

This is the author-created version of the following work:

McKnight, Donald T., Carr, Leah J., Bower, Deborah S., Schwarzkopf, Lin, Alford, Ross A., and Zenger, Kyall R. (2020) *Infection dynamics, dispersal, and adaptation: understanding the lack of recovery in a remnant frog population following a disease outbreak.* Heredity, 125 pp. 110-123.

Access to this file is available from: https://researchonline.jcu.edu.au/63493/

© The Author(s), under exclusive licence to The Genetics Society 2020

Please refer to the original source for the final version of this work: https://doi.org/10.1038/s41437%2D020%2D0324%2Dx

1	This is a pre-print copy. The final paper is available from the publisher's
2	website https://www.nature.com/articles/s41437-020-0324-x
3	and (free) here <u>https://rdcu.be/b4ygt</u> . DOI: <u>10.1038/s41437-020-0324-x</u>
4	
5	Heredity
6	
7	Infection dynamics, dispersal, and adaptation: Understanding the lack of
8	recovery in a remnant frog population following a disease outbreak
9	
10	Running title: Understanding the lack of recovery in frog population
11	
12	Donald T. McKnight ^{1,2} *, Leah J. Carr ¹ , Deborah S. Bower ^{1,2} , Lin
13	Schwarzkopf ¹ , Ross A. Alford ¹ , Kyall R. Zenger ¹
14	
15	¹ College of Science and Engineering, James Cook University, Townsville,
16	Queensland, Australia
17	² School of Environmental and Rural Science, University of New England,
18	New South Wales, Australia
19	*Corresponding author email: <u>donald.mcknight@my.jcu.edu.au</u>
20	
21	Words: 6700
22	

23 Abstract

24	Emerging infectious diseases can cause dramatic declines in wildlife
25	populations. Sometimes these declines are followed by recovery, but many
26	populations do not recover. Studying differential recovery patterns may yield
27	important information for managing disease-afflicted populations and
28	facilitating population recoveries. In the late1980s, a chytridiomycosis
29	outbreak caused multiple frog species in Australia's Wet Tropics to decline.
30	Populations of some species (e.g., Litoria nannotis) subsequently recovered,
31	while others (e.g., Litoria dayi) did not. We examined the population genetics
32	and current infection status of L. dayi, to test several hypotheses regarding the
33	failure of its populations to recover: 1) a lack of individual dispersal abilities
34	has prevented recolonization of previously occupied locations, 2) a loss of
35	genetic variation has resulted in limited adaptive potential, and 3) L. dayi is
36	currently adapting to chytridiomycosis. We found moderate to high levels of
37	gene flow and diversity (Fst range: <0.01–0.15; minor allele frequency:
38	0.192–0.245), which were similar to previously published levels for recovered
39	L. nannotis populations. This suggests that dispersal ability and genetic
40	diversity do not limit the ability of <i>L dayi</i> to recolonize upland sites. Further,
41	infection intensity and prevalence increased with elevation, suggesting that
42	chytridiomycosis is still limiting the elevational range of <i>L. dayi</i> . Outlier tests
43	comparing infected and uninfected individuals consistently identified 18
44	markers as putatively under selection, and several of those markers matched
45	genes that were previously implicated in infection. This suggests that L. dayi

- 46 has genetic variation for genes that affect infection dynamics and may be
- 47 undergoing adaptation.
- 48

49 Introduction

50	Recent decades have seen a dramatic increase in emerging infectious
51	diseases in wildlife. These diseases are caused by a diverse range of pathogens
52	(including bacteria, fungi, and viruses) and have afflicted many taxa, often
53	causing devastating declines or even extinctions (Daszak et al. 2000; Smith et
54	al. 2006; Scheele et al. 2019). Diseases often shift from being epizootic to
55	being enzootic, and in some cases, populations may rebound following an
56	initial outbreak (Woodworth et al. 2005; McKnight et al. 2017a; Scheele et al.
57	2017). These recoveries are not guaranteed, and in any one area, some species
58	may recover while others continue to either decline or persist only in low
59	numbers (McKnight et al. 2017a; Bell et al. 2020). These differential recovery
60	patterns among populations or species may hold important clues for
61	understanding how wildlife populations respond to diseases, and
62	understanding differential population responses may enhance conservation
63	efforts and prevent or limit declines in other populations and species.
64	Chytridiomycosis presents a useful model to study differential
65	recoveries. This disease is caused primarily by the fungal pathogen
66	Batrachochytrium dendrobatidis (Bd) and has caused declines and extinctions
67	in hundreds of amphibian species around the world (Berger et al. 1998;
68	Daszak et al. 1999; Lips et al. 2006; Scheele et al. 2019). The Wet Tropics of
69	Queensland, Australia experienced a large Bd outbreak in the late 1980s and
70	early 1990s, during which several species declined, including green-eyed
71	treefrogs (Litoria serrata [previously genimaculata]), waterfall frogs (Litoria

72	nannotis), and Australian lace-lid frogs (Litoria [previously Nyctimystes] dayi;
73	Ingram and McDonald, 1993; Richards et al. 1993; Laurance et al. 1996;
74	McDonald and Alford 1999). Historically, all three species occurred along
75	rainforest creeks at most elevations; however, during the Bd outbreak,
76	populations above 300-400m elevation (hereafter referred to as "upland")
77	either declined sharply (L. serrata) or disappeared (L. nannotis and L. dayi),
78	while lowland populations (< 300–400m) remained stable (Richards et al.
79	1993; Laurance et al. 1996; McDonald and Alford 1999). Following this initial
80	decline, upland L. serrata populations quickly recovered at most sites, while
81	L. nannotis gradually recolonised many, but not all, upland sites (McKnight et
82	al. 2017a; Bell et al. 2020). Both of these species now have breeding
83	populations at the headwaters of many upland creeks, despite the fact that Bd
84	is still present and continues to infect both species (Richards and Alford 2005;
85	McKnight et al. 2017a). In contrast, L. dayi has not recolonised upland sites
86	and continues to be restricted to low elevations (McKnight et al. 2017a; Bell et
87	al. 2020).
88	In a previous study (McKnight et al. 2019), we examined the

89 population genetics of *L. serrata* and *L. nannotis* and found that both species

90 have high levels of gene flow among populations but recovered upland

91 populations have reduced genetic diversity. We also found that large areas of

- 92 high-quality lowland habitat appeared to be important refugia for maintaining
- 93 diversity during the outbreak. However, the question of why *L. dayi* has not
- 94 recolonized the upland sites has yet to be addressed. Therefore, in the current

study, we built on our previous results by studying the current infection status
and population genetics of *L. dayi*. We then compared our results for *L. dayi* to
our previously published results on other species.

98 Specifically, we tested three hypotheses regarding the lack of upland 99 recolonization in L. dayi: 1) Litoria dayi is restricted by low dispersal ability, 100 which has prevented them from recolonising upland sites (null hypothesis: L. 101 *dayi* has moderate or high dispersal ability, similar to other species in the area 102 that have recovered from the outbreak); 2) The chytridiomycosis outbreak 103 resulted in a genetic bottleneck reducing the genetic diversity required for 104 adapting to the disease (null hypothesis: L. davi has moderate or high genetic 105 diversity, similar to other species in the area that have recovered from the 106 outbreak); and 3) Litoria dayi is currently in the process of adapting to Bd 107 (null hypothesis: L. dayi does not show evidence of adaptation). These three 108 hypotheses were tested by examining current infection patterns, connectivity, 109 and genetic diversity among regions, populations, and individuals, as well as 110 searching for signatures of selection across the genome. These results were 111 then compared to the previously published genetic patterns we documented for 112 L. serrata and L. nannotis populations.

113

114 Materials and Methods

115 Study sites and samples

Toe tips (hereafter referred to as tissue samples) were collected from *L*. *dayi* populations in three areas: Wooroonooran National Park, Tully Gorge

118	National Park (hereafter "Tully"), and Girramay Range/Kirrama Range
119	National Parks (Figure 1). Girramay and Kirrama border each other and share
120	contiguous forests and streams; therefore, they will be referred to as a single
121	site: "Girramay-Kirrama." At each park, frogs were sampled for DNA at both
122	the highest (~300–400m) and lowest (~50–200m) elevations currently
123	occupied by L. dayi (Table 1). At Wooroonooran, frogs were sampled at two
124	points along Pugh Creek. At Tully, L. dayi was sampled at Python Creek and
125	an unnamed creek (both creeks feed into the Tully River), and at Girramay-
126	Kirrama, frogs were sampled from two creeks at the current highest elevation
127	for L. dayi (these sites correspond to "DCl" and "MRl" in our previous study
128	on L. nannotis and L. serrata; McKnight et al. 2019). Both creeks connect
129	below those sampling sites, so a third site was sampled downstream, at the
130	lowest elevation for L. dayi at Girramay-Kirrama. At all three parks, there was
131	a direct water connection between the highest and lowest elevation sites.
132	In addition to the tissue samples, we also collected data on the current
133	infection status of <i>L. dayi</i> and examined how elevation influenced infection.
134	The expectation was that if Bd is preventing L. dayi from recolonizing upland
135	sites (as opposed to a lack of dispersal ability or genetic diversity), then both
136	infection prevalence and intensity should increase with increasing elevation.
137	To test this, skin swabs were collected from all captured frogs at each tissue
138	sampling site, and frogs were swabbed at additional sites between our tissue
139	sampling sites (two each at Tully and Wooroonooran, and one at Girramay-
140	Kirrama). These sites were selected to cover the entire current elevation range

of *L. dayi*, with roughly evenly spaced sampling points at each park. More
details on sampling sites and sample sizes are provided in Figure 1 and Tables
1 and 2.

