
Immune Signature Against Plasmodium falciparum
Antigens Predicts Clinical Immunity in Distinct
Malaria Endemic Communities
Authors
Carla Proietti, Lutz Krause, Angela Trieu, Daniel Dodoo, Ben Gyan, Kwadwo A. Koram,
William O. Rogers, Thomas L. Richie, Peter D. Crompton, Philip L. Felgner, and Denise L. Doolan

Correspondence
denise.doolan@jcu.edu.au

In Brief
We have established a predictive
modelling framework to system-
atically analyze IgG antibody re-
sponses against a large panel of
P. falciparum-specific antigens
and identify a predictive signa-
ture of naturally acquired immu-
nity to malaria. Our results show
that an individual’s immune sta-
tus can be accurately predicted
by measuring IgG antibody re-
sponses to a parsimonious set
of 15 target antigens. The identi-
fied immune signature is highly
versatile and capable of provid-
ing precise and accurate esti-
mates of clinical protection from
malaria in demographically dis-
tinct populations.

Graphical Abstract

Highlights

• A predictive modelling framework has been established to analyze IgG antibody responses against a
large panel of P. falciparum-specific antigens to identify a specific antigen signature of NAI.

• An individual’s immune status can be accurately predicted by measuring IgG responses against a
small set of 15 defined parasite antigens.

• Proteins identified in the 15-antigen signature represent potential candidates for next-generation
malaria vaccines or biomarkers for monitoring the impact of malaria interventions.

• The developed predictive framework can be adapted for developing novel surveillance and interven-
tion tools for other infectious diseases.
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Immune Signature Against Plasmodium
falciparum Antigens Predicts Clinical Immunity
in Distinct Malaria Endemic Communities*□S

Carla Proietti‡§��, Lutz Krause¶��, Angela Trieu‡��, Daniel Dodoo�, Ben Gyan�,
Kwadwo A. Koram�, William O. Rogers**, Thomas L. Richie**, Peter D. Crompton‡‡,

Philip L. Felgner§§, and Denise L. Doolan‡§¶¶

A large body of evidence supports the role of antibodies
directed against the Plasmodium spp. parasite in the devel-
opment of naturally acquired immunity to malaria, however
an antigen signature capable of predicting protective im-
munity against Plasmodium remains to be identified. Key
challenges for the identification of a predictive immune sig-
nature include the high dimensionality of data produced by
high-throughput technologies and the limitation of standard
statistical tests in accounting for synergetic interactions
between immune responses to multiple targets. In this
study, using samples collected from young children in
Ghana at multiple time points during a longitudinal study,
we adapted a predictive modeling framework which
combines feature selection and machine learning tech-
niques to identify an antigen signature of clinical immunity
to malaria. Our results show that an individual’s immune
status can be accurately predicted by measuring antibody
responses to a small defined set of 15 target antigens.
We further demonstrate that the identified immune sig-
nature is highly versatile and capable of providing pre-
cise and accurate estimates of clinical protection from
malaria in an independent geographic community. Our
findings pave the way for the development of a robust
point-of-care test to identify individuals at high risk of
disease and which could be applied to monitor the im-
pact of vaccinations and other interventions. This ap-
proach could be also translated to biomarker discovery
for other infectious diseases. Molecular & Cellular
Proteomics 19: 101–113, 2020. DOI: 10.1074/mcp.
RA118.001256.

Epidemiological and experimental studies support the role
of antibodies directed against P. falciparum antigens in pro-

tective immunity to malaria (1). However, despite decades of
intensive efforts, little is known about the parasite antigens
that function as targets of naturally acquired immunity (NAI)1

and there are no defined correlates of protection. Several
studies by us and others have demonstrated that immunity is
associated with combinations of reactivity against multiple
antigens, rather than the recognition of any single antigen
(2–7). Identifying the key antigens targeted by NAI and under-
standing how NAI develops and is maintained within a pop-
ulation would be immensely beneficial for the development of
a diagnostic tool to assess whether individuals or populations
are at a high risk of disease and whether this risk changes
after the implementation of malaria control measures. More-
over, the identification of an immune signature associated
with clinical protection would facilitate the design and devel-
opment of an effective malaria vaccine comprising the subset
of antigens shown to be associated with protection. The small
number of antigens under development as vaccine candi-
dates reflects our current limited understanding of immunity
against malaria (8).

To address this, we have pioneered studies using protein
microarrays expressing the complete or partial proteome of
Plasmodium parasites to profile the immune response on a
proteome-wide scale in individuals naturally exposed to or
experimentally infected with malaria (3, 9–12). Those studies
have shown that �30% of the proteome is reproducibly rec-
ognized and that some antigens are serodominant but other
are not (12). Proteome-wide studies provide information on
immune responses against a large fraction of the parasite
proteome, but the overwhelming amount of generated data
has been challenging to analyze and interpret with standard
statistical approaches and has limited the success in identi-
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fying a protective immune signature. For example, the number
of variables (proteins) measured in protein microarray exper-
iments usually far outnumbers the sample size, making data
analysis challenging and limiting the applicability of standard
statistical tests. Traditional statistical approaches that are
based on individual antigens are not robust and accurate
enough to predict the immune status at an individual level. To
overcome these limitations, multivariate methods and ma-
chine learning techniques have been recently applied for the
analysis of high dimensional “omics” datasets (transcriptom-
ics, metabolomics, proteomics, metagenomics, etc.) to iden-
tify predictive biomarker signatures of vaccination, infection
or exposure. Insights into the mechanisms of natural and
vaccine-induced immunity have been reported for several
diseases, including yellow fever, influenza, and tuberculosis
(5, 13–16), but not malaria.

Herein, we have established a predictive modeling frame-
work combining feature selection and machine learning to
systematically analyze IgG antibody responses against a large
panel of P. falciparum-specific antigens to identify a predictive
signature of clinical immunity to malaria. In a longitudinal
study in Ghana, blood samples were collected from well-
defined cohorts of young children in the process of acquiring
clinical immunity to malaria during multiple time points of the
malaria season. Sera were probed against a protein microar-
ray containing 1,080 P. falciparum antigens. By analyzing the
antibody profiles before the malaria season, we were able to
identify a parsimonious set of antibody responses that could
predict an individual’s immune status (clinically resistant or
susceptible) with high accuracy (86%). We further validated
this signature in a distinct epidemiological and demographical
setting, among 2–10 year-old children and 18–25 year-old
adults in Mali. The predictive modeling framework presented
here proved to be a powerful approach to identify a sensitive
and specific immune signature of NAI to malaria.

EXPERIMENTAL PROCEDURES

Population and Study Design—Studied children were recruited
from the Kassena-Nankana District (KND) of the Upper East region of
northern Ghana. In this region malaria transmission occurs through-
out the year with two main seasons: a dry season from approximately
October to April, and a wet season from approximately May to Oc-
tober (supplemental Fig. S1). The characteristics of the area and
study details have been published elsewhere (17–23). Briefly, three
hundred children were passively followed up over one calendar year
(from May 2004 to May 2005) and were visited seven times (every 2

months). Clinical, hematological and parasitological data were col-
lected at the beginning of the study and during each of the seven
visits. A blood sample was obtained by fingerpick (�0.5–1.0 ml) for
thick and thin blood film, for serological analysis and rapid malaria
diagnostic test (DiaMed Optimal Rapid Malaria test). Children suffer-
ing from uncomplicated malaria were treated with chloroquine and
sulfadoxine-pyrimethamine (SP) (Fansidar®) as the first-line drugs
according to Ghana Ministry of Health policy at the time. Asexual
parasites were counted against 200 white blood cells and converted
to parasites/�l assuming a density of 8,000 white blood cells/�l
blood. Concurrent parasitemia was defined as any documented par-
asite density at the time of sample collection. Fever was defined as
axillary temperature �37.5 °C. Hemoglobin level was measured by
Hemocue photometer (Leo Diagnostics, Helsinborg, Sweden). Ane-
mia was defined as hemoglobin level � 9 g/dL. Serum samples from
80 subjects (39 young children aged 1–2 years and 41 old children
aged 4–5 years) were randomly selected from this cohort to assay
total IgG antibody reactivity against 1080 P. falciparum proteins or
protein fragments by protein microarray.

