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Abstract

Parasitic helminths have coevolved with humans over millennia, intricately refining and

developing an array of mechanisms to suppress or skew the host’s immune system, thereby

promoting their long-term survival. Some helminths, such as hookworms, cause little to no

overt pathology when present in modest numbers and may even confer benefits to their

human host. To exploit this evolutionary phenomenon, clinical trials of human helminth

infection have been established and assessed for safety and efficacy for a range of immune

dysfunction diseases and have yielded mixed outcomes. Studies of live helminth therapy in

mice and larger animals have convincingly shown that helminths and their excretory/secre-

tory products possess anti-inflammatory drug-like properties and represent an untapped

pharmacopeia. These anti-inflammatory moieties include extracellular vesicles, proteins,

glycans, post-translational modifications, and various metabolites. Although the concept of

helminth-inspired therapies holds promise, it also presents a challenge to the drug develop-

ment community, which is generally unfamiliar with foreign biologics that do not behave like

antibodies. Identification and characterization of helminth molecules and vesicles and the

molecular pathways they target in the host present a unique opportunity to develop tailored

drugs inspired by nature that are efficacious, safe, and have minimal immunogenicity. Even

so, much work remains to mine and assess this out-of-the-box therapeutic modality. Indus-

try-based organizations need to consider long-haul investments aimed at unraveling and

exploiting unique and differentiated mechanisms of action as opposed to toe-dipping entries

with an eye on rapid and profitable turnarounds.

Introduction

Parasitic worms (helminths) infect approximately 2 billion people worldwide, predominantly

children in rural subtropical and tropical areas with inadequate sanitation [1]. Helminths have

struck a balance with their hosts, refined by millennia of coevolution, to meet their needs for

propagation and transmission while minimizing pathology [2]. They promote wound healing

and tissue repair and skew distinct immune processes to improve their long-term survival.
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Arguably, the most masterful trait of parasitic helminths, from a drug development perspec-

tive, is their ability to potently regulate host inflammatory responses.

Helminth-mediated prevention of inflammatory and metabolic

disorders in people

In industrialized nations, there has been a reduction in exposure to infectious agents because

of vaccination, increased sanitation, improved hygienic standards, and widespread use of anti-

biotics. The vast decline in the prevalence of contagious diseases from these communities, hel-

minthiases, in particular, is inversely associated with an alarming increase in the incidence of

inflammatory and metabolic disorders [3]. For example, the Western world is experiencing an

increasing rate of inflammatory bowel disease (IBD), and at present, there is no available cure.

Compounding matters, there has been a sharp rise in the incidence of IBD and allergies in the

newly industrialized nations of Asia and Latin America [4]. This increase in noncommunic-

able diseases is, at least in part, a result of diets becoming westernized, decreased exposure to

infections, large scale deworming programs, and mass migration [5].

Although the association between helminths and inflammatory diseases is multifactorial,

selective pressure placed on the human genome by historically widespread helminth infection

has driven various polymorphisms, including at loci associated with predispositions to inflam-

matory diseases [6]. Moreover, minimal exposure to pathogens results in an underdeveloped

regulatory immune network, culminating in an increased prevalence of disorders that result

from immune dysfunction [7, 8]. Helminth-mediated protection is not, however, restricted to

autoimmune and allergic diseases. There is an inverse relationship observed between human

helminth infection, insulin resistance, and type 2 diabetes (T2D) [9, 10]. It has been proposed

that chronic helminth infection results in long-term beneficial effects on host metabolism,

especially on white adipose tissue (WAT), intestines, and liver [11]. Understanding the molec-

ular mechanisms of WAT inflammation is topical in drug development given the epidemic of

metabolic diseases, and we will touch upon this again later in the review.

The mechanisms by which parasitic helminths regulate inflammation and metabolism are

diverse and complex and have been reviewed extensively [11–15]. Helminths are potent driv-

ers of T helper type 2 (TH2) immune responses, characterized by eosinophilia, mast cell masto-

cytosis, type 2 innate lymphoid cells (ILC2s), tuft cells, and mucus production. Overlaid on

this TH2 response, however, is a predominant state of immune tolerance, characterized by an

abundance of IL-10 produced by regulatory cell populations such as regulatory T cells (Tregs),

regulatory B cells (Bregs), tolerogenic dendritic cells (DCs), and alternatively activated macro-

phages. Furthermore, the interactions between helminths, the microbiome and its attendant

metabolites [16–21], and the nervous system have become increasingly important (Fig 1).

Clinical trials of experimental human helminth infections for

treating inflammatory diseases

Experimental helminth infections have been used in the treatment of allergic and autoimmune

diseases in human clinical trials for over 15 years and have yielded promising results (Table 1).