144 At each site, frogs were sampled at night by walking a transect starting 145 at the highest point where L. dayi could be found at upland sites, and at the 146 lowest point where L. dayi could be found at lowland sites. Every L. dayi 147 encountered was sampled until a minimum representative number $(n \sim 30)$ had 148 been reached, or no more L. dayi could be found. At Girramay-Kirrama, L. 149 *dayi* were rare, resulting in long transects, particularly at the lowest elevation; 150 whereas at Tully, they were abundant, resulting in short transects (Table 1). 151 Female L. dayi spend most of their time in the forest, and they are seldom 152 found along streams (Hodgkison and Hero 1999). As a result, all samples were 153 collected from males, with the exception of one female at Girramay-Kirrama, 154 one female at Tully (swab only), and one juvenile at Tully. All sampling took 155 place in September 2017, and each site was sampled during a single night or, 156 if necessary, on 2 consecutive nights. No recaptures occurred when sampling 157 took two nights.

Each frog was captured in a clean plastic bag, handled using a new pair
of nitrile gloves, and released at its collection site within minutes of being
captured. Tissue samples were collected *via* toe tips (one from each rear foot).
This procedure is minimally invasive and does not typically result in bleeding.
The scissors were dipped in ethanol and flame sterilized between each frog.
Tissues were stored in vials of 70% ethanol. Skin swabs were collected by

rubbing a sterile, rayon-tipped swab (Medical Wire, MW113), along the
stomach, thighs of each rear leg, and each rear foot (five times each, 25
strokes total). All samples were kept at room temperature for up to 48 hours,
after which they were placed on ice for transport. Tissue samples were stored
at 4°C and *Bd* swabs were stored at -20°C.

169

170 Bd extraction, qPCR, and analysis

171 To assess the infection status of *L. dayi*, the DNeasy Blood and Tissue 172 DNA extraction kit (Qiagen) was used for each skin swab following the 173 standard protocol with two modifications: an overnight digestion and two 20 174 µl elutions. The extracted DNA was sent to Cesar Australia, a commercial 175 company, to perform triplicate qPCR following the standard protocol outlined 176 in Boyle et al. (2004). Frogs were only considered Bd positive if $Bd \ge 0.1$ 177 zoospore equivalent) was identified in all three of the qPCR triplicates. 178 Eighteen samples amplified in only one or two of the triplicates. These 18 179 samples were considered "ambiguous" and were removed from all analyses. 180 To control for contamination, we made six blanks (i.e., clean swabs that were 181 placed in vials without swabbing frogs) and extracted them and ran qPCR 182 alongside the actual samples. There was no amplification in any of the blanks. 183 Ceasar Australia also tested a subset of 31 samples for PCR inhibition using 184 the TaqMAN Exogenous Internal Positive Control (VIC labelled) kit and did 185 not find inhibition in any of the samples.

186	A binomial generalized linear regression model in R (R Core
187	Development Team 2017) was used to look for an association between Bd
188	infection prevalence (i.e., proportion of individuals that were infected) and
189	elevation. Infection status was the response variable and elevation, park, and
190	their interaction were the explanatory variables. All individuals were included
191	regardless of infection status or intensity (excluding the 18 ambiguous
192	samples). To test for an association between infection intensity (i.e., zoospore
193	load) and elevation, a linear model in R was used. Infection intensity (log_{10} of
194	qPCR results) was the response variable and elevation, park, and their
195	interaction were the explanatory variables. All Bd positive individuals were
196	included in this model, regardless of zoospore load. The significance of the
197	relationships was tested using the Anova function in the car package (Fox and
198	Weisberg 2011) with a type 2 sum of squares. For the binomial model,
199	overdispersion was checkedby dividing the residual deviance by the degrees of
200	freedom (1.17), and for the linear model, a residual plot and QQ plot were
201	used to assess model fit.
202	
203	Genomic DNA extraction and sequencing
204	Genomic DNA was extracted from each sample using the cetyl
205	trimethyl ammonium bromide (CTAB) procedure (with a chloroform
206	precipitation; Doyle and Doyle 1987), and the quality and quantity of DNA

- 207 was checked using gel electrophoresis and a Nanodrop DNA/RNA
- 208 spectrophotometer analyser. Genome-wide single nucleotide polymorphisms

209 (SNPs) were generated by Diversity Arrays Technology (DArT PL), Canberra
210 Australia, using their proprietary DArTSeq[™] genotyping by sequence
211 methodology (Sansaloni et al. 2011; Kilian et al. 2012). This same approach
212 was previously used to generate the high quality SNP data for *L. serrata* and
213 *L. nannotis* that we used for comparisons (McKnight et al. 2019) and is
214 explained in detail elsewhere (Lal et al. 2017; Lind et al. 2017; Kjeldsen et al.
2019).

216 Briefly, DArTSeqTM SNP genotyping used both frequent and rare 217 restriction enzymes *PstI* and *SphI*, to perform a joint digestion-ligation 218 reaction at 37°C for two hours with approximately 100-200ng of individual 219 gDNA. Custom proprietary barcoded adapters were used in the ligation 220 reaction to facilitate individual sample recognition and allow for primer 221 binding sites. Each sample was individually PCR amplified using custom 222 primers to selectively enrich target fragments for sequencing and was 223 visualised via gel electrophoresis. Samples that displayed incomplete or non-224 uniform digestion and amplification patterns were removed from the library. A 225 minimum of 15% random technical replicates was included for downstream 226 quality and performance measurements. Batches of individuals were pooled 227 and sequenced (77 cycles) on a single flow-cell lane on an Illumina HiSeq 228 2500 according to manufacturer's recommendations. 229 Individual raw fastq sequence data were de-multiplexed and adapters 230 trimmed with any individual read containing base pair Q-scores <30 removed.

231 All sequence data were checked against DArTdb database sequences to

- 232 identify read contamination for removal (Sivasankaran et al. 1993). SNP
- calling was conducted using the DArTsoft14 software within the KDCompute
- analyses pipeline developed by Diversity Arrays Technology
- 235 (http://www.kddart.org/kdcompute.html) following Lind et al. (2017) and
- 236 Kjeldsen et al. (2019). KDCompute first created clusters (or stacks) of
- 237 identical reads at a dataset level with three nucleotide mismatches allowed.
- 238 These sequence clusters were then compared and matched to one another to
- 239 identify polymorphisms. Following SNP identification, individual locus
- 240 performance metrics were generated, including call rate, homozygote and
- 241 heterozygote proportions, polymorphic information content (PIC), allele
- average read depth and reproducibility (based on technical replicates).
- 243

244 *Post genotyping filtering and quality control*

245 DArTSeq sequencing and filtering pipelines delivered a total of 33,016 246 SNPs. To obtain the highest quality data, SNPs were further filtered by first 247 removing duplicate SNPs within the same sequence reads (69 base pairs) and 248 sequences with a high degree of similarity (assigned with a 95% probability; 249 Lal et al. 2017). Next, the following criteria were applied: average number of 250 reads (averaged between the two alleles) \geq 7, minor allele frequency (MAF) \geq 251 0.02, call rate = 1.0 (i.e., no missing data), and reproducibility \geq 0.9. A very 252 stringent call rate was used because of the possible presence of null alleles at 253 some parks (McKnight et al. 2019).