Ethics Statement—The study protocol for clinical specimens com-
plied with all applicable federal regulations governing the protection
of human subjects. The protocol was approved by the Ghana Health
Service, the Navrongo Health Research Centre, the Noguchi Memo-
rial Institute for Medical Research, the Naval Medical Research Insti-
tutional Review Board, the Office of the Special Assistant for Human
Subject Protections at the Naval Bureau of Medicine and Surgery,
and the Human Subjects Research Review Board of the Army Sur-
geon General. All study subjects gave written informed consent. The
protein microarray studies were approved by the Queensland Institute
of Medical Research Human Research Ethics Committee, and the
University of California Irvine Institutional Review Board.

Protein Microarray Probing—Total IgG antibody reactivity against
P. falciparum was assayed using a protein array containing 1080 P.
falciparum recombinant proteins. Proteins were selected for inclusion
based on evidence for blood-stage expression by microarray, pro-
teomics, or expressed sequence tags (ESTs), or predicted to be in the
blood-stage secretome (PlasmoDB.org). The array was fabricated as
previously described (9). Briefly, coding sequences were PCR-ampli-
fied from P. falciparum (clone 3D7, (MRA-102, MR4)) genomic DNA
and cloned into the PXT7 plasmid with a T7 transcription terminator,
and tagged with 5� polyhistidine (HIS) and 3� hemagglutinin (HA)
epitopes. Recombinant proteins were expressed using E. coli cell-
free in vitro transcription and translation reactions (RTS 100 HY kits
from 5 PRIME, Gaithersburg, MD) according to the manufacturer’s
instructions. Protein arrays were printed as previously described, with
each recombinant protein spotted once in each array (3, 9). Once
printed, the expression of each recombinant protein printed on the
array was verified using anti-polyhistidine (clone His-1, Sigma) and
anti-hemagglutinin (clone 3F10, Roche) monoclonal antibodies, as
previously described (9). Epstein-Barr Nuclear Antigen 1 (EBNA-1)
was included on each microarray chip as a positive control, and an
empty T7 vector rapid translation system (RTS) reaction (no DNA) as
a negative control. Sera were pre-absorbed against E. coli lysate in
protein array blocking buffer (1:100 dilution) and then 500 �l of the
pre-absorbed plasma was added to each protein array and incubated
overnight at 4 °C. Serum antibodies were detected with biotin-con-
jugated goat anti-human IgG secondary antibody (1:1000 dilution)
and visualized with a streptavidin P-3-conjugated antibody (1:200
dilution). Air-dried slides were scanned on an Axon GenePix 4300A
array scanner (Molecular Devices, CA) and results read as raw fluo-
rescence signal intensities (SI) were quantified using the Axon Ge-
nePix Pro 7 software after correction for spot-specific background.
IgG antibody reactivity to the positive control (EBNA-1 fragment) was

1 The abbreviations used are: NAI, naturally acquired immunity;
AMA1, apical membrane antigen 1; AUC, area under the curve; CSP,
circumsporozoite protein; EBA175, erythrocyte binding antigen-175;
EBNA, Epstein-Barr nuclear antigen; LSA1–3, liver stage antigen1–3;
MSP1–2, merozoite surface protein 1–2; PCoA, principal coordinates
analysis; RDA, redundancy analysis; ROC, receiver operating char-
acteristic; RTS, rapid translation system; SI, signal intensity; sPLS-
DA, sparse partial least squares discriminant analysis; SVM, support
vector machine; TRA, thrombospondin-related anonymous; vsn, vari-
ance stabilizing normalization.
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detected in all individuals, whereas there was no detectable reactivity
to the no-DNA (data not shown).

Array Data and Statistical Analysis—Protein array data were
analyzed primarily in R (http://www.r-project.org) and the GMine
data-mining server (6) (http://cgenome.net/gmine). Raw data were
measured as the mean pixel signal intensity for each spot. After
subtracting slide background, the mean intensity of negative-control
spots (no DNA) was subtracted from each test spot to adjust for any
cross-reaction effects from the E. coli vector used to express the
proteins. Next, the corrected data were transformed using the vari-
ance stabilizing normalization (vsn) method in GMine using the VSN
Bioconductor package. Proteins were defined as positive if the trans-
formed signal intensity was larger than the mean plus 2 standard
deviations (SDs) of the transformed negative-control spots (no DNA).
For each child, the breadth of the antibody responses was calculated
as the number of positive responses against the 1080 P. falciparum
proteins. Antibody profiles against the 1080 P. falciparum proteins
were associated with multiple explanatory variables using the multi-
variate statistical methods redundancy analysis (RDA). Age group
(young/old children), time of the malaria season (dry/wet), parasite
positive (yes/no), hemoglobin level (g/dL), fever (yes/no) and gender
(M/F) were included as explanatory variables and the antibody re-
sponses matrix was included as dependent variable.

Identification of Proteins Associated with Immunity to Malaria—
Associations between antibody responses against individual P. fal-
ciparum proteins at baseline and subsequent protection from symp-
tomatic malaria were identified by logistic regression. Immune status
(resistant/susceptible), age and parasite status (parasite positive/par-
asite negative) at baseline were included as explanatory variables
(predictors) and baseline antibody intensity (SI) against individual P.
falciparum proteins was modeled as dependent (response) variable.
The regression model had the form: antibody signal intensity � pro-
tection status (resistant/susceptible) � age group (younger/older) �
parasite status at baseline (positive/negative). Individuals were cate-
gorized as susceptible if they had a recorded episode of symptomatic
malaria (clinical disease) within our one-year study period, and resist-
ant otherwise. Symptomatic malaria was defined as febrile illness
(axillary temperature �37.5 °C) with concurrent P. falciparum parasit-
emia �2500 parasites/�l. To minimize the misclassification bias that
arises because of difficulties in ascertaining exposure to the P. fal-
ciparum parasite (24), we restricted this analysis to 72 children (35
aged 1–2 years and 37 aged 4–5 years) with any documented para-
sitemia in at least one contact during the longitudinal study. p values
were Bonferroni corrected to adjust for multiple statistical compari-
sons and the significance level � was set to 0.05.

Identification of a Predictive Immune Signature—To identify pre-
dictive immune signatures underlying clinical protection, we em-
ployed sparse Partial Least Squares Discriminant Analysis (sPLS-DA)
(25). The high dimensionality and sparsity of protein microarray data,
where the number of measured variables (proteins) far outnumbers
the sample size, represent challenges that affect applicability of
standard statistical tests. sPLS-DA is a powerful method for identify-
ing the key variables of complex and sparse omics datasets that are
associated with a biological outcome of interest and can be used for
feature selection. The sPLS-DA implemented in the MixOmics R
package (26) was run via the GMine data-mining server (6). This
procedure involves dimension reduction using Partial Least Squares
regression (PLS) for discriminant analysis in combination with a Lasso
penalization for feature selection. To reduce the dimensionality of the
input data for the sPLS-DA to a manageable size, only the subset of
P. falciparum proteins was included that had a p value � 0.1 in the
logistic regression (described above) and signal intensity higher in the
resistant group. The immune status (susceptibility or resistance) of
children during the one-year study period was included as a response

variable. Longitudinal changes in antibody responses against individ-
ual antigens were identified by mixed-effects linear regression (27),
which can account for the repeated measures study design with
multiple samples for each subject. Mixed-effects linear regression
modeled antibody signal intensity as dependent variable and time
point as fixed effect and individual as a random effect. Following
sPLS-DA based feature selection, we then employed a Support Vec-
tor Machine (SVM) to test the power of the identified immune signa-
ture to correctly discriminate between resistant and susceptible indi-
viduals. SVMs are a robust and powerful classification technique that
have achieved excellent classification abilities for a wide range of
applications, but that are not well suited for feature selection. The
SVM was trained on the baseline signal intensities of the selected
antigens and evaluated by Monte Carlo cross-validation. Iteratively,
30 samples were randomly selected as a training set and the remain-
ing 42 samples were used as test set. The model was then fit to the
training data and evaluated on the test set and the predictive accu-
racy was defined as the number of correct predictions divided by the
total number of predictions. This process was repeated 40 times. The
predictive performance, of the model was then evaluated by averag-
ing the receiver operating characteristic (ROC) curves across all 40
Monte Carlo cross-validation runs. The ROCR R package was used
for plotting ROC curves and determining the Area Under the Curve
(AUC).

