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Effect of Bisphosphonates on the Osteogenic Activity of Osteoprogenitor Cells 

Cultured on Titanium Surfaces 

 

ABSTRACT 

Purpose: This study investigated the effects of bisphosphonates (BPs) namely Alendronate 

(ALN) and Zoledronate (ZA) on the osteogenic activity of osteoprogenitor cells cultured on 

titanium surfaces at therapeutic doses in order to assess if altered osteoblastogenesis could 

compromise osseointegration and contribute in etiopathogenesis of painful disorders like BP-

related Osteonecrosis of the Jaw (BRONJ) following implant placement.  Materials and 

Methods: MC3T3-E1 Subclone 4 cells were utilised in this study. Therapeutic doses of ALN and 

ZA were calculated based off reported peak plasma concentrations. The viability, 

proliferation, adhesion, and mineralisation potential of cells was assessed using a LIVE/DEAD 

stain, alamarBlue® assay, immunofluorescence microscopy, and Alizarin Red S staining 

respectively. Results: Therapeutic doses of ZA negatively affected cell viability, whereas 

therapeutic doses of ALN significantly enhanced cell differentiation and the amount of bone 

formation compared to the control. Conclusions: The findings of this study may provide some 

insight into the pathogenesis of BRONJ developing following implant placement in patients 

treated with ZA and may have promising implications towards improved wound healing and 

osseointegration in patients treated with ALN.  
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1 INTRODUCTION 

Bone healing around modern titanium-based dental implants involves a complex chain of 

biological events that results in predictable osseointegration.1 Osteogenesis begins early in 

this process, approximately four days after placement of the implant, and continues for a 

further three months until bone-implant contact is achieved.2 During osteogenesis, viable 

osteoprogenitor cells in the granulation tissue differentiate into the bone-forming osteoblasts 

and deposit osteoid and minerals towards, and on, the implant surface.3 

Bisphosphonates (BPs) are a group of anti-resorptive agents that are widely used to treat a 

variety of diseases characterised by excessive bone resorption, such as osteoporosis, multiple 

myeloma, Paget’s disease, hypercalcemia of malignancy, and cancer bone metastasis. These 

drugs significantly improve patient’s quality of life by preventing events such as fractures and 

limiting bone pain and metastatic spread.4 In addition to their inhibitory effects on 

osteoclasts, BPs have been shown to affect several other cells, including epithelial cells, 

lymphocytes, macrophages, myelomas, and breast cancer cells. Furthermore, the mechanism 

of action of these drugs on bone may not be completely understood.5 Recent studies suggest 

that based on the type of BPs used and the multiple experimental protocols, BPs may also 

have a direct action on the bone forming capabilities of osteoblasts.6 

BPs, due to their association with the a osseo-destructive condition called Medication-related 

Osteonecrosis of the Jaw (MRONJ) have been extensively studied in recent literature.7,8 

MRONJ is characterised by exposed necrotic bone in the maxillofacial region that has 
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persisted for more than eight weeks in patients with a history of treatment with anti-

resorptive or anti-angiogenic drug therapy, and where there has been no history of radiation 

therapy to the jaw or no obvious metastatic disease to the jaws. Dentoalveolar surgery is 

considered a major risk factor for developing MRONJ, including the procedure of placing 

dental implants. Several hypotheses have been proposed to explain the delayed bone healing 

seen in MRONJ; however, it is likely that the cause of the disease is multi-factorial, with each 

of the drugs having slightly different etiopathogenic mechanisms.9 Since only BPs are used in 

this study, we use the term BP-related Osteonecrosis of the Jaw (BRONJ) instead of MRONJ. 

 

Osteogenesis is an integral part of hard tissue healing around dental implants and it is well 

accepted that BP therapy could induce predisposition for premature loss of implant and 

BRONJ. While Alqhtani et al.10 previously reported that low doses of BPs (less than 1000th of 

clinical doses) could enhance the osteogenic activity in vitro, it is not known if similar effects 

are observed with therapeutic doses of BPs. With this in mind, the aim of this in vitro study 

was to investigate how therapeutic doses of BPs could affect viability, proliferation, adhesion, 

and differentiation of osteoprogenitor cells cultured on titanium surfaces.  