254	To identify potential outlier loci under selection, BayeScan v.2.1,
255	(false discovery rate $[FDR] = 0.1$; Foll and Gaggiotti 2008; Foll 2012),
256	HacDivSel (Carvajal-Rodriguez 2017), and FstHet (Flanagan and Jones 2017)
257	were used both on the entire dataset (with each collection site as a population)
258	and on each park separately (at Girramay-Kirrama, both higher elevation sites
259	[G1 and G2] were entered as a single population; HacDivSel was not used for
260	the entire dataset because it requires datasets within only two populations).
261	This produced four sets of tests (one for the entire dataset and one for each
262	park). Any markers that were identified as outliers in at least two programs for
263	any of the four sets of tests were removed, producing a neutral data set. This
264	procedure was used simply for the purpose of making a neutral data set
265	(neutral among populations), not for identifying markers that were under
266	selection specifically for Bd.
267	Once a neutral data set had been constructed, PLINK (v1.9; Purcell et
268	al. 2007) was used to test for linkage disequilibrium (LD; all individuals were
269	included in the analysis). Any links with an $R^2 \ge 0.6$ were removed. To
270	minimize the loss of data, this was done by iteratively removing the SNPs with
271	the greatest number of significant links until no links ≥ 0.6 remained.
272	The GWASExactHW package in R (v1.01; Painter and Washington
273	2013) was used to identify markers that were out of Hardy-Weinberg
274	equilibrium (HWE). This test was performed with all the sites within each
275	park combined into a single population. Any markers that were significantly
276	out of HWE (P < 0.01) at all populations were removed (P values were not

adjusted for multiple comparisons, resulting in the retention of a conservativeset of markers).

These filtering steps resulted in a final dataset of 8,304 high quality, neutral SNPs. With the exception of the call rate threshold and the filtering criteria for neutral markers (i.e., outlier tests), these were the same filtering steps used in McKnight et al. (2019) for *L. serrata* and *L. nannotis*.

283

284 Population structure and connectivity

Several methods were used to examine population structure and
connectivity, thus testing the hypothesis that *L. dayi* has low physical dispersal
abilities that are preventing it from recolonising the uplands. First, the genetic
distances among populations were calculated as *Fst* values in Arlequin
(v3.5.2.2; Excoffier et al. 2005). Second, the divMigrate function in the R
package diveRsity (v1.9.90; Keenan et al. 2013) was used to examine
differential migration rates.

292 Population structure was visualized using both NetView R (v1.0;

293 Steinig et al. 2015) and a Discriminant Analysis of Principal Components

294 (DAPC) via the R package "adegenet" (v2.0.1; Jombart 2008; Figure 1).

295 Additionally, an analysis of molecular variance (AMOVA) in Arlequin was

used to examine how the variance was partitioned among parks and within

297 parks (parks were included as the groups, with sampling sites within parks

included as the populations).

300 *Genetic diversity*

301	Genetic diversity was examined both within each sampling site and
302	within each park (all sampling sites combined). The following metrics were
303	calculated: minor allele frequencies (MAF), percent of markers that were
304	polymorphic within a given site or park (both with and without rarefying),
305	expected and observed heterozygosities (Genetix v4.05.2; Belkhir 2004), and
306	Fis (Genetix). Additionally, the effective population size (Ne) was calculated
307	using the LD method in NeEstimator, using only alleles with a $MAF > 0.05$
308	(v2.01; Do et al. 2014).

309

310 Adaptation

311 To construct a data set to identify markers under selection for Bd, the 312 data were carried through the previously described filtering steps (except for 313 removing outliers, removing SNPs in LD, and removing SNPs out of HWE) 314 following the same settings used before, with one exception. Only using 315 individuals that were not missing any data resulted in a large loss of markers. 316 Therefore, to maximize the chance of detecting selection, a less-stringent 317 threshold of 70% (i.e., less than 30% missing data) was used. Then, to reduce 318 the presence of null alleles, for each SNP a Fisher's exact test was used to 319 compare the amount of missing data among the three parks, and any SNPs that 320 were significantly different at a false discovery rate (FDR) of 0.05 were 321 removed.

322	Outlier tests were conducted in BayeScan (FDR = 0.1) (Foll and
323	Gaggiotti 2008; Foll 2012), HacDivSel (Carvajal-RodrõÂguez 2017), and
324	FstHet (Flanagan and Jones 2017). In each test, uninfected individuals were
325	compared with individuals that were infected with a load equivalent to the
326	DNA of at least ten zoospores. This threshold was selected a priori and was
327	used to reduce noise in the tests by removing individuals who may have
328	simply carried a few zoospores acquired from the environment without
329	actually being infected.

330 The fundamental concept behind each outlier detection program is that 331 alleles under selection will differ in frequency between two (or more) groups 332 more strongly than the background difference between the groups (i.e., those 333 markers are "outliers"). In our case, the expectation was that if an allele was 334 under selection due to a role in *Bd* infection dynamics, the difference in the 335 allele frequencies between infected and uninfected individuals would exceed 336 the expected difference based on the background level of differentiation 337 between those groups. Each program applies a different strategy to identify 338 outliers (e.g., BayeScan uses a Bayesian approach based on the multinomial-339 Dirichlet model, whereas FstHet and HacDivSel apply frequentist methods), 340 generally resulting in different outcomes from each method. Some of these 341 results can be spurious for a variety of reasons, such as a mismatch between 342 the evolutionary mechanism that produced the observed differences and the 343 expected mechanism based on a program's assumptions. Therefore, we 344 implemented a conservative approach and only considered markers significant 345 outliers (i.e., putatively under selection) if they were identified as outliers in 346 all three tests. This provided a robust set of markers that had a high probability 347 of being under selection. 348 We could not perform tests on subsets of the data (e.g., for an 349 individual park or elevation) due to small sample sizes for subsets. Therefore, 350 to control for differences among parks and elevations, the genetic distance (1-351 proportion of shared alleles) among individuals was calculated using only the 352 markers that were identified as outliers in all tests. Then the adonis2 function 353 in the R package vegan (Oksanen et al. 2017) was used to run a 354 PERMANOVA with elevation and park as the first terms in the model, 355 followed by *Bd*, which was included as a binary factor (infected ≥ 10 356 zoospore equivalents] or uninfected [0 zoospore equivalents]). All interactions 357 were included (5,000 iterations). This tested whether infected and uninfected 358 individuals were genetically distinct (based on the markers that were 359 putatively under selection) after accounting for the effects of elevation and 360 park. To verify the utility of the PERMANOVA for this application, the 361 probability that a random subset of markers would return a significant 362 difference between infected and uninfected individuals was assessed by 363 repeatedly (1,000 iterations) randomly selecting 18 markers (the number that 364 were significant in all three outlier tests) and re-running the PERMANOVA 365 using only those markers to calculate genetic distance. 366 Additionally, for markers that were identified as outliers in all three 367 tests, an NCBI BLAST (blastn) search was used to align them with the

368	following genomes: Xenopus (taxid: 8353), Rana (taxid: 8399), and Nanorana
369	(taxid: 120497). For each sequence, the best two matches (based on lowest E-
370	value) were retained for further examination. An identical BLAST search was
371	also conducted for four markers that were identified as outliers in both
372	BayeScan (the most conservative method) and FstHet, but not HacDivSel (no
373	markers were identified as outliers in BayeScan and HacDivSel, but not
374	FstHet). NCBI, UniProt, GeneCards, and Xenbase were used to determine the
375	putative functions of the genes.

- 376
- 377 Results
- 378 Infection status

379 Both *Bd* infection intensity ($F_{1,208} = 8.05$, P = 0.005) and prevalence $(X^{2}_{1,320}, P < 0.001)$ increased significantly with increased elevation (Figures 2 380 381 and 3). There were also significant differences among parks in both analyses $(F_{2,208} = 6.36, P < 0.001; X^{2}_{2,320}, P = 0.021;$ respectively), but interactions were 382 383 not significant ($F_{2,208} = 0.54$, P = 0.586; $X^{2}_{2,320}$, P = 0.137; respectively). 384 Infection prevalences at the highest elevations within each park were high, 385 with 66.7-89.7% of individuals infected with Bd. 386 387 Low dispersal hypothesis 388 There was no evidence of genetic subdivision within parks (all $Fst \leq$

- 389 0.04) and only moderate differences among parks (all $Fst \le 0.15$; Figure 1).
- 390 Similarly, both NetView (Figure 1B) and DAPC (Figure 1C) showed that each

391	park clustered separately from the others, but there was little evidence of sub-
392	structure within parks (nearly all of the variation in the DAPC was explained
393	by differences among parks; Figure 1C). Further, the AMOVA found that
394	differences among parks accounted for 9.05% of the variation in the data,
395	whereas differences among sampling sites within parks only explained 1.55%
396	of the variation (differences among individuals within sites = 2.11% ; variation
397	within individuals = 87.3%). The divMigrate results suggested that geneflow
398	was bi-directional along the streams (Figure 1A).
399	

.....

. .

c

400 Loss of genetic diversity hypothesis

401 Diversity analyses did not suggest inbreeding or a large loss of

402 diversity (Table 3; Figure 4). Girramay-Kirrama had slightly reduced diversity

403 compared to the other parks, but expected and observed heterozygosities were

404 similar at all sites, and *Fis* values did not deviate substantially from zero.

