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Abstract
The global challenge of understanding and forecasting ecosystem responses to climate extremes and
climate change is addressed in this review of research enabled through environmental research
infrastructure (RI) provided by Australia’s Terrestrial EcosystemResearchNetwork (TERN). Two
primary climatic drivers of ecosystem structure and function inAustralia arefire and aridity, towhich
Australianflora and fauna have shownmarked adaptability. Australian vegetation shows resilience to
climate extremes offlooding rains, droughts and heatwaves such that variability in primary
productivity of Australian vegetation has a tangible effect on the global carbon cycle. Nonetheless,
Australianflora and ecosystems could be vulnerable to projected climate change (e.g. to increasing
vapour pressure deficit). Refugia are also vulnerable to climate change, with conditions in these areas
already near the tipping point for a change in community composition. Ensuring genetic diversity
during directional change in climate (e.g. increasing aridity) requires proactive approaches to
conservation and restoration projects. To address these challenges, TERNprovides environmental RI
at three scales of observation: (i) environmentalmonitoring using remote sensing techniques at a
landscape and continental scale; (ii) a spatially extensive network of ecosystemmonitoring plots; and
(iii) intenselymeasured sites collecting detailed data on ecosystem processes. Through partnerships
with international environmental RIs, TERN enables research that addresses global challenges, on the
first steps toward the forecasting of ecosystem–climate interactions.

Introduction

As global climate change becomes more difficult to
ignore, there is an urgent need to understand how
terrestrial ecosystems can be expected to respond to
the changes they experience. Ecosystem responses to
climate change and extremes of variability include

increasing drought-induced tree mortality and asso-
ciated forest dieback (Allen et al 2010, Anderegg et al
2013, McDowell and Allen 2015), changing distribu-
tions of species and loss of habitat (McCallum et al
2014, Prober et al 2015), rising rates of soil hetero-
trophic respiration (Bond-Lamberty et al 2018), and
reductions in primary productivity and soil organic
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matter (Ciais et al 2005, Crowther et al 2016).
However, our understanding of ecosystem responses
to climate change and variability has lagged far behind
our ability to predict those responses using models.
Environmental research infrastructure (RI) is required
at national, regional, continental and global scales to
address important environmental challenges such as
the impacts of climate change, coral bleaching, biodi-
versity threats, geohazards and extreme events. Estab-
lishing a coherent RI across a diverse range of scientific

disciplines and contributing networks is a vital chal-
lenge to solve, thus creating a goal for developing
cooperation amongst environmental RI organisations,
government and industry for the shared purpose of
addressing global challenges.

The Terrestrial Ecosystem Research Network
(TERN) is Australia’s terrestrial ecosystem observa-
tory, providing environmental RI at three scales of
observation (table 1 and figure 1): (i) ecosystem
surveillance monitoring plots from which spatial

Table 1. List of physical and data research infrastructure (RI) operated by TERN.

RI Scale References

Acoustic recorders P Karan et al (2016)
Airborne and satellite remote sensing products L Held et al (2015)
Biomassa L, P Karan et al (2016)
Data products and tools DS

Flux towers P Beringer et al (2016)
Herbaria specimens S Tokmakoff et al (2016), Guerin et al (2017)
Leaf area index S, P Macfarlane et al (2007a),Macfarlane et al (2007b),Macfarlane et al (2014)
Mangrovefloristics L

Meteorological and soil sensors P Beringer et al (2016)
Permanent plots S Tokmakoff et al (2016), Guerin et al (2017)
Phenocams L, P Karan et al (2016)
Photopoints S, P

Soil and landscapeGrid of Australia L Grundy et al (2015)
Soil, vegetation and eDNA samples S Lemetre et al (2017)
Technical personnel to operate andmaintain RI All

Note. P: Ecosystem processes; L: Landscapes; S: Ecosystem surveillance; DS: Data services and analytics.
a Allometric scaling fromfield collections of diameter at breast height, basal area, tree height, tree growth via dendrometric records.

Figure 1.Map of TERN infrastructure including flux towers inNewZealand as part of TERNOzFlux. © 2019TERNatUQ, used by
permission.
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changes in biodiversity are monitored continentally,
and temporal changes over long timescales (5–10
years) (Tokmakoff et al 2016, Guerin et al 2017); (ii)
ecosystem processes ‘SuperSites’ equipped with eddy
covariance flux towers and from which temporal
changes in ecosystem structure and function are
monitored at a high level of detail in a spatially lim-
ited number of locations (Beringer et al 2016, Karan
et al 2016, van Gorsel et al 2018); and (iii) landscapes,
spatially distributed soil, environmental monitoring
and remote sensing products at continental spatial
scales (Grundy et al 2015, Mahoney et al 2016).
TERN provides data infrastructure and analytic ser-
vices to integrate across the three scales of observa-
tion, delivering open access to data publishing
(Bissett et al 2016, Medeiros and Katz 2016, Lowe
et al 2017), virtual computing facilities for data users
(Guru et al 2016) and analysis-code commercialisa-
tion (Isaac et al 2017). Internationally, environ-
mental RI observatories like TERN are joined
together with international partners (e.g. the Strate-
gic Collaboration Council, ILTER, OzFlux, NASA,
FLUXNET, NEON, CERN, SAEON, ICOS) to enable
research which addresses global challenges like that
of ecosystem responses to climate change and
variability.