Effect of the Definition of Clinical Malaria on the Predictive Perform-
ance of the Signature—We defined symptomatic malaria (clinical
disease) as febrile illness (axillary temperature �37.5 °C) with concur-
rent P. falciparum parasitemia �2500 parasites/�l. To assess the
effect that different clinical case definitions have on the performance
of the identified antigen signature in predicting the immune status of
an individual, we performed a sensitivity and specificity analysis as
described below. We considered a positive episode of symptomatic
malaria to be one in which there was both fever and parasitemia
greater than a specified threshold. For each parasitemia threshold, we
counted the number of individuals who had at least one episode of
symptomatic malaria during the study period, and we randomly se-
lected an equal number of resistant individuals from the entire cohort.
For each parasite threshold, we trained SVM on the baseline signal
intensities of the selected antigens and evaluated the performance by
a leave-one-out cross-validation. The process was repeated 5 times
for each parasite threshold, each time with a different random subset
of resistant children from the cohort as a control group. Each time,
sensitivity and specificity were calculated using the following formula:

Sensitivity: TP/(TP�FN)
Specificity: TN/(TN�FP)
Where
TP: true positives (i.e. the number of resistant individuals correctly

classified as resistant).
FP: false positives (i.e. the number of susceptible individuals incor-

rectly classified as resistant).
TN: true negatives (i.e. the number of susceptible individuals cor-

rectly classified as susceptible).
FN: false negatives (i.e. the number of resistant individuals incor-

rectly classified as susceptible).
The sensitivity and specificity of the classifier was then averaged

across the 5 runs and plotted versus the parasite threshold.
Validation of the Predictive Immune Signature in an Independent

Cohort—The predictive immune antigen signature discovered by
sPLS-DA was next validated in an independent cohort of children
exposed to malaria. As a validation dataset, we used our previously
published protein microarray data generated in a prospective study
investigating host immune response to the malaria parasite P. falcip-
arum (10) in 225 individuals from Kambila, Mali. In that study, we used
a protein microarray consisting of 2320 probes (representing �23%
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of the P. falciparum proteome and including all of the 1080 proteins
on the array tested herein) to profile host immune response (IgG)
against malaria parasite proteins. Plasma samples were collected
from each individual before and after the 8-month malaria season.
Individuals were classified as resistant (no malaria episode during the
8 months study) or susceptible (�1 malaria episodes). In the current
study, we included the subset of 194 individuals between the ages of
2–10 years and 18–25 years as an independent validation set. Of
these, 128 experienced clinical malaria during the follow up (suscep-
tible) and 66 individuals remained asymptomatic (resistant). Signal
intensities were transformed and normalized as previously described
(6). Using a SVM we assessed if the predictive antigen signature
identified in the Ghana cohort was also able to discriminate suscep-
tible and resistant children from the Mali cohort. Using the baseline
data of the Mali cohort, a SVM was trained on the signal intensities of
our predictive signature discovered in Ghana and evaluated by Monte
Carlo cross-validation as described above. Predictive accuracy, sen-
sitivity and specificity were calculated as described above. A modified
randomization test was then carried out to evaluate if the achieved
classification accuracy was better than expected by chance. In 1000
iterations, a subset of the 1080 P. falciparum proteins was randomly
selected (a subset with the same size as the predictive antigen
signature discovered in Ghana) and a SVM was trained and validated
by Monte Carlo cross-validation on this subset. Finally, we counted
the number of times that our predictive antigen signature performed
better than the 1000 random subsets.

Development and Validation of a Simple Diagnostic Decision Rule
to Distinguish Resistant from Susceptible Individuals—We aimed to
develop a simple decision rule using the 15-antigen signature discov-
ered by sPLS-DA that could be used to adequately distinguish be-
tween resistant or susceptible individuals and aid in diagnostic clas-
sification. We developed a simple decision rule like the method
developed by Pan et al. (28).

First, signal intensities of the n-antigen signature were converted to a
binary output by assigning 1 (high) to signal intensities above a selected
threshold and 0 (low) to signal intensities below the threshold. The level
threshold for each antigen was defined as the mean signal intensity of
that antigen in the resistant group minus 1 standard deviation for the
Ghana dataset and 0.5 standard deviations for the Mali dataset; the
cut-offs were different to account for differences in the variance of
signal intensities in the two datasets. Next, an “immunity score” was
defined as the sum of the binary outputs for the n-antigen signature.
Samples with an immunity score greater than z (with 1 � z � n) were
classified as resistant and as susceptible otherwise. The optimal z value
was determined by calculating predictive accuracy, sensitivity and
specificity for all possible z in the range 1 to n.

Conservation of the Antigens in the Predictive Immune Signature—
The amino acid sequences from the proteins identified as predictive
immune signature were blasted against the entire NCBI dataset for
Plasmodium (Plasmodium taxid:5820) using protein-protein BLAST,
v2.2.29�. P-P BLAST was run without the filter and an E-value cutoff of
1e-15.

The genomes included in the analysis of conservation are all pub-
licly available Plasmodium falciparum strains (n � 15) and 11 human-
infective Plasmodium species. Species and strains included are listed
as follows: Plasmodium falciparum 7G8, Plasmodium falciparum
CAMP Malaysia, Plasmodium falciparum Dd2, Plasmodium falcipa-
rum FCH 4, Plasmodium falciparum HB3, Plasmodium falciparum IGH
CR14, Plasmodium falciparum MaliPS096_E11, Plasmodium falcipa-
rum NF135 5C10, Plasmodium falciparum NF54, Plasmodium falcip-
arum Palo Alto Uganda, Plasmodium falciparum RAJ116, Plasmo-
dium falciparum Santa Lucia, Plasmodium falciparum Tanzania
200070, Plasmodium falciparum UGT51, Plasmodium falciparum
Viet0m Oak Knoll FVO, Plasmodium knowlesi, Plasmodium knowlesi

strain H, Plasmodium malariae, Plasmodium ovale, Plasmodium ovale
curtisi, Plasmodium ovale wallikeri, Plasmodium vivax, Plasmodium
vivax Brazil I, Plasmodium vivax India VII, Plasmodium vivax Mauritania
I, Plasmodium vivax North Korean.

RESULTS

Characteristics of the Study Population and Clinical Out-
comes in Relation to the Transmission Season and Age—A
total of 80 children were randomly selected from a previously
described longitudinal study in Ghana (23): 39 young children
aged 1 to 2 years and 41 children aged 4 to 5 years (supple-
mental Table S1). P. falciparum infection was prevalent during
the entire year, with 58–69% of younger children and 69–
95% of older children carrying parasites throughout the study
period (supplemental Table S1, supplemental Fig. S2A). In
general, older children showed concurrent parasitemia at the
time of sampling more frequently than younger children (sup-
plemental Fig. S2A) (p � 6.95E-5, Wilcoxon rank-sum test),
but with a similar level of parasite density (p � 0.934, Wilc-
oxon rank-sum test) (supplemental Table S1, supplemental
Fig. S2B). As expected, parasite prevalence and density were
significantly higher during the wet season (p � 0.032, p �

0.0007 respectively; Wilcoxon paired rank-test) (supplemental
Table S1). Younger children were more frequently anemic
than older children (p � 2.51E-7, Wilcoxon rank-sum test),
with a higher hemoglobin level during the dry season com-
pared with the wet season (p � 4.06E-4, Wilcoxon paired
rank-test) (supplemental Table S1).

