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Abstract

Excessive vasodilatation during the perinatal period is associated with cardiorespiratory instability in preterm neonates.
Little evidence of the mechanisms controlling microvascular tone during circulatory transition exists. We hypothesised that
hydrogen sulphide (H2S), an important regulator of microvascular reactivity and central cardiac function in adults and
animal models, may contribute to the vasodilatation observed in preterm newborns. Term and preterm neonates (24–43
weeks gestational age) were studied. Peripheral microvascular blood flow was assessed by laser Doppler. Thiosulphate, a
urinary metabolite of H2S, was determined by high performance liquid chromatography as a measure of 24 hr total body
H2S turnover for the first 3 days of postnatal life. H2S turnover was greatest in very preterm infants and decreased with
increasing gestational age (p = 0.0001). H2S turnover was stable across the first 72 hrs of life in older neonates. In very
preterm neonates, H2S turnover increased significantly from day 1 to 3 (p = 0.0001); and males had higher H2S turnover than
females (p = 0.04). A significant relationship between microvascular blood flow and H2S turnover was observed on day 2 of
postnatal life (p = 0.0004). H2S may play a role in maintaining microvascular tone in the perinatal period. Neonates at the
greatest risk of microvascular dysfunction characterised by inappropriate peripheral vasodilatation - very preterm male
neonates - are also the neonates with highest levels of total body H2S turnover suggesting that overproduction of this
gasotransmitter may contribute to microvascular dysfunction in preterms. Potentially, H2S is a target to selectively control
microvascular tone in the circulation of newborns.
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Introduction

Hypotension and low cardiac output complicate the course of

very preterm infants, mostly in the first 48 hrs [1]. Preterm male

infants ,29 weeks gestation have significantly lower mean arterial

blood pressure at 12–24 hrs, require more inotropic support and

have more resistant hypotension than females [2]. Measurement of

superior vena caval flow suggests that abnormal regulation of

vascular resistance plays a role [3], with inappropriate microvas-

cular vasodilatation playing a major role in the development of

hypotension. We previously demonstrated a significant relation-

ship between microvascular dilatation, mean arterial pressure and

poor outcome in a preterm neonatal population [4]. Furthermore,

we identified a sexually dimorphic pattern in microvascular

function - very preterm male infants have greater vasodilatation

than female infants of the same gestational age at 24 h postnatal

age [5], suggesting a sex-specific difference in the neonatal ability

to control vascular tone. This may explain why males are more at

risk of complications following premature birth – male preterm

infants are at much greater risk of dying or suffering from chronic

neurodevelopmental disability [6,7]. The death rate for extremely

preterm males is more than double that of females (26% vs. 12%)

and male morbidity is reflected by a 13% increased length of stay

and increased re-admissions within the first year of life [6,8].

Recent evidence suggests that a mismatch between vasocon-

strictor and vasodilator molecules in the preterm newborn may

underlie these microvascular blood flow problems. For example, it

has been shown that the relative expression of vasoconstrictors

such as norepinephrine (highest in females and more mature

infants), is associated with lower microvascular flow and greater
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physiological stability [9]. Conversely vasodilators, specifically

markers for the gasotransmitters nitric oxide (NO) and carbon

monoxide (CO), are highest in males and younger infants, i.e.

those who exhibit increased vasodilatation [10]. However, the

increases seen in NO occur outside the crucial early period of the

first 24–48 hours. Furthermore, changes in CO only explain a

proportion of the variance we measured in early vasodilator

events. These results suggest another factor must play a significant

role in aberrant vasodilation.

Hydrogen sulphide (H2S) has recently been of considerable

interest in adult health and disease, with H2S identified as an

important gaseous regulatory molecule with many biological and

physiological roles, including synaptic modulation, neuroprotec-

tion and smooth muscle relaxation [11]. H2S is endogenously

produced in amounts capable of causing vasodilatation, thus

controlling blood pressure [12]. Despite compelling adult data,

almost nothing is known about the role of H2S in the transitional

circulation of the neonate. Its contribution to vasodilatation may

be crucial for regulation and dysfunction of vascular tone in the

neonate. A recent piglet study suggests that H2S may be important

in at least the transitional cerebral circulation [13]. These data,

combined with our observations on NO and CO, led us to

hypothesize that H2S would contribute to the excessive vasodila-

tation observed in preterm neonates in the initial extrauterine

period. Specifically, that H2S production would be greater in those

infants at greatest risk of microvascular dysfunction – very preterm

male neonates – and that levels would correlate with microvas-

cular blood flow.

