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Abstract

Across the Bilateria, FGF/FGFR signaling is critical for normal development, and in both Drosophila and vertebrates, docking
proteins are required to connect activated FGFRs with downstream pathways. While vertebrates use Frs2 to dock FGFR to the
RAS/MAPK or PI3K pathways, the unrelated protein, downstream of FGFR (Dof/stumps/heartbroken), fulfills the correspond-
ing function in Drosophila. To better understand the evolution of the signaling pathway downstream of FGFR, the available
sequence databases were screened to identify Frs2, Dof, and other key pathway components in phyla that diverged early in animal
evolution. While Frs2 homologues were detected only in members of the Bilateria, canonical Dof sequences (containing Dof,
ankyrin, and SH2/SH3 domains) were present in cnidarians as well as bilaterians (but not in other animals or holozoans),
correlating with the appearance of FGFR. Although these data suggested that Dof coupling might be ancestral, gene expression
analysis in the cnidarian Hydra revealed that Dofis not upregulated in the zone of strong FGFRa and FGFRb expression at the
bud base, where FGFR signaling controls detachment. In contrast, transcripts encoding other, known elements of FGFR signaling
in Bilateria, namely the FGFR adaptors Grb2 and Crkl, which are acting downstream of Dof (and Frs2), as well as the guanyl
nucleotide exchange factor Sos, and the tyrosine phosphatase Csw/Shp2, were strongly upregulated at the bud base. Our
expression analysis, thus, identified transcriptional upregulation of known elements of FGFR signaling at the Hydra bud base
indicating a highly conserved toolkit. Lack of transcriptional Dof upregulation raises the interesting question, whether Hydra
FGFR signaling requires either of the docking proteins known from Bilateria.
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Introduction

Across the Bilateria, fibroblast growth factor receptors
(FGFR) and their ligands control embryonic as well as adult
morphogenesis. Although the receptor tyrosine kinase (RTK)
superfamily has earlier origins, the FGF/FGFR signaling sys-
tem is thought to have evolved in Ureumetazoa, the last com-
mon ancestor of Cnidaria and Bilateria (Babonis and
Martindale 2017; Bertrand et al. 2014; Lange et al. 2014;
Oulion et al. 2012; Rebscher et al. 2009). Little is known
about the evolution of signaling elements downstream of this
specific family of receptor tyrosine kinases. In both the fly and
vertebrates, docking proteins are essential to specifically trans-
duce the signal of an activated (trans-phosphorylated) FGFR
dimer into the cell (Brummer et al. 2010; Lemmon and
Schlessinger 2010).

One specific issue of interest is the nature of the ancestral
mechanism by which the activated FGFR is coupled to down-
stream signaling pathways, as vertebrates, Drosophila and the
nematode C. elegans use completely unrelated proteins to
fulfill this task. In vertebrates, Frs2 (FGF receptor substrate
2), a member of the membrane-linked protein (MLP) family,
connects FGFR to the PI3 kinase and RAS/ERK1/2 signaling
pathways (Gotoh 2008). In Drosophila, Dof (downstream of
FGFR, also known as stumps or heartbroken), is essential for
FGFR signaling and connects the heartless and breathless
FGFRs to the RAS/MAPK or PI3 kinase signaling pathways
(Csiszar et al. 2010; Michelson et al. 1998; Muha and Muller
2013; Vincent et al. 1998). In both cases, the activated FGFR
dimer phosphorylates conserved tyrosines in the docking pro-
teins and generates secondary binding sites for the intracellu-
lar adapters Grb2 (Kouhara et al. 1997), Crk and Crkl (Birge
et al. 2009) as well as the tyrosine phosphatase Shp2/Csw
(syn. Corkscrew, Csw, in Drosophila) (Gotoh 2008; Hadari
et al. 1998; Lax et al. 2002) and the dual specificity guanine
nucleotide exchange factor (GEF) Sos, that regulates both Ras
and Rac family GTPases (Innocenti et al. 2002). In the nem-
atode C. elegans, Grb2 is the only known FGFR docking
protein: Frs2 has no FGFR docking function and the genome
does not encode a Dof homologue (Lo et al. 2010).

Grb2 is an interesting protein, because it may act as an
adapter as well as a docking protein downstream of vertebrate
and invertebrate FGFRs. It has an intrinsic FGFR binding
activity in both the phosphorylated and unphosphorylated
forms and exerts multiple functions on FGFR. In vertebrates,
unphosphorylated Grb2 is associated constitutively to the C-
terminal domain of inactive FGFR2 dimers, preventing un-
wanted activation (Belov and Mohammadi 2012; Lin et al.
2012). Upon receptor activation, Grb2 dissociates from such
FGFR pairs and only then serves as adaptor between Frs2 and
Sos or Shp2.