405 Similarly, average MAFs per site ranged from 0.192–0.245 and the percentage

406 of polymorphic markers within each site ranged from 79.0–97.8%.

407 Nevertheless, N_e estimates were low at Girramay-Kirrama (7.9–40.3 per site)

408 and Wooroonooran (38.0–63.3 per site).

409

001

410 Adaptation hypothesis

411 BayeScan identified 22 outlier loci, HacDivSel identified 422, and

- 412 FstHet identified 492 (550 markers total). Eighteen markers were identified as
- 413 outliers by all three programs, and four were identified by BayeScan and

414	FstHet, but not HacDivSel (no markers were identified as outliers in BayeScan
415	and HacDivSel, but not FstHet). The PERMANOVA based on the 18
416	consensus markers found a significant effect of Bd (pseudo P < 0.001) after
417	accounting for elevation (pseudo $P < 0.001$) and park (pseudo $P < 0.001$);
418	however, elevation and park explained more of the variation (elevation R^2 =
419	0.137, park $R^2 = 0.222$, <i>Bd</i> $R^2 = 0.062$). The only significant interaction was
420	between elevation and park (pseudo $P = 0.005$; Supplementary Information).
421	For the 1,000 PERMANOVAs using the same model structure and
422	individuals, but random subsets of 18 markers, only 4.2% showed a significant
423	effect of <i>Bd</i> (pseudo $P < 0.05$), which is close to the expected type 1 error rate.
424	The lowest pseudo P value from random subsets of markers was 0.0026,
425	whereas our pseudo P value for the 18 consensus markers was 0.0002. This
426	suggests that it is unlikely that our results arose by chance, and the 18
427	consensus markers likely constitute an actual genetic difference between
428	infected and uninfected frogs. This difference can be visualized with
429	ordination plots (Figure 5).
430	The BLAST search found matches for all 22 of the potential outliers
431	we tested (18 consensus markers + four that were found in BayeScan and
432	FstHet but not HacDivSel). We could not find standard gene ontology terms
433	for many of these sequences, therefore we used the information available in
434	NCBI, UniProt, GeneCards, and Xenbase to assign the sequences into
435	categories of putative functions or systems (see Supplementary Information
436	for details about the SNPs and BLAST results). SNP sequences with the

437	highest BLAST scores (based on e-values [0.003–4.9]) were grouped into the
438	following categories based on biological functionality (five fit into two
439	categories): cell surface functions (recognition, movement, transport across the
440	membrane) = 6, DNA/RNA (transcription, maintenance, repair) = 3, skin = 3,
441	tumour regulation and apoptosis = 3, organelle structure and cytoskeleton = 3,
442	nervous system = 3, immune system = 1, nuclear transport = 1, meiosis = 1,
443	unknown or matches to full sequences rather than genes = 3 . The second best
444	BLAST matches (based on e-values) were similar (20 matches; three fit into
445	two categories): cell surface functions (recognition, movement, transport
446	across the membrane) = 3, skin = 3, tumour regulation and apoptosis = 3,
447	organelle structure and cytoskeleton = 3, DNA/RNA (transcription,
448	maintenance, repair) = 2, immune system = 1, nervous system = 1, GTPase
449	activation = 1, unknown or matches to full sequences rather than genes = 6 .
450	Several of these (e.g., genes related to skin function and cell cycle regulation)
451	have obvious implications for <i>Bd</i> and are consistent with previous studies.
452	Nevertheless, it should be noted that due to the short length of our sequences
453	and the lack of genomes for closely related species, many of these matches
454	were low quality (only 10 markers had a match with an e-value <1, the
455	remaining matches had e-values of 1.4 or 4.9).
456	

457 **Discussion**

458 Our results suggest that *L. dayi* has both high population connectivity459 (consistent with effective dispersal) and high levels of genetic diversity

460 (comparable to those of *L. nannotis* and *L. serrata*). The results allowed us to
461 test the hypotheses we advanced in the introduction regarding possible effects
462 of dispersal, bottlenecking, selection, and ongoing infection on the lack of
463 recovery in *L. dayi*.

464

465 *Low dispersal hypothesis*

466 Our results are not consistent with the hypothesis that low dispersal 467 abilities have prevented L. dayi from recolonising upland sites. Population 468 connectivity provides a useful proxy for dispersal ability, and we observed 469 high levels of connectivity within each park (based on *Fst* values), and both 470 NetView and the DAPC showed little evidence of structuring. Additionally, 471 divMigrate did not detect asymmetry in the gene flow patterns, suggesting that 472 frogs were moving both upstream and downstream. Although a downstream 473 bias in gene flow is common in some stream-dwelling species (Bolnick et al. 474 2008; Guarnizo and Cannatella 2013), its absence in L. dayi makes sense, 475 because their eggs are attached to rocks and their tadpoles possess adaptations 476 to fast-flowing water, such as suctorial mouth discs and specialized tails, to 477 prevent them from being washed downstream (Davies and Richards 1990). 478 The *Fst* values for *L*. *dayi* were similar to the previously reported 479 values for *L. nannotis* (which went through the same pattern of declines but 480 has recolonised many upland sites). Indeed, at Girramay-Kirrama, where our 481 G1 and G2 sites correspond to L. nannotis sampling sites in McKnight et al. 482 (2019), L. dayi only had a slightly higher Fst than L. nannotis (0.04 compared

to 0.01), and when looking across similar sites from each study, the ranges of *Fst* values were similar for both species (*L. dayi*: <0.01–0.04; *L. nannotis*:
0.01–0.08; only sites with direct water connections were included in these
ranges). These results are also consistent with previous work showing that *L. dayi* move away from streams, with females spending most of the year in the
forest (Hodgkison and Hero 1999).

489 Taken together, these results do not suggest a low dispersal ability in L. 490 dayi. Indeed, the similarities to previously reported values and patterns for L. 491 *nannotis* suggest that both species have similar dispersal abilities. Therefore, 492 given that *L. nannotis* experienced the same declines, at the same sites, as *L*. 493 dayi, but has recolonised many upland sites, a lack of dispersal ability in L. 494 dayi does not appear to explain its lack of recovery. Another possibility, 495 suggested by Bell et al. (2020), is that L. dayi has failed to recolonize upland 496 sites because of limited dispersal opportunities due to small lowland 497 population sizes, rather than an inherent lack of dispersal ability. Although this 498 may have played a role at Girramay-Kirrama, L. dayi was abundant in the 499 lowlands at Tully and Wooroonooran, making this hypothesis unlikely at those 500 sites. 501 Additionally, the infection data showed that both the prevalence 502 (percent of individuals infected) and intensity (zoospore load) of infections

- 503 increased with elevation, with 66.7% or more of individuals infected at the
- 504 highest elevations currently occupied by *L. dayi*. This result agrees with an *L*.
- 505 *dayi* survey conducted in 2013 (Bell et al. 2020) and suggests that *Bd* is likely

still a substantial problem for *L. dayi* and continues to restrict its upperelevational range.

508

509 Loss of genetic diversity hypothesis

510 Litoria dayi had high levels of genetic diversity, and our results do not 511 suggest that a lack of diversity has prevented them from adapting and 512 recovering from the disease outbreak. Although the diversity was slightly 513 lower at Girramay-Kirrama than at Wooroonooran or Tully, possibly as a 514 result of Bd (McKnight et al. 2019), none of the parks showed obvious signs 515 of inbreeding or low diversity. Several factors affect a population's ability to 516 retain diversity during an outbreak, including the duration of the decline, the 517 number of individuals that survived the decline, and gene flow from 518 neighbouring populations (McKnight et al. 2017b). Thus, although diseases 519 can cause a large loss of genetic diversity (Trudeau et al. 2004; Schoville et al. 520 2011; Albert et al. 2014; Serieys et al. 2015), many populations can endure a 521 large population size reduction without experiencing bottlenecks or inbreeding 522 (Morgan et al. 2008; le Gouar et al. 2009; Teacher et al. 2009; Lachish et al. 523 2011; Brüniche-Olsen et al. 2013). Populations of L. dayi at Wooroonooran 524 and Tully appear to be robust, with high densities of individuals occurring 525 over large areas (McKnight, pers. obs.). The species was less dense at 526 Girramay-Kirrama, but still occurred over a large area. Additionally, based on 527 the high levels of connectivity we observed, it is likely that our study 528 populations benefitted from gene flow from populations we did not sample.

