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TTFL	� Transcription–translation feedback loop

Introduction

Most of the life with which humans interact is exposed to 
highly rhythmic and extremely predictable changes in illu-
mination that occur as our rotating planet orbits a star in 
an elliptical manner. This daily light–dark cycle has a pro-
found impact on the physiology and behaviour of the ani-
mals and plants that live and have evolved in this environ-
ment, with most, if not all, plants, animals and microbes 
at the Earth’s surface possessing a complex time-resolved 
ecology and physiology that directly or indirectly is syn-
chronised with the light and heat given off by the sun. Yet 
these animals and plants reside within only a thin layer of 
the biosphere, and outside this thin layer, the effect of the 
sun is much weaker. The attenuation of sunlight through the 
ground is extremely rapid, with an unbroken strata of rock, 
soil or sand effectively absorbing all light within 10 cm of 
the surface (Tester and Morris 1987). The daily warming 
effect of the sun below ground is evident down to approxi-
mately 1 m depth, and annual variation in temperature can 
be experienced up to 20 m deep (Geiger et al. 2003). Below 
this depth, the soil and rocks are under the influence of 
geological processes and are relatively stable in tempera-
ture. In clear oceanic waters sunlight is reduced to starlight 
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radiance intensities by 600–700 m depth, and no daylight 
can penetrate beyond approximately 1000 m (Warrant and 
Locket 2004). Beyond a few metres depth the sea does not 
experience daily variation in temperature (Kawai and Wada 
2007), and annual variation in temperature is absent beyond 
1000 m (Talley et al. 2011). The rhythmicity created by the 
daily changes in sunlight is, therefore, only experienced by 
organisms living in a band between the troposphere and 
1000 m below the sea surface or 20 m deep into the land. 
However, the biosphere extends beyond this rhythmic band. 
Intraterrestrial life extends down at least 5  km (Pedersen 
2000), and animals are found even in the deepest oceans, 
including Challenger Deep, 11  km below the sea surface 
(Gallo et al. 2015). The biosphere is, therefore, dominated 
by dark, largely “arrhythmic” habitats, and in terms of bio-
mass, most of life on earth resides in places isolated from 
the direct effects of the sun (Whitman et al. 1998).

What is life like for organisms that reside away from 
the direct influence of the sun? This is a difficult question 
to answer given our limited ability to access the dark bio-
sphere, but a reasonable starting point is to consider what 
we know about patterns of physiology and ecology in the 
light biosphere, and then imagine what would happen if 
there was no light or warmth from the sun. One immediate 
consequence of a shift into perpetual darkness is an inabil-
ity to photosynthesize, which restricts the distribution of a 
substantial fraction of life to the photic zone. Primary pro-
duction and food webs below the Earth’s surface are strik-
ingly different to that which we are familiar with as a con-
sequence of this dramatic change in energy flow through 
the environment. In addition, without solar light, high reso-
lution vision is no longer possible, and unless there is a bio-
logical source of light, other senses must be relied upon for 
interpreting the environment. Sensory systems are conse-
quently another major area of change for adaptation to life 
below the Earth’s surface.

Probably one of the least understood consequences 
of life in the dark biosphere is what it means to live in an 
environment of low or no rhythmicity and how this affects 
rhythmic physiology. This review sets out to discuss rhyth-
mic physiology in animals from arrhythmic environments 
and why this is valuable in our understanding of the impor-
tance of rhythmic physiology on the surface. The review 
will start by summarising the current state of understanding 
about rhythmic physiology in animals to give an interested 
reader not familiar with biological rhythm research a primer 
(“An introduction to rhythmic physiology in animals”). As 
plants and other photosynthetic organisms are not a part of 
the dark biosphere we have not included them in this dis-
cussion, and while microbes are certainly the largest bio-
mass contributor to the deep sea and underground environ-
ments, we have focussed on animals to fit within the scope 
of the journal. The following section describes methods 

used to study rhythmic physiology in animals, highlighting 
which are appropriate for studying animals from arrhyth-
mic environments, especially for use in field studies. The 
next section reviews the research to date on rhythmic phys-
iology in arrhythmic environments and the last section dis-
cusses what can be gained in our understanding of the evo-
lution of physiological rhythmicity by comparing animals 
from rhythmic and arrhythmic habitats.

An introduction to rhythmic physiology in animals

Though our understanding of rhythmic physiology is 
expanding rapidly, it is based on studies of relatively few 
organisms, most of which live within the direct influence 
of the sun. The most studied form of rhythmic physiology 
is that of circadian (circa: approximately; diēs: day) perio-
dicity, probably because this period is associated with the 
most marked variation in physiology in humans and many 
of the animals we interact with. The publication rate of 
studies investigating ‘circadian’ and ‘physiology’ have 
increased steadily since the early 1960s with more than half 
of these studies focusing on human biology (Fig. 1a) and 
an increasing awareness of the role of circadian physiology 
in health and disease (Fig.  1a). Other clock studies have 
looked at the well-studied biological models, Mus mus-
culus and Drosophila melanogaster (Fig.  1a). Drosophila 
mutants with odd behavioural patterns were particularly 
important in helping to unravel the molecular clock in the 
early 1970’s (Konopka and Benzer 1971). These models 
offer the same benefits to rhythmic physiology research as 
they do in other fields of biology: the ease of manipulating 
experimental conditions in large replicated groups; the gen-
eration of “knock-out” models to study gene-level effects; 
and the availability of automated equipment and tools 
to record physiology and behaviour. Fish are an increas-
ingly studied group of animals in clock biology (Fig. 1a), 
and allow the investigation of a more decentralised clock 
arrangement compared to other vertebrates (Tamai et  al. 
2005).

Like many maturing fields of biology, the research is 
diversifying away from laboratory-based studies on a few 
species to an ever expanding range of organisms across dif-
ferent habitats. Yet studies of species that live away from 
the sun are a very small fraction of rhythmic physiology 
research. There are only a few publications every year 
(0–7) that investigate the circadian physiology of organ-
isms in caves or underground (Fig. 1b), and many of those 
reports have focussed on mole rats, a group of subterranean 
rodents with diminished visual capacity. Mexican cavefish 
(Astyanax mexicanus) are an increasingly studied subter-
ranean species well suited to investigating adaptation of 
rhythmic physiology to cave life but while many studies 
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have focused on the proximate and ultimate causes of eye 
loss, comparatively fewer have been on the rhythmic biol-
ogy of this species. There have been very few studies of 
rhythmic physiology in the deep sea (Fig.  1b), probably 
due to the challenging nature of obtaining live samples 
from depths beyond the photic zone.

The molecular circadian clock

Biological rhythmicity studies have shown that at the heart 
of rhythmic physiology is a genetic mechanism known as 
the circadian clock that is broadly distributed throughout 
the biological realm (Young and Kay 2001). This clock 
has been found to profoundly influence many aspects of 
microbial, plant and animal physiology, and helped sur-
face-dwelling organisms evolve from a purely demand 
driven or reactive physiology to one which is modulated 
in anticipation of predictable events. The circadian clock 

is principally based on transcription–translation feedback 
loops (TTFL), where proteins from clock genes directly 
or indirectly affect the expression rate of the genes from 
which they were transcribed (Fig.  2). This arrangement 
results in oscillations of gene expression of roughly 24 h. In 
addition to being robust to perturbations in the performance 
of individual components (e.g., Debruyne et al. 2007a; Fan 
et  al. 2007; Liu et  al. 2008), the molecular clock is also 
temperature compensated, crucial for the maintenance of 
accurate periods in the varying temperature environments 
(Huang et al. 1995).

The relative importance of the different components of 
the clock has gradually been uncovered using gene “knock-
out” models and studying animals with naturally occur-
ring mutations. Though the component proteins are not 
homologous between plants, yeast and animals, the roles 
and their organisation into TTFLs are conserved. In mam-
mals, heterodimerisation of two basic helix-loop-helix 

Fig. 1   Article publication 
rate on topics associated with 
circadian physiology (source: 
PubMed, http://www.ncbi.
nlm.nih.gov/pubmed). a and 
b present publication rates on 
different scales

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
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proteins, CLOCK and BMAL1, enables the binding of the 
complex to E-box elements in promoters. Binding acti-
vates expression and, PERIOD (PER1, PER2) and CRYP-
TOCHROME (CRY1, CRY2) proteins are produced from 
the rhythmic activation of Period (Per1, Per2) and Crypto-
chome (Cry1, Cry2) genes. Over time, PER and CRY pro-
teins accumulate in the cytoplasm, forming complexes that 
subsequently translocate back to the nucleus to inhibit the 
CLOCK:BMAL1 transactivation and thus closing the loop 
(Fig. 2a). This comprises the core TTFL loop.