In this letter, we review research across TERN’s
scales of observation and through TERN’s interna-
tional partners for addressing the global challenge of
understanding and predicting terrestrial ecosystem
responses to climate change and extreme variability.
Characteristics of Australia’s sclerophyllous flora
point to the ancient development of fire in shaping
extensive open ecosystems (>80Mya; Carpenter et al
2015). Development of fire has been associated with
increasing aridity, for which the earliest evidence of
arid-adapted vegetation appeared more than 30 Mya
(Martin 2006). Ecosystem responses to fire and arid-
ity will thus be reviewed first, followed by a review of
ecosystem responses to Australia’s highly variable
modern climate regime, which was more recently
established (during the early Pleistocene, 2 Mya;
Martin 2006). Ecosystem responses to climate
extremes are further explored for each extreme, pre-
sented in sections focused upon (i) an extremely wet
period which occurred since TERN’s establishment
in 2009 and (ii) the dry extreme, which is associated
with drought and heatwave. We will then finish with
a section on ecosystem responses to climate change,
the most recent of forces to affect ecosystems in Aus-
tralia and globally. Examples from the literature
were obtained upon review of the TERN publica-
tions catalogue (https://tern.org.au/Brochures-
Publications-pg27411.html#Publications). Refer to
the supplementary information, available online at
stacks.iop.org/ERL/14/095004/mmedia for refer-
ences from the TERN catalogue which were cited in
this letter.

TERNand global cooperation

TERN was established in 2009 by the Australian
government through the National Collaborative
Research Infrastructure Strategy (NCRIS) to meet
several objectives: to foster scientific interactions in
the environmental sciences, to establish a national
terrestrial site and observing network, to facilitate
access to high-quality environmental data, and to
provide a bridge between environmental science and
policy (Thurgate et al 2017). TERN was originally
developed as a network of networks, some of which
were established wholly within TERN to fill gaps
amongst existing networks (Thurgate et al 2017). This
combined approach of joining pre-existing and new
networks across the environmental space was particu-
larly effective at avoiding duplication (Thurgate et al
2017) and thus reducing establishment costs. After
expending the capital costs of establishing TERN’s
continental RI, the first challenge involved reducing
the scope of the RI to fit within the given operations
budget whilst retaining a consistent, continental
scope. Integration of TERN RI began by extensive
consultation which resulted in the grouping of obser-
vational infrastructure by scale of measurement,
ultimately leading to TERN’s current three scales of
observation.

Integration across TERN’s three scales of observa-
tion began in the research community (Ma et al 2013,
Barraza et al 2014, Bradford et al 2014, Joiner et al
2014, Mitchell et al 2014, Barraza et al 2015, Broich
et al 2015). Examples of multiscale integration across
TERN RI include: through remote-sensing calibra-
tion/validation activities (e.g. through NASA SMAP
cal/val; Jones et al 2017), by informing model para-
meterisation (Haverd et al 2013) and for evaluating
model predictability (Haughton et al 2018b). With
endorsement from the TERN Advisory Board, TERN
continues to foster increasingly close integration
across three scales of measurement through regular
executive group meetings which include programme
leaders of RI at each scale of observation andmembers
of TERN’s scientific advisory committee.

As the global research enterprise becomes increas-
ingly interconnected, there is a growing need for inter-
nationalising national, regional and continental RI to
serve a wider range of researchers as they join forces to
tackle global challenges such as climate change, biodi-
versity loss, food security and infectious diseases.
Growing internationalisation is facilitated by interac-
tions with TERN’s international counterparts, which
share common objectives, structure and functioning
(e.g. NEON, CERN, TERENO, CZO USA). For exam-
ple, TERN’s flux data are integrated into FLUXNET, a
globally distributed environmental RI (Baldocchi et al
1996, Gu and Baldocchi 2002, Baldocchi 2008, Novick
et al 2018) which is improving our understanding of
ecosystem responses to fluctuations in environmental
conditions (von Buttlar et al 2018). In addition, other
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global initiatives and policy frameworks have emerged
in recent years to provide global access to data pro-
ducts collected at local or regional scales (e.g. GEOSS,
IPBES). In another example of growing inter-
nationalisation, the Global Environmental Research
Infrastructure (GERI) was formed to foster coopera-
tion amongst RIs by founding members TERN (Aus-
tralia), SAEON (South Africa), CERN (China), NEON
(USA) and eLTER (Europe). TERN is part of an inter-
national consortium of environmental RI organisa-
tions, with the goal of providing spatially
comprehensive and integrated data streams which are
model-ready and publicly available for global synth-
eses. See the supplemental information for further
details on TERN’s international outreach activities
andTERN’s twenty-year vision.