One of the major challenges in translating preclinical animal

studies to humans is determining a robust, non-invasive method to

measure disturbances in H2S signaling. Due to the short half-life

and volatile nature of the gas, we pursued an indirect metabolic

measure [14]. The metabolism of H2S can be divided into three

distinct pathways: oxidation to sulphate, clearance by exhalation

and reactions with metalloproteins and disulphide containing

proteins. Oxidation to sulphate and subsequent excretion by the

kidneys represents the major metabolic and excretory pathway,

with urinary sulphate levels representing around 50% of an

exogenous dose of H2S administered orally, subcutaneously,

intraperitoneally or intravenously [15]. Sulphate is not a suitable

analytical target as production from other sources of sulphur

swamp the contribution of H2S [14]. Urinary thiosulphate, an

intermediate of the breakdown of H2S to sulphate is routinely used

as a marker of exposure to high H2S levels in cases of industrial or

environmental exposure and thus represents a better analytical

target when the issue is total body turnover of H2S [16,17]. Such

non-invasive measures, if sensitive enough to detect endogenous

H2S production, are suitable for clinical monitoring where tissues

for analysis of enzyme expression and activity are not available.

The aim of the present study was to measure H2S output (as

thiosulphate) in newborns, characterise levels in relation to

gestational age, postnatal age and sex and to assess whether H2S

turnover was associated with microvascular blood flow; the latter

having previously been shown to correlate strongly with clinical

illness severity and physiological stability in the sick newborn

human infant [4].

Table 1. Clinical Characteristics of Neonates.

Very Preterm Group Preterm Group Term Group

Female (n=20) Male (n=16) Female (n =19) Male (n =24) Female (n =6) Male (n =5)

Gestation (wk) 26 (24–28) 26.5 (24–28) 32 (29–35) 31 (29–35) 38.5 (38–41) 39 (38–43)

Birth weight (kg) 0.87 (0.6–1.4) 1.0 (0.6–1.4)* 1.76 (1.0–2.4) 1.65 (0.9–2.8) 3.34 (3.0–4.0) 4.2 (3.3–4.3)

Multiple Birth (n, %) 2 (10%) 7 (44%)* 6 (32%) 11 (46%) 0 0

Completed antenatal steroids (n, %) 14 (70%) 13 (81%) 12 (63%) 18 (75%) 1 (16%) 0

Maternal Chorioamnionitis (n, %) 2 (10%) 1 (6%) 1 (5%) 2 (8%) 0 0

Maternal Smoking (n, %) 4 (20%) 3 (19%) 4 (21%) 5 (21%) 0 0

Pregnancy-induced Hypertension (n, %) 0 2 (13%) 2 (11%) 2 (8%) 0 0

Small for gestational age (n, %) 0 0 0 2 (8%) 1 (16%) 0

Vaginal delivery (n, %) 10 (50%) 7 (44%) 11 (58%) 11 (46%) 4 (67%) 4 (80%)

5-min APGAR score 8 (4–10) 8 (5–10) 9 (5–10) 9 (5–10) 9 9 (9–10)

CRIB II score 11 (8–15) 10 (7–16) 3 (1–8) 4 (1–8) 3 -

Mean Blood Pressure at 24 h (mmHg) 35 (24–43){ 36 (31–46) 50 (30–81) 39.5 (30–81)* - -