The FGFR docking proteins Frs2 or Dof, the adapters
Grb2, Crk, and Crkl, the GEF Sos and Shp2 thus constitute,
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in various combinations, an essential toolkit in vertebrate, fly,
and worm to control FGF-induced signal transduction in, e.g.,
cell migration or neuronal differentiation (Bottcher and Niehrs
2005; Muha and Muller 2013; Zhou et al. 2015).

Since Dof and Frs2 dock FGFR in a mutually exclusive
manner in fly and vertebrate respectively, and neither are re-
quired for FGFR signaling in the nematode, the phylogenetic
distributions of docking and downstream signaling compo-
nents were surveyed, focusing particularly on FGFR docking
proteins. Included in this survey were representatives of early
diverging animal phyla. Among these, the Cnidaria are of
most interest, because FGF signaling is thought to have its
origins in the eumetazoan common ancestor (Bertrand et al.
2014), and thus prior to the Cnidaria/Bilateria divergence,
which occurred at or near the Ediacaran/Cambrian boundary
(Schwaiger et al. 2014).

FGFR signaling has been shown to be essential for devel-
opment in two evolutionarily distant cnidarians. In
Nematostella vectensis (Anthozoa) larvae, FGFR/RAS/
MAPK signaling is required for the development of the apical
organ, a sensory ciliated tuft (Matus et al. 2007; Rentzsch et al.
2008). In the freshwater polyp Hydra, FGFR signaling is in-
dispensable for at least two steps of the vegetative budding
process. While the FGFR/MEK/dpERK pathway modulates
timing of Hydra bud detachment (Hasse et al. 2014; Sudhop
et al. 2004), an FGFR/Rho/Rock/myosin II pathway controls
cell shape changes required for constriction and separation of
the tissue bridge connecting parent and bud (Holz et al. 2017).

In the present study, the available sequence databases were
scanned for non-bilaterian homologues of Dof/stumps/heart-
broken, Frs2, and other key downstream components of the
FGFR pathway. Whereas likely Dof orthologues were detect-
ed in several cnidarians, canonical Frs2 sequences could not
be identified in any non-bilaterians, suggesting that the ances-
tral (invertebrate) FGFR was Dof-coupled. To test this hypoth-
esis, in situ hybridization was used to investigate the expres-
sion pattern of Dof in Hydra in relation to those of the FGFRs.
Surprisingly, Dof transcripts were not detected in zones of
strong FGFR gene expression. In contrast to Dof, the tran-
scripts encoding downstream components Grb2, Crkl, Sos,
and Shp2 were strongly and specifically upregulated at the
bud base together with both of the Hydra FGFRs. Presence
of a highly conserved toolkit for FGFR downstream signaling
is thus indicated, but whether Dof functions in Hydra FGFR
signaling needs future investigation.

Materials and methods

Gene prediction

To reveal Frs2 and Dof sequences in Hydra, we explored the
NCBI (http://www.ncbi.nlm.nih.gov), JGI (http://jgi.doe.
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gov/), hydrazome/metazome (http://hydrazome.metazome.
net/cgi-bin/gbrowse/hydra), Compagen (http://www.
compagen.org) T-CDS: transcript models (contigs) derived
from assembled ESTs (Hemmrich and Bosch 2008) and
RNASeq project (Wenger and Galliot 2013). Predicted pro-
tein sequences were further analyzed for conserved domains
using NCBI’s conserved domain search tool including
CDART (http://www.ncbi.nlm.nih.gov/Structure/cdd/
wrpsb.cgi) (Geer et al. 2002; Marchler-Bauer et al. 2015),
ExpasyProsite (http://prosite.expasy.org/), Pfam (http://
pfam.sanger.ac.uk/), or PhosphoMotif finder (Amanchy
et al. 2007). Motif Scan (Pagni et al. 2007) was used to
predict domains and identify SH2, SH3-binding site consen-
sus sequences in Dof sequences (http://scansite.mit.edu/cgi-
bin/motifscan_seq, 28 July 2016). GPS 5.0 (http://gps.
biocuckoo.cn/) was used to identify predicted
phosphorylation sites for Crkl. BLAST search revealed
homologous or related proteins by sequence similarity
(BLAST search parameter: All non-redundant GenBank
CDS translations + PDB + SwissProt + PIR + PRF excluding
environmental samples from WGS projects).
Figures depicting protein domains were established using
the IBS illustrator (Liu et al. 2015).