Ecosystems and climate:fire and aridity

An understanding of ecosystem–climate interactions
is the foundation of forecasting ecosystem responses
to climate change (figure 2; Beringer et al 2015),
assuming that such predictability is accurate enough
to be feasible (Haughton et al 2018a). Environmental
RI in the form of ecological observatories provides a
platform for improved understanding of how ecosys-
tems respond to climate across a diversity of vegetation
types. In Australia, 32 major vegetation types have
been identified in a national vegetation information
system (NVIS; https://environment.gov.au/land/
native-vegetation/national-vegetation-information-
system), although they can be simplified by combining
similar types (e.g. arid and semi-arid Acacia forests,
woodlands, shrublands and savannas are three major
vegetation types which are all defined by a dominant
canopy ofMulgaAcacia). By example in a review of key

findings from research using TERN RI at the Alice
Mulga SuperSite of the Ti Tree basin, Eamus et al
(2016) grouped NVIS vegetation types into forest,
savanna, Mulga, shrubland, grassland and agriculture
(figure 3). Across these landscapes, fire and aridity are
key forces shaping ecological relationships with
climate.

Bushfire is a primary attribute of the tropical wet-
seasonal savannas and semi-arid grasslands of western
and northern Australia, where annual fire frequencies
are common across the northern tropical savanna (see
figures 2 and 4). The concentration of TERN infra-
structure in northern Australia at intermediate long-
itudes is organised around the North Australian
Tropical Transect (NATT; figure 1) to support
savanna research across a very large precipitation gra-
dient (320 to>1200 mm annual precipitation; Hutley
et al 2011, Cleverly et al 2013, Ma et al 2013). Heavy
rainfall during the wet season at northernmost loca-
tions along the NATT is associated with a large accu-
mulation of biomass (Hutley et al 2011), and this
grassy biomass cures over the subsequent dry season
that lacks rainfall, leading to the very high frequency of
fire re-occurrence at the northern end of the NATT
(ca. 1–2 years; figure 4). Fire is responsible for the
majority of productivity losses in the northern
savanna (63%), whereas large weather events such as
cyclones contribute very little to the long-term net
biome carbon budget (Hutley et al 2013). Burning is
furthermore largely responsible for greenhouse gas
emissions from savannas and consequential green-
house gas forcing of climate (Bristow et al 2016),
amongst a cascade of indirect feedbacks between cli-
mate and ecosystems which are mediated through
local atmospheric dynamics (figure 2; Beringer et al
2015). The outcome of this work is that it has con-
tributed to a better understanding of tropical savanna

Figure 2.The important relationships between ecosystem and climate for savannas exposed tofire. FromBeringer et al (2015), © 2014
TheAuthors. Global Change Biology Published by JohnWiley& Sons Ltd.
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functioning globally, where similarities of savanna
structure have been found to conceal large differences
across continents amongst vegetation, climate and fire
dynamics (Lehmann et al 2014). Without studies of

savanna function such as these which were enabled by
TERN RI (and similar RI on other continents), a large
gapwould exist in the understanding of the differences
in savanna function globally.

Figure 3.Distribution ofmajor vegetation types inAustralia.Mapwas generated based onAustralia’sNational Vegetation
Information System—MajorVegetationGroups (NVIS-MVGs). Groups were obtained by reclassifying the original 26NVIS-MVGs.
Reproduced fromEamus et al (2016), © IOPPublishing Ltd. CCBY 3.0.

Figure 4. Frequency of extensive fires (>4 km2) across Australia (1997–2013) derived from theAVHRRburnt area product. From
Beringer et al (2015), © 2014TheAuthors. Global Change Biology Published by JohnWiley& Sons Ltd.
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Outside of the tropics, bushfire tends to follow
two patterns. In drylands, fires occur as a result of
fuel accumulation directly following the conclusion
of very wet periods, whereas in sclerophyllous
eucalypt forests, wildfires occur following drought,
once fuel has cured sufficiently (Griffin et al
1983, Bradstock 2010). At TERN’s Calperum Mallee
SuperSite (FLUXNET code AU-Cpr) in a Mediterra-
nean climate, bushfire can have little or no effect on
soil respiration, but net ecosystem productivity
(NEP) and thus gross primary production (GPP) can
be reduced following fire (Sun et al 2015, 2016,
2017b). Bushfire plays an important role in shaping
Australian landscapes, but its observation by envir-
onmental RI is limited in time and space, and each
event provides a few more hints toward a better
understanding of ecosystem responses to fire.

