asked to 

keep this in mind throughout the survey.  

To determine the relative awareness of litter in the area and knowledge of 

marine debris sources, participants were asked to identify the top three items they 

thought were the most littered in Townsville. Nine categories were presented, including: 

straws and/or plastic utensils, plastic drink bottles, soft drink cups (take away cups- e.g. 

McDonalds), other types of plastic food packaging such as candy wrappers and chips 

bags, plastic shopping bags, cigarette butts, fishing line/net or other gear, disposable 

coffee cups, items of clothing. Similarly, participants were asked to choose the top three 

locations where they saw the most litter, such as local beaches, parks, and carparks. 

These questions were followed by a series of statements, (n=6) where participants were 

asked to rate their opinions on scale of 1-10 (strongly disagree to strongly agree) to 

determine if litter was a problem within Townsville, Queensland, and Australia.  

To understand Townsville residents’ knowledge of sources of marine debris, 

survey respondents were first asked to rate the top three most likely sources of marine 

debris in Townsville. They were provided eight possible options, including: 

overflowing bins, storm water discharge from roads and sidewalks, illegal dumping on 



  Chapter 6: Understanding Public Perception 

105 
 

land, waste reaching Australia from other countries by ocean currents, deliberate or 

accidental littering in parks and suburbs, illegal dumping or accidental loss from boats 

at sea (such as commercial cargo ships), deliberate or accidental loss of items from 

recreational use of beaches, accidental loss of fishing gear from fishing boats. This 

question was supported by Likert scale statements (n=7), in which participants were 

asked to agree or disagree on a scale of 1-10 with statements relating litter in the 

environment to marine debris. This included statements such as ‘Litter left near our 

waterways, such as Townsville’s Ross River, is likely to become marine debris,’ and 

‘Litter left near our beaches is likely to become marine debris’ were used. 

 

6.2.3 Responsibility, care and norms regarding the Great Barrier Reef  

Since the level of responsibility toward the local environment is a key factor that 

influences littering behaviour (Spehr and Curnow, 2015), participants were asked to rate 

how strongly they felt responsible for the Great Barrier Reef and the marine 

environment from a scale to 1-10 (strongly disagree to strongly agree). This included 

three statements by Marshall et al. (2016): ‘It is not my responsibility to protect the 

GBR’, ‘Coastal residents should take steps to reduce their impacts on the GBR’ and ‘It 

is the responsibility of all Australians to protect the GBR.’  Participants were also given 

a multiple choice question, asking them who they thought had the most responsibility 

for reducing marine debris, in which answers included the following options 

(participants could only choose one): Individuals, Council (local government), 

Queensland state government, Australian federal government, Plastic manufacturers, 

and Retailers of plastic products (e.g. supermarkets). Finally, to determine individual 

responsibility and sense of empowerment, they were given an open-ended question: 

What can individuals do to reduce marine debris?  

To understand overall norms surrounding marine debris, participants were asked 

to rate two questions on a scale of 1-10 (strongly disagree to strongly agree) to 

determine the norms surrounding littering and concern about marine debris. This 

included ‘My family and friends think it is bad to litter’ and ‘My family and friends 

worry about marine debris.’ At the very end of the survey, participants were given the 

opportunity to add any additional comments on the topic.  
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Since pro-environmental behaviour is influenced by experience, concern, 

knowledge and education, values, attitudes, responsibility, and norms, and place 

attachment, among other life experiences (Gifford, 2014), I used these factors to 

determine the predicting values toward littering behaviour, using a stepwise linear 

regression. For this analysis, I used the statements ‘If I litter, I feel I’m impacting 

important marine habitats, such as the GBR’ as the dependent variable.  I used four 

overarching variables including: demographics (age, gender, education level, and how 

long they lived in Townsville), the level of interaction/experience with marine debris, 

i.e. whether they attended a beach clean-up, and themed questions including: knowledge 

and awareness of litter: ‘Littering in Townsville contributes to pollution in the oceans’, 

responsibility: ‘I feel responsible for local marine environment and wildlife’, social 

norms: ‘My family and friends think it is bad to litter’ and concern: ‘I am concerned 

about the impacts of marine debris.’  

 

6.2.4 Concern about the threats of marine debris 

To determine level of concern about marine debris, participants were asked to 

agree or disagree with the following three statements on a scale of 1-10 (strongly 

disagree to strongly agree), including: ‘I am concerned about the impacts of marine 

debris,’ ‘Plastic litter should be a primary concern for management of the Great Barrier 

Reef,’ and ‘There are more pressing threats to the Great Barrier Reef than plastic 

pollution.’  

To understand the factors that influence concern about marine debris, I used a 

stepwise linear regression with the dependent variable of ‘I am concerned about the 

impacts of marine debris.’ Similar to the previous regression to the factors influencing 

littering behaviours in the previous section, level of concern was tested against the four 

overarching variables including: demographics (age, gender, education level, and how 

long they lived in Townsville), the level of interaction/experience with marine debris, 

i.e. whether they attended a beach clean-up, and themed questions including: knowledge 

and awareness of litter: ‘Littering in Townsville contributes to pollution in the oceans’, 

responsibility: ‘I feel responsible for local marine environment and wildlife’ and social 

norms: ‘My family and friends think it is bad to litter.’ 
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6.2.5 Community views on policy 

 At the end of the survey, participants were provided an opportunity to provide, 

in their own words, any additional comments they would like to make in regard to 

marine debris and littering in Townsville. This information was used to gather more 

details about overall approval of current policies, and opinions on how to improve waste 

management in Townsville.  

 

6.2.6 Questionnaire distribution 

Surveys were conducted both online and in-person over the course of 5 weeks 

during dry season, in the months of June and July of 2018. This was chosen based on 

the likelihood of better weather conditions, where residents are likely to be outdoors. 

Participants were residents of Townsville who had lived in the region for at least three 

months and were 18 years of age or older. Online surveys were distributed through 

social media and posted on city council pages, university pages, and Facebook groups. 

In addition to the online surveys, in-person surveys were conducted at five different 

sites around Townsville, including two river-side parks, a beach park, a boating launch 

ramp, and a shopping mall. These sites are all busy sites, where residents are known to 

attend regularly. The range of sites were chosen in effort to target a wide range of 

potential respondents. To diversify access to any potential respondents, each site was 

visited four days of the week (three week days and one weekend day) for 4 hours per 

day. Sampling days and time periods were not chosen using any structured method, 

rather chosen simply based on availability and time. Sampling periods differed 

depending on site to ensure as many surveys were achieved as possible. Most often, 

surveys were performed for 2 hours in the morning and 2 hours in the afternoon. Survey 

location for each week was randomised, with the exception of one outdoor site week, 

which was switched with an indoor one due to poor weather conditions. To differentiate 

where the survey was taken, the respondents were asked to indicate whether they 

completed the survey online or in person.   

All surveys were conducted by the same three surveyors, including myself. 

Surveyors participating in face-to-face interviews were briefed on survey methods to 

ensure that surveys were conducted in the same manner. To obtain as many surveys as 

possible on survey days, every person present was approached and asked to participate 
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in the survey when possible. In the outdoor park locations, such as the Strand, only who 

were people sitting in the area (as opposed to those passing by, walking or jogging) 

were approached to improve the likelihood of a completed survey. Surveyors accessed 

the surveys online via Survey Monkey on an IPad. When approached, participants were 

asked if they wanted to participate on a survey conducted by a JCU student about 

marine debris. 

6.2.7 Analysis 

Before any analysis, the dataset was processed and cleansed to remove data from 

respondents who lived outside the Townsville region. Any incomplete surveys were 

retained in the analysis, except when conducting factor analysis and stepwise 

hierarchical regressions analysis for direct comparisons. I also acknowledge that there 

may be fundamental differences between the people who are likely to take the survey 

online, versus those who were randomly asked to take the survey in-person. Therefore, I 

selected key representative Likert-scale statements under each major theme 

(Knowledge, awareness, responsibility, and norms), and tested the overall mean 

between online and in-person responses using a student’s t test. This included questions 

such as that had more definitive statements, including: Littering in Townsville 

contributes to pollution in the ocean; I feel responsible for the local marine 

environment; and my family and friends think it’s bad to litter. Although there were 

significant differences in respondent demographics (including gender, education and 

age) between online and in-person samples (Table 6.1), there were no major differences 

in overall views on plastic pollution and littering (Table 6.2). Therefore, all analyses 

shown below combine in-person and online responses. 
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Table 6.1: A comparison of demographic analyses of respondents that took the survey online, or in-

person. Age brackets were chosen based on Australian census categories.  

 

Demographic Online % 
n = 240 

In-Person % 
n = 326 

F/Χ2 P-value 

Male 27% 50%   
Female 72% 50%   
Total responses   31.346 p = 0.000 
High school (or lower) 11% 33%   
Bachelor degree/graduate diploma 45% 35%   
Masters or PhD  31% 10%   
Other 0% 1%   
TAFE/Vocational 11% 21%   
Total responses   76.122 p = 0.000 
18-24 12% 8%   
25-34 29% 24%   
35-44 18% 30%   
45-54 18% 13%   
55-64 13% 10%   
65 and higher 11% 13%   
Total responses   16.193 p = 0.006 
Previously attended a clean-up before  (Yes) 46% 30%   
   23.463 p = 0.000 
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Table 6.2: A comparison of representative Likert-scale survey questions from online responses, versus in-

person responses. Responses were averaged across survey methods. Note that two questions, show slight 

skewed responses, ending in a significant difference between the two means. However, for these two 

questions, I note that response means only vary by one point. 