Antibody Reactivity Associated with Age, Gender, Concur-
rent Parasitemia and Malaria Season—Blood samples from
each included child (n � 80) were collected every two months
during the malaria season (7 time points per subject; 539
samples in total) and examined for IgG reactivity against 1,080
individual P. falciparum proteins (Fig. 1A). As expected, a high
degree of variability in antibody responses was observed
across individuals, and within individuals longitudinally during
the study period. The overall mean of antibody intensity was
significantly higher in older children (p � 4.85E-05 Wilcoxon
rank-sum test), and the mean intensities were higher during
the wet season compared with the dry season (p � 6.93E-5
Wilcoxon paired rank-test) (supplemental Fig. S3).

Antibody responses to some of the malaria vaccine candi-
date antigens included in the protein array (erythrocyte bind-
ing antigen-175 (EBA175), thrombospondin-related anony-
mous protein (TRAP), and circumsporozoite protein (CSP))
were generally higher in older children (p � 0.05, Wilcoxon
rank-sum test) consistent with other studies (2, 10, 21, 29)
(supplemental Fig. S4). Conversely, antibody responses against
the leading liver-stage vaccine candidates included in the
array, LSA-1 and LSA-3, were surprisingly higher in younger
children compared with older children (supplemental Fig. S4).
Other blood-stage vaccine candidates included in the array
showed similar levels of reactivity across the two study
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groups or higher levels in younger children (p � 0.05, Wilc-
oxon rank-sum test) (supplemental Fig. S4).

Antibody responses showed a gradient of reactivity across
the population with some individuals displaying stronger sig-
nals and broader recognition compared with others (Fig. 1A).
Not surprisingly, we observed a positive correlation between
the breadth of antibody responses (i.e. the number of proteins
to which IgG reacted in each subject) and the mean intensity
of all IgG reactivity on the array (p � 2.826E-13, r � 0.70,
Pearson’s correlation) (Fig. 1B). However, unexpectedly, we
observed a significant inverse correlation between the
breadth of antibody responses and the maximum antibody
reactivity (p � 3.21E-14, r � �0.71, Pearson’s correlation)
(Fig. 1C). The inverse correlation was stronger for younger
children (p � 2.22e-07, r � �0.72, Pearson’s correlation)
compared with older children (p � 3.57e-06, r � �0.65,
Pearson’s correlation). These results suggest that high anti-
body responses against individual dominant proteins may
suppress the response to other protein, resulting in either a
low number of highly reactive proteins or a broader number

of less reactive antigens. The inverse correlation between
breadth and intensity may represent somatic hypermutation
and affinity maturation occurring after long term exposure to the
parasite. In early years, the antibody responses may be rela-
tively low affinity against a large collection of antigens whereas
as the immune response matures over years it may become
more focused with higher affinity against a few antigens.

Antibody responses to the 1,080 P. falciparum proteins
were positively correlated (Fig. 2A), probably as a result of a
co-acquisition of antibodies to parasite antigens. However,
antibody profiles were highly subject-specific and clustered
by age group, and by the malaria season (wet/dry) (Fig. 2B).
The multivariate statistical method redundancy analysis (RDA)
was applied to test the significance of the observed associa-
tions. In both the dry and wet seasons antibody responses
were significantly associated with age (p � 0.001 wet, p �

0.002 dry, RDA) and hemoglobin level (hemoglobin level �9
g/dL) (p � 0.001 both season, RDA). The presence or absence
of fever, gender and parasite density were not associated with
antibody reactivity in either of the two seasons (wet season:

FIG. 1. Longitudinal study of IgG response of 39 young children (1–2 years of age) and 41 older children (4–5 years of age) against
P. falciparum antigens. A, Heat map of the top 500 most reactive P. falciparum antigens by time point ordered by reactivity. Serum samples
were collected from each participant every two months, starting at the beginning of the wet season (May 2002) and ending 12 months later
at the end of the dry season (May 2003). Antibody responses were profiled using a protein microarray expressing 1080 P. falciparum antigens.
Antibody responses were generally stronger in older versus younger children and for the same children during the wet versus dry season. B–C,
Correlation between mean signal intensity and breadth of response (number of reactive proteins per child) (B) and between maximum intensity
and breadth of response (C). Mean intensities showed a positive correlation with breadth of response whereas maximum intensity was
negatively correlated. Breadth of response was defined as the number of reactive proteins per child (at least 2 S.D. above mean of negative
controls) and averaged among the six contacts. Mean intensity was calculated as the mean intensities of the 1,080 proteins for each subject
and averaged among the 6 contacts. Significance was tested by Pearson’s correlation. The red line and the blue line represent the best linear
fit for younger and older children respectively. The gray area represents the 95% CI of the best-fit line
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p � 0.500, p � 0.704, p � 0.526 respectively; dry season: p �

0.183, p � 0.124, p � 0.397 respectively, RDA).
Individual Antigens Do Not Predict Protection Against Clin-

ical Malaria—To determine if antibody responses against in-
dividual P. falciparum proteins could prospectively discrimi-
nate resistant from susceptible children, we compared the
baseline antibody profiles of children who did not experience
any malaria episode during the following one-year study pe-
riod (n � 56) (resistant) compared with those who experienced
at least one episode (n � 16) (susceptible). Among the 16
susceptible individuals, 13 reported one episode of sympto-
matic malaria during the year whereas 3 individuals reported
two episodes. No significant differences were observed in
parasite density (p � 0.313, Wilcoxon rank-sum test), breadth
(p � 0.329, Wilcoxon rank-sum test) or hemoglobin level (p �

0.635, Wilcoxon rank-sum test) between resistant and sus-
ceptible children at baseline (Table I). In our cohort, none of
the 1,080 P. falciparum proteins individually was able to
discriminate resistant and susceptible children after correct-

ing for multiple testing (Bonferroni p � 0.05, logistic regres-
sion adjusted for age and parasitemia at the baseline) (sup-
plemental Table S2). Of note, among the antibody responses
against the leading malaria vaccine candidates included in the
protein array (apical membrane antigen 1 (AMA1), merozoite
surface protein 1 (MSP1), merozoite surface protein 2 (MSP2),
erythrocyte binding antigen-175 (EBA175)), thrombospondin-
related anonymous protein (TRAP), liver-stage antigen 1 and 3
(LSA1-LSA3) and circumsporozoite protein (CSP), none were
within the top 100 proteins in discriminating resistant and
susceptible children (supplemental Table S2) consistent with
recently published findings by us and others (6, 30, 31).

Identification of a Predictive Antigen Signature for Protec-
tion Against Symptomatic Malaria—Based on our previous
observations (3, 6, 9, 10) and other published studies (2, 5–7),
susceptibility to symptomatic malaria is more likely to be
predicted by measuring antibody responses to a combination
of antigens rather than individual antigens. We therefore
sought to identify a signature of the most relevant proteins

FIG. 2. Antibody responses clustered by age group and time point. A, Pearson’s correlation of the antibody responses to the 1,080 P.
falciparum proteins at a single time point during the wet season (September) (LHS) and dry season (March) (RHS). Antibody responses to the
P. falciparum proteins were positively correlated in both seasons. B, Multivariate statistical methods redundancy analysis (RDA) showed a
significant clustering of the antibody profiles against the 1080 P. falciparum proteins by time of the malaria season (dry/wet) (p � 0.003) (LHS)
and by age group (younger/older) (p � 0.001) (RHS).
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that could predict a child’s immune status to malaria. Sparse
Partial Least Squares Discriminant Analysis (sPLS-DA) effec-
tively identified a signature of 15 P. falciparum antigens ca-
pable of discriminating susceptible versus resistant children
(Fig. 3A, supplemental Table S3). As expected, Pearson’s
correlation of the antibody responses against the 15-antigen
signature showed a null or very low positive correlation be-
tween antigens (Fig. 3B) and a significantly higher intensity in
the “resistant” group compared with the “susceptible” group
(Fig. 3C). Using linear mixed-effects regression, we observed
no significant longitudinal changes in antibody reactivity to
the antigens in the signature (supplemental Fig. S5), suggest-
ing stability of the antibody signature over different time
points of the malaria transmission season.