Phylogeny

Predicted Hydra protein sequences were aligned with the
available protein sequences of the choanoflagellate
Salpingoeca, the parazoan Trichoplax, the ctenophore
Mnemiopsis, the Cnidaria Acropora, and Nematostella as well
as protein sequences of several bilaterian animals covering
protostome and deuterostome phyla as indicated in the figures.
Alignments were calculated using ProbCons version 1.12 (Do
et al. 2005), clustalX, T-coffee version 8.99 (Notredame et al.
2000), MAFFT L-INS-i version 7.037b (Katoh and Standley
2013), and the COBALT program (Papadopoulos and
Agarwala 2007) with default settings. Jalview version 2.8
(Waterhouse et al. 2009) and InterProScan5 was used to visu-
alize and analyze the alignments whereas Genedoc was used
to manually edit them. Phylogenetic trees were calculated as
indicated in the text using either conserved domains or the
whole protein sequences and rooted as specified in the text.
Gaps between sequences were deleted. The WAG + G + 1
model was selected as the best fitting amino acid substitution
model according to the Bayesian information criterion in
ProtTest version 3.3 (Darriba et al. 2011). Phylogenetic trees
were calculated using Mr. Bayes 3.1.2 (Huelsenbeck and
Ronquist 2001). Two runs were initiated of four Markov chain
Monte Carlo (MCMC) chains of 2 x 107generations, each
from a random starting tree. Sampling made every 1000 gen-
erations [additional settings: rates = invgamma, ngammacat =
4, aamodelpr = WAG]. A 25% burn-in was selected and con-
vergence was assessed by standard deviation of split

frequencies falling below 0.005. The resultant trees were vi-
sualized with Figtree version 1.4.0 (http://tree.bio.ed.ac.uk/
software/figtree/).

Hydra culture

Hydra vulgaris AEP strain was cultured in a medium contain-
ing (0.29 mM CaCl,, 0.59 mM MgSOy, 0.5 mM NaHCO;,
and 0.08 mM K,COs, pH 7.4) at 18 °C. The animals were fed
5 times a week with freshly hatched Artemia nauplii to syn-
chronize their growth (Sudhop et al. 2004).

Cloning of sequences

The Quickprep Micro Kit (Amersham) was used to harvest
poly(A)" RNA from the Hydra vulgaris AEP strain (Dof,
Frs2-related, Grb2) or the Hydra vulgaris Ziirich strain
(Sos, Csw). Further poly(A)* RNA was reverse transcribed
using Revert Aid TM Premium First-strand cDNA Synthesis
Kit (Fermentas) and diluted 1:100 prior to PCR amplification
of the genes of interest. Dof, Frs2, Sos, Shp2/Csw, Crkl, and
Grb2 gene sequences were PCR amplified using following the
primer pairs:

Dof forward GTTGCAGTTTTTAATTCAAATATACC
(111-137)

Dof reverse TTGCAGCTGCTATGTCCATTGG (682—
660)

Frs2-related forward ATGGAGGTAATTTTGGAAGG
C (121 bp)

Frs2-related reverse: GACCTACTACATTCAAATCGA
(566-545)

Sos forward GGTTGATCTCCAAATGCACGA (-13-5)
Sos reverse CGACGCTTAGCTAGTGGCTG (560-540)
Shp2/Csw forward CGGCGTTTTTATTGAGCTGC
(572-592)

Shp2/Csw reverse CGAACACAGAGAGCTGGCAT
(1463-1443)

Grb2 forward CGCAGATCTGAGGCTGAACA (201-
221)

Grb2 reverse CGGTATTTTAGGAAGGGGGAGT
(1090-1068)

Crkl forward TCGGGTTACTGAGCCAACAC (294
1040)

Crkl reverse CCAGGCGCTACATTAAAGGC (1021-
1040)

The full length Fgfi-b cDNA was reconstituted by using
two sequence fragments encoding the first two Ig-like loops
(fgfr-b.., 835 bp, and a fragment encoding the tyrosine kinase
domain (fgfr-b;,, 516 bp), which had been identified previous-
ly in the Hydra AEP database (Hemmrich and Bosch 2008;
Rudolf et al. 2013). The missing sequence between these two
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fragments was isolated from cDNA by PCR using proofread-
ing polymerase (Pfu) and the following primers:

FGFRb forward CGTTTACAGCATGACAAATCC,
FGFRbD reverse CAAATGACCATATATCACTTCGAG.
Accession numbers of the two previously existing fragments
are HAEP_T-CDS v02 12177 (Compagen database,
encoding Ig-like loops I and II, named here: FGFRb_ex) and
HAEP_T-CDS v02 12974 (Compagen database, encodes
the tyrosine kinase domain, named here: FGFRb_in).
Amplified cDNA fragments were AT-cloned (Dof, Frs2-
related, Sos, Shp2/Csw, Grb2, Crkl) into the pGEM T-Easy
vector (Promega) or blunt end (FGFRb) into the CloneJET
vector (ThermoFisher). Clone identity was confirmed by se-
quencing (SeqLab).