 

Survey Question 
Survey 
method N 

Likert 
scale 
mean F 

Levene’s 
Test  

T-test 
P-
value 

I feel responsible for local marine 
environment and wildlife’ 

Online 218 8.5    

 In-person 318 7.5 16.043 0.000* 0.000* 
If I litter, I feel that I’m impacting 
important marine habitats, such as the 
Great Barrier Reef.’ 
 

Online 214 8.9    

 In-person 315 8.7 0.227 0.634 0.192 
Littering in TSV contributes to 
pollution in the oceans 

Online 218 8.9    

 In-person 316 8.8 0.007 0.934 0.402 
The further away the litter is from the 
ocean (for example in the western 
suburbs), it is not likely to become 
marine debris 

Online 218 8.8    

 In-person 316 9.0 0.541 0.462 0.572 
My family and friends think it is bad to 
litter 

Online 218 9.1    

 In-person 312 9.0 0.038 0.846 0.539 
I am concerned about the impacts of 
marine debris 

Online 218 3.5    

 In-person 316 4.0 12.175 0.001* 0.045* 
 

 

There was a total of 566 respondents participated in the survey (0.4% of the 

Townsville adult population- confidence interval of 4.11), with 240 completed online, 

and 326 in person. An additional 237 people were approached to do the survey in-

person, but declined to partake in the survey. 

All quantitative analysis and collection of descriptive and Pearsons chi-square 

analysis was performed in IBM SPSS Statistics 23. Likert scale questions are reported 

with medians and their interquartile range to show variation in responses. A factor 

analysis with direct oblimin rotation was conducted to determine patterns and groupings 

of themes (as above), however, these did not produce any identifiable themed results. 

Instead, a Cronbach’s alpha was used to test for internal consistency amongst chosen 

themes. Furthermore, to determine relative accuracy of awareness of litter in the area, 
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survey data was compared to data within the Ross River and Townsville provided by 

Chapter 3 of this thesis and the Australian Marine Debris Database. 

All qualitative coding of open ended questions were performed in NVIVO 12, and 

coded into common responses using a qualitative phenomenological approach. Coding 

was conducted by myself and overlooked by supervisor, Dr. Claudia Benham. The final 

question, in which respondents were allowed to provide any additional comments, was 

coded using policy tools categories, including: economic and market based instruments 

(such as container deposit schemes); improved regulations and performance standards 

(such as providing incentives), info-based instruments (such as education tools), and 

improving technology innovation and infrastructure (such as creating environmentally 

friendly packaging materials). 

 

6.3 Results 

Of those who participated in the survey 337 were female, 227 were male, and 2 

people choose not to identify their gender. 52% of the participants were between the 

ages 25-44. Approximately 10% of respondents were aged between 18 and 24, and the 

rest (39%) were above the age of 45. This is consistent with the population of 

Townsville, where the median age is 36 years old (Townsville Bureau of Statistics). On 

average, participants lived within Townsville 18 years (+/- 16.42 SD). Education levels 

varied, with 39% of participants possessing a bachelor’s degree (or equivalent), 24% 

with a high school degree (or lower), and 17% and 19% with a trade or graduate level 

certificate, respectively. Respondents who performed the survey online were more 

likely to have participated in a beach clean-up before, with almost half (46%) 

responding to with ‘yes’ χ2 (df= 1, n=557) = 15.447, p<0.000).  In comparison, 30% of 

respondents on those surveyed in-person had previously attended a beach clean-up. 

In their own words, participants gave a wide range of definitions for the term 

‘marine debris,’ however, a total of 338 of the 566 responses defined marine debris to 

be either litter, rubbish, plastic and waste in the marine environment (Figure 6.1). 

Alternative responses included ‘anything that should not be there’ or natural based 

debris, such as timber, coral, and other dead-biological material. A total of 25 people 

responded with ‘not sure’, and eight additional responded with ‘guessing’ answers, such 

as ‘something to do with the marine environment’, ‘fish’, ‘marine scientists’ etc.  
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Figure 6.1: Most common responses for the open-ended question: “What does marine debris mean to 

you?” 

 

6.3.1 Knowledge and awareness of marine debris, littering and local sources  

When asked to choose the top three sources of marine debris in Townsville, over 

half of the participants chose ‘littering in parks and suburbs’ and storm ‘water 

discharge’ (67% and 61% respectively) as their top choices (Table 6.3). Marine based 

sources were less preferred, with ‘fishing gear from fishing boats’ and ‘litter from boats 

at sea’ among the lowest selected as the primary sources of marine debris. The majority 

of respondents (average response 8.0 +/- 0.409 variance) agreed that littering was a 

problem in Townsville, Queensland, and Australia (α=0.773), and that litter on streets 

and inland suburbs and beaches can contribute to marine debris (α= 0.714) (Figure 6.2). 

The majority (79%) of respondents disagreed with the statement “It is less important to 

pick up litter on streets as it is to pick up litter on beaches;” and 76% disagreed with the 

statement “The further away litter is from the ocean, it is not likely to become marine 

debris.”  
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Table 6.3: Percent of respondents choosing the top three sources of marine debris in Townsville. 

 

% Selected as one of top 3 
 
Sources of marine debris 

ALL 
n=565 

Littering in parks and suburbs 67.3% 
Storm water discharge 61.1% 
Littering on beaches 39.1% 
Dumping on land 30.6% 
Overflowing bins 28.0% 
Fishing gear from fishing boats 16.3% 
Dumping from boats at sea 26.4% 
Waste from other countries 10.6% 

 

 

When asked to identify the top three most littered items in Townsville, 61.5% of 

participants chose plastic drink bottles, 47.3% chose cigarette butts, and 46.8% chose 

plastic shopping bags. Plastic food packaging was identified as the fourth highest 

littered item, with 41.9% of participants choosing it as a top item. Furthermore, car-

parks were identified as the most littered locations in Townsville, with 52.4% of people 

choosing it within their top three littered locations. Parklands and suburban streets 

followed with 39%, and 36% of respondents, respectively.  
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Figure 6.2: Number of responses from Likert scale questions. 1= strongly disagree to 10= strongly 

agree. A reliability analysis show consistency within the grouped questions within sources (α=0.714), 

and attitudes toward littering in local areas (α=0.733). 

 

6.3.2 Responsibility, care, and social norms regarding the Great Barrier Reef  

Responsibility and care for the Great Barrier Reef and local marine 

environment/wildlife was consistently strong (α=0.696), with an average of 8.8 (out of 

1-10 scale) (Table 6.4). Overall, participant's feelings of responsibility toward 

protecting the GBR and concern about marine debris were strongly related. 

Approximately 90% of the respondents strongly agreed (answered with 8 or higher on 

1-10 scale) that it is the responsibility of all Australians to protect the Great Barrier 

Reef. Furthermore, 88% of the respondents strongly agreed (answered with 8 or higher) 

that their family and friends thought it was bad to litter. Conversely, only 58% strongly 
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agreed (answered 8 or higher) that their family and friends were worried about marine 

debris.  

The stepwise comparison determining predictive variables of littering 

behaviours in regard to the Great Barrier Reef showed no significant difference between 

the first three models (demographics, where the survey was conducted, and the level of 

interaction with marine debris) (see Table 6.5). The fourth variable was significant, 

suggesting that values, such as responsibility, social norms, and understanding of 

sources predict values of concern for marine debris, with knowledge as the strongest 

predictor of concern. 

When provided an opportunity to expand in their own words, an 

overwhelmingly number of participants (67%) thought that individuals had most 

responsibility for reducing marine debris, over government, manufacturers, and 

retailers. When asked the open ended question: ‘what can individuals do to reduce 

marine debris?’ participants (n=523) responded with a mixture of preventative and 

mitigation techniques, such as reducing plastic use and consumption, reuse and recycle, 

and dispose of litter correctly (Figure 6.3). Fewer people suggested to participate in 

curative events, such as picking up litter, or participating in organised clean-ups. Only 

one person responded with ‘Individuals can do nothing.’  

 

6.3.3 Concern about marine debris 

The concern about marine debris and plastic was high, with 97% of respondents 

stating that they were concerned about the impacts of marine debris. Moreover, 79% 

strongly agreed (responses scaled 8-10) that plastic litter should be a primary concern 

for management of the Great Barrier Reef. Conversely, participants were not sure how 

to respond when asked if there were more pressing threats to the Great Barrier Reef than 

plastic pollution. There was a wide range of responses from 1 to 10 (strongly disagree to 

strongly agree) with the highest number of respondents (115 of 535 (21%)) choosing a 5 

(mildly disagree/unsure).  

The stepwise comparison determining predicting variables of concern for marine 

debris again showed no significant difference between the first three models 

(demographics, where the survey was conducted, and the level of interaction with 
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marine debris) (see Table 6.6). Only the fourth variable was significant, suggesting that 

values, such as responsibility, social norms, and understanding of sources predict values 

of concern for marine debris, with knowledge as the strongest predictor of concern. 

 

Table 6.4: Respondent agreement on their level of concern for the local marine wildlife and environment, 
and their impact on the marine environment (1=disagree to 10 agree). (α=0.859 took the average of 

these questions for further analysis). 