Seventy per cent of Australia is arid or semi-arid
(Eamus et al 2006), where aridity is likely to dom-
inate over warming and low levels of soil phosphorus
in determining adaptation to future climate (Steane
et al 2017). For example, fauna such as ants, termites
and lizards in the Australian tropical savanna are
arid-adapted and are thus likely to be resistant to
future increases in aridity (Andersen et al 2015). By
contrast, species in the arid-Mediterranean ecotone
are fully adapted to neither climate and are thus sen-
sitive to variations in climate, both spatial and those
projected for the future (Guerin et al 2016). With
aridity increasing globally, international integration
of environmental RI organisations create further
opportunities for discovering diversity responses to
aridity.

Climate factors associated with aridity include
temperature, vapour pressure deficit, solar radiation,
precipitation and water availability. Aridity is moreover
associated with patterns of water-use efficiency, light-
use efficiency, species richness, productivity and adapt-
ability of leaf traits to native growth conditions (Shi et al
2014, Gibson et al 2017, Rumman et al 2018, Bloom-
field et al 2019). Grasslands are an important and wide-
spread community across the drylands of Australia
(figure 3), where climate dynamics are closely related to
leaf tissue nutrients (Anderson et al 2018). To meet the
global challenge of understanding nutrient dynamics in
grasslands, TERN is partnered with the Nutrient Net-
work (NutNet) at theGreatWesternWoodlands Super-
Site of southwestern Australia (FLUXNET code AU-
GWW,NutNet siteMt. Caroline) (Seabloom et al 2015,
Firn et al 2019). Established to test competing hypoth-
eses for causal mechanisms of relationships between
productivity and species richness, initial results from
NutNet indicate that climate factors related to aridity
such as temperature and the amount and timing of pre-
cipitation are positively related to both richness and
productivity (Grace et al 2016).

Ecosystems and climate: climate variability
and extreme events

Australia’s climate is highly variable, with the cultural
and economic significance of this highly variable
climate illustrated in the well-known common par-
lance as ‘a land K of droughts and flooding rains’
(Dorothea Mackellar, https://dorotheamackellar.
com.au/archive/mycountry.htm). A full range of
vegetation and climate conditions are currently
under-sampled by environmental RI globally (Jones
et al 2017), thus the high temperature anomalies
experienced by Australian ecosystems provides the
world with an important end-member for developing
an understanding of ecosystem responses to climate
extremes (e.g. heatwaves; DeKauwe et al 2019).

Australia has recently experienced an increase in
the frequency and severity of climate extremes (e.g.
drought, flooding, heatwave; Cleverly et al 2016a, Ellis
and Albrecht 2017), and fire has mediated biodiversity
responses to this rise in climate extremes in a biome-
specific manner (Greenville et al 2018). For example,
many of the grasslands and savannas of Australia are
pyrophytic or ‘fire promoting’, generating large con-
flagrations in response to a highly variable climate,
either seasonally or episodically (Nicholas et al 2011,
Beringer et al 2015, Wright 2018). By contrast, other
vegetation associations like the Mulga (Acacia spp.)
lands (shrublands, woodlands and savannas) which
cover one-fifth of the Australian continent as shown in
figure 3 (Bowman et al 2008) are sensitive to fire, but
they also act as a fire retardant (Murphy et al 2010).
Instead of burning, these ecosystems show adaptations
to extreme climate fluctuations with large variations in
water-use efficiency, allowing them to exert control on
drainage and recharge which is unaffected by varia-
bility in hydroclimate (Chen et al 2014, 2016). Across
this myriad of different vegetation types and responses
to extreme climate variability, adaptation to environ-
mental variability in temperature and water avail-
ability in Australia is associated with gene regions
(instead of complete genomes) (Christmas et al 2016a)
and has led to synchronisation of landscape productiv-
ity and greenness with hydroclimatic extremes
(Cleverly et al 2013, Ma et al 2015, Rammig and
Mahecha 2015).

Ultimately, climate and weather are influenced by
ocean–atmosphere interactions within ocean-basin
modes of variability. For example, El Niño-Southern
Oscillation (ENSO) is driven by a seasonal gradient of
sea-surface temperature along the equatorial Pacific
Ocean (Trenberth 1997), and fluctuations between the
warm phase (El Niño) and the cold phase (La Niña)
generally bring contrasting conditions to Northern
and Southern Hemispheres. El Niño is associated with
maritime wet conditions to the Northern Hemisphere
and dry conditions across the Southern Hemisphere,
whereas La Niña is associated with reversed

6

Environ. Res. Lett. 14 (2019) 095004

https://www.dorotheamackellar.com.au/archive/mycountry.htm
https://www.dorotheamackellar.com.au/archive/mycountry.htm


impacts on precipitation and consequently ecosystems
(Holmgren et al 2001). Data from TERN RI have been
used to demonstrate that Australia shows continental
phenological responses to ENSO-driven climate varia-
bility (Broich et al 2015) and that litterfall in the tropi-
cal rainforest of northeastern Australia is mainly
driven by fluctuations in maximum temperature,
which are related to ENSO (Edwards et al 2018).