Mechanical ventilation (hr) 0 (0–20) 0 (0–24) 0 (0–10) 0 (0–2) - -

CPAP (hr) 3 (0–14) 1.5 (0–20) 0 (0–19) 0 (0–16) - -

Patent Ductus Arteriosus (n, %) 10 (50%) 6 (38%) 1 (5%) 3 (13%) 0 0

Sepsis (n, %) 6 (30%) 8 (50%) 3 (16%) 2 (8%) 0 0

IVH . grade II (n, %) 1 (5%) 2 (13%) 1 (5%) 0 0 0

Death (n, %) 4 (20%) 2 (13%) 0 0 0 0

Data presented as median (minimum-maximum) or number (%). APGAR Score – scores 7 and above are generally regarded as normal, 4 to 6 fairly low and 3 and below
critically low; CRIB II Score – Clinical Risk Index for Babies II, higher scores reflect poorer physiological stability; CPAP – Continuous Positive Air Pressure respiratory
support; Patent Ductus Arteriosus refers to a hemodynamically significant duct diagnosed in first 72 hrs; IVH – intraventricular hemorrhage greater than grade II
(significant IVH); Mean Blood Pressure reported is that at 24 h postnatal age and was not assessed in term controls; Death is those infants that survived to 72 h postnatal
age but died prior to discharge.
*significantly different from females of the same gestational age group p,0.05;
{significantly different from preterm neonates, within sex.
doi:10.1371/journal.pone.0105085.t001
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Materials and Methods

Subjects
The ‘‘Cardiovascular Adaptation of the Newborn Study 2

(CANS2)’’ was conducted at the John Hunter Children’s Hospital,

Newcastle, Australia between September 2008 and April 2011.

This study was approved by the Human Research Ethics

Committees of the Hunter New England Area Health Service

and the University of Newcastle. Parental informed, written

consent was obtained prior to investigation. Recruitment was

stratified a priori to neonates born at 28 weeks gestational age

(GA) or less (very preterm neonates), neonates born at 29–36

weeks (preterm neonates) and those born at 37+ weeks completed

gestation (term neonates). Hypoxic ischemic encephalopathy,

congenital malformations, chromosomal disorders or known

congenital infection excluded admission to this study. Methods

for recording of clinical and physiologic variables have been

reported previously [4].

Microvascular Studies
Laser Doppler is the best-established method of assessing

peripheral microvascular function [18]. Low-intensity laser light

is reflected by moving cells in the peripheral cutaneous circulation,

enabling measurement of both number and velocity of blood cells

moving through the skin microcirculatory bed, giving a measure of

peripheral microvascular blood flow in Perfusion Units (PU). For

laser Doppler assessment we used a Periflux 5001 laser Doppler

(Perimed AB, Jarfalla, Sweden) with a temperature-regulated

probe (Probe 457, Perimed) sited on the lateral aspect of the

neonates’ lower limb. Investigations were performed at 6, 24 and

72 hr postnatal age as previously described [5]. Briefly, basal

peripheral microvascular blood flow was recorded for 5 minutes

before lower limb blood flow was occluded using a sphygmoma-

nometer cuff to produce a 1-minute period of absent flow. This

allowed biological zero to be obtained, which was subtracted from

the basal blood flow in each experiment, allowing comparison

between different studies and subjects.

A significant interaction of gestational age and sex was observed

for total body turnover of H2S. In very preterm (24–28 wk)

neonates, H2S turnover in the first three days of postnatal life was

higher in males than in females (p = 0.04; Figure 3). Post hoc

analysis revealed this was due to higher H2S turnover in very

preterm males compared to females of the same gestational age

group on both day 1 (p = 0.01) and day 2 (p= 0.04) of postnatal

life.

Urine collection and Analysis
Twenty-four hour urine samples were collected on days 1–3 of

postnatal life as previously described [9]. Disposable diapers of the

appropriate size containing a pure cellulose pad were used for

urine collection. Diapers were changed every 4–6 hours as

clinically appropriate and collected in a plastic bag at 4uC until

completion of a 24 hr collection period then folded inside out and

the urine extracted using a specially constructed press. Each 24 hrs

of pooled specimens were stored at 280uC and spun before

analysis. Exact 24 hr urinary output was calculated by weighing

diapers before and after use. As humidity can contribute to diaper

weight, the degree and length of time in humidity were recorded

and adjustments were made as appropriate [19]. The corrected

values were used for 24 hr output values for analysis. Assessment of

urinary creatinine was carried out by Hunter Area Pathology

Services using the CREA method (a modification of the kinetic

Jaffe reaction) with Flex reagent cartridges (Siemens Healthcare

Diagnostics Inc., Camberley, United Kingdom) on the Dimension

Vista System (Siemens).