 

Responsibility & care for the local 
marine environment/GBR 

n Median 
score 

Interquartile 
range 

Variance 

‘I care about local marine wildlife’ 534 10 9-10 2.5 
‘I believe that my actions influence 
the marine environment’ 

536 10 8-10 4.6 

‘If I litter, I feel that I’m impacting 
important marine habitats, such as the 
Great Barrier Reef’ 

529 10 8-10 4.0 

‘Coastal residents should take the 
steps to reduce their impacts on the 
Great Barrier Reef’ 

533 10 8-10 4.0 

‘I feel responsible for local marine 
environment and wildlife’ 

536 9 7-10 5.8 

‘It is not my responsibility to protect 
the GBR’ 

534 1 1-2 4.9 
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Table 6.5 Hierarchical regression analysis for variables predicting littering behaviour (n=525). 
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Figure 6.3: Percent of most common responses to open-ended question: “What can individuals do to 

reduce marine debris.” n=523. Coded in NVIVO. 
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Table 6.6: Hierarchical regression analysis for variables predicting concern for marine debris (n=525). 
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6.3.4 Community views on policy   

The respondents that chose to participate in the option to further comment on 

littering and marine debris at the end of the survey, encouraged a wide range of 

governmental policy instruments to reduce marine debris. However, the need for more 

education and awareness campaigns were among the most common suggestions to 

reduce marine debris, particularly from the impacts of littering (Table 6.7).  

Approximately 20% of participants that chose to provide further statements, supported 

improvements on regulations and performance standards, such as bans on plastic bags, 

and harsher punishments for those that litter. Additionally, 16 of the 215 responses 

asked for more bins and for all bins to be more regularly maintained, particularly around 

parklands, pathways, and popular recreational fishing spots.  

 

Table 6.7: Economic policy measures commonly mentioned in open-ended questions: “Do you have any 

other comments about littering that you would like to add?” Note- This question was posed as optional. 

Participants were not required to pose a response. 

 

Theme 
 

Category  Example of suggestions/comments (quotes) Responses 
n=217 

Economic and 
regulatory based 
instruments 

Support the container 
deposit scheme 

“… the introduction of ‘no single use plastic bags’ at 
retailers and the take- back scheme for bottles and cans, we 
may see a reduction on the litter often found in our local 
environments.” 
 
 

1 

Improve 
regulations and 
performance 
standards 

Collaborative actions on all 
levels are needed 

“Individuals, industry and the government need to be 
actively concerned about cleaning up the environment as 
well as leading in waste reduction.” 

5 

Harsher punishments, 
provide incentives, and 
increase taxes 

“We need harsher punishments (or any punishment) for 
people that litter, especially out of their car.” 
 
“Higher fines for those caught littering.” 

8 

Support plastic bans locally 
and world-wide 

“We need a worldwide ban on all kinds of single-use 
plastics” 
 
“More steps need to be taken toward banning other types of 
plastics. E.g. coffee cups, straws, takeaway containers, etc.” 

18 
 
 
 

Improve regulations and 
transparency of recycling 
practices in Townsville 

“I am originally from Italy and recycling is compulsory 
everywhere now in every single shire or city. I found it very 
distressing QLD doesn’t have such a thing.” 
 
 
“There needs to be more transparency on how recycling 
operates in Townsville. I believe people actually think 
everything they recycle is being recycled, which isn’t true. If 
people realize their plastic waste is just going to landfill, 
hopefully they would be less inclined to use plastic in the 
first place.”  

6 

Improve regulations for 
boats at sea 

“Long line fishing, poachers, large cargo ships are getting 
rid of their rubbish.” 
 
“….ban lead sinkers” 

4 
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Theme 
 

Category  Example of suggestions/comments (quotes) Responses 
n=217 

Improve performance 
standards of local 
government 

“…I feel existing rubbish is now Council responsibility.” 
 
“Local council could do more to keep our beaches litter 
free.” 

6 

Put ‘pressure’ on 
corporations to hold them 
accountable 

“Pressure on retailers/producers is needed.” 
 
“Big companies are the biggest polluters. Plastic bottles are 
ridiculous.” 

6 

Individual 
behaviour changes 

It’s everyone’s 
responsibility 

“Pick up rubbish when you see it and try to help out.” 
 
“It is everyone’s responsibility to clean our planet.” 

12 

Reduce plastic use & 
Recycle 

“Reduce plastic packaging across the board and reduce the 
use of fast food plastics.” 
 
“I hope the current movement towards reducing and 
recycling plastic and other waste gains momentum and 
continues to grow.” 
 

8 

Report littering “More people need to report to either local or state 
government when they witness someone littering or illegal 
dumping. Anyone can report it and fines apply. 
 

1 

Dispose of waste correctly “Don’t be a pig.” 
 
“People are becoming complacent with their litter.” 

8 

Education Education and awareness 
campaigns & organized 
community clean-ups 

“There should be a more concerted effort to create 
community involvement activities that focus on clean ups 
and conservation education.” 
 
“I think people need more information about litter that 
comes from Australia and litter that comes from other 
countries, like Indonesia.” 
 
“Adding recycling and reducing waste as a national school 
curriculum.” 

51 

Technology 
innovation and 
improvement of 
infrastructure 

Use/improve mitigation 
techniques 

[Implement] “filters on washing machines to prevent 
polymer particles entry into the environment.” 
 
“The litter traps in storm water drains the council use need 
to be well maintained and cleaned out regularly.” 
 
“Bins along the foreshore and other public spaces need to be 
emptied more often as often overflowing in Townsville.” 

2 

Create or use more 
environmentally friendly 
products, and make 
packaging design clearer to 
dispose 

“Industry should be working on new packaging materials 
that biodegrade.” 
 
“We need more degradable products…” 
 
I think it would help to recycle their waste if all packaging 
was clearly labelled with instructions on how to deal with it. 
Either recycle or place in the garbage bin.” 

12 

Increase available 
infrastructure 

“No bins in the park, so rubbish builds up.” 
 
“Have more recycling places around. Container deposit 
scheme is great.” 
 
“Not enough bins at parklands and walking paths, not 
emptied enough. More dump sites along highways.” 
 
“Not enough bins on river way park.” 
 
“There needs to be more places for people to dispose of 
cigarette butts in Townsville.” 

16 
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6.4 Discussion 

This research shows that Townsville residents have a well-defined working 

knowledge of what marine plastic pollution was and how it arrives in the environment. 

Over half of the participants were able to define the term marine debris and primarily 

associated it with litter, rubbish, waste or specifically plastic pollution in the marine 

environment. Furthermore, over half (67% of participants) believed that land-based 

pollution is the primary source of the debris in Townsville and repeatedly identified that 

litter originating away from beaches and coastal areas (such as inland suburbs, streets, 

and carparks) could also contribute to marine plastic pollution. This suggests for the 

first time in primary literature that urban residents in Australia are able to connect the 

action of littering in inland sources with marine debris. 

Moreover, participants in this study generally held a strong connection to the 

Great Barrier Reef, further supporting previous research that Australians consider the 

Great Barrier Reef as part of the Australian identity (Goldberg et al., 2016; Marshall et 

al., 2016). Similar to the findings in Goldberg et al. (2018), the present study found that 

over 90% of respondents strongly believed that it was the responsibility of all 

Australians to protect the Great Barrier Reef, which was linked to overall concern about 

marine debris. This sentiment has been linked toward marine protected areas both 

Australia and globally, with research showing that people are in favour of supporting 

policies to protect biodiversity and reduce hazards to the marine environment (Trenouth 

et al. 2012; Trenouth and Campbell 2013; Tonin and Lucaroni 2017). In this study, this 

view among the community did not vary among demographic groups, and respondents’ 

previous experience with marine debris, supporting an overall connection to the world 

heritage area. Instead, the strongest drivers for the concern of marine debris and littering 

behaviours were the psychological variables surrounding sense of responsibility, social 

norms, and most importantly, the knowledge that litter in Townsville contributes to 

marine debris (Tables 6.3 and 6.4.). As such, this research suggests that the majority of 

respondents were concerned about the Great Barrier Reef, and felt that plastic litter 

should be a primary concern for management. These findings are supported by the 

broader research in the area (Kollmuss and Agyeman, 2002), suggesting that the overall 

awareness and sense of responsibility regarding littering can influence pro-

environmental behaviour.  
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In addition to being well informed and aware of local marine debris sources, 

Townsville residents seemed reasonably aware of commonly littered items and places 

around the region. When provided possible top pollutants, participants indicated that the 

top littered items consisted of plastic drink bottles, cigarette butts, and plastic bags. 

While these items are in fact abundant within the Townsville environment, regular 

reports from long term monitoring sources such as the Australian Marine Debris 

database, and Bauer-Civiello et al. (2019), found plastic food packaging was among the 

highest observed and recorded items, over plastic bags and drink bottles, however this 

was not ranked as highly from participants. It should be noted that the perceptions of the 

most common debris items may be influenced by media, where participant’s top ranked 

items such as plastic bags are commonly shown in marine debris media (Eagle et al., 

2016), and recent source reduction policies, such as the recently introduced plastic bag 

ban and the container deposit scheme, which had received significant media attention. 

In addition to the awareness of litter, participants were also reasonably aware of litter 

issues within the region, and reported that litter was most commonly observed in car 

parks, suburban streets, and parklands. High awareness of environmental problems, 

such as littering and marine debris, suggests that there is a high level of congruence 

between what residents think, and what science tells us for highly visible pollutants 

(Benham, 2017).  

Apart from the overall positive results of this study, it can be argued from my 

data that further education, engagement, and campaign tools are still needed for the 

small portion of respondents that that were less knowledgeable, or less motivated 

regarding marine debris. Studies have shown that education and engagement campaigns 

can improve behavioural change regarding littering and marine debris (e.g. Uneputty et 

al. 1998; Storrier and McGlashan 2006; Taylor et al. 2007).  However, unlike previous 

research in this space, in my dataset there was not a particular demographic (age, 

gender, qualification) that dominated participants that were relatively unaware, or 

unconcerned about littering or marine debris (Arafat et al., 2007; Bator et al., 2010; 

Campbell et al., 2014; Slavin et al., 2012). Rather, my data indicates that there may be 

other factors influencing knowledge and awareness of marine debris in relation to 

littering cut across all demographics or were characteristics of demographics that were 

not examined in this study, such as political beliefs, income, occupation status, or other 

social-economic factors that can influence litter in the environment (Campbell et al., 
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2014; Santos et al., 2005; Torgler et al., 2012). While this makes it difficult to create 

targeted litter campaigns, it indicates that more work needs to be done to go beyond 

standard demographic categorisation when targeting litter reduction initiatives. 