The discriminatory power of the 15-antigen signature to
correctly predict immunity to malaria was examined using a
Support Vector Machine (SVM) evaluated by Monte Carlo
cross-validation. When all children (1–5 years) were included,
the SVM correctly predicted immunity to malaria using the
baseline antibody responses against the 15 selected antigens
with 86% accuracy, 88% sensitivity, 82% specificity and an
AUC of 0.94 (Fig. 4A). This predictive performance dropped
substantially when the model was applied only to younger
children (1–2 years) (accuracy 69%, sensitivity 85%, specific-
ity 85%, AUC � 0.75) but remained significantly high when
only older children (4–5 years) were included (accuracy 83%,
sensitivity 97%, specificity 88%, AUC � 0.97) (Fig. 4B). Be-
cause the predictive performance may depend on the clinical
case definition used in the study, we considered how an over-
or under-estimation of clinical malaria cases might affect the
performance of the 15-antigen signature in predicting immu-
nity. As described under Experimental procedures, we con-
sidered a series of clinical case definitions of symptomatic
malaria. Each definition required the presence of an axillary
temperature �37.5 °C and a parasitemia above a specified
threshold. We modeled the effect of changing parasitemia
thresholds on the predictive performance of the 15-antigen
signature. Supplemental Fig. S6 shows the sensitivity and
specificity of the performance of the 15-antigen signature in

predicting symptomatic and resistant individuals as a function
of the parasitemia threshold. For resistant individuals, varying
the parasitemia threshold across a wide range had a relatively
minor effect on sensitivity (supplemental Fig. S6A) whereas
susceptible individuals were more sensitive to the threshold
chosen, varying from 58% to 96% as the threshold varied
from any detectable parasitemia to up to 4000 parasites/�l.
The sensitivity decreased to 88% at 5000 parasites/�l. The
specificity varied greatly for both resistant and susceptible
individuals (supplemental Fig. S6B), increasing from 64% to
94% and from 71% to 85% from 1 to 4000 parasites/�l
respectively, for resistant and susceptible individuals and then
decreased to 88 and 79%, respectively, at 5000 parasites/�l.

Validation of 15-antigen Signature in an Independent Co-
hort From Mali—We used previously published protein mi-
croarray data from Malian children (10) aged 2–10 years old
and adults aged 18–25 years to determine whether the pre-
dictive 15-antigen signature identified in Ghanaian children
could also predict the immune status in individuals from Mali.
Subjects were defined as either resistant if they did not ex-
perience a clinical malaria episode during the 8-month study
period (n � 66), or susceptible if they did (n � 128). A SVM
trained on the antibody responses at baseline against the
15-antigen signature and evaluated by Monte Carlo cross-
validation was able to predict the immune status of Mali
individuals with an accuracy of 87%, sensitivity 68%, speci-
ficity 82% and an AUC of 0.82. When the model training only
included children, the average performance of the model
maintained an accuracy 86% and specificity of 73% but with
a lower AUC (0.74) and lower sensitivity (33%), as a result of
misclassification of resistant individuals.

To assess whether these results were better than those
expected by chance, we carried out a re-randomization anal-
ysis. From the 1080 P. falciparum proteins spotted onto the
array, we randomly selected 15 proteins and tested the ac-
curacy in classifying resistant individuals in the Mali dataset
by SVM with Monte Carlo cross-validation as described
above. The analysis was repeated 1000 times using 1000
random sets of 15 proteins. The 15-antigen signature identi-

TABLE I
Characteristic of resistant and susceptible children at the baseline (contact 0)

Children were defined as “resistant” (n � 56) if they did not experience a clinical malaria episode during the 12-month study period and
“susceptible” (n � 16 children) otherwise. Clinical malaria was defined as fever (temperature above 37.5 °C) and parasite density above 2500
parasite/�l.

Characteristic Resistant Susceptible

No. of individuals 56 16
Younger (1–2 years), n (%) 26 (46.4) 9 (56.3)
Female sex, n (%) 24 (42.9) 8 (50.0)
Parasitemic at time of sample collection, n (%) 46 (82.1) 12 (75.0)
Median P. falciparum density at time of sample collection (IQR) (parasites/�l) 640 (110–2120) 680 (240–2520)
Median Haemoglobin level (g/dL) at time of sample collection 10.65 (9.56–11.13) 10.50 (9.28–12.03)
Median breadtha at time of sample collection (IQR) 419 (385–437) 424 (407–439)

Only participants who had at least one P. falciparum infection recorded in the year were included.
aBreadth was defined as the number of positive proteins per individual.
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fied in the Ghana cohort performed better than 984 of the
1000 random sets (p � 0.016) (Fig. 5). When the analysis only
included children, the number of times the signature per-
formed better than 1000 random sets decreased to 925 (p �

0.075), suggesting that the predictive power of the signature
increases with the age and/or exposure, as reported in a
previous study (2, 30). The ability of the 15-antigen signature
to predict the immune status in Mali suggests that the signa-
ture may be generalizable across epidemiologically and de-
mographically distinct populations.

Development and Validation of a Simple Diagnostic Deci-
sion Rule to distinguish Resistant From Susceptible Individu-
als—We developed a simple decision rule based on our 15-
antigen signature that could be used to distinguish between
resistant or susceptible individuals and aid in diagnostic clas-

sification. Signal intensities were transformed into binary val-
ues (0/1 � low/high) based on defined antigen-specific
threshold and individuals were classified as resistant if more
than z of the 15 antigens had high intensities (i.e. the sum of

binary values was greater or equal z). Our 15-antigen signa-

ture achieved the best performance for z � 11 with 87%

accuracy, 76% sensitivity, and 100% specificity, in our Ghana

cohort (Table II; Fig. 6A). The performance of the proposed
decision rule was evaluated on an independent cohort of

individuals from Mali, achieving 72% accuracy, 71% sensitiv-
ity and 72% specificity (Fig. 6B). The high accuracy observed
for the independent validation set demonstrates the robust-
ness of our decision rule in identifying resistant individuals in
a different geographical population.

FIG. 3. sPLS-DA identified a 15-antigen signature discriminating susceptible and resistant children. A, sPLS-DA of antibody responses
at contact 0 (baseline) showed a separation between resistant (n � 56) and susceptible children (n � 16). Children aged 1–5 years (n � 72)
were defined as “resistant” (n � 56) if they did not experience a clinical malaria episode during the 12-month study period and “susceptible”
(n � 16 children) if they experienced clinical malaria. Antibody responses were measured at the beginning of the wet season (contact 0). Ellipses
highlight 95% confidence intervals. B, Pearson’s correlation of the antibody responses against the 15-antigen signature, presented as a heat
map. The heat map presents correlations by color code, ranging from blue (negative association) to red (positive correlation). The heat map
showed a null or low positive correlation between antigens. C, Boxplot of the 15-antigen signature showed a significant difference between
resistant and symptomatic children (*p � 0.05, **p � 0.01 t test).
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Conservation of the 15-antigen Signature—For the purpose
of developing vaccines or monitoring tools toward highly vari-
able parasite, the use of conserved antigens across different
species and strains is desired. We therefore determined the
degree of sequence conservation of our signature among all

available P. falciparum strains (n � 15) as well as the presence
and degree of homology for orthologous genes in other hu-
man Plasmodium species (vivax, knowlesi, ovale, malariae)
(n � 11 strains). Our 15-antigen signature is �96% conserved
in all P. falciparum strains (average percentage of sequence
identity across all strains). Nine antigens showed more than
90% of similarity with all (100%) the P. falciparum isolated
analyzed (supplemental Fig. S7A, supplemental Table S3) and
10 antigens shown at least 50% of similarity against the majority
of other human infected parasite species (�50%) (P. vivax, P.