Thiosulphate measurement
Determination of thiosulphate in neonatal urine was based on

derivatisation with 2-chloro-1-methylquinolinium tetrafluorobo-

rate and separation and quantification of derivative by reversed-

phase liquid chromatography. A Hewlett-Packard 1100 Series

system (Waldbronn, Germany) with a Zorbax SB-C18

(150 mm64.6 mm, 5 mm) column (Agilent Technologies), con-

trolled by ChemStation software (Hewlett-Packard) was used as

described previously [20]. Briefly, isocratic elution, with a mobile

phase consisting of a mixture of acetonitrile and water in the ratio

of 60:40 (v/v), was used. Temperature was set at 25uC, the flow-

rate 1 mL/min and the detector wavelength 375 nm. Identifica-

tion of peaks was based on comparison of retention times and

diode-array spectra, taken at time of analysis, with corresponding

sets of data obtained for authentic compounds.

Urinary creatinine is a commonly used index to adjust for renal

function, however, the creatinine ratio often used in adults may be

unsuitable for neonates because of low excretion of creatinine in

infants [21]. Early studies observed a six-fold variance in

creatinine excretion between individuals less than 1 year postnatal

age. Furthermore, a wide variation in daily creatinine output was

also observed in infants, and this has been attributed to individual

metabolic variation [22]. In order to overcome this, 24 hr

excretion values for urinary thiosulphate were calculated relative

to 24 hr urinary output (mL/24 hr) and body weight (kg) in this

study. Therefore, total body turnover of H2S is expressed as nmol/

24 hr/kg for day 1, 2 and 3 of postnatal life. The same

relationships, as presented for the output/kg analyses, were

observed when corrected to 24 hr urinary creatinine and are thus

not reported.

Day 2 H2S turnover was significantly correlated with micro-

vascular blood flow at 24 h postnatal age (p = 0.0004, r=0.37).

This was largely due to preterm male neonates (p = 0.04, r=0.43;

figure 4) and was not observed in female neonates of the same

gestational age group (p = 0.97, r=20.01) or term neonates

(p = 0.82, r=20.08). No correlation was observed in very preterm

neonates alone (p = 0.28, r=0.19), despite neonates in this group

having the highest levels of both microvascular blood flow and

H2S turnover. In the preterm neonatal group (29–36 weeks GA),

H2S turnover was negatively correlated with both systolic

(p = 0.01, r=20.39) and diastolic (0.04, r=20.33) blood pressure

on day 2 of postnatal life. No relationship was observed in the very

preterm neonatal group (systolic: p = 0.33, r=0.17; diastolic:

p = 0.25, r=0.20).

Statistical methods
Stata 11 for MacOSX (StataCorp LP, Texas, USA) was used for

statistical analyses. Stata 11 and Prism 5 for MacOSX (GraphPad

Software Inc., La Jolla, CA) were used for generation of graphs.

Data presented as median (range) unless otherwise stated.

Differences between gestational age groups were analyzed by

Kruskal-Wallis multiple comparisons test. Sex differences were

analyzed by Mann-Whitney U-test. Thiosulphate levels between

days for individuals were analyzed using Friedman repeated

measures ANOVA for non-parametric data and random effects

generalized least squares regression with bootstrapping. For

correlations, data was analyzed using Spearman r correlation or

transformed using natural logarithm (loge) and analyzed using

Pearson correlation, depending on the normality of data

distribution.

A Role for H2S in the Microcirculation of Newborns
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Results

A total of 136 infants were recruited to the CANS2 Study. Due

to study design, only neonates with urine available for all three

days were included in this study. Therefore, 90 neonates were

studied for H2S turnover during circulatory transition. Their

clinical characteristics are shown in Table 1. Early discharge

policy led to fewer term infants but most clinical differences were

due to the effects of a priori allocation to different gestational age

groups or the known sexual dimorphism effects of fetal growth

[23].