Whole mount in situ hybridization

Full length (FGFRa, Dof, Frs2-related, Sos, Shp2/Csw, Grb2,
Crkl) or partial sequences (FGFRb) were used for the synthe-
sis of Dig-labeled RNA sense and antisense probes (ROCHE).
HAEP Dof RNA probe (571 bp: nucleotides 1496 to 2067);
HAEP Frs2-related RNA probe (561 bp: nucleotides 166 to
727); Hvz_Sos RNA probe (889 bp); Hvz Shp2/Csw RNA
probe (1,191 bp: nucleotides 471 to 1,662); Hvz_Grb2 RNA
probe (889 bp: nucleotides 674 to 1,563); FGFRb;,, 516 bp
and FGFRb.,,, 835 bp (two probes were necessary to detect
and exclude a cross reaction of the two probes with parts of the
FGFRa mRNA encoding the highly conserved tyrosine ki-
nase domain). Whole mount in situ hybridization was per-
formed as described previously (Sudhop et al. 2004) with
the exception that proteinase K digestion was prolonged for
Hydra vulgaris AEP from 10 to 15 min. Bud stages were
selected according to (Otto and Campbell 1977). The quality
of RNA probes was verified by Northern blotting and between
3 and 300 ng of the respective RNA probe were used for
WMISH to obtain an optimal signal-to-noise ratio. For each
in situ hybridization, at least 5 polyps of a given bud stage
were used and the expression pattern is described only if at
least 4 of those (80%) show the same pattern in independent
experiments. Nonspecific binding patterns of probe and/or
antibody which is are unrelated to specific probes are given
as examples in Fig. ESM8.

Results

Frs2 and Frs2-related proteins as FGFR adaptors

The FGFR docking proteins of vertebrates, Frs2 homologues,
typically, carry an N-terminal myristoylation site (Fig. 1),
which ensures their modification by a lipid anchor and con-

stitutive localization to the plasma membrane. A
phosphotyrosine-binding (PTB) domain (pfam08416) links
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Frs2 constitutively to activated vertebrate FGF receptors,
and multiple tyrosine phosphorylation sites are essential to
dock downstream adaptor proteins like Grb2 or the phospha-
tase Shp2/Csw via SH2 and SH3 domain binding consensus
sequences (Brummer et al. 2010; Gotoh 2009).

Querying the sequence databases with the known Frs2 pro-
teins yielded convincing matches only for deuterostomes,
ecdysozoans, and flat worms (Fig. 1). Only in proteins from
these groups could the presence of an N-terminal
myristoylation sequence (as well as of a PTB domain) be
confirmed. In representatives of the Mollusca, Annelida, and
Cnidaria, “Frs2-related” proteins were identified (Fig.
ESMI1A, Fig. ESM1B). Although in these cases a conserved
PTB domain sequence was present, a PH (pleckstrin homolo-
gy) domain replaced the diagnostic N-terminal myristoylation
site at the N-terminus. This domain (PH/PTB) combination is
characteristic of Dok and IRS proteins, which together with
Frs2 form the membrane-linked protein (MLP) superfamily
(ESM2A-C). PH domains bind phospholipids and anchor pro-
teins to membranes in an analogous manner to the myristoyl
tail (Delahaye et al. 2000; Uhlik et al. 2005). The “Frs2-relat-
ed” proteins identified here in annelids, mollusk, and cnidar-
ians are clearly members of the MLP superfamily (ESM2), but
not of the Frs2 sensu strictu clade.

A major challenge in uncovering relationships between
the invertebrate/non-metazoan Frs2-related sequences re-
covered and the true Frs2 proteins of vertebrates and insects
was the low sequence similarity, and for many of the former
it is difficult to make firm assignments. The choanoflagellate
matches, including the Salpingoeca sequence
XP_004995975, are unconvincing—this latter sequence
has a cyclophilin type peptidylproply cis-trans isomerase do-
main as well as PH-like domain. The sponge sequence re-
covered as XP_003383468.1 is a homologue of proline-rich
receptor-like protein kinase, PERK?7. It lacks a PH domain,
but does have a PTB domain. Although the Nematostella
sequences XP_001635403.1 and XP_001641972.1 were
the best hits in Frs2 BLAST searches, domain searches give
stronger hits to the IRS type domain (pfam02174, IRS, PTB
domain (IRS-1 type)), and the same is true for the Acropora
database match. As for Hydra, there is, additional to the
Frs2-related proteins, an IRS1-like protein annotated (Acc.
No. XP_012558666.1), which lacks, however, the IR-
binding domain (ESM2A, B). The presence of an N-
terminal PH domain in the Frs2-related sequences from
Placozoa, cnidarians, annelids, and mollusks rendered them
similar to IRS or Dok proteins rather than Frs2. A phyloge-
netic analysis of Frs2 and Frs2-related protein sequences
revealed no convincing relationships (not shown).