Two helminth species have been used in clinical trials for treating inflammatory diseases—the pig

whipworm Trichuris suis and the human hookworm Necator americanus. The therapeutic poten-

tial of orally administered T. suis ova (TSO) has been assessed in phase 1 trials in patients with the

2 primary forms of IBD—Crohn’s disease and ulcerative colitis. After 12 weeks of therapy, signifi-

cant improvement according to the intent-to-treat principle occurred in patients receiving TSO

compared with those who received placebo [22]. TSO was also assessed in an open-label clinical

trial in Crohn’s disease patients, in which 72% of subjects were in remission after 24 weeks [23].
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Disappointingly, although early trials with T. suis showed promise, subsequent phase 2 trials failed

to reach their clinical endpoints in both IBD [24] and multiple sclerosis [25, 26].

T. suis establishes chronic infections in pigs but is expelled from the human body within

weeks and therefore requires frequent dosing. On the other hand, N. americanus is primarily a

human parasite and can survive for years in infected individuals [27]. Experimental infection

with N. americanus is safe and well tolerated in human volunteers [28–30]. In a small phase 1

clinical trial for Crohn’s disease, percutaneous administration of N. americanus in relatively low

doses was well tolerated, and patients who remained in the trial for 1 year were in disease remis-

sion [31]. A subsequent trial targeted celiac disease because of its histopathological similarities

to IBD. Celiac subjects on a gluten-free diet who were experimentally infected with N. ameri-
canus displayed improved tolerance to escalating gluten micro-challenge, a decreased presence

of inflammatory cytokine-producing T cells in the gut, and corresponding increases in mucosal

Treg numbers [30]. Indeed, with the growing body of literature supporting a role for inflamma-

tion in driving T2D [32], a clinical trial using experimental N. americanus infection is currently

being conducted to investigate the therapeutic effect of helminth infections in metabolic disor-

ders (Fig 2) [33]. Most of these early-phase clinical trials were impaired by the absence of a

Fig 1. "Worm therapy" for immune dysregulation diseases. The range of host physiological factors impacted by gastrointestinal helminth infection could

alleviate inflammatory disease. (1) Parasite-derived factors drive an inclusive or exclusive polarized regulatory or type 2 response, which is responsible for (2)

direct secretion of anti-inflammatory molecules from the host immune system (3) and the promotion of barrier integrity, which is often compromised in the

pathophysiology of IBD and foodborne incompatibilities. Furthermore, (4) helminth colonization provides factors for a diverse bacterial environment that

protects against gut inflammation. IBD, inflammatory bowel disease; TH2, T helper type 2; Treg, regulatory T cell.

https://doi.org/10.1371/journal.ppat.1008508.g001
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Table 1. Completed and ongoing therapeutic clinical trials using helminth products in humans in disease settings. These trials are rigorously assessing the safety and

tolerability of experimental helminth infection and therapeutic efficacy of infections in disease indications.

Trial/phase Helminth Status (year

range)

Study title and treatment Results outcome Reference

Phase I TSO 2003

(complete)

Crohn’s disease

Initial safety studies of oral inoculation (2,500

ova) over 12 weeks (n = 7).

Patients displayed clinical improvements

and no serious adverse events.

[128]

NCT01433471

Phase 1 and 2

TSO 2005

(complete)

Ulcerative colitis

Open-label study randomized, double-blind,

placebo-controlled oral inoculation (2,500 ova)

over 12 weeks (n = 30).

Improvement in disease index by 43% in

treatment cohort.

[23]

EUCTR2011-

006344-71-DE

Phase 1

TSO 2008 to 2011

(terminated)

Rheumatoid arthritis

Oral inoculation (2,500 ova) in 2-week intervals

for 24 weeks (n = 50).

Trial terminated and results unknown. Immanuel

Hospital Berlin,

Germany

NCT00645749

Phase 2

TSO 2008 to 2015

(complete)

Multiple sclerosis

(HINT) Oral inoculation (2,500 ova) 2-week

intervals for 12 weeks (n = 17).

Trend toward 35% diminution in active

lesions. Increase in T regulatory

lymphocytes with treatment. Increase in

serum levels of IL-4 and IL-10 during

treatment. No serious adverse events.

[129]

NCT01006941

Phase 2

TSO 2009 to 2011

(complete)

Multiple sclerosis

Nonrandomized, open-labeled oral inoculation

(2,500 ova) 2-week intervals for 12 weeks (n =
10).

No obvious benefit observed in infection

group. Mild to self-limiting adverse events.

[25]

EudraCT no.

2007-006099-12

Phase I

TSO 2007 to 2010

(complete)

Allergic rhinitis

Randomized, double-blind, placebo-controlled,

2,500 ova administered (n = 49) and placebo (n
= 47).

No therapeutic effect on allergic rhinitis of

infection.

[130]

NCT01413243

Phase 2

TSO 2011 to 2016

(terminated)

Multiple sclerosis

(TRIOMS) randomized control trial of oral

inoculation (2,500 ova) 2-week intervals for 12

weeks (n = 50).

Unknown [131]

NCT01434693

Phase 1

TSO 2011 to 2013

(complete)

Crohn’s disease

Randomized, double-blind, placebo-controlled

sequential oral dose escalation (500, 2,500,

7,500 ova) (n = 36).

Placebo and treatment groups experience

minor adverse events. No obvious

improvement in pathology with infection.