However, the overall mechanism is far more com-
plex: there is a high level of redundancy and numerous 
peripheral modifiers. Redundancy in the mechanism can 
be found in the paralogous genes, where the loss of one 
paralogue can compensated by another. This was clearly 
demonstrated by a knockout of Clock in mice, which 
had no significant consequence on the overall pattern of 
clock gene expression or rhythmic behaviour (Debruyne 
et al. 2006). It was later shown that in mammals, CLOCK 
and NPAS2 have overlapping roles in the master clock 

(Debruyne et al. 2007a), meaning a single knockout of a 
core clock gene has little effect, though this compensation 
is tissue specific and NPAS2 is not able to restore function 
in the periphery (Debruyne et al. 2007b). Genetic redun-
dancy is present in all animal clock mechanisms, and is 
particularly extreme in fish, with their numerous whole 
genome duplications (Postlethwait et  al. 2004; Wang 
2008a, b, 2009).

Whilst the TTFL forms the canonical core of the circa-
dian clock, post-translational regulation is highly impor-
tant. In fact, one of the most famous mammalian circadian 
mutants, the tau hamster, is a mutant of a posttranslational 
modifier, the casein kinase CK1ε, which phosphorylates 
PER (Ralph and Menaker 1988; Lowrey et al. 2000; Meng 
et  al. 2008). Casein kinase mutations also lead to Dros-
ophila doubletime (Kloss et al. 1998; Price et al. 1998) and 
human familial advanced sleep phase syndrome (FASPS) 
(Xu et al. 2005), and are a key element in the circadian sys-
tem of zebrafish (Smadja Storz et  al. 2013). Components 
in the circadian mechanism can also undergo acetylation, 

Fig. 2   The circadian clock core feedback loops interact with cel-
lular metabolism. a In the core feedback loops, rhythmic expres-
sion of PERIOD (PER1, PER2 and PER3) and CRYPTOCHROME 
(CRY1 and CRY2) proteins are produced from the rhythmic activa-
tion of Period (Per1, Per2 and Per3) and Cryptochome (Cry1 and 
Cry2) by CLOCK and BMAL1. PER and CRY proteins form com-
plexes that subsequently translocate back to the nucleus to inhibit 
the CLOCK:BMAL1 activity, thus closing the loop. CLOCK and 
BMAL1 also activate the rhythmic expression of many other genes 
within the cell imparting rhythmicity on many aspects of cellular 
physiology, such as Nampt, the rate limiting enzyme in the NAD 
salvage pathway. b The NAD salvage pathway has a direct influ-
ence on the NAD+-dependent deacetylase, SIRT1. SIRT1 directly 

interacts with the core circadian clock elements in three major ways: 
(1) through deacetylating PER2, promoting its degredation (Asher 
et  al. 2008); (2) through its effect on circadian chromatin remodel-
ling through its deactylase action on H3K9 and H3K14 in preferential 
sites of CLOCK’s own acetylase activity (Doi et al. 2006; Nakahata 
et  al. 2008). (3) Through deacetylating, modifying CRY1-mediated 
repression of the CLOCK/BMAL1 complex (Hirayama et  al. 2007; 
Nakahata et  al. 2008). SIRT1 also influences H3K4 trimethylation 
through circadian deacetylation of MLL1, causing a reduction in tran-
scriptionally active chromatin (Aguilar-Arnal et al. 2015). Since one 
CLOCK target is Nampt, in this way, the NAD-CLOCK accessory 
loop via SIRT1 is closed (Nakahata et al. 2009; Ramsey et al. 2009)
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methylation, SUMOylation and glycosylation, providing 
layer upon layer of regulatory fine-tuning. Post-transla-
tional mechanisms modulate clock protein turnover (e.g. 
CK1—Meng et  al. 2008), intracellular localization (e.g., 
SUMOylation of BMAL1—Lee et  al. 2008), and tran-
scriptional activity (e.g., glycosylation of CLOCK and 
PERIOD—Kaasik et  al. 2013) and thus play key roles in 
the overall running of the oscillator (for an excellent review 
on post-translational modifications of clock proteins see 
Mehra et al. 2009).

Interaction with post-translational modification systems 
shows that the clock does not operate in isolation from cel-
lular physiology, and likewise cellular physiology is not 
in isolation from the circadian clock. A particularly inter-
twined example of this crosstalk is related to NAD biosyn-
thesis, where metabolic pathways influence the circadian 
clock and the clock influences metabolism (Fig. 2b; Naka-
hata et  al. 2009; Ramsey et  al. 2009). The importance of 
metabolic and cytosolic cycles in circadian timing is also 
seen in the non-transcriptional clock mechanisms, such as 
the Kai clock of cyanobacteria and the peroxiredoxin clock 
of human blood cells, unicellular algae and other organ-
isms (Tomita et al. 2005; O’Neill and Reddy 2011; O’Neill 
et al. 2011; Edgar et al. 2012). Though these mechanisms 
are able to generate circadian oscillations in the absence of 
the TTFL, it is likely that both the transcriptional and non-
transcriptional mechanisms are important in fulfilling the 
requirements of coordinating timing of cellular physiology 
(Edgar et  al. 2012; Reddy and Rey 2014). This consider-
able mechanistic rhythmicity is realised downstream in the 
fact that at least 10 % of the transcriptome oscillates (Panda 
et  al. 2002; Miller et  al. 2007), with CLOCK-dependent 
oscillatory expression evident in a diverse array of meta-
bolic pathways including the amino acid, carbohydrate, 
lipid, nucleotide, and xenobiotic pathways (Eckel-Mahan 
et  al. 2012). The circadian clock and cellular physiology 
are clearly tightly linked (for review see Reddy and Rey 
2014).

Entraining to external cues

This molecular mechanism is not a stand-alone time keeper, 
rather it is modified or reset according to external cues such 
as light, temperature and food availability. This ability to 
tune or entrain to external cues is the defining feature of 
a biological clock. When the rhythmicity of these cues or 
zeitgebers (from the German, “time-giver”) is removed and 
the organism is placed under constant conditions, internal 
biological time becomes evident: the clock and physiology 
associated with it ‘free runs’, with a ‘free-running period’ 
of minutes to hours longer or shorter than the period the 
organism was previously entrained to (hence the term circa 
in circadian).

Many types of zeitgebers have been found to synchro-
nise circadian clocks, from abiotic factors such as light, 
temperature, sound and mechanical disturbance to biotic 
factors such as food availability and feeding, social contact 
and the activity of other organisms (Refinetti 2005). Light 
intensity is the most easily detectable and reliable source 
of information that animals can use to entrain their circa-
dian rhythms, and is the most obvious difference between 
rhythmic and arrhythmic habitats. Photoreception is wide-
spread throughout the biological realm, and non-direc-
tional irradiance photoreception for day/night detection 
likely drove the early evolution of photoreceptors (Nilsson 
2013; Lamb 2013). Long-integrating photoreceptive cells 
that entrain the clock persist in most animals, and can be 
found as distinct cells in the retina, brains and parietal eyes 
(‘third’ or ‘pineal’) of many vertebrates (Berson et al. 2002; 
Vigh et  al. 2002; Berson 2003; Bertolucci and Foà 2004) 
and as optic or non-optic components of the clock network 
in invertebrates (Saunders 2002; Land and Nilsson 2012). 
Within these cells are expressed non-visual photopigments, 
with Melanopsin and cryptochrome the major circadian 
photopigments in mammals and Drosophila, respectively, 
(Stanewsky et  al. 1998; Lucas et  al. 2001; Hattar et  al. 
2003). Melanopsin shares greater homology with inverte-
brate opsins than visual opsins, resembling invertebrate 
opsins in its tyrosine counterion, third cytoplasmic loop, 
and extended C terminus (Provencio et  al. 1998; Belling-
ham and Foster 2002; Hankins et al. 2008). Multiple non-
visual opsin genes exist in non-mammalian vertebrates, 
with 32 genes including 5 melanopsin genes identified in 
zebrafish, though none have yet been linked mechanisti-
cally to circadian entrainment (Davies et al. 2011, 2015).