FIG. 4. IgG responses to a signature
of 15 selected antigens predicts pro-
tection from clinical malaria. A, sup-
port vector machine (SVM) was trained
on the antibody responses against the
15 P. falciparum antigens selected by
sPLS-DA to discriminate between resist-
ant and susceptible children. The SVM
achieved a classification accuracy of
86%. The performance was evaluated
by Monte Carlo cross-validation which
randomly selected 30 samples for the
training set and 42 for the testing set.
The model was fit to the training data,
and the predictive accuracy of the model
in classifying samples as protected or
susceptible was assessed using the
testing set. This process was repeated
40 times (dashed black ROC curves).
The solid black line represents the mean
ROC curve. The dashed blue line repre-
sents an AUC � 0.5. B, The predictive
performance of the SVM was signifi-
cantly reduced when only young chil-
dren were included (accuracy 69%)
whereas it remained significantly higher
when only older children (accuracy 83%)
were included.

FIG. 5. Validation of the 15-antigen signature in an independent
cohort. The 15-antigen signature discovered by sPLS-DA in Ghana-
ian children was validated in an independent cohort of 194 children
aged 2–10 years old and adults18–25 years old from Mali. First, an
SVM was trained on the 15-antigen signature in the Mali cohort and
validated by Monte Carlo cross-validation (red ROC curve). Next,
1000 sets of 15 antigens (out of 1080 antigens) were randomly se-
lected and each time trained by SVM in the Mali cohort and validated
by Monte Carlo cross-validation. The 15-antigen signature achieved a
higher accuracy in 984 out of the 1000 random antigen sets (p �
0.016) ROC curves for ten random antigen sets are shown by gray
dashed lines. The dashed blue line represents an AUC � 0.5 (i.e.
random guess of the individual’s status).

TABLE II
Performance of the decision rule applied to the 15-antigen signature
for different z values in the Ghana cohort. For each z value the mean

predictive accuracy, sensitivity and specificity were calculated.

z Accuracy Sensitivity Specificity

1 0.5 1 0
2 0.5 1 0
3 0.5 1 0
4 0.5 1 0
5 0.53 0.99 0
6 0.59 0.98 0.14
7 0.65 0.97 0.29
8 0.68 0.95 0.4
9 0.72 0.86 0.51
10 0.80 0.80 0.84
11 0.87 0.76 1
12 0.69 0.45 1
13 0.58 0.29 1
14 0.52 0.06 1
15 0.51 0.03 1
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malarie, P. knowlesi, P. ovale) (supplemental Fig. S7B, supple-
mental Table S3). Only one protein (PF3D7_0406100) had a high
sequence identity to the human proteome (�50% of identity
with more than 50% of coverage) whereas the other 11 proteins
showed null or very low degree of homology indicating a low
propensity of induction of autoimmune or cross-reactivity (sup-
plemental Table S3).

DISCUSSION

Advances in “omics” technologies and analytical platforms
for complex data have enabled large-scale analyses of natural
and vaccine-induced immune responses. Such efforts have
revealed novel insights into immunity and correlates of pro-
tection. Prominent examples are the immune response to
yellow fever vaccination and influenza vaccination (13, 14),
and tuberculosis vaccination and infection (15). However, dis-
cerning protective immune responses to complex pathogens
such as Plasmodium spp has proved challenging. Major is-
sues arise from the complexity of the parasite which ex-
pressed �5300 proteins, the complexity of the host immune
response, the high dimensionality of data generated by high-
throughput technologies, the often small sample sizes of ma-
laria cohort studies, and the limitations of standard statistical
tests in accounting for interactions between different immune
responses (30, 32, 33). In this study, we established the utility
of a predictive modeling framework, which combines feature
selection and machine learning to identify a predictive im-
mune signature of clinical immunity to malaria. We carried out
a prospective study of antibody responses against a large
panel of P. falciparum antigens in a cohort of young children
in the process of acquiring clinical immunity to malaria. Chil-

dren were monitored longitudinally for one year to identify
malaria-resistant and susceptible individuals. Using our pre-
dictive modeling framework, we showed that an individual’s
immune status can be accurately predicted by measuring IgG
responses against a small set of 15 defined parasite antigens.
To determine the reproducibility of this potentially valuable
clinical tool for assessing individual malaria risk, we as-
sessed the signature in an independent cohort of Malian
individuals between the ages of 2–10 years and 18–25
years. The signature was replicated in this independent
cohort, thus supporting the generalizability of our signature
to estimate an individual’s immune status in different epi-
demiological settings. Moreover, we showed that all of the
antigens included in the 15-antigen signature were relatively
stable over the course of the longitudinal study, suggesting
that their predictive value would remain stable despite fluc-
tuations in malaria transmission.

This study also highlights the complexity of individual im-
mune profiles. Our results show that an individual’s immune
profile may reflect either a combination of high antibody re-
activity to a low number of antigens, or conversely, low anti-
body reactivity to a high number of antigens. Therefore, we
speculate that high antibody responses against dominant an-
tigens may suppress responses to other antigens. This ob-
servation has important implications for vaccine design be-
cause it suggests that malaria vaccines based on a single
immunodominant antigen or a small number of highly reactive
antigens may not be effective in delivering a sufficiently high
level of protection. Rather, next-generation malaria vaccines
will need to target a combination of many antigens to induce
synergistic effects.

FIG. 6. Performance of the decision rule applied to the 15-antigen signature. Performance of our decision rule applied to the 15-antigen
signature in the discovery cohort of Ghanaian children (A) and the validation cohort of individuals from Mali (B). Signal intensities were
dichotomized using antigen-specific thresholds and binary values of antigens are shown in blue (0/low) and cream (1/high). An individual was
then predicted as resistant if at least 11 of the 15 antigens scored high. In the lower heat maps, black and cream represent resistant and
susceptible individuals (observed and predicted by the decision rule).
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The proteins in our 15-antigen signature, identified based
on their association with clinical immunity, represent very
promising candidates for next-generation malaria vaccines.
None of these antigens has yet been studied as a malaria
vaccine candidate. Moreover, this specific combination of 15
antigens was a much better predictor of immunity than single
antigen, indicating that a vaccine comprising all the 15 anti-
gens identified in our study would most likely induce a syn-
ergistic immune response against the parasite. Consistent
with the concept that an effective malaria vaccine will likely
need to target multiple stages of the Plasmodium parasite’s
lifecycle, all stages of the parasite life cycle are represented
by our 15 signature proteins (predominantly pre-erythrocytic
stage, 7/15 antigens; and merozoite, 5/15 antigens). These
antigens are also conserved among different P. falciparum
strains and other human Plasmodium species making them
very suitable for the purpose of developing vaccines or mon-
itoring tools toward highly variable parasite.

One strength of our study is that subjects were regularly
contacted every two months, ensuring that most, if not all,
clinical malaria episodes were detected and recorded. How-
ever, the identification of susceptible children in this age
group is problematic as the presence of asymptomatic ma-
laria parasite carriers is common, the clinical signs of malaria
are nonspecific, and parasitemia accompanied by a fever may
not be sufficient to indicate an episode of clinical malaria (34).
We, therefore, investigated the relationship between sensitiv-
ity and specificity by varying the parasite threshold in the
clinical case definitions of malaria and assessing the impact
on the performance of the 15-antigen signature. We found
that the 15-antigen signature has an excellent sensitivity and
specificity in predicting the immune status of an individual
from a threshold of at least 2500 parasites/�l. For parasite
thresholds below this cut-off, the sensitivity and specificity
decreased as the parasite burden decreased. Because fevers
in the presence of low parasitemia may be because of non-
malarial causes, it is not surprising that our 15-antigen im-
mune signature would have lower sensitivity and specificity as
the parasitemia threshold in the case definition is lowered.