 

6.4.1 Policy and influence community engagement 

The results of this study suggest that there is a fundamental contradiction in 

which people love and identify with the Great Barrier Reef, but are not motivated 

enough or are unaware of the actions they can take to induce change (Goldberg et al., 

2018). Moreover, there is a gap between knowledge and awareness, and the presence of 

litter indicates a contradiction in the value-action gap, where the majority of participants 

were aware and informed, but litter remains a problem. This suggests that the current 

campaigns surrounding increasing knowledge and awareness of marine debris and its 

sources may not be as beneficial for behavioural change. Rather, messaging surrounding 

what individuals can do, and how they can participate in solutions, may be more 

impactful for source and litter reduction, such as participating in organised clean ups, 

and popular media campaigns like the #trashtag or the 2 minute-beach clean. Yet, when 

asked what individuals can do about marine debris, only about 20% of participants 

identified that individuals can pick up litter when they see it, or participate in or donate 

to organised clean-up events. This suggests a high proportion of participants (80%) may 

not be aware that they have the option to participate in these events, or not willing to 

act. Participating in clean-up events, or individuals simply picking up items on their 

own, not only provide curative actions, but also allows community members to 

participate in citizen science, which is an important tool to raise the perception of risk of 

plastic pollution, stakeholder involvement and provide better communication between 

scientists and the community (Storrier and McGlashan, 2006; Syberg et al., 2018). 

Barriers to action, such as convenience, cost, lack of alternatives, and other 

priorities that are likely factors to influence litter in the environment (Critchell et al., 

2019; Harland et al., 2007).  Given that participants were found to care for the reef and 

believed that littering was a main source of marine debris suggests that residents may be 

influenced by some of these barriers. In these cases, encouraging pro-environmental 

behaviours to stop intended littering is not enough, because there appears to be a 

systemic structural problem around plastic consumerism, lack of infrastructure, or 
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policy that would prevent accidental littering to occur. Instead, a mixed method 

approach around adapting policies, increasing infrastructure, and raising awareness may 

be more appropriate (Critchell et al., 2019). For example, as suggested in Campbell et 

al. (2014), people are more likely to litter, and probably less likely to pick up litter, if a 

bin is not around (Finnie, 1973). This is supported by the fact that approximately 7% 

(n=15) of the participants that chose to provide further comments at the end of the 

survey indicated that there were not enough bins in high use recreational parks, or the 

bins are not emptied enough. Therefore, increasing available infrastructure may be 

important for litter reduction. 

The results of this chapter indicate that approximately 56% of participants 

participate in preventative techniques such as plastic and waste reduction, suggesting 

that the other half of participants remain unware or unable to participate in source 

reduction opportunities (Figure 6.2).Research shows that due to the excessive use and 

reliance of disposable plastic items alone, at least a portion of this is attributed to 

accidental release (rather than intentional) (Sibley and Liu, 2003). For example, some 

research has shown that accidental roadside littering is likely to make up about 45% of 

the available litter in the United States (Forbes, 2009). Therefore, providing information 

regarding the circular economy, and ways individuals can reduce plastic waste 

generated at a household level could also be helpful to avoid accidental loss as 

mentioned above, particularly for the individuals that are already motivated and 

engaged, but remain unsure of what individuals can do. This would help provide the 

information needed to ensure that these individuals to make the right choice in regard of 

waste reduction, to eliminate the chance of plastic arriving in the environment. 

 

6.4.2 Limitations and recommendations for future research 

The survey I conducted was structured to identify physiological constructs 

around environmental issues, including knowledge, awareness, and norms and concern, 

but in hindsight, it would have been beneficial to ask specific questions targeting 

specific littering behaviours, and the likelihood of individuals picking up litter (other 

than participating in beach clean-ups). Knowing this could provide further information 

on this gap, and allow me to provide a more quantitative analysis on the value-action 

gap, but the interpretation of these types of data would depend on knowing the degree to 
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which the participants told the truth. Future research not only needs to concentrate on 

this gap, but also needs to focus on how and why accidental littering occurs, and the 

structures that allow that to happen.  Regardless, this study can be used as a step to 

further understand behavioural change regarding plastic use and disposal, and 

incorporate community perception and views to influence local management (Benham, 

2017).  

One aspect of littering in the urban environment that was not addressed in this 

research, was litter from the tourism industry. Instead, the research conducted focused 

on the knowledge, awareness, and concern about marine debris in relation to littering 

from residents only. As a tourism town, Townsville receives an average of over 5 

million tourists per year (Tourism Research Australia, 2019), and previous research 

shows, due to the lack of connection to the environment, tourists are capable of 

contributing to litter in the environment (Brown et al., 2010). Therefore, this may be an 

important aspect to include in future research.  

In addition to the factors outlined above, the expansion of this survey across 

other cities and more rural communities in Queensland and including more age groups 

(i.e. younger than 18) would also be beneficial to determine if views and perceptions 

differ. Previous research in Europe has noted that views can differ depending on 

location, and therefore is an important factor to explore (Hartley et al., 2018). In 

addition, some studies have described in previous literature that individuals younger 

than 18 are more likely to litter (Reich and Robertson, 1979; Robinson, 1976).  In my 

survey I was unable to include anyone younger than 18 years of age due to ethical 

constraints of my permits. Information from people under 18 would provide additional 

details needed regarding litter and marine debris management, particularly if 

communities need individual attention, or if a wider approach of education and 

management can apply across the state.    

 

6.5 Conclusion 

The findings from this research contribute to a growing knowledge base 

surrounding the perceptions and knowledge of littering in relation to marine debris, and 

fill a gap relating littering behaviour in Australia. Critically, Townsville residents felt 

that they were a contributing factor toward marine debris, and that individuals held the 
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most responsibility to reduce plastic in our oceans. In a culturally valued ecosystem, 

such as the Great Barrier Reef, I found that residents have a strong connection to the 

environment, high awareness about the connections of littering and marine debris, yet 

littering still occurs. As a result, targeted messaging focusing on individual 

responsibility, pride, and identity may resonate strongly for Townsville residents to take 

actions. Furthermore, future management and education tools can move away from 

educating the public about why littering is bad, and instead, support individuals, and 

work on campaigns where people can more easily participate to reduce litter and plastic 

use.  

 

 
 

 



 

 
 

 
 
 
 

Chapter 7 
General Discussion 

  



 Chapter 7: General Discussion 

129 
 

 Marine debris, which is made up to 95% plastic, is a complex environmental 

pollution issue and a hazard to the marine environment (Ryan, 2015). Marine debris can 

originate from a wide range of sources, and can be comprised of different materials and 

of different sizes. Once in the ocean, marine debris becomes a pervasive issue to marine 

habitats and wildlife (Wilcox et al., 2016; Wilcox et al., 2018; Wilcox et al., 2015). 

While the degree to which plastic can impact the marine environment on a species or 

ecosystem level remains unknown (Galloway et al., 2017), it is clear that individuals of 

many species are affected. Furthermore, the growing use and reliance on plastic in 

society is leading to continued input into the ocean, which is likely to increase exposure 

to marine wildlife (Jambeck et al., 2015). Therefore, minimising current and future 

impacts will require immediate responses and source reduction solutions are needed to 

reduce plastics world-wide.   

It is becoming increasingly clear that management of marine debris requires a 

wide range of infrastructure development, policies, and incentives, all targeted at 

specific sources, until overall plastic production and use is reduced. However, there is 

not a one-size fits all solution to reduce waste, even in local jurisdictions. The issues of 

waste minimisation, waste processing and waste management alone are socially 

complex, and require both national and international attention to reduce overall plastic 

inputs (Critchell et al., 2019).  To improve our understanding plastic inputs and sources, 

further research is needed to identify pathways, monitor sources, and identify common 

items so that infrastructure and policies can be used effectively.  

Interdisciplinary research is one mechanism that can be applied to improve the 

understanding of complex environmental issues. For example, eliminating light 

pollution for sea turtles nesting sites (Kamrowski et al., 2014), reducing illegal fishing 

(Riskas et al., 2018) and the input and placement of marine protected areas (Carr, 2000) 

all require an understanding on human behaviour, policy, environmental research, and 

an understanding of ecological impacts to provide successful management strategies. 

Therefore, for this thesis, I use this interdisciplinary research to comprehensively 

understand the relative threat of plastic pollution and provide an empirical knowledge 

baseline for interventions aimed at “turning off the tap of plastic” (Pahl and Wyles, 

2017). This research includes understanding the abundances of various types of debris, 

the common types of material, the distribution and dispersal pathways of debris, 

coupled with improving the knowledge of the social drivers that influence plastic use 
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and disposal (Rochman, 2016; Rochman et al., 2016). Furthermore, this research 

furthers the understanding of the potential impacts and interactions on marine fauna. 

This is not only an important aspect to monitoring debris loads, but can also can be used 

as a tool to engage the community and policy makers to implement change. For 

example, media images showing the impact of single-use plastics on turtles was found 

to be influential in many plastic bag bans around the world (Eagle et al., 2016). Overall, 

interdisciplinary knowledge can be a powerful tool to reduce plastic both locally and 

world-wide. 