In summary, our data imply that true Frs2 proteins are
likely to have evolved in Urbilateria and were lost again dur-
ing the evolution of the lophotrochozoan phyla Annelida and
Mollusca.
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Fig. 1 Schematic summary of structural features of metazoan Frs2
homologues. FRS2 homologues were identified in Bilateria only. Ce
ROG1, Caenorhabditis elegans; Ci_ FRS3, Ciona intestinalis; Cs_
FRS3, Clonorchis sinensis; Dm_FRS2, Drosophila melanogaster; Egr

Dof is a candidate FGFR docking protein in Cnidaria

All Dof proteins are characterized by the presence of the
DBB (Dof, BCAP, and BANK) domain (pfam14545),
which is required for binding to an activated receptor
(Fig. 2A). They typically also contain a number of anky-
rin repeats (Gotoh 2009; Muha and Muller 2013) which
mediate protein—protein interactions in Drosophila
(Battersby et al. 2003; Vincent et al. 1998; Wilson et al.
2004). Ankyrin repeats have also been maintained in the
Dof paralogues BANK and BCAP. More recently annotat-
ed proteins were named PI3 kinase adapter proteins
(PI3KAP), instead of Dof, due to their similarity to human
BCAP, which interacts with PI3 kinase (Lauenstein et al.
2019).

[C] PTBdomain [T] Myristoylation site

Y Grb2 binding site Shp2 binding site
Y Common Grb2 and Shp2 binding site

FRS2, Echinococcus granulosus; Hs_FRS2, Homo sapiens; Sk_ FRS2,
Saccoglossus kowalevskii; Sp_ FRS2, Strongylocentrotus purpuratus,
Tr_ FRS2, Tribolium castaneum

Screening of the available genomic and EST databases
with the sequences encoding the DBB domain and ankyrin
repeats of fly Dof revealed ESTs encoding full length Dof
homologues from Hydra magnipapillata and Hydra vulgaris
AEP (Fig. 2A, Fig. ESM1A, ESM3). Although these differed
significantly in size (H. magnipapillata Dof is predicted to be
464 amino acid (aa) residues, whereas that from H. vulgaris
AEP is 598 aa), in terms of domain structure these are both
typical Dof proteins. Similar search strategies applied to the
data available for anthozoan cnidarians, led to the identifica-
tion of Dof sequences in the corals Acropora millepora, A.
digitifera, Exaiptasia pallida, and the sea anemone
Nematostella vectensis. Alignment of these assembled Dof
domain sequences with predicted or annotated Dofs from a
range of bilaterians (ESM3) implies that these are likely to be
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Fig. 2 Structural features and phylogenetic relationship of eumetazoan
Dof/PI3KAP proteins. (A) Protein structure of Dof/PI3KAP proteins. (B)
Phylogenetic tree of Dof/PI3KAP proteins. Numbers at nodes indicate
posterior probability support values. Ami, Acropora millepora; Ag,
Anopheles gambiae; Ap, Asterina; Bf, Branchiostoma floridae; Cg,

orthologues. In each case, structure prediction programs (con-
served domain search tool, NCBI) identified a DBB domain
associated with an ankyrin repeat domain and multiple tyro-
sine phosphorylation consensus sequences for SH2- and SH3-
binding domains of intracellular proteins such as Grb2, Crk,
Shp2, PI3K, Src, or RasGAP, respectively (ESM4).
Conspicuous was the presence of a structurally defined N-
terminal Toll/Interleukin-receptor homology (TIR) domain
in most of the bilaterian sequences and its lack in Cnidaria
(Fig. 2A).

Although the presence of Dof genes in anthozoan and
hydrozoan cnidarians as well as in a wide range of
bilaterians implies that Dof may have mediated FGFR
signaling in Ureumetazoa, homologues of this protein
could not be identified in the parasitic flat worms
(Platyhelminthes) Clonorchis sinensis and Echinococcus
granulosus, in the nematode C. elegans or in the urochor-
date Ciona intestinalis. In some cases, failure to identify
Dof homologues may reflect the quality of genome
assembly/gene predictions, but in others (e.g.,
C. elegans) gene loss or high levels of sequence diver-
gence are more likely explanations. Despite identification
of likely Dof orthologues in several cnidarians, neither
Dof nor its vertebrate paralogues BANK or BCAP could
be identified in the ctenophore Mnemiopsis, the sponge
Amphimedon, or in the placozoan Trichoplax. A phyloge-
netic analysis confirmed the homology of Dof proteins
across the Eumetazoa (Fig. 2B).
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Crassostrea gigas, Ct, Capitella teleta; Dm, Drosophila melanogaster;
Dr., Danio rerio; Ep, Exaiptasia pallida; HAEP, Hydra vulgaris AEP;
Hm, Hydra magnipapillata; Hs, Homo sapiens; Lg, Lottia gigantea; Sk,
Saccoglossus kowalevskii; Sp, Strongylocentrotus purpuratus, Tc,
Tribolium castaneum; X1, Xenopus laevis

