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Abstract

Decision theory addresses the task of choosing an action; it provides robust
decision-making criteria that support decision-making under conditions of uncer-
tainty or risk. Decision theory has been applied to produce reinforcement learning al-
gorithms that manage uncertainty in state-transitions. However, performance when
there is uncertainty regarding the selection of future actions must also be considered,
since reinforcement learning tasks are multiple-step decision problems. This work
proposes β-pessimistic Q-learning—a reinforcement learning algorithm that does not
assume complete control.

1 Introduction

In reinforcement learning tasks the learning system must discover by trial-and-error which
actions are most valuable in particular states [1]. Generally, no dynamic model of the en-
vironment is available a priori; the performance of learning system improves incrementally
through interaction with the environment.

In reinforcement learning nomenclature the state, x, is a representation of the current
situation in the learning system’s environment. The action, u, is an output from the
learning system that can influence its environment. The learning system’s choice of actions
in response to states is called its policy. Actions should be chosen with the future in mind,
rather than just the immediate payoff. Thus, reinforcement learning tasks are multiple-
step decision problems. Evaluative feedback is provided to the learning system in the form
of a scalar reward signal, r, that may be delayed. The reward signal is defined in relation
to the task to be achieved; reward is given when the system is successfully achieving the
task.

Reinforcement learning has traditionally emphasised the criterion of expected value,
defining the optimal action as the action that will result in the highest expected (mean)
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reward under the assumption that actions with the highest expected value will be executed
thereafter. Thus, the design of the learning algorithm assumes that it is the sole decision-
maker in the system.

Decision theory offers alternative decision-making criteria that result in more robust
behaviour in situations with risk, disturbances, or unexpected events [2]. Several risk-
averse reinforcement learning algorithms have already been developed based on ideas
from decision theory. This work suggests expansion of these ideas, based on the idea that
a robust decision policy should not expect to be in complete control of all future actions.

2 Decision Theory, Uncertainty, and Risk

Decision theory addresses the problem of choosing an action from a set of actions [2].
Each action produces a resulting value. Under strict uncertainty, we have no idea which
value will follow, whereas under risk, the probability distribution of the result values is
known and a more informed decision can be made. Action choice under strict uncertainty
could be based on various criteria, for example:

• the action with the highest potential value (extreme optimism);

• the action with the highest mean value (the Laplace criterion); or

• the action with the highest minimum value (the Wald or minimax criterion).

Various reinforcement learning and dynamic programming algorithms have been pro-
posed for dealing with nondeterministic state transitions, in which actions do not produce
a completely predictable effect on the state. Several methods use the minimax criterion,
choosing actions under the assumption that the worst possible state transition will occur
[3–6], or similarly, that the worst possible disturbance to the state will occur [7]. Other,
risk-sensitive, dynamic programming methods operate under risk, rather than uncertainty,
and use knowledge of the distribution of state transitions to produce a risk-averse policy
[6]. Neuneier and Mihatsch’s [8] model-free method achieved the same goal by emphasis-
ing unexpected negative results and de-emphasising unexpected positive results. Geibel
[9] defined risk differently, seeing it as the probability of reaching a fatal state, and de-
fined an algorithm that compromised between achieving the task and keeping the risk of
fatality low.

Beyond the uncertainty in state-transitions, reinforcement learning systems must deal
with another uncertainty problem: uncertainty surrounding the choice of future actions
after the current action has been executed [1, 10]. One source of unpredictable actions is
exploration: In order to find a good policy, a learning system must try various actions,
under various states, and evaluate the results. Interaction between different behavioural
modules can also lead to unpredictable actions. For example, if one learned behaviour
is to avoid obstacles, and another is to move toward a goal, a compromise action may
not follow the policy of either behaviour. The action could be a mixture of the two
behaviour’s actions, or behaviours could become dominant depending on the state. Other
unexpected actions could be produced, for example, by a safety monitor that vetoes some
of the actions suggested by the learning algorithm.



Consequently, a decision policy that relies on the future execution of an exact series of
actions is fragile. A robust decision policy should be somewhat conservative, and favour
states where a spurious action or two will not cause serious harm. Even if no uncertainty
is expected, compensating for some uncertainty is a reasonable method of improving
robustness.

3 Cliff-Walking: An Example of Decisions Under Uncertainty

The cliff-walking task is used to compare the characteristics of algorithms under uncer-
tainty. The task, proposed by Sutton and Barto [1], is to walk across a plateau at the top
of a dangerous cliff in order to reach a goal position. The situation is shown in Figure 1.
The player starts above the point marked S. Each step has a cost (negative reward) of 1.
Falling off the cliff has a cost of 100 and ends the attempt. Stepping onto the goal, G, has
a cost of zero and ends the task. Other attempts to move off the play area do not move
the player.