The overarching aim of my thesis was to use interdisciplinary approaches to 

understand local sources of marine debris and plastic pollution in Queensland and how 

it can be effectively mitigated before arriving in the ocean. More specifically, my thesis 

aimed to inform knowledge gaps required for management using four overarching 

themes:  

 Theme 1: Understanding distribution patterns to narrow down potential sources 

of debris (Chapter 2) 

 Theme 2: Identify pathways of plastic entering the aquatic environments and 

why they occur (Chapter 3 & 4) 

 Theme 3: Identify approaches to monitor macro and microplastic loads to 

identify impacts, create baselines, and monitor change. (Chapter 4 & 5) 

 Theme 4: Understand community awareness and concern about marine debris to 

reduce land based sources, such as from littering. (Chapter 6) 

My thesis makes a novel contribution to the larger body of scientific work produced 

globally and provides additional key, locally specific information on the pathways, 

loads, and monitoring techniques that can be used in other local jurisdictions of 

Australia and around the world.  

 

7.1 Understanding distribution patterns and quantifying plastic loads in aquatic 
environments 

My thesis provides new insights into the abundance of debris and plastic loads 

within an Australian tropical river systems and the pathways through which litter and 

plastic waste can enter aquatic environments. In Chapter 2, I identified a relatively low 

but consistent load of debris on reefs throughout Queensland, ranging anywhere from an 
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average of less than 1 item per survey to 27 items per survey. Items recorded on the reef 

surveys mostly consisted of fishing and boating related debris, with the most items 

recorded on higher-used and accessible reefs closer to larger cities. Since limited macro 

items were found on Queensland reefs, particularly those on the Great Barrier Reef 

systems, it implies that current loads of debris on Queensland coastal habitats (apart 

from fishing and boating related debris, including: fishing line, rope, net etc.) is 1) 

mostly pelagic and 2) easily dispersed, 3) buoyant, and collectively more difficult to 

detect on subtidal reefs. As such, common items found on Queensland beaches (such as 

straws, plastic bottles, and plastic packaging) are less likely to be found on the reefs 

themselves, but may still effect pelagic reef dwelling creatures. Overall, these data 

suggests that subtidal debris on Queensland reefs are currently low, however continuous 

monitoring is needed to identify any potential and future issues.  

In chapter 3, I identified that over the course of three years, greater than 27,000 

items (primarily plastic) had entered small sections of Ross River in Townsville, 

Queensland Australia. Throughout a single wet season, an average of 23 to 32 items 

entered the monitored section of the river system per day (depending on the site). In 

addition to macro debris, in chapter 4, I found that microplastic loads within the 

freshwater section of the river are capable of increasing by 16% after the wet season and 

when the weirs are overflowing. As only a small portion of the river was sampled, these 

results suggests that a relatively small urban area is capable of creating and contributing 

the large amount of litter in the local aquatic environment. The sampled locations 

provide examples of what can be occurring in other parts of the river, creek, and even 

marine system, where storm water systems or parklands can attribute to litter in the 

environment directly.  

Ross River itself is unlikely to have an impact on plastic abundances on 

nearshore reefs and coastal environments in years with low rainfall. Instead, my results 

indicate that Ross River is likely to retain large quantities of debris and plastic 

(including microplastics) due to limited water flow over the artificial dam and weirs. 

However, higher retention of plastic items within the river causes the microplastic 

abundance in the sediments of Ross River to be relatively high for a city the size of 

Townsville. For example, in comparison to other studies, average microplastic loads in 

the sediment of Ross River were approximately half the reported loads found in the 

Thames, a larger river system flowing through industrial cities of England (Figure 7.1). 
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It is possible that a larger weather event, such as a cyclone or flooding event, could 

potentially flush the retained particles from the water column, benthic sediment, and 

banks, creating a pulse event of debris entering the marine and coastal habitats, rather 

than continuous exposure to Cleveland Bay, and by extension, the Great Barrier Reef. 

However, further research and modelling of the discharge and water movement, 

specifically for Ross River, is needed to identify potential plastic inputs into Cleveland 

Bay (Besseling et al., 2017; Kooi et al., 2018). 

 

 

 

Figure 7.1: Comparison of plastic loads in Ross River to other river systems. Dot represents average 

number of microplastics per kg of sediment, and lines represent the minimum and maximum value 

provided in the studies. Although these studies collect sediment samples using different methods, this 

figure provides rough estimates of overall plastic loads across major river systems in Europe and Asia, to 

a small, relatively rural system in Australia. Data used from: (Horton et al., 2017; Mani et al., 2015; 

Peng et al., 2018) 

 

7.2 Sources and pathways of anthropogenic debris and microplastics in Townsville 

Although my results suggest that Ross River has limited contribution of plastic 

to the marine environment, I produced novel information on where infrastructure and 

other intervention techniques could be used to reduce plastic input into the local 
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freshwater system. For instance, in Chapter 3, a large portion of anthropogenic debris 

entering the river system could be attributed to wind and direct littering along river 

banks and adjacent parklands, in addition to rainfall washing debris through street 

gutters and storm water systems. I was also able to confirm that microplastics in Ross 

River are likely to be from larger littered items, degrading nearby (such as on streets or 

in gutters) or in the river itself via exposure to UV light as opposed to primary 

microplastic particles. Much of the microplastic items collected in Chapter 4 consisted 

of broken fragments and fibres, in contrast to microspheres or manufactured pellets 

which are commonly referred to as primary microplastics. This suggests that the 

elimination of littering in the catchment areas of storm drains by means described in 

Figure 7.2, could reduce the long-term accumulation of microplastics within Ross 

River.  

 

7.3 Creating baselines and monitoring change 

As described in Chapter 3.4.1, all debris loads recorded over the sampling period 

were uploaded into the Australian Marine Debris database, which is a database used to 

monitor debris loads in urban and coastal environments across Australia. The database 

was established to bridge the gap between informal clean ups, long term monitoring 

programs, and scientific data collection, and to gather as much information as possible 

for source reduction management both locally and nationally. Traditionally, the 

database focused on beach clean-up events, however, it has gradually been expanded to 

include data from other types of debris monitoring, including rivers and catchments. 

The continued monitoring of debris types and loads within creeks and rivers are 

important for improved and targeted policy and infrastructure.. For example, my data 

collected in Ross River can now be used to monitor changes in plastic loads after the 

recent ban on the use of plastic shopping bags in Queensland and the container deposit 

scheme. It can also be used more broadly to monitor any changes due to community 

engagement and less formal source reduction initiatives, such as the reduction of straw 

use, and infrastructure programs used to mitigate debris loads. 

Apart from monitoring plastic and debris loads within the environment, it is also 

important to monitor changes of plastic abundance within the biota to understand the 

level of interaction and the potential impacts of plastics in the environment (Fossi et al., 



   

134 
 

2018). This is particularly important for microplastics, as they are patchy in abundance, 

and difficult to accurately detect and sample in the marine environment (Critchell and 

Lambrechts, 2016; Paul-Pont et al., 2018). Therefore, in Chapter 5, I investigated two 

commonly found benthic marine filter feeders in the Great Barrier Reef to examine their 

potential use as an indicator species to quantify microplastic loads on subtidal reefs. I 

identified that both species ingested less than 1% of the concentrations provided. The 

sponge, Carteriospongia foliascens, retained 83-95% of the ingested microspheres up to 

7 days, while the soft coral species, Lobophytum sp. retained microspheres for the full 

14 day experiment. These results indicating that the use of microplastic ingestion of for 

these two species were not suitable options to use as indicator species. Yet during the 

experiment, I found microplastic particles were found to adhere to the surface of both 

organisms and were shed via mucus production. C. foliascens ingested twice the amount 

of plastic particles as the amount adhered to its surface. However, for Lobophytum sp. 

the amount of particles adhered to the surface were equal to or double the ingested 

microspheres for the first week. Furthermore, adhered particles for Lobophytum sp. 

showed a detectable difference in concentration loads for day 2, suggesting that it is 

possible to detect differences in concentration loads between reefs by looking at the 

adhered particles. While my results did not recommend the use of these two species as 

indicators, I recommend further research to look into the ingestion of plastic particles on 

sessile benthic species, as well as the possibility of extracting mucus from these 

organisms. Mucus extraction could be a reliable, non-invasive way to monitor plastic 

loads as it is relatively easily collected and extracted not just by scientists, but 

potentially by citizen scientists and management agencies. This could have broad 

implications for monitoring plastic loads on reef systems world-wide by maximising the 

amount of data collected, potentially providing more information for education, 

community engagement, and support in regard to plastic pollution.  

 

7.4 Understanding community awareness and concern about marine debris to 
reduce land based sources, such as that from littering 

Understanding the community awareness and concern about marine debris is 

one of the most important steps to “turning off the tap” and eliminating plastics at its 

original source, humans (Veiga et al., 2016). Therefore, in chapter 6, I used social 

surveys to identify the overall awareness of marine debris from Townsville residents, 
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and if they were aware that plastic occurring inland can attribute to plastic in the marine 

environment. I found that Townsville residents were aware that inland littering is a 

contributing factor toward marine debris and that individuals in Townsville felt they 

held the most responsibility to reduce plastic in our oceans. Furthermore, I found that 

Townsville residents showed a strong connection to the Great Barrier Reef and felt 

responsible for its protection. Based on these results, I suggest that targeted messages 

focusing on individual responsibility, pride, and identity is likely to be beneficial to 

reduce litter before it arrives in the waterways. Moreover, combined with the results 

from chapter 2, these messages can be site specific, which provides a more cost-

effective and targeted solution to the people using this part of the river. For example, 

one survey site found more snack sized food packaging, likely from the school children 

that use the parks and pathways to make their way to school. Alternatively, additional 

messaging focusing on care for Great Barrier Reef toward recreational fishing and 

boating can also be used to limit that litter directly entering onto the reef itself, such as 

that found in Chapter 2. 