Candidate downstream elements of Hydra FGFR:
Grb2, Crkl, Sos, and Shp2/Csw

As outlined above, the FGFR signal is transduced by coupling
to several different intracellular signaling pathways in the fly
and vertebrates, one of which—the RAS/MAPK pathway
leading to Erk1/2 activation—is known to act downstream
of FGFRs in both Nematostella and Hydra (Hasse et al.
2014; Matus et al. 2007; Rentzsch et al. 2008).

To enable further investigation of the signaling system
downstream of Hydra FGFR, the cDNA sequences of Grb2,
Crkl, Sos, and Shp2/Csw were retrieved from the databases
(ESMS5). These four proteins clearly all have early origins; the
Hydra homologues of each closely resemble their bilaterian
counterparts in terms of domain structures (ESM6, ESM7).
Despite apparent anomalies with respect to some of the
Nematostella data in GenBank (e.g., the Nematostella Grb2
protein entry features an N-terminally truncated SH2 domain
(ESM6C)), all four components were also identified in the
sponge Amphimedon (ESMS5). Homologues of Shp2 and
Grb2 were also identified in the choanoflagellate
Salpingoeca and Monosiga, so at least these two components
pre-date metazoan origins.

In the case of Drosophila, database entry NP_651908.1
appears to have been misannotated as a homologue of Crk
rather than of Crkl; Crk is a paralogue of Crkl that is only
otherwise known in vertebrates (where both proteins are
present). To clarify both the identity of NP_651908.1 and
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the evolutionary history of these proteins, phylogenetic ana-
lyzes of the Crk and Crkl proteins were undertaken. The
resulting phylogenetic tree (ESM7B) indicates (i) that
Drosophila NP_651908.1 falls in a well-supported clade
with the nematode and mollusk Crkl homologues, and is
well-resolved from true Crk homologues (implying that the
database accession information may require modification)
and (ii) that Crk likely resulted from a vertebrate-specific
duplication of Crkl (ESM7 A, B).

In summary, a suite of proteins that are known to function
downstream of FGFR across the Bilateria are also present in
non-bilaterian animals and, although FGFR signaling evolved
in the ureumetazoan common ancestor, several of the down-
stream components have earlier origins.

Transcripts of FGFR downstream adaptors

and effectors, but not Dof or Frs2-related, are
upregulated together with the FGFRs at the bud
detachment site

In order to function in FGFR signal transmission, pathway
components must co-localize, and may therefore be spatio-
temporally co-expressed. Hydra FGFRa (Kringelchen) tran-
scripts have previously been shown to be upregulated at the
bud base, but the gene is also expressed weakly throughout the
body column of Hydra vulgaris Zurich and Hydra vulgaris
Ind-Pune (Sudhop et al. 2004; Turwankar and Ghaskadbi
2019). FGFR signaling is indispensable for bud detachment
(Hasse et al. 2014; Holz et al. 2017), and therefore, the ex-
pression domains of the Hydra Dof, Frs2-related, Grb2, Crkl,
Sos, and Shp2/Csw homologues were compared to those of
the Hydra vulgaris FGFRs (FGFRa and FGFRb) in the bud-
ding process. Since the Hydra FGFRs diverge only in their N-
terminal regions, their expression was detected using probes
corresponding to either the full length FGFRa or to the diver-
gent N-terminal extracellular domain of FGFRb. Both FGFR
transcripts as well as those of Dof, Frs2-related, and Sos were
found weakly (and constitutively) expressed along the non-
budding body column (Fig. 3(A)—(D) and (F); sense controls
in ESMS). Grb2, Shp2, and Crkl, in contrast, were expressed
strongly and their specific expression patterns detectable only
by using highly diluted probes (Fig. 3E, G, H; sense controls
in ESMS8). As reported previously (Sudhop et al. 2004),
kringelchen (FGFRa) expression is upregulated from stage 2
to stage 4 at the bud tip and from stage 4 onwards at the bud
base. The FGFRb(ex) probe failed to detect early expression
in the bud tip, but colocalized with FGFRa at the bud base
from stage 4 (Fig. 3(B4)—(B8)). Of the docking protein tran-
scripts, only Dof ' was found co-expressed with FGFRa in bud
evagination stages 3 and 4 (Fig. 3(C2)—(C3)). Neither Dofnor
Frs2-related transcripts colocalized in the strong FGFRa and
FGFRb expression domains at the bud base. Dof mRNA was
localized in the upper body region of developing buds as well

as later, constitutively in the tentacle zone (Fig. 3(C5)—(C9)),
while expression of Frs2-related was only detected at low
levels at the tentacle bases (Fig. 3(D6)—(D9)).