In mammals, the master circadian clock is necessary and 
sufficient to orchestrate the timing of circadian rhythms in 
the rest of the body: transplantation of the SCN between 
mutant hamsters with different periods transfers the donor 
period to the recipient animal (Ralph et al. 1990). The SCN 
receives light input from specialised photosensitive retinal 
ganglion cells in the eyes via the retinohypothalamic tract 
(Moore and Eichler 1972; Berson et  al. 2002). The mas-
ter clock–peripheral clock arrangement is not as clear cut 
outside of the mammals. A subset of brain neurons act like 
a central pacemaker in Drosophila and generate circadian 
rhythms  of behaviour (Renn et  al. 1999; Hardin 2005), 
however, unlike mammals, Drosophila peripheral cellular 
circadian clocks can be directly entrained by light, meaning 
that environmental cycles can be directly coordinated with 
cellular physiology in the absence of specialised clock cen-
tres (Plautz et al. 1997). This decentralization of the clock 
organisation is also observed in other clock models such as 
zebrafish (Whitmore et  al. 1998, 2000). In fact, a central 
circadian pacemaker is yet to be localised in zebrafish and 
the brain is globally responsive to light, reflecting a high 
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degree of direct light sensitivity in this animal as a whole 
(Whitmore et al. 1998; Moore and Whitmore 2014; Davies 
et al. 2015).

While light is probably the dominant zeitgeber for 
most animals, temperature can also entrain rhythms, 
though its importance as a zeitgeber depends on clock 
hierarchy and whether the animal is poikilothermic 
or homoeothermic (for review see Rensing and Ruoff 
2002). Temperature cycles strongly entrain rhythms of 
eclosion in flies (Zimmerman et  al. 1968), and behav-
ioural rhythms in poikilotherms such as lizards, flies 
and fish (Hoffmann 1969; Wheeler et  al. 1993; Gla-
ser and Stanewsky 2005; Lahiri et  al. 2005; Sehadova 
et  al. 2009). While temperature can entrain behavioural 
rhythms in homeotherms such as mice and squirrel mon-
keys (Aschoff and Tokura 1986; Refinetti 2010), it is only 
a weak zeitgeber, and the master clock in the suprachias-
matic nucleus (SCN) is resistant to temperature entrain-
ment (Buhr et  al. 2010; Refinetti 2015). It is likely that 
in homoeotherms temperature cycles serve as internal 
zeitgeber signals for downstream peripheral oscillators 
(Brown et al. 2002; Buhr et al. 2010).

Thus, the circadian clock is a highly complex mecha-
nism, not just consisting of a stand-alone transcription–
feedback loop but also of numerous accessory loops 
(which add robustness and interconnectivity within the 
cell) and an ability to entrain to relevant environmental 
cues at different time scales. The clock mechanism is vital 
not just for the rhythmic coordination with the external 
world, but also for the rhythmicity of the cellular envi-
ronment in all its guises. It is clear that circadian clock 
and physiology are tightly intertwined and any disrup-
tion to the system is likely to have a large impact on the 
organism.

Methods to study circadian physiology

Circadian physiology is difficult to study for two rea-
sons. First, it is generally difficult studying physiology 
as the processes of interest tend to occur within a whole 
organism. Outward manifestations of physiology such 
as behaviour or morphology can be used to infer what is 
happening inside the organism, but much of the research 
on circadian physiology aims to trace the action of met-
abolic processes to the internal clocks, which tends to 
require a reductionist approach towards measurement 
of metabolite flux, gene expression, post-translational 
modifications and so on. Tools continue to be developed 
to study a broad array of variables simultaneously (e.g., 
metabolomics and gene microarrays), or to report the flux 
of physiological processes in living organisms (e.g., fluo-
rescent reporter genes, implantable biometric devices and 

microcannulation) in an effort to make sense of the multi-
tude of interactions between genes, gene products, metab-
olites and hormones.

The second challenge of circadian physiology research 
is developing methods to study a process of interest repeat-
edly over time. Single point sampling has limited value, 
as circadian physiologists are interested in repeated meas-
ures over hours, days, months and years. There are two 
approaches that can be used to develop a physiological pro-
file over time: the first involves taking samples from multi-
ple individuals (or tissues or cells) at different time points 
and plotting an average value against time, and the second 
involves resampling the same individuals over time. The 
latter method is probably optimal as it reduces the overall 
error in the study (Walter et al. 2014); however, obtaining 
serial samples from the same individuals can be difficult. 
The degree of intra-individual variation in rhythmic data 
can be considerable, especially at higher levels of biologi-
cal organisation such as circadian behaviour or whole body 
energy metabolism, probably because there are so many 
components that interact to generate higher order physi-
ological rhythms. At reduced levels of biological com-
plexity, such as at the single cell level, circadian clock 
oscillations and physiological cycling can be remarkably 
uniform and robust. In mammals the SCN has very robust 
rhythmicity as a whole due to extensive synaptic coupling 
and numerous gap junctions (Yamaguchi  et al. 2003; Liu 
et al. 2007), while cells in other tissues tend to have a lower 
degree of cellular connectivity and as a result a less robust 
physiological rhythmicity (Liu et al. 2007; Abraham et al. 
2010). Thus, researchers can face significant challenges in 
detecting free-running physiological rhythms in whole ani-
mals due to the varying biological rhythmicity of different 
tissue types. In addition, a study must be constructed that 
controls for the many zeitgebers that clocks within these 
tissues may differentially entrain to (e.g., food availability, 
daily and seasonal light cycles, and auditory, tidal and tem-
perature cycles). The following text discusses methods and 
tools that can be used to collect rhythmic physiology data, 
and which of those are appropriate for studying animals 
from arrhythmic environments.

The first group of research tools is behavioural tracking 
methods that allow researchers to quantify time-resolved 
activity intensity. These tools may be deployed in the wild 
or in the laboratory and, since they are non-invasive, are 
useful for studying species with limited population num-
bers and ranges, such as those found in extreme environ-
ments. These tools can take the form of motion recording 
using video cameras (Bailoo et al. 2010), monitored exer-
cise equipment (e.g. running wheels for mice—Thomas 
et al. 2011), accelerometers mounted on the body (Ropert-
Coudert and Wilson 2005), photo-cell beam interference 
(Barrett et  al. 2001; Thomas et  al. 2011), and acoustic 
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monitoring (Bovet and Oertli 1974). Automated computer 
analysis software is commonly used to track and quantify 
activity, which, in addition to being more efficient, can 
also be more sensitive and objective than human analysis 
of behavioural patterns (Desland et al. 2014). An important 
consideration in video analysis of behaviour is the ability 
to monitor activity at low light or dark periods, which is 
especially important in the study of animals that normally 
exist in the absence of light. Infrared lighting can be used 
to illuminate arenas under conditions that would be per-
ceived as dark for most animals (with the exception of 
some snakes and insects), and infrared backlighting often 
helps contrast objects under all lighting conditions (Bailoo 
et al. 2010).

The next group of tools to study rhythmic physiology is 
that which facilitate the measurement of metabolite flux or 
physiological status in living animals. These tools include 
implanted devices to measure body temperature (Minors 
et al. 1996), nerve activity (Barrett et al. 2001) and blood 
pressure and flow rate (Westgate et al. 2008). Such devices 
may be wired (meaning the animal is tethered) or wire-
less, with key considerations being the ability to power 
the device, the size of the implant and data transmission 
capacity (or logger retrieval). Time-resolved measurement 
of hormone flux can be achieved through serial blood sam-
pling via an implanted cannula and microdialysis (Drijf-
hout et al. 1996; Solberg et al. 2001), or via the sampling 
of bodily fluids such as saliva (Shirakawa et al. 2004) and 
urine (Feldmann et  al. 1989). It is possible to calculate 
hormone flux in aquatic animals through measurement of 
hormones excreted into the water (Ellis et al. 2007). With 
the exception of excreted hormone measurement in aquatic 
animals, these tools are relatively invasive procedures and 
as such may not be very useful in lab or field studies of 
extremophiles.

Another category of tools to study metabolite flux is 
the methods to quantify metabolic rate. Direct calorimetry 
measures the rate of heat production, and can be used to 
monitor the time-resolved energy use of terrestrial animals 
inside a thermally insulated chamber (Berman and Melt-
zer 1978). The most common method to quantify aerobic 
energy output in aquatic animals is to monitor oxygen con-
sumption in a chamber (Steffensen 1989). The oxygen con-
sumption rate of aerial breathers can also be used to meas-
ure metabolic rate over time (Refinetti 2003), as can the 
rate of carbon dioxide excretion (Krauchi and Wirz-Justice 
1994), and by comparing the two values it is possible to 
approximate the proportion of metabolism powered by car-
bohydrate versus fat catabolism (Gnaiger 1983). While it is 
extremely difficult to quantify the carbon dioxide excretion 
rate of aquatic animals accurately, instantaneous nitrogen 
excretion is relatively easy to measure, and when combined 
with oxygen consumption rates allows for the calculation 

of protein catabolism rates over time (Stiller et  al. 2015). 
Quantifying the time-resolved metabolic rates of animals in 
the field is effectively impossible with current technology, 
although accelerometry is an increasingly popular proxy 
method for measuring energy expenditure of animals in 
their natural environment (Cooke et al. 2004; Payne et al. 
2014).