It is also important to note that survey respondents in this study were not able to 

identify the extent that marine debris poses a threat as compared to other environmental 

issues. This does not go unwarranted, as the relative threat of plastic pollution is still 

under considerable debate with some scientists (Stafford and Jones, 2019). This 

suggests that future educational material should provide accurate statements on the 

threat of plastic pollution, in addition to other environmental hazards.  

 

7.5 Management outcomes achieved by my thesis research 

These data collected in this thesis is useful to local managing organisations as it 

provides more targeted, effective solutions based on limited council budgets. In 

addition, it provides further information for management and policy makers, as it 

provides direct evidence of plastic pollution in the river and indicates the benefits of 

reducing or eliminating litter within the river as a hazard in local aquatic environments. 

Recent research about the effectiveness of waste abatement campaigns and government 

policies found that local councils that applied up to 8% of their budget toward waste 

management have lower marine debris loads on beaches and coastlines (Willis et al., 

2018). Furthermore, Willis et al. (2018) provides broad abatement interventions along 
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the waste stream, but based on the data collected in this thesis, I suggest an updated 

version (Figure 7.2), where infrastructure could be more effectively placed in certain 

areas, such sites along major roads, but other methods, such as implementing additional 

bins with lids, clean ups, and targeted messaging, would be more beneficial around 

recreational areas. For example, given that litter within the river was likely to be from 

nearby sources (Chapter 3) and a common complaint from Townsville residents were a 

lack of bins or bins not emptied enough near parklands (Chapter 6), a good first step for 

waste management in Townsville would to be improve this infrastructure and place 

gross pollutant traps, either in the river, or on the drains. This would both limit waste 

from entering the river, and as a result, reduce microplastic accumulation.  
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The conclusions I draw in my thesis are directly relevant to management and 

they are currently being used to inform and manage marine debris and litter in local 

areas in Townsville. Throughout my PhD research, I have had conversations with local 

management agencies and businesses such as Townsville City Council and the Clean-up 

Water Group to implement infrastructure and create opportunities for further 

monitoring. Moreover, the Great Barrier Reef Marine Protection Authority have 

established Local Marine Advisory Committees (LMAC) to enable local communities 

to provide strategic input towards marine park management. I was invited by the 

Townsville LMAC to present my thesis outputs and have been active in promoting the 

issue of marine plastic pollution on the GBR. In addition, I recently aided in the 

coordination of a project within the LMAC to receive a grant to continue monitoring 

marine debris loads and to use the new knowledge gathered from Chapter 6 as a basis 

for community awareness and engagement campaigns by the Townsville City Council. 

Furthermore, the microplastic load data collected in my thesis will be used in a regional 

report card created by the Dry Tropics Partnership for Healthy Waterways for future 

monitoring of plastic loads and relative health of coastal systems in Townsville.  

Lastly, I create new and novel insights into alternative methods to monitor 

microplastic loads on the reef (Chapter 5) and provide further research on potential 

indicator species for coral reef ecosystems. As the most recent GBR Strategic 

Assessment Report and the Reef 2050 Plan reports, key knowledge gaps include types, 

quantities, and the fate of microplastics within regions most likely to be affected by 

coastal cities. Therefore, the use of an indicator species can guide management actions 

and responses at local scales and shed light on the cumulative threat of microplastics on 

benthic invertebrates in the Great Barrier Reef.  

 

7.6 Thesis limitations and directions for future research 

My thesis provided data and insights about plastic pollution of a relatively small 

city, and how this contributes to the more global problem of plastic pollution. Although 

my data has been collected on a small sections of the Ross River, these collection sites 

were chosen because they were representative for other sections of the river, especially 

those adjacent to suburbs. Nonetheless, I cannot exclude that my data underestimates 

the overall debris loads entering the river and care must be taken when extrapolating my 
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results to other river systems. In addition, it was outside the scope of my thesis to 

collect samples or plastics from connecting creeks, lakes, or storm drain effluents that 

expel directly into the marina or onto the beaches. Therefore, additional empirical data 

is needed to make more robust estimations about the amount of debris items that enter 

the marine environment. In addition, future research would greatly benefit from 

freshwater models to determine the likelihood of plastic discharge from the river at 

various rainfall or water flow levels. This information would be important for managing 

organisations to understand the potential impact of large scale events, such as the recent 

flooding event that occurred in February of 2019, where the dam exceeded its capacity 

and consequently flooded large areas of Townsville’s riverside suburbs.  

As shown in this thesis, littering on land is connected by many complex 

pathways before it ends up in aquatic systems. Therefore, it is important to continue 

research that investigates these connections and pathways. For example, Chapter 3 

explored the connection between litter in parklands and debris collected in the adjacent 

river. To further investigate how litter arrives into the river system, additional surveys 

should be conducted along the conduits of the storm drains to identify the types of 

debris and quantify the accumulation of debris along the pathways. Such information 

can provide insights that could assist source reduction strategies. Future research should 

also continue quantifying the plastic loads into river and coastal systems year round, to 

have a better understanding of the seasonal effects and the impact of large weather 

events, such as cyclones and flooding, on plastic pollution in aquatic systems.  

To reduce the input of plastic into the environment, further research into 

environmentally friendly use, reduction, and disposal of plastics is essential. This can 

involve experiments in which different infrastructures are tested in litter hotspots (e.g. 

cigarette bins near bus stops), or through social surveys to investigate the economic and 

social constraints around reducing overall plastic use. Furthermore, as mentioned in 

Chapter 6.4, additional information on the perceptions of marine debris and littering in 

younger age groups, such as teenagers and young adults could also provide information 

on an age group that is rarely surveyed in peer reviewed literature.  

This thesis provided the first steps into testing possible indicator species to 

monitor plastic loads on the reef. To determine if my species or others can be used to 

detect plastic loads on the reef, further research is essential. This includes experimental 
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research focussed on testing different species exposed to various plastic sizes, shapes, 

and types in addition to field-based research. More specifically, field based research 

should include organisms collected from the reef, where the plastic loads found within 

the organism is compared with that found in the sediment and surface waters, similar to 

experiments performed in Bonanno and Orlando-Bonaca (2018). Identifying indicator 

species could greatly advance our ability to detect and estimate microplastic abundance 

in the environment, which would provide the evidence needed to understand the relative 

impact on the Great Barrier Reef. Hopefully this information could lead to more 

efficient and targeted waste management strategies.  

To improve future monitoring of microplastics in the environment and biota 

world-wide, refining the standardisation of the characterisation of plastic size classes, 

plastic type, and FTIR analysis in future research would help with reporting and 

comparing microplastic loads within the environment. Therefore, data could be more 

readily compared to studies that were unable to extract a wide range of microplastic 

sizes. In addition, there was very little research that provides information on how many 

particles are needed to scan, and how the data was corrected. Due to this lack of 

information, it was difficult to determine the appropriate methods to use and if they can 

be accurately estimated against other research papers. I suggest that future research 

should include this information to provide results that can be more readily comparable.   

Lastly, the overall implications of my thesis suggests that plastic management 

can vary greatly on a small, local scale, and is heavily influenced by local urban 

infrastructure, community attitudes, and local environmental factors. Therefore, the 

expansion of the research conducted in this thesis to other river systems could greatly 

contribute to the improvement of our understanding of the sources of microplastic 

pollution nation-wide. For example, it is likely that other river systems in Australia may 

have other factors that influence plastic abundances, such as sewage effluents, or occur 

in industrial areas that use or manufacture pellets. Therefore, further research on these 

areas could identify sources, and encourage policy and infrastructure, such as the 

improvement on the filtration systems on household washing machines, or more 

vigorous regulations on the transportation and production of resin pellets. The 

expansion of this research could improve our overall understanding on plastic inputs 

into aquatic and coastal systems.   
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7.7 Concluding remarks 

Marine debris is a global issue, and people from every country contribute to the 

problem. Local, national, and global incentives and initiatives are needed to reduce 

marine debris. Interdisciplinary research, such as mine, is essential to understand and 

reduce plastic sources and solutions on a local scale. As a relatively new field in marine 

conservation science, my research lays a platform for management, further research and 

monitoring regarding plastic pollution in aquatic environments, especially in 

Townsville. I also identified important aspects about waste management that require 

improvement and provided the baseline on how the community perceives marine debris 

and its sources.  

The research I conducted in this thesis does not attempt to undermine 

overarching environment issues affecting the marine environment (e.g. climate change), 

and acknowledges that Australia, as a relatively small populated country does not 

contribute to the debris in the oceans on the same scale as some other countries. Instead, 

I used data from Townsville to understand the distribution of debris loads at a 

management relevant scale, and look at a small piece of the puzzle by identifying the 

contribution of local sources and ways to empower and encourage local residents to 

induce change. By conducting this research, I hope I created a catalyst for further 

research and change in management strategies to reduce plastic in our oceans. 
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A1.1 Table: List of reefs and sites used for data collection. Notes region of sites Great Barrier Reef 
(GBR) or Southeast Queensland (SEQ), whether sites are near (N) or offshore (O), fishing restrictions 

(take or no-take), total number of surveys, and average debris abundance per survey. 