[132]

NCT01576471

Phase 2

TSO 2013

(unknown)

Crohn’s disease

(TRUST-1) Randomized, double-blind,

placebo-controlled oral inoculation of 7,500

ova in 2-week intervals. Placebo group

included.

Unknown results of study Coronado

Biosciences,

United Kingdom

NCT01279577

Phase 2

TSO 2011 to 2015

(complete)

Crohn’s disease

Randomized, double-blind, placebo-controlled,

low, medium, high oral inoculation ova

(n = 254) participants.

Unknown results of study Dr. Falk Pharma,

Germany

NCT01836939

Phase 1

TSO 2013 to 2015

(complete)

Plaque psoriasis

Randomized, 2-arm trial of oral inoculation

(2,500 ova) in 2-week intervals for 10 weeks

and (7,500 ova) in 2-week intervals for 10

weeks (n = 8).

Unknown results of study Icahn School of

Medicine at Mount

Sinai, US

NCT01948271

Phase 1

TSO 2013 to 2016

(terminated)

Plaque psoriasis

Open-label, oral inoculation (7,500 ova) in

2-week intervals for 14-week duration (n = 3).

Trial terminated because of a lack of

efficacy

Tufts Medical

Center, US

NCT02011269

Phase 2

TSO 2013 to 2016

(withdrawn)

Plaque psoriasis

Randomized, blinded, placebo-controlled,

3-arm trial of oral inoculation (7,500 ova) in

2-week intervals for 10 weeks, (15,000 ova) in

2-week intervals for 10 weeks.

Trial withdrawn and results unknown. Coronado

Biosciences, UK

(Continued)
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standardized manufacturing protocol for N. americanus. However, methods for the production

of cGMP human hookworms were recently described [34] and are essential advances if hel-

minth therapy is to receive widespread acceptance by the medical fraternity [35].

Further to therapeutic trials of helminth infections in inflammatory disease settings, dose-esca-

lation controlled helminth infections in healthy volunteers are currently ongoing (S1 Table), pri-

marily intending to develop a platform to test anti-helminth vaccines and drugs [34, 36].

Table 1. (Continued)

Trial/phase Helminth Status (year

range)

Study title and treatment Results outcome Reference

Phase 1

N.

americanus
larvae

2006

(complete)

Crohn’s disease

Proof of concept: inoculation with larvae at

week 0 (n = 9) and week between week 27 to 30

(n = 5)

Remission at week 45 observed in 5

patients inoculated in week 0. No serious

adverse events.

[31]

N.

americanus
larvae

2009 Allergic rhinoconjunctivitis

30 individuals with allergic rhinoconjunctivitis

were randomized and inoculated with 10 larvae

or placebo and followed for 12 weeks.

Hookworm infection did not induce

clinically significant exacerbation of airway

responsiveness.

[133]

NCT00469989 N.

americanus
larvae

2010 Asthma

Randomized, placebo-controlled, inoculation

with 10 larvae and followed for 16 weeks

(n = 30).

Hookworm infection did not significantly

improve bronchial responsiveness nor

other measures of asthma control.

[28]

NCT00671138

Phase 2

N.

americanus
larvae

2007 to 2011

2011 to 2016

(completed)

Celiac disease

Randomized, double-blinded, placebo-

controlled trial. Part 1: inoculating celiac

disease patients with the human hookworm N.

americanus larvae at week 0 (n = 10) and week

12 (n = 10), followed by oral gluten challenge at

week 20 of 16 g gluten per day for 5 days.

Part 2: inoculating celiac disease patients with

the N. americanus larvae at week 0 (n = 7) and

week 12 (n = 7). At week 20, subjects were

given an oral gluten challenge at week 20 of 16

g gluten per day for 5 days.

Infection conferred no obvious benefit to

pathology. Mucosa of hookworm-infected

subject maintained healthy appearance. No

serious adverse events.

Duodenal biopsy culture of hookworm-

infected subjects had suppressed IL-17A

and IFN-γ and increased levels of IL-10,

IL-5 and regulatory T cells.

No serious adverse events.

[30, 134]

NCT01661933

Phase 1 and 2

N.

americanus
larvae

2012 to 2014

(completed)

Celiac disease

Inoculating celiac disease patients with the

human hookworm N. americanus larvae at

week 0 (n = 10) and week 4 (n = 10), followed

by incremental gluten challenge (n = 12).

Ten patients successfully tolerated gluten

challenge. No serious adverse events.

[135]

NCT02754609

Phase I

N.

americanus
larvae

2016 to 2020

(completed)

Celiac disease

Hookworm therapy for celiac disease

(NainCeD-3). Randomized, placebo (n = 10),

inoculation week 0 and week 8 (n = 40) to

assess safety and dose-ranging clinical trial

examining sustained gluten challenge.

Manuscript in preparation James Cook

University,

Australia

NCT00630383

Phase 2

N.

americanus
larvae

2008 to 2012

(withdrawn)

Multiple sclerosis

Randomized, inoculation 25 larvae at week 0.

Placebo group included.