Peripheral microvascular blood
Baseline microvascular blood flow demonstrated a significant

inverse relationship with gestational age at 6 hr (p,0.0001, r=2

0.54), 24 hr (p,0.0001, r=20.63) and 72 hr (p= 0.0003, r=2

0.38) postnatal age. As in previous studies [4], there was a strong

positive correlation between microvascular blood flow and Clinical

Risk Index for Babies (CRIB) II Score at 24 h postnatal age

(p = 0.0008, r=0.41). When split for sex, this relationship was

significant only in males (p = 0.0003, r=0.60). Also in line with

previous studies, baseline peripheral microvascular blood flow

exhibited significant relationships with measures of cardiovascular

function at 24 hr postnatal age. In neonates #36 weeks gestational

age at birth, baseline microvascular blood flow was inversely

related to mean arterial blood pressure (p = 0.0034, r=20.34).

This relationship with microvascular blood flow was observed for

both systolic (p = 0.0013, r=20.37) and diastolic pressure

(p = 0.0007, r=20.39). When analyzed by sex, this relationship

was observed in females only for all three measures (mean arterial

pressure: p = 0.0021, r=20.50; systolic blood pressure:

p = 0.0016, r=20.51; and diastolic pressure p= 0.0049, r=2

0.46).

H2S total body turnover
H2S turnover, as measured by urinary thiosulphate, over the

first 72 hr of postnatal life was highest in the very preterm

neonates, decreasing with increasing gestational age at birth

(p = 0.0001; Figure 1). H2S turnover on day 1 was lower in term

neonates (44.4 nmol/24 hr/kg; p = 0.03) but was comparable

between preterm and very preterm neonates (preterm: 80.6 nmol/

24 hr/kg, very preterm: 66.4 nmol/24 hr/kg; p= 0.17). H2S

turnover remained stable across the first 72 hours of life in term

and preterm neonates. However, in very preterm neonates, total

body turnover of H2S increased significantly from day 1 to 3

(p = 0.0001; Figure 2).

No significant effect of the other clinical variables outlined in

Table 1 was seen on microvascular blood flow or H2S turnover

after adjusting for the main effects of gestational age and sex.

Figure 1. H2S turnover over the first 72 hours of postnatal life. Thiosulphate, as a marker of H2S turnover, as measured in urine samples over
the first 3 days of life was lowest in term neonates and increased with increasing prematurity (Pearson correlation; p,0.0001, r =20.32).
doi:10.1371/journal.pone.0105085.g001
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Discussion

We have shown, for the first time, that in human infants there is

evidence of a role for the gasotransmitter H2S in the control of the

microvasculature. We have presented data showing being an at-

risk preterm infant increases the output of the major product of

H2S metabolism (thiosulphate). We have shown this to be related

independently to all the major risk factors for poor outcome

independently: gestational age, postnatal age and male sex.

Thiosulphate levels are comparable between preterm and very

preterm neonates for the first 24 h of postnatal life. However whilst

they remain low in older preterm neonates, levels increase

significantly from day 1 to day 2, and again from day 2 to day 3

in very preterm neonates. This suggests that very preterm neonates

are not born with inherently higher levels of H2S production, but

that H2S production increases significantly following birth.

Potential triggers for this would include oxidative stress [24] or

inflammation, both of which have been implicated in changes

following preterm delivery [25]. The findings that H2S turnover

increased postnatally in the very preterm group, but not in the

preterm group, and that microvascular blood flow was significantly

greater in the former also suggests that there is a physiological

difference between neonates born very preterm and those born at

later gestational ages. It also suggests that there are significant

developmental changes in the regulation of the gasotransmitter

production pathway throughout gestation and early postnatal life.

The positive relationship of H2S turnover with microvascular

blood flow and the inverse relationship with blood pressure in

more mature neonates suggests a physiological role of H2S in this

age group, perhaps as a counter to the overarching constrictive

balance [9], or as a reflection of an organ specific vascular

dilatation, such as in the pulmonary circulation [26,27]. This

remains an area of speculation and more research is required.