Although ENSO provides the dominant climate sig-
nal for global weather patterns, it is becoming apparent
that ENSO alone cannot fully explain differences in
regional climate variability. Strong coupling amongst the
tropical Pacific, Atlantic and Indian Oceans can impact
the state of the climate, although limitations still exist in
our ability to project future climate without including
these teleconnections in climate models (Cai et al 2019).
In Australia, extreme climate variability (floods,
droughts, heatwaves) and resultant effects on water
resources have been explained by interactions of the
three nearest climate modes: ENSO, the Indian Ocean
dipole (IOD) and the Southern annular mode (SAM) in
the SouthernOcean (Ummenhofer et al 2009, 2011, Per-
kins et al 2015, Xie et al 2016, Cleverly et al 2016a, Rogers
andBeringer 2017).

The relative strength of a particular climate mode
depends upon a given continent’s location and the
relative importance of direct (i.e. baroclinic) or indir-
ect effects (i.e. Rossby-wave propagation) of the sur-
rounding climate modes (Cai et al 2011). For example
in the northern savanna of Australia, TERN RI was
used to show that interannual variability in productiv-
ity is associated with climate variability in SOI (Moore
et al 2018). In southern and central Australia, ENSO,
IOD and SAM each contribute to variability in rainfall
(He and Guan 2013, He et al 2014, Cleverly et al
2016a), and as a result of TERN RI, Australian ecosys-
tems have been shown to be very resilient to these high

levels of rainfall variability (Ma et al 2016, Cleverly et al
2016b, 2016c).

Wet extremes:flooding rain

The twowettest events on record in Australia occurred
in 1973–1976 and 2010–2012, both bringing wide-
spread flooding nationally (Meyer et al 2015, Cleverly
et al 2016a, 2016b, Whelan and Frederiksen 2017). In
this letter, we focus on the more recent event, which
overlapped with the establishment of TERN. Aug-
mentation of precipitation in the Southern Hemi-
sphere during this very strong La Niña was so large
that ocean levels reversed their long-term trend and
dropped by 5 mm (Boening et al 2012, Fasullo et al
2013). As a result, much of Australia’s dryland flushed
with greenness in satellite retrievals of both the
normalised difference vegetation index and the
enhanced vegetation index (Wardle et al 2013, Cleverly
et al 2016a), leading to several ecological responses.
Plagues of rats emerge during wet extremes which are
absent during dry times (Greenville et al 2013).
Masting occurred in dryland plants, with reproductive
structures increasing in mass 300%–7000% during
2010–2012 (Travers and Eldridge 2013). An ecosys-
tem-wide compositional shift occurred in the Simpson
Desert, with rooting patterns and soil texture explain-
ing phenological timing and distribution of each plant
form (annual grasses and forbs, perennial grasses,
shrubs; Nano and Pavey 2013). Wet extremes have the
potential to transform the ecology of vast portions of
Australia.

Increased water availability resulted in an asym-
metrically large increase in CO2 uptake by semi-arid
and temperate regions of Australia, Africa, South
America and India (figure 5; Haverd et al 2017), with

Figure 5.Asymmetric response of gross primary production (GPP) to precipitation. GPPof semi-arid environments are
asymmetrically responsive towet conditions, whereasmesic ecosystems are asymmetrically responsive to drought. FromHaverd et al
(2017), ©2016 JohnWiley & Sons Ltd.
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themajority of this global land C sink anomaly located
in Australia (Poulter et al 2014). Carbon fluxes and
phenology measured by TERN’s RI in semi-arid and
Mediterranean climates of Australia confirmed the
continent’s role in the 2011 global land C sink anom-
aly (Cleverly et al 2013, Eamus et al 2013b, Ma et al
2015, Sun et al 2018). Photosynthesis and respiration
are limited by water availability across much of Aus-
tralia, with both responding positively to extreme pre-
cipitation (Cleverly et al 2013, Haverd et al 2016) and
thus maintaining relatively small NEP and reduced
carbon-use efficiency (i.e. NEP/GPP) during wet
extremes. Low carbon-use efficiency during wet
conditions and water limitations on soil respiration
during subsequent dry periods contribute to mini-
misation of carbon emissions after the conclusion of
the wet extreme, in the absence of abiotic decomposi-
tion (Cleverly et al 2013, 2016c).