Withdrawn—superseded by a similar study University of

Nottingham, UK

NCT01470521

Phase 2

N.

americanus
larvae

2011 to 2016

(complete)

Multiple sclerosis

(WIRMS)

Randomized, inoculation 25 larvae at week 0 (n
= 36). Placebo group (n = 36).

Unknown study results University of

Nottingham, UK

HINT, Helminth-induced Immunomodulation Therapy; IFN-γ, interferon gamma; IL, interleukin; TRIOMS, Trichuris Suis Ova in Recurrent Remittent Multiple

Sclerosis; TRUST-1, Treatment With Oral CNDO 201 Trichuris Suis Ova Suspension in Patients; TSO, Trichuris suis ova; WIRMS, Worms for Immune Regulation of

Multiple Sclerosis.

https://doi.org/10.1371/journal.ppat.1008508.t001
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Insights into parasite–host interactions from animal models

Excretory-secretory products

Helminths secrete bioactive molecules that can suppress or skew host immune responses; col-

lectively, this suite of molecules is referred to as excretory/secretory products (ESPs). ESPs are

a complex mixture of proteins, peptides, nucleic acids, lipids, glycans, and small organic mole-

cules. Administration of ESPs from many nematodes and platyhelminth species induces

immune responses that reflect the active infections. Moreover, ESPs have therapeutic proper-

ties in a range of animal models of autoimmunity, allergy, and metabolic disease (see recent

reviews [37–39]). Indeed, the use of ESPs instead of active helminth infection potentially

addresses some of the drawbacks and obstacles currently faced by experimental helminth ther-

apy [38].

ESPs from many helminths, including at least 2 hookworm species (Ancylostoma caninum
and A. ceylanicum), protected mice against T-cell-dependent trinitrobenzene sulfonic acid

(TNBS)-induced colitis [39] and T-cell-independent dextran sulfate sodium (DSS) colitis [40,

41]. Prevention of immunopathology with ESPs is not only restricted to diseases driven by

TH1/TH17 responses; both immuno-epidemiological observations [42] and mouse studies [43,

44] have shown that helminths and ESPs are also potent suppressors of TH2-driven allergic

Fig 2. Inflammation and metabolic imbalance versus glucose homeostasis and weight loss, in response to infection with gastrointestinal nematodes and

intravascular blood flukes and their ESPs. Chronic inflammation in adipose tissue is linked to a switch to M1 macrophages and the production of TNF-α and

IL-1β. Helminth infection and helminth ESPs induce changes in the gut that lead to a regulatory/TH2 milieu that results in reduced inflammation in adipose

tissue, enhanced glucose homeostasis, and decreased weight gain in obese animals. Furthermore, this regulatory/TH2 milieu increases IL-33 produced in adipose

tissue by stromal cells within the progenitors of both adipocytes and mesenchymal cells. The production of IL-33 induces resident ILC2 to produce IL-5, which

recruits eosinophils. Eosinophils in white adipose tissue secrete IL-4, which induces M2 macrophages. The production of IL-33 also induces regulatory T and B

cells to produce IL-10, which sustains M2 macrophage activity. ESPs, excretory/secretory product; IL, interleukin; ILC2, type 2 innate lymphoid cell; M1,

classically activated macrophage; M2, alternatively activated macrophage; TH2, T helper type 2; TNF, tumour necrosis factor.

https://doi.org/10.1371/journal.ppat.1008508.g002
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inflammation. The ability of ESPs to regulate all major forms of immunopathology is primarily

attributed to its potent regulatory properties [45, 46]. Helminth ESPs drive a modified TH2

response that is different from the canonical TH2 response seen in allergies in which activated

CD4+ cells secrete TH2 cytokines, including interleukin (IL)-4, IL-5, and IL-13 [47]. ESPs

instead induce a modified TH2 response characterized by the secretion of regulatory cytokines

such as IL-10 and the immunosuppressive transforming growth factor-beta (TGF-β) to ensure

the containment of infection to manageable levels and that excessive TH2 inflammation does

not ensue [48].

ESPs target innate immune cell function

Parasitic helminths target several cell types that orchestrate a characteristic immune regulatory

phenotype, notably, antigen-presenting cells such as DCs and macrophages. DCs possess

intrinsic tolerance mechanisms that are integral initiators of the TH2 response [49]. Regulatory

or tolerogenic DCs expressing integrin alpha E (CD103) are located in the intestinal mucosa

and mesenteric lymph nodes [50]. Mucosal CD103+ DCs are capable of antagonizing TH2

induction in Schistosoma mansoni and Heligmosomoides polygyrus infections in mice. Mucosal

CD103+ DCs secrete TGF-β, retinoic acid, and IL-2 and prevent immune-mediated pathology

by promoting the expansion of Treg populations and maintaining intestinal homeostasis. Hel-

minth ESPs target DCs and macrophage activation through suppression of pattern recognition

receptor function, diminishing the ability of these innate sentinels to detect and respond to

pathogen-associated molecular patterns (reviewed in [37]). Hookworm ESPs induce CD103+

DCs to express retinoic acid, which, in turn, facilitated the expansion of Tregs in a mouse

model of asthma [51]. Moreover, helminth ESPs are known potent inducers of M2 macro-

phages [52], a cell population that drives TH2 responses and promotes wound repair [2].