529	The large number of individuals surviving in the lowlands, combined with
530	geneflow, would allow the retention of high levels of genetic diversity, despite
531	the loss of all populations at sites above 300–400m elevation (Lachish et al.
532	2011; Whiteley et al. 2015; McKnight et al. 2017a; McKnight et al. 2019).
533	The observed diversity values for L. dayi were similar to previously
534	reported values for L. serrata and L. nannotis (McKnight et al. 2019). At
535	Girramay-Kirrama, L. dayi had slightly lower genetic diversity values than L.
536	nannotis and L. serrata, but comparing the species across all sites, L. dayi at
537	Wooroonooran and Tully generally had slightly higher genetic diversity than
538	did L. serrata or L. nannotis at Girramay-Kirrama (Figure 4). Further, at all
539	three parks, L. dayi generally had higher diversity than did either L. serrata or
540	L. nannotis at Paluma Range National Park. These comparisons are admittedly
541	strained due to the fact that, in some cases, different parks were sampled for
542	different species. However, the fact that L. dayi showed no signs of
543	inbreeding, and has not been able to recover even at parks with high diversity,
544	while L. serrata and L. nannotis both recovered even at sites with low
545	diversity, suggests that a lack of genetic diversity is not precluding L. dayi
546	from adapting to coexist with Bd at upland sites.
547	Effective population sizes for <i>L. dayi</i> (7.9–7499.3; median = 40.3)
548	were largely comparable to previously reported values for L. nannotis (18.4-
549	1756.5; median = 62.9) and <i>L. serrata</i> (10.3–676.1; median = 212.9)
550	(McKnight et al. 2019). Effective population sizes for L. dayi at
551	Wooroonooran and Girramay-Kirrama were generally low, but effective

552	population sizes were higher at Tully, particularly at site T2, which had the
553	highest density of <i>L. dayi</i> (based on the transect distance required to sample 30
554	frogs: 150m as opposed to 350–1,540m; median = 560m); this site was also
555	close to numerous other small creeks populated by L. dayi. The other sampling
556	sites were comparatively more isolated. We also note that Tully generally had
557	lower infection intensities and prevalences compared to the other sites.
558	Additionally, the low effective population size values at some sites may be
559	partially a sampling artefact, because female L. dayi live in the forest where
560	we could not sample them (Hodgkison and Hero 1999).
561	
562	Adaptation hypothesis
563	Our results are consistent with the hypothesis that L. dayi is currently
564	undergoing adaptation to Bd. Previous research in other systems has
565	documented that there is a heritable component to Bd infection risk (Palomar
566	et al. 2016), and several studies have found evidence of Bd driving selection

- 567 (Grogan et al. 2018; Voyles et al. 2018; Kosch et al. 2019). Our results are
- 568 consistent with those studies. All three outlier tests identified the same 18
- 569 markers, and the subsequent PERMANOVA based on those markers
- 570 confirmed that infected and uninfected frogs were genetically distinct, even
- 571 after accounting for elevation and park. This suggests that selection for
- 572 resistance to *Bd* infection is occurring at those loci.
- 573 Additionally, the BLAST search matched several of the markers to
- 574 genes with potential implications for Bd infections. For example, five markers

575	matched genes related to skin function as either their best (3) or second-best
576	(3) match (one matched for both). One of these (NCBI: XM_018268914.1; e-
577	value = 1.4) was a keratin-associated protein, which is potentially of interest
578	because Bd colonizes keratinized surfaces, resulting in electrolyte imbalances
579	that can lead to death (Berger et al. 1998; Campbell et al. 2012). Further, three
580	of the matches (e-values = $0.4-1.4$) were for a fucosidase alpha-L gene
581	(FUCA1; NCBI: XM_018564520.1), which was also implicated in Bd
582	infection dynamics in southern corroboree frogs (Pseudophryne corroboree;
583	Kosch et al. 2019). That study used a laboratory infection trial followed by
584	genotyping each frog, and it used both outlier detection methods and a
585	genome-wide association analysis to look for genes that were associated with
586	Bd tolerance. Of 29 SNPs that they identified as potentially related to Bd, 20
587	matched fucosidase alpha-L genes. This agreement among studies is
588	interesting, given that L. dayi and P. corroboree are not closely related.
589	Nevertheless, there is good reason to suspect that fucosidase alpha-L genes
590	would be involved in infection dynamics, because fucose is common on
591	amphibian skin and likely plays a role in defence against pathogens, possibly
592	by preventing them from binding to the skin (Meyer et al. 2007). Additionally,
593	in mammals, fucosidase plays a role in the formation of the stratum corneum,
594	the layer predominantly infected by Bd (Nemanic et al. 1983; Berger et al.
595	1998; Abdayem et al. 2016).
596	Several other genes are also noteworthy. For example, two of our
597	sequences matched genes related to immune function (NCBI: KY587143.1

598	and XM_018243675.1; e-value = 4.9 and 1.4 respectively), one of which
599	(NCBI: KY587143.1) is associated with the MHC II complex. Additionally,
600	both our results and the results of Kosch et al. (2019) found an association
601	between <i>Bd</i> and the same sodium bicarbonate solute carrier, family 4 (slc4a9;
602	NCBI: XM_012959752.2; e-value = 4.9). Finally, four of our SNPs matched
603	genes involved in the regulation of tumours or apoptosis (two SNPs matched
604	for both the best and second-best match; e-value = $0.4-4.9$). Two of those
605	genes were specifically related to tumour regulation in skin cells (NCBI:
606	XM_018560900.1 and XM_018560908.1). Genes that regulate cell
607	proliferation and apoptosis may have an important role in the progression of
608	Bd infections (Richmond et al. 2009). Indeed, a study that compared gene
609	expression in <i>Bd</i> -sensitive and tolerant species as well as between infected and
610	uninfected individuals found significant differences in a large number of genes
611	related to apoptosis (Ellison et al. 2014). Another study (Brannelly et al. 2017)
612	examined apoptosis in two species of experimentally infected frogs (including
613	a Litoria species) and found that infection load correlated positively with cell
614	death, further supporting the notion that apoptosis has an important role in
615	infections.
616	The agreement among outlier detection methods, agreement with
617	previous research, and biological plausibility of the genes identified, all

- 618 support the hypothesis that *L. dayi* is currently adapting to *Bd* or, at the least,
- 619 has genetic variation for traits that have important roles in *Bd* infections.
- 620 Nevertheless, several caveats should be acknowledged. First, the results of our

621 BLAST searches were often low-quality matches, reducing confidence in 622 them. Second, this study was entirely observational. Therefore, although our 623 results are suggestive, more work on *L. dayi* is needed before we can confirm 624 that they are adapting to *Bd*. It would be particularly useful to employ 625 techniques such as controlled heritability genetic parameter investigations and 626 transcriptomics. Additionally, these efforts are currently hindered by a 627 shortage of genetic resources for frogs in the family Pelodryadidae (and 628 "treefrogs" more generally), and a reference genome for a member of this 629 group would greatly enhance our ability to test for adaptation to Bd. 630

631 Mechanisms allowing recolonization

632 Our results suggest that L. dayi may be in the process of adapting to Bd 633 despite a lack of upland recolonization. Therefore, it is worth briefly discussing how L. dayi could be adapting without experiencing upland 634 635 population recoveries, as well as discussing other mechanisms that could 636 allow recolonization. Although lowland populations of L. dayi have not 637 experienced the massive declines that occurred in the uplands, our results 638 show that many lowland individuals do become infected by *Bd*, particularly at 639 the highest elevation sites (~300-400m) where they currently occur. These 640 infections likely have fitness costs, even when they are sublethal (Chatfield et 641 al. 2013; Campbell et al. 2019), which would result in selective pressure. The 642 strength of that selective pressure is not clear, however, and it could take many 643 generations before alleles that confer resistance or tolerance to Bd are common enough in populations to allow the recolonization of upland sites (Robinson et
al. 2012). Here again, more research should be conducted on this species to
determine the strength of selection and follow populations for several

647 generations to attempt to document selection in action.

648 There are also several other potential explanations for the differential 649 recovery patterns of Australia's rainforest frogs that were beyond the scope of 650 this paper. For example, in some other systems, a shift in the timing of 651 reproduction has allowed populations to recover from declines associated with 652 Bd (Scheele et al. 2015). This has not been tested for our system, but it is 653 possible that L. nannotis and L. serrata underwent such a shift, while L. dayi 654 did not. Additionally, differences in skin microbial communities or anti-655 microbial peptides may have played a role in the differential recovery patterns, 656 as has been suggested in other systems (Kueneman et al. 2016; Jani et al. 657 2017; Bates et al. 2018; Bell et al. 2018). We are investigating this possibility, 658 and our current results suggest that the skin microbiomes of L. dayi do differ 659 from those of L. nannotis and L. serrata (McKnight 2019 [unpublished 660 thesis]). 661 These possibilities are not mutually exclusive with the hypothesis that

adaptation to *Bd* is occurring. For example, fucose levels on the skin could affect the microbiome, which could, in turn, affect *Bd*. Thus, adaptation may be being driven by interactions between the microbiota and *Bd*. Such pathways are clearly speculative, however, and future studies should continue to examine this system, test these possibilities, and further our understanding of the factors that allow some populations to recover while precluding recoveryin others.