A further set of tools and methods allows the measure-
ment of the molecular genetic clock and time-resolved 
variation in the transcriptome, proteome and metabolome 
(Gaspar and Brown 2015). DNA microarray analysis has 
been important in elucidating the cyclical transcription 
of both clock genes and the genes downstream that are 
affected by the oscillator state. However, considerable 
effort needs to be expended to ensure that there is suffi-
cient statistical power to confirm changes in gene expres-
sion (Straume 2004; Lee et al. 2000; Delaunay and Laudet 
2002). Most studies require a serial sampling approach 
which can be difficult in the field, though this has not 
prevented them from being used in Mexican cavefish 
(Beale et  al. 2013). The use of primary cell cultures to 
study rhythmic physiology can circumvent some of issues 
around serial sampling of multiple individuals in that sub-
samples of the same primary culture can be analysed over 
time (Earnest and Cassone 2005). However, while cell cul-
ture approaches are useful for probing the components and 
functioning of the molecular clock and attendant outputs 
(Nagoshi et al. 2005; Farnell et al. 2011), they are not able 
to directly inform on the instantaneous state of genes or 
metabolites in the tissue or organism from which the cells 
were harvested.

A final tool can be used to monitor gene expression in 
real time in cells, tissues and even whole animals. In the 
study of rhythmic physiology, this is most commonly a 
knock-in of a reporter construct consisting of a clock gene 
promoter driving a firefly luciferase gene (Fig.  3; Welsh 
et  al. 2005). This generates dim luminescent light in syn-
chrony with the endogenous activation of the clock gene 
which can be captured with a high sensitivity camera 
(Welsh et  al. 2005; Yamazaki and Takahashi 2005; Carr 
and Whitmore 2005). The use of optical fibres inserted 
into animals carrying the luciferase reporter has allowed 
researchers to visualise and measure the cycling of clock 
genes in intact organs (Yamaguchi et al. 2001; Wilsbacher 
et  al. 2002). The ability to measure spatiotemporal gene 
expression in living tissue and whole animals in this way 
has rapidly progressed the field of rhythmic physiology and 
changed our understanding about molecular clock modula-
tion, distribution, hierarchy and links to downstream meta-
bolic processes. While this tool is not useful for studying 
animals in their natural habitats, advances in DNA sequenc-
ing have improved the possibility of generating reporters 
for multiple clock genes in non-model organisms.
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A review of rhythmic physiology research 
in animals from arrhythmic habitats

The dark biosphere is the largest habitable zone on earth, 
with a large biomass of resident organisms. We would 
therefore be remiss not to study what appears to be a uni-
versal feature of life on Earth in a substantial fraction of 
what actually lives on the planet. What is known about 
rhythmic physiology in these habitats?

Polar habitats

Polar regions, with their extreme annual variation in 
photoperiod, are neither constantly rhythmic nor fully 
arrhythmic but represent a unique challenge to the ani-
mals that live there. At latitudes above 78°N and below 
78°S there are periods of the year when the sun remains 
below the horizon (and conversely, periods when the sun 
remains above the horizon) for multiple days (Berge et al. 
2015). The resulting ‘polar night’ and ‘polar day’ results 
in organisms experiencing constant darkness and constant 
light for periods throughout the year. With increasing lat-
itude, there is a corresponding decrease in amplitude of 
the light:dark (LD) cycle for an increasingly large part of 
the year and animals that live in these high latitudes may 
experience distinct LD cycles for less than a third of the 
year.

The islands of Svalbard sit between 74° and 81°N and 
host two of the most well-studied resident arctic herbivore 

species, the Svalbard reindeer (Rangifer tarandus platy-
rhynchus) and ptarmigan (Lagopus mutus hyperboreus). 
Both animals lose daily behavioural rhythmicity during the 
polar day, resulting in periods of constant activity (Fig. 4a) 
and arrhythmic melatonin secretion, a marker of internal 
circadian rhythmicity (Reierth et  al. 1999; van Oort et  al. 
2005, 2007; Stokkan et  al. 2007; Lu et  al. 2010). In arc-
tic reindeer, melatonin secretion appears to be independent 
of circadian rhythms, as rhythms of melatonin secretion 
in juveniles exposed to LD cycles do not persist in con-
stant darkness and are instead driven by acute changes in 
light (Stokkan et  al. 2007; Lu et  al. 2010). In contrast to 
mouse fibroblasts containing the same reporter constructs, 
transgenic reindeer fibroblasts carrying mouse Bmal1 or 
Per2 clock gene reporter constructs showed unstable and 
transient oscillations for one to two cycles with a range of 
periods from 19 to 31  h (Lu et  al. 2010). Taken together 
with the absence of rhythmic melatonin secretion, these 
results suggest that the molecular clock that drives circa-
dian rhythms in these polar animals may be absent, or at 
least very weak.

However, it is unknown whether this faithfully reflects 
the nature of the molecular circadian clock since these 
results are from cross-species reporter constructs and not 
compared to the clocks of temperate ungulates. While 
showing a similar absence of melatonin rhythms during 
the polar day, ptarmigans, in contrast to the reindeer, show 
clear daily cycles of melatonin persisting throughout the 
polar night, suggestive that at least some of the circadian 

Fig. 3   E-box reporter activity in zebrafish larvae. Luciferase expres-
sion from tg(4xE-box:Luc), detected by immunohistochemistry with 
an anti-luciferase antibody and an Alexa Fluor 488-labelled second-
ary antibody, shows diurnal (a) and circadian (b) rhythms across all 
tissues of a 5 dpf larvae. Relative fluorescence intensity is shown col-
our coded. Larvae were sampled at five different time points during 
LD (ZT3-ZT3′; a) or DD (CT3-CT3′; b) after a 4-day entrainment 

period. Scale bar 1.0 mm. Taken from Weger et al. (2013). Reprinted 
from Developmental Biology, 380/2, Weger et al., Real-time in vivo 
monitoring of circadian E-box enhancer activity: a robust and sensi-
tive zebrafish reporter line for developmental, chemical and neural 
biology of the circadian clock, 259–273, Copyright (2013), with per-
mission from Elsevier
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system remains functional in these birds (Reierth et  al. 
1999). Persistent melatonin rhythms exist throughout the 
polar day conditions in willow warblers and Lapland long-
spurs, though absolute levels were reduced (Hau et  al. 
2002; Silverin et al. 2009; Ashley et al. 2014). The suppres-
sion and lack of rhythmicity in melatonin seen in the arc-
tic summer is very likely due to the suppressive action of 
bright light (Wurtman et al. 1963).

One possible explanation to the diversity of behavioural 
and physiological rhythmicity is that circadian clock con-
trol of outputs is plastic in the unusual illumination of the 
polar environment. Supportive of this is the finding in two 
species of arctic birds of a diversity of activity patterns 
in constant light (entrained rhythm, ‘free-running’-like 
rhythm and arrhythmic) which depend on life history, sex 
and breeding stage (Steiger et  al. 2013). This explanation 
requires that the clock continues to oscillate throughout 
the polar day, with clock control of outputs only employed 
when it is beneficial to do so, which depends on life history 
and time of year (Williams et al. 2015).

The persistence of entrainable circadian rhythms of 
physiology and behaviour in polar animals at different 
points of the year may represent some sort of halfway 
house between the full benefits of circadian rhythms in a 

rhythmic environment and the unknown role in an arrhyth-
mic environment. In this environment, the condition of the 
circadian system may have more to do with the importance 
of circannual timers, which depend on a melatonin signal 
(Lincoln et al. 2006; Lu et al. 2010).

Deep‑sea habitats

The deep sea is one of the least studied habitats on earth, 
with just 5-7 % of the deep-sea floor having been explored 
(Cuvelier et  al. 2014). Regions below 1000  m depth are 
considered to be outside the reach of sunlight (Warrant and 
Locket 2004) and represent an arrhythmic habitat of great 
interest to circadian biologists. Unfortunately, very little 
research on the daily rhythmic lives of deep-sea organisms 
has been conducted, preventing strong conclusions on the 
rhythmic physiology of this community. However, studies 
by Maynou and Cartes (1998), Wagner et al. (2007), Mod-
ica et  al. (2014) and Cuvelier et  al. (2014) have provided 
some hints on rhythmicity in the deep.