Recent studies have shed light on the mechanisms by which helminths initiate TH2

responses by signaling through ILC2s (reviewed in [53]). ILC2s are enriched in the mucosa of

gastrointestinal nematode–infected mice and arise in response to secretion of the alarmin IL-

25 by intestinal tuft cells [54]. ILC2s respond rapidly to the presence of helminths by increas-

ing in number and secretion of type 2 cytokines [54]. This cascade, in turn, results in the repair

of epithelial barriers and recruitment of other innate cells, including eosinophils and culmi-

nates in the activation of TH2 cells and regulatory pathways.

Helminths induce Treg activity

Tregs constitute around 5% of circulating CD4+ T cells and are identified by the lineage

marker forkhead box P3 (FOXP3). Mutations in several genes that orchestrate Treg function,

including the IL-2 receptor alpha subunit CD25 and cytotoxic T-lymphocyte-associated pro-

tein 4 (CTLA-4) result in the development of severe autoimmune syndromes [55], so Tregs

constitute a significant target for new therapeutic strategies. Such research is focusing on the

ability of Tregs to mediate immune regulation via multiple mechanisms, including IL-2 depri-

vation, secretion of the regulatory cytokines IL-10 and TGF-β, and acquisition of costimula-

tory molecules from antigen-presenting cells through binding to CTLA-4.

Both nematodes and platyhelminths are potent drivers of Treg responses. In mice infected

with either Nippostrongylus brasiliensis or S. mansoni, IL-4 receptor alpha-mediated signaling

on Tregs was required in vivo for control of helminth-induced inflammation [56]. H. polygyrus
ESPs directly induces Tregs in vitro using FOXP3-green fluorescent protein reporter mice [49],

and more recently, several helminth recombinant proteins have been shown to drive Treg

expansion [37]. Indeed, from a clinical perspective, molecules that drive expansion, mobiliza-

tion, or increased mucosal homing of 9Tregs are the holy grail for many disorders that result
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from immune dysregulation [57, 58], and we will provide defined examples later in this review.

Regulatory B cells (Bregs) are also a feature of helminth infections [59] and are the primary

source of IL-10 and other tissue-protective proteins, including (Resistin-like molecule-α)

RELMα [60, 61]. Indeed, in mice infected with H. polygyrus, IL-10+ Breg cells were able to pro-

mote expansion and maintenance of IL-10+ FOXP3+ Treg cell populations [61]. Fig 3 summa-

rizes the multitude of cellular immune pathways upon which helminths and their ESPs impact,

including the well-established influence of DCs, but also the emerging potential roles for factors

produced by microbes, sensory neurons, and specialized intestinal epithelial cells that initiate

the very early response to helminth exposure via ILC2s and innate granulocytes [62, 63]. These

recently identified biological pathways may, therefore, be potential therapeutic targets for

immunoregulation by helminths and their secreted products.

Helminth therapeutic moieties

Despite the wealth of literature supporting the therapeutic use of helminth ESPs for treating

inflammatory disorders, the capacity of a crude parasite-derived supernatant to be developed

as a drug is limited. ESP proteomes from many distinct species of helminths have been charac-

terized, and their annotation has been supported by the increasing number of draft genomes

[64]. Although a handful of individual proteins with immunoregulatory properties have been

identified from ESPs, helminth-secreted proteomes still present a relatively untapped pharma-

copeia [65, 66]. Next, we highlight a select group of molecules with proven immunoregulatory

roles and potential therapeutic properties.

Proteases and protease inhibitors

There are numerous examples of proteins from multicellular ecto- and endoparasites that have

evolved from a protease or protease inhibitor scaffold but no longer possess canonical activity

[65–67]. For example, 2 of the most abundant ESP proteins in A. caninum possess an ancestral

netrin domain and are structural homologs of the tissue inhibitor of metalloprotease (TIMP)

family [68]. Although A. caninum anti-inflammatory protein (Ac-AIP)-1 and Ac-AIP-2 pos-

sess a TIMP-like domain, they do not appear to have the ability to suppress matrix metallopro-

tease catalytic activity and instead have evolved a distinct anti-inflammatory function [67, 69].

Recombinant AIPs suppressed expression of DC activation and costimulation markers [52,

70] and drove the subsequent expansion and mucosal homing of Tregs, which protected

against inducible asthma [51]. Prophylactic treatment of mice with recombinant Ac-AIP-1 in

chemically induced colitis protected mice against weight loss, clinical disease, and intestinal

histopathology and significantly reduced the expression of hallmark TH1/TH2/ TH17 cytokines

that drive inflammation in human IBD [71].