Multiple aspects of the climate contributed equally
to increased CO2 uptake in Australia (Trudinger et al
2016), showing the 2011 global land C sink anomaly to
be an integrated climatological, meteorological and
ecosystem event (Cleverly et al 2016a). However, there
were two restrictions on Australia’s contribution to
the land C sink anomaly. First, the asymmetric
response of photosynthetic productivity to precipita-
tion is dependent upon antecedent conditions, either
amplifying or dampening their relationship (Sun et al
2017a). The land C sink anomaly followed the
driest and hottest year of the Millennium Drought,
thus antecedent water resources were at a minimum
(van Dijk et al 2013). Second, energy-limited ecosys-
tems did not show a similar asymmetric response to
extrinsic forcing by precipitation and thus did not
respond to climate forcing during the land C sink
anomaly in the sameway that semi-arid ecosystems did
(figure 5, Haverd et al 2017). Thus, the contribution of
enhanced productivity in coastal, energy-limited eco-
systems was expected to be small, whereas Australia’s
vast drylands have a high capacity for enhanced pro-
ductivity during wet extremes (figure 5). Even with
these limitations, the land C sink provided an ecosys-
tem service whichmight have helped to slow the rate of
climate change (Keenan andWilliams 2018).

An inevitable outcome of increased productivity is
biomass accumulation, especially across grasslands
globally, where biomass accumulation is related to cli-
mate variability (Morgan et al 2016). Reduced diversity
can result with the presence of a single species of inva-
sive grass (e.g. buffel grass, Cenchrus ciliaris), which
burns hotter and more completely than native grasses
(Schlesinger et al 2013). For hummock grasslands
which cover one-quarter of the Australian land area
(Bowman et al 2008), the legacy of biomass accumu-
lated during the 2011 land C sink anomaly persisted in
the absence of burning for years as a strong carbon
source due to photodegradation of the standing leaf
litter (Cleverly et al 2016c). C budgets like those of
hummock grasslands are very difficult to predict using

land surface models (Haughton et al 2018a) due to a
lack of theoretical foundation for the modelling of
abiotic decomposition. This is thus an active area of
research for which TERN’s environmental RI will play
an important role in integrating measurements, mon-
itoring, modelling and remote sensing of carbon and
water balances (Eamus et al 2016).

Dry extremes: drought andheatwave

Interannual variability in the global carbon cycle is
strongly related to the large variability of the semi-arid
land C sink (Ahlström et al 2015). In a single example,
the 2011 land C sink in Australia was immediately
followed by the return of drought and associated heat,
which shut down the Australian land C sink even
whilst total water storage on the continent had
persisted (figure 6; Fasullo et al 2013, Ma et al 2016).
Thus, photosynthetic productivity of Australia is
sensitive to meteorological drought (i.e. months to
years of below-normal precipitation) and agricultural
drought (i.e. yield reduction due to soil drying), but
Australia’s hydroclimatic variability can moderate
against a more severe hydrological drought (i.e.
decline of water storage below the long-term mean;
figure 6; Dai 2011). Even during long-term drought,
moderately wetter-than-average years can have a
strong positive effect on total water storage and
productivity across Australia (figure 6). The Millen-
nium Drought of 2001–2009 was the longest meteor-
ological drought on record in Australia, but
antecedent hydrological drought began in 1994 (van
Dijk et al 2013). During the Millennium Drought, a
worldwide reduction in photosynthetic productivity
was attributed to drying in the Southern Hemisphere
(Zhao and Running 2010). Despite a widespread and
severe reduction in CO2 uptake during the Millen-
nium Drought, Australian vegetation has shown
resilience to a drought as extreme as even it was
(figure 6; Campos et al 2013,Ma et al 2013, 2015).

Australia has experienced much dryer, longer
droughts during previous glacial maxima (Mar-
tin 2006), and this long history of drought has con-
ferred a level of adaptation in Australia’s vegetation. At
the mesic end of the aridity gradient, the structure of
tropical rainforest trees is adapted to the maximum
historical water deficit (Pfeifer et al 2018). In the more
arid-adaptedMallee, a multi-stemmed eucalypt which
is also fire adapted, survival of common dry periods is
achieved by maintaining conservative (i.e. very small)
rates of transpiration (Meyer et al 2015). Two sequen-
tial years of much below-average precipitation in cen-
tral Australia (mid-2011–2013) resulted in a shift
from a strong carbon sink to a carbon source, whilst
showing resilience during the subsequent return of
average annual precipitation amounts (Cleverly et al
2016b, 2016c). Australian ecosystems show a diversity
of hydraulic traits, the presence of which confers
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resilience to water stress (Nolan et al 2017, Anderegg
et al 2018).

Heatwaves have been increasing in frequency
worldwide over the last 20–50 years, and they have
been either combined with drought or have occurred
under wet conditions, although heatwaves are more
commonly associated with drought (Ding and
Qian 2011, Bastos et al 2014, Teskey et al 2015, Kang
and Eltahir 2018). Three characteristics of heatwaves,
their frequency, intensity and duration, are projected
to continue increasing through the end of the 21st cen-
tury (Perkins-Kirkpatrick et al 2016). For example, the
drought and heatwave which struck Europe in 2003
was so severe and so far outside of the historical record
that the return interval estimates are in the range of
thousands to millions of years (Schar et al 2004), but
another similar heatwave is expected to occur within
the next 30 years (Russo et al 2015). The combination
of heatwave and drought, also known as global
change-type drought, can have consequences on eco-
systems as severe as tree mortality and forest dieback
(Breshears et al 2009, Eamus et al 2013a), and the like-
lihood of mortality is expected to increase as the fre-
quency, intensity and duration of heatwaves increases.