We observed a significant relationship between microvascular

blood flow at 24 hr postnatal age and day 2 urinary thiosulphate

levels in males ,37 weeks gestational age. This relationship was

not present in the very preterm group alone, despite these

neonates having the highest microvascular blood flow and the

highest thiosulphate excretion at this time. The lack of a conclusive

relationship suggests that dysregulation of microvascular tone may

not solely be the result of disturbances in H2S production, but may

result from an imbalance of vasoconstrictors and vasodilators,

including H2S. Previous work has shown that the other

gasotransmitters, NO and CO are both produced in, and exert

some effect on, the transitional microcirculation of preterm

neonates [10]. Further, it is possible that as in the state of

neonatal and adult shock a tight relationship between blood

pressure, microvascular tone and mediators is lost below a

threshold level [28,29].

It is becoming increasingly evident that microvascular function

is not controlled by the activity of these gasotransmitters working

in isolation, but by the interaction of all three, underlining the

complexity of hemodynamic microvascular control. It appears that

CO and H2S both play an important role during circulatory

transition and following the immediate extrauterine period, while

NO is critical for maintaining basal microvascular tone later, with

Figure 2. Urinary thiosulphate levels over the first three days of life. H2S turnover was stable across the first three days of life in term and
preterm neonates. In very preterm neonates, levels rose significantly over the first 72 hours of life (median6IQR). a-b-cp,0.0001 significant difference
across days in very preterm gestational age group (Friedman repeated measures ANOVA for non-parametric data).
doi:10.1371/journal.pone.0105085.g002
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significant effects of nitric oxide on hemodynamic status observed

in neonates at 7 days postnatal age [10,30]. In addition to the

vasodilators, a number of vasoconstrictive mediators also play a

role in the regulation of microvascular tone in the newborn.

Microvascular dysregulation in the preterm newborn is associated

with both impaired vasoconstriction [9] and abnormal peripheral

dilatation [10], contributing to cardiovascular compromise and

poor outcome, highlighting the importance of balance in

homeostasis and the profound effect imbalance can have on

physiological stability. Understanding the control of blood flow in

the perinatal period is a critical step for the development of

therapeutic strategies for the management of the newborn at risk

of cardiovascular compromise.

A number of groups suggest that H2S may play a role in central

cardiac function. In adults and experimental myocardial ischemia-

reperfusion models, H2S protects against cellular injury [31],

cardiomyocyte loss [32] and arrhythmias [33], reduces infarct size

[34], and improves microvascular reactivity [35] and cardiac

contractility [36]. Importantly, dysregulation of the H2S pathway

in adults has been implicated in a number of disease states,

including coronary heart disease and hypertension where

decreased plasma H2S levels, theoretically leading to a relative

state of vasoconstriction, correlate with disease severity [37,38].

H2S production is induced by shock states (inflammatory

[39,40], circulatory [41], septic [42], hemorrhagic [43] and

endotoxic [44,45]) and results in marked inflammation and injury.

These studies highlight the potent pro-inflammatory properties of

H2S and provide evidence for a pivotal role of H2S in the

pathophysiology of conditions associated with both local and

systemic inflammation and circulatory dysfunction. However, we

did not see any differences in H2S turnover between neonates with

or without sepsis, despite elevated levels expected in septic

patients. This may be due to the small numbers in the septic

group (n= 19 across sexes and gestational age groups) or the fact

that many neonates in the ‘‘non-septic’’ group may have

subclinical levels of sepsis and may have slightly elevated H2S

production, confounding the comparison. Further investigation

and comparison between a larger population of confirmed healthy

and septic newborns is required.

H2S is produced from the amino acids cysteine, homocysteine

and cystathionine by the activity of cystathionine-c-lyase (cy-

stathionase; CSE, EC 4.4.1.1), cystathionine-b-synthase (CBS, EC
4.2.1.22) or 3-mercaptopyruvate sulphurtransferase (MPST, EC