 

2 METHODS 

 

2.1 Cell culture 

 

MC3T3-E1 Subclone 4 (ATCC® CRL2593TM; Manassas, VA, USA) – mouse calvarium-derived 

osteoprogenitor cells were utilised in this study. Cells were expanded at 37°C with complete 
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growth media (CGM) comprising of Dulbecco’s Modified Eagle’s Medium (DMEM) admixed 

with 10% Foetal Calf Serum (FCS) and 1% Penicillin-Streptomycin (Sigma-Aldrich, Castle Hill, 

NSW, Australia) placed within a 5% CO2 incubator. The media was replenished every 4th day 

and cells were passaged at 95% confluence as confirmed using an inverted microscope (Nikon 

Eclipse TS100, Nikon Instruments Incorporated, Melville, NY, USA) (Fig. 1). Only cells from 

passages 3 to 9 were used in the experiments and all experiments were conducted using 

triplicate sampling protocol. 

 

2.2 Titanium disc preparation  

 

Commercially pure titanium discs (14 mm x 3.5 mm) (Fig. 2), were placed into the wells of 12-

well tissue-culture plates (one disc per well). Prior to the first experiment, the titanium discs 

were roughened with a sandblaster for 3-minutes (150-200 μm alumina particles) (Korox 110, 

BEGO, Bremen, Germany). Between the experiments, the titanium discs were physically 

cleaned using a soft nylon brush, placed in an ultrasonic bath for 30-minutes, rinsed with 

ultrapure water (Milli-Q), and then sterilised in an autoclave at 134 °C for 20-minutes.  

 

2.3 Experimental groups 

 

Two commonly prescribed BPs were assessed, Alendronate (ALN) and Zoledronate (ZA; 

Sigma-Aldrich, Castle Hill, NSW, Australia), at concentrations equivalent to their respective 

therapeutic doses (Table 1). These drug concentrations were based on reported human 

plasma concentrations attained after administering a single therapeutic dose of oral ALN (70 
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mg) or intravenous ZA (2-4 mg).11,12 To further investigate whether there was a direct 

correlation between the potency of BPs and their effects on the cells, half of these 

concentrations were also used. 

 

2.4 Stock solutions 

 

Stock solutions were prepared by dissolving ALN and ZA in phosphate-buffered saline (PBS) 

at pH 7.2 and storing at -20 0 C. Osteogenic media (OM) was prepared according to Sharma et 

al. and comprised of CGM supplemented with β-glycerophosphate (10 mM), ascorbic acid 

(200 µM) and dexamethasone (100 nM).8 Prior to the experiments, ALN and ZA solutions were 

diluted with CGM or OM to the above mentioned concentrations. 

 

2.5 Cell viability  

 

Cells were seeded onto the titanium discs (200 μL @ 1×106 cells/mL) in CGM and left to attach 

for 30-minutes in an incubator at 37 °C with 5% CO2. Wells were then topped up with CGM 

containing cells (1.4 mL @ 3.25×105 cells/mL) and cells were incubated for an additional day. 

To ensure that cells attached to the walls of tissue well plates did not influence the 

experimental findings, the titanium discs were moved to a fresh 12-well tissue-culture plates 

on the subsequent day. CGM supplemented with the different concentrations of ALN or ZA 

was then added to the wells (1.6 mL per well) and refreshed every 3 days. Viability of cells 

was assessed at the end of days 3 and 10 using LIVE/DEAD stain. Titanium discs were moved 

to 6-well tissue-culture plates (3 discs per well). A working solution of 20% CytoPainter 

(ab219941; Abcam, Melbourne, VIC, Australia) and 2% Propidium Iodide (P1304MP; Thermo 
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Scientific, Rockford, IL, USA) in PBS was used at (.4 mL/well. Cells were incubated at 37 °C and 

refrigerated at 4°C for 0.5hr each and washed with PBS (twice)before fluorescence was 

visualised using an Olympus IX53 inverted epi-fluorescence microscope (Olympus Australia 

Pty Ltd, Mount Waverley, VIC, Australia). 