Reef Name Site Name Region N/O Tak
e or 
no-
take 

# of 
survey
s 

Avg. 
debris/ 
survey 
(400m2) 

Agincourt Reef                                     Agincourt 3D 
(Pontoon)                             

GBR O No-
Take 

18 0.44 
 

Phil's Reef                                        GBR O No-
Take 

5 0.00 
 

The Point                                          GBR O No-
Take 

4 0.00 

Davies Reef                                        The Lost World                                     GBR O Limi
ted 
take 

6 0.50 

Hardy Reef                                         Hardy Reef                                         GBR O No-
Take 

16 0.06 

Hastings Reef                                      North Hastings B                                   GBR O No-
Take 

13 0.08 

Hayman Island 
Reefs                                

Blue Pearl Bay                                     GBR O No-
Take 

15 0.83 

Heron Reef                                         Canyons                                            GBR O No-
Take 

4 0.00 
 

Cappuccino Express                                 GBR O No-
Take 

4 0.00 
 

Coral Cascade                                      GBR O No-
Take 

3 2.33 
 

Coral Garden                                       GBR O No-
Take 

5 0.40 
 

Coral Grotto                                       GBR O No-
Take 

5 0.00 
 

Half Way (Doug's 
Place)                            

GBR O No-
Take 

3 0.00 
 

Harry's Bommie                                     GBR O No-
Take 

5 0.20 
 

Heron Bommie                                       GBR O No-
Take 

4 0.00 
 

Jetty Flat                                         GBR O No-
Take 

6 0.17 
 

Last Resort                                        GBR O No-
Take 

4 0.00 
 

Libby's Lair                                       GBR O No-
Take 

6 0.00 
 

Research Zone                                      GBR O No-
Take 

5 0.60 
 

Shark Bay                                          GBR O No-
Take 

6 0.00 
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Reef Name Site Name Region N/O Tak
e or 
no-
take 

# of 
survey
s 

Avg. 
debris/ 
survey 
(400m2)  

White Wedding                                      GBR O No-
Take 

3 0.00 

John Brewer Reef                                   John Brewer                                        GBR O Limi
ted 
take 

5 0.20 

Keeper Reef                                        Keeper Reef                                        GBR O Take 3 0.00 
Knuckle Reef                                       Knuckle Reef                                       GBR O Take 8 0.38 
Low Isles Reef                                     Low Isles                                          GBR N No-

Take 
14 0.79 

Magnetic Island 
Reefs                              

Alma Bay                                           GBR N No-
Take 

12 0.50 
 

Florence Bay                                       GBR N No-
Take 

6 0.67 
 

Geoffrey Bay                                       GBR N No-
Take 

13 0.38 
 

Middle Reef                                        GBR N Take 15 0.40  
Nelly Bay                                          GBR N Take 16 0.25  
Picnic Reef                                        GBR N Take 12 2.33 

Michaelmas Reef                                    Breaking Patches                                   GBR O No-
Take 

3 0.00 

Moore Reef                                         Reef Magic Pontoon                                 GBR O No-
Take 

12 0.17 

Norman Reef                                        Norman Reef Middle 
Mooring                         

GBR O No-
Take 

3 0.00 
 

Norman Reef North                                  GBR O No-
Take 

3 0.00 

Opal Reef                                          Bashful Bommie                                     GBR O No-
Take 

22 0.09 
 

SNO (South North 
Opal)                             

GBR O No-
Take 

7 0.00 
 

Split Bommie                                       GBR O No-
Take 

8 0.00 
 

The Wedge                                          GBR O No-
Take 

9 0.11 
 

Two Tone                                           GBR O No-
Take 

7 0.71 

Osprey Reef                                        Admiralty Anchor                                   GBR O Take 7 0.29  
North Horn                                         GBR O Take 10 0.50 

Palm Island 
Reefs                                  

Cattle Bay (Orpheus 
Island)                        

GBR N No-
Take 

7 1.43 
 

Curacoa Island                                     GBR N No-
Take 

12 2.50 
 

Fantome Island                                     GBR N Take 12 1.25  
Juno Bay (Fantome 
Island)                          

GBR N Take 9 0.22 
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Reef Name Site Name Region N/O Tak
e or 
no-
take 

# of 
survey
s 

Avg. 
debris/ 
survey 
(400m2)  

Orpheus                                            GBR N No-
Take 

6 1.67 
 

Pelorus                                            GBR N Take 10 2.60 
Ribbon Reef 10                                     Challenger Bay                                     GBR O Take 8 0.50  

Pixie Gardens                                      GBR O No-
Take 

5 0.00 

Ribbon Reef 3                                      Clam Beds                                          GBR O No-
Take 

6 0.50 
 

Tracey's Wonderland 
(Joanies Joy)                  

GBR O No-
Take 

4 0.75 

Saxon Reef                                         Saxon Reef                                         GBR O No-
Take 

12 0.25 

Wheeler Reef                                       The Mooring                                        GBR O No-
Take 

8 0.00 

Barolin Rocks 
Reef                                 

Barolin Rocks 
(Woongarra Marine 
Park)              

SEQ N No-
Take 

4 2.25 

Big Woody 
Island                                   

Big Woody 
Conservation Park 
Zone                   

SEQ N No-
Take 

3 5.33 

Burkitts Reef                                      Burkitts Reef                                      SEQ N No-
Take 

3 0.00 

Currimundi Reef                                    Currimundi Reef                                    SEQ N Take 14 0.36 
ESA Park                                           ESA Park                                           SEQ N Limi

ted 
Take 

3 0.00 

Flat Rock Island                                   Shark Gulley                                       SEQ N No-
Take 

8 0.50 

Flat Rock Island                                   The Nursery                                        SEQ N No-
Take 

10 0.80 

Flinders Reef                                      Alden's Cave                                       SEQ N No-
Take 

8 0.38 
 

Nursery                                            SEQ N No-
Take 

16 0.50 

Gatackers Reef                                     Gatackers Reef West                                SEQ N Limi
ted 
Take 

3 1.67 

Goat Island                                        Goat Island                                        SEQ N Limi
ted 
Take 

8 3.00 

 
Goat Island West                                   SEQ N Limi

ted 
Take 

3 2.00 

Gold Coast 
Seaway Reefs                            

South-West Wall                                    SEQ N Take 9 27.11 
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Reef Name Site Name Region N/O Tak
e or 
no-
take 

# of 
survey
s 

Avg. 
debris/ 
survey 
(400m2) 

Inner Gneerings                                    The Caves                                          SEQ N Take 13 2.38 
Jew Shoal                                          The Pinnacles (The 

Pin)                            
SEQ N Take 6 4.83 

Kings Beach                                        Kings Beach Reef                                   SEQ N Take 6 1.67 
Mudjimba (Old 
Woman) Island                        

NorthWest Reef                                     SEQ N Take 3 3.33 
 

The Ledge (Mudjimba 
Island)                        

SEQ N Take 13 4.23 

Myora Reef                                         Myora Reef                                         SEQ N No-
Take 

11 3.82 

Palm Beach Reef                                    Palm Beach Reef                                    SEQ N Take 8 0.50 
Peel Island                                        Peel Island East                                   SEQ N Limi

ted 
Take 

7 7.00 

 
Peel Island North                                  SEQ N Limi

ted 
Take 

7 4.71 

Shag Rock Island                                   Shag Rock East                                     SEQ N Take 10 2.80  
Shag Rock West                                     SEQ N Take 9 2.89 

 
  



   

168 
 

 
 

  



  

169 
 

 
 
 

Appendix 2 



   

170 
 

A2.1 Table: Date of each clean up conducted through 2014-2017. 

Date of clean up Season Site 

November 2014 Pre Site 1 

November 2014 Pre Site 2 

January 2015 Post Site 1 

January 2015 Post Site 2 

27 November, 2015 Pre Site 1 

28 November, 2015 Pre Site 2 

29 January, 2016 Post Site 1 

30, January-22 March, 2016 
Post  

Site 2 

16 September, 2016 
During 

Site 1 

25 October, 2016 
During 

½ of Site 2 

4 November, 2016 
During 

Site 1 

4 November, 2016 
During 

½ of Site 2 

16 November, 2016 
During 

Site 1 

16 November, 2016 
During 

Site 2 

18 December, 2016 
During 

Site 1 

18 December, 2016 
During 

Site 2 

9 January, 2017 
During 

Site 1 

7 March, 2017 
During 

Site 1 

8 March, 2017 
During 

Site 2 

WEIR OVERFLOW AND CYCLONE 
 

 

31 March, 2017 
During 

Site 2 

1 April, 2017 
During 

Site 1 

5 May, 2017  
During 

Site 1 

5 May, 2017  
During 

Site 2 

LARGE RAIN EVENT, WEIRS OVERFLOW 
 

 

8 June, 2017 
During 

Site 1 



  

171 
 

Date of clean up Season Site 

8 June, 2017 
During 

Site 2 

November, 2017 
Pre 

Site 1 

 

 

A2.2 Table: List of items collected per effort (one person hour) between 2014 and 2017. ** indicates that 
items were separated into its own group in the 2016-2017 clean-ups. 

Items Categories 

Number of items 
collected per 
effort 2014-2017 

Total 
items 

(Unstand 

-ardised) 

Plastic packaging & 
consumer items 

   

Plastic bags Plastic 153.64 938 

Plastic cups Plastic 227.45 1498 

Plastic cutlery etc. Plastic 12.63 78 

Plastic drink bottles  Plastic 539.75 2737 

Plastic film and small plastic 
pieces  

Plastic 255.65 1783 

Plastic packaging food Plastic 886.88 5201 

Plastic packing non-food Plastic 50.79 309 

Ziplocs** Plastic 34.63 229 

Hard plastic containers 
(including Tupperware) 

Plastic 17.69 110 

Hard plastic pieces Plastic 229.47 1388 

Milk jug Plastic 0.60 6 

Canola Oil bottle** Plastic 0.11 1 

Straws plastic Plastic 398.79 2648 

Confectionary plastics Plastic 65.81 454 

Sushi fish Plastic 12.23 82 

“100% biodegradable” bags Unknown 0.36 2 

Plastic lids    
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Items Categories 

Number of items 
collected per 
effort 2014-2017 

Total 
items 

(Unstand 

-ardised) 

Plastic cup/waxed cup lid** Plastic 17.38 99 

Plastic bottle tops Plastic 372.36 2276 

Other lids-including pen lids Plastic 31.40 205 

Other food containers    

Waxed cups (Fast food take-
away)** 

Plastic 57.82 305 

Drink cartons including 
poppers 

Plastic 52.89 286 

Paper or card packaging Paper 15.46 131 

Foam items    

Foam food trays etc. Plastic 56.21  

Foam seat padding Plastic 0.13 375 

Foamed plastic - Other Plastic 231.79 1289 

Toys/Balloons etc.    