The task would be trivial to solve except that under nondeterministic action-selection
10% of the actions are chosen randomly. Early in learning this is an advantage: it provides
exploration so that the agent can learn the values of various actions. Later, it is a
hindrance that causes falls from the cliff1.

Figure 1: The cliff-walking problem. Q-learning under nondeterministic action-selection
found a risky solution.

1To make the task fairer, and a little less gruesome, the randomness never causes the player to fall off
the cliff from the start square. Otherwise 1

10 of 1
4 of the time the player would fall off the cliff immediately,

regardless of the player’s policy.



4 Algorithms

The following sections describeQ-learning and several variations ofQ-learning, comparing
their behaviours using the cliff-walking task. We consider two possible learning conditions:

• nondeterministic action-selection: 10% of actions are chosen randomly, rather than
following the choice of the learning system; and

• nondeterministic state-transitions: 10% of actions cause a state transition in a
random direction.

Figures 1 to 7 demonstrate the learned decision policies after 10,000 attempts to cross
the cliff. In interpreting the pictures it is not useful to assign meaning to every single
arrow (the decision policy in every state), since some states have been visited rarely and
the action-values are still in flux. Nevertheless, the overall trend in the policies is clear.
The graphs in Figures 8 and 9 show the performance of the algorithms over time, and
Table 1 summarises the policies developed by the learning algorithms.

4.1 Q-Learning

Q-learning is an algorithm for solving reinforcement learning tasks [11]. Q-learning stores
the expected value, Q (x, u), of performing each action in each state, assuming that the
actions with the highest expected values will be performed thereafter.

The action-values are updated according to:

Q (xt, ut)
α←− r (xt, ut, xt+1) + γ max

ut+1

Q (xt+1, ut+1) (1)

where α is the learning rate (or step size), between 0 and 1, that controls convergence;
and γ is the discount factor, between 0 and 1, that makes rewards that are earned later
exponentially less valuable.

Q-learning uses the Laplace criterion, the expected value, to compare the value of states.
Thus, it is risk-neutral with respect to the effects of nondeterministic state-transitions.

With regards to the effect of nondeterministic action-selection, Q-learning is optimistic:
it assumes that actions with the highest known value will be executed thereafter. Figure 1
illustrates Q-learning’s optimism2. It learnt to walk along the edge of the cliff, under the
assumption that no unexpected actions will occur. Consequently, the player fell often.

4.2 Compensating for Exploration

John [10] addressed a subproblem of nondeterministic action-selection—coping with
exploration—by including knowledge of the exploration policy within the learning up-
date. This is applicable only when the nature of the variations to the decision policy are
known in advance.

2The parameter settings were α = 0.5, and γ = 1.0. Action-values were stored in a table with each
combination of state and action filling a cell.



4.3 Sarsa

The Sarsa algorithm addresses the problem of nondeterministic action-selection by mod-
ifying the Q-learning update to use the value of the executed action [1, 12, 13]. Sutton
and Barto [1] introduced the cliff-walking problem to demonstrate Sarsa’s ability to deal
with nondeterministic action-selection. The Sarsa-action-values are updated as follows:

QSarsa (xt, ut)
α←− r (xt, ut, xt+1) + γQSarsa (xt+1, ut+1) (2)

Sarsa stands for state, action, reward, next state, and next action. The Sarsa-action-
values are the sum of the reward for performing the current action and the expected
rewards for continuing to follow the policy that has been followed in the past. If actions are
always executed as chosen by the learning system then the Sarsa algorithm is equivalent
to standard Q-learning.

Figure 2 shows the solution found by the Sarsa algorithm. Sarsa took into account that
the favoured action may not always be performed and took a safer path by stepping a
little away from the cliff edge.

A limitation of Sarsa is that it cannot perform off-policy learning [1]. The decision policy
learnt by Sarsa is heavily dependent on the control policy it observes. Sarsa can learn
little from observing the effects of strings of random actions, whereas standard Q-learning
can learn a policy that is optimal with respect to the reward function. In our experiment,
Sarsa learnt a safe path across the cliff because some actions were chosen randomly. If
nondeterministic action-selection ceases then Sarsa reverts to the same dangerous path
chosen by standard Q-learning. Sarsa has no facility for manual adjustment between
optimism and pessimism; its behaviour changes based on the control policy it observes.

4.4 Q̂-Learning—The Minimax Criterion

Heger [5] developed a risk-averse variation ofQ-learning called Q̂-learning (“q-hat”), using
the minimax criterion. The algorithm addresses the problem of nondeterministic state-
transitions, rather than nondeterministic action-selection. However, it is discussed here
as it demonstrates the characteristics of minimax methods.