 

2.6 Cell proliferation 

 

Cells were seeded onto the titanium discs (200 μL @ 1×106 cells/mL) in CGM and left to attach 

for 30-minutes in an incubator at 37 °C with 5% CO2. Wells were then topped up with CGM 

containing cells (1.4 mL @ 3.25×105 cells/mL) and cells were incubated for an additional day. 

The next day, the titanium discs were moved to a fresh 12-well tissue-culture plates and CGM 

supplemented with the different concentrations of ALN or ZA was added to the wells (1.6 mL 

per well) and refreshed every 3 days.  Proliferation of cells was assessed at the end of days 3, 

6 and 10 using the alamarBlue® assay. A 10% v/v dye solution of resazurin sodium salt (Sigma-

Aldrich, Castle Hill, NSW, Australia) was added into each well and cells were incubated for 5-

hours at 37 °C with 5% CO2. 100μl aliquots of media were then transferred into a 96-well clear 

plate to measure the absorbance values from test and control wells at 600nm and 570nm 

(Bio-Rad Laboratories Pty Ltd, Gladesville, NSW, Australia). The proportion of viable cells and 

the proliferation rate was determined by calculating the percentage of reduction of 

alamarBlue® reagent within each well.  
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2.7 Cell adhesion  

 

Cells were seeded in CGM onto the titanium discs (200 μL @ 5×105 cells/mL) and left to attach 

for 30-minutes in an incubator at 37 °C with 5% CO2. Wells were then topped up with CGM 

supplemented with the different concentrations of ALN or ZA (1.4 mL per well) and cells were 

incubated for an additional day. The next day, after PBS wash, the cells were fixed for 10-

minutes at room temperature with 4% paraformaldehyde. Cells were then permeabilised 

using 0.05% TWEEN® 20 (Sigma-Aldrich, Castle Hill, NSW, Australia) for 10-minutes at room 

temperature. Following this, cells were blocked with 5% FBS for 30-minutes at room 

temperature. Cells were then stained with Flash PhalloidinTM
 Red (BioLegend, San Diego, 

California, USA) and 4',6-Diamidino-2-Phenylindole (DAPI) (BioLegend, San Diego, California, 

USA) for 20-minutes at room temperature. Fluorescence was visualised and imaged using an 

Olympus IX53 inverted epi-fluorescence microscope (Olympus Australia Pty Ltd, Mount 

Waverley, VIC, Australia). Images were collected and processed using ImageJ software (U. S. 

National Institutes of Health, Bethesda, Maryland, USA) and quantitative analysis was 

performed by calculating the corrected total cell fluorescence of F-actin in three isolated cells 

per group using the same software.  

 

2.8 Mineralisation  

 

Cells were seeded in CGM onto the titanium discs (200 μL @ 1×106 cells/mL) and left to attach 

for 30-minutes in an incubator at 37 °C with 5% CO2. Wells were then topped up with CGM 

containing cells (1.4 mL @ 1×106 cells/mL) and cells were incubated for an additional day. The 

next day, the titanium discs were moved to fresh 12-well tissue-culture and OM 
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supplemented with the ALN or ZA was then added to the wells (1.6 mL per well) that was 

refreshed every 4-days. Mineralisation was assessed on day 14 using Alizarin Red S staining 

as previously described by Reinholz et al.5 Briefly, medium was aspirated from the wells and 

cells were rinsed twice with PBS at room temperature and once with ice-cold PBS. Cells were 

then fixed with ice-cold 70% (v/v) ethanol for 1-hour. The ethanol was discarded and cells 

were rinsed twice with deionised water. 40 mM Alizarin Red S (Sigma-Aldrich, Castle Hill, 

NSW, Australia) in deionised water (adjusted to pH 4.2) was then added to stain the cells for 