In similar fashion to the plasticity of the TIMP-like domain in hookworms, there is growing

evidence that throughout their evolution, some cysteine protease inhibitor (cystatin) super-

family members have acquired novel roles that are independent of cysteine protease inhibition

[72]. Filarial nematodes secrete cystatins that possess the canonical papain-like enzyme inhibi-

tory activity but have also evolved a novel function that allows them to inhibit the catalytically

distinct asparaginyl endopeptidase activity. This dual function assists in the inhibition of anti-

gen processing in the major histocompatibility complex (MHC) class II pathway [73]. Cysta-

tins from various helminth species suppress the secretion of inflammatory cytokines and

promote IL-10 production by macrophages in particular [74, 75]. Cystatin from the filarial

nematode Acanthocheilonema viteae suppressed inducible colitis and asthma in mice and dis-

played ex vivo bioactivity with human peripheral blood mononuclear cells from atopic patients

with grass pollen allergy [76]. Moreover, oral delivery of A. viteae recombinant cystatin via
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continual dosing of transgenic Lactococcus lactis prevented the onset of colitis in pigs [76].

Subsequent studies have shown that cystatins from other helminths, both nematodes, and

platyhelminths, can suppress inducible colitis [77–79].

Cytokine mimics and cytokine-binding proteins

There is a growing body of literature on helminth ESPs that possess cytokine-like functions

but not necessarily cytokine-like sequence homology or secondary structure. For example, H.

polygyrus secretes a protein called H. polygyrus TGF-β mimic (Hp-TGM) that binds to the

mammalian TGF-β complex and drives human and mouse Treg production but has no

sequence homology to mammalian TGF-β. Instead, Hp-TGM is a member of the complement

control protein (CCP) superfamily [80]. Recombinant Hp-TGM delayed allograft rejection in

mice and increased Treg numbers in draining lymph nodes at the site of graft transplant,

highlighting a potential use for this protein in a range of inflammatory settings. In like fashion,

N. americanus activation-associated secreted protein (Na-ASP-2) secreted by N. americanus

Fig 3. Helminths and their ESPs manipulate the host immune system. Helminth infection promotes TH2 cell differentiation, Treg responses, macrophage

polarization, and mucus production, which are regulated by multiple upstream events and stimulated by signals from the worm (ESPs), but also signals from the

microbiome (metabolites) and tissue damage (alarmins). DCs are central to these processes and respond to alarmins, ESPs, and metabolites to adopt a regulatory

phenotype that promotes Treg, Breg, and TH2 cell development and suppress TH17 and TH1 cell responses. In addition, helminth-induced damage to the

epithelium causes the release of alarmins such as TSLP, IL-25, and IL-33 from tuft cells and other epithelial cells, which can act on ILC2s and granulocytes to

augment production of type 2 cytokines. This network is also influenced by sensory neurons within the gut that sense signals from helminths and microbes and

elicit production of neuropeptides such as NMU and CGRP to regulate ILC2 responses directly. Breg, regulatory B cell; CGRP, calcitonin gene-related protein;

DC, dendritic cell; ESPs, excretory/secretory product; ILC2, type 2 innate lymphoid cell; NMU, neuromedin U; TH2, T helper type 2, TLSP, thymic stromal

lymphopoietin; Treg, regulatory T cell.

https://doi.org/10.1371/journal.ppat.1008508.g003
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infective larvae is a member of the sperm-coating protein (SCP/TAPS) family and has struc-

tural- and charge-mimicking features of CXC-chemokines that recruit Tregs [81]. Na-ASP-2

was shown to bind to CD79A on human B cells whereupon it affected the expression of genes

involved in leukocyte transendothelial migration [82].

H. polygyrus secretes a cytokine-binding protein called H. polygyrus alarmin release inhibi-

tor (HpARI). This protein also belongs to the CCP family and inhibits the release of alarmins

[83]. HpARI binds directly to IL-33 and nuclear DNA, thereby tethering the alarmin within

necrotic cells and preventing its release. Recombinant HpARI administered to mice intrana-

sally suppressed ILC2s and eosinophil responses in the lungs of mice after administration of

Alternaria allergen, highlighting its utility for treating inflammatory diseases in the lungs in

particular.

Helminth molecules that accelerate wound healing

Helminths penetrate and migrate through skin and tissues without causing significant damage.

The mechanisms employed by helminths to concurrently reduce injury and stimulate healing in

the host are currently being explored [61, 84–86]. Most of the existing literature focuses on the

role of the TH2 response—type 2 macrophages in particular—in driving wound repair; however,

a handful of helminth-secreted molecules with wound healing properties have been described.

The liver fluke, Opisthorchis viverrini, secretes a granulin (GRN)-like growth factor, Ov-GRN-1,

which promotes wound healing and angiogenesis [87]. Recombinant Ov-GRN-1 is challenging to

express in scalable form, so a readily-synthesized bioactive peptide fragment of Ov-GRN-1 that

retained both in vitro and in vivo wound healing properties was identified and retained the in

vivo therapeutic properties of the parent protein [88]. Given the alarming incidence of T2D and

associated comorbidities such as nonhealing diabetic foot ulcers, topical growth factor-like pro-

teins and peptides from helminths address an area of great unmet need [89, 90].