Soil-moisture–temperature and soil-moisture–
precipitation feedbacks are important for develop-
ment and maintenance of Australian heatwaves, albeit
not as important as these mechanisms are for Eur-
opean heatwaves (Perkins et al 2015). Drier-than-
average conditions in Australia’s interior push hot,
dry winds into southern Australia from The North
(Griebel et al 2016). One Australian example was the
2012/2013 ‘Angry Summer’heatwave, which developed

as drought across the interior of the continent, and an
associated high-pressure ridge pushed high tempera-
tures into forests and woodlands of southern Australia
(vanGorsel et al2016,Cleverly et al 2016c).

Ecosystem functional responses to both phases of
the ‘Angry Summer’ heatwave (dry followed by wet)
were evaluated using TERN’s flux tower infrastructure
at seven TERN ecosystem processes sites across south-
ern Australia (van Gorsel et al 2016). NEP and GPP
declined sharply during the heatwave in Mediterra-
nean woodlands and dry sclerophyll forests, although
reductions were smaller during the wet phase than
during the preceding dry phase (figure 7). By contrast,
the wet sclerophyll forest at the Tumbarumba Super-
Site maintained NEP and GPP at constant levels as
before the heatwave, with evaporative cooling ameli-
orating the heatwave and weakening land-atmosphere
feedbacks (figure 7; van Gorsel et al 2016). However,
soil moisture reserves were nearly depleted in the wet
sclerophyll forest during the relatively short ‘Angry
Summer’ heatwave, showing afternoon reductions of
NEP and GPP during the dry portion of the heatwave,
which is consistent with a photosynthetic and stomatal
down-regulation due to stress (see figure 7, Cowan
and Farquhar 1977). Thus, this heatwave provided a
second example of the associated effects of drought
and heatwave on ecosystem productivity of Australian
ecosystems (see figures 6 and 7) and further demon-
strates that increases in the intensity, frequency or
duration of heatwaves in future might have seriously
detrimental consequences for even Australia’s wettest
forests (vanGorsel et al 2016).

Figure 6. Interannual variation in climate, carbon fluxes andwater resources, 2000–2001 through 2012–2013. Shown are a drought
index (standardised precipitation–evapotranspiration index, SPEI), precipitation, air temperature (Tair), enhanced vegetation index
(EVI), net ecosystem productivity (NEP), satellite solar-induced fluorescence (SIF), GRACE total water storage anomalies and fire
CO2 emissions. Reproduced fromMa et al (2016), CCBY4.0.
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Ecosystems and climate: climate change

Ecosystems can be vulnerable to climate change due to
restricted gene flow, habitat loss or restricted range
(McCallum et al 2014). However, cool and mesic
locations in the landscape can often provide refugia
where higher resilience is encountered than would be
otherwise predicted (Guerin et al 2013, Tapper et al
2014, Christmas et al 2017). Refugia onmountains and
islands can buffer genetic diversity against a fluctuat-
ing climate (Christmas et al 2017), although climate
change can remain a threat for isolated ecosystems
such as for island cloud forests where decreasing
precipitation and cloud cover have been observed
(Auld and Leishman 2015). Furthermore, refugia can
show a tipping point, described as a point in a spatial
climate gradient at which ecosystem composition
turns over rapidly (figure 8; Guerin et al 2013, Caddy-
Retalic et al 2017). Tipping points occur at locations
along an environmental climate gradient where the

species composition of both generalists and specialists
changes (figure 8). Such a transition zone would exist
at the boundary of a climate refugium, where a
turnover of multiple species occurs over a short
distance (figure 8). The presence of a tipping point
carries a further risk from climate change as the
locations of tipping points contract toward the centre
of a species’ range. Long-term ecological RI from
various countries worldwide, including Australia, has
been joined into the International Long TermEcologi-
cal Network (ILTER), which addresses the grand
challenge of climate change and the resultant loss of
biodiversity which is likely to occur (Mirtl et al 2018).