Balloon bottom (plastic)** Plastic 0.19 2 

Balloons etc. Plastic 14.48 91 

Pens, markers etc. Plastic 40.11 207 

Toys and similar Plastic 30.95 182 

Bike reflector** Plastic 0.60 4 

Pacifier /teething rings etc.** Plastic 1.03 5 

Plastic balls (including tennis 
balls) 

Plastic 75.10 484 

Metal items    

Metal caps or lids Metal 2.84 12 

Metal Cans Metal 183.27 990 

Foil wrappers etc. Metal 6.39 49 

Cigarette items    
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Items Categories 

Number of items 
collected per 
effort 2014-2017 

Total 
items 

(Unstand 

-ardised) 

Cigarette Butts & filters** Plastic 286.44 1657 

Cigarette Lighters Plastic 30.63 189 

Personal items    

Entire purse (with personal 
contents)** 

Cloth/ 

footwear 

0.13 1 

Aerosol cans Metal 34.77 242 

Personal Effects Unknown 10.22 60 

Sanitary Items Unknown 2.02 15 

Clothes and footwear    

Cloth Cloth/ 

footwear 

7.07 44 

Footwear Cloth/ 

footwear 

41.37 236 

Household/outdoor items    

Plastic garden pot** Plastic 0.13 1 

Plastic gloves** Plastic 1.33 10 

Plastic mesh** Plastic 0.17 1 

Ceramics Glass 0.18 1 

Light bulb** Glass 0.18 1 

Glass (including bottles) Glass 19.13 111 

Newspaper etc. Paper 8.75 42 

Brooms brushes Plastic 0.60 4 

Car air freshener (plastic)** Plastic 0.11 1 

Easy Off oven cleaner** Metal 0.13 1 

Metal broom handle** Metal 0.09 1 

Insect spray/killer Metal 0.11 1 
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Items Categories 

Number of items 
collected per 
effort 2014-2017 

Total 
items 

(Unstand 

-ardised) 

Christmas ornament (plastic)** Plastic 0.09 1 

Clothes pin (plastic)** Plastic 0.22 2 

Flashlight** Plastic 0.13 1 

Fly swatter** Plastic 0.11 1 

Plastic bow (for presents)** Plastic 0.11 1 

Plastic car door hanger** Plastic 0.16 1 

School related material (plastic 
slot for binders)** 

Plastic 0.33 3 

Plastic watering can** Plastic 0.13 1 

Reusable water bottle**  Metal 0.35 1 

Measuring cup (plastic)** Plastic 0.28 1 

Soap pump dispenser** Plastic 0.12 1 

Tupperware spatula** Plastic 0.13 1 

Fishing related items    

Bait & Tackle packaging Plastic 1.33 12 

Fishing line Plastic 3.78 17 

 

Recreational fishing items Plastic/metal 2.67 16 

Rope &/or net scraps Plastic 1.88 11 

Glow stick Plastic 0.99 7 

Other    

Processed wood Wood 2.50 12 

Wine cork** Wood 0.11 1 

Rubber remnants Plastic 2.02 8 

Strapping band scraps Plastic 4.30 30 

Industry items**    
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Items Categories 

Number of items 
collected per 
effort 2014-2017 

Total 
items 

(Unstand 

-ardised) 

Caution fibre below tape-entire 
roll 

Plastic 0.24 2 

Hose attachment Plastic 0.09 2 

Learners plate Plastic 0.09 1 

Marine safety distress sheet Plastic 0.12 1 

O-ring Plastic 0.09 1 

Sticker (commercial)  Plastic 0.29 1 

Tape Plastic 0.74 3 

Plastic pipe (unknown) Plastic 1.57 14 

Plastic tent stake Plastic 0.11 1 

Tarp piece Plastic 0.23 2 

Wire/electrical Plastic 0.16 1 

Spray paint can Metal 0.24 2 

Pharmaceutical/Drug    

Sharp bottle Plastic 0.60 5 

Plastic bottles/containers made 
into drug paraphernalia 

Plastic 0.40 4 

Pharmaceutical packaging Plastic 4.21 25 

Uncommon items**    

Medical face mask Cloth/ 

footwear 

0.61 1 

Metal reusable water bottle Metal 0.16 1 

Roll bar and Chassis spray 
bottle 

Metal 0.11 1 

Car log book Paper 0.14 1 

Boat oars Plastic 0.36 2 

Runners bib Plastic 0.09 1 
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A3.1 Table: Challenges and solutions for microplastic extraction and identification from fine sediments 
and water with high levels of organic material. 

Sample 
type 

Stage of 
processing 

Challenges Solutions 

Plankton 
tows 

Filtering Organic within sample was 
dense and adhesive, and 
therefore difficult to extract 
out of sieves available in the 
laboratory. If there was any 
plastics within this material, 
much was lost in the first few 
samples because of this. 

Since samples were 
immediately processed, we 
could allow the organic 
material to sit at the bottom 
of the jar. Due to the 
difficulties in removing 
organic material in sieves, the 
remaining samples were not 
sieved. Instead, liquid on top 
was filtered, and the organic 
material was placed into 
plastic bags to be analysed at 
later time. 

Plankton 
tows 

Sieving Of the few samples that that 
were sieved, as much material 
as possible was rinsed from 
sieve, and placed into 
aluminium containers. Organic 
material was placed in a normal 
refrigerator until analysed. 
Much of the organic material 
dried, basically encrusting the 
bottom of the container. This 
allowed us to see any plastic in 
the bottom. Few plastics were 
observed except for 2 samples 
had large white fibres. 

Since there was such 
difficulties removing the 
organic material from the 
sieves, I did not continue the 
process. However, this it was 
noted that because of this, 
some plastics may be missed 
from counting procedures.  

Sediments Drying fine, 
clay-like 
samples 

Based on previous trails, ovens 
at a low temperature were not 
effective at drying samples, 
because it would cause fine 
grains to solidify and become 
hard. Sieving of wet sediments 
were trailed, however, I could 
not provide accurate or 
consistent weights of samples 
to standardise plastic 
abundance. 

The use of the fume hood was 
gentler, and caused fewer 
samples to solidify. 

Sediments Use of high 
density 
solution 
only 

Fine sediment had high organic 
material. Recovery trials were 
attempted using both wet and 
dry sediments. Both trials 
showed difficulties in high 
density solution with much of 
the sediment clumping and 
floating to the top which was 
difficult to separate.  

Recovery rates were poor, 
resulting in <10% of plastics 
extracted. Instead, a fluidized 
sand bath was used to test 
recovery rates between three 
different plastic types and 
shapes.  
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Sample 
type 

Stage of 
processing 

Challenges Solutions 

Sediments Fluidized 
sand bath, 
fine river 
sediment 

Fine sediment did not stay at 
the bottom of the sand bath 
like beach sand or other 
heavier sediment would do. 
Instead, sediment mixed with 
the salt water, which resulted 
in excess sediment expelling 
from the top of the sand bath. 
This regularly clogged the mesh 
sieve catching the outflow.  

Flow rate was turned down as 
low as possible. Often, the 
sand bath needed to be 
turned off to unclog the 
sediment from the filter 
before continuing trail. Due to 
the low flow rates, less than 
5% of each of the plastic 
types were recovered. 

FTIR 
analysis 

 Particles take a long time to get 
accurate reads. This is 
particularly hard if the particle 
is heavily degraded, and/or too 
small.  

Sampled larger particle sizes 
only, removed fibres from 
analysis. 
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Appendix 4: Pilot study methods:  

To determine if two species, Lobophytum sp. and Carteriospongia foliascens 

ingested microplastics, a pilot study was first conducted. Six individuals for each 

species was collected from Orpheus Island. Specimens were allowed a minimum of 3 

days to acclimate to aquaria conditions prior to the start of the pilot experiment. 

Specimens were divided evenly between 12 experimental feeding chambers (11.5 cm 

wide x 12 cm deep x 41 cm long, 5.6 1 L in volume), with 1 specimen per chamber. 

Each chamber was filled with 5 µm filtered seawater at ambient temperature (~24 – 25 

°C) and allowed to flow-through the system. A mixture of supplemental coral food 

(Aquasonic SeaFood) and fluorescent coloured polyethylene (PE) microspheres 

(Cospheric LLC) consisting of two different size ranges and colours: orange (45-52 µm) 

and green (27-32 µm), was prepared prior to the experiment. Specimens were fed 3 ml 

of the plastic-food mixture approximately 2 hours after dusk (~ 8 pm) during normal 

active feeding times for corals in the field (Lewis and Price, 1975). During feeding, the 

water flow was turned off for one to two hours to ensure that plastic microspheres 

would interact with the experimental specimens. The above box plots represent median 

and interquartile (25th and 75th) of the ingested particles per gram of tissue. Whiskers 

represent highest and lowest values for Lobophytum sp. and C. foliascens. 
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A4.1 Figure:  Total number of plastic microspheres per gram of tissue ingested by Lobophytum sp. and 

Carteriospongia foliascens in a pilot study. Box plots represent median and interquartile (25th and 75th). 

Whiskers represent highest and lowest values. 
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 Appendix 5: Copy of information sheet and final social survey questionnaire used on 
Survey Monkey. 
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