669

670 Conclusion

We tested three hypotheses for the lack of upland recolonization in *L*. *dayi*, and our results suggest that neither low dispersal abilities nor a lack of
genetic diversity can explain the absence of population recoveries. We did,
however, find consistent evidence that some loci are undergoing selection.
Thus, it is possible that *L. dayi* is currently in the process of adapting to resist
infection by *Bd*, but more research is needed to confirm this, ideally including
controlled heritability trials.

678

679 Acknowledgements

680 We are indebted to Eric Nordberg and Donna Simmons for their 681 assistance collecting these samples. Additionally, we would like to thank the 682 members of the Molecular Ecology and Evolution lab for their advice and 683 assistance with laboratory work. Finally, we would like to thank the Wet 684 Tropics Management Authority and James Cook University College of 685 Science and Engineering for funding this research. This work was conducted 686 under Department of Environment and Heritage Protection permits 687 #WITK16243115 and #WITK18531217, and with the approval of James Cook 688 University's animal ethics committee (#A2209 and #A2437). 689

Competing Interests

691	All authors affirm that they have no competing interests to declare.
692	
693	Data Archiving
694	All data in this paper are available in the Supplementary Information.
695	An identical copy is also available on Dryad
696	(https://doi.org/10.5061/dryad.0gb5mkkz6).
697	
698	Supplementary Information
699	Supplementary Information.xlsx = SNP data (raw, neutral, and used
700	for outlier tests), Bd infection data, BLAST results, and metadata.
701	
702	Literature Cited
703	Abdayem R, Formanek F, Minondo AM, Potter A, Haftek M (2016). Cell
704	surface glycans in the human stratum corneum: distribution and depth-
705	related changes. Exp Dermatol 25: 865–871.
706	Albert EM, Fernández-Beaskoetxea S, Godoy JA, Tobler U, Schmidt BR,
707	Bosch J (2014). Genetic management of an amphibian population after a
708	chytridiomycosis outbreak. Conserv Genet 16: 103–111.
709	Bates KA, Clare FC, O'Hanlon S, Bosch J, Brookes L, Hopkins K, et al.
710	(2018). Amphibian chytridiomycosis outbreak dynamics are linked with
711	host skin bacterial community structure. Nat Commun 9: 1–11.
712	Belkhir K (2004). Genetix 4.05.2. Univ Montpellier II, Lab Génome Popul

713 Montpellier, Fr.

714	Bell SC, Garland S, Alford RA (2018). Increased numbers of culturable
715	inhibitory bacterial taxa may mitigate the effects of Batrachochytrium
716	dendrobatidis in Australian Wet Tropics frogs. Front Microbiol 9: 1–14.
717	Bell, SC, Heard GW, Berger L, Skerratt LF (2020). Connectivity over a
718	disease risk gradient enables recovery of rainforest frogs. Ecological
719	Applications.
720	Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, et al.
721	(1998). Chytridiomycosis causes amphibian mortality associated with
722	population declines in the rain forests of Australia and Central America.
723	Proc Natl Acad Sci U S A 95: 9031–9036.
724	Bolnick D, Caldera E, Matthews B (2008). Evidence for asymmetric migration
725	load in a pair of ecologically divergent stickleback populations. Biol J
726	Linn 94: 273–287.
727	Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004). Rapid
728	quantitative detection of chytridiomycosis (Batrachochytrium
729	dendrobatidis) in amphibian samples using real-time Taqman PCR
730	assayo Title. Dis Aquat Organ 60: 141–148.
731	Brannelly LA, Roberts AA, Skerratt LF, Berger L (2017). Epidermal cell
732	death in frogs with chytridiomycosis (MÁ Esteban, Ed.). PeerJ 5: e2925.
733	Brüniche-Olsen A, Burridge CP, Austin JJ, Jones ME (2013). Disease induced
734	changes in gene flow patterns among Tasmanian devil populations. Biol
735	Conserv 165: 69–78.

736	Campbell CR, Voyles J, Cook DI, Dinudom A (2012). Frog skin epithelium:
737	electrolyte transport and chytridiomycosis. Int J Biochem Cell Biol 44:
738	431–434.
739	Campbell L, Bower DS, Clulow S, Stockwell M, Clulow J, Mahony M (2019).
740	Interaction between temperature and sublethal infection with the
741	amphibian chytrid fungus impacts a susceptible frog species. Sci Rep 9:
742	83.
743	Carvajal-Rodriguez A (2017). HacDivSel: Two new methods (haplotype-
744	based and outlier-based) for the detection of divergent selection in pairs
745	of populations. PLoS One 12: e0175944.
746	Chatfield MWH, Brannelly LA, Robak MJ, Freeborn L, Lilvaux SP, Richards-
747	Zawacki CL (2013). Fitness consequences of infection by
748	Batrachochytrium dendrobatidis in northern leopard frogs Lithobates
749	pipens. Ecohealth 10: 90–98.
750	Daszak P, Berger L, Cunningham AA, Hyatt AD, Green DE, Speare R (1999).
751	Emerging infectious diseases and amphibian population declines. Emerg
752	Infect Dis 5: 735–48.
753	Daszak P, Cunningham AA, Hyatt AD (2000). Emerging infectious diseases
754	of wildlifethreats to biodiversity and human health. Science 287: 443-
755	449.
756	Davies M, Richards SJ (1990). Developmental biology of the Australian hylid
757	frog Nyctimystes dayi (Gunther). Trans R Soc South Aust 114: 207-211.
758	Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014).

759	NeEstimator V2: re-implementation of software for the estimation of
760	contemporary effective population size (Ne) from genetic data. Mol Ecol
761	Resour 14: 209–214.
762	Doyle JJ, Doyle JL (1987). A rapid procedure for DNA purification from
763	small quantities of fresh leaf tissue. Phytochem Bull 19: 11–15.
764	Ellison AR, Tunstall T, Direnzo G V., Hughey MC, Rebollar EA, Belden LK,
765	et al. (2014). More than skin deep: Functional genomic basis for
766	resistance to amphibian chytridiomycosis. Genome Biol Evol 7: 286–298.
767	Excoffier L, Laval G, Schneider S (2005). Arlequin (version 3.0): An
768	integrated software package for population genetics data analysis. Evol
769	Bioinform Online 1: 47–50.
770	Flanagan SP, Jones AG (2017). Constraints on the FST-heterozygosity outlier
771	approach. J Hered 108: 561–573.
772	Foll M (2012). BayeScan v2.1 User Manual. Ecology 20: 1450–1462.
773	Foll M, Gaggiotti O (2008). A genome-scan method to identify selected loci
774	appropriate for both dominant and codominant markers: A bayesian
775	perspective. Genetics 180: 977–993.
776	Fox J, Weisberg S (2011). An R Companion to Applied Regression, 2nd edn.
777	Sage: CA.
778	le Gouar PJ, Vallet D, David L, Bermejo M, Gatti S, Levréro F, et al. (2009).
779	How Ebola impacts genetics of western lowland gorilla populations.
780	PLoS One 4.

Grogan LF, Robert J, Berger L, Skerratt LF, Scheele BC, Castley JG, et al. 781

- 782 (2018). Review of the amphibian immune response to chytridiomycosis,
- and future directions. Front Immunol 9: 1–20.
- 784 Guarnizo CE, Cannatella DC (2013). Geographic determinants of gene flow in
- two sister species of tropical Andean frogs. J Hered 105: 216–225.
- 786 Hodgkison SC, Hero J-M (1999). Seasonal behaviour of *Litoria nannotis*,
- 787 *Litoria rheocola* and *Nyctimystes dayi* in Tully Gorge, North Queensland,
- Australia. In: Frogs in the Community: Proceedings of the Brisbane

789 Symposium, http://www.qldfrogs.asn.au/, pp 29–39.

- 790 Ingram GJ, McDonald KR (1993). An update on the decline of Queensland's
- frogs. In: Lunney D, Ayers D (eds) Herpetology in Australia: A Diverse
- Discipline, Zoological Society of New South Whales: Mosman, NSW, pp297–303.
- Jani AJ, Knapp RA, Briggs CJ (2017). Epidemic and endemic pathogen
- 795 dynamics correspond to distinct host population microbiomes at a

796landscape scale. Proc R Soc B Biol Sci 284: 20170944.

Jombart T (2008). adegenet: a R package for the multivariate analysis of

genetic markers. Bioinformatics 24: 1403–1405.