In the bud detachment phase, both FGFR transcripts are
strongly co-expressed with Grb2, Sos, Shp2/Csw, and Crkl
at the bud base from stages 6 to 7 onwards (Fig. 3e, f, g, h),
low levels of Crkl expression being already observed in stage
5 (Fig. 3(H4)) and strongly from stage 8 onwards
(Fig. 3(H7)—(HS8)). Of the downstream components tested,
Crkl was the first to be upregulated at the bud base.

In addition to expression in the bud detachment zone, and
by implication therefore not related to signaling via FGFRs,
Grb2 and Shp2/Csw displayed complex expression patterns in
the Hydra endoderm, and both ecto- and endoderm, respec-
tively. Shp2/Csw transcription was upregulated at the bud tip
in both epithelia from stages 1 to 2 onwards and persisted until
shortly before the bud detached in stage 10 (Fig. 3(G1)—(G7)).
No transcripts were detectable in the adult head.

Grb2 transcription was dynamic in budding polyps
(Fig. 3(E1)~(E9); ESM8 1, J). Superimposed on ubiquitous
background expression, Grb2 was upregulated endodermally
in a circumferential belt of parental tissue immediately above
the newly forming bud and persisted in a wedged expression
zone until stage 3/4 (Fig. 3(E1); ESMS8 I). In tissue transferred
to the bud (Fig. 3(E3)—(ES)), expression intensity increased in
bud stages 4-5. From stage 4 onwards, Grb2 was also highly
expressed in the bud tip, where the mouth opening developed
(Fig. 3(E3)—~(ER)). Expression in this region persisted in the
adult in a ring of cells surrounding the mouth (Fig. 3(E9)). The
intensity of this apical staining was variable as documented in
Fig. ESM8 J, compare bud to parent). From stage 7 onwards,
expression in the body column of the bud ceased and a strong
signal developed in cells surrounding the bud base, trailing
behind Crkl (Fig. 3(E6)—~(E8)). The dynamic pattern of Grb2
expression suggests that the corresponding protein fulfills
multiple roles during bud development in Hydra.

Taken together, the FGFRs, Grb2, Crkl, Sos, and Shp2/
Csw are all expressed at the late bud base and might thus form
a toolkit for FGFR signaling required for bud detachment.

Discussion
The evolutionary history of FGFR, Dof and Frs2

The receptor tyrosine kinase superfamily, to which the FGFRs
belong, clearly predates multicellularity, as extensive families
of RTKSs are present in the unicellular holozoans Capsaspora
and Ministeria (Suga et al. 2013) as well as in
choanoflagellates such as Monosiga (Fairclough et al. 2013;
King et al. 2008; Pincus et al. 2008). However, the RTKs of
both Capsaspora and Monosiga have diverged independently
from those of metazoans. The animal RTK types that respond
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Fig. 3 Expression patterns of Hydra FGFRs and their potential downstream signaling elements in the ten bud stages (according to Otto and Campbell

1977)

to growth factors, including the fibroblast growth factor recep-
tors, likely emerged in the eumetazoan ancestor (Bertrand
et al. 2014; Rebscher et al. 2009).

Animal RTKs generally require docking or adapter proteins
to link an activated receptor dimer to intracellular pathways.
This dependency is well established in Drosophila and verte-
brates, where the FGFR docking proteins Dof or Frs2 are
essential respectively, despite being unrelated in sequence.
The apparent absence of both Dof and Frs2 from single-
celled holozoans and choanoflagellates, as well as representa-
tives of the Porifera, Ctenophora, and Placozoa, is consistent
with the hypothesis of a eumetazoan origin of FGFRs
(Bertrand et al. 2014). Clear homologues of Dof were identi-
fied in Cnidaria (Hydra and Acropora) and Bilateria, while
Frs2 proteins sensu strictu were restricted to members of the
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Bilateria. Although Dof is not upregulated in the strong ex-
pression domains of the FGFRs in Hydra, Crkl expression is
upregulated at the bud base near simultaneously with both of
the FGFRs (Fig. 3; Fig. 4A), while upregulation of the adapter
Grb2 as well as Sos and Shp2 occurs slightly later. This raises
the possibility that two (Dof-independent) pathways operate at
the bud base—the early phase involving Crkl and a later path-
way in which Grb2 and Sos participate.