Post-translational modifications

Many helminth immunomodulatory proteins are secreted and therefore undergo post-transla-

tional modifications (PTM). In some cases, the PTM are responsible for the addition of the

regulatory moiety of interest. For example, the dominant ESP of A. vitae is ES-62. This glyco-

protein that has therapeutic effects in a range of mouse models of inflammatory disorders such

as arthritis [91], asthma [92], and even systemic lupus erythematosus [93]. ES-62 is an amino-

peptidase that carries N-glycans decorated with phosphorylcholine (PC) [94, 95]. The fusion of

PC to an unrelated carrier protein demonstrated that it retained its therapeutic properties,

thus proving that PC is the bioactive moiety of ES-62 [96]. Small drug-like analogs of PC for

the treatment of arthritis and chronic lung fibrosis have overcome immunogenicity concerns

with the sizeable ES-62 protein [97, 98].

Chemical deglycosylation of ESPs from some helminths ablates protection against inflam-

matory diseases [99], highlighting the importance of glycans in driving regulatory responses.

One such glycan that decorates schistosome soluble egg antigens (SEAs) and secreted egg pro-

teins is the Lewis X-containing glycan found on dominant egg proteins such as omega-1 and

interleukin-4-inducing principle (IPSE)/alpha-1 [100]. Recombinant IPSE/alpha-1 expressed

in wild tobacco drives IL-10 production from Bregs [101] and suppresses inflammatory cyto-

kine responses by skewing inflammatory monocytes toward anti-inflammatory M2 macro-

phages [102]. Administration of SEA to mice induced TH2 immune responses characterized

by M2 macrophages and eosinophils in WAT and liver and reduced fat mass gain and lowered

insulin resistance and glucose intolerance [103, 104] (Fig 2). Protection against metabolic dis-

ease was dependent on the engagement of the mannose receptor CD206 and the release of IL-
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33, inducing ILC2-dependent improvements in metabolic status [105]. The immunomodula-

tory Lewis X-containing glycan, lacto-N-fucopentaose III (LNFPIII) from the schistosome teg-

ument also improves glucose tolerance and insulin sensitivity in diet-induced obese mice, at

least in part via increased IL-10 production by macrophages and DCs, and resulted in reduced

WAT inflammation [106]. LNFPIII treatment also up-regulated the expression of the multi-

purpose farnesoid X nuclear receptor (FXR)-α to reduce lipogenesis in the liver, thereby pro-

tecting against hepatosteatosis [107]. Producing appropriately glycosylated recombinant

versions of schistosome glycoproteins has proven challenging. Nevertheless, recent efforts to

glycoengineer Lewis X-containing proteins in wild tobacco with coexpression of defined glyco-

syltransferases proved successful [105] and opened up new possibilities for generating appro-

priately glycosylated immunotherapeutics.

Helminth metabolites—an untapped resource for small-molecule

therapeutics

Although helminth proteins and their PTMs have been documented and discussed elsewhere

in this review, much less is known about parasitic helminth metabolomes. The metabolomics

revolution has begun to reveal small-molecule metabolites in parasitic helminth somatic

extracts and ESPs [108–111]. Helminthology has been slow to adopt cutting edge metabolo-

mics techniques [111], partly because of the difficulty in obtaining sufficient quantities of

ESPs, but also because of the diversity in physicochemical properties of metabolites results in it

being almost impossible for a single analytical method to provide the required full coverage of

the metabolome of a given biological sample. As such, particular analyses are biased toward

certain groups of metabolites. Only a handful of studies have characterized helminth metabo-

lomes, and even fewer have addressed the anti-inflammatory properties of these molecules. A.

caninum secretes metabolites that suppress both inducible colitis in mice and ex vivo produc-

tion of inflammatory cytokines from human PBMCs [112]. The identity of the protective moi-

eties is not yet known, but short-chain fatty acids secreted by the parasite (or the hookworm’s

resident microbiota) are prospective candidates. Another candidate is succinate, a metabolite

that is produced by the intestinal microbiota that is critical for inducing intestinal tuft cells to

initiate TH2 responses. Succinate was recently shown to be a major component of metabo-

lomes of gastrointestinal helminths [109, 112] and was significantly enriched in the ESP meta-

bolome of hookworms compared to the somatic tissue metabolites.

The lipidome of different developmental stages of S. mansoni was recently described, and

the egg stage was shown to be enriched in oxylipids with known immunoregulatory properties

such as prostaglandins [113]. Indeed, prostaglandin E2 is secreted in high amounts by T. suis
compared to other lipids and suppresses TNF and IL-12 secretion from lipopolysaccharide-

activated human DCs [114]. Of course, prostaglandins are not unique to helminths and are a

therapeutic target in their own right because of their up-regulation in some aggressive cancers

[115]. Helminth metabolites that are likely to be candidate small-molecule drugs are those that

are unique to parasites and have evolved to suppress defined immunopathological pathways

safely and are readily synthesizable. We anticipate substantial growth in this area in the coming

years given the increased access of researchers from diverse fields to metabolomics platforms.