Feeding rhythms in deep-sea animals have been detected 
by measuring the daily variation in stomach fullness after 
catch (Maynou and Cartes 1998; Modica et  al. 2014). Of 
the three deep-sea decapod species that were sampled from 

Fig. 4   a Sample actograms showing patterns of activity over 1 year 
in sub-adult reindeer in left, northern Norway at 70°N (R. t. taran-
dus), and right, Svalbard at 78°N (R. t. platyrhynchus). Lines indi-
cating the beginning and end of civil twilight (when light intensity is 
10  lx, orange) and sunrise and sunset (yellow) are superimposed on 
each actogram (van Oort et al. 2005). Reprinted by permission from 
Macmillan Publishers Ltd: Nature, van Oort et  al. 2005, copyright 
2005. b Hints of rhythmicity in a deep-sea decapod at 1178–1240 m 
below sea level, Pontophilus norvegicus, as indicated by the variation 

in stomach fullness of fish caught at different times of day, however 
ANOVA reveals no significant difference between samples (Maynou 
and Cartes 1998). Copyright © 1998 Inter-Research. c Core clock 
gene rhythms in peripheral tissues of the mole rat, Spalax ehrenbergi, 
on a light–dark cycle. Here, RT-PCR reveals that Per2 shows a high 
amplitude rhythm in both the harderian gland (Hard) and the liver 
(Avivi et al. 2002). Copyright © 2002, The National Academy of Sci-
ences
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below 1000 m depth, one, Pontophilus novegicus, hints at a 
daily rhythm in feeding by showing a demarcation between 
day and night (Fig.  4b; Maynou and Cartes 1998). Simi-
lar hints are seen for three of five species of fish from the 
deep Balearic Basin: Coryphaenoides mediterraneus, Ale-
pocephalus rostratus, and Lepidion lepidion (Modica et al. 
2014). Interestingly these three fish species predominantly 
feed on active prey. It may be that the movements and avail-
ability of active prey at different times of day itself serves 
as a zeitgeber for species that live deeper than 1000 m.

Melatonin secretion has been measured in two fish, the 
grenadier and deep-sea eel, from the deep north-eastern 
Atlantic (Wagner et  al. 2007). Pineal melatonin content 
in fish caught from trawls conducted throughout the day 
and night suggested rhythms of half-day periods, which, 
when plotted against lunar time and compared to velocity 
measurements in currents, was highly suggestive of lunar 
and tidal influence even at a depth of more than 1050 m. 
Wagner et  al. (2007) also measured spontaneous mela-
tonin release in pineal glands in culture, a laudable effort 
on board a trawler vessel. Though the data is close to the 
minimum requirement for autocorrelation and the peaks 
that emerge are not significant at p <0.05, the occurrence of 
peaks at 9–11 h in all individual cultures is weakly sugges-
tive of an underlying biological rhythm. However, limita-
tions in the ability of the on board culture experiments to 
avoid the influence of exogenous rhythms reduces the reli-
ability of the conclusions.

Unfortunately, these studies suffer from the same 
experimental constraint: the difficulty in obtaining regu-
larly spaced samples from the deep-sea trawls. A better 
method may be remote monitoring offered by networks of 
cameras fixed on the sea floor. A recent study, using video 
footage to analyse deep-sea activity, strengthens these ten-
tative conclusions (Cuvelier et  al. 2014). Cuvelier et  al. 
(2014) measured the faunal density (the percentage of 
field of view occupied by organisms) of four invertebrate 
species at a hydrothermal vent over a continuous 23-day 
recording period. Of the four species, the siboglinid tube-
worms, Ridgeia piscesae, showed the strongest population 
rhythms of activity in the circadian and half-day range. 
These rhythms correlated with measurements of tempera-
ture rhythms at nearby locations, again demonstrating the 
influence of the tide even at these depths (2200  m). It is 
worth noting, however, that the absence of clear rhythmic-
ity in the other three invertebrate species at the hydrother-
mal vent could perhaps be due to the experimental condi-
tions: the recording required a constant source of bright 
light, which inhibits rhythmic activity in other animals. The 
bright light could also explain the gradual decrease in fauna 
density during the recording due to a photophobic reac-
tion within the camera’s field of view, such as that noted by 
Beale et al. (2013).

Another piece of evidence comes from the non-visual 
opsins, candidates for being the photoreceptors in the circa-
dian system. While non-visual opsins remain undiscovered in 
the aforementioned species living in the aphotic zone, func-
tional melanopsin photopigments have been discovered in a 
deep-sea fish, the elephant shark, Callorhinchus milii, which 
could be used for the entrainment of a circadian clock (Davies 
et  al. 2012). Therefore, although it is difficult to assign the 
presence of rhythms to an internal biological clock or an 
acute response to the environment in many of these deep-sea 
studies, taken together the evidence clearly demonstrates that 
the deep sea is not as arrhythmic as previously thought.

Subterranean habitats

Though light is strongly attenuated within 10  cm of sur-
face (Tester and Morris 1987) and the daily warming effect 
of sun only reaches 1 m (Geiger et al. 2003), a surprising 
number of subterranean animals possess rhythmic physiol-
ogy. The most well-studied subterranean vertebrates are the 
mole rats of southern Africa. The mole rats rarely, if ever, 
are exposed to light because they live in sealed burrow sys-
tems. These include the blind mole rat, Spalax ehrenbergi 
(Tobler et  al. 1998), the naked mole rat, Heterocephalus 
glaber (Riccio and Goldman 2000), the solitary Cape mole 
rat, Georhychus capensis, and four mole rat species of the 
Cryptomys genus of South Africa (Oosthuizen et al. 2003; 
Hart et al. 2004; Schöttner et al. 2006). Despite the subter-
ranean habitats, strong rhythms of activity are exhibited in 
all studied species (Tobler et al. 1998; Riccio and Goldman 
2000; Oosthuizen et  al. 2003; Hart et  al. 2004; Schöttner 
et  al. 2006) and clear rhythms in clock gene expression 
are seen in Spalax ehrenbergi which also possess the cir-
cadian photoreceptor melanopsin and a functional, spec-
trally tuned photopigment (Fig. 4c; David-Gray et al. 1998, 
1999; Hannibal et al. 2002; Avivi et al. 2002, 2004). There 
is some suggestion that social species display weaker activ-
ity rhythms than solitary species, as a greater percentage 
of individuals of a solitary species are rhythmic (Hart et al. 
2004). However, when the molecular clock is examined, 
this difference disappears. Though only half the individu-
als studied by Tobler et  al. (1998) exhibited free-running 
activity rhythms in constant darkness (DD), clear rhythms 
of clock gene expression are observed in this species (Avivi 
et al. 2002, 2004). It is possible that the variation in individ-
ual activity entrainment reflects a weak coupling between 
the endogenous clock and locomotor output, rather than a 
weak circadian clock, as is possible for the arctic pectoral 
sandpipers and male red phalaropes (Steiger et al. 2013).

Subterranean rodents from other parts of the world have 
been studied but, unlike the mole rats, they spend varying 
amounts of time on the surface, exposing themselves to 
light to forage and clean (Tomotani et al. 2012). One such 
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animal is the South American solitary burrowing rodent, 
Ctenomys knightii, commonly known as the Tuco-tuco. 
These rodents show circadian rhythms of activity both in 
laboratory conditions (Valentinuzzi et  al. 2009) and when 
brought into the lab directly from the field (Tomotani et al. 
2012), again demonstrating the presence of a circadian sys-
tem in a subterranean animal. However, even pulses of light 
can entrain circadian clocks (Carr and Whitmore 2005), 
and light-sampling behaviour, even to less than 3.5  % of 
the total light period, is a sufficient entraining signal for 
nocturnal rodents (Decoursey 1986; Decoursey and Menon 
1991). As such, despite their apparent subterranean exist-
ence, this species does not conform to the ‘dark’ or arrhyth-
mic definition of subterranean, as discussed here.

Subterranean life is dominated by invertebrate and 
microbial life, much of which is undiscovered and unre-
searched (Whitman et  al. 1998). Whilst invertebrates are 
not discussed in detail in this review, it is worth considering 
the subterranean origins of one of the major modal organ-
isms in biological research, the nematode worm Caeno-
rhabditis elegans. These animals were isolated from sub-
surface habitats, including compost, mushroom beds and 
garden soil (Kiontke and Sudhaus 2006). Though these ani-
mals have a very short generation time, potentially mask-
ing the detection of rhythmic physiology, an entrainable 
circadian clock has been detected, synchronisable by both 
photic and temperature signals (Kippert et al. 2002; Simon-
etta et  al. 2009). Furthermore, several physiological vari-
ables such as food consumption, pharyngeal contractions, 
defecation and oxygen consumption are clock-controlled in 
C. elegans, showing daily rhythms that are sustained under 
constant conditions and under different entrainment condi-
tions (Migliori et al. 2011; Eelderink-Chen et al. 2015). A 
number of elements of the circadian system of C. elegans 
are unknown, such as the environmental time cue respon-
sible for entrainment in the wild and the molecular compo-
nents of the clock. However, it is clear for this subterranean 
invertebrate at least, circadian physiology is “present and 
correct”.