In the Q̂ approach, the action-values encode the worst-case value of performing an
action, assuming that actions with the highest known worst-case value will be executed
thereafter. It deals with the nondeterministic state-transition problem by assuming that
the world is adversarial—that the worst possible state transitions will occur. This pes-
simism leads to highly conservative policies. The Q̂-action-value effectively gives a lower
bound on value, or an upper bound on total cost. It is a minimax approach because the
policy prefers actions which minimise the maximum possible total cost.

The Q̂-action-values are updated as follows3:

Q̂ (xt, ut)←− min

[
Q̂ (xt, ut) , r (xt, ut, xt+1) + γ max

ut+1

Q̂ (xt+1)

]
(3)

3The formulation is as given by Koenig and Simmons [14]. It is equivalent to the original formulation,
in terms of costs, as given by Heger [5].



Figure 2: Sarsa under nondeterministic action-selection found a safe solution.

Figure 3: Heger’s Q̂ algorithm under nondeterministic action-selection found a risky so-
lution.

Figure 4: Heger’s Q̂-learning under nondeterministic state-transitions shows its extreme
pessimism. The player jumps off the cliff from the start square to avoid the higher total
cost of falling later.



The minimum operator in Equation (3) is a cause for concern. Since the action-values
can only move downward in value they must be initialised optimistically. If the rules of
the world change the action-values cannot rise to fit the new situation.

Under nondeterministic action-selection Q̂-learning is similar to Q-learning. Accord-
ingly, Q̂-learning chose the same dangerous path as Q-learning, as shown in Figure 3.

Q̂-learning demonstrates its extreme pessimism under nondeterministic state transi-
tions. Figure 4 shows that the player jumps off the cliff from the start square, at a cost
of 100, to avoid the possibility of taking a few steps, falling accidentally and incurring
slightly higher total cost4. The pessimism of minimax methods is well-known, it makes
them appropriate for adversarial games, and often inappropriate for other problems. For
example, an investment manager following the minimax approach would never make in-
vestments [8].

4.5 β-Pessimistic Q-Learning

This work proposes a new extension toQ-learning, β-pessimisticQ-learning, that is appro-
priate for tasks under nondeterministic action-selection. β-pessimistic learning compro-
mises between the extreme optimism of standard Q-learning and the extreme pessimism
of minimax approaches.

The approach is based on the Hurwicz α-criterion, which uses a mixture between the
maximum and the minimum controlled by a pessimism parameter [2]. The parameter,
β, acts in a similar way: the β-pessimistic action-values represent the expected value of
performing an action followed by actions which are highest valued with probability 1−β,
or lowest valued with probability β. Thus when β is zero we have standard Q-learning,
and when β is one we have a minimax algorithm.

The β-pessimistic update is as follows:

Qβ (xt, ut)
α←−r (xt, ut, xt+1)

+ γ

[
(1− β) max

ut+1

Qβ (xt+1, ut+1) + β min
ut+1

Qβ (xt+1, ut+1)

]
,

(4)

clearly showing the mixture of maximum and minimum action-values, or rearranged to
form:

Qβ (xt, ut)
α←−r (xt, ut, xt+1)

+ γ

[
max
ut+1

Qβ (xt+1, ut+1)− β

(
max
ut+1

Qβ (xt+1, ut+1)−min
ut+1

Qβ (xt+1, ut+1)

)]
,

(5)

which shows a penalty for variation between maximum and minimum action-values; thus
demonstrating the idea that safe areas in state space aren’t strongly affected by which
action is chosen.

4Dr. Jochen Heinzmann noted that it may be unrealistic to give a higher total cost to taking a few
steps and falling off the cliff than to falling off the cliff immediately. This could be termed “Heinzmann’s
dead-is-dead conjecture”. Separating fatal from normal states may be a more appropriate framework for
these types of problems [9].



Figure 5: The β-pessimistic method with pessimism set to 0.1 under nondeterministic
action-selection took a safe path by taking a few steps away from the cliff.

Figure 6: The β-pessimistic method with pessimism set to 0.2 under nondeterministic
action-selection took a safer path by taking several steps away from the cliff.

Figure 7: The β-pessimistic method with pessimism set to 0.5 under nondeterministic
action-selection jumps off the cliff from the start square.



To demonstrate the algorithm and the effect of adjusting β, three diagrams are shown
in Figures 5, 6, and 7, for β equal to 0.1, 0.2, and 0.5 respectively. When β = 0.1,
the player took a safe path, stepping away from the cliff because the learning algorithm
assumed that the worst possible action would be selected 10% of the time. When β = 0.2,
the player was more pessimistic, and took a safer path.