10-minutes at room temperature. Next, the Alizarin Red S solution was discarded and 

titanium discs were placed in new 12-well tissue-culture plates. Cells were rinsed 5 times with 

deionised water and then incubated in PBS for 15-minutes at room temperature on a Grant 

ES-20 Compact Shaker-Incubator orbital rotator (150 rpm; VWR International, Pty Ltd, 

Tingalpa, QLD, Australia). The PBS was then discarded and cells were rinsed once with fresh 

PBS before being de-stained with 10% (w/v) cetylpyridinium chloride in 10 mM sodium 

phosphate (pH 7.0) for 15-minutes at room temperature on an orbital rotator (150 rpm). The 

extracted stain was then transferred to a 96-well clear plate to measure absorbance at 570 

nm (Bio-Rad Laboratories Pty Ltd, Gladesville, NSW, Australia).  

 

2.9 Statistical analysis 

 

All the acquired data were expressed as mean ± standard deviation. Comparisons were 

between the experimental groups and the control and were conducted using analysis of 

variance (ANOVA, two-tailed, post hoc test: Dunnett). The software SPSS 25.0 for windows 

(IBM, St Leonards, NSW, Australia) was used for calculations and results with p less than 

0.05 was considered to be statistically significant. 
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3 RESULTS 

 

3.1 Cell viability 

 

The viability assay acted as a preliminary experiment to identify the cytotoxic effects of the 

BPs on the cells at the selected drug concentrations. After 3 days of incubation no cytotoxic 

effects were observed, as titanium discs were almost completely confluent with live cells in 

all groups (Fig. 3). By day 10 of culture however, cytotoxic effects were evident in the groups 

treated with therapeutic doses of ZA. This negative effect that ZA had on cellular viability was 

found to be dose and time dependent as notably more dead cells were present with the 

therapeutic dose compared with the half dose and after 10 days compared to that after 3 

days.  

 

3.2 Cell proliferation  

 

The proliferation assay aimed to investigate the effects of ALN and ZA on cell division and 

growth using the alamarBlue® assay. Cells followed a typical growth curve in all the 

experimental groups, where the number of cells slightly decreased from day 3 to day 6 before 

reaching a maximum at the end of day 10 (Fig. 4). Both doses of ALN and the therapeutic dose 

of ZA significantly inhibited cell proliferation after 3 days (control 24.52% ± 0.77%, ALN 0.1 

μM 22.97% ± 0.23%, ALN 0.2 μM 22.87% ± 0.92% & ZA 1 μM 22.74% ± 0.48%, p = 0.280, p = 

0.020 & p = 0.013), however there were no significant effects on cell proliferation observed 
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thereafter. Half the therapeutic dose of ZA showed no significant effects on cell proliferation 

throughout the 10 days of culture.  

 

3.3 Cell adhesion 

 

The adhesion assay aimed to investigate the effects of ALN and ZA on cell attachment to the 

titanium disc using immunofluorescence microscopy to study the cytoskeletal protein F-actin. 

After 24-hours, no observable differences in cell morphology and spread were evident and 

this was confirmed with statistical analysis where the amount of F-actin expression per viable 

cell was not significantly different between the groups and the control (Fig. 5 & Fig 6).  

 

3.4 Mineralisation  

 

The mineralisation assay aimed to investigate the effects of ALN and ZA on cell differentiation 

and subsequent mineralisation using Alizarin Red S staining. At the end of 14-days, ALN at 

both doses was found to significantly promote mineralisation compared to the control 

(control 0.081 ± 0.009, ALN 0.1 μM 0.108 ± 0.006 & ALN 0.2 μM 0.118 ± 0.003, p=0.0044 & 

p=0.0005) (Fig. 7). This positive effect that ALN has on mineralisation was found to be dose 

dependent as the therapeutic dose increased the amount of calcium deposition by 45% 

compared to 33% with the half dose. In comparison, ZA at both doses had no significant effect 

on mineralisation.  
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4 DISCUSSION 