Protein microarrays have proven to be powerful tools for
detecting serum antibodies against a vast repertoire of para-
site proteins thus offering the opportunity to correlate protec-
tive immunity with seroreactivity profiles. Classical univariate
approaches to data analysis suggest that a single parasite
antigen is probably not enough to elicit (predict) protective
immunity, as demonstrated in different epidemiological set-
tings (2–7). These approaches have the disadvantage of con-
sidering each variable independently from the others so that
the interactions and potential synergies of multi-faceted im-
mune responses are not considered (7, 33). This is an impor-
tant drawback for the identification of correlates of protection
in malaria and the responses to a specific antigen can be
associated with protection in some studies or with increasing
risk in others (35).

Recent studies have evaluated responses to multiple anti-
gens simultaneously and have suggested that specific antigen
combinations may be associated with immunity in field set-
tings (4, 5) and laboratory studies (36). Other studies have
shown that a combination of antigens targeting the same
stage of the parasite lifecycle does not necessarily produce
additive or synergistic protection (37) whereas a more effec-
tive combination of antigens may target multiple discrete
stages of, for example, invasion (7). These studies represent
an important proof-of-concept for the identification of syner-
getic combinations of antigens, but as they have only in-
cluded a low number (�100) of antigens, most possible anti-
gen combinations in the P. falciparum genome remained
unexplored. How to advance beyond those earlier studies has
not been obvious. In this study we employed a predictive
modeling framework that allowed us to explore antibody re-
sponses to 1080 P. falciparum proteins. In the computational
sciences, machine-learning methods were introduced be-
cause of their power to infer associations between correlated
features that could not otherwise be made using conventional
statistical methodologies (which usually require variable inde-
pendence) (38–40). Support Vector Machines (SVMs) are now
widely applied to transcriptomic, proteomic, and metabolo-
mic datasets to develop predictive models for effective, sen-
sitive and specific decision making. Although SVMs can
achieve good predictive accuracy, the excess of features in
the training datasets of omics experiments increases both the
risk of overfitting and the prediction variability. The selection
of a restricted number of variables related to the intended
outcome before sample classification eliminates non-inform-
ative and correlating variables, thereby increasing the gener-
alization ability of the classifier.

We therefore incorporated a features selection step before
building a SVM-based classifier to reduce dimensionality and
to make the model less complex and easier to interpret, avoid
overfitting and consequently providing a more robust model.
Features were selected by sparse partial least squares dis-
criminant analysis (sPLS-DA), which has proven to be partic-
ularly appropriate for data with small sample sizes and a large
number of correlated variables (25). Although our results show
that the signature identified with our approach performs well
in an area of intense malaria transmission where clinical dis-
ease is generally associated with children below 5 years of
age, additional validation in area of lower transmission where
many cases occur also in older children and adults is needed.

In summary, we have demonstrated the utility of a predic-
tive modeling framework to decode the host antibody re-
sponses to the human malaria parasite P. falciparum, in order
to identify a specific antigen signature of NAI. In this compre-
hensive analysis, we have demonstrated that a signature of
only a few antigens can be used to predict the immune status
at an individual level. Specifically, we have shown that the
simultaneous detection of antibody responses to a specific
set of 15 antigens is sufficient to discriminate clinically resist-
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ant from susceptible children with a very high degree of
accuracy and we further validated this in an independent and
geographically and demographically distinct cohort of individ-
uals naturally exposed to malaria. We also developed a simple
decision rule based on the 15- antigen signature that could be
potentially used for seroepidemiological surveillance.

Further evaluation of this signature in multicohort studies
would support the utility of this 15-antigen signature as a tool
for identifying individuals at high risk of clinical malaria and for
monitoring the acquisition and maintenance of NAI. This study
provides proof-of-concept for the power of applying ad-
vanced analytical approaches such as feature selections and
machine learning algorithms to identify a predictive signature
of clinical immunity. It paves the way for the development of
a robust point-of-care test to identify individuals at high risk of
disease and monitor the impact of vaccinations and other
malaria interventions.

Acknowledgments—The participation of the parents and children
of the Kassena Nankana District and the Navrongo Health Research
Centre (NHRC) in the conduct of the original study is very much
appreciated. We are also grateful to the individuals in Mali who
participated in this study, and their families.

* This work was supported by National Health and Medical Re-
search Council of Australia. D.L.D. was supported by a NHMRC
Principal Research Fellowship. The original samples were acquired as
part of the studies undertaken under the Malaria Clinical Epidemio-
logical Studies with support from NIAID under contract to NMIMR
(Contract No: HSSN266200400016C; PI, K.A.K.). The work in Mali
and P.D.C. are supported by the Division of Intramural Research,
National Institute of Allergy and Infectious Diseases, National Insti-
tutes of Health. The authors declare that they have no conflicts of
interest with the contents of this article.

□S This article contains supplemental material.
¶¶ To whom correspondence should be addressed: Centre for

Molecular Therapeutics, Australian Institute of Tropical Health and
Medicine, James Cook University, Cairns, QLD, Australia. E-mail:
denise.doolan@jcu.edu.au.

�� These authors contributed equally to this work.
Author contributions: C.P., A.T., D.D., B.G., K.A.K., and W.O.R.

performed research; C.P., L.K., A.T., K.A.K., W.O.R., T.L.R., P.C.,
P.F., and D.L.D. analyzed data; C.P., L.K., A.T., D.D., B.G., K.A.K.,
W.O.R., T.L.R., P.C., P.F., and D.L.D. wrote the paper; K.A.K., W.O.R.,
P.L.F., and D.L.D. designed research.

REFERENCES

1. Cohen, S., McGregor, I. A., and Carrington, S. (1961) Gamma-globulin and
acquired immunity to human malaria. Nature 192, 733–737

2. Osier, F. H., Fegan, G., Polley, S. D., Murungi, L., Verra, F., Tetteh, K. K.,
Lowe, B., Mwangi, T., Bull, P. C., Thomas, A. W., Cavanagh, D. R.,
McBride, J. S., Lanar, D. E., Mackinnon, M. J., Conway, D. J., and Marsh,
K. (2008) Breadth and magnitude of antibody responses to multiple
Plasmodium falciparum merozoite antigens are associated with protec-
tion from clinical malaria. Infect. Immun. 76, 2240–2248

3. Trieu, A., Kayala, M. A., Burk, C., Molina, D. M., Freilich, D. A., Richie, T. L.,
Baldi, P., Felgner, P. L., and Doolan, D. L. (2011) Sterile protective
immunity to malaria is associated with a panel of novel P. falciparum
antigens. Mol. Cell. Proteomics 10, M111.007948

4. Osier, F. H., Mackinnon, M. J., Crosnier, C., Fegan, G., Kamuyu, G.,
Wanaguru, M., Ogada, E., McDade, B., Rayner, J. C., Wright, G. J., and
Marsh, K. (2014) New antigens for a multicomponent blood-stage ma-
laria vaccine. Sci. Transl. Med. 6, 247ra102

5. Daou, M., Kouriba, B., Ouedraogo, N., Diarra, I., Arama, C., Keita, Y., Sissoko,
S., Ouologuem, B., Arama, S., Bousema, T., Doumbo, O. K., Sauerwein,
R. W., and Scholzen, A. (2015) Protection of Malian children from clinical
malaria is associated with recognition of multiple antigens. Malar J. 14, 56

6. Proietti, C., Zakrzewski, M., Watkins, T. S., Berger, B., Hasan, S., Ratna-
tunga, C. N., Brion, M. J., Crompton, P. D., Miles, J. J., Doolan, D. L., and
Krause, L. (2016) Mining, visualizing and comparing multidimensional
biomolecular data using the Genomics Data Miner (GMine) Web-Server.
Sci. Rep. 6, 38178