Scenarios for FGFR adapter evolution

The data presented here suggest at least two possible scenarios
for FGF adaptor evolution. In the first of these, the FGFR was
originally coupled to downstream signaling pathways via an
ancestral Dof protein. The evolutionary origin of Dof
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coincides with that of FGFs and FGFR sensu strictu in antho-
zoan and hydrozoan Cnidaria (Hasse et al. 2014; Matus et al.
2007; Rentzsch et al. 2008; Sudhop et al. 2004). As well as
their overall similarity to known Dofs from Bilateria, the cni-
darian Dof proteins contain all of the domains required for
both docking to the activated FGFR and connecting with the
downstream elements Grb2 and Shp2/Csw, all of which are
consistent with the “Dof first” hypothesis. Mutant rescue ex-
periments also provide some support for this idea. The Hydra
FGFRa, partially rescued a fly heartless mutant (Rudolf et al.

2013), suggesting that the Hydra FGF receptor was capable of
interacting with the Drosophila Dof adapter. However, the
Hydra FGFR only rescued the very early phase of FGFR
activity in fly embryos, prior to its involvement in MAPK
signaling, which is absolutely dependent on Dof (Wilson
etal. 2004). The fact that Dof shares a zone of expression with
FGFRa (Kringelchen) only early in Hydra bud development
raises the question of its function.

While it is possible that sufficient Dof protein is present to
fulfill the FGFR docking function during bud detachment, a
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potential Hydra FGFR \ > > \J\; 2 :\,\é —f
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second scenario, in which Hydra FGFR requires neither Dof
nor Frs2 for signal transduction, would account for the lack of
Dof upregulation (Fig. 4B). This interesting alternative is sup-
ported by the fact that Grb2 acts as a direct interaction partner
for several receptor tyrosine kinases including vertebrate
FGFR2.

Grb2 is, for example, recruited directly to receptor tyrosine
kinases like EGFR (Rozakis-Adcock et al. 1993). Moreover,
the nematode C. elegans provides a precedent for FGFR sig-
naling without Dof or Frs2. Neither is required for FGFR
activity (and Dof not even encoded in the genome). Instead,
the C. elegans FGFR Egll5 interacts directly with Grb2/
SEMS5 (Lo et al. 2010). Whether this mode of action reflects
a secondary modification of the FGFR pathway is unclear.
Interesting in this context is that Platyhelminthes also lack
Dof and possess only atypical short Frs2-related proteins.
How their FGFRs transduce signals into the cell would be
interesting to know.

Last but not least, the unphosphorylated Grb2 tethers inac-
tive FGFR2 dimers C-terminally and keeps them in a
preactivation state (Belov and Mohammadi 2012; Lin et al.
2012). As soon as FGF ligands are available, the tyrosine
phosphorylation of Grb2 induces its dissociation from the re-
ceptor and binding to Frs2 and only now, Grb2 acts as an
adaptor for FGFR downstream signaling.

Both Grb2 and Crkl have early origins, as clearly related
proteins are encoded by sponge genomes. A protein similar to
Grb2 is encoded by the Salpingoeca genome; thus, Grb2
might have functioned as an adapter for RTKs prior to the
emergence of FGFRs. The Hydra FGFRs, Grb2 and Crkl,
are all strongly transcribed in a ring of epithelial cells sur-
rounding the late bud base that had been defined by Notch
signaling (Miinder et al. 2010), but Dof is not upregulated
here. It will be interesting to test whether the second scenario,
a direct interaction of FGFR with Grb2 (or Crkl) applies to
FGFR signaling in Cnidaria and represents an ancestral
mechanism.

Conclusion

Efficient coupling of transmembrane receptors to intracellular
signaling pathways often requires docking proteins, and many
receptors are capable of interacting with a number of different
downstream adaptors. The ability to interact with multiple
downstream proteins enables receptors to regulate a range of
different functions; in the case of FGFRs, these include roles
in cell proliferation, differentiation, migration, boundary for-
mation, and branching morphogenesis. Although the evolu-
tionary origins of the Dof protein coincided with those of FGF
signaling, and the cnidarian Dof has all of the structural fea-
tures required to function as an FGFR docking protein, it
missing upregulation at the bud base raises the possibility that
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it does not fulfill that role in Hydra. Protein—protein interac-
tion assays are now required to identify and functionally char-
acterize the interaction partners of Hydra FGFR required for
signal transduction.
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