When β was increased to 0.5 (Figure 7), the player elected to jump from the cliff from
the first square. Under the assumption that 50% of future actions would be the worst
possible it followed the same logic as the Q̂ algorithm (Figure 4). A difference from the

Q̂ algorithm is that if the player managed to get close to the goal position it attempted
to reach the goal.

There was a subtle difference between the policies found by the β-pessimistic algorithms
and the Sarsa algorithm. Under the β-pessimistic policy, if the player was several steps
away from the cliff the player walked straight to the right until they reached the extreme
right hand side, then walk straight down toward the goal (Figure 5). Under Sarsa, the
player walked diagonally down and to the right instead of all the way to the right edge,
a single row two steps from the cliff was preferred (Figure 2). A similar effect can be
observed on the left-hand side of the diagrams. Sarsa’s stair-like diagonal path has the
same length as the right angle path, yet keeps the player closer to the cliff edge longer
and, consequently, is more dangerous.

5 Discussion

The graphs in Figures 8 and 9 show the performance of the algorithms. The results
show the total cost of attempts 1 to 5000, averaged over 1000 simulation runs of each
algorithm. The policies developed by the different learning methods are summarised in
Table 1. β-pessimistic learning achieved the best result for the nondeterministic action-
selection case. The graphs show that the β-pessimistic algorithm is suitable for tasks
involving both nondeterministic state-transitions and action-selection.

When β = 0.5 the β-pessimistic algorithm was too pessimistic, as is Q̂-learning under
nondeterministic state-transitions. However, the graph shows that the average total cost
when β = 0.5 is slightly better than 100, whereas for Q̂-learning it is worse than 100.
Under nondeterministic state transitions, some actions do not produce movement in the
expected direction; therefore, the player does not always manage to jump off the cliff from
the start square. When β = 0.5, a player that does not jump off the cliff may reach the
goal square, thus lowering the average total cost. However, Q̂-learning did not converge
to a consistent strategy after 10,000 attempts. As shown in Figure 4, players that did not
jump off the cliff immediately took a long, rambling path, incurring high total cost.

The results for Q-learning and Sarsa for nondeterministic action-selection accord with
the results given by Sutton and Barto [1], with Sarsa having better performance. Under
nondeterministic state-transitions, Q-learning and Sarsa are equivalent. Unlike Sarsa,
β-pessimistic learning and Q-learning are capable of off-policy learning. Therefore, they
can learn by observing the actions of other players. β-pessimistic learning will maintain
a conservative approach even when it is in complete control and exploration has ceased.
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Figure 8: Performance of various algorithms solving the cliff-walking task under nonde-
terministic action-selection. Results below -120 are not shown.
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Table 1: Summary of the learned policies for the cliff-walking problem

Method Learned Policy Figure
nondeterministic action-selection

Q unsafe; walks along the very edge of the cliff (falls often) 1
Sarsa safe; walks a little away from the edge then to the goal, but only 2

as long as exploratory actions are performed

Q̂ unsafe; similar to Q, but explores more 3
β = 0.1 safe; walks a little away from the edge then to the goal 5
β = 0.2 safer; walks further away from the edge then to the goal 6
β = 0.5 too pessimistic; if far from the goal, jumps off the cliff 7

to avoid falling off later
nondeterministic state-transitions

Q safe; walks a little away from the edge -
Sarsa safe; same as Q -

Q̂ too pessimistic; jumps off the cliff to avoid falling off later 4
β = 0.1 safe; similar to Q but walks farther from the edge -

β-pessimistic learning converges under the same conditions as Q-learning and Q̂-
learning, based on the convergence proofs by Littman and Szepesvári [15], and Heger
[16], since the operation of taking the fixed weighted sum of the maximum and the min-
imum is a non-expansion. It would be simple to devise other converging update rules,
using the same idea that a robust solution should tolerate occasional spurious actions.
For example, a weighted sum of the highest valued action, and the average value of other
actions could be used. Such a scheme might be reasonable for problems with discrete ac-
tions; it would not, however, be suitable for systems that deal with continuously variable
actions, in which the action-values are approximated [17]. Under most approximation
schemes it would be difficult to calculate the average of the action-values. In contrast,
β-pessimistic learning only requires the maximum and the minimum. Q-learning already
requires finding the maximum, and finding the minimum is an equivalent task.

6 Conclusion

β-pessimistic learning is a promising algorithm which can find policies which are robust
to the effects of nondeterministic action-selection. Unlike Sarsa, it is capable of off-policy
learning. It is also computationally feasible, even for learning problems with continuous
actions. The factor β allows adjustment between optimism and pessimism. Beyond
the particular algorithm, considering nondeterministic action-selection leads to a robust
learning system that seeks decision policies tolerant of actions beyond its control.
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