Cave habitats

Of all the arrhythmic habitats, caves are potentially the 
most arrhythmic. In addition to the absence of light and 
dark cycles, temperature is extremely stable, approxi-
mately equal to the mean annual temperature at surface 
level. Water quality in underground pools is steady with 
a stable concentration of dissolved inorganic compounds 
and a low level of organic matter and evaporation rates are 
low, resulting in high humidity levels (Poulson and White 
1969). Though there are clear examples of strongly rhyth-
mic animals that use caves, such as bats, constitutively 
cave-dwelling animals, known as troglobites, live in the 

depths of caves and are unable to survive outside of caves. 
Troglobites are the most strongly specialised cave-dwelling 
animals, often showing complete absence of vision and 
pigmentation.

Caves can be “considered natural laboratories for study-
ing the adaptive significance of the biological clock” (Poul-
son and White 1969). Unfortunately, few circadian studies 
have been performed on cave animals and detailed compar-
isons of the published work are difficult due to differences 
in experimental conditions. However, trends can be drawn 
out from a selection of the strongest work, most of which 
examines locomotor activity rhythms. Readers are also 
directed to an excellent summary of the cave clock litera-
ture in relation to visual systems in Friedrich (2013).

Of all the studies that examine rhythms in DD after 
entrainment (both as the natural condition of the caves and 
also the test condition of the defining feature of the circa-
dian clock, i.e. the ability to free run), most show rhythmic-
ity in the circadian range (Fig.  5). The clearest examples 
include six species of cave fishes: locomotor rhythms after 
LD entrainment in Schistura jaruthani (Fig. 5a), Schistura 
spesei (both Duboué and Borowsky 2012), Rhamdia enfur-
nada and Trychomycterus sp.2 (both Trajano et al. 2012); 
clock gene expression rhythms after LD entrainment in 
Astyanax mexicanus (Fig. 5e; Beale et al. 2013); and clock 
gene expression rhythms after feeding entrainment Phreat-
ichtys andruzzii (Fig. 5f; Cavallari et al. 2011). Other exam-
ples demonstrate the fragile nature of studying locomotor 
rhythms and their analysis, by showing variation between 
individuals with rhythmic components seen in only a frac-
tion of tested animals, including in Nemacheilus evezardi 
(Pati 2001), Orconectes pellucidus (Brown 1961; Jegla and 
Poulson 1968), and Glyphiulus cavernicolous (Koilraj et al. 
2000).

The importance of experimental protocol in allowing 
an unambiguous interpretation of the chronobiology of a 
species is demonstrated by two papers in particular. In the 
first paper, Trajano et al. (2009) do not entrain the animals 
before attempting to measure locomotor activity in con-
stant conditions—as a result, they see variation between 
individuals of Rhamdia enfurnada: some are rhythmic, oth-
ers are not. However, a further paper in 2012 studied the 
same species in constant conditions after LD entrainment, 
and concluded that this cavefish possesses an entrainable 
circadian rhythm (Trajano et  al. 2012). Similarly, a study 
of a cave millipede, Bianulus lichtensteni, conducted with-
out entrainment, yielded ambiguous results (Mead and Gil-
hodes 1974). Only a fraction of individuals exhibited weak 
circadian rhythms, according to autocorrelation analysis, 
precluding reliable conclusions of the circadian pheno-
type of this species as a whole. Daily rhythms of activity 
are present in Procambarus cavernicola under entraining 
conditions, but the free-run condition the authors use is 
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Fig. 5   a The cave fish, Schistura jaruthanini, shows pronounced 
free-running locomotor rhythms after 6  months in 12:12 LD cycle. 
Activity was measured as the number of movements per 30  min 
period (y-axis) and was plotted over the full period of observation. 
Lomb-Scargle periodogram (right) shows pronounced rhythmicity in 
circadian range, typical of all but one species in Duboué et al.’s study 
(Duboué and Borowsky 2012). b A second cavefish, Phreatichys 
andruzzii, shows an absence of circadian rhythms during 12:12 LD 
cycles. Fish were maintained at 27 °C during recording and locomo-
tor activity, measured by infra-red beam crossing, is double plotted 
on the x-axis (Cavallari et al. 2011). c Two independent populations 
of cavefish demonstrate an absence of circadian rhythms of activity 
in constant darkness after LD entrainment in Astyanax mexicanus, 
though the sister surface population is rhythmic under the same pro-
tocol. The cavefish of this species show rhythmic activity under 12:12 

LD cycles (Beale et  al. 2013). d Phreatichthys andruzzii cavefish, 
arrhythmic after LD entrainment, show circadian rhythms of loco-
motor activity under entrainment by an alternative zeitgeber, feed-
ing. Fish were maintained under constant darkness and fed once a 
day at ZT0 and show a clear response to this daily zeitgeber. How-
ever, entrainment was not tested under constant conditions, i.e., the 
absence of feeding (Cavallari et  al. 2011). e Though Pachón and 
Chica populations of A. mexicanus do not show rhythms of locomotor 
activity in DD after LD entrainment, an underlying Per1 gene expres-
sion rhythm is present. Its damped profile is indicative of an unpreg-
ulation of the repressive light-input pathway (Beale et  al. 2013). f 
Timed feeding entrains the peripheral core clocks of P. andruzzii, as 
Per1 and Clk1a rhythms persist in the absence of the zeitgeber (Cav-
allari et al. 2011)
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constant light, not constant darkness, limiting the useful-
ness of this study in comparisons (O-Martínez et al. 2004).

Only a few papers present evidence for a complete 
absence of rhythms in cave animals. These include the 
cave salamander, Proteus anguinus (Hervant and Mathieu 
2000), two Rhamdiopsis genus cave catfishes (cited as Tau-
nayia sp. in Trajano and Menna-Barreto (2000) and unde-
scribed genus in Trajano et  al. (2005), respectively), and 
the characiform Stygichthys typhlops (Trajano et al. 2012). 
However, caveats exist in all cases: P. anguinus was not 
entrained prior to free-run, and therefore it is difficult to 
conclude on the status of its rhythmic capabilities. Whilst 
the Rhamdiopsis species and S. typhlops were arrhyth-
mic after LD entrainment, non-photic zeitgebers were not 
tested (though perhaps this was a deliberate choice after 
the fishes’ statistically significant response to LD cycles). 
Testing the role of non-photic zeitgebers is particularly 
pertinent given the results of a recent study of the Soma-
lian cavefish, Phreatichtys andruzzii (Cavallari et al. 2011). 
Whilst this cavefish is arrhythmic after LD entrainment 
(Fig.  5b) with mutations in candidate circadian photore-
ceptors tmt-opsin and melanopsin, rhythms of  locomotor 
activity and expression of core clock genes in the circa-
dian range are exhibited after food entrainment (Fig.  5c, 
f; Cavallari et  al. 2011). Nevertheless, cell culture based 
experiments give some suggestion that P. andruzzii exhib-
its rhythms in the infradian range (Cavallari et  al. 2011). 
This is a possible condition for other cave animals: rhythms 
of a non-circadian range are observed in Schistura oedipus 
(Duboué and Borowsky 2012) and Niphargus puteanus 
(Blume et al. 1962). However, it would be interesting to see 
the responses of these animals to non-photic zeitgebers.

Both photic and temperature cycles were examined 
in one study of two species cave beetles (Lamprecht and 
Weber 1978). Unfortunately, the researchers did not study 
both zeitgebers on each species: Aphaenops cereberus was 
only exposed to LD cycles (of a very low magnitude, just 
0.5 lx LD) and Speonomus diecki was only exposed to tem-
perature cycles of 2.6  °C amplitude. Furthermore, in nei-
ther case was the beetle allowed to free run after entrain-
ment, preventing proper circadian conclusions.

In summary, the majority of the evidence points to the 
retention of circadian rhythmic physiology in troglobites. 
It is worth noting that in these studies the major assay of 

circadian functionality is locomotor activity, which is sen-
sitive to the type of analysis performed. Perhaps a clearer 
answer can be gained from an analysis of the molecular 
components. The molecular circadian clock is the core of 
rhythmic physiology, its transcription–translation feedback 
loop being the source of all output rhythms. Molecular 
studies on cave animals may reduce problems in assaying 
output rhythms and produce more consistent data. Demon-
strating this is Beale et al.’s study on A. mexicanus cavefish 
(Beale et al. 2013). Whilst locomotor activity data is sug-
gestive of circadian rhythms in this species (Fig. 5d; Erck-
ens and Martin 1982; Beale et al. 2013), evidence from the 
molecular clock confirms that cavefish of this species retain 
an entrainable circadian clock (Fig. 5e; Beale et al. 2013).