Thus far, we have discussed how adaptation, such
as adaptation to aridity, can play an important role in
protecting biodiversity from climate extremes, but
considerations of adaptation and adaptability are also
important for biodiversity conservation in a changing
climate. Care must be taken, however, to avoid
deprioritising refugia which are low in diversity and

Figure 7.Ecosystem productivity responses to the ‘Angry Summer’heatwave inAustralia, summer 2012–2013. The initial dry
heatwavewas broken by a brief wet spell and subsequentwet heatwave. Pre-heatwave Cfluxes are shown as the grey background
curves. GPP andNEP are shownduring pre-heatwave (i.e. background; dark grey and light grey, respectively) and during heatwave
(dark green and light green, respectively) forMediterraneanwoodlands (MW), dry sclerophyll woodland (temperate woodland, TW)
andwet sclerophyll forest (temperate forest, TF).MWsites are the driest (orange), TF sites are thewettest (dark green), andTWare
intermediate (light green). Reproduced fromvanGorsel et al (2016), CCBY 3.0.
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thereby less adapted to areas outside of their refugium
(Costion et al 2015). Otherwise, several conservation
approaches are available for promoting diversity and
adaptability to climate change, including climate-
adjusted provenancing (figure 9), assisted migration,
biodiversity corridors and ex situ strategies (Prober
et al 2015, Christmas et al 2016b). In climate-adjusted
provenancing, natural genetic variability is exploited
to enhance climate resilience of restoration activities
over time by predicting future changes in climate over
incremental time steps (figure 9). This gradual
approach over time allows for the detection of uncer-
tainties (e.g. mismatch between predicted and actual
climate change trajectories) before it is too late to cor-
rect for them (figure 9). TERN’s plot-based monitor-
ing infrastructure, especially those arrayed in transects
along climate gradients, provide a powerful tool for
evaluating community responses to climate change
and for promoting resilience in biodiversity (Caddy-
Retalic et al 2017).

There are several aspects of projected climate
change in relation to ecosystem carbon cycles, such as
changes in precipitation, vapour pressure deficit,
temperature and elevated [CO2]. Changes in pre-
cipitation seasonality are projected to reduce carbon
stocks in the northern Australian savannas and rain-
forests, even with little change to annual total pre-
cipitation (Cook et al 2015). Increasing vapour
pressure deficit during one key season as a result of
decreasing seasonal precipitation and increasing
temperature is expected to carry detrimental effects

upon the carbon cycle of Australian alpine grasslands
and tropical rainforests worldwide (Fu et al 2018,
Marchin et al 2018). Photosynthetic production in tro-
pical rainforests is currently restricted by high vapour
pressure deficit, and they are unlikely to tolerate a
much drier atmosphere (Fu et al 2018). In alpine grass-
lands of Australia, a tipping point has been identified
wherein vapour pressure deficits which exceed this
threshold can prevent the typical recovery of vegeta-
tional greenness at the end of the growing season
(Marchin et al 2018). Increasingly elevated vapour
pressure deficit is a serious risk for tree mortality
and ecosystem function worldwide (Allen et al 2010,
Breshears et al 2013, Eamus et al 2013a).

Warming is predicted to have strongly negative
effects on Australia’s temperate eucalypt forests,
nearly 90% of which exist in temperature regimes
above their thermal optimum for growth (11 °C;
Bowman et al 2014). In the absence of water or sub-
strate limitations, respiration will increase along with
rising temperatures, leading to global observations of
increasing heterotrophic respiration and climate-dri-
ven loss of soil carbon (Bond-Lamberty et al 2018).
Acting to counter the effects of increasing temper-
ature, elevated [CO2] can contribute to maintenance
of photosynthesis at reduced stomatal conductance,
thereby improving water-use efficiency whilst redu-
cing pressure on limited water resources. CO2 fertili-
sation is projected to be the main driver of savanna
responses to climate, leading to increased carbon
sequestration in vegetation, although the magnitude

Figure 8.Conceptual diagramof a tipping point along a climate gradient. Tipping points occurwhere a clear transition occurs for both
generalist and specialist species distributions. Panel (a) shows no tipping point and even transitions of community composition along
the gradient. Natural ecosystems show amix of generalists, specialists and intermediate species, with a tipping point (b) orwith a
tipping point and ecotonal transition zone. Reproduced fromCaddy‐Retalic et al (2017), CCBY 4.0.
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of the fertilisation effect will depend strongly upon
changes in fire return interval and seasonality (Scheiter
et al 2015). Increasing aridity and elevated [CO2] are
likely to affect vegetation dynamics of tropical savan-
nas, which will alter fire regimes and provide further
carbon feedbacks to climate (figure 2; Beringer et al
2015).

Final remarks

There is an urgent need for environmental informa-
tion from RI in remote Australian landscapes, which
would provide important outcomes and impact
related to environmental reporting and fostering
research in the framework of global challenges

Figure 9.Diagram of provenancing strategies for revegetation in a changing climate. Reproduced fromProber et al (2015), CCBY 4.0.
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(van Dijk et al 2014). The risks of climate change as
well as opportunities for conservation are emerging
from this work, although there is still much to
discover. Environmental RIs create the opportunity
for identifying and evaluating the key drivers of
ecosystem change by allowing researchers to observe
state-changing events such as heatwaves, floods or
droughts in locations which might be otherwise
inaccessible. These are the first steps toward the
development of an environmental forecasting system
which can answer the global challenge of predicting
ecosystem responses to climate change.
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