Dental implant therapy in BP-medicated patients could have two possible negative outcomes; 

implant loss due to failure in osseointegration and BRONJ within the implant surgical site. At 

present, there are mixed findings in the literature regarding the risk of these outcomes in BP 

patients. A recent systematic review by Mendes et al.13 clearly delineated the variation in 

findings with a history of BP therapy with some studies reporting slightly lower survival rates 

and higher incidences of BRONJ, while other studies reported no remarkable differences in 

patients with a history of BP therapy when compared to healthy patients. Furthermore, a 

review of animal studies by Vohra et al.14 noted most of the studies demonstrated that BPs 

enhanced osseointegration under osteoporotic conditions, wherein increased bone volume 

and bone-implant contact were observed in animals receiving systemic BP doses, compared 

to control animals.14 Given the variation in the clinical observations and animal experiments, 

further basic research into the possible mechanisms and pathways involved is warranted. To 

date, to the best of our knowledge, there has only been one other similar study that 

investigated the role of BPs on the osteogenesis during osseointegration.10 However, in their 

study concentrations of BPs equivalent to 1/1000th of therapeutic doses were used and 

comparisons between the effects of other BPs, such as the widely used, highly potent ZA was 

not included. Therefore, the present study aimed to investigating the effects of therapeutic 

doses of ALN and ZA on the viability, proliferation, adhesion, and differentiation of 

osteoprogenitor cells cultured on titanium surfaces. 
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In our study, cell viability appeared to be unaffected by therapeutic doses of ALN, but 

negatively affected by therapeutic doses of ZA.  The negative effect of ZA at therapeutic doses 

could be attributed to its potency, as ZA is the most potent BP, approximately 20 times more 

potent than ALN.7 Furthermore, BRONJ is mainly observed in patients treated with ZA 

(intravenous), and less commonly with orally administered ALN (lower potency).8 Therefore, 

the fact that cell viability seemed to be adversely affected by therapeutic doses of ZA could 

provide some insight into the pathogenesis of BRONJ developing following implant placement 

in patients treated with ZA as there would be a reduction in viable cells to form new bone 

during the healing process. Previously, Huang et al. and Thibaut et al. reported a significant 

cytotoxic effect on MC3T3-E1 cells and human foetal osteoblasts (hFOBs) with concentrations 

of ZA higher than 10 μM.15,16 This may suggest that the negative effect of ZA on cell viability 

is only significant at concentrations higher than the therapeutic dose. The in vivo study by 

Pozzi et al. supports this notion where it was shown that therapeutic doses of ZA decreased 

the numbers of osteoblasts per bone perimeter in mice without any statistical significance 

being reached.17 On the other hand, Pan et al., reported that ZA induced cell death in human 

adult OB-like cells at concentrations of 0.5 μM or greater, in a dose dependent manner.18 

Taken together with the existing literature, our results may suggest that cell viability in the 

context of osseointegration could be negatively affected by therapeutic doses of ZA. 

 

Cell proliferation was initially inhibited by therapeutic doses of ALN and ZA, probably due to 

the initial shock of drug exposure, but then cells recovered with no overall long-term effects. 

In fact, Alqhtani et al., reported that lower doses of ALN (10 nM and 100 nM) significantly 
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stimulated the proliferation of human mesenchymal stem cell (hMSCs) cultured on titanium 

surfaces.10 Similarly, Im et al. and Xiong et al. found that ALN significantly increased cell 

numbers over the controls in primary human trabecular bone cell culture and the MG-63 

osteoblast-like cell line respectively, with the greatest effect at 10 nM.19,20 Low concentrations 

of ZA also appear to induce proliferation of hMSCs as von Knoch et al. reported an increase 

in the number of cells that were treated with 10 nM of ZA.21 On the other hand, a significant 

anti-proliferative effect on human term placental mesenchymal stem cells (pMSCs) was found 

in Sharma et al. with concentrations of ALN and ZA higher than 2 µM and 1 µM respectively.9 

Orriss et al. also reported a significant inhibition of primary rat osteoblast cell growth and 

function with ZA at concentrations beyond 1 µM.22 The findings of the present study may 

suggest that at therapeutic doses, ALN and ZA do not affect the proliferation of 

osteoprogenitor cells during osseointegration, however given the findings available in the 

literature, it is plausible that lower doses may enhance proliferation while higher doses may 

induce cytostasis. 