The recent circadian studies of A. mexicanus cavefish 
(Fig. 6) by Beale et al. (2013) and Moran et al. (2014) have 
also started to experimentally probe the adaptive signifi-
cance of changes in the rhythmic physiology of this species 
complex as it adapted to subterranean habitats. Beale et al. 
(2013) measured the circadian coupled DNA repair path-
ways in surface and cave phenotypes, and suggested that 
the day-like semi-locked state of the cave variants’ circa-
dian clocks likely helps sustain DNA repair under constant 
dark conditions (whereas this would have occurred dur-
ing the day in the ancestral surface fish from which they 
evolved). Moran et al. (2014) measured the circadian meta-
bolic rate under constant exercise conditions, and observed 
a significantly dampened diurnal increase in metabolic rate 
in a cave phenotype compared to the surface phenotype. 
Moran et al. (2014) suggested that the loss of the circadian 
rhythm in metabolism was an energy saving adaptation in 
an environment that did not require a rhythmic increase 
in energy metabolism to prepare for a day of foraging and 
predator evasion and that was likely food limited for at 
least part of the year. The next steps in this species will be 
to confirm the exact molecular alterations that have taken 
place in cave morphs during adaptation to the cave envi-
ronment, and the degree to which physiological pathways 
have been altered or decoupled from the molecular genetic 
clocks.

Recent work in sequencing the genomes of cavefish with 
closely related surface populations is giving insights into 
the genetic changes during cave adaptation (McGaugh et al. 
2014; Yang et  al. 2016). In the cavefish Sinocyclochelus 

Fig. 6   The Mexican tetra 
Astyanax mexicanus is a useful 
model for studying chronobiol-
ogy as several distinct pheno-
types are found within the same 
species complex. a Eyeless 
Pachón cave morph and b eyed 
surface morph
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anshuiensis Yang et al. (2016) find a truncation in skp1, an 
important component of the E3 ligase SCF1 which regu-
lates the clock through the targeting of proteins for deg-
radation (Busino et  al. 2007), suggesting that circadian 
function is disrupted. This truncation is not found in the 
surface-dwelling form. They also report the downregulation 
of circadian genes in the cavefish, though the cave form 
does express the non-visual opsins and candidate circa-
dian photoreceptors melanopsin (opn4xa and opn4xb) and 
tmt-opsin2a (Yang et al. 2016). Unfortunately they do not 
specify which circadian genes are downregulated and they 
do not say at which time point the fish were sampled, so the 
functional status of the molecular circadian clock in these 
cavefish is somewhat unknown.

In the light of these studies, it would be interesting to re-
examine the cave animals of historical studies using mod-
ern molecular and physiological techniques to explore the 
variation and consistency in rhythmic physiology between 
independently derived cave species.

What can be gained in our understanding 
of the evolution of physiological rhythmicity 
by comparing animals from rhythmic 
and arrhythmic habitats?

Given the widespread distribution of circadian systems 
between organisms (and within the cells of those organ-
isms), together with the similarity of their mechanisms 
and their influence on a great deal of an organism’s physi-
ology, it is not surprising that extensive efforts have been 
directed at understanding their adaptive significance. It has 
been suggested that rhythmic physiology is an adaptation 
for a rotating planet, implying the importance of the exter-
nal environment in the fitness advantage given by the clock. 
However, rhythmic physiology is not solely concerned 
with synchronising with the external world, since a vari-
ety of internal physiological processes, including metabo-
lism, need to be organised temporally to avoid conflict. 
Two hypotheses for the evolutionary advantage of circa-
dian clocks are derived from these arguments: extrinsic and 
intrinsic organisation, or the ‘Day Outside’ and the ‘Day 
Within’ (Pittendrigh 1993; Sharma 2003; Yerushalmi and 
Green 2009; Vaze and Sharma 2013). These hypotheses 
are not mutually exclusive: it is possible that selection for 
intrinsic organisation originated through order forced upon 
cell processes by the regular variation in temperature and 
UV and visible light, and therefore is a result of the cyclical 
external world. Animals from arrhythmic habitats offer the 
chance to directly test the first hypothesis and learn about 
the adaptive value of rhythmic physiology at the Earth’s 
surface, and why rhythmicity evolved. By removing regular 
rhythmicity from the external environment, one removes 

any extrinsic evolutionary pressure on the circadian clock 
system. If rhythmic physiology persists or has originated in 
these habitats, it may have more to do with providing inter-
nal temporal order—an intrinsic evolutionary pressure, and 
giving evidence supporting the Day Within hypothesis.

Therefore, a great deal of information on the adaptive 
significance of clocks in animals can come from studies 
that focus on the association between the environment and 
circadian phenotype, especially in habitats with little to no 
daily variation or in habitats with extreme annual variation 
in photoperiod, such as the polar regions. It is likely that 
populations that have evolved under these environmental 
conditions should exhibit variation in their circadian phe-
notypes reflecting those conditions, providing a very strong 
test for the two hypotheses of the fitness advantage offered 
by the circadian mechanism.

Multiple approaches have been taken to examine the fit-
ness advantage of rhythmic physiology, but have predomi-
nantly focused on the value of the circadian clock with 
respect to a rhythmic environment, including experimen-
tal manipulation of circadian phenotype and/or environ-
ment and observations of correlation between variation in 
environment and variation in circadian properties. Recent 
reviews have outlined the strong evidence from these stud-
ies that clocks give a selective advantage to organisms (see 
Vaze and Sharma 2013; Yerushalmi and Green 2009), so 
following here is just a summary.

Evidence for the evolutionary advantage of rhythmic 
physiology

Compelling experimental evidence that circadian clocks 
improve the fitness of organisms is relatively sparse. Some of 
the clearest evidence comes from selection experiments per-
formed in plants, longevity studies in animals with disrupted 
circadian rhythms, and in studies examining the property 
of circadian resonance, the degree of matching between the 
endogenous period of the clock and the period of the exter-
nal environment. When arrhythmic and wild-type Arabidop-
sis thaliana are grown under extreme short-day conditions, 
arrhythmic plants are less viable than the wild-type plants, 
with less than 5 % of seedlings surviving for 4 weeks (Green 
et al. 2002). Green and colleagues suggested that the lack of 
a clock puts the plants at a disadvantage as arrhythmic plants 
fail to anticipate the day, as seen in the delay in expression in 
clock gene transcripts compared to wild-type in LD cycles.

Survival comparisons of rhythmic and arrhythmic ani-
mals also show effects of circadian rhythm disruption on 
fitness. DeCoursey et  al. (2000) investigated the survival 
of chipmunks in semi-natural conditions where animals 
had been subjected to SCN lesions. After an initial period 
where both sham- and SCN-operated groups showed higher 
mortality than non-operated, the survival curves stabilised 
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and a gradual trend of higher mortality in SCN-lesioned 
animals was observed. After 80  days, SCN-lesioned ani-
mals showed losses of 80  %, compared to 50  % in sham 
controls. The authors speculate that the increased night-
time restlessness in lesioned animals may have attracted 
predators to the burrows, resulting in the loss of more of 
the population. Though survival is not a direct measure 
of fitness, this result is suggestive of a fitness value to the 
circadian clock, since most of the SCN-lesioned animals 
would not survive long enough to produce young.

Further evidence comes from circadian resonance stud-
ies, where organisms have had the relationship altered 
between their endogenous clock period and the environ-
mental period. The circadian resonance hypothesis states 
that fitness is enhanced when the endogenous period and 
external cycles are closely matched, or ‘resonant’, and 
within the range in which the endogenous rhythms can be 
entrained to the external cycles. Organisms with discordant 
clocks suffer a fitness loss. In plants, short- and long-period 
A. thaliana mutants, sown under 20 and 28  h T-cycles, 
were measured for rosette diameter, chlorophyll content, 
leaf number and total mass. The short-period mutant per-
formed better under 20 h T-cycles whereas the long-period 
mutant performed better under 28  h T-cycles; matching 
endogenous period with environmental period significantly 
improves the plant’s output (Dodd et  al. 2005). Similar 
results have been reported for cyanobacteria, where reso-
nant strains outcompete non-resonant strains (Ouyang et al. 
1998; Woelfle et al. 2004).