Helminth-secreted extracellular vesicles in the treatment of inflammatory

disorders

The discovery that parasitic helminths secrete extracellular vesicles (EVs) has spurred a new

paradigm in the discovery of helminth-derived immunotherapeutics and antihelminth vac-

cines [116, 117]. EVs are a heterogeneous group of lipid-enclosed vesicles in the nano- to the
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micrometer size range. There is increasing evidence that helminth EVs are essential players in

regulating host inflammation and immunity, and their application as anti-inflammatory thera-

peutics has been considered. However, to date, the exact mechanisms by which helminth EVs

polarize immune responses remain elusive.

In the Alternaria model of allergic asthma, administration of H. polygyrus EVs significantly

reduced lung immunopathology via ILC2-mediated suppression of innate immunity [118].

The anticolitic therapeutic potential of helminth EVs has also been demonstrated in several

recent reports. N. brasiliensis EV-treated mice were protected from T-cell-dependent acute

colitis, specifically by the suppression of inflammatory cytokines and increased expression of

IL-10 [119]. EVs from the liver fluke Fasciola hepatica can modulate T-cell-independent colitis

[120], characterized by reduced expression of intestinal proinflammatory cytokines that sup-

press both mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-

enhancer (NF-κB) signaling pathways.

Perhaps the most intriguing aspect of helminth EVs (from a drug development perspective)

is the abundance of vesicular microRNAs (miRNAs) that are predicted to target mammalian

host genes, particularly those involved in immune processes. Helminth EVs are actively inter-

nalized by host cells [119, 121], providing a mechanism by which the parasites transfer genetic

material to the host in a bid to actively manipulate host gene expression [116, 118]. There is a

growing body of literature demonstrating the presence of parasite-specific miRNAs secreted

by worms, but little is known about their specific interactions with host genes. H. polygyrus
miRNAs were shown to down-regulate the expression of the mouse phosphatase gene dusp1
(which corresponds to MKP-1 in humans), a key regulator of MAPK signaling and TH1

responses to toll-like receptor ligands using a luciferase reporter assay [118].

Looking forward, a deeper understanding of helminth miRNA immunobiology may lead to

advances in miRNA-based therapeutics for a whole host of immune dysfunction diseases,

including conditions like scleroderma, in which defined miRNAs (of host origin) are already

in preclinical and clinical development (reviewed in [122]). EV research has been critical for

demonstrating how miRNAs could be used to treat disease, but some practical challenges and

obstacles need to be overcome before this type of therapy enjoys mainstream application

[123].

Turning worm proteins into conventional drugs

The molecular diversity of known helminth ESPs with therapeutic properties is impressive,

and considering that we have only dipped our toes in the water, the potential breadth of moie-

ties is prodigious. Each family of molecules and even individual members within those families

present unique and shared challenges. Moreover, the pharmacokinetic (PK) properties of a

helminth-derived therapeutic protein and how best to deliver it to the target tissue/organ are

challenging. For example, an ideal IBD drug would be delivered orally, and although some hel-

minth ESPs have likely evolved to be stable in acidic environments, ensuring that a protein

enjoys safe passage through the stomach and delivery to the specific cell type in the gut is not

straightforward. Moreover, what does the optimal PK profile of a helminth protein look like?

Unlike most biologics (e.g., monoclonal antibodies) in which plasma half-life can be measured

in weeks, a helminth protein might only be present for hours. This longer half-life might, how-

ever, be sufficient for enduring functional activity via impact on defined cell types and mobili-

zation of those cells to inflamed tissues [51]. The foreignness of a helminth protein also poses

potential immunogenicity concerns, and the development of antidrug antibodies could be

problematic.
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Furthermore, the recombinant expression platform is of paramount importance for the

production of helminth biologics. Many groups are expressing recombinant helminth proteins

in cell lines that are used for industrial-scale production of antibodies and other therapeutic

proteins. Levels of endotoxin and other host cell-derived contaminants need to be strictly con-

trolled for cGMP grade production of biologics, particularly for immunotherapeutics that aim

to wind down inflammatory responses (as opposed to promoting them with vaccines), so an

emphasis on eukaryotic cell expression platforms, such as HEK293, is recommended.

Helminth-derived miRNAs are predicted to target an impressive array of mammalian host

genes involved in inflammation, but how those miRNAs might be therapeutically delivered to

target cells, internalized, and then encounter their target gene is not clear [124, 125]. In the

natural setting, many miRNAs are delivered to target cells in the sheltered environment of

EVs, but recapitulating this process for a therapeutic purpose requires novel approaches, such

as the use of synthetic exosomes [126].

Despite these challenges, evolutionary selection pressure has tailored helminth ESPs to be

efficacious and safe, at least in the setting of active helminth infection. Of course, in a therapeu-

tic setting, the dose, the frequency, and route of administration are likely to be different. Fur-

thermore, it is important to note that numerous nature-inspired drugs, sourced from the

venom of various invertebrates and vertebrates, are commercially available for treating a range

of disorders [127]. It is timely that helminths now join this list and that drugs inspired by these

exquisitely adapted parasites get the attention they deserve. The scientific community implores

industry-based organizations to make long-term investments intended at deciphering and cap-

italizing on the extraordinary and diverse modes of action of these products to unearth the

next generation of novel therapeutics.
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