2.8.1.2).[46] Considerable research has been conducted into the

activity of CSE, the enzyme responsible for converting cystathi-

onine to cysteine via the transsulphuration pathway in the preterm

neonate. CSE activity is gestational- and postnatal-age dependent,

with significantly higher levels of hepatic activity in full term than

preterm newborns [47]. This hepatic activity is known to increase

during fetal-to-neonatal transition, such that the newborn exhibits

significantly higher activity compared to the fetus, with signifi-

cantly increased levels of both mRNA and protein [48,49]. The

results of the present study, which show a high total body turnover

of H2S in the initial extrauterine period, are at odds with earlier

reports of CSE activity being lower in preterm than term

newborns [47]. This may be a result of tissue specific regulation:

previous studies have looked only at hepatic activity, whereas our

results reflect total body H2S turnover. These earlier studies looked

at the conversion of cystathionine to cysteine as the end point of

the CSE mediated pathway, however, CSE is also responsible for

the further downstream metabolism of cysteine which results in

H2S production, and this second role, which was not previously

studied, may result in an accelerated breakdown of cysteine in the

preterm neonate, contributing to high levels of H2S during

Figure 3. Sex differences in thiosulphate levels in very preterm neonates in early postnatal life (median6IQR). H2S turnover, measured
as urinary thiosulphate excreted per day per kg body weight, was significantly higher in males than females on both day 1 (*p= 0.01) and day 2
(**p = 0.04) of postnatal life (Friedman repeated measures ANOVA for non-parametric data).
doi:10.1371/journal.pone.0105085.g003
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circulatory transition. Additionally, high H2S production could

also occur in the absence of high endogenous cysteine as CSE can

also use homocysteine and cystathionine as substrates to produce

H2S [50].

It is also possible that the CSE arm of the H2S production

pathway is not the predominant player in H2S production during

the perinatal period. CBS and MPST are also known to catalyze

the production of H2S. The concept of H2S production enzymes

following a tissue-specific expression profile is currently being

challenged. Until recently, it was believed that the major source of

H2S in the vasculature was CSE. More recently it has been shown

that CBS, the enzyme originally thought to be responsible for H2S

production predominantly in the brain and nervous tissue, is also

expressed in the vasculature, and a third, more recently discovered

pathway for synthesizing H2S via MPST has also been identified

in rodent vasculature [51]. Little is known about these three

production pathways in the human vasculature or in the neonatal

period. Neonatal CBS deficiency manifests as homocystinuria

associated with neurodevelopmental delay and skeletal and

vascular abnormalities, highlighting the importance of this

pathway not only in the brain, but in a number of other systems,

including the vasculature [52]. Clearly future studies will need to

address all enzymes in the H2S production pathway. Further

elucidation of the activity of these enzymes will help to define

possible intervention strategies.

A limitation of our study is that whilst we have demonstrated a

clear correlation between outcome, microvascular blood flow and

H2S production, this does not prove causation. Nevertheless we

believe that our study provides strong clinical data that this

pathway is involved in microvascular tone regulation during

circulatory transition. Furthermore, it highlights both the need for

mechanistic studies utilising available animal models [13,53], and

alternative measures of H2S production. Exhaled H2S may

provide us with better temporal resolution of H2S production [54].

These results provide the first evidence that H2S may play a role

in maintaining microvascular tone of the neonate in the perinatal

period. Thiosulphate levels (as a marker of total body turnover of

H2S) were found to be highest in those neonates at greatest risk of

microvascular dysfunction characterized by inappropriate periph-

eral vasodilatation – very preterm male neonates born at 28 weeks

completed gestation or less, suggesting that overproduction of H2S

may contribute to microvascular dysfunction in neonates and thus

to both their mortality and long term morbidity. The hydrogen

sulphide pathway potentially represents a novel therapeutic target

for the selective control of vascular tone and development during

fetal-to-neonatal circulatory transition, which may help to reduce

Figure 4. Relationship between baseline microvascular blood flow at 24 hr and H2S turnover on day 2 of postnatal life. H2S turnover
(measured as urinary thiosulphate) was significantly correlated with baseline microvascular blood flow in preterm male neonates 29–36 wk GA
(Pearson correlation; p = 0.04, r= 0.43). No relationship was observed for females of the same gestational age, very preterm neonates (24–28 wk GA)
or term neonates (37+wk GA).
doi:10.1371/journal.pone.0105085.g004
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cardiovascular compromise following preterm birth, leading to

better short- and long- term outcomes for this vulnerable group.
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