- 799 Keenan K, McGinnity P, Cross TF, Crozier WW, Prodohl PA (2013).
- 800 diveRsity: An R package for the estimation and exploration of population
- 801 genetics parameters and their associated errors. Methods Ecol Evol 4:
- 802 782–788.
- 803 Kjeldsen SR, Raadsma HW, Leigh KA, Tobey JR, Phalen D, Krockenberger
- A, et al. (2019) Genomic comparisons reveal biogeographic and

- 805 anthropogenic impacts in the koala (*Phascolarctos cinereus*): a dietary-
- 806 specialist species distributed across heterogeneous environments.
- 807 Heredity 122: 525–544.
- Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, et al. (2012).
- B09 Diversity Arrays Technology: A generic genome profiling technology on
 B10 open platforms. Methods Mol Biol 888: 67–89.
- 811 Kosch TA, Silva CNS, Brannelly LA, Roberts AA, Lau Q, Marantelli G, et al.
- 812 (2019). Genetic potential for disease resistance in critically endangered
- 813 amphibians decimated by chytridiomycosis. Anim Conserv 22: 238–250.
- 814 Kueneman JG, Woodhams DC, Treuren W Van, Archer HM, Knight R,
- 815 Mckenzie VJ (2016). Inhibitory bacteria reduce fungi on early life stages
- 816 of endangered Colorado boreal toads (Anaxyrus boreas). ISME J 10:
- 817 934–944.
- 818 Lachish S, Miller KJ, Storfer A, Goldizen AW, Jones ME (2011). Evidence
- that disease-induced population decline changes genetic structure and
- 820 alters dispersal patterns in the Tasmanian devil. Heredity 106: 172–182.
- Lal MM, Southgate PC, Jerry DR, Bosserelle C, Zenger KR (2017). Swept
- 822 away: ocean currents and seascape features influence genetic structure
- across the 18,000 Km Indo-Pacific distribution of a marine invertebrate,
- the black-lip pearl oyster *Pinctada margaritifera*. BMC Genomics 18: 66.
- 825 Laurance WF, McDonald KR, Speare R (1996). Epidemic disease and the
- 826 catastrophic decline of Australian rain forest frogs. Conserv Biol 10:
- 827 406–413.

828	Lind CE, Kilian A, Benzie JAH (2017). Development of Diversity Arrays
829	Technology markers as a tool for rapid genomic assessment in Nile
830	tilapia, Oreochromis niloticus. Animal Genetics 48: 362-364.
831	Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, et al. (2006).
832	Emerging infectious disease and the loss of biodiversity in a Neotropical
833	amphibian community. Proc Natl Acad Sci 103: 3165–3170.
834	McDonald KR, Alford RA (1999). A review of declining frogs in northern
835	Queensland. In: Campbell A (ed) Declines and Disappearances of
836	Australian Frogs, Envrionment Australia, pp 14–22.
837	McKnight D (2019). Life finds a way: The recovery of frog populations from
838	a chytridiomycosis outbreak. PhD Thesis. James Cook University.
839	McKnight DT, Alford RA, Hoskin CJ, Schwarzkopf L, Greenspan SE, Zenger
840	KR, et al. (2017a). Fighting an uphill battle: the recovery of frogs in
841	Australia's Wet Tropics. Ecology 98: 3221-3223.
842	McKnight DT, Schwarzkopf L, Alford RA, Bower DS, Zenger KR (2017b).
843	Effects of emerging infectious diseases on host population genetics: a
844	review. Conserv Genet 18: 1235–1245.
845	McKnight DT, Lal MM, Bower DS, Alford RA, Zenger KR (2019). The
846	return of the frogs: The importance of habitat refugia in maintaining
847	diversity during a disease outbreak. Mol Ecol 28: 2731–2745.
848	Meyer W, Seegers U, Schnapper A, Neuhaus H, Himstedt W, Toepfer-
849	Petersen E (2007). Possible antimicrobial defense by free sugars on the
850	epidermal surface of aquatic vertebrates . Aquat Biol 1: 167–175.

851	Morgan MJ, Hunter D, Pietsch R, Osborne W, Keogh JS (2008). Assessment
852	of genetic diversity in the critically endangered Australian corroboree
853	frogs, Pseudophryne corroboree and Pseudophryne pengilleyi, identifies
854	four evolutionarily significant units for conservation. Mol Ecol 17: 3448–
855	3463.
856	Nemanic MK, Whitehead JS, Elias PM (1983). Alterations in membrane
857	sugars during epidermal differentiation: visualization with lectins and
858	role of glycosidases. J Histochem Cytochem 31: 887–897.
859	Oksanen JF, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al.
860	(2017). vegan: Community ecology package.
861	Painter I, Washington U of (2013). GWASExactHW: Exact Hardy-Weinburg
862	testing for Genome Wide Association Studies. R package version 1.01.
863	Palomar G, Bosch J, Cano JM (2016). Heritability of Batrachochytrium
864	dendrobatidis burden and its genetic correlation with development time
865	in a population of common toad (Bufo spinosus). Evolution 70: 2346-
866	2356.
867	Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D, et al.
868	(2007). PLINK: a toolset for whole-genome association and population-
869	based linkage analysis. Am J Hum Genet 81: 559–575.
870	Richards SJ, Alford RA (2005). Structure and dynamics of a rainforest frog
871	(Litoria genimaculata) population in northern Queensland. Aust J Zool
872	53: 229–236.
873	Richards SJ, McDonald KR, Alford RA (1993). Declines in populations of

874	Australia's endemic tropical rainforest frogs. Pacific Conserv Biol 1: 66-
875	77.

876	Richmond JQ, Savage AE, Zamudio KR, Rosenblum EB (2009). Toward
877	immunogenetic studies of amphibian chytridiomycosis: Linking innate
878	and acquired immunity. Bioscience 59: 311–320.
879	Robinson SJ, Samuel MD, Johnson CJ, Adams M, McKenzie DL (2012)
880	Emerging prion disease drives host selection in a wildlife population.
881	Ecol Appl 22: 1050–1059
882	Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D, et al.
883	(2011). Diversity Arrays Technology (DArT) and next-generation
884	sequencing combined: genome-wide, high throughput, highly informative
885	genotyping for molecular breeding of Eucalyptus. BMC Proc 5: P54.
886	Scheele BC, Hunter DA, Skerratt LF, Brannelly LA, Driscoll DA (2015). Low
887	impact of chytridiomycosis on frog recruitment enables persistence in
888	refuges despite high adult mortality. Biol Conserv 182: 36–43.
889	Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, et al.
890	(2019). Amphibian fungal panzootic causes catastrophic and ongoing loss
891	of biodiversity. Science 363: 1459 LP – 1463.
892	Scheele BC, Skerratt LF, Grogan LF, Hunter DA, Clemann N, Mcfadden M,
893	et al. (2017). After the epidemic: Ongoing declines, stabilizations and
894	recoveries in amphibians afflicted by chytridiomycosis. Biol Conserv
895	206: 37–46.

896 Schoville SD, Tustall TS, Vredenburg VT, Backlin AR, Gallegos E, Wood

897	DA, et al. (2011). Conservation genetics of evolutionary lineages of the
898	endangered mountain yellow-legged frog, Rana muscosa (Amphibia:
899	Ranidae), in southern California. Biol Conserv 144: 2031–2040.
900	Serieys LEK, Lea A, Pollinger JP, Riley SPD, Wayne RK (2015). Disease and
901	freeways drive genetic change in urban bobcat populations. Evol Appl
902	8: 75–92.
903	Sivasankaran RM, Purimetla B, Stankovic JA, Ramamritham K (1993).
904	Network services database-a distributed active real-time database
905	(dartdb) application, Proceedings of the IEEE Workshop on Real-Time
906	Applications 184–187
907	Smith KF, Sax DF, Lafferty KD (2006). Evidence for the role of infectious
908	disease in species extinction and endangerment. Conserv Biol 20: 1349-
909	57.
910	Steinig EJ, Neuditschko M, Khatkar MS, Raadsma HW, Zenger KR (2015).
911	NetView P: A network visualization tool to unravel complex population
912	structure using genome-wide SNPs. Mol Ecol Resour 16: 216–227.
913	Teacher AGF, Garner TWJ, Nichols RA (2009). Evidence for directional
914	selection at a novel major histocompatibility class I marker in wild
915	common frogs (Rana temporaria) exposed to a viral pathogen
916	(Ranavirus). PLoS One 4: e4616.
917	R Core Development Team (2017). R: A language and environment for
918	statistical computing.
919	Trudeau KM, Britten HB, Restani M (2004). Sylvatic plague reduces genetic

- 920 variability in black-tailed prairie dogs. J Wildl Dis 40: 205–211.
- 921 Voyles J, Woodhams DC, Saenz V, Byrne AQ, Perez R, Rios-sotelo G, et al.
- 922 (2018). Shifts in disease dynamics in a tropical amphibian assemblage are
- not due to pathogen attenuation. Sceince 359: 1517–1519.
- Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015). Genetic rescue
 to the rescue. Trends Ecol Evol 30: 42–49.
- 926 Woodworth BL, Atkinson CT, LaPointe DA, Hart PJ, Spiegel CS, Tweed EJ,
- 927 et al. (2005). Host population persistence in the face of introduced vector-
- 928 borne diseases: Hawaii amakihi and avian malaria. Proc Natl Acad Sci
- 929 102: 1531–1536.
- 930
- 931

- Table 1. Study sites details. The coordinates represent the approximate
- 933 midpoints of each transect. Litoria dayi were not abundant at Girramay-
- 934 Kirrama, resulting in long transect distances, particularly at the lowest
- elevation, where they were clustered around small creeks that fed into the
- main channel. G1 and G2 correspond roughly to DCl and MRl (respectively)
- 937 in McKnight et al. (2019).