Pittendrigh first reported on the effects of match-
ing external and endogenous period on animal lifespan, 
where flies raised in photoperiods divergent from 24  h 
lived shorter than those on 24-h photoperiod (Pittendrigh 
and Minis 1972). Comparable results were reported for 
blowflies by Aschoff (Saint Paul and Aschoff 1978). In a 
circadian resonance study analogous to that performed in 
A. thaliana, wild-type, short- and long-period Drosophila 
mutants show mild lifespan reductions when the endoge-
nous period does not match environmental period, though 
wild-type flies have longer lifespans than mutants in all 
tested photoperiods (Klarsfeld and Rouyer 1998). In mam-
mals, studies on the period length mutants of hamsters 
revealed that, when kept on 24-h cycles, mutants show 
small reductions in life span and increased incidences 
of disease, with heterozygous (tau/+) mutants showing 
the greatest effects (Hurd and Ralph 1998; Martino et  al. 
2008).

Whilst indicative, longevity, growth, and developmen-
tal rates do not directly assess the fitness advantage of 
the circadian clock in animals. Using tau period mutant 
mice, Spoelstra and colleagues directly assessed the fitness 
advantage of a circadian clock in semi-natural conditions 
(Spoelstra et  al. 2016). When kept in constant darkness, 

heterozygous and homozygous tau mutant mice free-run 
with circadian period lengths of about 22 and 20 h, respec-
tively, resulting in a circadian dissonance to the natural 
24-h  day. Spoelstra and colleagues recorded long-term 
behaviour, survival rates and allele frequency of mixed 
populations of wild-type, heterozygous and homozygous 
mutants released in Mendelian ratios to external pens 
(Spoelstra et  al. 2016). Homozygous mice exhibit signifi-
cantly increased mortality and the lowest probability of 
survival of the three groups. In addition, new generations 
of mice born during the course of the experiment contained 
fewer than expected numbers of homozygotes. In total, the 
allele frequency of the tau allele decreased from 50 % at 
the start of the experiment to 20 % 14 months later, indi-
cating a strong selection against the tau allele, and hence 
against the non-resonant period circadian clock.

These experiments demonstrate the value of the clock 
with respect to the external environment and suggest that 
the clock provides a fitness advantage to an organism in 
rhythmic environments. What can be said for the circa-
dian clock in arrhythmic environments? For cyanobacteria 
kept in constant light, strains with a functional clock are 
outcompeted by strains with a mutant clock, suggesting 
that the clock is of no benefit or even detrimental in con-
stant conditions (Woelfle et  al. 2004). By contrast, Dros-
ophila raised for 700 generations in constant light retain 
entrainable circadian rhythms, which the authors suggest is 
indicative of the circadian clocks having an intrinsic adap-
tive value (Paranjpe et al. 2003). Of course, animals from 
arrhythmic habitats are natural examples of these experi-
mental conditions, and provide another method to test the 
Day Within hypothesis.

In polar regions, though evidence for a functional molec-
ular clock is not yet conclusive, the plastic state of rhyth-
mic behaviour in polar animals across the seasons (Steiger 
et al. 2013) suggests that synchrony with the external envi-
ronment is not the primary role for the circadian clock in 
these animals, though any cost associated with a lack of 
synchrony with external environment should be assessed by 
systematically comparing such individuals with those which 
are in synchrony with the environment. However, this does 
not imply that circadian clock is not adaptive in arrhythmic 
conditions. Polar animals could lose or weaken the expres-
sion of some external outputs of the circadian clock, but 
retain the clock for its role within the organism. Support 
for this position can be found in an animal from a subter-
ranean habitat, the blind mole rat, Spalax ehrenbergi. Weak 
coupling between this organism’s locomotor activity and its 
internal clock similarly suggests that coordination of activ-
ity with the external world might not be important to this 
organism, though it still perceives daily and seasonal tem-
poral cycles even underground (Nevo 1998). Further evi-
dence is found in the deep sea and caves. Pineal melatonin 
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rhythms are present in deep-sea fishes (Wagner et al. 2007), 
and entrainable locomotor activity and molecular circadian 
clock rhythms are present in multiple species of cave ani-
mals (Cavallari et  al. 2011; Duboué and Borowsky 2012; 
Trajano et al. 2012; Beale et al. 2013), suggesting that the 
clock has not been lost even in arrhythmic environments.

That rhythmicity persists in arrhythmic habitats leads us 
to question the value of this generated rhythmicity —some-
thing other than simply coordinating an animal’s physiol-
ogy with the external environment. It is suggestive that 
there is pressure from the “Day Within” to maintain tem-
poral organisation in the organism. However, it is worth 
noting an alternative possibility: that circadian rhythms in 
arrhythmic environments are vestigial with species retain-
ing differing degrees of functionality.

This alternative explanation is less favoured for at least 
three reasons. Firstly, enough time has passed for signifi-
cant trait loss during isolation underground—characteris-
tics such as pigmentation and vision are lost in almost all 
obligate subterranean animals—but circadian rhythms do 
not seem to be one of them. Secondly, circadian rhythms 
are in some form retained across many species, despite vast 
differences in evolutionary histories and environmental 
pressures, and invasion time seems to be unrelated to circa-
dian function. Though estimates of invasion of the subter-
ranean habitats are broad, circadian rhythms are retained in 
cave species that invaded upwards of 1 million years ago 
(mya): 1.12–4.6  mya for A. mexicanus cave populations 
(Strecker et  al. 2004; Ornelas-García et  al. 2008; Bradic 
et  al. 2012; Gross 2012; Espinasa and Espinasa 2016); 
1.4–2.6 mya for P. andruzzii cavefish (Colli et al. 2009). By 
contrast, rhythms are apparently absent in Proteus anguinus 
despite its relatively recent (10,000 years ago) invasion of 
the caves (Hervant and Mathieu 2000; Sket 1997; Goricki 
and Trontelj 2006). Thirdly, in a genetic mechanism such 
as the circadian clock, it is likely that one or more of the 
genes involved would exhibit a degree of non-functional-
ity if the clock were vestigial and, with the exception of 
the truncated E3 ligase component skp1 in S. anshuiensis 
(Yang et al. 2016), this is not the case in A. mexicanus, P. 
andruzzi, S. ehrenbergi or Ptomaphagus hirtus (Avivi et al. 
2002, 2004; Cavallari et  al. 2011; Friedrich et  al. 2011; 
Beale et  al. 2013). Moreover, even if some components 
were mutated, redundancy in the molecular network (espe-
cially in teleosts with multiple copies of genes) may be a 
buffer to complete loss of function.

We are drawn back to the Day Within. Clocks are involved 
in a vast amount of cellular physiology including metabo-
lism and energy storage (Green et al. 2008; Asher and Schi-
bler 2011; Eckel-Mahan and Sassone-Corsi 2013); regula-
tion of the DNA repair pathways (Sancar et  al. 2015); cell 
division (Johnson 2010; Masri et al. 2013; Tamai and Whit-
more 2015); and, in plants, separation of photosynthesis and 

nitrogen fixation reactions (Berman-Frank et al. 2001). These 
independent roles do not require the complex free-running 
system of the circadian clock, but as these loops cooper-
ate and reinforce one another, they increase the resistance to 
external environmental fluctuation and give clocks a selective 
advantage due to intrinsic organisation (Brown et al. 2012). 
The data from studies of animals from arrhythmic environ-
ments support this hypothesis—data that can only come when 
the rhythmic environment is removed from the equation.

There is one final caveat: have we found anywhere on 
Earth that is truly outside the influence of the sun and there-
fore, have we found a true arrhythmic condition to test the 
fitness advantage of rhythmic physiology? Even the deep 
sea, at thousands of metres depth, feels the influence of the 
sun (and moon) through the movement of animals in the 
water column and through the movement of water due to 
tides. Deep caves, isolated from the external world, may still 
have links to the outside world, whether through the slow 
movement of air through cave complexes or the shuttling of 
organisms such as bats from the entrance to the deep. Nev-
ertheless, these studies of arrhythmic habitats have great 
power to inform our understanding of the importance of 
rhythmic physiology. Perhaps our best hope is in organisms 
that are independent of the energy given by the sun, such as 
those that exist on the deep-sea hydrothermal vents. Is there 
a swathe of organisms here that have never evolved what 
appears to be a universal feature of life on Earth?

Rhythmic physiology is a fundamental structuring ele-
ment of biology and a deeper comprehension of this trait 
will impact us in many ways, from fields as varied as 
human and domesticated animal health, to subsurface eco-
system function, human space exploration and understand-
ing life on other worlds. Given advances in technology, 
especially biotechnology, we are increasingly empowered 
to study biological rhythms in animals from dark places, 
and if we are to properly understand the evolution and sig-
nificance of rhythmic physiology we need to extend our 
view beyond the small, lit envelope we humans inhabit.
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