7. Bustamante, L. Y., Powell, G. T., Lin, Y. C., Macklin, M. D., Cross, N.,
Kemp, A., Cawkill, P., Sanderson, T., Crosnier, C., Muller-Sienerth, N.,
Doumbo, O. K., Traore, B., Crompton, P. D., Cicuta, P., Tran, T. M.,
Wright, G. J., and Rayner, J. C. (2017) Synergistic malaria vaccine
combinations identified by systematic antigen screening. Proc. Natl.
Acad. Sci. U.S.A. 114, 12045–12050

8. World Health Organization. (2017) Malaria Vaccine Rainbow Tables.
9. Doolan, D. L., Mu, Y., Unal, B., Sundaresh, S., Hirst, S., Valdez, C., Randall,

A., Molina, D., Liang, X., Freilich, D. A., Oloo, J. A., Blair, P. L., Aguiar,
J. C., Baldi, P., Davies, D. H., and Felgner, P. L. (2008) Profiling humoral
immune responses to P. falciparum infection with protein microarrays.
Proteomics 8, 4680–4694

10. Crompton, P. D., Kayala, M. A., Traore, B., Kayentao, K., Ongoiba, A.,
Weiss, G. E., Molina, D. M., Burk, C. R., Waisberg, M., Jasinskas, A., Tan,
X., Doumbo, S., Doumtabe, D., Kone, Y., Narum, D. L., Liang, X.,
Doumbo, O. K., Miller, L. H., Doolan, D. L., Baldi, P., Felgner, P. L., and
Pierce, S. K. (2010) A prospective analysis of the Ab response to Plas-
modium falciparum before and after a malaria season by protein microar-
ray. Proc. Natl. Acad. Sci. U.S.A. 107, 6958–6963

11. Barry, A. E., Trieu, A., Fowkes, F. J., Pablo, J., Kalantari-Dehaghi, M.,
Jasinskas, A., Tan, X., Kayala, M. A., Tavul, L., Siba, P. M., Day, K. P.,
Baldi, P., Felgner, P. L., and Doolan, D. L. (2011) The stability and
complexity of antibody responses to the major surface antigen of Plas-
modium falciparum are associated with age in a malaria endemic area.
Mol. Cell. Proteomics 10, M111.008326

12. Proietti, C., and Doolan, D. L. (2014) The case for a rational genome-based
vaccine against malaria. Front. Microbiol. 5, 741

13. Gaucher, D., Therrien, R., Kettaf, N., Angermann, B. R., Boucher, G., Filali-
Mouhim, A., Moser, J. M., Mehta, R. S., Drake, D. R., 3rd, Castro, E.,
Akondy, R., Rinfret, A., Yassine-Diab, B., Said, E. A., Chouikh, Y., Cameron,
M. J., Clum, R., Kelvin, D., Somogyi, R., Greller, L. D., Balderas, R. S.,
Wilkinson, P., Pantaleo, G., Tartaglia, J., Haddad, E. K., and Sekaly, R. P.
(2008) Yellow fever vaccine induces integrated multilineage and polyfunc-
tional immune responses. J. Exp. Med. 205, 3119–3131

14. Trombetta, C. M., and Montomoli, E. (2016) Influenza immunology evalua-
tion and correlates of protection: a focus on vaccines. Expert Rev.
Vaccines 15, 967–976

15. Haks, M. C., Bottazzi, B., Cecchinato, V., De Gregorio, C., Del Giudice, G.,
Kaufmann, S. H. E., Lanzavecchia, A., Lewis, D. J. M., Maertzdorf, J.,
Mantovani, A., Sallusto, F., Sironi, M., Uguccioni, M., and Ottenhoff,
T. H. M. (2017) Molecular signatures of immunity and immunogenicity in
infection and vaccination. Front. Immunol. 8, 1563

16. Helb, D. A., Tetteh, K. K., Felgner, P. L., Skinner, J., Hubbard, A., Arinaitwe,
E., Mayanja-Kizza, H., Ssewanyana, I., Kamya, M. R., Beeson, J. G.,
Tappero, J., Smith, D. L., Crompton, P. D., Rosenthal, P. J., Dorsey, G.,
Drakeley, C. J., and Greenhouse, B. (2015) Novel serologic biomarkers
provide accurate estimates of recent Plasmodium falciparum exposure
for individuals and communities. Proc. Natl. Acad. Sci. U.S.A. 112,
E4438–E4447

17. Appawu, M., Owusu-Agyei, S., Dadzie, S., Asoala, V., Anto, F., Koram, K.,
Rogers, W., Nkrumah, F., Hoffman, S. L., and Fryauff, D. J. (2004) Malaria
transmission dynamics at a site in northern Ghana proposed for testing
malaria vaccines. Trop. Med. Int. Health 9, 164–170

18. Koram, K. A., Owusu-Agyei, S., Fryauff, D. J., Anto, F., Atuguba, F.,
Hodgson, A., Hoffman, S. L., and Nkrumah, F. K. (2003) Seasonal
profiles of malaria infection, anaemia, and bednet use among age
groups and communities in northern Ghana. Trop. Med. Int. Health 8,
793–802

19. Baird, J. K., Owusu Agyei, S., Utz, G. C., Koram, K., Barcus, M. J., Jones,
T. R., Fryauff, D. J., Binka, F. N., Hoffman, S. L., and Nkrumah, F. N.
(2002) Seasonal malaria attack rates in infants and young children in
northern Ghana. Am. J. Trop. Med. Hyg. 66, 280–286

Immune Signature Predicts Clinical Immunity to Malaria

112 Molecular & Cellular Proteomics 19.1

http://www.mcponline.org/cgi/content/full/RA118.001256/DC1
mailto:denise.doolan@jcu.edu.au


20. Oduro, A. R., Koram, K. A., Rogers, W., Atuguba, F., Ansah, P., Anyorigiya,
T., Ansah, A., Anto, F., Mensah, N., Hodgson, A., and Nkrumah, F. (2007)
Severe falciparum malaria in young children of the Kassena-Nankana
district of northern Ghana. Malar. J. 6, 96

21. Dodoo, D., Atuguba, F., Bosomprah, S., Ansah, N. A., Ansah, P., Lamptey,
H., Egyir, B., Oduro, A. R., Gyan, B., Hodgson, A., and Koram, K. A.
(2011) Antibody levels to multiple malaria vaccine candidate antigens in
relation to clinical malaria episodes in children in the Kasena-Nankana
district of Northern Ghana. Malar. J. 10, 108

22. Dodoo, D., Hollingdale, M. R., Anum, D., Koram, K. A., Gyan, B., Akanmori,
B. D., Ocran, J., Adu-Amankwah, S., Geneshan, H., Abot, E., Legano, J.,
Banania, G., Sayo, R., Brambilla, D., Kumar, S., Doolan, D. L., Rogers,
W. O., Epstein, J., Richie, T. L., and Sedegah, M. (2011) Measuring
naturally acquired immune responses to candidate malaria vaccine an-
tigens in Ghanaian adults. Malar. J. 10, 168

23. Osafo-Addo, A. D., Koram, K. A., Oduro, A. R., Wilson, M., Hodgson, A.,
and Rogers, W. O. (2008) HLA-DRB1*04 allele is associated with severe
malaria in northern Ghana. Am. J. Trop. Med. Hyg. 78, 251–255

24. Bejon, P., Warimwe, G., Mackintosh, C. L., Mackinnon, M. J., Kinyanjui,
S. M., Musyoki, J. N., Bull, P. C., and Marsh, K. (2009) Analysis of
immunity to febrile malaria in children that distinguishes immunity from
lack of exposure. Infect. Immun. 77, 1917–1923

25. Le Cao, K. A., Boitard, S., and Besse, P. (2011) Sparse PLS discriminant
analysis: biologically relevant feature selection and graphical displays for
multiclass problems. BMC Bioinformatics 12, 253

26. Rohart, F., Gautier, B., Singh, A., and Le Cao, K. A. (2017) mixOmics: An R
package for ’omics feature selection and multiple data integration. PLoS
Comput.. Biol. 13, e1005752
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