 

Cell adhesion to the titanium disc was assessed by analysing the expression of F-actin, a 

cytoskeletal protein believed to be involved in regulating cellular shape change and force 

generation in activities such as migration, attachment and division.23 Firm adherence of 

osteoprogenitor cells is an important factor for cell survival and differentiation into 

osteoblasts, which over time become mature and produce fibronectin, an extracellular 

glycoprotein that regulates the adhesion, differentiation and function of various adherent 

cells.24 Our data showed that the amount of F-actin expression per viable cell remained 

unaffected by the addition of therapeutic doses of ALN and ZA to the culture media. This may 
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suggest that as with cell proliferation, cell adhesion to the titanium implant surface is not 

affected by therapeutic doses of ALN and ZA. 

 

Cell differentiation and subsequent osteogenesis, as measured by mineralisation, was 

stimulated by therapeutic doses of ALN. The ability of ALN to increase mineralisation was not 

surprising as previous in vivo studies have demonstrated that local drug delivery of BPs by 

way of implant coatings improves the fixation of titanium implants in human bone and 

increases peri-implant bone density in osteoporotic sheep.25,26 Furthermore, several in vitro 

studies have shown that ALN can affect osteoblastogenesis depending on its concentration, 

with a stimulatory effect observed at lower doses and an inhibitory effect at higher doses.6 

Our results are in agreement with those reported by Alqhtani et al.,10 suggesting that the 

anabolic effect of ALN on osteoblasts (in osseointegration) is maintained at therapeutic doses. 

Kim et al. found that the osteogenic differentiation of multipotent mouse mesenchymal stem 

cells was also enhanced after treatment with ALN at concentrations higher than in the present 

study.27 This may suggest that the stimulatory effect on osteoblast bone formation during 

osseointegration is also present at stronger concentrations than the therapeutic dose. 

However, Idris et al. found that ALN inhibits bone nodule formation in mice osteoblast cells 

above 2-10 µM, thereby demonstrating that a ceiling effect on osteoblast formation exists at 

concentrations approaching this range.28 Pan et al. reported that ZA enhanced mineralised 

matrix formation in human adult osteoblast-like cells at concentrations higher than 0.5 µM, 

with an inhibitory effect observed at concentrations exceeding 5 µM.18 This was contrary to 

our findings and may be due to a range of factors including different cell type type, duration 

of treatment and therefore cumulative dose of ZA, and the presence of a titanium disc in our 
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study. Nevertheless, the findings of this study may suggest that therapeutic doses of ALN 

could enhance the mineralisation potential of osteoblasts to improve osseointegration and 

implant success, whereas the same could not be confirmed for the therapeutic doses of ZA. 

 

Although the present study used a well-established model to study osseointegration in vitro, 

there are three major limitations worth noting. The first limitation is that it was not possible 

to select drug concentrations that exactly correlate to physiological conditions. This is 

because the extent of cellular exposure within the body, particularly of osteoblasts to BPs are 

yet to be ascertained.5 As previously mentioned, the concentrations of BPs used in this study 

were selected based on the concentrations found in patient blood plasma after a single intake 

of the drug at therapeutic doses. While the peak plasma levels are considered to be transitory, 

BPs are taken up quickly and at increased concentrations into the osseous tissues, with very 

small amounts released into peripheral circulation during turn-over (long half-life drugs).18 

Therefore, it is possible that osteoblasts in the bone microenvironment are exposed to BPs at 

concentrations several times higher than the patient’s peak plasma level. In fact, one report 

estimated that therapeutic doses of ALN could give rise to local concentrations as high as 1 

mM in sites of active bone resorption.29 The second limitation is that a mouse cell line (MC3T3-

E1) was used. James Cook University kindly donated these cells to us as they have been using 

them for other similar studies. While these cells provide a good and reliable model to study 

osteoblast biology, they do not represent human tissue as accurately as primary human cells 

would.30 The third limitation is that statistical analysis could not be performed for the viability 

assay as there were too many cells present, making a reliable and reproducible quantification 
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impossible. Similar experiments utilizing primary human osteoblasts along with a range of 

seeding densities could be performed to allow for quantification of the live and dead cells. 