Dorl	Sito	Latituda	Longitudo	Elevation	Elevation	Transect
Falk	Sile	Latitude	Longitude	mean (m)	range (m)	length (m)
Girramay-Kirrama	G1	-18.17451	145.82828	303	283-327	610
Girramay-Kirrama	G2	-18.18250	145.80926	303	287-336	560
Girramay-Kirrama	G3	-18.16582	145.82360	222	214-225	310
Girramay-Kirrama	G4	-18.15697	145.82381	191	159–213	1540
Tully	T 1	-17.77420	145.59390	378	359–423 ^a	350 ^a
Tully	T2	-17.76977	145.58993	275	258-286	220
Tully	T3	-17.76487	145.59011	198	195-207	330
Tully	T4	-17.77607	145.66484	95	91-100	150
Wooroonooran	W1	-17.38523	145.86868	319	295–356 ^b	560 ^b
Wooroonooran	W2	-17.38814	145.87605	237	224–247	250
Wooroonooran	W3	-17.39380	145.88595	134	126–143	200
Wooroonooran	W4	-17.39803	145.89468	57	47–64	450

^aOnly one frog was found above 398 m (210 m Transect length excluding that frog) ^bOnly one frog was found above 334 m (363 m Transect length excluding that frog)

939

940

⁹³⁸

942	Table 2. Sample sizes for each site. Tissue = tissue samples sequenced, All Bd
943	swabs = all swabs that amplified in all three triplicates, Bd swabs for tissue
944	samples = swabs that amplified in all three triplicates and were from frogs that
945	were sequenced (one frog did not have a swab), $Bd+ (\geq 10) =$ swabs that were
946	Bd positive and had ≥ 10 zoospore equivalents of DNA, Bd+ (< 10) = swabs
947	that were Bd positive but had < 10 zoospore equivalents of DNA, Bd - = swabs

that showed no amplification in all three triplicates. 948

Cita Tianna	All <i>Bd</i> swabs					<i>Bd</i> swabs for tissue samples			
Sile Hissue	Total	$Bd+(\geq 10)$	<i>Bd</i> + (< 10)	Bd-	Total	$Bd+(\geq 10)$	<i>Bd</i> + (< 10)	Bd-	
G1 28	30	17	6	7	27	15	5	7	
G2 19	18	8	8	2	18	8	8	2	
G3 -	27	11	7	9	-	-	-	-	
G4 23	28	11	8	9	21	9	5	7	
T1 28	27	11	7	9	25	11	7	7	
T2 -	27	9	12	6	-	-	-	-	
T3 -	28	4	10	14	-	-	-	-	
T4 28	29	4	6	19	26	2	5	19	
W1 29	29	21	5	3	28	20	5	3	
W2 -	29	18	5	6	-	-	-	-	
W3 -	25	11	7	7	-	-	-	-	
W4 28	29	2	6	21	28	2	5	21	

949

951	Table 3. Diversity results for each site and for each park (i.e., all sites within a
952	park combined). MAF = minor allele frequency, % poly. = percent of markers
953	that were polymorphic at a given site, % poly. rare = percent of markers that
954	were polymorphic at a given site after rarefying the data to the lowest sample
955	size, H n.b. = expected heterozygosity (corrected), Het. obs. = observed
956	heterozygosity, Fis (SD) = mean inbreeding coefficient and SD of the mean
957	(median values ranged from -0.008–0.000), N_e = effective population size (via
958	NeEstimator).

	Mean MAF (SD)	% poly.	% poly. rare	H n.b.	Het. obs.	Fis (SD)	N _e (jackknife CI) [NeEstimator]
G1	0.204 (0.158)	86.4	84.4	0.280	0.270	0.034 (0.200)	40.3 (22.2–114.7)
G2	0.192 (0.162)	79.0	79.0	0.265	0.272	-0.021 (0.246)	7.9 (4.8–12.5)
G4	0.204 (0.158)	85.1	84.0	0.281	0.282	-0.002 (0.218)	22.1 (9.9–98.5)
T1	0.243 (0.143)	97.5	96.3	0.333	0.323	0.033 (0.208)	67.7 (25.9–∞)
T4	0.243 (0.141)	97.8	96.3	0.334	0.321	0.044 (0.207)	7499.3 (3086.5–∞)
W1	0.236 (0.146)	95.6	94.1	0.324	0.315	0.028 (0.206)	63.3 (34.6–211.6)
W4	0.237 (0.146)	95.6	93.9	0.324	0.315	0.028 (0.210)	38.0 (19.1–150.2)
G	0.207 (0.157)	90.5	89.8	0.282	0.274	0.027 (0.143)	57.0 (40.7-86.1)
Т	0.245 (0.140)	98.9	98.9	0.334	0.322	0.042 (0.157)	307.4 (124.8–∞)
W	0.241 (0.143)	97.6	97.6	0.327	0.315	0.039 (0.158)	87.3 (53.5–187)

962 Figure 1. Study sites and connectivity. (A) Maps of study sites (symbols and 963 colors correspond to panels 1B and 1C). Large squares = the highest elevation 964 sites (sampled for genetics and Bd), large circles = the lowest elevation sites 965 (sampled for genetics and Bd), small diamonds = mid-elevation sites (sampled 966 for *Bd* only). Dark grey areas = rainforest, blue lines = streams, bold black 967 numbers and orange lines = *Fst* values (the thickness and darkness of the lines 968 are scaled with the *Fst*), white numbers and red lines = relative migration rates 969 from divMigrate (arrows [black] indicate the direction of gene flow; all values 970 are relative to each other with 1 being the highest level of migration observed; 971 the darkness and thickness of the lines scale with the migration rates). (B) 972 Results from NetView (k30) showing population structuring (all parks and 973 populations were analysed together; lines = connections to up to 30 nearest 974 neighbours; branch lengths are irrelevant and this should be read by looking at

- 975 the number and density of connections, rather than the exact placement of
- 976 points). (C) DAPC results visualizing structure among and within parks.
- 977
- 978

980 Figure 2. *Batrachochytrium dendrobatidis* infection prevalence at each study

981 site (i.e., percent of individuals that were infected). Sites within parks are

982 arranged from lowest elevation (G4, T4, W4) to highest elevation (G2, G1,

T1, W1). Black dots are the mean elevation for a given site, and the error barsshow the range.

987 Figure 3. Batrachochytrium dendrobatidis infection intensity (i.e., log₁₀ of the 988 zoospore load based on the qPCR results for all infected individuals). In both 989 panels, colors are used consistently and correspond to the sites in Figure 1. (A) 990 Infection intensity at each sampling site. Numbers show the mean elevation 991 per site. G = Girramay-Kirrama, T = Tully, W = Wooroonooran. Whiskers show the 10th/90th percentile and all outliers are shown. (B) Mean infection 992 993 intensity for each site plotted against mean elevation for that site. Error bars 994 show one standard deviation for the infection intensity. Colors correspond to 995 sampling sites in Figure 1A. 996

997

998 Figure 4. Genetic diversity metrics from this study (*L. dayi*) compared to the

999 previously reported results for *L. serrata* and *L. nannotis* (McKnight et al.

1000 2019). Each point is a sampling site. MAF = minor allele frequency, %

1001 polymorphic = percent of markers that were polymorphic in a given site,

1002 Observed het. = observed heterozygosity.

Figure 5. Ordination plots (PCoA) based on genetic distances (1-proportion of
shared alleles) that were calculated using only the 18 SNPs that were
identified as potentially being under selection in all three outlier detection
tests. Lower = the lowest elevation site at each park (G4, T4, W4), Upper =
the highest elevation site(s) at each park (G1, G2, T1, W1). Only individuals

- 1010 that were uninfected (0 zoospore equivalents) or infected with \geq 10 zoospore
- 1011 equivalents were included.