 

In conclusion, our study using therapeutic concentrations of ALN and ZA on osteoprogenitor 

cells cultured on titanium showed the positive effect that ALN had on mineralisation that 

could have promising implications towards improved wound healing and osseointegration 

around dental implants. In contrast, a possible negative effect on cell viability caused by 

therapeutic doses of ZA may infer a greater risk of implant loss in terms of reduced 

osseointegration and BRONJ in these patients. Currently, minimal in vivo studies exists that 

evaluate the effects of systemic BPs on bone healing around dental implants and the findings 

within the existing studies vary significantly. Therefore, further research investigating the 

effects of systemic BPs on bone healing around dental implants, with an emphasis on animal 

and human studies, is warranted.  
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FIGURE LEGENDS 

 

Figure 1.  MC3T3-E1 cells viewed at x10 (a) and x20 (b) magnification. Notes: Images were 

taken prior to passaging at 95% confluence. Sample size = 3 replicates per group. Scale bar = 

100 px. 

 

Figure 2. Example of a titanium disc after sandblasting. Notes: The diameter of the titanium 

disc (14 mm) was designed to be less than the diameter of the well (22.1 mm) to facilitate 

manipulation of the disc during the imaging experiments.  

 

Figure 3. Effect of ALN and ZA on MC3T3-E1 cell viability. These results demonstrated that cell 

viability was negatively affected by therapeutic doses of ZA after 10 days of treatment, while 

all other groups had no effect on cell viability at both time points. Notes: Images taken at x10 

magnification after 3 days (a-e) and 10 days (f-j). Live cells stained green with CytoPainter. 

Dead cells stained red with Propidium Iodide.  

 

Figure 4. Effect of ALN and ZA on MC3T3-E1 cell proliferation. These results demonstrated 

that cell proliferation was initially significantly inhibited by both doses of ALN and the 



Page 24 of 25 
 

therapeutic dose of ZA, but then the cells recovered with no overall long-term effects, while 

half the therapeutic dose of ZA had no significant effect on cell proliferation. Notes: Significant 

differences, compared to control are indicated as *p < 0.05. 

 

Figure 5. Effect of ALN and ZA on MC3T3-E1 cell adhesion. These results demonstrated that 

cell adhesion was not significantly affected by ALN and ZA at both the doses used. Notes: 

Scale bar = 200 μm (a-e), 50 μm (f-j). Images taken at x10 (a-e) and x40 (f-j) magnification 

after 24-hours. F-actin cytoskeleton stained red with Flash PhalloidinTM
 Red. Cell nucleus 

stained blue with DAPI.  

 

Figure 6. Quantitative analysis of cellular adhesion showing no statistically significant 

differences between ALN and ZA group at any of the tested doses. 

 

Figure 7. Effect of ALN and ZA on MC3T3-E1 mineralisation. These results demonstrated that 

mineralisation was significantly enhanced by ALN in a dose dependent manner, while both 

doses of ZA had no significant effect on mineralisation. Notes: Significant differences, 

compared to control are indicated as **p < 0.01, ***p < 0.001. 
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TABLE LEGEND 

Table 1. Selected drugs and drug concentrations used in this study. Notes: *No treatment, 

11Zhang et al., 12Li et al.  































































































Drug Concentration 

Control N/A* 

ALN a) 0.1 μM  

b) 0.2 μM (Therapeutic dose)11 

ZA a) 0.5 μM  

b) 1 μM (Therapeutic dose)12 

 




